[DAGCombiner] Eliminate dead stores to stack.
[llvm-complete.git] / lib / CodeGen / AsmPrinter / CodeViewDebug.cpp
blob60731f1e676c7facf69a2a8084701ad21a38a79f
1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing Microsoft CodeView debug info.
11 //===----------------------------------------------------------------------===//
13 #include "CodeViewDebug.h"
14 #include "DwarfExpression.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/TinyPtrVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/BinaryFormat/COFF.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/CodeGen/AsmPrinter.h"
32 #include "llvm/CodeGen/LexicalScopes.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/TargetFrameLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
43 #include "llvm/DebugInfo/CodeView/CodeView.h"
44 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
45 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
46 #include "llvm/DebugInfo/CodeView/EnumTables.h"
47 #include "llvm/DebugInfo/CodeView/Line.h"
48 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
49 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
50 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
51 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
52 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugInfoMetadata.h"
56 #include "llvm/IR/DebugLoc.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/GlobalValue.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/Metadata.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/MC/MCAsmInfo.h"
63 #include "llvm/MC/MCContext.h"
64 #include "llvm/MC/MCSectionCOFF.h"
65 #include "llvm/MC/MCStreamer.h"
66 #include "llvm/MC/MCSymbol.h"
67 #include "llvm/Support/BinaryByteStream.h"
68 #include "llvm/Support/BinaryStreamReader.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Endian.h"
73 #include "llvm/Support/Error.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/FormatVariadic.h"
76 #include "llvm/Support/Path.h"
77 #include "llvm/Support/SMLoc.h"
78 #include "llvm/Support/ScopedPrinter.h"
79 #include "llvm/Target/TargetLoweringObjectFile.h"
80 #include "llvm/Target/TargetMachine.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <cctype>
84 #include <cstddef>
85 #include <cstdint>
86 #include <iterator>
87 #include <limits>
88 #include <string>
89 #include <utility>
90 #include <vector>
92 using namespace llvm;
93 using namespace llvm::codeview;
95 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
96 switch (Type) {
97 case Triple::ArchType::x86:
98 return CPUType::Pentium3;
99 case Triple::ArchType::x86_64:
100 return CPUType::X64;
101 case Triple::ArchType::thumb:
102 return CPUType::Thumb;
103 case Triple::ArchType::aarch64:
104 return CPUType::ARM64;
105 default:
106 report_fatal_error("target architecture doesn't map to a CodeView CPUType");
110 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
111 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
112 // If module doesn't have named metadata anchors or COFF debug section
113 // is not available, skip any debug info related stuff.
114 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
115 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
116 Asm = nullptr;
117 MMI->setDebugInfoAvailability(false);
118 return;
120 // Tell MMI that we have debug info.
121 MMI->setDebugInfoAvailability(true);
123 TheCPU =
124 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
126 collectGlobalVariableInfo();
128 // Check if we should emit type record hashes.
129 ConstantInt *GH = mdconst::extract_or_null<ConstantInt>(
130 MMI->getModule()->getModuleFlag("CodeViewGHash"));
131 EmitDebugGlobalHashes = GH && !GH->isZero();
134 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
135 std::string &Filepath = FileToFilepathMap[File];
136 if (!Filepath.empty())
137 return Filepath;
139 StringRef Dir = File->getDirectory(), Filename = File->getFilename();
141 // If this is a Unix-style path, just use it as is. Don't try to canonicalize
142 // it textually because one of the path components could be a symlink.
143 if (Dir.startswith("/") || Filename.startswith("/")) {
144 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix))
145 return Filename;
146 Filepath = Dir;
147 if (Dir.back() != '/')
148 Filepath += '/';
149 Filepath += Filename;
150 return Filepath;
153 // Clang emits directory and relative filename info into the IR, but CodeView
154 // operates on full paths. We could change Clang to emit full paths too, but
155 // that would increase the IR size and probably not needed for other users.
156 // For now, just concatenate and canonicalize the path here.
157 if (Filename.find(':') == 1)
158 Filepath = Filename;
159 else
160 Filepath = (Dir + "\\" + Filename).str();
162 // Canonicalize the path. We have to do it textually because we may no longer
163 // have access the file in the filesystem.
164 // First, replace all slashes with backslashes.
165 std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
167 // Remove all "\.\" with "\".
168 size_t Cursor = 0;
169 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
170 Filepath.erase(Cursor, 2);
172 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original
173 // path should be well-formatted, e.g. start with a drive letter, etc.
174 Cursor = 0;
175 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
176 // Something's wrong if the path starts with "\..\", abort.
177 if (Cursor == 0)
178 break;
180 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
181 if (PrevSlash == std::string::npos)
182 // Something's wrong, abort.
183 break;
185 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
186 // The next ".." might be following the one we've just erased.
187 Cursor = PrevSlash;
190 // Remove all duplicate backslashes.
191 Cursor = 0;
192 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
193 Filepath.erase(Cursor, 1);
195 return Filepath;
198 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
199 StringRef FullPath = getFullFilepath(F);
200 unsigned NextId = FileIdMap.size() + 1;
201 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
202 if (Insertion.second) {
203 // We have to compute the full filepath and emit a .cv_file directive.
204 ArrayRef<uint8_t> ChecksumAsBytes;
205 FileChecksumKind CSKind = FileChecksumKind::None;
206 if (F->getChecksum()) {
207 std::string Checksum = fromHex(F->getChecksum()->Value);
208 void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
209 memcpy(CKMem, Checksum.data(), Checksum.size());
210 ChecksumAsBytes = ArrayRef<uint8_t>(
211 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
212 switch (F->getChecksum()->Kind) {
213 case DIFile::CSK_MD5: CSKind = FileChecksumKind::MD5; break;
214 case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break;
217 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
218 static_cast<unsigned>(CSKind));
219 (void)Success;
220 assert(Success && ".cv_file directive failed");
222 return Insertion.first->second;
225 CodeViewDebug::InlineSite &
226 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
227 const DISubprogram *Inlinee) {
228 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
229 InlineSite *Site = &SiteInsertion.first->second;
230 if (SiteInsertion.second) {
231 unsigned ParentFuncId = CurFn->FuncId;
232 if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
233 ParentFuncId =
234 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
235 .SiteFuncId;
237 Site->SiteFuncId = NextFuncId++;
238 OS.EmitCVInlineSiteIdDirective(
239 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
240 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
241 Site->Inlinee = Inlinee;
242 InlinedSubprograms.insert(Inlinee);
243 getFuncIdForSubprogram(Inlinee);
245 return *Site;
248 static StringRef getPrettyScopeName(const DIScope *Scope) {
249 StringRef ScopeName = Scope->getName();
250 if (!ScopeName.empty())
251 return ScopeName;
253 switch (Scope->getTag()) {
254 case dwarf::DW_TAG_enumeration_type:
255 case dwarf::DW_TAG_class_type:
256 case dwarf::DW_TAG_structure_type:
257 case dwarf::DW_TAG_union_type:
258 return "<unnamed-tag>";
259 case dwarf::DW_TAG_namespace:
260 return "`anonymous namespace'";
263 return StringRef();
266 static const DISubprogram *getQualifiedNameComponents(
267 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
268 const DISubprogram *ClosestSubprogram = nullptr;
269 while (Scope != nullptr) {
270 if (ClosestSubprogram == nullptr)
271 ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
272 StringRef ScopeName = getPrettyScopeName(Scope);
273 if (!ScopeName.empty())
274 QualifiedNameComponents.push_back(ScopeName);
275 Scope = Scope->getScope().resolve();
277 return ClosestSubprogram;
280 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
281 StringRef TypeName) {
282 std::string FullyQualifiedName;
283 for (StringRef QualifiedNameComponent :
284 llvm::reverse(QualifiedNameComponents)) {
285 FullyQualifiedName.append(QualifiedNameComponent);
286 FullyQualifiedName.append("::");
288 FullyQualifiedName.append(TypeName);
289 return FullyQualifiedName;
292 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
293 SmallVector<StringRef, 5> QualifiedNameComponents;
294 getQualifiedNameComponents(Scope, QualifiedNameComponents);
295 return getQualifiedName(QualifiedNameComponents, Name);
298 struct CodeViewDebug::TypeLoweringScope {
299 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
300 ~TypeLoweringScope() {
301 // Don't decrement TypeEmissionLevel until after emitting deferred types, so
302 // inner TypeLoweringScopes don't attempt to emit deferred types.
303 if (CVD.TypeEmissionLevel == 1)
304 CVD.emitDeferredCompleteTypes();
305 --CVD.TypeEmissionLevel;
307 CodeViewDebug &CVD;
310 static std::string getFullyQualifiedName(const DIScope *Ty) {
311 const DIScope *Scope = Ty->getScope().resolve();
312 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
315 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
316 // No scope means global scope and that uses the zero index.
317 if (!Scope || isa<DIFile>(Scope))
318 return TypeIndex();
320 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
322 // Check if we've already translated this scope.
323 auto I = TypeIndices.find({Scope, nullptr});
324 if (I != TypeIndices.end())
325 return I->second;
327 // Build the fully qualified name of the scope.
328 std::string ScopeName = getFullyQualifiedName(Scope);
329 StringIdRecord SID(TypeIndex(), ScopeName);
330 auto TI = TypeTable.writeLeafType(SID);
331 return recordTypeIndexForDINode(Scope, TI);
334 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
335 assert(SP);
337 // Check if we've already translated this subprogram.
338 auto I = TypeIndices.find({SP, nullptr});
339 if (I != TypeIndices.end())
340 return I->second;
342 // The display name includes function template arguments. Drop them to match
343 // MSVC.
344 StringRef DisplayName = SP->getName().split('<').first;
346 const DIScope *Scope = SP->getScope().resolve();
347 TypeIndex TI;
348 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
349 // If the scope is a DICompositeType, then this must be a method. Member
350 // function types take some special handling, and require access to the
351 // subprogram.
352 TypeIndex ClassType = getTypeIndex(Class);
353 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
354 DisplayName);
355 TI = TypeTable.writeLeafType(MFuncId);
356 } else {
357 // Otherwise, this must be a free function.
358 TypeIndex ParentScope = getScopeIndex(Scope);
359 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
360 TI = TypeTable.writeLeafType(FuncId);
363 return recordTypeIndexForDINode(SP, TI);
366 static bool isTrivial(const DICompositeType *DCTy) {
367 return ((DCTy->getFlags() & DINode::FlagTrivial) == DINode::FlagTrivial);
370 static FunctionOptions
371 getFunctionOptions(const DISubroutineType *Ty,
372 const DICompositeType *ClassTy = nullptr,
373 StringRef SPName = StringRef("")) {
374 FunctionOptions FO = FunctionOptions::None;
375 const DIType *ReturnTy = nullptr;
376 if (auto TypeArray = Ty->getTypeArray()) {
377 if (TypeArray.size())
378 ReturnTy = TypeArray[0].resolve();
381 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) {
382 if (!isTrivial(ReturnDCTy))
383 FO |= FunctionOptions::CxxReturnUdt;
386 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
387 if (ClassTy && !isTrivial(ClassTy) && SPName == ClassTy->getName()) {
388 FO |= FunctionOptions::Constructor;
390 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
393 return FO;
396 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
397 const DICompositeType *Class) {
398 // Always use the method declaration as the key for the function type. The
399 // method declaration contains the this adjustment.
400 if (SP->getDeclaration())
401 SP = SP->getDeclaration();
402 assert(!SP->getDeclaration() && "should use declaration as key");
404 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
405 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
406 auto I = TypeIndices.find({SP, Class});
407 if (I != TypeIndices.end())
408 return I->second;
410 // Make sure complete type info for the class is emitted *after* the member
411 // function type, as the complete class type is likely to reference this
412 // member function type.
413 TypeLoweringScope S(*this);
414 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
416 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName());
417 TypeIndex TI = lowerTypeMemberFunction(
418 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO);
419 return recordTypeIndexForDINode(SP, TI, Class);
422 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
423 TypeIndex TI,
424 const DIType *ClassTy) {
425 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
426 (void)InsertResult;
427 assert(InsertResult.second && "DINode was already assigned a type index");
428 return TI;
431 unsigned CodeViewDebug::getPointerSizeInBytes() {
432 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
435 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
436 const LexicalScope *LS) {
437 if (const DILocation *InlinedAt = LS->getInlinedAt()) {
438 // This variable was inlined. Associate it with the InlineSite.
439 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
440 InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
441 Site.InlinedLocals.emplace_back(Var);
442 } else {
443 // This variable goes into the corresponding lexical scope.
