1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains support for writing Microsoft CodeView debug info.
11 //===----------------------------------------------------------------------===//
13 #include "CodeViewDebug.h"
14 #include "DwarfExpression.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/TinyPtrVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/BinaryFormat/COFF.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/CodeGen/AsmPrinter.h"
32 #include "llvm/CodeGen/LexicalScopes.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/TargetFrameLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
43 #include "llvm/DebugInfo/CodeView/CodeView.h"
44 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
45 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
46 #include "llvm/DebugInfo/CodeView/EnumTables.h"
47 #include "llvm/DebugInfo/CodeView/Line.h"
48 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
49 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
50 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
51 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
52 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugInfoMetadata.h"
56 #include "llvm/IR/DebugLoc.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/GlobalValue.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/Metadata.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/MC/MCAsmInfo.h"
63 #include "llvm/MC/MCContext.h"
64 #include "llvm/MC/MCSectionCOFF.h"
65 #include "llvm/MC/MCStreamer.h"
66 #include "llvm/MC/MCSymbol.h"
67 #include "llvm/Support/BinaryByteStream.h"
68 #include "llvm/Support/BinaryStreamReader.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Endian.h"
73 #include "llvm/Support/Error.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/FormatVariadic.h"
76 #include "llvm/Support/Path.h"
77 #include "llvm/Support/SMLoc.h"
78 #include "llvm/Support/ScopedPrinter.h"
79 #include "llvm/Target/TargetLoweringObjectFile.h"
80 #include "llvm/Target/TargetMachine.h"
93 using namespace llvm::codeview
;
95 static CPUType
mapArchToCVCPUType(Triple::ArchType Type
) {
97 case Triple::ArchType::x86
:
98 return CPUType::Pentium3
;
99 case Triple::ArchType::x86_64
:
101 case Triple::ArchType::thumb
:
102 return CPUType::Thumb
;
103 case Triple::ArchType::aarch64
:
104 return CPUType::ARM64
;
106 report_fatal_error("target architecture doesn't map to a CodeView CPUType");
110 CodeViewDebug::CodeViewDebug(AsmPrinter
*AP
)
111 : DebugHandlerBase(AP
), OS(*Asm
->OutStreamer
), TypeTable(Allocator
) {
112 // If module doesn't have named metadata anchors or COFF debug section
113 // is not available, skip any debug info related stuff.
114 if (!MMI
->getModule()->getNamedMetadata("llvm.dbg.cu") ||
115 !AP
->getObjFileLowering().getCOFFDebugSymbolsSection()) {
117 MMI
->setDebugInfoAvailability(false);
120 // Tell MMI that we have debug info.
121 MMI
->setDebugInfoAvailability(true);
124 mapArchToCVCPUType(Triple(MMI
->getModule()->getTargetTriple()).getArch());
126 collectGlobalVariableInfo();
128 // Check if we should emit type record hashes.
129 ConstantInt
*GH
= mdconst::extract_or_null
<ConstantInt
>(
130 MMI
->getModule()->getModuleFlag("CodeViewGHash"));
131 EmitDebugGlobalHashes
= GH
&& !GH
->isZero();
134 StringRef
CodeViewDebug::getFullFilepath(const DIFile
*File
) {
135 std::string
&Filepath
= FileToFilepathMap
[File
];
136 if (!Filepath
.empty())
139 StringRef Dir
= File
->getDirectory(), Filename
= File
->getFilename();
141 // If this is a Unix-style path, just use it as is. Don't try to canonicalize
142 // it textually because one of the path components could be a symlink.
143 if (Dir
.startswith("/") || Filename
.startswith("/")) {
144 if (llvm::sys::path::is_absolute(Filename
, llvm::sys::path::Style::posix
))
147 if (Dir
.back() != '/')
149 Filepath
+= Filename
;
153 // Clang emits directory and relative filename info into the IR, but CodeView
154 // operates on full paths. We could change Clang to emit full paths too, but
155 // that would increase the IR size and probably not needed for other users.
156 // For now, just concatenate and canonicalize the path here.
157 if (Filename
.find(':') == 1)
160 Filepath
= (Dir
+ "\\" + Filename
).str();
162 // Canonicalize the path. We have to do it textually because we may no longer
163 // have access the file in the filesystem.
164 // First, replace all slashes with backslashes.
165 std::replace(Filepath
.begin(), Filepath
.end(), '/', '\\');
167 // Remove all "\.\" with "\".
169 while ((Cursor
= Filepath
.find("\\.\\", Cursor
)) != std::string::npos
)
170 Filepath
.erase(Cursor
, 2);
172 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original
173 // path should be well-formatted, e.g. start with a drive letter, etc.
175 while ((Cursor
= Filepath
.find("\\..\\", Cursor
)) != std::string::npos
) {
176 // Something's wrong if the path starts with "\..\", abort.
180 size_t PrevSlash
= Filepath
.rfind('\\', Cursor
- 1);
181 if (PrevSlash
== std::string::npos
)
182 // Something's wrong, abort.
185 Filepath
.erase(PrevSlash
, Cursor
+ 3 - PrevSlash
);
186 // The next ".." might be following the one we've just erased.
190 // Remove all duplicate backslashes.
192 while ((Cursor
= Filepath
.find("\\\\", Cursor
)) != std::string::npos
)
193 Filepath
.erase(Cursor
, 1);
198 unsigned CodeViewDebug::maybeRecordFile(const DIFile
*F
) {
199 StringRef FullPath
= getFullFilepath(F
);
200 unsigned NextId
= FileIdMap
.size() + 1;
201 auto Insertion
= FileIdMap
.insert(std::make_pair(FullPath
, NextId
));
202 if (Insertion
.second
) {
203 // We have to compute the full filepath and emit a .cv_file directive.
204 ArrayRef
<uint8_t> ChecksumAsBytes
;
205 FileChecksumKind CSKind
= FileChecksumKind::None
;
206 if (F
->getChecksum()) {
207 std::string Checksum
= fromHex(F
->getChecksum()->Value
);
208 void *CKMem
= OS
.getContext().allocate(Checksum
.size(), 1);
209 memcpy(CKMem
, Checksum
.data(), Checksum
.size());
210 ChecksumAsBytes
= ArrayRef
<uint8_t>(
211 reinterpret_cast<const uint8_t *>(CKMem
), Checksum
.size());
212 switch (F
->getChecksum()->Kind
) {
213 case DIFile::CSK_MD5
: CSKind
= FileChecksumKind::MD5
; break;
214 case DIFile::CSK_SHA1
: CSKind
= FileChecksumKind::SHA1
; break;
217 bool Success
= OS
.EmitCVFileDirective(NextId
, FullPath
, ChecksumAsBytes
,
218 static_cast<unsigned>(CSKind
));
220 assert(Success
&& ".cv_file directive failed");
222 return Insertion
.first
->second
;
225 CodeViewDebug::InlineSite
&
226 CodeViewDebug::getInlineSite(const DILocation
*InlinedAt
,
227 const DISubprogram
*Inlinee
) {
228 auto SiteInsertion
= CurFn
->InlineSites
.insert({InlinedAt
, InlineSite()});
229 InlineSite
*Site
= &SiteInsertion
.first
->second
;
230 if (SiteInsertion
.second
) {
231 unsigned ParentFuncId
= CurFn
->FuncId
;
232 if (const DILocation
*OuterIA
= InlinedAt
->getInlinedAt())
234 getInlineSite(OuterIA
, InlinedAt
->getScope()->getSubprogram())
237 Site
->SiteFuncId
= NextFuncId
++;
238 OS
.EmitCVInlineSiteIdDirective(
239 Site
->SiteFuncId
, ParentFuncId
, maybeRecordFile(InlinedAt
->getFile()),
240 InlinedAt
->getLine(), InlinedAt
->getColumn(), SMLoc());
241 Site
->Inlinee
= Inlinee
;
242 InlinedSubprograms
.insert(Inlinee
);
243 getFuncIdForSubprogram(Inlinee
);
248 static StringRef
getPrettyScopeName(const DIScope
*Scope
) {
249 StringRef ScopeName
= Scope
->getName();
250 if (!ScopeName
.empty())
253 switch (Scope
->getTag()) {
254 case dwarf::DW_TAG_enumeration_type
:
255 case dwarf::DW_TAG_class_type
:
256 case dwarf::DW_TAG_structure_type
:
257 case dwarf::DW_TAG_union_type
:
258 return "<unnamed-tag>";
259 case dwarf::DW_TAG_namespace
:
260 return "`anonymous namespace'";
266 static const DISubprogram
*getQualifiedNameComponents(
267 const DIScope
*Scope
, SmallVectorImpl
<StringRef
> &QualifiedNameComponents
) {
268 const DISubprogram
*ClosestSubprogram
= nullptr;
269 while (Scope
!= nullptr) {
270 if (ClosestSubprogram
== nullptr)
271 ClosestSubprogram
= dyn_cast
<DISubprogram
>(Scope
);
272 StringRef ScopeName
= getPrettyScopeName(Scope
);
273 if (!ScopeName
.empty())
274 QualifiedNameComponents
.push_back(ScopeName
);
275 Scope
= Scope
->getScope().resolve();
277 return ClosestSubprogram
;
280 static std::string
getQualifiedName(ArrayRef
<StringRef
> QualifiedNameComponents
,
281 StringRef TypeName
) {
282 std::string FullyQualifiedName
;
283 for (StringRef QualifiedNameComponent
:
284 llvm::reverse(QualifiedNameComponents
)) {
285 FullyQualifiedName
.append(QualifiedNameComponent
);
286 FullyQualifiedName
.append("::");
288 FullyQualifiedName
.append(TypeName
);
289 return FullyQualifiedName
;
292 static std::string
getFullyQualifiedName(const DIScope
*Scope
, StringRef Name
) {
293 SmallVector
<StringRef
, 5> QualifiedNameComponents
;
294 getQualifiedNameComponents(Scope
, QualifiedNameComponents
);
295 return getQualifiedName(QualifiedNameComponents
, Name
);
298 struct CodeViewDebug::TypeLoweringScope
{
299 TypeLoweringScope(CodeViewDebug
&CVD
) : CVD(CVD
) { ++CVD
.TypeEmissionLevel
; }
300 ~TypeLoweringScope() {
301 // Don't decrement TypeEmissionLevel until after emitting deferred types, so
302 // inner TypeLoweringScopes don't attempt to emit deferred types.
303 if (CVD
.TypeEmissionLevel
== 1)
304 CVD
.emitDeferredCompleteTypes();
305 --CVD
.TypeEmissionLevel
;
310 static std::string
getFullyQualifiedName(const DIScope
*Ty
) {
311 const DIScope
*Scope
= Ty
->getScope().resolve();
312 return getFullyQualifiedName(Scope
, getPrettyScopeName(Ty
));
315 TypeIndex
CodeViewDebug::getScopeIndex(const DIScope
*Scope
) {
316 // No scope means global scope and that uses the zero index.
317 if (!Scope
|| isa
<DIFile
>(Scope
))
320 assert(!isa
<DIType
>(Scope
) && "shouldn't make a namespace scope for a type");
322 // Check if we've already translated this scope.
323 auto I
= TypeIndices
.find({Scope
, nullptr});
324 if (I
!= TypeIndices
.end())
327 // Build the fully qualified name of the scope.
328 std::string ScopeName
= getFullyQualifiedName(Scope
);
329 StringIdRecord
SID(TypeIndex(), ScopeName
);
330 auto TI
= TypeTable
.writeLeafType(SID
);
331 return recordTypeIndexForDINode(Scope
, TI
);
334 TypeIndex
CodeViewDebug::getFuncIdForSubprogram(const DISubprogram
*SP
) {
337 // Check if we've already translated this subprogram.
338 auto I
= TypeIndices
.find({SP
, nullptr});
339 if (I
!= TypeIndices
.end())
342 // The display name includes function template arguments. Drop them to match
344 StringRef DisplayName
= SP
->getName().split('<').first
;
346 const DIScope
*Scope
= SP
->getScope().resolve();
348 if (const auto *Class
= dyn_cast_or_null
<DICompositeType
>(Scope
)) {
349 // If the scope is a DICompositeType, then this must be a method. Member
350 // function types take some special handling, and require access to the
352 TypeIndex ClassType
= getTypeIndex(Class
);
353 MemberFuncIdRecord
MFuncId(ClassType
, getMemberFunctionType(SP
, Class
),
355 TI
= TypeTable
.writeLeafType(MFuncId
);
357 // Otherwise, this must be a free function.
358 TypeIndex ParentScope
= getScopeIndex(Scope
);
359 FuncIdRecord
FuncId(ParentScope
, getTypeIndex(SP
->getType()), DisplayName
);
360 TI
= TypeTable
.writeLeafType(FuncId
);
363 return recordTypeIndexForDINode(SP
, TI
);
366 static bool isTrivial(const DICompositeType
*DCTy
) {
367 return ((DCTy
->getFlags() & DINode::FlagTrivial
) == DINode::FlagTrivial
);
370 static FunctionOptions
371 getFunctionOptions(const DISubroutineType
*Ty
,
372 const DICompositeType
*ClassTy
= nullptr,
373 StringRef SPName
= StringRef("")) {
374 FunctionOptions FO
= FunctionOptions::None
;
375 const DIType
*ReturnTy
= nullptr;
376 if (auto TypeArray
= Ty
->getTypeArray()) {
377 if (TypeArray
.size())
378 ReturnTy
= TypeArray
[0].resolve();
381 if (auto *ReturnDCTy
= dyn_cast_or_null
<DICompositeType
>(ReturnTy
)) {
382 if (!isTrivial(ReturnDCTy
))
383 FO
|= FunctionOptions::CxxReturnUdt
;
386 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
387 if (ClassTy
&& !isTrivial(ClassTy
) && SPName
== ClassTy
->getName()) {
388 FO
|= FunctionOptions::Constructor
;
390 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
396 TypeIndex
CodeViewDebug::getMemberFunctionType(const DISubprogram
*SP
,
397 const DICompositeType
*Class
) {
398 // Always use the method declaration as the key for the function type. The
399 // method declaration contains the this adjustment.
400 if (SP
->getDeclaration())
401 SP
= SP
->getDeclaration();
402 assert(!SP
->getDeclaration() && "should use declaration as key");
404 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
405 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
406 auto I
= TypeIndices
.find({SP
, Class
});
407 if (I
!= TypeIndices
.end())
410 // Make sure complete type info for the class is emitted *after* the member
411 // function type, as the complete class type is likely to reference this
412 // member function type.
413 TypeLoweringScope
S(*this);
414 const bool IsStaticMethod
= (SP
->getFlags() & DINode::FlagStaticMember
) != 0;
416 FunctionOptions FO
= getFunctionOptions(SP
->getType(), Class
, SP
->getName());
417 TypeIndex TI
= lowerTypeMemberFunction(
418 SP
->getType(), Class
, SP
->getThisAdjustment(), IsStaticMethod
, FO
);
419 return recordTypeIndexForDINode(SP
, TI
, Class
);
422 TypeIndex
CodeViewDebug::recordTypeIndexForDINode(const DINode
*Node
,
424 const DIType
*ClassTy
) {
425 auto InsertResult
= TypeIndices
.insert({{Node
, ClassTy
}, TI
});
427 assert(InsertResult
.second
&& "DINode was already assigned a type index");
431 unsigned CodeViewDebug::getPointerSizeInBytes() {
432 return MMI
->getModule()->getDataLayout().getPointerSizeInBits() / 8;
435 void CodeViewDebug::recordLocalVariable(LocalVariable
&&Var
,
436 const LexicalScope
*LS
) {
437 if (const DILocation
*InlinedAt
= LS
->getInlinedAt()) {
438 // This variable was inlined. Associate it with the InlineSite.
439 const DISubprogram
*Inlinee
= Var
.DIVar
->getScope()->getSubprogram();
440 InlineSite
&Site
= getInlineSite(InlinedAt
, Inlinee
);
441 Site
.InlinedLocals
.emplace_back(Var
);
443 // This variable goes into the corresponding lexical scope.
444 ScopeVariables
[LS
].emplace_back(Var
);
448 static void addLocIfNotPresent(SmallVectorImpl
<const DILocation
*> &Locs
,
449 const DILocation
*Loc
) {
450 auto B
= Locs
.begin(), E
= Locs
.end();
451 if (std::find(B
, E
, Loc
) == E
)
455 void CodeViewDebug::maybeRecordLocation(const DebugLoc
&DL
,
456 const MachineFunction
*MF
) {
457 // Skip this instruction if it has the same location as the previous one.
