[DAGCombiner] Eliminate dead stores to stack.
[llvm-complete.git] / lib / CodeGen / SelectionDAG / DAGCombiner.cpp
blob78a6ea6d4fd09b02db2185549dde9e085cd64305
1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
10 // both before and after the DAG is legalized.
12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
13 // primarily intended to handle simplification opportunities that are implicit
14 // in the LLVM IR and exposed by the various codegen lowering phases.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/IntervalMap.h"
23 #include "llvm/ADT/None.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/MemoryLocation.h"
34 #include "llvm/CodeGen/DAGCombine.h"
35 #include "llvm/CodeGen/ISDOpcodes.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/RuntimeLibcalls.h"
40 #include "llvm/CodeGen/SelectionDAG.h"
41 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
42 #include "llvm/CodeGen/SelectionDAGNodes.h"
43 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
44 #include "llvm/CodeGen/TargetLowering.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/CodeGen/ValueTypes.h"
48 #include "llvm/IR/Attributes.h"
49 #include "llvm/IR/Constant.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CodeGen.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/KnownBits.h"
62 #include "llvm/Support/MachineValueType.h"
63 #include "llvm/Support/MathExtras.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Target/TargetMachine.h"
66 #include "llvm/Target/TargetOptions.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <functional>
71 #include <iterator>
72 #include <string>
73 #include <tuple>
74 #include <utility>
76 using namespace llvm;
78 #define DEBUG_TYPE "dagcombine"
80 STATISTIC(NodesCombined , "Number of dag nodes combined");
81 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
82 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
83 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
84 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int");
85 STATISTIC(SlicedLoads, "Number of load sliced");
86 STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops");
88 static cl::opt<bool>
89 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
90 cl::desc("Enable DAG combiner's use of IR alias analysis"));
92 static cl::opt<bool>
93 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
94 cl::desc("Enable DAG combiner's use of TBAA"));
96 #ifndef NDEBUG
97 static cl::opt<std::string>
98 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
99 cl::desc("Only use DAG-combiner alias analysis in this"
100 " function"));
101 #endif
103 /// Hidden option to stress test load slicing, i.e., when this option
104 /// is enabled, load slicing bypasses most of its profitability guards.
105 static cl::opt<bool>
106 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
107 cl::desc("Bypass the profitability model of load slicing"),
108 cl::init(false));
110 static cl::opt<bool>
111 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
112 cl::desc("DAG combiner may split indexing from loads"));
114 namespace {
116 class DAGCombiner {
117 SelectionDAG &DAG;
118 const TargetLowering &TLI;
119 CombineLevel Level;
120 CodeGenOpt::Level OptLevel;
121 bool LegalOperations = false;
122 bool LegalTypes = false;
123 bool ForCodeSize;
125 /// Worklist of all of the nodes that need to be simplified.
127 /// This must behave as a stack -- new nodes to process are pushed onto the
128 /// back and when processing we pop off of the back.
130 /// The worklist will not contain duplicates but may contain null entries
131 /// due to nodes being deleted from the underlying DAG.
132 SmallVector<SDNode *, 64> Worklist;
134 /// Mapping from an SDNode to its position on the worklist.
136 /// This is used to find and remove nodes from the worklist (by nulling
137 /// them) when they are deleted from the underlying DAG. It relies on
138 /// stable indices of nodes within the worklist.
139 DenseMap<SDNode *, unsigned> WorklistMap;
141 /// Set of nodes which have been combined (at least once).
143 /// This is used to allow us to reliably add any operands of a DAG node
144 /// which have not yet been combined to the worklist.
145 SmallPtrSet<SDNode *, 32> CombinedNodes;
147 // AA - Used for DAG load/store alias analysis.
148 AliasAnalysis *AA;
150 /// When an instruction is simplified, add all users of the instruction to
151 /// the work lists because they might get more simplified now.
152 void AddUsersToWorklist(SDNode *N) {
153 for (SDNode *Node : N->uses())
154 AddToWorklist(Node);
157 /// Call the node-specific routine that folds each particular type of node.