444 ScopeVariables[LS].emplace_back(Var);
448 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
449 const DILocation *Loc) {
450 auto B = Locs.begin(), E = Locs.end();
451 if (std::find(B, E, Loc) == E)
452 Locs.push_back(Loc);
455 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
456 const MachineFunction *MF) {
457 // Skip this instruction if it has the same location as the previous one.
458 if (!DL || DL == PrevInstLoc)
459 return;
461 const DIScope *Scope = DL.get()->getScope();
462 if (!Scope)
463 return;
465 // Skip this line if it is longer than the maximum we can record.
466 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
467 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
468 LI.isNeverStepInto())
469 return;
471 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
472 if (CI.getStartColumn() != DL.getCol())
473 return;
475 if (!CurFn->HaveLineInfo)
476 CurFn->HaveLineInfo = true;
477 unsigned FileId = 0;
478 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
479 FileId = CurFn->LastFileId;
480 else
481 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
482 PrevInstLoc = DL;
484 unsigned FuncId = CurFn->FuncId;
485 if (const DILocation *SiteLoc = DL->getInlinedAt()) {
486 const DILocation *Loc = DL.get();
488 // If this location was actually inlined from somewhere else, give it the ID
489 // of the inline call site.
490 FuncId =
491 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
493 // Ensure we have links in the tree of inline call sites.
494 bool FirstLoc = true;
495 while ((SiteLoc = Loc->getInlinedAt())) {
496 InlineSite &Site =
497 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
498 if (!FirstLoc)
499 addLocIfNotPresent(Site.ChildSites, Loc);
500 FirstLoc = false;
501 Loc = SiteLoc;
503 addLocIfNotPresent(CurFn->ChildSites, Loc);
506 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
507 /*PrologueEnd=*/false, /*IsStmt=*/false,
508 DL->getFilename(), SMLoc());
511 void CodeViewDebug::emitCodeViewMagicVersion() {
512 OS.EmitValueToAlignment(4);
513 OS.AddComment("Debug section magic");
514 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
517 void CodeViewDebug::endModule() {
518 if (!Asm || !MMI->hasDebugInfo())
519 return;
521 assert(Asm != nullptr);
523 // The COFF .debug$S section consists of several subsections, each starting
524 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
525 // of the payload followed by the payload itself. The subsections are 4-byte
526 // aligned.
528 // Use the generic .debug$S section, and make a subsection for all the inlined
529 // subprograms.
530 switchToDebugSectionForSymbol(nullptr);
532 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
533 emitCompilerInformation();
534 endCVSubsection(CompilerInfo);
536 emitInlineeLinesSubsection();
538 // Emit per-function debug information.
539 for (auto &P : FnDebugInfo)
540 if (!P.first->isDeclarationForLinker())
541 emitDebugInfoForFunction(P.first, *P.second);
543 // Emit global variable debug information.
544 setCurrentSubprogram(nullptr);
545 emitDebugInfoForGlobals();
547 // Emit retained types.
548 emitDebugInfoForRetainedTypes();
550 // Switch back to the generic .debug$S section after potentially processing
551 // comdat symbol sections.
552 switchToDebugSectionForSymbol(nullptr);
554 // Emit UDT records for any types used by global variables.
555 if (!GlobalUDTs.empty()) {
556 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
557 emitDebugInfoForUDTs(GlobalUDTs);
558 endCVSubsection(SymbolsEnd);
561 // This subsection holds a file index to offset in string table table.
562 OS.AddComment("File index to string table offset subsection");
563 OS.EmitCVFileChecksumsDirective();
565 // This subsection holds the string table.
566 OS.AddComment("String table");
567 OS.EmitCVStringTableDirective();
569 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
570 // subsection in the generic .debug$S section at the end. There is no
571 // particular reason for this ordering other than to match MSVC.
572 emitBuildInfo();
574 // Emit type information and hashes last, so that any types we translate while
575 // emitting function info are included.
576 emitTypeInformation();
578 if (EmitDebugGlobalHashes)
579 emitTypeGlobalHashes();
581 clear();
584 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
585 unsigned MaxFixedRecordLength = 0xF00) {
586 // The maximum CV record length is 0xFF00. Most of the strings we emit appear
587 // after a fixed length portion of the record. The fixed length portion should
588 // always be less than 0xF00 (3840) bytes, so truncate the string so that the
589 // overall record size is less than the maximum allowed.
590 SmallString<32> NullTerminatedString(
591 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
592 NullTerminatedString.push_back('\0');
593 OS.EmitBytes(NullTerminatedString);
596 void CodeViewDebug::emitTypeInformation() {
597 if (TypeTable.empty())
598 return;
600 // Start the .debug$T or .debug$P section with 0x4.
601 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
602 emitCodeViewMagicVersion();
604 SmallString<8> CommentPrefix;
605 if (OS.isVerboseAsm()) {
606 CommentPrefix += '\t';
607 CommentPrefix += Asm->MAI->getCommentString();
608 CommentPrefix += ' ';
611 TypeTableCollection Table(TypeTable.records());
612 Optional<TypeIndex> B = Table.getFirst();
613 while (B) {
614 // This will fail if the record data is invalid.
615 CVType Record = Table.getType(*B);
617 if (OS.isVerboseAsm()) {
618 // Emit a block comment describing the type record for readability.
619 SmallString<512> CommentBlock;
620 raw_svector_ostream CommentOS(CommentBlock);
621 ScopedPrinter SP(CommentOS);
622 SP.setPrefix(CommentPrefix);
623 TypeDumpVisitor TDV(Table, &SP, false);
625 Error E = codeview::visitTypeRecord(Record, *B, TDV);
626 if (E) {
627 logAllUnhandledErrors(std::move(E), errs(), "error: ");
628 llvm_unreachable("produced malformed type record");
630 // emitRawComment will insert its own tab and comment string before
631 // the first line, so strip off our first one. It also prints its own
632 // newline.
633 OS.emitRawComment(
634 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
636 OS.EmitBinaryData(Record.str_data());
637 B = Table.getNext(*B);
641 void CodeViewDebug::emitTypeGlobalHashes() {
642 if (TypeTable.empty())
643 return;
645 // Start the .debug$H section with the version and hash algorithm, currently
646 // hardcoded to version 0, SHA1.
647 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
649 OS.EmitValueToAlignment(4);
650 OS.AddComment("Magic");
651 OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4);
652 OS.AddComment("Section Version");
653 OS.EmitIntValue(0, 2);
654 OS.AddComment("Hash Algorithm");
655 OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2);
657 TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
658 for (const auto &GHR : TypeTable.hashes()) {
659 if (OS.isVerboseAsm()) {
660 // Emit an EOL-comment describing which TypeIndex this hash corresponds
661 // to, as well as the stringified SHA1 hash.
662 SmallString<32> Comment;
663 raw_svector_ostream CommentOS(Comment);
664 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
665 OS.AddComment(Comment);
666 ++TI;
668 assert(GHR.Hash.size() == 8);
669 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
670 GHR.Hash.size());
671 OS.EmitBinaryData(S);
675 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
676 switch (DWLang) {
677 case dwarf::DW_LANG_C:
678 case dwarf::DW_LANG_C89:
679 case dwarf::DW_LANG_C99:
680 case dwarf::DW_LANG_C11:
681 case dwarf::DW_LANG_ObjC:
682 return SourceLanguage::C;
683 case dwarf::DW_LANG_C_plus_plus:
684 case dwarf::DW_LANG_C_plus_plus_03:
685 case dwarf::DW_LANG_C_plus_plus_11:
686 case dwarf::DW_LANG_C_plus_plus_14:
687 return SourceLanguage::Cpp;
688 case dwarf::DW_LANG_Fortran77:
689 case dwarf::DW_LANG_Fortran90:
690 case dwarf::DW_LANG_Fortran03:
691 case dwarf::DW_LANG_Fortran08:
692 return SourceLanguage::Fortran;
693 case dwarf::DW_LANG_Pascal83:
694 return SourceLanguage::Pascal;
695 case dwarf::DW_LANG_Cobol74:
696 case dwarf::DW_LANG_Cobol85:
697 return SourceLanguage::Cobol;
698 case dwarf::DW_LANG_Java:
699 return SourceLanguage::Java;
700 case dwarf::DW_LANG_D:
701 return SourceLanguage::D;
702 default:
703 // There's no CodeView representation for this language, and CV doesn't
704 // have an "unknown" option for the language field, so we'll use MASM,
705 // as it's very low level.
706 return SourceLanguage::Masm;
710 namespace {
711 struct Version {
712 int Part[4];
714 } // end anonymous namespace
716 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
717 // the version number.
718 static Version parseVersion(StringRef Name) {
719 Version V = {{0}};
720 int N = 0;
721 for (const char C : Name) {
722 if (isdigit(C)) {
723 V.Part[N] *= 10;
724 V.Part[N] += C - '0';
725 } else if (C == '.') {
726 ++N;
727 if (N >= 4)
728 return V;
729 } else if (N > 0)
730 return V;
732 return V;
735 void CodeViewDebug::emitCompilerInformation() {
736 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3);
737 uint32_t Flags = 0;
739 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
740 const MDNode *Node = *CUs->operands().begin();
741 const auto *CU = cast<DICompileUnit>(Node);
743 // The low byte of the flags indicates the source language.
744 Flags = MapDWLangToCVLang(CU->getSourceLanguage());
745 // TODO: Figure out which other flags need to be set.
747 OS.AddComment("Flags and language");
748 OS.EmitIntValue(Flags, 4);
750 OS.AddComment("CPUType");
751 OS.EmitIntValue(static_cast<uint64_t>(TheCPU), 2);
753 StringRef CompilerVersion = CU->getProducer();
754 Version FrontVer = parseVersion(CompilerVersion);
755 OS.AddComment("Frontend version");
756 for (int N = 0; N < 4; ++N)
757 OS.EmitIntValue(FrontVer.Part[N], 2);
759 // Some Microsoft tools, like Binscope, expect a backend version number of at
760 // least 8.something, so we'll coerce the LLVM version into a form that
761 // guarantees it'll be big enough without really lying about the version.
762 int Major = 1000 * LLVM_VERSION_MAJOR +
763 10 * LLVM_VERSION_MINOR +
764 LLVM_VERSION_PATCH;
765 // Clamp it for builds that use unusually large version numbers.
766 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
767 Version BackVer = {{ Major, 0, 0, 0 }};
768 OS.AddComment("Backend version");
769 for (int N = 0; N < 4; ++N)
770 OS.EmitIntValue(BackVer.Part[N], 2);
772 OS.AddComment("Null-terminated compiler version string");
773 emitNullTerminatedSymbolName(OS, CompilerVersion);
775 endSymbolRecord(CompilerEnd);
778 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable,
779 StringRef S) {
780 StringIdRecord SIR(TypeIndex(0x0), S);
781 return TypeTable.writeLeafType(SIR);
784 void CodeViewDebug::emitBuildInfo() {
785 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
786 // build info. The known prefix is:
787 // - Absolute path of current directory
788 // - Compiler path
789 // - Main source file path, relative to CWD or absolute
790 // - Type server PDB file
791 // - Canonical compiler command line
792 // If frontend and backend compilation are separated (think llc or LTO), it's
793 // not clear if the compiler path should refer to the executable for the
794 // frontend or the backend. Leave it blank for now.
795 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {};
796 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
797 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs.
798 const auto *CU = cast<DICompileUnit>(Node);
799 const DIFile *MainSourceFile = CU->getFile();
800 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] =
801 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory());
802 BuildInfoArgs[BuildInfoRecord::SourceFile] =
803 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename());
804 // FIXME: Path to compiler and command line. PDB is intentionally blank unless
805 // we implement /Zi type servers.
806 BuildInfoRecord BIR(BuildInfoArgs);
807 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR);
809 // Make a new .debug$S subsection for the S_BUILDINFO record, which points
810 // from the module symbols into the type stream.
811 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
812 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO);
813 OS.AddComment("LF_BUILDINFO index");
814 OS.EmitIntValue(BuildInfoIndex.getIndex(), 4);
815 endSymbolRecord(BIEnd);
816 endCVSubsection(BISubsecEnd);
819 void CodeViewDebug::emitInlineeLinesSubsection() {
820 if (InlinedSubprograms.empty())
821 return;
823 OS.AddComment("Inlinee lines subsection");
824 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
826 // We emit the checksum info for files. This is used by debuggers to
827 // determine if a pdb matches the source before loading it. Visual Studio,
828 // for instance, will display a warning that the breakpoints are not valid if
829 // the pdb does not match the source.