458 if (!DL
|| DL
== PrevInstLoc
)
461 const DIScope
*Scope
= DL
.get()->getScope();
465 // Skip this line if it is longer than the maximum we can record.
466 LineInfo
LI(DL
.getLine(), DL
.getLine(), /*IsStatement=*/true);
467 if (LI
.getStartLine() != DL
.getLine() || LI
.isAlwaysStepInto() ||
468 LI
.isNeverStepInto())
471 ColumnInfo
CI(DL
.getCol(), /*EndColumn=*/0);
472 if (CI
.getStartColumn() != DL
.getCol())
475 if (!CurFn
->HaveLineInfo
)
476 CurFn
->HaveLineInfo
= true;
478 if (PrevInstLoc
.get() && PrevInstLoc
->getFile() == DL
->getFile())
479 FileId
= CurFn
->LastFileId
;
481 FileId
= CurFn
->LastFileId
= maybeRecordFile(DL
->getFile());
484 unsigned FuncId
= CurFn
->FuncId
;
485 if (const DILocation
*SiteLoc
= DL
->getInlinedAt()) {
486 const DILocation
*Loc
= DL
.get();
488 // If this location was actually inlined from somewhere else, give it the ID
489 // of the inline call site.
491 getInlineSite(SiteLoc
, Loc
->getScope()->getSubprogram()).SiteFuncId
;
493 // Ensure we have links in the tree of inline call sites.
494 bool FirstLoc
= true;
495 while ((SiteLoc
= Loc
->getInlinedAt())) {
497 getInlineSite(SiteLoc
, Loc
->getScope()->getSubprogram());
499 addLocIfNotPresent(Site
.ChildSites
, Loc
);
503 addLocIfNotPresent(CurFn
->ChildSites
, Loc
);
506 OS
.EmitCVLocDirective(FuncId
, FileId
, DL
.getLine(), DL
.getCol(),
507 /*PrologueEnd=*/false, /*IsStmt=*/false,
508 DL
->getFilename(), SMLoc());
511 void CodeViewDebug::emitCodeViewMagicVersion() {
512 OS
.EmitValueToAlignment(4);
513 OS
.AddComment("Debug section magic");
514 OS
.EmitIntValue(COFF::DEBUG_SECTION_MAGIC
, 4);
517 void CodeViewDebug::endModule() {
518 if (!Asm
|| !MMI
->hasDebugInfo())
521 assert(Asm
!= nullptr);
523 // The COFF .debug$S section consists of several subsections, each starting
524 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
525 // of the payload followed by the payload itself. The subsections are 4-byte
528 // Use the generic .debug$S section, and make a subsection for all the inlined
530 switchToDebugSectionForSymbol(nullptr);
532 MCSymbol
*CompilerInfo
= beginCVSubsection(DebugSubsectionKind::Symbols
);
533 emitCompilerInformation();
534 endCVSubsection(CompilerInfo
);
536 emitInlineeLinesSubsection();
538 // Emit per-function debug information.
539 for (auto &P
: FnDebugInfo
)
540 if (!P
.first
->isDeclarationForLinker())
541 emitDebugInfoForFunction(P
.first
, *P
.second
);
543 // Emit global variable debug information.
544 setCurrentSubprogram(nullptr);
545 emitDebugInfoForGlobals();
547 // Emit retained types.
548 emitDebugInfoForRetainedTypes();
550 // Switch back to the generic .debug$S section after potentially processing
551 // comdat symbol sections.
552 switchToDebugSectionForSymbol(nullptr);
554 // Emit UDT records for any types used by global variables.
555 if (!GlobalUDTs
.empty()) {
556 MCSymbol
*SymbolsEnd
= beginCVSubsection(DebugSubsectionKind::Symbols
);
557 emitDebugInfoForUDTs(GlobalUDTs
);
558 endCVSubsection(SymbolsEnd
);
561 // This subsection holds a file index to offset in string table table.
562 OS
.AddComment("File index to string table offset subsection");
563 OS
.EmitCVFileChecksumsDirective();
565 // This subsection holds the string table.
566 OS
.AddComment("String table");
567 OS
.EmitCVStringTableDirective();
569 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
570 // subsection in the generic .debug$S section at the end. There is no
571 // particular reason for this ordering other than to match MSVC.
574 // Emit type information and hashes last, so that any types we translate while
575 // emitting function info are included.
576 emitTypeInformation();
578 if (EmitDebugGlobalHashes
)
579 emitTypeGlobalHashes();
584 static void emitNullTerminatedSymbolName(MCStreamer
&OS
, StringRef S
,
585 unsigned MaxFixedRecordLength
= 0xF00) {
586 // The maximum CV record length is 0xFF00. Most of the strings we emit appear
587 // after a fixed length portion of the record. The fixed length portion should
588 // always be less than 0xF00 (3840) bytes, so truncate the string so that the
589 // overall record size is less than the maximum allowed.
590 SmallString
<32> NullTerminatedString(
591 S
.take_front(MaxRecordLength
- MaxFixedRecordLength
- 1));
592 NullTerminatedString
.push_back('\0');
593 OS
.EmitBytes(NullTerminatedString
);
596 void CodeViewDebug::emitTypeInformation() {
597 if (TypeTable
.empty())
600 // Start the .debug$T or .debug$P section with 0x4.
601 OS
.SwitchSection(Asm
->getObjFileLowering().getCOFFDebugTypesSection());
602 emitCodeViewMagicVersion();
604 SmallString
<8> CommentPrefix
;
605 if (OS
.isVerboseAsm()) {
606 CommentPrefix
+= '\t';
607 CommentPrefix
+= Asm
->MAI
->getCommentString();
608 CommentPrefix
+= ' ';
611 TypeTableCollection
Table(TypeTable
.records());
612 Optional
<TypeIndex
> B
= Table
.getFirst();
614 // This will fail if the record data is invalid.
615 CVType Record
= Table
.getType(*B
);
617 if (OS
.isVerboseAsm()) {
618 // Emit a block comment describing the type record for readability.
619 SmallString
<512> CommentBlock
;
620 raw_svector_ostream
CommentOS(CommentBlock
);
621 ScopedPrinter
SP(CommentOS
);
622 SP
.setPrefix(CommentPrefix
);
623 TypeDumpVisitor
TDV(Table
, &SP
, false);
625 Error E
= codeview::visitTypeRecord(Record
, *B
, TDV
);
627 logAllUnhandledErrors(std::move(E
), errs(), "error: ");
628 llvm_unreachable("produced malformed type record");
630 // emitRawComment will insert its own tab and comment string before
631 // the first line, so strip off our first one. It also prints its own
634 CommentOS
.str().drop_front(CommentPrefix
.size() - 1).rtrim());
636 OS
.EmitBinaryData(Record
.str_data());
637 B
= Table
.getNext(*B
);
641 void CodeViewDebug::emitTypeGlobalHashes() {
642 if (TypeTable
.empty())
645 // Start the .debug$H section with the version and hash algorithm, currently
646 // hardcoded to version 0, SHA1.
647 OS
.SwitchSection(Asm
->getObjFileLowering().getCOFFGlobalTypeHashesSection());
649 OS
.EmitValueToAlignment(4);
650 OS
.AddComment("Magic");
651 OS
.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC
, 4);
652 OS
.AddComment("Section Version");
653 OS
.EmitIntValue(0, 2);
654 OS
.AddComment("Hash Algorithm");
655 OS
.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8
), 2);
657 TypeIndex
TI(TypeIndex::FirstNonSimpleIndex
);
658 for (const auto &GHR
: TypeTable
.hashes()) {
659 if (OS
.isVerboseAsm()) {
660 // Emit an EOL-comment describing which TypeIndex this hash corresponds
661 // to, as well as the stringified SHA1 hash.
662 SmallString
<32> Comment
;
663 raw_svector_ostream
CommentOS(Comment
);
664 CommentOS
<< formatv("{0:X+} [{1}]", TI
.getIndex(), GHR
);
665 OS
.AddComment(Comment
);
668 assert(GHR
.Hash
.size() == 8);
669 StringRef
S(reinterpret_cast<const char *>(GHR
.Hash
.data()),
671 OS
.EmitBinaryData(S
);
675 static SourceLanguage
MapDWLangToCVLang(unsigned DWLang
) {
677 case dwarf::DW_LANG_C
:
678 case dwarf::DW_LANG_C89
:
679 case dwarf::DW_LANG_C99
:
680 case dwarf::DW_LANG_C11
:
681 case dwarf::DW_LANG_ObjC
:
682 return SourceLanguage::C
;
683 case dwarf::DW_LANG_C_plus_plus
:
684 case dwarf::DW_LANG_C_plus_plus_03
:
685 case dwarf::DW_LANG_C_plus_plus_11
:
686 case dwarf::DW_LANG_C_plus_plus_14
:
687 return SourceLanguage::Cpp
;
688 case dwarf::DW_LANG_Fortran77
:
689 case dwarf::DW_LANG_Fortran90
:
690 case dwarf::DW_LANG_Fortran03
:
691 case dwarf::DW_LANG_Fortran08
:
692 return SourceLanguage::Fortran
;
693 case dwarf::DW_LANG_Pascal83
:
694 return SourceLanguage::Pascal
;
695 case dwarf::DW_LANG_Cobol74
:
696 case dwarf::DW_LANG_Cobol85
:
697 return SourceLanguage::Cobol
;
698 case dwarf::DW_LANG_Java
:
699 return SourceLanguage::Java
;
700 case dwarf::DW_LANG_D
:
701 return SourceLanguage::D
;
703 // There's no CodeView representation for this language, and CV doesn't
704 // have an "unknown" option for the language field, so we'll use MASM,
705 // as it's very low level.
706 return SourceLanguage::Masm
;
714 } // end anonymous namespace
716 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
717 // the version number.
718 static Version
parseVersion(StringRef Name
) {
721 for (const char C
: Name
) {
724 V
.Part
[N
] += C
- '0';
725 } else if (C
== '.') {
735 void CodeViewDebug::emitCompilerInformation() {
736 MCSymbol
*CompilerEnd
= beginSymbolRecord(SymbolKind::S_COMPILE3
);
739 NamedMDNode
*CUs
= MMI
->getModule()->getNamedMetadata("llvm.dbg.cu");
740 const MDNode
*Node
= *CUs
->operands().begin();
741 const auto *CU
= cast
<DICompileUnit
>(Node
);
743 // The low byte of the flags indicates the source language.
744 Flags
= MapDWLangToCVLang(CU
->getSourceLanguage());
745 // TODO: Figure out which other flags need to be set.
747 OS
.AddComment("Flags and language");
748 OS
.EmitIntValue(Flags
, 4);
750 OS
.AddComment("CPUType");
751 OS
.EmitIntValue(static_cast<uint64_t>(TheCPU
), 2);
753 StringRef CompilerVersion
= CU
->getProducer();
754 Version FrontVer
= parseVersion(CompilerVersion
);
755 OS
.AddComment("Frontend version");
756 for (int N
= 0; N
< 4; ++N
)
757 OS
.EmitIntValue(FrontVer
.Part
[N
], 2);
759 // Some Microsoft tools, like Binscope, expect a backend version number of at
760 // least 8.something, so we'll coerce the LLVM version into a form that
761 // guarantees it'll be big enough without really lying about the version.
762 int Major
= 1000 * LLVM_VERSION_MAJOR
+
763 10 * LLVM_VERSION_MINOR
+
765 // Clamp it for builds that use unusually large version numbers.
766 Major
= std::min
<int>(Major
, std::numeric_limits
<uint16_t>::max());
767 Version BackVer
= {{ Major
, 0, 0, 0 }};
768 OS
.AddComment("Backend version");
769 for (int N
= 0; N
< 4; ++N
)
770 OS
.EmitIntValue(BackVer
.Part
[N
], 2);
772 OS
.AddComment("Null-terminated compiler version string");
773 emitNullTerminatedSymbolName(OS
, CompilerVersion
);
775 endSymbolRecord(CompilerEnd
);
778 static TypeIndex
getStringIdTypeIdx(GlobalTypeTableBuilder
&TypeTable
,
780 StringIdRecord
SIR(TypeIndex(0x0), S
);
781 return TypeTable
.writeLeafType(SIR
);
784 void CodeViewDebug::emitBuildInfo() {
785 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
786 // build info. The known prefix is:
787 // - Absolute path of current directory
789 // - Main source file path, relative to CWD or absolute
790 // - Type server PDB file
791 // - Canonical compiler command line
792 // If frontend and backend compilation are separated (think llc or LTO), it's
793 // not clear if the compiler path should refer to the executable for the
794 // frontend or the backend. Leave it blank for now.
795 TypeIndex BuildInfoArgs
[BuildInfoRecord::MaxArgs
] = {};
796 NamedMDNode
*CUs
= MMI
->getModule()->getNamedMetadata("llvm.dbg.cu");
797 const MDNode
*Node
= *CUs
->operands().begin(); // FIXME: Multiple CUs.
798 const auto *CU
= cast
<DICompileUnit
>(Node
);
799 const DIFile
*MainSourceFile
= CU
->getFile();
800 BuildInfoArgs
[BuildInfoRecord::CurrentDirectory
] =
801 getStringIdTypeIdx(TypeTable
, MainSourceFile
->getDirectory());
802 BuildInfoArgs
[BuildInfoRecord::SourceFile
] =
803 getStringIdTypeIdx(TypeTable
, MainSourceFile
->getFilename());
804 // FIXME: Path to compiler and command line. PDB is intentionally blank unless
805 // we implement /Zi type servers.
806 BuildInfoRecord
BIR(BuildInfoArgs
);
807 TypeIndex BuildInfoIndex
= TypeTable
.writeLeafType(BIR
);
809 // Make a new .debug$S subsection for the S_BUILDINFO record, which points
810 // from the module symbols into the type stream.
811 MCSymbol
*BISubsecEnd
= beginCVSubsection(DebugSubsectionKind::Symbols
);
812 MCSymbol
*BIEnd
= beginSymbolRecord(SymbolKind::S_BUILDINFO
);
813 OS
.AddComment("LF_BUILDINFO index");
814 OS
.EmitIntValue(BuildInfoIndex
.getIndex(), 4);
815 endSymbolRecord(BIEnd
);
816 endCVSubsection(BISubsecEnd
);
819 void CodeViewDebug::emitInlineeLinesSubsection() {
820 if (InlinedSubprograms
.empty())
823 OS
.AddComment("Inlinee lines subsection");
824 MCSymbol
*InlineEnd
= beginCVSubsection(DebugSubsectionKind::InlineeLines
);
826 // We emit the checksum info for files. This is used by debuggers to
827 // determine if a pdb matches the source before loading it. Visual Studio,
828 // for instance, will display a warning that the breakpoints are not valid if
829 // the pdb does not match the source.
830 OS
.AddComment("Inlinee lines signature");
831 OS
.EmitIntValue(unsigned(InlineeLinesSignature::Normal
), 4);
833 for (const DISubprogram
*SP
: InlinedSubprograms
) {
834 assert(TypeIndices
.count({SP
, nullptr}));
835 TypeIndex InlineeIdx
= TypeIndices
[{SP
, nullptr}];
838 unsigned FileId
= maybeRecordFile(SP
->getFile());
839 OS
.AddComment("Inlined function " + SP
->getName() + " starts at " +
840 SP
->getFilename() + Twine(':') + Twine(SP
->getLine()));
842 OS
.AddComment("Type index of inlined function");
843 OS
.EmitIntValue(InlineeIdx
.getIndex(), 4);
844 OS
.AddComment("Offset into filechecksum table");
845 OS
.EmitCVFileChecksumOffsetDirective(FileId
);
846 OS
.AddComment("Starting line number");
847 OS
.EmitIntValue(SP
->getLine(), 4);
850 endCVSubsection(InlineEnd
);
853 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo
&FI
,
854 const DILocation
*InlinedAt
,
855 const InlineSite
&Site
) {
856 assert(TypeIndices
.count({Site
.Inlinee
, nullptr}));
857 TypeIndex InlineeIdx
= TypeIndices
[{Site
.Inlinee
, nullptr}];
860 MCSymbol
*InlineEnd
= beginSymbolRecord(SymbolKind::S_INLINESITE
);
862 OS
.AddComment("PtrParent");
863 OS
.EmitIntValue(0, 4);
864 OS
.AddComment("PtrEnd");
865 OS
.EmitIntValue(0, 4);
866 OS
.AddComment("Inlinee type index");
867 OS
.EmitIntValue(InlineeIdx
.getIndex(), 4);
869 unsigned FileId
= maybeRecordFile(Site
.Inlinee
->getFile());
870 unsigned StartLineNum
= Site
.Inlinee
->getLine();
872 OS
.EmitCVInlineLinetableDirective(Site
.SiteFuncId
, FileId
, StartLineNum
,
875 endSymbolRecord(InlineEnd
);
877 emitLocalVariableList(FI
, Site
.InlinedLocals
);
879 // Recurse on child inlined call sites before closing the scope.