158 SDValue visit(SDNode *N);
160 public:
161 DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL)
162 : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
163 OptLevel(OL), AA(AA) {
164 ForCodeSize = DAG.getMachineFunction().getFunction().optForSize();
166 MaximumLegalStoreInBits = 0;
167 for (MVT VT : MVT::all_valuetypes())
168 if (EVT(VT).isSimple() && VT != MVT::Other &&
169 TLI.isTypeLegal(EVT(VT)) &&
170 VT.getSizeInBits() >= MaximumLegalStoreInBits)
171 MaximumLegalStoreInBits = VT.getSizeInBits();
174 /// Add to the worklist making sure its instance is at the back (next to be
175 /// processed.)
176 void AddToWorklist(SDNode *N) {
177 assert(N->getOpcode() != ISD::DELETED_NODE &&
178 "Deleted Node added to Worklist");
180 // Skip handle nodes as they can't usefully be combined and confuse the
181 // zero-use deletion strategy.
182 if (N->getOpcode() == ISD::HANDLENODE)
183 return;
185 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second)
186 Worklist.push_back(N);
189 /// Remove all instances of N from the worklist.
190 void removeFromWorklist(SDNode *N) {
191 CombinedNodes.erase(N);
193 auto It = WorklistMap.find(N);
194 if (It == WorklistMap.end())
195 return; // Not in the worklist.
197 // Null out the entry rather than erasing it to avoid a linear operation.
198 Worklist[It->second] = nullptr;
199 WorklistMap.erase(It);
202 void deleteAndRecombine(SDNode *N);
203 bool recursivelyDeleteUnusedNodes(SDNode *N);
205 /// Replaces all uses of the results of one DAG node with new values.
206 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
207 bool AddTo = true);
209 /// Replaces all uses of the results of one DAG node with new values.
210 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
211 return CombineTo(N, &Res, 1, AddTo);
214 /// Replaces all uses of the results of one DAG node with new values.
215 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
216 bool AddTo = true) {
217 SDValue To[] = { Res0, Res1 };
218 return CombineTo(N, To, 2, AddTo);
221 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
223 private:
224 unsigned MaximumLegalStoreInBits;
226 /// Check the specified integer node value to see if it can be simplified or
227 /// if things it uses can be simplified by bit propagation.
228 /// If so, return true.
229 bool SimplifyDemandedBits(SDValue Op) {
230 unsigned BitWidth = Op.getScalarValueSizeInBits();
231 APInt Demanded = APInt::getAllOnesValue(BitWidth);
232 return SimplifyDemandedBits(Op, Demanded);
235 /// Check the specified vector node value to see if it can be simplified or
236 /// if things it uses can be simplified as it only uses some of the
237 /// elements. If so, return true.
238 bool SimplifyDemandedVectorElts(SDValue Op) {
239 unsigned NumElts = Op.getValueType().getVectorNumElements();
240 APInt Demanded = APInt::getAllOnesValue(NumElts);
241 return SimplifyDemandedVectorElts(Op, Demanded);
244 bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
245 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &Demanded,
246 bool AssumeSingleUse = false);
248 bool CombineToPreIndexedLoadStore(SDNode *N);
249 bool CombineToPostIndexedLoadStore(SDNode *N);
250 SDValue SplitIndexingFromLoad(LoadSDNode *LD);
251 bool SliceUpLoad(SDNode *N);
253 // Scalars have size 0 to distinguish from singleton vectors.
254 SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD);
255 bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val);
256 bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val);
258 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
259 /// load.
261 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
262 /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
263 /// \param EltNo index of the vector element to load.
264 /// \param OriginalLoad load that EVE came from to be replaced.
265 /// \returns EVE on success SDValue() on failure.