830 OS.AddComment("Inlinee lines signature");
831 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
833 for (const DISubprogram *SP : InlinedSubprograms) {
834 assert(TypeIndices.count({SP, nullptr}));
835 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
837 OS.AddBlankLine();
838 unsigned FileId = maybeRecordFile(SP->getFile());
839 OS.AddComment("Inlined function " + SP->getName() + " starts at " +
840 SP->getFilename() + Twine(':') + Twine(SP->getLine()));
841 OS.AddBlankLine();
842 OS.AddComment("Type index of inlined function");
843 OS.EmitIntValue(InlineeIdx.getIndex(), 4);
844 OS.AddComment("Offset into filechecksum table");
845 OS.EmitCVFileChecksumOffsetDirective(FileId);
846 OS.AddComment("Starting line number");
847 OS.EmitIntValue(SP->getLine(), 4);
850 endCVSubsection(InlineEnd);
853 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
854 const DILocation *InlinedAt,
855 const InlineSite &Site) {
856 assert(TypeIndices.count({Site.Inlinee, nullptr}));
857 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
859 // SymbolRecord
860 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE);
862 OS.AddComment("PtrParent");
863 OS.EmitIntValue(0, 4);
864 OS.AddComment("PtrEnd");
865 OS.EmitIntValue(0, 4);
866 OS.AddComment("Inlinee type index");
867 OS.EmitIntValue(InlineeIdx.getIndex(), 4);
869 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
870 unsigned StartLineNum = Site.Inlinee->getLine();
872 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
873 FI.Begin, FI.End);
875 endSymbolRecord(InlineEnd);
877 emitLocalVariableList(FI, Site.InlinedLocals);
879 // Recurse on child inlined call sites before closing the scope.
880 for (const DILocation *ChildSite : Site.ChildSites) {
881 auto I = FI.InlineSites.find(ChildSite);
882 assert(I != FI.InlineSites.end() &&
883 "child site not in function inline site map");
884 emitInlinedCallSite(FI, ChildSite, I->second);
887 // Close the scope.
888 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END);
891 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
892 // If we have a symbol, it may be in a section that is COMDAT. If so, find the
893 // comdat key. A section may be comdat because of -ffunction-sections or
894 // because it is comdat in the IR.
895 MCSectionCOFF *GVSec =
896 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
897 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
899 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
900 Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
901 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
903 OS.SwitchSection(DebugSec);
905 // Emit the magic version number if this is the first time we've switched to
906 // this section.
907 if (ComdatDebugSections.insert(DebugSec).second)
908 emitCodeViewMagicVersion();
911 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
912 // The only supported thunk ordinal is currently the standard type.
913 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV,
914 FunctionInfo &FI,
915 const MCSymbol *Fn) {
916 std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
917 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind.
919 OS.AddComment("Symbol subsection for " + Twine(FuncName));
920 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
922 // Emit S_THUNK32
923 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32);
924 OS.AddComment("PtrParent");
925 OS.EmitIntValue(0, 4);
926 OS.AddComment("PtrEnd");
927 OS.EmitIntValue(0, 4);
928 OS.AddComment("PtrNext");
929 OS.EmitIntValue(0, 4);
930 OS.AddComment("Thunk section relative address");
931 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
932 OS.AddComment("Thunk section index");
933 OS.EmitCOFFSectionIndex(Fn);
934 OS.AddComment("Code size");
935 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2);
936 OS.AddComment("Ordinal");
937 OS.EmitIntValue(unsigned(ordinal), 1);
938 OS.AddComment("Function name");
939 emitNullTerminatedSymbolName(OS, FuncName);
940 // Additional fields specific to the thunk ordinal would go here.
941 endSymbolRecord(ThunkRecordEnd);
943 // Local variables/inlined routines are purposely omitted here. The point of
944 // marking this as a thunk is so Visual Studio will NOT stop in this routine.
946 // Emit S_PROC_ID_END
947 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
949 endCVSubsection(SymbolsEnd);
952 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
953 FunctionInfo &FI) {
954 // For each function there is a separate subsection which holds the PC to
955 // file:line table.
956 const MCSymbol *Fn = Asm->getSymbol(GV);
957 assert(Fn);
959 // Switch to the to a comdat section, if appropriate.
960 switchToDebugSectionForSymbol(Fn);
962 std::string FuncName;
963 auto *SP = GV->getSubprogram();
964 assert(SP);
965 setCurrentSubprogram(SP);
967 if (SP->isThunk()) {
968 emitDebugInfoForThunk(GV, FI, Fn);
969 return;
972 // If we have a display name, build the fully qualified name by walking the
973 // chain of scopes.
974 if (!SP->getName().empty())
975 FuncName =
976 getFullyQualifiedName(SP->getScope().resolve(), SP->getName());
978 // If our DISubprogram name is empty, use the mangled name.
979 if (FuncName.empty())
980 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
982 // Emit FPO data, but only on 32-bit x86. No other platforms use it.
983 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
984 OS.EmitCVFPOData(Fn);
986 // Emit a symbol subsection, required by VS2012+ to find function boundaries.
987 OS.AddComment("Symbol subsection for " + Twine(FuncName));
988 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
990 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
991 : SymbolKind::S_GPROC32_ID;
992 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind);
994 // These fields are filled in by tools like CVPACK which run after the fact.
995 OS.AddComment("PtrParent");
996 OS.EmitIntValue(0, 4);
997 OS.AddComment("PtrEnd");
998 OS.EmitIntValue(0, 4);
999 OS.AddComment("PtrNext");
1000 OS.EmitIntValue(0, 4);
1001 // This is the important bit that tells the debugger where the function
1002 // code is located and what's its size:
1003 OS.AddComment("Code size");
1004 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
1005 OS.AddComment("Offset after prologue");
1006 OS.EmitIntValue(0, 4);
1007 OS.AddComment("Offset before epilogue");
1008 OS.EmitIntValue(0, 4);
1009 OS.AddComment("Function type index");
1010 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
1011 OS.AddComment("Function section relative address");
1012 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
1013 OS.AddComment("Function section index");
1014 OS.EmitCOFFSectionIndex(Fn);
1015 OS.AddComment("Flags");
1016 OS.EmitIntValue(0, 1);
1017 // Emit the function display name as a null-terminated string.
1018 OS.AddComment("Function name");
1019 // Truncate the name so we won't overflow the record length field.
1020 emitNullTerminatedSymbolName(OS, FuncName);
1021 endSymbolRecord(ProcRecordEnd);
1023 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC);
1024 // Subtract out the CSR size since MSVC excludes that and we include it.
1025 OS.AddComment("FrameSize");
1026 OS.EmitIntValue(FI.FrameSize - FI.CSRSize, 4);
1027 OS.AddComment("Padding");
1028 OS.EmitIntValue(0, 4);
1029 OS.AddComment("Offset of padding");
1030 OS.EmitIntValue(0, 4);
1031 OS.AddComment("Bytes of callee saved registers");
1032 OS.EmitIntValue(FI.CSRSize, 4);
1033 OS.AddComment("Exception handler offset");
1034 OS.EmitIntValue(0, 4);
1035 OS.AddComment("Exception handler section");
1036 OS.EmitIntValue(0, 2);
1037 OS.AddComment("Flags (defines frame register)");
1038 OS.EmitIntValue(uint32_t(FI.FrameProcOpts), 4);
1039 endSymbolRecord(FrameProcEnd);
1041 emitLocalVariableList(FI, FI.Locals);
1042 emitGlobalVariableList(FI.Globals);
1043 emitLexicalBlockList(FI.ChildBlocks, FI);
1045 // Emit inlined call site information. Only emit functions inlined directly
1046 // into the parent function. We'll emit the other sites recursively as part
1047 // of their parent inline site.
1048 for (const DILocation *InlinedAt : FI.ChildSites) {
1049 auto I = FI.InlineSites.find(InlinedAt);
1050 assert(I != FI.InlineSites.end() &&
1051 "child site not in function inline site map");
1052 emitInlinedCallSite(FI, InlinedAt, I->second);
1055 for (auto Annot : FI.Annotations) {
1056 MCSymbol *Label = Annot.first;
1057 MDTuple *Strs = cast<MDTuple>(Annot.second);
1058 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION);
1059 OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
1060 // FIXME: Make sure we don't overflow the max record size.
1061 OS.EmitCOFFSectionIndex(Label);
1062 OS.EmitIntValue(Strs->getNumOperands(), 2);
1063 for (Metadata *MD : Strs->operands()) {
1064 // MDStrings are null terminated, so we can do EmitBytes and get the
1065 // nice .asciz directive.
1066 StringRef Str = cast<MDString>(MD)->getString();
1067 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
1068 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1));
1070 endSymbolRecord(AnnotEnd);
1073 if (SP != nullptr)
1074 emitDebugInfoForUDTs(LocalUDTs);
1076 // We're done with this function.
1077 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1079 endCVSubsection(SymbolsEnd);
1081 // We have an assembler directive that takes care of the whole line table.
1082 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
1085 CodeViewDebug::LocalVarDefRange
1086 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
1087 LocalVarDefRange DR;
1088 DR.InMemory = -1;
1089 DR.DataOffset = Offset;
1090 assert(DR.DataOffset == Offset && "truncation");
1091 DR.IsSubfield = 0;
1092 DR.StructOffset = 0;
1093 DR.CVRegister = CVRegister;
1094 return DR;
1097 void CodeViewDebug::collectVariableInfoFromMFTable(
1098 DenseSet<InlinedEntity> &Processed) {
1099 const MachineFunction &MF = *Asm->MF;
1100 const TargetSubtargetInfo &TSI = MF.getSubtarget();
1101 const TargetFrameLowering *TFI = TSI.getFrameLowering();
1102 const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1104 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
1105 if (!VI.Var)
1106 continue;
1107 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1108 "Expected inlined-at fields to agree");
1110 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt()));
1111 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1113 // If variable scope is not found then skip this variable.
1114 if (!Scope)
1115 continue;
1117 // If the variable has an attached offset expression, extract it.
1118 // FIXME: Try to handle DW_OP_deref as well.
1119 int64_t ExprOffset = 0;
1120 if (VI.Expr)
1121 if (!VI.Expr->extractIfOffset(ExprOffset))
1122 continue;
1124 // Get the frame register used and the offset.
1125 unsigned FrameReg = 0;
1126 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
1127 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
1129 // Calculate the label ranges.
1130 LocalVarDefRange DefRange =
1131 createDefRangeMem(CVReg, FrameOffset + ExprOffset);
1132 for (const InsnRange &Range : Scope->getRanges()) {
1133 const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1134 const MCSymbol *End = getLabelAfterInsn(Range.second);
1135 End = End ? End : Asm->getFunctionEnd();
1136 DefRange.Ranges.emplace_back(Begin, End);
1139 LocalVariable Var;
1140 Var.DIVar = VI.Var;
1141 Var.DefRanges.emplace_back(std::move(DefRange));
1142 recordLocalVariable(std::move(Var), Scope);
1146 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
1147 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
1150 static bool needsReferenceType(const DbgVariableLocation &Loc) {
1151 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
1154 void CodeViewDebug::calculateRanges(
1155 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) {
1156 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
1158 // Calculate the definition ranges.
1159 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
1160 const InsnRange &Range = *I;
1161 const MachineInstr *DVInst = Range.first;
1162 assert(DVInst->isDebugValue() && "Invalid History entry");
1163 // FIXME: Find a way to represent constant variables, since they are
1164 // relatively common.
1165 Optional<DbgVariableLocation> Location =
1166 DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1167 if (!Location)
1168 continue;
1170 // CodeView can only express variables in register and variables in memory
1171 // at a constant offset from a register. However, for variables passed
1172 // indirectly by pointer, it is common for that pointer to be spilled to a
1173 // stack location. For the special case of one offseted load followed by a
1174 // zero offset load (a pointer spilled to the stack), we change the type of
1175 // the local variable from a value type to a reference type. This tricks the
1176 // debugger into doing the load for us.
1177 if (Var.UseReferenceType) {
1178 // We're using a reference type. Drop the last zero offset load.
1179 if (canUseReferenceType(*Location))
1180 Location->LoadChain.pop_back();
1181 else
1182 continue;
1183 } else if (needsReferenceType(*Location)) {
1184 // This location can't be expressed without switching to a reference type.
1185 // Start over using that.
1186 Var.UseReferenceType = true;
1187 Var.DefRanges.clear();
1188 calculateRanges(Var, Ranges);
1189 return;
1192 // We can only handle a register or an offseted load of a register.