880 for (const DILocation
*ChildSite
: Site
.ChildSites
) {
881 auto I
= FI
.InlineSites
.find(ChildSite
);
882 assert(I
!= FI
.InlineSites
.end() &&
883 "child site not in function inline site map");
884 emitInlinedCallSite(FI
, ChildSite
, I
->second
);
888 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END
);
891 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol
*GVSym
) {
892 // If we have a symbol, it may be in a section that is COMDAT. If so, find the
893 // comdat key. A section may be comdat because of -ffunction-sections or
894 // because it is comdat in the IR.
895 MCSectionCOFF
*GVSec
=
896 GVSym
? dyn_cast
<MCSectionCOFF
>(&GVSym
->getSection()) : nullptr;
897 const MCSymbol
*KeySym
= GVSec
? GVSec
->getCOMDATSymbol() : nullptr;
899 MCSectionCOFF
*DebugSec
= cast
<MCSectionCOFF
>(
900 Asm
->getObjFileLowering().getCOFFDebugSymbolsSection());
901 DebugSec
= OS
.getContext().getAssociativeCOFFSection(DebugSec
, KeySym
);
903 OS
.SwitchSection(DebugSec
);
905 // Emit the magic version number if this is the first time we've switched to
907 if (ComdatDebugSections
.insert(DebugSec
).second
)
908 emitCodeViewMagicVersion();
911 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
912 // The only supported thunk ordinal is currently the standard type.
913 void CodeViewDebug::emitDebugInfoForThunk(const Function
*GV
,
915 const MCSymbol
*Fn
) {
916 std::string FuncName
= GlobalValue::dropLLVMManglingEscape(GV
->getName());
917 const ThunkOrdinal ordinal
= ThunkOrdinal::Standard
; // Only supported kind.
919 OS
.AddComment("Symbol subsection for " + Twine(FuncName
));
920 MCSymbol
*SymbolsEnd
= beginCVSubsection(DebugSubsectionKind::Symbols
);
923 MCSymbol
*ThunkRecordEnd
= beginSymbolRecord(SymbolKind::S_THUNK32
);
924 OS
.AddComment("PtrParent");
925 OS
.EmitIntValue(0, 4);
926 OS
.AddComment("PtrEnd");
927 OS
.EmitIntValue(0, 4);
928 OS
.AddComment("PtrNext");
929 OS
.EmitIntValue(0, 4);
930 OS
.AddComment("Thunk section relative address");
931 OS
.EmitCOFFSecRel32(Fn
, /*Offset=*/0);
932 OS
.AddComment("Thunk section index");
933 OS
.EmitCOFFSectionIndex(Fn
);
934 OS
.AddComment("Code size");
935 OS
.emitAbsoluteSymbolDiff(FI
.End
, Fn
, 2);
936 OS
.AddComment("Ordinal");
937 OS
.EmitIntValue(unsigned(ordinal
), 1);
938 OS
.AddComment("Function name");
939 emitNullTerminatedSymbolName(OS
, FuncName
);
940 // Additional fields specific to the thunk ordinal would go here.
941 endSymbolRecord(ThunkRecordEnd
);
943 // Local variables/inlined routines are purposely omitted here. The point of
944 // marking this as a thunk is so Visual Studio will NOT stop in this routine.
946 // Emit S_PROC_ID_END
947 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END
);
949 endCVSubsection(SymbolsEnd
);
952 void CodeViewDebug::emitDebugInfoForFunction(const Function
*GV
,
954 // For each function there is a separate subsection which holds the PC to
956 const MCSymbol
*Fn
= Asm
->getSymbol(GV
);
959 // Switch to the to a comdat section, if appropriate.
960 switchToDebugSectionForSymbol(Fn
);
962 std::string FuncName
;
963 auto *SP
= GV
->getSubprogram();
965 setCurrentSubprogram(SP
);
968 emitDebugInfoForThunk(GV
, FI
, Fn
);
972 // If we have a display name, build the fully qualified name by walking the
974 if (!SP
->getName().empty())
976 getFullyQualifiedName(SP
->getScope().resolve(), SP
->getName());
978 // If our DISubprogram name is empty, use the mangled name.
979 if (FuncName
.empty())
980 FuncName
= GlobalValue::dropLLVMManglingEscape(GV
->getName());
982 // Emit FPO data, but only on 32-bit x86. No other platforms use it.
983 if (Triple(MMI
->getModule()->getTargetTriple()).getArch() == Triple::x86
)
984 OS
.EmitCVFPOData(Fn
);
986 // Emit a symbol subsection, required by VS2012+ to find function boundaries.
987 OS
.AddComment("Symbol subsection for " + Twine(FuncName
));
988 MCSymbol
*SymbolsEnd
= beginCVSubsection(DebugSubsectionKind::Symbols
);
990 SymbolKind ProcKind
= GV
->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
991 : SymbolKind::S_GPROC32_ID
;
992 MCSymbol
*ProcRecordEnd
= beginSymbolRecord(ProcKind
);
994 // These fields are filled in by tools like CVPACK which run after the fact.
995 OS
.AddComment("PtrParent");
996 OS
.EmitIntValue(0, 4);
997 OS
.AddComment("PtrEnd");
998 OS
.EmitIntValue(0, 4);
999 OS
.AddComment("PtrNext");
1000 OS
.EmitIntValue(0, 4);
1001 // This is the important bit that tells the debugger where the function
1002 // code is located and what's its size:
1003 OS
.AddComment("Code size");
1004 OS
.emitAbsoluteSymbolDiff(FI
.End
, Fn
, 4);
1005 OS
.AddComment("Offset after prologue");
1006 OS
.EmitIntValue(0, 4);
1007 OS
.AddComment("Offset before epilogue");
1008 OS
.EmitIntValue(0, 4);
1009 OS
.AddComment("Function type index");
1010 OS
.EmitIntValue(getFuncIdForSubprogram(GV
->getSubprogram()).getIndex(), 4);
1011 OS
.AddComment("Function section relative address");
1012 OS
.EmitCOFFSecRel32(Fn
, /*Offset=*/0);
1013 OS
.AddComment("Function section index");
1014 OS
.EmitCOFFSectionIndex(Fn
);
1015 OS
.AddComment("Flags");
1016 OS
.EmitIntValue(0, 1);
1017 // Emit the function display name as a null-terminated string.
1018 OS
.AddComment("Function name");
1019 // Truncate the name so we won't overflow the record length field.
1020 emitNullTerminatedSymbolName(OS
, FuncName
);
1021 endSymbolRecord(ProcRecordEnd
);
1023 MCSymbol
*FrameProcEnd
= beginSymbolRecord(SymbolKind::S_FRAMEPROC
);
1024 // Subtract out the CSR size since MSVC excludes that and we include it.
1025 OS
.AddComment("FrameSize");
1026 OS
.EmitIntValue(FI
.FrameSize
- FI
.CSRSize
, 4);
1027 OS
.AddComment("Padding");
1028 OS
.EmitIntValue(0, 4);
1029 OS
.AddComment("Offset of padding");
1030 OS
.EmitIntValue(0, 4);
1031 OS
.AddComment("Bytes of callee saved registers");
1032 OS
.EmitIntValue(FI
.CSRSize
, 4);
1033 OS
.AddComment("Exception handler offset");
1034 OS
.EmitIntValue(0, 4);
1035 OS
.AddComment("Exception handler section");
1036 OS
.EmitIntValue(0, 2);
1037 OS
.AddComment("Flags (defines frame register)");
1038 OS
.EmitIntValue(uint32_t(FI
.FrameProcOpts
), 4);
1039 endSymbolRecord(FrameProcEnd
);
1041 emitLocalVariableList(FI
, FI
.Locals
);
1042 emitGlobalVariableList(FI
.Globals
);
1043 emitLexicalBlockList(FI
.ChildBlocks
, FI
);
1045 // Emit inlined call site information. Only emit functions inlined directly
1046 // into the parent function. We'll emit the other sites recursively as part
1047 // of their parent inline site.
1048 for (const DILocation
*InlinedAt
: FI
.ChildSites
) {
1049 auto I
= FI
.InlineSites
.find(InlinedAt
);
1050 assert(I
!= FI
.InlineSites
.end() &&
1051 "child site not in function inline site map");
1052 emitInlinedCallSite(FI
, InlinedAt
, I
->second
);
1055 for (auto Annot
: FI
.Annotations
) {
1056 MCSymbol
*Label
= Annot
.first
;
1057 MDTuple
*Strs
= cast
<MDTuple
>(Annot
.second
);
1058 MCSymbol
*AnnotEnd
= beginSymbolRecord(SymbolKind::S_ANNOTATION
);
1059 OS
.EmitCOFFSecRel32(Label
, /*Offset=*/0);
1060 // FIXME: Make sure we don't overflow the max record size.
1061 OS
.EmitCOFFSectionIndex(Label
);
1062 OS
.EmitIntValue(Strs
->getNumOperands(), 2);
1063 for (Metadata
*MD
: Strs
->operands()) {
1064 // MDStrings are null terminated, so we can do EmitBytes and get the
1065 // nice .asciz directive.
1066 StringRef Str
= cast
<MDString
>(MD
)->getString();
1067 assert(Str
.data()[Str
.size()] == '\0' && "non-nullterminated MDString");
1068 OS
.EmitBytes(StringRef(Str
.data(), Str
.size() + 1));
1070 endSymbolRecord(AnnotEnd
);
1074 emitDebugInfoForUDTs(LocalUDTs
);
1076 // We're done with this function.
1077 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END
);
1079 endCVSubsection(SymbolsEnd
);
1081 // We have an assembler directive that takes care of the whole line table.
1082 OS
.EmitCVLinetableDirective(FI
.FuncId
, Fn
, FI
.End
);
1085 CodeViewDebug::LocalVarDefRange
1086 CodeViewDebug::createDefRangeMem(uint16_t CVRegister
, int Offset
) {
1087 LocalVarDefRange DR
;
1089 DR
.DataOffset
= Offset
;
1090 assert(DR
.DataOffset
== Offset
&& "truncation");
1092 DR
.StructOffset
= 0;
1093 DR
.CVRegister
= CVRegister
;
1097 void CodeViewDebug::collectVariableInfoFromMFTable(
1098 DenseSet
<InlinedEntity
> &Processed
) {
1099 const MachineFunction
&MF
= *Asm
->MF
;
1100 const TargetSubtargetInfo
&TSI
= MF
.getSubtarget();
1101 const TargetFrameLowering
*TFI
= TSI
.getFrameLowering();
1102 const TargetRegisterInfo
*TRI
= TSI
.getRegisterInfo();
1104 for (const MachineFunction::VariableDbgInfo
&VI
: MF
.getVariableDbgInfo()) {
1107 assert(VI
.Var
->isValidLocationForIntrinsic(VI
.Loc
) &&
1108 "Expected inlined-at fields to agree");
1110 Processed
.insert(InlinedEntity(VI
.Var
, VI
.Loc
->getInlinedAt()));
1111 LexicalScope
*Scope
= LScopes
.findLexicalScope(VI
.Loc
);
1113 // If variable scope is not found then skip this variable.
1117 // If the variable has an attached offset expression, extract it.
1118 // FIXME: Try to handle DW_OP_deref as well.
1119 int64_t ExprOffset
= 0;
1121 if (!VI
.Expr
->extractIfOffset(ExprOffset
))
1124 // Get the frame register used and the offset.
1125 unsigned FrameReg
= 0;
1126 int FrameOffset
= TFI
->getFrameIndexReference(*Asm
->MF
, VI
.Slot
, FrameReg
);
1127 uint16_t CVReg
= TRI
->getCodeViewRegNum(FrameReg
);
1129 // Calculate the label ranges.
1130 LocalVarDefRange DefRange
=
1131 createDefRangeMem(CVReg
, FrameOffset
+ ExprOffset
);
1132 for (const InsnRange
&Range
: Scope
->getRanges()) {
1133 const MCSymbol
*Begin
= getLabelBeforeInsn(Range
.first
);
1134 const MCSymbol
*End
= getLabelAfterInsn(Range
.second
);
1135 End
= End
? End
: Asm
->getFunctionEnd();
1136 DefRange
.Ranges
.emplace_back(Begin
, End
);
1141 Var
.DefRanges
.emplace_back(std::move(DefRange
));
1142 recordLocalVariable(std::move(Var
), Scope
);
1146 static bool canUseReferenceType(const DbgVariableLocation
&Loc
) {
1147 return !Loc
.LoadChain
.empty() && Loc
.LoadChain
.back() == 0;
1150 static bool needsReferenceType(const DbgVariableLocation
&Loc
) {
1151 return Loc
.LoadChain
.size() == 2 && Loc
.LoadChain
.back() == 0;
1154 void CodeViewDebug::calculateRanges(
1155 LocalVariable
&Var
, const DbgValueHistoryMap::InstrRanges
&Ranges
) {
1156 const TargetRegisterInfo
*TRI
= Asm
->MF
->getSubtarget().getRegisterInfo();
1158 // Calculate the definition ranges.
1159 for (auto I
= Ranges
.begin(), E
= Ranges
.end(); I
!= E
; ++I
) {
1160 const InsnRange
&Range
= *I
;
1161 const MachineInstr
*DVInst
= Range
.first
;
1162 assert(DVInst
->isDebugValue() && "Invalid History entry");
1163 // FIXME: Find a way to represent constant variables, since they are
1164 // relatively common.
1165 Optional
<DbgVariableLocation
> Location
=
1166 DbgVariableLocation::extractFromMachineInstruction(*DVInst
);
1170 // CodeView can only express variables in register and variables in memory
1171 // at a constant offset from a register. However, for variables passed
1172 // indirectly by pointer, it is common for that pointer to be spilled to a
1173 // stack location. For the special case of one offseted load followed by a
1174 // zero offset load (a pointer spilled to the stack), we change the type of
1175 // the local variable from a value type to a reference type. This tricks the
1176 // debugger into doing the load for us.
1177 if (Var
.UseReferenceType
) {
1178 // We're using a reference type. Drop the last zero offset load.
1179 if (canUseReferenceType(*Location
))
1180 Location
->LoadChain
.pop_back();
1183 } else if (needsReferenceType(*Location
)) {
1184 // This location can't be expressed without switching to a reference type.
1185 // Start over using that.
1186 Var
.UseReferenceType
= true;
1187 Var
.DefRanges
.clear();
1188 calculateRanges(Var
, Ranges
);
1192 // We can only handle a register or an offseted load of a register.
1193 if (Location
->Register
== 0 || Location
->LoadChain
.size() > 1)
1196 LocalVarDefRange DR
;
1197 DR
.CVRegister
= TRI
->getCodeViewRegNum(Location
->Register
);
1198 DR
.InMemory
= !Location
->LoadChain
.empty();
1200 !Location
->LoadChain
.empty() ? Location
->LoadChain
.back() : 0;
1201 if (Location
->FragmentInfo
) {
1202 DR
.IsSubfield
= true;
1203 DR
.StructOffset
= Location
->FragmentInfo
->OffsetInBits
/ 8;
1205 DR
.IsSubfield
= false;
1206 DR
.StructOffset
= 0;
1209 if (Var
.DefRanges
.empty() ||
1210 Var
.DefRanges
.back().isDifferentLocation(DR
)) {
1211 Var
.DefRanges
.emplace_back(std::move(DR
));
1215 // Compute the label range.
1216 const MCSymbol
*Begin
= getLabelBeforeInsn(Range
.first
);
1217 const MCSymbol
*End
= getLabelAfterInsn(Range
.second
);
1219 // This range is valid until the next overlapping bitpiece. In the
1220 // common case, ranges will not be bitpieces, so they will overlap.