266 SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
267 SDValue EltNo,
268 LoadSDNode *OriginalLoad);
269 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
270 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
271 SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
272 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
273 SDValue PromoteIntBinOp(SDValue Op);
274 SDValue PromoteIntShiftOp(SDValue Op);
275 SDValue PromoteExtend(SDValue Op);
276 bool PromoteLoad(SDValue Op);
278 /// Call the node-specific routine that knows how to fold each
279 /// particular type of node. If that doesn't do anything, try the
280 /// target-specific DAG combines.
281 SDValue combine(SDNode *N);
283 // Visitation implementation - Implement dag node combining for different
284 // node types. The semantics are as follows:
285 // Return Value:
286 // SDValue.getNode() == 0 - No change was made
287 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
288 // otherwise - N should be replaced by the returned Operand.
290 SDValue visitTokenFactor(SDNode *N);
291 SDValue visitMERGE_VALUES(SDNode *N);
292 SDValue visitADD(SDNode *N);
293 SDValue visitADDLike(SDValue N0, SDValue N1, SDNode *LocReference);
294 SDValue visitSUB(SDNode *N);
295 SDValue visitADDSAT(SDNode *N);
296 SDValue visitSUBSAT(SDNode *N);
297 SDValue visitADDC(SDNode *N);
298 SDValue visitUADDO(SDNode *N);
299 SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N);
300 SDValue visitSUBC(SDNode *N);
301 SDValue visitUSUBO(SDNode *N);
302 SDValue visitADDE(SDNode *N);
303 SDValue visitADDCARRY(SDNode *N);
304 SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N);
305 SDValue visitSUBE(SDNode *N);
306 SDValue visitSUBCARRY(SDNode *N);
307 SDValue visitMUL(SDNode *N);
308 SDValue useDivRem(SDNode *N);
309 SDValue visitSDIV(SDNode *N);
310 SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N);
311 SDValue visitUDIV(SDNode *N);
312 SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N);
313 SDValue visitREM(SDNode *N);
314 SDValue visitMULHU(SDNode *N);
315 SDValue visitMULHS(SDNode *N);
316 SDValue visitSMUL_LOHI(SDNode *N);
317 SDValue visitUMUL_LOHI(SDNode *N);
318 SDValue visitSMULO(SDNode *N);
319 SDValue visitUMULO(SDNode *N);
320 SDValue visitIMINMAX(SDNode *N);
321 SDValue visitAND(SDNode *N);
322 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N);
323 SDValue visitOR(SDNode *N);
324 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N);
325 SDValue visitXOR(SDNode *N);
326 SDValue SimplifyVBinOp(SDNode *N);
327 SDValue visitSHL(SDNode *N);
328 SDValue visitSRA(SDNode *N);
329 SDValue visitSRL(SDNode *N);
330 SDValue visitFunnelShift(SDNode *N);
331 SDValue visitRotate(SDNode *N);
332 SDValue visitABS(SDNode *N);
333 SDValue visitBSWAP(SDNode *N);
334 SDValue visitBITREVERSE(SDNode *N);
335 SDValue visitCTLZ(SDNode *N);
336 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
337 SDValue visitCTTZ(SDNode *N);
338 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
339 SDValue visitCTPOP(SDNode *N);
340 SDValue visitSELECT(SDNode *N);
341 SDValue visitVSELECT(SDNode *N);
342 SDValue visitSELECT_CC(SDNode *N);
343 SDValue visitSETCC(SDNode *N);
344 SDValue visitSETCCCARRY(SDNode *N);
345 SDValue visitSIGN_EXTEND(SDNode *N);
346 SDValue visitZERO_EXTEND(SDNode *N);
347 SDValue visitANY_EXTEND(SDNode *N);
348 SDValue visitAssertExt(SDNode *N);
349 SDValue visitSIGN_EXTEND_INREG(SDNode *N);
350 SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N);
351 SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N);
352 SDValue visitTRUNCATE(SDNode *N);
353 SDValue visitBITCAST(SDNode *N);
354 SDValue visitBUILD_PAIR(SDNode *N);
355 SDValue visitFADD(SDNode *N);
356 SDValue visitFSUB(SDNode *N);
357 SDValue visitFMUL(SDNode *N);