1193 if (Location->Register == 0 || Location->LoadChain.size() > 1)
1194 continue;
1196 LocalVarDefRange DR;
1197 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1198 DR.InMemory = !Location->LoadChain.empty();
1199 DR.DataOffset =
1200 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1201 if (Location->FragmentInfo) {
1202 DR.IsSubfield = true;
1203 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1204 } else {
1205 DR.IsSubfield = false;
1206 DR.StructOffset = 0;
1209 if (Var.DefRanges.empty() ||
1210 Var.DefRanges.back().isDifferentLocation(DR)) {
1211 Var.DefRanges.emplace_back(std::move(DR));
1215 // Compute the label range.
1216 const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1217 const MCSymbol *End = getLabelAfterInsn(Range.second);
1218 if (!End) {
1219 // This range is valid until the next overlapping bitpiece. In the
1220 // common case, ranges will not be bitpieces, so they will overlap.
1221 auto J = std::next(I);
1222 const DIExpression *DIExpr = DVInst->getDebugExpression();
1223 while (J != E &&
1224 !DIExpr->fragmentsOverlap(J->first->getDebugExpression()))
1225 ++J;
1226 if (J != E)
1227 End = getLabelBeforeInsn(J->first);
1228 else
1229 End = Asm->getFunctionEnd();
1232 // If the last range end is our begin, just extend the last range.
1233 // Otherwise make a new range.
1234 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1235 Var.DefRanges.back().Ranges;
1236 if (!R.empty() && R.back().second == Begin)
1237 R.back().second = End;
1238 else
1239 R.emplace_back(Begin, End);
1241 // FIXME: Do more range combining.
1245 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1246 DenseSet<InlinedEntity> Processed;
1247 // Grab the variable info that was squirreled away in the MMI side-table.
1248 collectVariableInfoFromMFTable(Processed);
1250 for (const auto &I : DbgValues) {
1251 InlinedEntity IV = I.first;
1252 if (Processed.count(IV))
1253 continue;
1254 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first);
1255 const DILocation *InlinedAt = IV.second;
1257 // Instruction ranges, specifying where IV is accessible.
1258 const auto &Ranges = I.second;
1260 LexicalScope *Scope = nullptr;
1261 if (InlinedAt)
1262 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1263 else
1264 Scope = LScopes.findLexicalScope(DIVar->getScope());
1265 // If variable scope is not found then skip this variable.
1266 if (!Scope)
1267 continue;
1269 LocalVariable Var;
1270 Var.DIVar = DIVar;
1272 calculateRanges(Var, Ranges);
1273 recordLocalVariable(std::move(Var), Scope);
1277 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1278 const TargetSubtargetInfo &TSI = MF->getSubtarget();
1279 const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1280 const MachineFrameInfo &MFI = MF->getFrameInfo();
1281 const Function &GV = MF->getFunction();
1282 auto Insertion = FnDebugInfo.insert({&GV, llvm::make_unique<FunctionInfo>()});
1283 assert(Insertion.second && "function already has info");
1284 CurFn = Insertion.first->second.get();
1285 CurFn->FuncId = NextFuncId++;
1286 CurFn->Begin = Asm->getFunctionBegin();
1288 // The S_FRAMEPROC record reports the stack size, and how many bytes of
1289 // callee-saved registers were used. For targets that don't use a PUSH
1290 // instruction (AArch64), this will be zero.
1291 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters();
1292 CurFn->FrameSize = MFI.getStackSize();
1293 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment();
1294 CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF);
1296 // For this function S_FRAMEPROC record, figure out which codeview register
1297 // will be the frame pointer.
1298 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None.
1299 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None.
1300 if (CurFn->FrameSize > 0) {
1301 if (!TSI.getFrameLowering()->hasFP(*MF)) {
1302 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1303 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr;
1304 } else {
1305 // If there is an FP, parameters are always relative to it.
1306 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr;
1307 if (CurFn->HasStackRealignment) {
1308 // If the stack needs realignment, locals are relative to SP or VFRAME.
1309 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1310 } else {
1311 // Otherwise, locals are relative to EBP, and we probably have VLAs or
1312 // other stack adjustments.
1313 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr;
1318 // Compute other frame procedure options.
1319 FrameProcedureOptions FPO = FrameProcedureOptions::None;
1320 if (MFI.hasVarSizedObjects())
1321 FPO |= FrameProcedureOptions::HasAlloca;
1322 if (MF->exposesReturnsTwice())
1323 FPO |= FrameProcedureOptions::HasSetJmp;
1324 // FIXME: Set HasLongJmp if we ever track that info.
1325 if (MF->hasInlineAsm())
1326 FPO |= FrameProcedureOptions::HasInlineAssembly;
1327 if (GV.hasPersonalityFn()) {
1328 if (isAsynchronousEHPersonality(
1329 classifyEHPersonality(GV.getPersonalityFn())))
1330 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling;
1331 else
1332 FPO |= FrameProcedureOptions::HasExceptionHandling;
1334 if (GV.hasFnAttribute(Attribute::InlineHint))
1335 FPO |= FrameProcedureOptions::MarkedInline;
1336 if (GV.hasFnAttribute(Attribute::Naked))
1337 FPO |= FrameProcedureOptions::Naked;
1338 if (MFI.hasStackProtectorIndex())
1339 FPO |= FrameProcedureOptions::SecurityChecks;
1340 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U);
1341 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U);
1342 if (Asm->TM.getOptLevel() != CodeGenOpt::None && !GV.optForSize() &&
1343 !GV.hasFnAttribute(Attribute::OptimizeNone))
1344 FPO |= FrameProcedureOptions::OptimizedForSpeed;
1345 // FIXME: Set GuardCfg when it is implemented.
1346 CurFn->FrameProcOpts = FPO;
1348 OS.EmitCVFuncIdDirective(CurFn->FuncId);
1350 // Find the end of the function prolog. First known non-DBG_VALUE and
1351 // non-frame setup location marks the beginning of the function body.
1352 // FIXME: is there a simpler a way to do this? Can we just search
1353 // for the first instruction of the function, not the last of the prolog?
1354 DebugLoc PrologEndLoc;
1355 bool EmptyPrologue = true;
1356 for (const auto &MBB : *MF) {
1357 for (const auto &MI : MBB) {
1358 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1359 MI.getDebugLoc()) {
1360 PrologEndLoc = MI.getDebugLoc();
1361 break;
1362 } else if (!MI.isMetaInstruction()) {
1363 EmptyPrologue = false;
1368 // Record beginning of function if we have a non-empty prologue.
1369 if (PrologEndLoc && !EmptyPrologue) {
1370 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1371 maybeRecordLocation(FnStartDL, MF);
1375 static bool shouldEmitUdt(const DIType *T) {
1376 if (!T)
1377 return false;
1379 // MSVC does not emit UDTs for typedefs that are scoped to classes.
1380 if (T->getTag() == dwarf::DW_TAG_typedef) {
1381 if (DIScope *Scope = T->getScope().resolve()) {
1382 switch (Scope->getTag()) {
1383 case dwarf::DW_TAG_structure_type:
1384 case dwarf::DW_TAG_class_type:
1385 case dwarf::DW_TAG_union_type:
1386 return false;
1391 while (true) {
1392 if (!T || T->isForwardDecl())
1393 return false;
1395 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1396 if (!DT)
1397 return true;
1398 T = DT->getBaseType().resolve();
1400 return true;
1403 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1404 // Don't record empty UDTs.
1405 if (Ty->getName().empty())
1406 return;
1407 if (!shouldEmitUdt(Ty))
1408 return;
1410 SmallVector<StringRef, 5> QualifiedNameComponents;
1411 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1412 Ty->getScope().resolve(), QualifiedNameComponents);
1414 std::string FullyQualifiedName =
1415 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1417 if (ClosestSubprogram == nullptr) {
1418 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1419 } else if (ClosestSubprogram == CurrentSubprogram) {
1420 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1423 // TODO: What if the ClosestSubprogram is neither null or the current
1424 // subprogram? Currently, the UDT just gets dropped on the floor.
1426 // The current behavior is not desirable. To get maximal fidelity, we would
1427 // need to perform all type translation before beginning emission of .debug$S
1428 // and then make LocalUDTs a member of FunctionInfo
1431 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1432 // Generic dispatch for lowering an unknown type.
1433 switch (Ty->getTag()) {
1434 case dwarf::DW_TAG_array_type:
1435 return lowerTypeArray(cast<DICompositeType>(Ty));
1436 case dwarf::DW_TAG_typedef:
1437 return lowerTypeAlias(cast<DIDerivedType>(Ty));
1438 case dwarf::DW_TAG_base_type:
1439 return lowerTypeBasic(cast<DIBasicType>(Ty));
1440 case dwarf::DW_TAG_pointer_type:
1441 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1442 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1443 LLVM_FALLTHROUGH;
1444 case dwarf::DW_TAG_reference_type:
1445 case dwarf::DW_TAG_rvalue_reference_type:
1446 return lowerTypePointer(cast<DIDerivedType>(Ty));
1447 case dwarf::DW_TAG_ptr_to_member_type:
1448 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1449 case dwarf::DW_TAG_restrict_type:
1450 case dwarf::DW_TAG_const_type:
1451 case dwarf::DW_TAG_volatile_type:
1452 // TODO: add support for DW_TAG_atomic_type here
1453 return lowerTypeModifier(cast<DIDerivedType>(Ty));
1454 case dwarf::DW_TAG_subroutine_type:
1455 if (ClassTy) {
1456 // The member function type of a member function pointer has no
1457 // ThisAdjustment.
1458 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1459 /*ThisAdjustment=*/0,
1460 /*IsStaticMethod=*/false);
1462 return lowerTypeFunction(cast<DISubroutineType>(Ty));
1463 case dwarf::DW_TAG_enumeration_type:
1464 return lowerTypeEnum(cast<DICompositeType>(Ty));
1465 case dwarf::DW_TAG_class_type:
1466 case dwarf::DW_TAG_structure_type:
1467 return lowerTypeClass(cast<DICompositeType>(Ty));
1468 case dwarf::DW_TAG_union_type:
1469 return lowerTypeUnion(cast<DICompositeType>(Ty));
1470 case dwarf::DW_TAG_unspecified_type:
1471 if (Ty->getName() == "decltype(nullptr)")
1472 return TypeIndex::NullptrT();
1473 return TypeIndex::None();
1474 default:
1475 // Use the null type index.
1476 return TypeIndex();
1480 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1481 DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1482 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1483 StringRef TypeName = Ty->getName();
1485 addToUDTs(Ty);
1487 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1488 TypeName == "HRESULT")
1489 return TypeIndex(SimpleTypeKind::HResult);
1490 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1491 TypeName == "wchar_t")
1492 return TypeIndex(SimpleTypeKind::WideCharacter);
1494 return UnderlyingTypeIndex;
1497 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1498 DITypeRef ElementTypeRef = Ty->getBaseType();
1499 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1500 // IndexType is size_t, which depends on the bitness of the target.
1501 TypeIndex IndexType = getPointerSizeInBytes() == 8
1502 ? TypeIndex(SimpleTypeKind::UInt64Quad)
1503 : TypeIndex(SimpleTypeKind::UInt32Long);
1505 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1507 // Add subranges to array type.
1508 DINodeArray Elements = Ty->getElements();
1509 for (int i = Elements.size() - 1; i >= 0; --i) {
1510 const DINode *Element = Elements[i];
1511 assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1513 const DISubrange *Subrange = cast<DISubrange>(Element);
1514 assert(Subrange->getLowerBound() == 0 &&
1515 "codeview doesn't support subranges with lower bounds");
1516 int64_t Count = -1;
1517 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>())
1518 Count = CI->getSExtValue();
1520 // Forward declarations of arrays without a size and VLAs use a count of -1.
1521 // Emit a count of zero in these cases to match what MSVC does for arrays
1522 // without a size. MSVC doesn't support VLAs, so it's not clear what we
1523 // should do for them even if we could distinguish them.
1524 if (Count == -1)
1525 Count = 0;
1527 // Update the element size and element type index for subsequent subranges.
1528 ElementSize *= Count;
1530 // If this is the outermost array, use the size from the array. It will be
1531 // more accurate if we had a VLA or an incomplete element type size.