1221 auto J
= std::next(I
);
1222 const DIExpression
*DIExpr
= DVInst
->getDebugExpression();
1224 !DIExpr
->fragmentsOverlap(J
->first
->getDebugExpression()))
1227 End
= getLabelBeforeInsn(J
->first
);
1229 End
= Asm
->getFunctionEnd();
1232 // If the last range end is our begin, just extend the last range.
1233 // Otherwise make a new range.
1234 SmallVectorImpl
<std::pair
<const MCSymbol
*, const MCSymbol
*>> &R
=
1235 Var
.DefRanges
.back().Ranges
;
1236 if (!R
.empty() && R
.back().second
== Begin
)
1237 R
.back().second
= End
;
1239 R
.emplace_back(Begin
, End
);
1241 // FIXME: Do more range combining.
1245 void CodeViewDebug::collectVariableInfo(const DISubprogram
*SP
) {
1246 DenseSet
<InlinedEntity
> Processed
;
1247 // Grab the variable info that was squirreled away in the MMI side-table.
1248 collectVariableInfoFromMFTable(Processed
);
1250 for (const auto &I
: DbgValues
) {
1251 InlinedEntity IV
= I
.first
;
1252 if (Processed
.count(IV
))
1254 const DILocalVariable
*DIVar
= cast
<DILocalVariable
>(IV
.first
);
1255 const DILocation
*InlinedAt
= IV
.second
;
1257 // Instruction ranges, specifying where IV is accessible.
1258 const auto &Ranges
= I
.second
;
1260 LexicalScope
*Scope
= nullptr;
1262 Scope
= LScopes
.findInlinedScope(DIVar
->getScope(), InlinedAt
);
1264 Scope
= LScopes
.findLexicalScope(DIVar
->getScope());
1265 // If variable scope is not found then skip this variable.
1272 calculateRanges(Var
, Ranges
);
1273 recordLocalVariable(std::move(Var
), Scope
);
1277 void CodeViewDebug::beginFunctionImpl(const MachineFunction
*MF
) {
1278 const TargetSubtargetInfo
&TSI
= MF
->getSubtarget();
1279 const TargetRegisterInfo
*TRI
= TSI
.getRegisterInfo();
1280 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
1281 const Function
&GV
= MF
->getFunction();
1282 auto Insertion
= FnDebugInfo
.insert({&GV
, llvm::make_unique
<FunctionInfo
>()});
1283 assert(Insertion
.second
&& "function already has info");
1284 CurFn
= Insertion
.first
->second
.get();
1285 CurFn
->FuncId
= NextFuncId
++;
1286 CurFn
->Begin
= Asm
->getFunctionBegin();
1288 // The S_FRAMEPROC record reports the stack size, and how many bytes of
1289 // callee-saved registers were used. For targets that don't use a PUSH
1290 // instruction (AArch64), this will be zero.
1291 CurFn
->CSRSize
= MFI
.getCVBytesOfCalleeSavedRegisters();
1292 CurFn
->FrameSize
= MFI
.getStackSize();
1293 CurFn
->OffsetAdjustment
= MFI
.getOffsetAdjustment();
1294 CurFn
->HasStackRealignment
= TRI
->needsStackRealignment(*MF
);
1296 // For this function S_FRAMEPROC record, figure out which codeview register
1297 // will be the frame pointer.
1298 CurFn
->EncodedParamFramePtrReg
= EncodedFramePtrReg::None
; // None.
1299 CurFn
->EncodedLocalFramePtrReg
= EncodedFramePtrReg::None
; // None.
1300 if (CurFn
->FrameSize
> 0) {
1301 if (!TSI
.getFrameLowering()->hasFP(*MF
)) {
1302 CurFn
->EncodedLocalFramePtrReg
= EncodedFramePtrReg::StackPtr
;
1303 CurFn
->EncodedParamFramePtrReg
= EncodedFramePtrReg::StackPtr
;
1305 // If there is an FP, parameters are always relative to it.
1306 CurFn
->EncodedParamFramePtrReg
= EncodedFramePtrReg::FramePtr
;
1307 if (CurFn
->HasStackRealignment
) {
1308 // If the stack needs realignment, locals are relative to SP or VFRAME.
1309 CurFn
->EncodedLocalFramePtrReg
= EncodedFramePtrReg::StackPtr
;
1311 // Otherwise, locals are relative to EBP, and we probably have VLAs or
1312 // other stack adjustments.
1313 CurFn
->EncodedLocalFramePtrReg
= EncodedFramePtrReg::FramePtr
;
1318 // Compute other frame procedure options.
1319 FrameProcedureOptions FPO
= FrameProcedureOptions::None
;
1320 if (MFI
.hasVarSizedObjects())
1321 FPO
|= FrameProcedureOptions::HasAlloca
;
1322 if (MF
->exposesReturnsTwice())
1323 FPO
|= FrameProcedureOptions::HasSetJmp
;
1324 // FIXME: Set HasLongJmp if we ever track that info.
1325 if (MF
->hasInlineAsm())
1326 FPO
|= FrameProcedureOptions::HasInlineAssembly
;
1327 if (GV
.hasPersonalityFn()) {
1328 if (isAsynchronousEHPersonality(
1329 classifyEHPersonality(GV
.getPersonalityFn())))
1330 FPO
|= FrameProcedureOptions::HasStructuredExceptionHandling
;
1332 FPO
|= FrameProcedureOptions::HasExceptionHandling
;
1334 if (GV
.hasFnAttribute(Attribute::InlineHint
))
1335 FPO
|= FrameProcedureOptions::MarkedInline
;
1336 if (GV
.hasFnAttribute(Attribute::Naked
))
1337 FPO
|= FrameProcedureOptions::Naked
;
1338 if (MFI
.hasStackProtectorIndex())
1339 FPO
|= FrameProcedureOptions::SecurityChecks
;
1340 FPO
|= FrameProcedureOptions(uint32_t(CurFn
->EncodedLocalFramePtrReg
) << 14U);
1341 FPO
|= FrameProcedureOptions(uint32_t(CurFn
->EncodedParamFramePtrReg
) << 16U);
1342 if (Asm
->TM
.getOptLevel() != CodeGenOpt::None
&& !GV
.optForSize() &&
1343 !GV
.hasFnAttribute(Attribute::OptimizeNone
))
1344 FPO
|= FrameProcedureOptions::OptimizedForSpeed
;
1345 // FIXME: Set GuardCfg when it is implemented.
1346 CurFn
->FrameProcOpts
= FPO
;
1348 OS
.EmitCVFuncIdDirective(CurFn
->FuncId
);
1350 // Find the end of the function prolog. First known non-DBG_VALUE and
1351 // non-frame setup location marks the beginning of the function body.
1352 // FIXME: is there a simpler a way to do this? Can we just search
1353 // for the first instruction of the function, not the last of the prolog?
1354 DebugLoc PrologEndLoc
;
1355 bool EmptyPrologue
= true;
1356 for (const auto &MBB
: *MF
) {
1357 for (const auto &MI
: MBB
) {
1358 if (!MI
.isMetaInstruction() && !MI
.getFlag(MachineInstr::FrameSetup
) &&
1360 PrologEndLoc
= MI
.getDebugLoc();
1362 } else if (!MI
.isMetaInstruction()) {
1363 EmptyPrologue
= false;
1368 // Record beginning of function if we have a non-empty prologue.
1369 if (PrologEndLoc
&& !EmptyPrologue
) {
1370 DebugLoc FnStartDL
= PrologEndLoc
.getFnDebugLoc();
1371 maybeRecordLocation(FnStartDL
, MF
);
1375 static bool shouldEmitUdt(const DIType
*T
) {
1379 // MSVC does not emit UDTs for typedefs that are scoped to classes.
1380 if (T
->getTag() == dwarf::DW_TAG_typedef
) {
1381 if (DIScope
*Scope
= T
->getScope().resolve()) {
1382 switch (Scope
->getTag()) {
1383 case dwarf::DW_TAG_structure_type
:
1384 case dwarf::DW_TAG_class_type
:
1385 case dwarf::DW_TAG_union_type
:
1392 if (!T
|| T
->isForwardDecl())
1395 const DIDerivedType
*DT
= dyn_cast
<DIDerivedType
>(T
);
1398 T
= DT
->getBaseType().resolve();
1403 void CodeViewDebug::addToUDTs(const DIType
*Ty
) {
1404 // Don't record empty UDTs.
1405 if (Ty
->getName().empty())
1407 if (!shouldEmitUdt(Ty
))
1410 SmallVector
<StringRef
, 5> QualifiedNameComponents
;
1411 const DISubprogram
*ClosestSubprogram
= getQualifiedNameComponents(
1412 Ty
->getScope().resolve(), QualifiedNameComponents
);
1414 std::string FullyQualifiedName
=
1415 getQualifiedName(QualifiedNameComponents
, getPrettyScopeName(Ty
));
1417 if (ClosestSubprogram
== nullptr) {
1418 GlobalUDTs
.emplace_back(std::move(FullyQualifiedName
), Ty
);
1419 } else if (ClosestSubprogram
== CurrentSubprogram
) {
1420 LocalUDTs
.emplace_back(std::move(FullyQualifiedName
), Ty
);
1423 // TODO: What if the ClosestSubprogram is neither null or the current
1424 // subprogram? Currently, the UDT just gets dropped on the floor.
1426 // The current behavior is not desirable. To get maximal fidelity, we would
1427 // need to perform all type translation before beginning emission of .debug$S
1428 // and then make LocalUDTs a member of FunctionInfo
1431 TypeIndex
CodeViewDebug::lowerType(const DIType
*Ty
, const DIType
*ClassTy
) {
1432 // Generic dispatch for lowering an unknown type.
1433 switch (Ty
->getTag()) {
1434 case dwarf::DW_TAG_array_type
:
1435 return lowerTypeArray(cast
<DICompositeType
>(Ty
));
1436 case dwarf::DW_TAG_typedef
:
1437 return lowerTypeAlias(cast
<DIDerivedType
>(Ty
));
1438 case dwarf::DW_TAG_base_type
:
1439 return lowerTypeBasic(cast
<DIBasicType
>(Ty
));
1440 case dwarf::DW_TAG_pointer_type
:
1441 if (cast
<DIDerivedType
>(Ty
)->getName() == "__vtbl_ptr_type")
1442 return lowerTypeVFTableShape(cast
<DIDerivedType
>(Ty
));
1444 case dwarf::DW_TAG_reference_type
:
1445 case dwarf::DW_TAG_rvalue_reference_type
:
1446 return lowerTypePointer(cast
<DIDerivedType
>(Ty
));
1447 case dwarf::DW_TAG_ptr_to_member_type
:
1448 return lowerTypeMemberPointer(cast
<DIDerivedType
>(Ty
));
1449 case dwarf::DW_TAG_restrict_type
:
1450 case dwarf::DW_TAG_const_type
:
1451 case dwarf::DW_TAG_volatile_type
:
1452 // TODO: add support for DW_TAG_atomic_type here
1453 return lowerTypeModifier(cast
<DIDerivedType
>(Ty
));
1454 case dwarf::DW_TAG_subroutine_type
:
1456 // The member function type of a member function pointer has no
1458 return lowerTypeMemberFunction(cast
<DISubroutineType
>(Ty
), ClassTy
,
1459 /*ThisAdjustment=*/0,
1460 /*IsStaticMethod=*/false);
1462 return lowerTypeFunction(cast
<DISubroutineType
>(Ty
));
1463 case dwarf::DW_TAG_enumeration_type
:
1464 return lowerTypeEnum(cast
<DICompositeType
>(Ty
));
1465 case dwarf::DW_TAG_class_type
:
1466 case dwarf::DW_TAG_structure_type
:
1467 return lowerTypeClass(cast
<DICompositeType
>(Ty
));
1468 case dwarf::DW_TAG_union_type
:
1469 return lowerTypeUnion(cast
<DICompositeType
>(Ty
));
1470 case dwarf::DW_TAG_unspecified_type
:
1471 if (Ty
->getName() == "decltype(nullptr)")
1472 return TypeIndex::NullptrT();
1473 return TypeIndex::None();
1475 // Use the null type index.
1480 TypeIndex
CodeViewDebug::lowerTypeAlias(const DIDerivedType
*Ty
) {
1481 DITypeRef UnderlyingTypeRef
= Ty
->getBaseType();
1482 TypeIndex UnderlyingTypeIndex
= getTypeIndex(UnderlyingTypeRef
);
1483 StringRef TypeName
= Ty
->getName();
1487 if (UnderlyingTypeIndex
== TypeIndex(SimpleTypeKind::Int32Long
) &&
1488 TypeName
== "HRESULT")
1489 return TypeIndex(SimpleTypeKind::HResult
);
1490 if (UnderlyingTypeIndex
== TypeIndex(SimpleTypeKind::UInt16Short
) &&
1491 TypeName
== "wchar_t")
1492 return TypeIndex(SimpleTypeKind::WideCharacter
);
1494 return UnderlyingTypeIndex
;
1497 TypeIndex
CodeViewDebug::lowerTypeArray(const DICompositeType
*Ty
) {
1498 DITypeRef ElementTypeRef
= Ty
->getBaseType();
1499 TypeIndex ElementTypeIndex
= getTypeIndex(ElementTypeRef
);
1500 // IndexType is size_t, which depends on the bitness of the target.
1501 TypeIndex IndexType
= getPointerSizeInBytes() == 8
1502 ? TypeIndex(SimpleTypeKind::UInt64Quad
)
1503 : TypeIndex(SimpleTypeKind::UInt32Long
);
1505 uint64_t ElementSize
= getBaseTypeSize(ElementTypeRef
) / 8;
1507 // Add subranges to array type.
1508 DINodeArray Elements
= Ty
->getElements();
1509 for (int i
= Elements
.size() - 1; i
>= 0; --i
) {
1510 const DINode
*Element
= Elements
[i
];
1511 assert(Element
->getTag() == dwarf::DW_TAG_subrange_type
);
1513 const DISubrange
*Subrange
= cast
<DISubrange
>(Element
);
1514 assert(Subrange
->getLowerBound() == 0 &&
1515 "codeview doesn't support subranges with lower bounds");
1517 if (auto *CI
= Subrange
->getCount().dyn_cast
<ConstantInt
*>())
1518 Count
= CI
->getSExtValue();
1520 // Forward declarations of arrays without a size and VLAs use a count of -1.
1521 // Emit a count of zero in these cases to match what MSVC does for arrays
1522 // without a size. MSVC doesn't support VLAs, so it's not clear what we
1523 // should do for them even if we could distinguish them.
1527 // Update the element size and element type index for subsequent subranges.
1528 ElementSize
*= Count
;
1530 // If this is the outermost array, use the size from the array. It will be
1531 // more accurate if we had a VLA or an incomplete element type size.