358 SDValue visitFMA(SDNode *N);
359 SDValue visitFDIV(SDNode *N);
360 SDValue visitFREM(SDNode *N);
361 SDValue visitFSQRT(SDNode *N);
362 SDValue visitFCOPYSIGN(SDNode *N);
363 SDValue visitFPOW(SDNode *N);
364 SDValue visitSINT_TO_FP(SDNode *N);
365 SDValue visitUINT_TO_FP(SDNode *N);
366 SDValue visitFP_TO_SINT(SDNode *N);
367 SDValue visitFP_TO_UINT(SDNode *N);
368 SDValue visitFP_ROUND(SDNode *N);
369 SDValue visitFP_ROUND_INREG(SDNode *N);
370 SDValue visitFP_EXTEND(SDNode *N);
371 SDValue visitFNEG(SDNode *N);
372 SDValue visitFABS(SDNode *N);
373 SDValue visitFCEIL(SDNode *N);
374 SDValue visitFTRUNC(SDNode *N);
375 SDValue visitFFLOOR(SDNode *N);
376 SDValue visitFMINNUM(SDNode *N);
377 SDValue visitFMAXNUM(SDNode *N);
378 SDValue visitFMINIMUM(SDNode *N);
379 SDValue visitFMAXIMUM(SDNode *N);
380 SDValue visitBRCOND(SDNode *N);
381 SDValue visitBR_CC(SDNode *N);
382 SDValue visitLOAD(SDNode *N);
384 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain);
385 SDValue replaceStoreOfFPConstant(StoreSDNode *ST);
387 SDValue visitSTORE(SDNode *N);
388 SDValue visitLIFETIME_END(SDNode *N);
389 SDValue visitINSERT_VECTOR_ELT(SDNode *N);
390 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
391 SDValue visitBUILD_VECTOR(SDNode *N);
392 SDValue visitCONCAT_VECTORS(SDNode *N);
393 SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
394 SDValue visitVECTOR_SHUFFLE(SDNode *N);
395 SDValue visitSCALAR_TO_VECTOR(SDNode *N);
396 SDValue visitINSERT_SUBVECTOR(SDNode *N);
397 SDValue visitMLOAD(SDNode *N);
398 SDValue visitMSTORE(SDNode *N);
399 SDValue visitMGATHER(SDNode *N);
400 SDValue visitMSCATTER(SDNode *N);
401 SDValue visitFP_TO_FP16(SDNode *N);
402 SDValue visitFP16_TO_FP(SDNode *N);
404 SDValue visitFADDForFMACombine(SDNode *N);
405 SDValue visitFSUBForFMACombine(SDNode *N);
406 SDValue visitFMULForFMADistributiveCombine(SDNode *N);
408 SDValue XformToShuffleWithZero(SDNode *N);
409 SDValue ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
410 SDValue N1, SDNodeFlags Flags);
412 SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt);
414 SDValue foldSelectOfConstants(SDNode *N);
415 SDValue foldVSelectOfConstants(SDNode *N);
416 SDValue foldBinOpIntoSelect(SDNode *BO);
417 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
418 SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N);
419 SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2);
420 SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
421 SDValue N2, SDValue N3, ISD::CondCode CC,
422 bool NotExtCompare = false);
423 SDValue convertSelectOfFPConstantsToLoadOffset(
424 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
425 ISD::CondCode CC);
426 SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1,
427 SDValue N2, SDValue N3, ISD::CondCode CC);
428 SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
429 const SDLoc &DL);
430 SDValue unfoldMaskedMerge(SDNode *N);
431 SDValue unfoldExtremeBitClearingToShifts(SDNode *N);
432 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
433 const SDLoc &DL, bool foldBooleans);
434 SDValue rebuildSetCC(SDValue N);
436 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
437 SDValue &CC) const;
438 bool isOneUseSetCC(SDValue N) const;
440 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
441 unsigned HiOp);
442 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
443 SDValue CombineExtLoad(SDNode *N);
444 SDValue CombineZExtLogicopShiftLoad(SDNode *N);
445 SDValue combineRepeatedFPDivisors(SDNode *N);
446 SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex);
447 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
448 SDValue BuildSDIV(SDNode *N);
449 SDValue BuildSDIVPow2(SDNode *N);
450 SDValue BuildUDIV(SDNode *N);
451 SDValue BuildLogBase2(SDValue V, const SDLoc &DL);