1532 uint64_t ArraySize =
1533 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1535 StringRef Name = (i == 0) ? Ty->getName() : "";
1536 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1537 ElementTypeIndex = TypeTable.writeLeafType(AR);
1540 return ElementTypeIndex;
1543 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1544 TypeIndex Index;
1545 dwarf::TypeKind Kind;
1546 uint32_t ByteSize;
1548 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1549 ByteSize = Ty->getSizeInBits() / 8;
1551 SimpleTypeKind STK = SimpleTypeKind::None;
1552 switch (Kind) {
1553 case dwarf::DW_ATE_address:
1554 // FIXME: Translate
1555 break;
1556 case dwarf::DW_ATE_boolean:
1557 switch (ByteSize) {
1558 case 1: STK = SimpleTypeKind::Boolean8; break;
1559 case 2: STK = SimpleTypeKind::Boolean16; break;
1560 case 4: STK = SimpleTypeKind::Boolean32; break;
1561 case 8: STK = SimpleTypeKind::Boolean64; break;
1562 case 16: STK = SimpleTypeKind::Boolean128; break;
1564 break;
1565 case dwarf::DW_ATE_complex_float:
1566 switch (ByteSize) {
1567 case 2: STK = SimpleTypeKind::Complex16; break;
1568 case 4: STK = SimpleTypeKind::Complex32; break;
1569 case 8: STK = SimpleTypeKind::Complex64; break;
1570 case 10: STK = SimpleTypeKind::Complex80; break;
1571 case 16: STK = SimpleTypeKind::Complex128; break;
1573 break;
1574 case dwarf::DW_ATE_float:
1575 switch (ByteSize) {
1576 case 2: STK = SimpleTypeKind::Float16; break;
1577 case 4: STK = SimpleTypeKind::Float32; break;
1578 case 6: STK = SimpleTypeKind::Float48; break;
1579 case 8: STK = SimpleTypeKind::Float64; break;
1580 case 10: STK = SimpleTypeKind::Float80; break;
1581 case 16: STK = SimpleTypeKind::Float128; break;
1583 break;
1584 case dwarf::DW_ATE_signed:
1585 switch (ByteSize) {
1586 case 1: STK = SimpleTypeKind::SignedCharacter; break;
1587 case 2: STK = SimpleTypeKind::Int16Short; break;
1588 case 4: STK = SimpleTypeKind::Int32; break;
1589 case 8: STK = SimpleTypeKind::Int64Quad; break;
1590 case 16: STK = SimpleTypeKind::Int128Oct; break;
1592 break;
1593 case dwarf::DW_ATE_unsigned:
1594 switch (ByteSize) {
1595 case 1: STK = SimpleTypeKind::UnsignedCharacter; break;
1596 case 2: STK = SimpleTypeKind::UInt16Short; break;
1597 case 4: STK = SimpleTypeKind::UInt32; break;
1598 case 8: STK = SimpleTypeKind::UInt64Quad; break;
1599 case 16: STK = SimpleTypeKind::UInt128Oct; break;
1601 break;
1602 case dwarf::DW_ATE_UTF:
1603 switch (ByteSize) {
1604 case 2: STK = SimpleTypeKind::Character16; break;
1605 case 4: STK = SimpleTypeKind::Character32; break;
1607 break;
1608 case dwarf::DW_ATE_signed_char:
1609 if (ByteSize == 1)
1610 STK = SimpleTypeKind::SignedCharacter;
1611 break;
1612 case dwarf::DW_ATE_unsigned_char:
1613 if (ByteSize == 1)
1614 STK = SimpleTypeKind::UnsignedCharacter;
1615 break;
1616 default:
1617 break;
1620 // Apply some fixups based on the source-level type name.
1621 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1622 STK = SimpleTypeKind::Int32Long;
1623 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1624 STK = SimpleTypeKind::UInt32Long;
1625 if (STK == SimpleTypeKind::UInt16Short &&
1626 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1627 STK = SimpleTypeKind::WideCharacter;
1628 if ((STK == SimpleTypeKind::SignedCharacter ||
1629 STK == SimpleTypeKind::UnsignedCharacter) &&
1630 Ty->getName() == "char")
1631 STK = SimpleTypeKind::NarrowCharacter;
1633 return TypeIndex(STK);
1636 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
1637 PointerOptions PO) {
1638 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1640 // Pointers to simple types without any options can use SimpleTypeMode, rather
1641 // than having a dedicated pointer type record.
1642 if (PointeeTI.isSimple() && PO == PointerOptions::None &&
1643 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1644 Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1645 SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1646 ? SimpleTypeMode::NearPointer64
1647 : SimpleTypeMode::NearPointer32;
1648 return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1651 PointerKind PK =
1652 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1653 PointerMode PM = PointerMode::Pointer;
1654 switch (Ty->getTag()) {
1655 default: llvm_unreachable("not a pointer tag type");
1656 case dwarf::DW_TAG_pointer_type:
1657 PM = PointerMode::Pointer;
1658 break;
1659 case dwarf::DW_TAG_reference_type:
1660 PM = PointerMode::LValueReference;
1661 break;
1662 case dwarf::DW_TAG_rvalue_reference_type:
1663 PM = PointerMode::RValueReference;
1664 break;
1667 if (Ty->isObjectPointer())
1668 PO |= PointerOptions::Const;
1670 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1671 return TypeTable.writeLeafType(PR);
1674 static PointerToMemberRepresentation
1675 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1676 // SizeInBytes being zero generally implies that the member pointer type was
1677 // incomplete, which can happen if it is part of a function prototype. In this
1678 // case, use the unknown model instead of the general model.
1679 if (IsPMF) {
1680 switch (Flags & DINode::FlagPtrToMemberRep) {
1681 case 0:
1682 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1683 : PointerToMemberRepresentation::GeneralFunction;
1684 case DINode::FlagSingleInheritance:
1685 return PointerToMemberRepresentation::SingleInheritanceFunction;
1686 case DINode::FlagMultipleInheritance:
1687 return PointerToMemberRepresentation::MultipleInheritanceFunction;
1688 case DINode::FlagVirtualInheritance:
1689 return PointerToMemberRepresentation::VirtualInheritanceFunction;
1691 } else {
1692 switch (Flags & DINode::FlagPtrToMemberRep) {
1693 case 0:
1694 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1695 : PointerToMemberRepresentation::GeneralData;
1696 case DINode::FlagSingleInheritance:
1697 return PointerToMemberRepresentation::SingleInheritanceData;
1698 case DINode::FlagMultipleInheritance:
1699 return PointerToMemberRepresentation::MultipleInheritanceData;
1700 case DINode::FlagVirtualInheritance:
1701 return PointerToMemberRepresentation::VirtualInheritanceData;
1704 llvm_unreachable("invalid ptr to member representation");
1707 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
1708 PointerOptions PO) {
1709 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1710 TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1711 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1712 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1713 : PointerKind::Near32;
1714 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1715 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1716 : PointerMode::PointerToDataMember;
1718 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1719 uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1720 MemberPointerInfo MPI(
1721 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1722 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1723 return TypeTable.writeLeafType(PR);
1726 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1727 /// have a translation, use the NearC convention.
1728 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1729 switch (DwarfCC) {
1730 case dwarf::DW_CC_normal: return CallingConvention::NearC;
1731 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1732 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall;
1733 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall;
1734 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal;
1735 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector;
1737 return CallingConvention::NearC;
1740 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1741 ModifierOptions Mods = ModifierOptions::None;
1742 PointerOptions PO = PointerOptions::None;
1743 bool IsModifier = true;
1744 const DIType *BaseTy = Ty;
1745 while (IsModifier && BaseTy) {
1746 // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1747 switch (BaseTy->getTag()) {
1748 case dwarf::DW_TAG_const_type:
1749 Mods |= ModifierOptions::Const;
1750 PO |= PointerOptions::Const;
1751 break;
1752 case dwarf::DW_TAG_volatile_type:
1753 Mods |= ModifierOptions::Volatile;
1754 PO |= PointerOptions::Volatile;
1755 break;
1756 case dwarf::DW_TAG_restrict_type:
1757 // Only pointer types be marked with __restrict. There is no known flag
1758 // for __restrict in LF_MODIFIER records.
1759 PO |= PointerOptions::Restrict;
1760 break;
1761 default:
1762 IsModifier = false;
1763 break;
1765 if (IsModifier)
1766 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1769 // Check if the inner type will use an LF_POINTER record. If so, the
1770 // qualifiers will go in the LF_POINTER record. This comes up for types like
1771 // 'int *const' and 'int *__restrict', not the more common cases like 'const
1772 // char *'.
1773 if (BaseTy) {
1774 switch (BaseTy->getTag()) {
1775 case dwarf::DW_TAG_pointer_type:
1776 case dwarf::DW_TAG_reference_type:
1777 case dwarf::DW_TAG_rvalue_reference_type:
1778 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
1779 case dwarf::DW_TAG_ptr_to_member_type:
1780 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
1781 default:
1782 break;
1786 TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1788 // Return the base type index if there aren't any modifiers. For example, the
1789 // metadata could contain restrict wrappers around non-pointer types.
1790 if (Mods == ModifierOptions::None)
1791 return ModifiedTI;
1793 ModifierRecord MR(ModifiedTI, Mods);
1794 return TypeTable.writeLeafType(MR);
1797 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1798 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1799 for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1800 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1802 // MSVC uses type none for variadic argument.
1803 if (ReturnAndArgTypeIndices.size() > 1 &&
1804 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1805 ReturnAndArgTypeIndices.back() = TypeIndex::None();
1807 TypeIndex ReturnTypeIndex = TypeIndex::Void();
1808 ArrayRef<TypeIndex> ArgTypeIndices = None;
1809 if (!ReturnAndArgTypeIndices.empty()) {
1810 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1811 ReturnTypeIndex = ReturnAndArgTypesRef.front();
1812 ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1815 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1816 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1818 CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1820 FunctionOptions FO = getFunctionOptions(Ty);
1821 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(),
1822 ArgListIndex);
1823 return TypeTable.writeLeafType(Procedure);
1826 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1827 const DIType *ClassTy,
1828 int ThisAdjustment,
1829 bool IsStaticMethod,
1830 FunctionOptions FO) {
1831 // Lower the containing class type.
1832 TypeIndex ClassType = getTypeIndex(ClassTy);
1834 DITypeRefArray ReturnAndArgs = Ty->getTypeArray();
1836 unsigned Index = 0;
1837 SmallVector<TypeIndex, 8> ArgTypeIndices;
1838 TypeIndex ReturnTypeIndex = TypeIndex::Void();
1839 if (ReturnAndArgs.size() > Index) {
1840 ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]);
1843 // If the first argument is a pointer type and this isn't a static method,
1844 // treat it as the special 'this' parameter, which is encoded separately from
1845 // the arguments.
1846 TypeIndex ThisTypeIndex;
1847 if (!IsStaticMethod && ReturnAndArgs.size() > Index) {
1848 if (const DIDerivedType *PtrTy =
1849 dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index].resolve())) {
1850 if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) {
1851 ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty);
1852 Index++;
1857 while (Index < ReturnAndArgs.size())
1858 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++]));
1860 // MSVC uses type none for variadic argument.
1861 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void())
1862 ArgTypeIndices.back() = TypeIndex::None();
1864 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1865 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1867 CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1869 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO,
1870 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment);
1871 return TypeTable.writeLeafType(MFR);
1874 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1875 unsigned VSlotCount =
1876 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1877 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1879 VFTableShapeRecord VFTSR(Slots);
1880 return TypeTable.writeLeafType(VFTSR);
1883 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1884 switch (Flags & DINode::FlagAccessibility) {
1885 case DINode::FlagPrivate: return MemberAccess::Private;
1886 case DINode::FlagPublic: return MemberAccess::Public;
1887 case DINode::FlagProtected: return MemberAccess::Protected;
1888 case 0:
1889 // If there was no explicit access control, provide the default for the tag.
1890 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1891 : MemberAccess::Public;
1893 llvm_unreachable("access flags are exclusive");
1896 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1897 if (SP->isArtificial())
1898 return MethodOptions::CompilerGenerated;
1900 // FIXME: Handle other MethodOptions.
1902 return MethodOptions::None;
1905 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1906 bool Introduced) {
1907 if (SP->getFlags() & DINode::FlagStaticMember)
1908 return MethodKind::Static;
1910 switch (SP->getVirtuality()) {
1911 case dwarf::DW_VIRTUALITY_none:
1912 break;
1913 case dwarf::DW_VIRTUALITY_virtual:
1914 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1915 case dwarf::DW_VIRTUALITY_pure_virtual:
1916 return Introduced ? MethodKind::PureIntroducingVirtual
1917 : MethodKind::PureVirtual;
1918 default:
1919 llvm_unreachable("unhandled virtuality case");
1922 return MethodKind::Vanilla;
1925 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1926 switch (Ty->getTag()) {
1927 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class;
1928 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1930 llvm_unreachable("unexpected tag");
1933 /// Return ClassOptions that should be present on both the forward declaration
1934 /// and the defintion of a tag type.