1532 uint64_t ArraySize
=
1533 (i
== 0 && ElementSize
== 0) ? Ty
->getSizeInBits() / 8 : ElementSize
;
1535 StringRef Name
= (i
== 0) ? Ty
->getName() : "";
1536 ArrayRecord
AR(ElementTypeIndex
, IndexType
, ArraySize
, Name
);
1537 ElementTypeIndex
= TypeTable
.writeLeafType(AR
);
1540 return ElementTypeIndex
;
1543 TypeIndex
CodeViewDebug::lowerTypeBasic(const DIBasicType
*Ty
) {
1545 dwarf::TypeKind Kind
;
1548 Kind
= static_cast<dwarf::TypeKind
>(Ty
->getEncoding());
1549 ByteSize
= Ty
->getSizeInBits() / 8;
1551 SimpleTypeKind STK
= SimpleTypeKind::None
;
1553 case dwarf::DW_ATE_address
:
1556 case dwarf::DW_ATE_boolean
:
1558 case 1: STK
= SimpleTypeKind::Boolean8
; break;
1559 case 2: STK
= SimpleTypeKind::Boolean16
; break;
1560 case 4: STK
= SimpleTypeKind::Boolean32
; break;
1561 case 8: STK
= SimpleTypeKind::Boolean64
; break;
1562 case 16: STK
= SimpleTypeKind::Boolean128
; break;
1565 case dwarf::DW_ATE_complex_float
:
1567 case 2: STK
= SimpleTypeKind::Complex16
; break;
1568 case 4: STK
= SimpleTypeKind::Complex32
; break;
1569 case 8: STK
= SimpleTypeKind::Complex64
; break;
1570 case 10: STK
= SimpleTypeKind::Complex80
; break;
1571 case 16: STK
= SimpleTypeKind::Complex128
; break;
1574 case dwarf::DW_ATE_float
:
1576 case 2: STK
= SimpleTypeKind::Float16
; break;
1577 case 4: STK
= SimpleTypeKind::Float32
; break;
1578 case 6: STK
= SimpleTypeKind::Float48
; break;
1579 case 8: STK
= SimpleTypeKind::Float64
; break;
1580 case 10: STK
= SimpleTypeKind::Float80
; break;
1581 case 16: STK
= SimpleTypeKind::Float128
; break;
1584 case dwarf::DW_ATE_signed
:
1586 case 1: STK
= SimpleTypeKind::SignedCharacter
; break;
1587 case 2: STK
= SimpleTypeKind::Int16Short
; break;
1588 case 4: STK
= SimpleTypeKind::Int32
; break;
1589 case 8: STK
= SimpleTypeKind::Int64Quad
; break;
1590 case 16: STK
= SimpleTypeKind::Int128Oct
; break;
1593 case dwarf::DW_ATE_unsigned
:
1595 case 1: STK
= SimpleTypeKind::UnsignedCharacter
; break;
1596 case 2: STK
= SimpleTypeKind::UInt16Short
; break;
1597 case 4: STK
= SimpleTypeKind::UInt32
; break;
1598 case 8: STK
= SimpleTypeKind::UInt64Quad
; break;
1599 case 16: STK
= SimpleTypeKind::UInt128Oct
; break;
1602 case dwarf::DW_ATE_UTF
:
1604 case 2: STK
= SimpleTypeKind::Character16
; break;
1605 case 4: STK
= SimpleTypeKind::Character32
; break;
1608 case dwarf::DW_ATE_signed_char
:
1610 STK
= SimpleTypeKind::SignedCharacter
;
1612 case dwarf::DW_ATE_unsigned_char
:
1614 STK
= SimpleTypeKind::UnsignedCharacter
;
1620 // Apply some fixups based on the source-level type name.
1621 if (STK
== SimpleTypeKind::Int32
&& Ty
->getName() == "long int")
1622 STK
= SimpleTypeKind::Int32Long
;
1623 if (STK
== SimpleTypeKind::UInt32
&& Ty
->getName() == "long unsigned int")
1624 STK
= SimpleTypeKind::UInt32Long
;
1625 if (STK
== SimpleTypeKind::UInt16Short
&&
1626 (Ty
->getName() == "wchar_t" || Ty
->getName() == "__wchar_t"))
1627 STK
= SimpleTypeKind::WideCharacter
;
1628 if ((STK
== SimpleTypeKind::SignedCharacter
||
1629 STK
== SimpleTypeKind::UnsignedCharacter
) &&
1630 Ty
->getName() == "char")
1631 STK
= SimpleTypeKind::NarrowCharacter
;
1633 return TypeIndex(STK
);
1636 TypeIndex
CodeViewDebug::lowerTypePointer(const DIDerivedType
*Ty
,
1637 PointerOptions PO
) {
1638 TypeIndex PointeeTI
= getTypeIndex(Ty
->getBaseType());
1640 // Pointers to simple types without any options can use SimpleTypeMode, rather
1641 // than having a dedicated pointer type record.
1642 if (PointeeTI
.isSimple() && PO
== PointerOptions::None
&&
1643 PointeeTI
.getSimpleMode() == SimpleTypeMode::Direct
&&
1644 Ty
->getTag() == dwarf::DW_TAG_pointer_type
) {
1645 SimpleTypeMode Mode
= Ty
->getSizeInBits() == 64
1646 ? SimpleTypeMode::NearPointer64
1647 : SimpleTypeMode::NearPointer32
;
1648 return TypeIndex(PointeeTI
.getSimpleKind(), Mode
);
1652 Ty
->getSizeInBits() == 64 ? PointerKind::Near64
: PointerKind::Near32
;
1653 PointerMode PM
= PointerMode::Pointer
;
1654 switch (Ty
->getTag()) {
1655 default: llvm_unreachable("not a pointer tag type");
1656 case dwarf::DW_TAG_pointer_type
:
1657 PM
= PointerMode::Pointer
;
1659 case dwarf::DW_TAG_reference_type
:
1660 PM
= PointerMode::LValueReference
;
1662 case dwarf::DW_TAG_rvalue_reference_type
:
1663 PM
= PointerMode::RValueReference
;
1667 if (Ty
->isObjectPointer())
1668 PO
|= PointerOptions::Const
;
1670 PointerRecord
PR(PointeeTI
, PK
, PM
, PO
, Ty
->getSizeInBits() / 8);
1671 return TypeTable
.writeLeafType(PR
);
1674 static PointerToMemberRepresentation
1675 translatePtrToMemberRep(unsigned SizeInBytes
, bool IsPMF
, unsigned Flags
) {
1676 // SizeInBytes being zero generally implies that the member pointer type was
1677 // incomplete, which can happen if it is part of a function prototype. In this
1678 // case, use the unknown model instead of the general model.
1680 switch (Flags
& DINode::FlagPtrToMemberRep
) {
1682 return SizeInBytes
== 0 ? PointerToMemberRepresentation::Unknown
1683 : PointerToMemberRepresentation::GeneralFunction
;
1684 case DINode::FlagSingleInheritance
:
1685 return PointerToMemberRepresentation::SingleInheritanceFunction
;
1686 case DINode::FlagMultipleInheritance
:
1687 return PointerToMemberRepresentation::MultipleInheritanceFunction
;
1688 case DINode::FlagVirtualInheritance
:
1689 return PointerToMemberRepresentation::VirtualInheritanceFunction
;
1692 switch (Flags
& DINode::FlagPtrToMemberRep
) {
1694 return SizeInBytes
== 0 ? PointerToMemberRepresentation::Unknown
1695 : PointerToMemberRepresentation::GeneralData
;
1696 case DINode::FlagSingleInheritance
:
1697 return PointerToMemberRepresentation::SingleInheritanceData
;
1698 case DINode::FlagMultipleInheritance
:
1699 return PointerToMemberRepresentation::MultipleInheritanceData
;
1700 case DINode::FlagVirtualInheritance
:
1701 return PointerToMemberRepresentation::VirtualInheritanceData
;
1704 llvm_unreachable("invalid ptr to member representation");
1707 TypeIndex
CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType
*Ty
,
1708 PointerOptions PO
) {
1709 assert(Ty
->getTag() == dwarf::DW_TAG_ptr_to_member_type
);
1710 TypeIndex ClassTI
= getTypeIndex(Ty
->getClassType());
1711 TypeIndex PointeeTI
= getTypeIndex(Ty
->getBaseType(), Ty
->getClassType());
1712 PointerKind PK
= getPointerSizeInBytes() == 8 ? PointerKind::Near64
1713 : PointerKind::Near32
;
1714 bool IsPMF
= isa
<DISubroutineType
>(Ty
->getBaseType());
1715 PointerMode PM
= IsPMF
? PointerMode::PointerToMemberFunction
1716 : PointerMode::PointerToDataMember
;
1718 assert(Ty
->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1719 uint8_t SizeInBytes
= Ty
->getSizeInBits() / 8;
1720 MemberPointerInfo
MPI(
1721 ClassTI
, translatePtrToMemberRep(SizeInBytes
, IsPMF
, Ty
->getFlags()));
1722 PointerRecord
PR(PointeeTI
, PK
, PM
, PO
, SizeInBytes
, MPI
);
1723 return TypeTable
.writeLeafType(PR
);
1726 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1727 /// have a translation, use the NearC convention.
1728 static CallingConvention
dwarfCCToCodeView(unsigned DwarfCC
) {
1730 case dwarf::DW_CC_normal
: return CallingConvention::NearC
;
1731 case dwarf::DW_CC_BORLAND_msfastcall
: return CallingConvention::NearFast
;
1732 case dwarf::DW_CC_BORLAND_thiscall
: return CallingConvention::ThisCall
;
1733 case dwarf::DW_CC_BORLAND_stdcall
: return CallingConvention::NearStdCall
;
1734 case dwarf::DW_CC_BORLAND_pascal
: return CallingConvention::NearPascal
;
1735 case dwarf::DW_CC_LLVM_vectorcall
: return CallingConvention::NearVector
;
1737 return CallingConvention::NearC
;
1740 TypeIndex
CodeViewDebug::lowerTypeModifier(const DIDerivedType
*Ty
) {
1741 ModifierOptions Mods
= ModifierOptions::None
;
1742 PointerOptions PO
= PointerOptions::None
;
1743 bool IsModifier
= true;
1744 const DIType
*BaseTy
= Ty
;
1745 while (IsModifier
&& BaseTy
) {
1746 // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1747 switch (BaseTy
->getTag()) {
1748 case dwarf::DW_TAG_const_type
:
1749 Mods
|= ModifierOptions::Const
;
1750 PO
|= PointerOptions::Const
;
1752 case dwarf::DW_TAG_volatile_type
:
1753 Mods
|= ModifierOptions::Volatile
;
1754 PO
|= PointerOptions::Volatile
;
1756 case dwarf::DW_TAG_restrict_type
:
1757 // Only pointer types be marked with __restrict. There is no known flag
1758 // for __restrict in LF_MODIFIER records.
1759 PO
|= PointerOptions::Restrict
;
1766 BaseTy
= cast
<DIDerivedType
>(BaseTy
)->getBaseType().resolve();
1769 // Check if the inner type will use an LF_POINTER record. If so, the
1770 // qualifiers will go in the LF_POINTER record. This comes up for types like
1771 // 'int *const' and 'int *__restrict', not the more common cases like 'const
1774 switch (BaseTy
->getTag()) {
1775 case dwarf::DW_TAG_pointer_type
:
1776 case dwarf::DW_TAG_reference_type
:
1777 case dwarf::DW_TAG_rvalue_reference_type
:
1778 return lowerTypePointer(cast
<DIDerivedType
>(BaseTy
), PO
);
1779 case dwarf::DW_TAG_ptr_to_member_type
:
1780 return lowerTypeMemberPointer(cast
<DIDerivedType
>(BaseTy
), PO
);
1786 TypeIndex ModifiedTI
= getTypeIndex(BaseTy
);
1788 // Return the base type index if there aren't any modifiers. For example, the
1789 // metadata could contain restrict wrappers around non-pointer types.
1790 if (Mods
== ModifierOptions::None
)
1793 ModifierRecord
MR(ModifiedTI
, Mods
);
1794 return TypeTable
.writeLeafType(MR
);
1797 TypeIndex
CodeViewDebug::lowerTypeFunction(const DISubroutineType
*Ty
) {
1798 SmallVector
<TypeIndex
, 8> ReturnAndArgTypeIndices
;
1799 for (DITypeRef ArgTypeRef
: Ty
->getTypeArray())
1800 ReturnAndArgTypeIndices
.push_back(getTypeIndex(ArgTypeRef
));
1802 // MSVC uses type none for variadic argument.
1803 if (ReturnAndArgTypeIndices
.size() > 1 &&
1804 ReturnAndArgTypeIndices
.back() == TypeIndex::Void()) {
1805 ReturnAndArgTypeIndices
.back() = TypeIndex::None();
1807 TypeIndex ReturnTypeIndex
= TypeIndex::Void();
1808 ArrayRef
<TypeIndex
> ArgTypeIndices
= None
;
1809 if (!ReturnAndArgTypeIndices
.empty()) {
1810 auto ReturnAndArgTypesRef
= makeArrayRef(ReturnAndArgTypeIndices
);
1811 ReturnTypeIndex
= ReturnAndArgTypesRef
.front();
1812 ArgTypeIndices
= ReturnAndArgTypesRef
.drop_front();
1815 ArgListRecord
ArgListRec(TypeRecordKind::ArgList
, ArgTypeIndices
);
1816 TypeIndex ArgListIndex
= TypeTable
.writeLeafType(ArgListRec
);
1818 CallingConvention CC
= dwarfCCToCodeView(Ty
->getCC());
1820 FunctionOptions FO
= getFunctionOptions(Ty
);
1821 ProcedureRecord
Procedure(ReturnTypeIndex
, CC
, FO
, ArgTypeIndices
.size(),
1823 return TypeTable
.writeLeafType(Procedure
);
1826 TypeIndex
CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType
*Ty
,
1827 const DIType
*ClassTy
,
1829 bool IsStaticMethod
,
1830 FunctionOptions FO
) {
1831 // Lower the containing class type.
1832 TypeIndex ClassType
= getTypeIndex(ClassTy
);
1834 DITypeRefArray ReturnAndArgs
= Ty
->getTypeArray();
1837 SmallVector
<TypeIndex
, 8> ArgTypeIndices
;
1838 TypeIndex ReturnTypeIndex
= TypeIndex::Void();
1839 if (ReturnAndArgs
.size() > Index
) {
1840 ReturnTypeIndex
= getTypeIndex(ReturnAndArgs
[Index
++]);
1843 // If the first argument is a pointer type and this isn't a static method,
1844 // treat it as the special 'this' parameter, which is encoded separately from
1846 TypeIndex ThisTypeIndex
;
1847 if (!IsStaticMethod
&& ReturnAndArgs
.size() > Index
) {
1848 if (const DIDerivedType
*PtrTy
=
1849 dyn_cast_or_null
<DIDerivedType
>(ReturnAndArgs
[Index
].resolve())) {
1850 if (PtrTy
->getTag() == dwarf::DW_TAG_pointer_type
) {
1851 ThisTypeIndex
= getTypeIndexForThisPtr(PtrTy
, Ty
);
1857 while (Index
< ReturnAndArgs
.size())
1858 ArgTypeIndices
.push_back(getTypeIndex(ReturnAndArgs
[Index
++]));
1860 // MSVC uses type none for variadic argument.
1861 if (!ArgTypeIndices
.empty() && ArgTypeIndices
.back() == TypeIndex::Void())
1862 ArgTypeIndices
.back() = TypeIndex::None();
1864 ArgListRecord
ArgListRec(TypeRecordKind::ArgList
, ArgTypeIndices
);
1865 TypeIndex ArgListIndex
= TypeTable
.writeLeafType(ArgListRec
);
1867 CallingConvention CC
= dwarfCCToCodeView(Ty
->getCC());
1869 MemberFunctionRecord
MFR(ReturnTypeIndex
, ClassType
, ThisTypeIndex
, CC
, FO
,
1870 ArgTypeIndices
.size(), ArgListIndex
, ThisAdjustment
);
1871 return TypeTable
.writeLeafType(MFR
);
1874 TypeIndex
CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType
*Ty
) {
1875 unsigned VSlotCount
=
1876 Ty
->getSizeInBits() / (8 * Asm
->MAI
->getCodePointerSize());
1877 SmallVector
<VFTableSlotKind
, 4> Slots(VSlotCount
, VFTableSlotKind::Near
);
1879 VFTableShapeRecord
VFTSR(Slots
);
1880 return TypeTable
.writeLeafType(VFTSR
);
1883 static MemberAccess
translateAccessFlags(unsigned RecordTag
, unsigned Flags
) {
1884 switch (Flags
& DINode::FlagAccessibility
) {
1885 case DINode::FlagPrivate
: return MemberAccess::Private
;
1886 case DINode::FlagPublic
: return MemberAccess::Public
;
1887 case DINode::FlagProtected
: return MemberAccess::Protected
;
1889 // If there was no explicit access control, provide the default for the tag.
1890 return RecordTag
== dwarf::DW_TAG_class_type
? MemberAccess::Private
1891 : MemberAccess::Public
;
1893 llvm_unreachable("access flags are exclusive");
1896 static MethodOptions
translateMethodOptionFlags(const DISubprogram
*SP
) {
1897 if (SP
->isArtificial())
1898 return MethodOptions::CompilerGenerated
;
1900 // FIXME: Handle other MethodOptions.