452 SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags Flags);
453 SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags);
454 SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags);
455 SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip);
456 SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations,
457 SDNodeFlags Flags, bool Reciprocal);
458 SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations,
459 SDNodeFlags Flags, bool Reciprocal);
460 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
461 bool DemandHighBits = true);
462 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
463 SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
464 SDValue InnerPos, SDValue InnerNeg,
465 unsigned PosOpcode, unsigned NegOpcode,
466 const SDLoc &DL);
467 SDNode *MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL);
468 SDValue MatchLoadCombine(SDNode *N);
469 SDValue ReduceLoadWidth(SDNode *N);
470 SDValue ReduceLoadOpStoreWidth(SDNode *N);
471 SDValue splitMergedValStore(StoreSDNode *ST);
472 SDValue TransformFPLoadStorePair(SDNode *N);
473 SDValue convertBuildVecZextToZext(SDNode *N);
474 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
475 SDValue reduceBuildVecToShuffle(SDNode *N);
476 SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N,
477 ArrayRef<int> VectorMask, SDValue VecIn1,
478 SDValue VecIn2, unsigned LeftIdx);
479 SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast);
481 /// Walk up chain skipping non-aliasing memory nodes,
482 /// looking for aliasing nodes and adding them to the Aliases vector.
483 void GatherAllAliases(LSBaseSDNode *N, SDValue OriginalChain,
484 SmallVectorImpl<SDValue> &Aliases);
486 /// Return true if there is any possibility that the two addresses overlap.
487 bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const;
489 /// Walk up chain skipping non-aliasing memory nodes, looking for a better
490 /// chain (aliasing node.)
491 SDValue FindBetterChain(LSBaseSDNode *N, SDValue Chain);
493 /// Try to replace a store and any possibly adjacent stores on
494 /// consecutive chains with better chains. Return true only if St is
495 /// replaced.
497 /// Notice that other chains may still be replaced even if the function
498 /// returns false.
499 bool findBetterNeighborChains(StoreSDNode *St);
501 // Helper for findBetterNeighborChains. Walk up store chain add additional
502 // chained stores that do not overlap and can be parallelized.
503 bool parallelizeChainedStores(StoreSDNode *St);
505 /// Holds a pointer to an LSBaseSDNode as well as information on where it
506 /// is located in a sequence of memory operations connected by a chain.
507 struct MemOpLink {
508 // Ptr to the mem node.
509 LSBaseSDNode *MemNode;
511 // Offset from the base ptr.
512 int64_t OffsetFromBase;
514 MemOpLink(LSBaseSDNode *N, int64_t Offset)
515 : MemNode(N), OffsetFromBase(Offset) {}
518 /// This is a helper function for visitMUL to check the profitability
519 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
520 /// MulNode is the original multiply, AddNode is (add x, c1),
521 /// and ConstNode is c2.
522 bool isMulAddWithConstProfitable(SDNode *MulNode,
523 SDValue &AddNode,
524 SDValue &ConstNode);
526 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns
527 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns
528 /// the type of the loaded value to be extended.
529 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
530 EVT LoadResultTy, EVT &ExtVT);
532 /// Helper function to calculate whether the given Load/Store can have its
533 /// width reduced to ExtVT.
534 bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType,
535 EVT &MemVT, unsigned ShAmt = 0);
537 /// Used by BackwardsPropagateMask to find suitable loads.