1935 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1936 ClassOptions CO = ClassOptions::None;
1938 // MSVC always sets this flag, even for local types. Clang doesn't always
1939 // appear to give every type a linkage name, which may be problematic for us.
1940 // FIXME: Investigate the consequences of not following them here.
1941 if (!Ty->getIdentifier().empty())
1942 CO |= ClassOptions::HasUniqueName;
1944 // Put the Nested flag on a type if it appears immediately inside a tag type.
1945 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1946 // here. That flag is only set on definitions, and not forward declarations.
1947 const DIScope *ImmediateScope = Ty->getScope().resolve();
1948 if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1949 CO |= ClassOptions::Nested;
1951 // Put the Scoped flag on function-local types. MSVC puts this flag for enum
1952 // type only when it has an immediate function scope. Clang never puts enums
1953 // inside DILexicalBlock scopes. Enum types, as generated by clang, are
1954 // always in function, class, or file scopes.
1955 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) {
1956 if (ImmediateScope && isa<DISubprogram>(ImmediateScope))
1957 CO |= ClassOptions::Scoped;
1958 } else {
1959 for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1960 Scope = Scope->getScope().resolve()) {
1961 if (isa<DISubprogram>(Scope)) {
1962 CO |= ClassOptions::Scoped;
1963 break;
1968 return CO;
1971 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
1972 switch (Ty->getTag()) {
1973 case dwarf::DW_TAG_class_type:
1974 case dwarf::DW_TAG_structure_type:
1975 case dwarf::DW_TAG_union_type:
1976 case dwarf::DW_TAG_enumeration_type:
1977 break;
1978 default:
1979 return;
1982 if (const auto *File = Ty->getFile()) {
1983 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
1984 TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
1986 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
1987 TypeTable.writeLeafType(USLR);
1991 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1992 ClassOptions CO = getCommonClassOptions(Ty);
1993 TypeIndex FTI;
1994 unsigned EnumeratorCount = 0;
1996 if (Ty->isForwardDecl()) {
1997 CO |= ClassOptions::ForwardReference;
1998 } else {
1999 ContinuationRecordBuilder ContinuationBuilder;
2000 ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2001 for (const DINode *Element : Ty->getElements()) {
2002 // We assume that the frontend provides all members in source declaration
2003 // order, which is what MSVC does.
2004 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
2005 EnumeratorRecord ER(MemberAccess::Public,
2006 APSInt::getUnsigned(Enumerator->getValue()),
2007 Enumerator->getName());
2008 ContinuationBuilder.writeMemberType(ER);
2009 EnumeratorCount++;
2012 FTI = TypeTable.insertRecord(ContinuationBuilder);
2015 std::string FullName = getFullyQualifiedName(Ty);
2017 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
2018 getTypeIndex(Ty->getBaseType()));
2019 TypeIndex EnumTI = TypeTable.writeLeafType(ER);
2021 addUDTSrcLine(Ty, EnumTI);
2023 return EnumTI;
2026 //===----------------------------------------------------------------------===//
2027 // ClassInfo
2028 //===----------------------------------------------------------------------===//
2030 struct llvm::ClassInfo {
2031 struct MemberInfo {
2032 const DIDerivedType *MemberTypeNode;
2033 uint64_t BaseOffset;
2035 // [MemberInfo]
2036 using MemberList = std::vector<MemberInfo>;
2038 using MethodsList = TinyPtrVector<const DISubprogram *>;
2039 // MethodName -> MethodsList
2040 using MethodsMap = MapVector<MDString *, MethodsList>;
2042 /// Base classes.
2043 std::vector<const DIDerivedType *> Inheritance;
2045 /// Direct members.
2046 MemberList Members;
2047 // Direct overloaded methods gathered by name.
2048 MethodsMap Methods;
2050 TypeIndex VShapeTI;
2052 std::vector<const DIType *> NestedTypes;
2055 void CodeViewDebug::clear() {
2056 assert(CurFn == nullptr);
2057 FileIdMap.clear();
2058 FnDebugInfo.clear();
2059 FileToFilepathMap.clear();
2060 LocalUDTs.clear();
2061 GlobalUDTs.clear();
2062 TypeIndices.clear();
2063 CompleteTypeIndices.clear();
2064 ScopeGlobals.clear();
2067 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
2068 const DIDerivedType *DDTy) {
2069 if (!DDTy->getName().empty()) {
2070 Info.Members.push_back({DDTy, 0});
2071 return;
2074 // An unnamed member may represent a nested struct or union. Attempt to
2075 // interpret the unnamed member as a DICompositeType possibly wrapped in
2076 // qualifier types. Add all the indirect fields to the current record if that
2077 // succeeds, and drop the member if that fails.
2078 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
2079 uint64_t Offset = DDTy->getOffsetInBits();
2080 const DIType *Ty = DDTy->getBaseType().resolve();
2081 bool FullyResolved = false;
2082 while (!FullyResolved) {
2083 switch (Ty->getTag()) {
2084 case dwarf::DW_TAG_const_type:
2085 case dwarf::DW_TAG_volatile_type:
2086 // FIXME: we should apply the qualifier types to the indirect fields
2087 // rather than dropping them.
2088 Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve();
2089 break;
2090 default:
2091 FullyResolved = true;
2092 break;
2096 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
2097 if (!DCTy)
2098 return;
2100 ClassInfo NestedInfo = collectClassInfo(DCTy);
2101 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
2102 Info.Members.push_back(
2103 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
2106 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
2107 ClassInfo Info;
2108 // Add elements to structure type.
2109 DINodeArray Elements = Ty->getElements();
2110 for (auto *Element : Elements) {
2111 // We assume that the frontend provides all members in source declaration
2112 // order, which is what MSVC does.
2113 if (!Element)
2114 continue;
2115 if (auto *SP = dyn_cast<DISubprogram>(Element)) {
2116 Info.Methods[SP->getRawName()].push_back(SP);
2117 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
2118 if (DDTy->getTag() == dwarf::DW_TAG_member) {
2119 collectMemberInfo(Info, DDTy);
2120 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
2121 Info.Inheritance.push_back(DDTy);
2122 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
2123 DDTy->getName() == "__vtbl_ptr_type") {
2124 Info.VShapeTI = getTypeIndex(DDTy);
2125 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
2126 Info.NestedTypes.push_back(DDTy);
2127 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
2128 // Ignore friend members. It appears that MSVC emitted info about
2129 // friends in the past, but modern versions do not.
2131 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
2132 Info.NestedTypes.push_back(Composite);
2134 // Skip other unrecognized kinds of elements.
2136 return Info;
2139 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) {
2140 // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2141 // if a complete type should be emitted instead of a forward reference.
2142 return Ty->getName().empty() && Ty->getIdentifier().empty() &&
2143 !Ty->isForwardDecl();
2146 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
2147 // Emit the complete type for unnamed structs. C++ classes with methods
2148 // which have a circular reference back to the class type are expected to
2149 // be named by the front-end and should not be "unnamed". C unnamed
2150 // structs should not have circular references.
2151 if (shouldAlwaysEmitCompleteClassType(Ty)) {
2152 // If this unnamed complete type is already in the process of being defined
2153 // then the description of the type is malformed and cannot be emitted
2154 // into CodeView correctly so report a fatal error.
2155 auto I = CompleteTypeIndices.find(Ty);
2156 if (I != CompleteTypeIndices.end() && I->second == TypeIndex())
2157 report_fatal_error("cannot debug circular reference to unnamed type");
2158 return getCompleteTypeIndex(Ty);
2161 // First, construct the forward decl. Don't look into Ty to compute the
2162 // forward decl options, since it might not be available in all TUs.
2163 TypeRecordKind Kind = getRecordKind(Ty);
2164 ClassOptions CO =
2165 ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2166 std::string FullName = getFullyQualifiedName(Ty);
2167 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2168 FullName, Ty->getIdentifier());
2169 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
2170 if (!Ty->isForwardDecl())
2171 DeferredCompleteTypes.push_back(Ty);
2172 return FwdDeclTI;
2175 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
2176 // Construct the field list and complete type record.
2177 TypeRecordKind Kind = getRecordKind(Ty);
2178 ClassOptions CO = getCommonClassOptions(Ty);
2179 TypeIndex FieldTI;
2180 TypeIndex VShapeTI;
2181 unsigned FieldCount;
2182 bool ContainsNestedClass;
2183 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
2184 lowerRecordFieldList(Ty);
2186 if (ContainsNestedClass)
2187 CO |= ClassOptions::ContainsNestedClass;
2189 std::string FullName = getFullyQualifiedName(Ty);
2191 uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2193 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
2194 SizeInBytes, FullName, Ty->getIdentifier());
2195 TypeIndex ClassTI = TypeTable.writeLeafType(CR);
2197 addUDTSrcLine(Ty, ClassTI);
2199 addToUDTs(Ty);
2201 return ClassTI;
2204 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
2205 // Emit the complete type for unnamed unions.
2206 if (shouldAlwaysEmitCompleteClassType(Ty))
2207 return getCompleteTypeIndex(Ty);
2209 ClassOptions CO =
2210 ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2211 std::string FullName = getFullyQualifiedName(Ty);
2212 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
2213 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
2214 if (!Ty->isForwardDecl())
2215 DeferredCompleteTypes.push_back(Ty);
2216 return FwdDeclTI;
2219 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
2220 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
2221 TypeIndex FieldTI;
2222 unsigned FieldCount;
2223 bool ContainsNestedClass;
2224 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
2225 lowerRecordFieldList(Ty);
2227 if (ContainsNestedClass)
2228 CO |= ClassOptions::ContainsNestedClass;
2230 uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2231 std::string FullName = getFullyQualifiedName(Ty);
2233 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
2234 Ty->getIdentifier());
2235 TypeIndex UnionTI = TypeTable.writeLeafType(UR);
2237 addUDTSrcLine(Ty, UnionTI);
2239 addToUDTs(Ty);
2241 return UnionTI;
2244 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
2245 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
2246 // Manually count members. MSVC appears to count everything that generates a
2247 // field list record. Each individual overload in a method overload group
2248 // contributes to this count, even though the overload group is a single field
2249 // list record.
2250 unsigned MemberCount = 0;
2251 ClassInfo Info = collectClassInfo(Ty);
2252 ContinuationRecordBuilder ContinuationBuilder;
2253 ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2255 // Create base classes.
2256 for (const DIDerivedType *I : Info.Inheritance) {
2257 if (I->getFlags() & DINode::FlagVirtual) {
2258 // Virtual base.
2259 unsigned VBPtrOffset = I->getVBPtrOffset();
2260 // FIXME: Despite the accessor name, the offset is really in bytes.
2261 unsigned VBTableIndex = I->getOffsetInBits() / 4;
2262 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
2263 ? TypeRecordKind::IndirectVirtualBaseClass
2264 : TypeRecordKind::VirtualBaseClass;
2265 VirtualBaseClassRecord VBCR(
2266 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
2267 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
2268 VBTableIndex);
2270 ContinuationBuilder.writeMemberType(VBCR);
2271 MemberCount++;
2272 } else {
2273 assert(I->getOffsetInBits() % 8 == 0 &&
2274 "bases must be on byte boundaries");
2275 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
2276 getTypeIndex(I->getBaseType()),
2277 I->getOffsetInBits() / 8);
2278 ContinuationBuilder.writeMemberType(BCR);
2279 MemberCount++;
2283 // Create members.
2284 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
2285 const DIDerivedType *Member = MemberInfo.MemberTypeNode;
2286 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
2287 StringRef MemberName = Member->getName();
2288 MemberAccess Access =
2289 translateAccessFlags(Ty->getTag(), Member->getFlags());
2291 if (Member->isStaticMember()) {
2292 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
2293 ContinuationBuilder.writeMemberType(SDMR);
2294 MemberCount++;
2295 continue;
2298 // Virtual function pointer member.
2299 if ((Member->getFlags() & DINode::FlagArtificial) &&
2300 Member->getName().startswith("_vptr$")) {
2301 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
2302 ContinuationBuilder.writeMemberType(VFPR);
2303 MemberCount++;
2304 continue;
2307 // Data member.