1902 return MethodOptions::None
;
1905 static MethodKind
translateMethodKindFlags(const DISubprogram
*SP
,
1907 if (SP
->getFlags() & DINode::FlagStaticMember
)
1908 return MethodKind::Static
;
1910 switch (SP
->getVirtuality()) {
1911 case dwarf::DW_VIRTUALITY_none
:
1913 case dwarf::DW_VIRTUALITY_virtual
:
1914 return Introduced
? MethodKind::IntroducingVirtual
: MethodKind::Virtual
;
1915 case dwarf::DW_VIRTUALITY_pure_virtual
:
1916 return Introduced
? MethodKind::PureIntroducingVirtual
1917 : MethodKind::PureVirtual
;
1919 llvm_unreachable("unhandled virtuality case");
1922 return MethodKind::Vanilla
;
1925 static TypeRecordKind
getRecordKind(const DICompositeType
*Ty
) {
1926 switch (Ty
->getTag()) {
1927 case dwarf::DW_TAG_class_type
: return TypeRecordKind::Class
;
1928 case dwarf::DW_TAG_structure_type
: return TypeRecordKind::Struct
;
1930 llvm_unreachable("unexpected tag");
1933 /// Return ClassOptions that should be present on both the forward declaration
1934 /// and the defintion of a tag type.
1935 static ClassOptions
getCommonClassOptions(const DICompositeType
*Ty
) {
1936 ClassOptions CO
= ClassOptions::None
;
1938 // MSVC always sets this flag, even for local types. Clang doesn't always
1939 // appear to give every type a linkage name, which may be problematic for us.
1940 // FIXME: Investigate the consequences of not following them here.
1941 if (!Ty
->getIdentifier().empty())
1942 CO
|= ClassOptions::HasUniqueName
;
1944 // Put the Nested flag on a type if it appears immediately inside a tag type.
1945 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1946 // here. That flag is only set on definitions, and not forward declarations.
1947 const DIScope
*ImmediateScope
= Ty
->getScope().resolve();
1948 if (ImmediateScope
&& isa
<DICompositeType
>(ImmediateScope
))
1949 CO
|= ClassOptions::Nested
;
1951 // Put the Scoped flag on function-local types. MSVC puts this flag for enum
1952 // type only when it has an immediate function scope. Clang never puts enums
1953 // inside DILexicalBlock scopes. Enum types, as generated by clang, are
1954 // always in function, class, or file scopes.
1955 if (Ty
->getTag() == dwarf::DW_TAG_enumeration_type
) {
1956 if (ImmediateScope
&& isa
<DISubprogram
>(ImmediateScope
))
1957 CO
|= ClassOptions::Scoped
;
1959 for (const DIScope
*Scope
= ImmediateScope
; Scope
!= nullptr;
1960 Scope
= Scope
->getScope().resolve()) {
1961 if (isa
<DISubprogram
>(Scope
)) {
1962 CO
|= ClassOptions::Scoped
;
1971 void CodeViewDebug::addUDTSrcLine(const DIType
*Ty
, TypeIndex TI
) {
1972 switch (Ty
->getTag()) {
1973 case dwarf::DW_TAG_class_type
:
1974 case dwarf::DW_TAG_structure_type
:
1975 case dwarf::DW_TAG_union_type
:
1976 case dwarf::DW_TAG_enumeration_type
:
1982 if (const auto *File
= Ty
->getFile()) {
1983 StringIdRecord
SIDR(TypeIndex(0x0), getFullFilepath(File
));
1984 TypeIndex SIDI
= TypeTable
.writeLeafType(SIDR
);
1986 UdtSourceLineRecord
USLR(TI
, SIDI
, Ty
->getLine());
1987 TypeTable
.writeLeafType(USLR
);
1991 TypeIndex
CodeViewDebug::lowerTypeEnum(const DICompositeType
*Ty
) {
1992 ClassOptions CO
= getCommonClassOptions(Ty
);
1994 unsigned EnumeratorCount
= 0;
1996 if (Ty
->isForwardDecl()) {
1997 CO
|= ClassOptions::ForwardReference
;
1999 ContinuationRecordBuilder ContinuationBuilder
;
2000 ContinuationBuilder
.begin(ContinuationRecordKind::FieldList
);
2001 for (const DINode
*Element
: Ty
->getElements()) {
2002 // We assume that the frontend provides all members in source declaration
2003 // order, which is what MSVC does.
2004 if (auto *Enumerator
= dyn_cast_or_null
<DIEnumerator
>(Element
)) {
2005 EnumeratorRecord
ER(MemberAccess::Public
,
2006 APSInt::getUnsigned(Enumerator
->getValue()),
2007 Enumerator
->getName());
2008 ContinuationBuilder
.writeMemberType(ER
);
2012 FTI
= TypeTable
.insertRecord(ContinuationBuilder
);
2015 std::string FullName
= getFullyQualifiedName(Ty
);
2017 EnumRecord
ER(EnumeratorCount
, CO
, FTI
, FullName
, Ty
->getIdentifier(),
2018 getTypeIndex(Ty
->getBaseType()));
2019 TypeIndex EnumTI
= TypeTable
.writeLeafType(ER
);
2021 addUDTSrcLine(Ty
, EnumTI
);
2026 //===----------------------------------------------------------------------===//
2028 //===----------------------------------------------------------------------===//
2030 struct llvm::ClassInfo
{
2032 const DIDerivedType
*MemberTypeNode
;
2033 uint64_t BaseOffset
;
2036 using MemberList
= std::vector
<MemberInfo
>;
2038 using MethodsList
= TinyPtrVector
<const DISubprogram
*>;
2039 // MethodName -> MethodsList
2040 using MethodsMap
= MapVector
<MDString
*, MethodsList
>;
2043 std::vector
<const DIDerivedType
*> Inheritance
;
2047 // Direct overloaded methods gathered by name.
2052 std::vector
<const DIType
*> NestedTypes
;
2055 void CodeViewDebug::clear() {
2056 assert(CurFn
== nullptr);
2058 FnDebugInfo
.clear();
2059 FileToFilepathMap
.clear();
2062 TypeIndices
.clear();
2063 CompleteTypeIndices
.clear();
2064 ScopeGlobals
.clear();
2067 void CodeViewDebug::collectMemberInfo(ClassInfo
&Info
,
2068 const DIDerivedType
*DDTy
) {
2069 if (!DDTy
->getName().empty()) {
2070 Info
.Members
.push_back({DDTy
, 0});
2074 // An unnamed member may represent a nested struct or union. Attempt to
2075 // interpret the unnamed member as a DICompositeType possibly wrapped in
2076 // qualifier types. Add all the indirect fields to the current record if that
2077 // succeeds, and drop the member if that fails.
2078 assert((DDTy
->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
2079 uint64_t Offset
= DDTy
->getOffsetInBits();
2080 const DIType
*Ty
= DDTy
->getBaseType().resolve();
2081 bool FullyResolved
= false;
2082 while (!FullyResolved
) {
2083 switch (Ty
->getTag()) {
2084 case dwarf::DW_TAG_const_type
:
2085 case dwarf::DW_TAG_volatile_type
:
2086 // FIXME: we should apply the qualifier types to the indirect fields
2087 // rather than dropping them.
2088 Ty
= cast
<DIDerivedType
>(Ty
)->getBaseType().resolve();
2091 FullyResolved
= true;
2096 const DICompositeType
*DCTy
= dyn_cast
<DICompositeType
>(Ty
);
2100 ClassInfo NestedInfo
= collectClassInfo(DCTy
);
2101 for (const ClassInfo::MemberInfo
&IndirectField
: NestedInfo
.Members
)
2102 Info
.Members
.push_back(
2103 {IndirectField
.MemberTypeNode
, IndirectField
.BaseOffset
+ Offset
});
2106 ClassInfo
CodeViewDebug::collectClassInfo(const DICompositeType
*Ty
) {
2108 // Add elements to structure type.
2109 DINodeArray Elements
= Ty
->getElements();
2110 for (auto *Element
: Elements
) {
2111 // We assume that the frontend provides all members in source declaration
2112 // order, which is what MSVC does.
2115 if (auto *SP
= dyn_cast
<DISubprogram
>(Element
)) {
2116 Info
.Methods
[SP
->getRawName()].push_back(SP
);
2117 } else if (auto *DDTy
= dyn_cast
<DIDerivedType
>(Element
)) {
2118 if (DDTy
->getTag() == dwarf::DW_TAG_member
) {
2119 collectMemberInfo(Info
, DDTy
);
2120 } else if (DDTy
->getTag() == dwarf::DW_TAG_inheritance
) {
2121 Info
.Inheritance
.push_back(DDTy
);
2122 } else if (DDTy
->getTag() == dwarf::DW_TAG_pointer_type
&&
2123 DDTy
->getName() == "__vtbl_ptr_type") {
2124 Info
.VShapeTI
= getTypeIndex(DDTy
);
2125 } else if (DDTy
->getTag() == dwarf::DW_TAG_typedef
) {
2126 Info
.NestedTypes
.push_back(DDTy
);
2127 } else if (DDTy
->getTag() == dwarf::DW_TAG_friend
) {
2128 // Ignore friend members. It appears that MSVC emitted info about
2129 // friends in the past, but modern versions do not.
2131 } else if (auto *Composite
= dyn_cast
<DICompositeType
>(Element
)) {
2132 Info
.NestedTypes
.push_back(Composite
);
2134 // Skip other unrecognized kinds of elements.
2139 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType
*Ty
) {
2140 // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2141 // if a complete type should be emitted instead of a forward reference.
2142 return Ty
->getName().empty() && Ty
->getIdentifier().empty() &&
2143 !Ty
->isForwardDecl();
2146 TypeIndex
CodeViewDebug::lowerTypeClass(const DICompositeType
*Ty
) {
2147 // Emit the complete type for unnamed structs. C++ classes with methods
2148 // which have a circular reference back to the class type are expected to
2149 // be named by the front-end and should not be "unnamed". C unnamed
2150 // structs should not have circular references.
2151 if (shouldAlwaysEmitCompleteClassType(Ty
)) {
2152 // If this unnamed complete type is already in the process of being defined
2153 // then the description of the type is malformed and cannot be emitted
2154 // into CodeView correctly so report a fatal error.
2155 auto I
= CompleteTypeIndices
.find(Ty
);
2156 if (I
!= CompleteTypeIndices
.end() && I
->second
== TypeIndex())
2157 report_fatal_error("cannot debug circular reference to unnamed type");
2158 return getCompleteTypeIndex(Ty
);
2161 // First, construct the forward decl. Don't look into Ty to compute the
2162 // forward decl options, since it might not be available in all TUs.
2163 TypeRecordKind Kind
= getRecordKind(Ty
);
2165 ClassOptions::ForwardReference
| getCommonClassOptions(Ty
);
2166 std::string FullName
= getFullyQualifiedName(Ty
);
2167 ClassRecord
CR(Kind
, 0, CO
, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2168 FullName
, Ty
->getIdentifier());
2169 TypeIndex FwdDeclTI
= TypeTable
.writeLeafType(CR
);
2170 if (!Ty
->isForwardDecl())
2171 DeferredCompleteTypes
.push_back(Ty
);
2175 TypeIndex
CodeViewDebug::lowerCompleteTypeClass(const DICompositeType
*Ty
) {
2176 // Construct the field list and complete type record.
2177 TypeRecordKind Kind
= getRecordKind(Ty
);
2178 ClassOptions CO
= getCommonClassOptions(Ty
);
2181 unsigned FieldCount
;
2182 bool ContainsNestedClass
;
2183 std::tie(FieldTI
, VShapeTI
, FieldCount
, ContainsNestedClass
) =
2184 lowerRecordFieldList(Ty
);
2186 if (ContainsNestedClass
)
2187 CO
|= ClassOptions::ContainsNestedClass
;
2189 std::string FullName
= getFullyQualifiedName(Ty
);
2191 uint64_t SizeInBytes
= Ty
->getSizeInBits() / 8;
2193 ClassRecord
CR(Kind
, FieldCount
, CO
, FieldTI
, TypeIndex(), VShapeTI
,
2194 SizeInBytes
, FullName
, Ty
->getIdentifier());
2195 TypeIndex ClassTI
= TypeTable
.writeLeafType(CR
);
2197 addUDTSrcLine(Ty
, ClassTI
);
2204 TypeIndex
CodeViewDebug::lowerTypeUnion(const DICompositeType
*Ty
) {
2205 // Emit the complete type for unnamed unions.
2206 if (shouldAlwaysEmitCompleteClassType(Ty
))
2207 return getCompleteTypeIndex(Ty
);
2210 ClassOptions::ForwardReference
| getCommonClassOptions(Ty
);
2211 std::string FullName
= getFullyQualifiedName(Ty
);
2212 UnionRecord
UR(0, CO
, TypeIndex(), 0, FullName
, Ty
->getIdentifier());
2213 TypeIndex FwdDeclTI
= TypeTable
.writeLeafType(UR
);
2214 if (!Ty
->isForwardDecl())
2215 DeferredCompleteTypes
.push_back(Ty
);
2219 TypeIndex
CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType
*Ty
) {
2220 ClassOptions CO
= ClassOptions::Sealed
| getCommonClassOptions(Ty
);
2222 unsigned FieldCount
;
2223 bool ContainsNestedClass
;
2224 std::tie(FieldTI
, std::ignore
, FieldCount
, ContainsNestedClass
) =
2225 lowerRecordFieldList(Ty
);
2227 if (ContainsNestedClass
)
2228 CO
|= ClassOptions::ContainsNestedClass
;
2230 uint64_t SizeInBytes
= Ty
->getSizeInBits() / 8;
2231 std::string FullName
= getFullyQualifiedName(Ty
);
2233 UnionRecord
UR(FieldCount
, CO
, FieldTI
, SizeInBytes
, FullName
,
2234 Ty
->getIdentifier());
2235 TypeIndex UnionTI
= TypeTable
.writeLeafType(UR
);
2237 addUDTSrcLine(Ty
, UnionTI
);
2244 std::tuple
<TypeIndex
, TypeIndex
, unsigned, bool>
2245 CodeViewDebug::lowerRecordFieldList(const DICompositeType
*Ty
) {
2246 // Manually count members. MSVC appears to count everything that generates a
2247 // field list record. Each individual overload in a method overload group
2248 // contributes to this count, even though the overload group is a single field
2250 unsigned MemberCount
= 0;
2251 ClassInfo Info
= collectClassInfo(Ty
);
2252 ContinuationRecordBuilder ContinuationBuilder
;
2253 ContinuationBuilder
.begin(ContinuationRecordKind::FieldList
);
2255 // Create base classes.
2256 for (const DIDerivedType
*I
: Info
.Inheritance
) {
2257 if (I
->getFlags() & DINode::FlagVirtual
) {
2259 unsigned VBPtrOffset
= I
->getVBPtrOffset();
2260 // FIXME: Despite the accessor name, the offset is really in bytes.
2261 unsigned VBTableIndex
= I
->getOffsetInBits() / 4;
2262 auto RecordKind
= (I
->getFlags() & DINode::FlagIndirectVirtualBase
) == DINode::FlagIndirectVirtualBase
2263 ? TypeRecordKind::IndirectVirtualBaseClass
2264 : TypeRecordKind::VirtualBaseClass
;
2265 VirtualBaseClassRecord
VBCR(
2266 RecordKind
, translateAccessFlags(Ty
->getTag(), I
->getFlags()),
2267 getTypeIndex(I
->getBaseType()), getVBPTypeIndex(), VBPtrOffset
,
2270 ContinuationBuilder
.writeMemberType(VBCR
);
2273 assert(I
->getOffsetInBits() % 8 == 0 &&
2274 "bases must be on byte boundaries");
2275 BaseClassRecord
BCR(translateAccessFlags(Ty
->getTag(), I
->getFlags()),
2276 getTypeIndex(I
->getBaseType()),
2277 I
->getOffsetInBits() / 8);
2278 ContinuationBuilder
.writeMemberType(BCR
);
2284 for (ClassInfo::MemberInfo
&MemberInfo
: Info
.Members
) {
2285 const DIDerivedType
*Member
= MemberInfo
.MemberTypeNode
;
2286 TypeIndex MemberBaseType
= getTypeIndex(Member
->getBaseType());
2287 StringRef MemberName
= Member
->getName();
2288 MemberAccess Access
=
2289 translateAccessFlags(Ty
->getTag(), Member
->getFlags());
2291 if (Member
->isStaticMember()) {
2292 StaticDataMemberRecord
SDMR(Access
, MemberBaseType
, MemberName
);
2293 ContinuationBuilder
.writeMemberType(SDMR
);
2298 // Virtual function pointer member.
2299 if ((Member
->getFlags() & DINode::FlagArtificial
) &&
2300 Member
->getName().startswith("_vptr$")) {
2301 VFPtrRecord
VFPR(getTypeIndex(Member
->getBaseType()));
2302 ContinuationBuilder
.writeMemberType(VFPR
);
2308 uint64_t MemberOffsetInBits
=
2309 Member
->getOffsetInBits() + MemberInfo
.BaseOffset
;
2310 if (Member
->isBitField()) {
2311 uint64_t StartBitOffset
= MemberOffsetInBits
;
2312 if (const auto *CI
=
2313 dyn_cast_or_null
<ConstantInt
>(Member
->getStorageOffsetInBits())) {
2314 MemberOffsetInBits
= CI
->getZExtValue() + MemberInfo
.BaseOffset
;
2316 StartBitOffset
-= MemberOffsetInBits
;
2317 BitFieldRecord
BFR(MemberBaseType
, Member
->getSizeInBits(),
2319 MemberBaseType
= TypeTable
.writeLeafType(BFR
);
2321 uint64_t MemberOffsetInBytes
= MemberOffsetInBits
/ 8;
2322 DataMemberRecord
DMR(Access
, MemberBaseType
, MemberOffsetInBytes
,
2324 ContinuationBuilder
.writeMemberType(DMR
);
2329 for (auto &MethodItr
: Info
.Methods
) {
2330 StringRef Name
= MethodItr
.first
->getString();
2332 std::vector
<OneMethodRecord
> Methods
;
2333 for (const DISubprogram
*SP
: MethodItr
.second
) {
2334 TypeIndex MethodType
= getMemberFunctionType(SP
, Ty
);
2335 bool Introduced
= SP
->getFlags() & DINode::FlagIntroducedVirtual
;
2337 unsigned VFTableOffset
= -1;
2339 VFTableOffset
= SP
->getVirtualIndex() * getPointerSizeInBytes();
2341 Methods
.push_back(OneMethodRecord(
2342 MethodType
, translateAccessFlags(Ty
->getTag(), SP
->getFlags()),
2343 translateMethodKindFlags(SP
, Introduced
),
2344 translateMethodOptionFlags(SP
), VFTableOffset
, Name
));
2347 assert(!Methods
.empty() && "Empty methods map entry");
2348 if (Methods
.size() == 1)
2349 ContinuationBuilder
.writeMemberType(Methods
[0]);
2351 // FIXME: Make this use its own ContinuationBuilder so that
2352 // MethodOverloadList can be split correctly.
2353 MethodOverloadListRecord
MOLR(Methods
);
2354 TypeIndex MethodList
= TypeTable
.writeLeafType(MOLR
);
2356 OverloadedMethodRecord
OMR(Methods
.size(), MethodList
, Name
);
2357 ContinuationBuilder
.writeMemberType(OMR
);
2361 // Create nested classes.
2362 for (const DIType
*Nested
: Info
.NestedTypes
) {
2363 NestedTypeRecord
R(getTypeIndex(DITypeRef(Nested
)), Nested
->getName());
2364 ContinuationBuilder
.writeMemberType(R
);
2368 TypeIndex FieldTI
= TypeTable
.insertRecord(ContinuationBuilder
);
2369 return std::make_tuple(FieldTI
, Info
.VShapeTI
, MemberCount
,
2370 !Info
.NestedTypes
.empty());
2373 TypeIndex
CodeViewDebug::getVBPTypeIndex() {
2374 if (!VBPType
.getIndex()) {
2375 // Make a 'const int *' type.
2376 ModifierRecord
MR(TypeIndex::Int32(), ModifierOptions::Const
);
2377 TypeIndex ModifiedTI
= TypeTable
.writeLeafType(MR
);
2379 PointerKind PK
= getPointerSizeInBytes() == 8 ? PointerKind::Near64
2380 : PointerKind::Near32
;
2381 PointerMode PM
= PointerMode::Pointer
;
2382 PointerOptions PO
= PointerOptions::None
;
2383 PointerRecord
PR(ModifiedTI
, PK
, PM
, PO
, getPointerSizeInBytes());
2384 VBPType
= TypeTable
.writeLeafType(PR
);
2390 TypeIndex
CodeViewDebug::getTypeIndex(DITypeRef TypeRef
, DITypeRef ClassTyRef
) {
2391 const DIType
*Ty
= TypeRef
.resolve();
2392 const DIType
*ClassTy
= ClassTyRef
.resolve();
2394 // The null DIType is the void type. Don't try to hash it.
2396 return TypeIndex::Void();
2398 // Check if we've already translated this type. Don't try to do a
2399 // get-or-create style insertion that caches the hash lookup across the
2400 // lowerType call. It will update the TypeIndices map.
2401 auto I
= TypeIndices
.find({Ty
, ClassTy
});
2402 if (I
!= TypeIndices
.end())
2405 TypeLoweringScope
S(*this);
2406 TypeIndex TI
= lowerType(Ty
, ClassTy
);
2407 return recordTypeIndexForDINode(Ty
, TI
, ClassTy
);
2411 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType
*PtrTy
,
2412 const DISubroutineType
*SubroutineTy
) {
2413 assert(PtrTy
->getTag() == dwarf::DW_TAG_pointer_type
&&
2414 "this type must be a pointer type");
2416 PointerOptions Options
= PointerOptions::None
;
2417 if (SubroutineTy
->getFlags() & DINode::DIFlags::FlagLValueReference
)
2418 Options
= PointerOptions::LValueRefThisPointer
;
2419 else if (SubroutineTy
->getFlags() & DINode::DIFlags::FlagRValueReference
)
2420 Options
= PointerOptions::RValueRefThisPointer
;
2422 // Check if we've already translated this type. If there is no ref qualifier
2423 // on the function then we look up this pointer type with no associated class
2424 // so that the TypeIndex for the this pointer can be shared with the type
2425 // index for other pointers to this class type. If there is a ref qualifier
2426 // then we lookup the pointer using the subroutine as the parent type.
2427 auto I
= TypeIndices
.find({PtrTy
, SubroutineTy
});
2428 if (I
!= TypeIndices
.end())
2431 TypeLoweringScope
S(*this);
2432 TypeIndex TI
= lowerTypePointer(PtrTy
, Options
);
2433 return recordTypeIndexForDINode(PtrTy
, TI
, SubroutineTy
);
2436 TypeIndex
CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef
) {
2437 DIType
*Ty
= TypeRef
.resolve();
2438 PointerRecord
PR(getTypeIndex(Ty
),
2439 getPointerSizeInBytes() == 8 ? PointerKind::Near64
2440 : PointerKind::Near32
,
2441 PointerMode::LValueReference
, PointerOptions::None
,
2442 Ty
->getSizeInBits() / 8);
2443 return TypeTable
.writeLeafType(PR
);
2446 TypeIndex
CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef
) {
2447 const DIType
*Ty
= TypeRef
.resolve();
2449 // The null DIType is the void type. Don't try to hash it.
2451 return TypeIndex::Void();
2453 // Look through typedefs when getting the complete type index. Call
2454 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
2455 // emitted only once.
2456 if (Ty
->getTag() == dwarf::DW_TAG_typedef
)
2457 (void)getTypeIndex(Ty
);
2458 while (Ty
->getTag() == dwarf::DW_TAG_typedef
)
2459 Ty
= cast
<DIDerivedType
>(Ty
)->getBaseType().resolve();
2461 // If this is a non-record type, the complete type index is the same as the
2462 // normal type index. Just call getTypeIndex.
2463 switch (Ty
->getTag()) {
2464 case dwarf::DW_TAG_class_type
:
2465 case dwarf::DW_TAG_structure_type
:
2466 case dwarf::DW_TAG_union_type
:
2469 return getTypeIndex(Ty
);
2472 // Check if we've already translated the complete record type.
2473 const auto *CTy
= cast
<DICompositeType
>(Ty
);
2474 auto InsertResult
= CompleteTypeIndices
.insert({CTy
, TypeIndex()});
2475 if (!InsertResult
.second
)
2476 return InsertResult
.first
->second
;
2478 TypeLoweringScope
S(*this);
2480 // Make sure the forward declaration is emitted first. It's unclear if this
2481 // is necessary, but MSVC does it, and we should follow suit until we can show
2483 // We only emit a forward declaration for named types.
2484 if (!CTy
->getName().empty() || !CTy
->getIdentifier().empty()) {
2485 TypeIndex FwdDeclTI
= getTypeIndex(CTy
);
2487 // Just use the forward decl if we don't have complete type info. This
2488 // might happen if the frontend is using modules and expects the complete
2489 // definition to be emitted elsewhere.
2490 if (CTy
->isForwardDecl())
2495 switch (CTy
->getTag()) {
2496 case dwarf::DW_TAG_class_type
:
2497 case dwarf::DW_TAG_structure_type
:
2498 TI
= lowerCompleteTypeClass(CTy
);
2500 case dwarf::DW_TAG_union_type
:
2501 TI
= lowerCompleteTypeUnion(CTy
);
2504 llvm_unreachable("not a record");
2507 // Update the type index associated with this CompositeType. This cannot
2508 // use the 'InsertResult' iterator above because it is potentially
2509 // invalidated by map insertions which can occur while lowering the class
2511 CompleteTypeIndices
[CTy
] = TI
;
2515 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2516 /// and do this until fixpoint, as each complete record type typically
2518 /// many other record types.
2519 void CodeViewDebug::emitDeferredCompleteTypes() {
2520 SmallVector
<const DICompositeType
*, 4> TypesToEmit
;
2521 while (!DeferredCompleteTypes
.empty()) {
2522 std::swap(DeferredCompleteTypes
, TypesToEmit
);
2523 for (const DICompositeType
*RecordTy
: TypesToEmit
)
2524 getCompleteTypeIndex(RecordTy
);
2525 TypesToEmit
.clear();
2529 void CodeViewDebug::emitLocalVariableList(const FunctionInfo
&FI
,
2530 ArrayRef
<LocalVariable
> Locals
) {
2531 // Get the sorted list of parameters and emit them first.
2532 SmallVector
<const LocalVariable
*, 6> Params
;
2533 for (const LocalVariable
&L
: Locals
)
2534 if (L
.DIVar
->isParameter())
2535 Params
.push_back(&L
);
2536 llvm::sort(Params
, [](const LocalVariable
*L
, const LocalVariable
*R
) {
2537 return L
->DIVar
->getArg() < R
->DIVar
->getArg();
2539 for (const LocalVariable
*L
: Params
)
2540 emitLocalVariable(FI
, *L
);
2542 // Next emit all non-parameters in the order that we found them.
2543 for (const LocalVariable
&L
: Locals
)
2544 if (!L
.DIVar
->isParameter())
2545 emitLocalVariable(FI
, L
);
2548 /// Only call this on endian-specific types like ulittle16_t and little32_t, or
2549 /// structs composed of them.
2550 template <typename T
>
2551 static void copyBytesForDefRange(SmallString
<20> &BytePrefix
,
2552 SymbolKind SymKind
, const T
&DefRangeHeader
) {
2553 BytePrefix
.resize(2 + sizeof(T
));
2554 ulittle16_t SymKindLE
= ulittle16_t(SymKind
);
2555 memcpy(&BytePrefix
[0], &SymKindLE
, 2);
2556 memcpy(&BytePrefix
[2], &DefRangeHeader
, sizeof(T
));
2559 void CodeViewDebug::emitLocalVariable(const FunctionInfo
&FI
,
2560 const LocalVariable
&Var
) {
2561 // LocalSym record, see SymbolRecord.h for more info.
2562 MCSymbol
*LocalEnd
= beginSymbolRecord(SymbolKind::S_LOCAL
);
2564 LocalSymFlags Flags
= LocalSymFlags::None
;
2565 if (Var
.DIVar
->isParameter())
2566 Flags
|= LocalSymFlags::IsParameter
;
2567 if (Var
.DefRanges
.empty())
2568 Flags
|= LocalSymFlags::IsOptimizedOut
;
2570 OS
.AddComment("TypeIndex");
2571 TypeIndex TI
= Var
.UseReferenceType
2572 ? getTypeIndexForReferenceTo(Var
.DIVar
->getType())
2573 : getCompleteTypeIndex(Var
.DIVar
->getType());
2574 OS
.EmitIntValue(TI
.getIndex(), 4);
2575 OS
.AddComment("Flags");
2576 OS
.EmitIntValue(static_cast<uint16_t>(Flags
), 2);
2577 // Truncate the name so we won't overflow the record length field.
2578 emitNullTerminatedSymbolName(OS
, Var
.DIVar
->getName());
2579 endSymbolRecord(LocalEnd
);
2581 // Calculate the on disk prefix of the appropriate def range record. The
2582 // records and on disk formats are described in SymbolRecords.h. BytePrefix
2583 // should be big enough to hold all forms without memory allocation.
2584 SmallString
<20> BytePrefix
;
2585 for (const LocalVarDefRange
&DefRange
: Var
.DefRanges
) {
2587 if (DefRange
.InMemory
) {
2588 int Offset
= DefRange
.DataOffset
;
2589 unsigned Reg
= DefRange
.CVRegister
;
2591 // 32-bit x86 call sequences often use PUSH instructions, which disrupt
2592 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
2593 // instead. In frames without stack realignment, $T0 will be the CFA.
2594 if (RegisterId(Reg
) == RegisterId::ESP
) {
2595 Reg
= unsigned(RegisterId::VFRAME
);
2596 Offset
+= FI
.OffsetAdjustment
;
2599 // If we can use the chosen frame pointer for the frame and this isn't a
2600 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
2601 // Otherwise, use S_DEFRANGE_REGISTER_REL.
2602 EncodedFramePtrReg EncFP
= encodeFramePtrReg(RegisterId(Reg
), TheCPU
);
2603 if (!DefRange
.IsSubfield
&& EncFP
!= EncodedFramePtrReg::None
&&
2604 (bool(Flags
& LocalSymFlags::IsParameter
)
2605 ? (EncFP
== FI
.EncodedParamFramePtrReg
)
2606 : (EncFP
== FI
.EncodedLocalFramePtrReg
))) {
2607 little32_t FPOffset
= little32_t(Offset
);
2608 copyBytesForDefRange(BytePrefix
, S_DEFRANGE_FRAMEPOINTER_REL
, FPOffset
);
2610 uint16_t RegRelFlags
= 0;
2611 if (DefRange
.IsSubfield
) {
2612 RegRelFlags
= DefRangeRegisterRelSym::IsSubfieldFlag
|
2613 (DefRange
.StructOffset
2614 << DefRangeRegisterRelSym::OffsetInParentShift
);
2616 DefRangeRegisterRelSym::Header DRHdr
;
2617 DRHdr
.Register
= Reg
;
2618 DRHdr
.Flags
= RegRelFlags
;
2619 DRHdr
.BasePointerOffset
= Offset
;
2620 copyBytesForDefRange(BytePrefix
, S_DEFRANGE_REGISTER_REL
, DRHdr
);
2623 assert(DefRange
.DataOffset
== 0 && "unexpected offset into register");
2624 if (DefRange
.IsSubfield
) {
2625 DefRangeSubfieldRegisterSym::Header DRHdr
;
2626 DRHdr
.Register
= DefRange
.CVRegister
;
2627 DRHdr
.MayHaveNoName
= 0;
2628 DRHdr
.OffsetInParent
= DefRange
.StructOffset
;
2629 copyBytesForDefRange(BytePrefix
, S_DEFRANGE_SUBFIELD_REGISTER
, DRHdr
);
2631 DefRangeRegisterSym::Header DRHdr
;
2632 DRHdr
.Register
= DefRange
.CVRegister
;
2633 DRHdr
.MayHaveNoName
= 0;
2634 copyBytesForDefRange(BytePrefix
, S_DEFRANGE_REGISTER
, DRHdr
);
2637 OS
.EmitCVDefRangeDirective(DefRange
.Ranges
, BytePrefix
);
2641 void CodeViewDebug::emitLexicalBlockList(ArrayRef
<LexicalBlock
*> Blocks
,
2642 const FunctionInfo
& FI
) {
2643 for (LexicalBlock
*Block
: Blocks
)
2644 emitLexicalBlock(*Block
, FI
);
2647 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2648 /// lexical block scope.