2308 uint64_t MemberOffsetInBits =
2309 Member->getOffsetInBits() + MemberInfo.BaseOffset;
2310 if (Member->isBitField()) {
2311 uint64_t StartBitOffset = MemberOffsetInBits;
2312 if (const auto *CI =
2313 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
2314 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
2316 StartBitOffset -= MemberOffsetInBits;
2317 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
2318 StartBitOffset);
2319 MemberBaseType = TypeTable.writeLeafType(BFR);
2321 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
2322 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
2323 MemberName);
2324 ContinuationBuilder.writeMemberType(DMR);
2325 MemberCount++;
2328 // Create methods
2329 for (auto &MethodItr : Info.Methods) {
2330 StringRef Name = MethodItr.first->getString();
2332 std::vector<OneMethodRecord> Methods;
2333 for (const DISubprogram *SP : MethodItr.second) {
2334 TypeIndex MethodType = getMemberFunctionType(SP, Ty);
2335 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
2337 unsigned VFTableOffset = -1;
2338 if (Introduced)
2339 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
2341 Methods.push_back(OneMethodRecord(
2342 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
2343 translateMethodKindFlags(SP, Introduced),
2344 translateMethodOptionFlags(SP), VFTableOffset, Name));
2345 MemberCount++;
2347 assert(!Methods.empty() && "Empty methods map entry");
2348 if (Methods.size() == 1)
2349 ContinuationBuilder.writeMemberType(Methods[0]);
2350 else {
2351 // FIXME: Make this use its own ContinuationBuilder so that
2352 // MethodOverloadList can be split correctly.
2353 MethodOverloadListRecord MOLR(Methods);
2354 TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
2356 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
2357 ContinuationBuilder.writeMemberType(OMR);
2361 // Create nested classes.
2362 for (const DIType *Nested : Info.NestedTypes) {
2363 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
2364 ContinuationBuilder.writeMemberType(R);
2365 MemberCount++;
2368 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
2369 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2370 !Info.NestedTypes.empty());
2373 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2374 if (!VBPType.getIndex()) {
2375 // Make a 'const int *' type.
2376 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2377 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
2379 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2380 : PointerKind::Near32;
2381 PointerMode PM = PointerMode::Pointer;
2382 PointerOptions PO = PointerOptions::None;
2383 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2384 VBPType = TypeTable.writeLeafType(PR);
2387 return VBPType;
2390 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
2391 const DIType *Ty = TypeRef.resolve();
2392 const DIType *ClassTy = ClassTyRef.resolve();
2394 // The null DIType is the void type. Don't try to hash it.
2395 if (!Ty)
2396 return TypeIndex::Void();
2398 // Check if we've already translated this type. Don't try to do a
2399 // get-or-create style insertion that caches the hash lookup across the
2400 // lowerType call. It will update the TypeIndices map.
2401 auto I = TypeIndices.find({Ty, ClassTy});
2402 if (I != TypeIndices.end())
2403 return I->second;
2405 TypeLoweringScope S(*this);
2406 TypeIndex TI = lowerType(Ty, ClassTy);
2407 return recordTypeIndexForDINode(Ty, TI, ClassTy);
2410 codeview::TypeIndex
2411 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy,
2412 const DISubroutineType *SubroutineTy) {
2413 assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type &&
2414 "this type must be a pointer type");
2416 PointerOptions Options = PointerOptions::None;
2417 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference)
2418 Options = PointerOptions::LValueRefThisPointer;
2419 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference)
2420 Options = PointerOptions::RValueRefThisPointer;
2422 // Check if we've already translated this type. If there is no ref qualifier
2423 // on the function then we look up this pointer type with no associated class
2424 // so that the TypeIndex for the this pointer can be shared with the type
2425 // index for other pointers to this class type. If there is a ref qualifier
2426 // then we lookup the pointer using the subroutine as the parent type.
2427 auto I = TypeIndices.find({PtrTy, SubroutineTy});
2428 if (I != TypeIndices.end())
2429 return I->second;
2431 TypeLoweringScope S(*this);
2432 TypeIndex TI = lowerTypePointer(PtrTy, Options);
2433 return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy);
2436 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) {
2437 DIType *Ty = TypeRef.resolve();
2438 PointerRecord PR(getTypeIndex(Ty),
2439 getPointerSizeInBytes() == 8 ? PointerKind::Near64
2440 : PointerKind::Near32,
2441 PointerMode::LValueReference, PointerOptions::None,
2442 Ty->getSizeInBits() / 8);
2443 return TypeTable.writeLeafType(PR);
2446 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
2447 const DIType *Ty = TypeRef.resolve();
2449 // The null DIType is the void type. Don't try to hash it.
2450 if (!Ty)
2451 return TypeIndex::Void();
2453 // Look through typedefs when getting the complete type index. Call
2454 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
2455 // emitted only once.
2456 if (Ty->getTag() == dwarf::DW_TAG_typedef)
2457 (void)getTypeIndex(Ty);
2458 while (Ty->getTag() == dwarf::DW_TAG_typedef)
2459 Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve();
2461 // If this is a non-record type, the complete type index is the same as the
2462 // normal type index. Just call getTypeIndex.
2463 switch (Ty->getTag()) {
2464 case dwarf::DW_TAG_class_type:
2465 case dwarf::DW_TAG_structure_type:
2466 case dwarf::DW_TAG_union_type:
2467 break;
2468 default:
2469 return getTypeIndex(Ty);
2472 // Check if we've already translated the complete record type.
2473 const auto *CTy = cast<DICompositeType>(Ty);
2474 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2475 if (!InsertResult.second)
2476 return InsertResult.first->second;
2478 TypeLoweringScope S(*this);
2480 // Make sure the forward declaration is emitted first. It's unclear if this
2481 // is necessary, but MSVC does it, and we should follow suit until we can show
2482 // otherwise.
2483 // We only emit a forward declaration for named types.
2484 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) {
2485 TypeIndex FwdDeclTI = getTypeIndex(CTy);
2487 // Just use the forward decl if we don't have complete type info. This
2488 // might happen if the frontend is using modules and expects the complete
2489 // definition to be emitted elsewhere.
2490 if (CTy->isForwardDecl())
2491 return FwdDeclTI;
2494 TypeIndex TI;
2495 switch (CTy->getTag()) {
2496 case dwarf::DW_TAG_class_type:
2497 case dwarf::DW_TAG_structure_type:
2498 TI = lowerCompleteTypeClass(CTy);
2499 break;
2500 case dwarf::DW_TAG_union_type:
2501 TI = lowerCompleteTypeUnion(CTy);
2502 break;
2503 default:
2504 llvm_unreachable("not a record");
2507 // Update the type index associated with this CompositeType. This cannot
2508 // use the 'InsertResult' iterator above because it is potentially
2509 // invalidated by map insertions which can occur while lowering the class
2510 // type above.
2511 CompleteTypeIndices[CTy] = TI;
2512 return TI;
2515 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2516 /// and do this until fixpoint, as each complete record type typically
2517 /// references
2518 /// many other record types.
2519 void CodeViewDebug::emitDeferredCompleteTypes() {
2520 SmallVector<const DICompositeType *, 4> TypesToEmit;
2521 while (!DeferredCompleteTypes.empty()) {
2522 std::swap(DeferredCompleteTypes, TypesToEmit);
2523 for (const DICompositeType *RecordTy : TypesToEmit)
2524 getCompleteTypeIndex(RecordTy);
2525 TypesToEmit.clear();
2529 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI,
2530 ArrayRef<LocalVariable> Locals) {
2531 // Get the sorted list of parameters and emit them first.
2532 SmallVector<const LocalVariable *, 6> Params;
2533 for (const LocalVariable &L : Locals)
2534 if (L.DIVar->isParameter())
2535 Params.push_back(&L);
2536 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) {
2537 return L->DIVar->getArg() < R->DIVar->getArg();
2539 for (const LocalVariable *L : Params)
2540 emitLocalVariable(FI, *L);
2542 // Next emit all non-parameters in the order that we found them.
2543 for (const LocalVariable &L : Locals)
2544 if (!L.DIVar->isParameter())
2545 emitLocalVariable(FI, L);
2548 /// Only call this on endian-specific types like ulittle16_t and little32_t, or
2549 /// structs composed of them.
2550 template <typename T>
2551 static void copyBytesForDefRange(SmallString<20> &BytePrefix,
2552 SymbolKind SymKind, const T &DefRangeHeader) {
2553 BytePrefix.resize(2 + sizeof(T));
2554 ulittle16_t SymKindLE = ulittle16_t(SymKind);
2555 memcpy(&BytePrefix[0], &SymKindLE, 2);
2556 memcpy(&BytePrefix[2], &DefRangeHeader, sizeof(T));
2559 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI,
2560 const LocalVariable &Var) {
2561 // LocalSym record, see SymbolRecord.h for more info.
2562 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL);
2564 LocalSymFlags Flags = LocalSymFlags::None;
2565 if (Var.DIVar->isParameter())
2566 Flags |= LocalSymFlags::IsParameter;
2567 if (Var.DefRanges.empty())
2568 Flags |= LocalSymFlags::IsOptimizedOut;
2570 OS.AddComment("TypeIndex");
2571 TypeIndex TI = Var.UseReferenceType
2572 ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2573 : getCompleteTypeIndex(Var.DIVar->getType());
2574 OS.EmitIntValue(TI.getIndex(), 4);
2575 OS.AddComment("Flags");
2576 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2577 // Truncate the name so we won't overflow the record length field.
2578 emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2579 endSymbolRecord(LocalEnd);
2581 // Calculate the on disk prefix of the appropriate def range record. The
2582 // records and on disk formats are described in SymbolRecords.h. BytePrefix
2583 // should be big enough to hold all forms without memory allocation.
2584 SmallString<20> BytePrefix;
2585 for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2586 BytePrefix.clear();
2587 if (DefRange.InMemory) {
2588 int Offset = DefRange.DataOffset;
2589 unsigned Reg = DefRange.CVRegister;
2591 // 32-bit x86 call sequences often use PUSH instructions, which disrupt
2592 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
2593 // instead. In frames without stack realignment, $T0 will be the CFA.
2594 if (RegisterId(Reg) == RegisterId::ESP) {
2595 Reg = unsigned(RegisterId::VFRAME);
2596 Offset += FI.OffsetAdjustment;
2599 // If we can use the chosen frame pointer for the frame and this isn't a
2600 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
2601 // Otherwise, use S_DEFRANGE_REGISTER_REL.
2602 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU);
2603 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None &&
2604 (bool(Flags & LocalSymFlags::IsParameter)
2605 ? (EncFP == FI.EncodedParamFramePtrReg)
2606 : (EncFP == FI.EncodedLocalFramePtrReg))) {
2607 little32_t FPOffset = little32_t(Offset);
2608 copyBytesForDefRange(BytePrefix, S_DEFRANGE_FRAMEPOINTER_REL, FPOffset);
2609 } else {
2610 uint16_t RegRelFlags = 0;
2611 if (DefRange.IsSubfield) {
2612 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2613 (DefRange.StructOffset
2614 << DefRangeRegisterRelSym::OffsetInParentShift);
2616 DefRangeRegisterRelSym::Header DRHdr;
2617 DRHdr.Register = Reg;
2618 DRHdr.Flags = RegRelFlags;
2619 DRHdr.BasePointerOffset = Offset;
2620 copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER_REL, DRHdr);
2622 } else {
2623 assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2624 if (DefRange.IsSubfield) {
2625 DefRangeSubfieldRegisterSym::Header DRHdr;
2626 DRHdr.Register = DefRange.CVRegister;
2627 DRHdr.MayHaveNoName = 0;
2628 DRHdr.OffsetInParent = DefRange.StructOffset;
2629 copyBytesForDefRange(BytePrefix, S_DEFRANGE_SUBFIELD_REGISTER, DRHdr);
2630 } else {
2631 DefRangeRegisterSym::Header DRHdr;
2632 DRHdr.Register = DefRange.CVRegister;
2633 DRHdr.MayHaveNoName = 0;
2634 copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER, DRHdr);
2637 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2641 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
2642 const FunctionInfo& FI) {
2643 for (LexicalBlock *Block : Blocks)
2644 emitLexicalBlock(*Block, FI);
2647 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2648 /// lexical block scope.
2649 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
2650 const FunctionInfo& FI) {
2651 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32);
2652 OS.AddComment("PtrParent");
2653 OS.EmitIntValue(0, 4); // PtrParent
2654 OS.AddComment("PtrEnd");
2655 OS.EmitIntValue(0, 4); // PtrEnd
2656 OS.AddComment("Code size");
2657 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size
2658 OS.AddComment("Function section relative address");
2659 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset
2660 OS.AddComment("Function section index");
2661 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol
2662 OS.AddComment("Lexical block name");
2663 emitNullTerminatedSymbolName(OS, Block.Name); // Name
2664 endSymbolRecord(RecordEnd);
2666 // Emit variables local to this lexical block.
2667 emitLocalVariableList(FI, Block.Locals);
2668 emitGlobalVariableList(Block.Globals);
2670 // Emit lexical blocks contained within this block.
2671 emitLexicalBlockList(Block.Children, FI);
2673 // Close the lexical block scope.