2649 void CodeViewDebug::emitLexicalBlock(const LexicalBlock
&Block
,
2650 const FunctionInfo
& FI
) {
2651 MCSymbol
*RecordEnd
= beginSymbolRecord(SymbolKind::S_BLOCK32
);
2652 OS
.AddComment("PtrParent");
2653 OS
.EmitIntValue(0, 4); // PtrParent
2654 OS
.AddComment("PtrEnd");
2655 OS
.EmitIntValue(0, 4); // PtrEnd
2656 OS
.AddComment("Code size");
2657 OS
.emitAbsoluteSymbolDiff(Block
.End
, Block
.Begin
, 4); // Code Size
2658 OS
.AddComment("Function section relative address");
2659 OS
.EmitCOFFSecRel32(Block
.Begin
, /*Offset=*/0); // Func Offset
2660 OS
.AddComment("Function section index");
2661 OS
.EmitCOFFSectionIndex(FI
.Begin
); // Func Symbol
2662 OS
.AddComment("Lexical block name");
2663 emitNullTerminatedSymbolName(OS
, Block
.Name
); // Name
2664 endSymbolRecord(RecordEnd
);
2666 // Emit variables local to this lexical block.
2667 emitLocalVariableList(FI
, Block
.Locals
);
2668 emitGlobalVariableList(Block
.Globals
);
2670 // Emit lexical blocks contained within this block.
2671 emitLexicalBlockList(Block
.Children
, FI
);
2673 // Close the lexical block scope.
2674 emitEndSymbolRecord(SymbolKind::S_END
);
2677 /// Convenience routine for collecting lexical block information for a list
2678 /// of lexical scopes.
2679 void CodeViewDebug::collectLexicalBlockInfo(
2680 SmallVectorImpl
<LexicalScope
*> &Scopes
,
2681 SmallVectorImpl
<LexicalBlock
*> &Blocks
,
2682 SmallVectorImpl
<LocalVariable
> &Locals
,
2683 SmallVectorImpl
<CVGlobalVariable
> &Globals
) {
2684 for (LexicalScope
*Scope
: Scopes
)
2685 collectLexicalBlockInfo(*Scope
, Blocks
, Locals
, Globals
);
2688 /// Populate the lexical blocks and local variable lists of the parent with
2689 /// information about the specified lexical scope.
2690 void CodeViewDebug::collectLexicalBlockInfo(
2691 LexicalScope
&Scope
,
2692 SmallVectorImpl
<LexicalBlock
*> &ParentBlocks
,
2693 SmallVectorImpl
<LocalVariable
> &ParentLocals
,
2694 SmallVectorImpl
<CVGlobalVariable
> &ParentGlobals
) {
2695 if (Scope
.isAbstractScope())
2698 // Gather information about the lexical scope including local variables,
2699 // global variables, and address ranges.
2700 bool IgnoreScope
= false;
2701 auto LI
= ScopeVariables
.find(&Scope
);
2702 SmallVectorImpl
<LocalVariable
> *Locals
=
2703 LI
!= ScopeVariables
.end() ? &LI
->second
: nullptr;
2704 auto GI
= ScopeGlobals
.find(Scope
.getScopeNode());
2705 SmallVectorImpl
<CVGlobalVariable
> *Globals
=
2706 GI
!= ScopeGlobals
.end() ? GI
->second
.get() : nullptr;
2707 const DILexicalBlock
*DILB
= dyn_cast
<DILexicalBlock
>(Scope
.getScopeNode());
2708 const SmallVectorImpl
<InsnRange
> &Ranges
= Scope
.getRanges();
2710 // Ignore lexical scopes which do not contain variables.
2711 if (!Locals
&& !Globals
)
2714 // Ignore lexical scopes which are not lexical blocks.
2718 // Ignore scopes which have too many address ranges to represent in the
2719 // current CodeView format or do not have a valid address range.
2721 // For lexical scopes with multiple address ranges you may be tempted to
2722 // construct a single range covering every instruction where the block is
2723 // live and everything in between. Unfortunately, Visual Studio only
2724 // displays variables from the first matching lexical block scope. If the
2725 // first lexical block contains exception handling code or cold code which
2726 // is moved to the bottom of the routine creating a single range covering
2727 // nearly the entire routine, then it will hide all other lexical blocks
2728 // and the variables they contain.
2729 if (Ranges
.size() != 1 || !getLabelAfterInsn(Ranges
.front().second
))
2733 // This scope can be safely ignored and eliminating it will reduce the
2734 // size of the debug information. Be sure to collect any variable and scope
2735 // information from the this scope or any of its children and collapse them
2736 // into the parent scope.
2738 ParentLocals
.append(Locals
->begin(), Locals
->end());
2740 ParentGlobals
.append(Globals
->begin(), Globals
->end());
2741 collectLexicalBlockInfo(Scope
.getChildren(),
2748 // Create a new CodeView lexical block for this lexical scope. If we've
2749 // seen this DILexicalBlock before then the scope tree is malformed and
2750 // we can handle this gracefully by not processing it a second time.
2751 auto BlockInsertion
= CurFn
->LexicalBlocks
.insert({DILB
, LexicalBlock()});
2752 if (!BlockInsertion
.second
)
2755 // Create a lexical block containing the variables and collect the the
2756 // lexical block information for the children.
2757 const InsnRange
&Range
= Ranges
.front();
2758 assert(Range
.first
&& Range
.second
);
2759 LexicalBlock
&Block
= BlockInsertion
.first
->second
;
2760 Block
.Begin
= getLabelBeforeInsn(Range
.first
);
2761 Block
.End
= getLabelAfterInsn(Range
.second
);
2762 assert(Block
.Begin
&& "missing label for scope begin");
2763 assert(Block
.End
&& "missing label for scope end");
2764 Block
.Name
= DILB
->getName();
2766 Block
.Locals
= std::move(*Locals
);
2768 Block
.Globals
= std::move(*Globals
);
2769 ParentBlocks
.push_back(&Block
);
2770 collectLexicalBlockInfo(Scope
.getChildren(),
2776 void CodeViewDebug::endFunctionImpl(const MachineFunction
*MF
) {
2777 const Function
&GV
= MF
->getFunction();
2778 assert(FnDebugInfo
.count(&GV
));
2779 assert(CurFn
== FnDebugInfo
[&GV
].get());
2781 collectVariableInfo(GV
.getSubprogram());
2783 // Build the lexical block structure to emit for this routine.
2784 if (LexicalScope
*CFS
= LScopes
.getCurrentFunctionScope())
2785 collectLexicalBlockInfo(*CFS
,
2790 // Clear the scope and variable information from the map which will not be
2791 // valid after we have finished processing this routine. This also prepares
2792 // the map for the subsequent routine.
2793 ScopeVariables
.clear();
2795 // Don't emit anything if we don't have any line tables.
2796 // Thunks are compiler-generated and probably won't have source correlation.
2797 if (!CurFn
->HaveLineInfo
&& !GV
.getSubprogram()->isThunk()) {
2798 FnDebugInfo
.erase(&GV
);
2803 CurFn
->Annotations
= MF
->getCodeViewAnnotations();
2805 CurFn
->End
= Asm
->getFunctionEnd();
2810 void CodeViewDebug::beginInstruction(const MachineInstr
*MI
) {
2811 DebugHandlerBase::beginInstruction(MI
);
2813 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
2814 if (!Asm
|| !CurFn
|| MI
->isDebugInstr() ||
2815 MI
->getFlag(MachineInstr::FrameSetup
))
2818 // If the first instruction of a new MBB has no location, find the first
2819 // instruction with a location and use that.
2820 DebugLoc DL
= MI
->getDebugLoc();
2821 if (!DL
&& MI
->getParent() != PrevInstBB
) {
2822 for (const auto &NextMI
: *MI
->getParent()) {
2823 if (NextMI
.isDebugInstr())
2825 DL
= NextMI
.getDebugLoc();
2830 PrevInstBB
= MI
->getParent();
2832 // If we still don't have a debug location, don't record a location.
2836 maybeRecordLocation(DL
, Asm
->MF
);
2839 MCSymbol
*CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind
) {
2840 MCSymbol
*BeginLabel
= MMI
->getContext().createTempSymbol(),
2841 *EndLabel
= MMI
->getContext().createTempSymbol();
2842 OS
.EmitIntValue(unsigned(Kind
), 4);
2843 OS
.AddComment("Subsection size");
2844 OS
.emitAbsoluteSymbolDiff(EndLabel
, BeginLabel
, 4);
2845 OS
.EmitLabel(BeginLabel
);
2849 void CodeViewDebug::endCVSubsection(MCSymbol
*EndLabel
) {
2850 OS
.EmitLabel(EndLabel
);
2851 // Every subsection must be aligned to a 4-byte boundary.
2852 OS
.EmitValueToAlignment(4);
2855 static StringRef
getSymbolName(SymbolKind SymKind
) {
2856 for (const EnumEntry
<SymbolKind
> &EE
: getSymbolTypeNames())
2857 if (EE
.Value
== SymKind
)
2862 MCSymbol
*CodeViewDebug::beginSymbolRecord(SymbolKind SymKind
) {
2863 MCSymbol
*BeginLabel
= MMI
->getContext().createTempSymbol(),
2864 *EndLabel
= MMI
->getContext().createTempSymbol();
2865 OS
.AddComment("Record length");
2866 OS
.emitAbsoluteSymbolDiff(EndLabel
, BeginLabel
, 2);
2867 OS
.EmitLabel(BeginLabel
);
2868 if (OS
.isVerboseAsm())
2869 OS
.AddComment("Record kind: " + getSymbolName(SymKind
));
2870 OS
.EmitIntValue(unsigned(SymKind
), 2);
2874 void CodeViewDebug::endSymbolRecord(MCSymbol
*SymEnd
) {
2875 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
2876 // an extra copy of every symbol record in LLD. This increases object file
2877 // size by less than 1% in the clang build, and is compatible with the Visual
2879 OS
.EmitValueToAlignment(4);
2880 OS
.EmitLabel(SymEnd
);
2883 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind
) {
2884 OS
.AddComment("Record length");
2885 OS
.EmitIntValue(2, 2);
2886 if (OS
.isVerboseAsm())
2887 OS
.AddComment("Record kind: " + getSymbolName(EndKind
));
2888 OS
.EmitIntValue(unsigned(EndKind
), 2); // Record Kind
2891 void CodeViewDebug::emitDebugInfoForUDTs(
2892 ArrayRef
<std::pair
<std::string
, const DIType
*>> UDTs
) {
2893 for (const auto &UDT
: UDTs
) {
2894 const DIType
*T
= UDT
.second
;
2895 assert(shouldEmitUdt(T
));
2897 MCSymbol
*UDTRecordEnd
= beginSymbolRecord(SymbolKind::S_UDT
);
2898 OS
.AddComment("Type");
2899 OS
.EmitIntValue(getCompleteTypeIndex(T
).getIndex(), 4);
2900 emitNullTerminatedSymbolName(OS
, UDT
.first
);
2901 endSymbolRecord(UDTRecordEnd
);
2905 void CodeViewDebug::collectGlobalVariableInfo() {
2906 DenseMap
<const DIGlobalVariableExpression
*, const GlobalVariable
*>
2908 for (const GlobalVariable
&GV
: MMI
->getModule()->globals()) {
2909 SmallVector
<DIGlobalVariableExpression
*, 1> GVEs
;
2910 GV
.getDebugInfo(GVEs
);
2911 for (const auto *GVE
: GVEs
)
2912 GlobalMap
[GVE
] = &GV
;
2915 NamedMDNode
*CUs
= MMI
->getModule()->getNamedMetadata("llvm.dbg.cu");
2916 for (const MDNode
*Node
: CUs
->operands()) {
2917 const auto *CU
= cast
<DICompileUnit
>(Node
);
2918 for (const auto *GVE
: CU
->getGlobalVariables()) {
2919 const auto *GV
= GlobalMap
.lookup(GVE
);
2920 if (!GV
|| GV
->isDeclarationForLinker())
2922 const DIGlobalVariable
*DIGV
= GVE
->getVariable();
2923 DIScope
*Scope
= DIGV
->getScope();
2924 SmallVector
<CVGlobalVariable
, 1> *VariableList
;
2925 if (Scope
&& isa
<DILocalScope
>(Scope
)) {
2926 // Locate a global variable list for this scope, creating one if
2928 auto Insertion
= ScopeGlobals
.insert(
2929 {Scope
, std::unique_ptr
<GlobalVariableList
>()});
2930 if (Insertion
.second
)
2931 Insertion
.first
->second
= llvm::make_unique
<GlobalVariableList
>();
2932 VariableList
= Insertion
.first
->second
.get();
2933 } else if (GV
->hasComdat())
2934 // Emit this global variable into a COMDAT section.
2935 VariableList
= &ComdatVariables
;
2937 // Emit this globla variable in a single global symbol section.
2938 VariableList
= &GlobalVariables
;
2939 CVGlobalVariable CVGV
= {DIGV
, GV
};
2940 VariableList
->emplace_back(std::move(CVGV
));
2945 void CodeViewDebug::emitDebugInfoForGlobals() {
2946 // First, emit all globals that are not in a comdat in a single symbol
2947 // substream. MSVC doesn't like it if the substream is empty, so only open
2948 // it if we have at least one global to emit.
2949 switchToDebugSectionForSymbol(nullptr);
2950 if (!GlobalVariables
.empty()) {
2951 OS
.AddComment("Symbol subsection for globals");
2952 MCSymbol
*EndLabel
= beginCVSubsection(DebugSubsectionKind::Symbols
);
2953 emitGlobalVariableList(GlobalVariables
);
2954 endCVSubsection(EndLabel
);
2957 // Second, emit each global that is in a comdat into its own .debug$S
2958 // section along with its own symbol substream.
2959 for (const CVGlobalVariable
&CVGV
: ComdatVariables
) {
2960 MCSymbol
*GVSym
= Asm
->getSymbol(CVGV
.GV
);
2961 OS
.AddComment("Symbol subsection for " +
2962 Twine(GlobalValue::dropLLVMManglingEscape(CVGV
.GV
->getName())));
2963 switchToDebugSectionForSymbol(GVSym
);
2964 MCSymbol
*EndLabel
= beginCVSubsection(DebugSubsectionKind::Symbols
);
2965 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2966 emitDebugInfoForGlobal(CVGV
.DIGV
, CVGV
.GV
, GVSym
);
2967 endCVSubsection(EndLabel
);
2971 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2972 NamedMDNode
*CUs
= MMI
->getModule()->getNamedMetadata("llvm.dbg.cu");
2973 for (const MDNode
*Node
: CUs
->operands()) {
2974 for (auto *Ty
: cast
<DICompileUnit
>(Node
)->getRetainedTypes()) {
2975 if (DIType
*RT
= dyn_cast
<DIType
>(Ty
)) {
2977 // FIXME: Add to global/local DTU list.
2983 // Emit each global variable in the specified array.
2984 void CodeViewDebug::emitGlobalVariableList(ArrayRef
<CVGlobalVariable
> Globals
) {
2985 for (const CVGlobalVariable
&CVGV
: Globals
) {
2986 MCSymbol
*GVSym
= Asm
->getSymbol(CVGV
.GV
);
2987 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2988 emitDebugInfoForGlobal(CVGV
.DIGV
, CVGV
.GV
, GVSym
);
2992 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable
*DIGV
,
2993 const GlobalVariable
*GV
,
2995 // DataSym record, see SymbolRecord.h for more info. Thread local data
2996 // happens to have the same format as global data.
2997 SymbolKind DataSym
= GV
->isThreadLocal()
2998 ? (DIGV
->isLocalToUnit() ? SymbolKind::S_LTHREAD32
2999 : SymbolKind::S_GTHREAD32
)
3000 : (DIGV
->isLocalToUnit() ? SymbolKind::S_LDATA32
3001 : SymbolKind::S_GDATA32
);
3002 MCSymbol
*DataEnd
= beginSymbolRecord(DataSym
);
3003 OS
.AddComment("Type");
3004 OS
.EmitIntValue(getCompleteTypeIndex(DIGV
->getType()).getIndex(), 4);
3005 OS
.AddComment("DataOffset");
3006 OS
.EmitCOFFSecRel32(GVSym
, /*Offset=*/0);
3007 OS
.AddComment("Segment");
3008 OS
.EmitCOFFSectionIndex(GVSym
);
3009 OS
.AddComment("Name");
3010 const unsigned LengthOfDataRecord
= 12;
3011 emitNullTerminatedSymbolName(OS
, DIGV
->getName(), LengthOfDataRecord
);
3012 endSymbolRecord(DataEnd
);