2674 emitEndSymbolRecord(SymbolKind::S_END);
2677 /// Convenience routine for collecting lexical block information for a list
2678 /// of lexical scopes.
2679 void CodeViewDebug::collectLexicalBlockInfo(
2680 SmallVectorImpl<LexicalScope *> &Scopes,
2681 SmallVectorImpl<LexicalBlock *> &Blocks,
2682 SmallVectorImpl<LocalVariable> &Locals,
2683 SmallVectorImpl<CVGlobalVariable> &Globals) {
2684 for (LexicalScope *Scope : Scopes)
2685 collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals);
2688 /// Populate the lexical blocks and local variable lists of the parent with
2689 /// information about the specified lexical scope.
2690 void CodeViewDebug::collectLexicalBlockInfo(
2691 LexicalScope &Scope,
2692 SmallVectorImpl<LexicalBlock *> &ParentBlocks,
2693 SmallVectorImpl<LocalVariable> &ParentLocals,
2694 SmallVectorImpl<CVGlobalVariable> &ParentGlobals) {
2695 if (Scope.isAbstractScope())
2696 return;
2698 // Gather information about the lexical scope including local variables,
2699 // global variables, and address ranges.
2700 bool IgnoreScope = false;
2701 auto LI = ScopeVariables.find(&Scope);
2702 SmallVectorImpl<LocalVariable> *Locals =
2703 LI != ScopeVariables.end() ? &LI->second : nullptr;
2704 auto GI = ScopeGlobals.find(Scope.getScopeNode());
2705 SmallVectorImpl<CVGlobalVariable> *Globals =
2706 GI != ScopeGlobals.end() ? GI->second.get() : nullptr;
2707 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
2708 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
2710 // Ignore lexical scopes which do not contain variables.
2711 if (!Locals && !Globals)
2712 IgnoreScope = true;
2714 // Ignore lexical scopes which are not lexical blocks.
2715 if (!DILB)
2716 IgnoreScope = true;
2718 // Ignore scopes which have too many address ranges to represent in the
2719 // current CodeView format or do not have a valid address range.
2721 // For lexical scopes with multiple address ranges you may be tempted to
2722 // construct a single range covering every instruction where the block is
2723 // live and everything in between. Unfortunately, Visual Studio only
2724 // displays variables from the first matching lexical block scope. If the
2725 // first lexical block contains exception handling code or cold code which
2726 // is moved to the bottom of the routine creating a single range covering
2727 // nearly the entire routine, then it will hide all other lexical blocks
2728 // and the variables they contain.
2729 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second))
2730 IgnoreScope = true;
2732 if (IgnoreScope) {
2733 // This scope can be safely ignored and eliminating it will reduce the
2734 // size of the debug information. Be sure to collect any variable and scope
2735 // information from the this scope or any of its children and collapse them
2736 // into the parent scope.
2737 if (Locals)
2738 ParentLocals.append(Locals->begin(), Locals->end());
2739 if (Globals)
2740 ParentGlobals.append(Globals->begin(), Globals->end());
2741 collectLexicalBlockInfo(Scope.getChildren(),
2742 ParentBlocks,
2743 ParentLocals,
2744 ParentGlobals);
2745 return;
2748 // Create a new CodeView lexical block for this lexical scope. If we've
2749 // seen this DILexicalBlock before then the scope tree is malformed and
2750 // we can handle this gracefully by not processing it a second time.
2751 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
2752 if (!BlockInsertion.second)
2753 return;
2755 // Create a lexical block containing the variables and collect the the
2756 // lexical block information for the children.
2757 const InsnRange &Range = Ranges.front();
2758 assert(Range.first && Range.second);
2759 LexicalBlock &Block = BlockInsertion.first->second;
2760 Block.Begin = getLabelBeforeInsn(Range.first);
2761 Block.End = getLabelAfterInsn(Range.second);
2762 assert(Block.Begin && "missing label for scope begin");
2763 assert(Block.End && "missing label for scope end");
2764 Block.Name = DILB->getName();
2765 if (Locals)
2766 Block.Locals = std::move(*Locals);
2767 if (Globals)
2768 Block.Globals = std::move(*Globals);
2769 ParentBlocks.push_back(&Block);
2770 collectLexicalBlockInfo(Scope.getChildren(),
2771 Block.Children,
2772 Block.Locals,
2773 Block.Globals);
2776 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2777 const Function &GV = MF->getFunction();
2778 assert(FnDebugInfo.count(&GV));
2779 assert(CurFn == FnDebugInfo[&GV].get());
2781 collectVariableInfo(GV.getSubprogram());
2783 // Build the lexical block structure to emit for this routine.
2784 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
2785 collectLexicalBlockInfo(*CFS,
2786 CurFn->ChildBlocks,
2787 CurFn->Locals,
2788 CurFn->Globals);
2790 // Clear the scope and variable information from the map which will not be
2791 // valid after we have finished processing this routine. This also prepares
2792 // the map for the subsequent routine.
2793 ScopeVariables.clear();
2795 // Don't emit anything if we don't have any line tables.
2796 // Thunks are compiler-generated and probably won't have source correlation.
2797 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) {
2798 FnDebugInfo.erase(&GV);
2799 CurFn = nullptr;
2800 return;
2803 CurFn->Annotations = MF->getCodeViewAnnotations();
2805 CurFn->End = Asm->getFunctionEnd();
2807 CurFn = nullptr;
2810 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2811 DebugHandlerBase::beginInstruction(MI);
2813 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
2814 if (!Asm || !CurFn || MI->isDebugInstr() ||
2815 MI->getFlag(MachineInstr::FrameSetup))
2816 return;
2818 // If the first instruction of a new MBB has no location, find the first
2819 // instruction with a location and use that.
2820 DebugLoc DL = MI->getDebugLoc();
2821 if (!DL && MI->getParent() != PrevInstBB) {
2822 for (const auto &NextMI : *MI->getParent()) {
2823 if (NextMI.isDebugInstr())
2824 continue;
2825 DL = NextMI.getDebugLoc();
2826 if (DL)
2827 break;
2830 PrevInstBB = MI->getParent();
2832 // If we still don't have a debug location, don't record a location.
2833 if (!DL)
2834 return;
2836 maybeRecordLocation(DL, Asm->MF);
2839 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2840 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2841 *EndLabel = MMI->getContext().createTempSymbol();
2842 OS.EmitIntValue(unsigned(Kind), 4);
2843 OS.AddComment("Subsection size");
2844 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2845 OS.EmitLabel(BeginLabel);
2846 return EndLabel;
2849 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2850 OS.EmitLabel(EndLabel);
2851 // Every subsection must be aligned to a 4-byte boundary.
2852 OS.EmitValueToAlignment(4);
2855 static StringRef getSymbolName(SymbolKind SymKind) {
2856 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames())
2857 if (EE.Value == SymKind)
2858 return EE.Name;
2859 return "";
2862 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) {
2863 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2864 *EndLabel = MMI->getContext().createTempSymbol();
2865 OS.AddComment("Record length");
2866 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
2867 OS.EmitLabel(BeginLabel);
2868 if (OS.isVerboseAsm())
2869 OS.AddComment("Record kind: " + getSymbolName(SymKind));
2870 OS.EmitIntValue(unsigned(SymKind), 2);
2871 return EndLabel;
2874 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) {
2875 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
2876 // an extra copy of every symbol record in LLD. This increases object file
2877 // size by less than 1% in the clang build, and is compatible with the Visual
2878 // C++ linker.
2879 OS.EmitValueToAlignment(4);
2880 OS.EmitLabel(SymEnd);
2883 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) {
2884 OS.AddComment("Record length");
2885 OS.EmitIntValue(2, 2);
2886 if (OS.isVerboseAsm())
2887 OS.AddComment("Record kind: " + getSymbolName(EndKind));
2888 OS.EmitIntValue(unsigned(EndKind), 2); // Record Kind
2891 void CodeViewDebug::emitDebugInfoForUDTs(
2892 ArrayRef<std::pair<std::string, const DIType *>> UDTs) {
2893 for (const auto &UDT : UDTs) {
2894 const DIType *T = UDT.second;
2895 assert(shouldEmitUdt(T));
2897 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT);
2898 OS.AddComment("Type");
2899 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4);
2900 emitNullTerminatedSymbolName(OS, UDT.first);
2901 endSymbolRecord(UDTRecordEnd);
2905 void CodeViewDebug::collectGlobalVariableInfo() {
2906 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2907 GlobalMap;
2908 for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2909 SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2910 GV.getDebugInfo(GVEs);
2911 for (const auto *GVE : GVEs)
2912 GlobalMap[GVE] = &GV;
2915 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2916 for (const MDNode *Node : CUs->operands()) {
2917 const auto *CU = cast<DICompileUnit>(Node);
2918 for (const auto *GVE : CU->getGlobalVariables()) {
2919 const auto *GV = GlobalMap.lookup(GVE);
2920 if (!GV || GV->isDeclarationForLinker())
2921 continue;
2922 const DIGlobalVariable *DIGV = GVE->getVariable();
2923 DIScope *Scope = DIGV->getScope();
2924 SmallVector<CVGlobalVariable, 1> *VariableList;
2925 if (Scope && isa<DILocalScope>(Scope)) {
2926 // Locate a global variable list for this scope, creating one if
2927 // necessary.
2928 auto Insertion = ScopeGlobals.insert(
2929 {Scope, std::unique_ptr<GlobalVariableList>()});
2930 if (Insertion.second)
2931 Insertion.first->second = llvm::make_unique<GlobalVariableList>();
2932 VariableList = Insertion.first->second.get();
2933 } else if (GV->hasComdat())
2934 // Emit this global variable into a COMDAT section.
2935 VariableList = &ComdatVariables;
2936 else
2937 // Emit this globla variable in a single global symbol section.
2938 VariableList = &GlobalVariables;
2939 CVGlobalVariable CVGV = {DIGV, GV};
2940 VariableList->emplace_back(std::move(CVGV));
2945 void CodeViewDebug::emitDebugInfoForGlobals() {
2946 // First, emit all globals that are not in a comdat in a single symbol
2947 // substream. MSVC doesn't like it if the substream is empty, so only open
2948 // it if we have at least one global to emit.
2949 switchToDebugSectionForSymbol(nullptr);
2950 if (!GlobalVariables.empty()) {
2951 OS.AddComment("Symbol subsection for globals");
2952 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2953 emitGlobalVariableList(GlobalVariables);
2954 endCVSubsection(EndLabel);
2957 // Second, emit each global that is in a comdat into its own .debug$S
2958 // section along with its own symbol substream.
2959 for (const CVGlobalVariable &CVGV : ComdatVariables) {
2960 MCSymbol *GVSym = Asm->getSymbol(CVGV.GV);
2961 OS.AddComment("Symbol subsection for " +
2962 Twine(GlobalValue::dropLLVMManglingEscape(CVGV.GV->getName())));
2963 switchToDebugSectionForSymbol(GVSym);
2964 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2965 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2966 emitDebugInfoForGlobal(CVGV.DIGV, CVGV.GV, GVSym);
2967 endCVSubsection(EndLabel);
2971 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2972 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2973 for (const MDNode *Node : CUs->operands()) {
2974 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2975 if (DIType *RT = dyn_cast<DIType>(Ty)) {
2976 getTypeIndex(RT);
2977 // FIXME: Add to global/local DTU list.
2983 // Emit each global variable in the specified array.
2984 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) {
2985 for (const CVGlobalVariable &CVGV : Globals) {
2986 MCSymbol *GVSym = Asm->getSymbol(CVGV.GV);
2987 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2988 emitDebugInfoForGlobal(CVGV.DIGV, CVGV.GV, GVSym);
2992 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2993 const GlobalVariable *GV,
2994 MCSymbol *GVSym) {
2995 // DataSym record, see SymbolRecord.h for more info. Thread local data
2996 // happens to have the same format as global data.
2997 SymbolKind DataSym = GV->isThreadLocal()
2998 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32
2999 : SymbolKind::S_GTHREAD32)
3000 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32
3001 : SymbolKind::S_GDATA32);
3002 MCSymbol *DataEnd = beginSymbolRecord(DataSym);
3003 OS.AddComment("Type");
3004 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
3005 OS.AddComment("DataOffset");
3006 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
3007 OS.AddComment("Segment");
3008 OS.EmitCOFFSectionIndex(GVSym);
3009 OS.AddComment("Name");
3010 const unsigned LengthOfDataRecord = 12;
3011 emitNullTerminatedSymbolName(OS, DIGV->getName(), LengthOfDataRecord);
3012 endSymbolRecord(DataEnd);