538 bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads,
539 SmallPtrSetImpl<SDNode*> &NodesWithConsts,
540 ConstantSDNode *Mask, SDNode *&NodeToMask);
541 /// Attempt to propagate a given AND node back to load leaves so that they
542 /// can be combined into narrow loads.
543 bool BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG);
545 /// Helper function for MergeConsecutiveStores which merges the
546 /// component store chains.
547 SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
548 unsigned NumStores);
550 /// This is a helper function for MergeConsecutiveStores. When the
551 /// source elements of the consecutive stores are all constants or
552 /// all extracted vector elements, try to merge them into one
553 /// larger store introducing bitcasts if necessary. \return True
554 /// if a merged store was created.
555 bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
556 EVT MemVT, unsigned NumStores,
557 bool IsConstantSrc, bool UseVector,
558 bool UseTrunc);
560 /// This is a helper function for MergeConsecutiveStores. Stores
561 /// that potentially may be merged with St are placed in
562 /// StoreNodes. RootNode is a chain predecessor to all store
563 /// candidates.
564 void getStoreMergeCandidates(StoreSDNode *St,
565 SmallVectorImpl<MemOpLink> &StoreNodes,
566 SDNode *&Root);
568 /// Helper function for MergeConsecutiveStores. Checks if
569 /// candidate stores have indirect dependency through their
570 /// operands. RootNode is the predecessor to all stores calculated
571 /// by getStoreMergeCandidates and is used to prune the dependency check.
572 /// \return True if safe to merge.
573 bool checkMergeStoreCandidatesForDependencies(
574 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
575 SDNode *RootNode);
577 /// Merge consecutive store operations into a wide store.
578 /// This optimization uses wide integers or vectors when possible.
579 /// \return number of stores that were merged into a merged store (the
580 /// affected nodes are stored as a prefix in \p StoreNodes).
581 bool MergeConsecutiveStores(StoreSDNode *St);
583 /// Try to transform a truncation where C is a constant:
584 /// (trunc (and X, C)) -> (and (trunc X), (trunc C))
586 /// \p N needs to be a truncation and its first operand an AND. Other
587 /// requirements are checked by the function (e.g. that trunc is
588 /// single-use) and if missed an empty SDValue is returned.
589 SDValue distributeTruncateThroughAnd(SDNode *N);
591 /// Helper function to determine whether the target supports operation
592 /// given by \p Opcode for type \p VT, that is, whether the operation
593 /// is legal or custom before legalizing operations, and whether is
594 /// legal (but not custom) after legalization.
595 bool hasOperation(unsigned Opcode, EVT VT) {
596 if (LegalOperations)
597 return TLI.isOperationLegal(Opcode, VT);
598 return TLI.isOperationLegalOrCustom(Opcode, VT);
601 public:
602 /// Runs the dag combiner on all nodes in the work list
603 void Run(CombineLevel AtLevel);
605 SelectionDAG &getDAG() const { return DAG; }
607 /// Returns a type large enough to hold any valid shift amount - before type
608 /// legalization these can be huge.
609 EVT getShiftAmountTy(EVT LHSTy) {
610 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
611 return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes);
614 /// This method returns true if we are running before type legalization or
615 /// if the specified VT is legal.
616 bool isTypeLegal(const EVT &VT) {
617 if (!LegalTypes) return true;
618 return TLI.isTypeLegal(VT);
621 /// Convenience wrapper around TargetLowering::getSetCCResultType
622 EVT getSetCCResultType(EVT VT) const {
623 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
626 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
627 SDValue OrigLoad, SDValue ExtLoad,
628 ISD::NodeType ExtType);
631 /// This class is a DAGUpdateListener that removes any deleted
632 /// nodes from the worklist.
633 class WorklistRemover : public SelectionDAG::DAGUpdateListener {
634 DAGCombiner &DC;
636 public:
637 explicit WorklistRemover(DAGCombiner &dc)
638 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
640 void NodeDeleted(SDNode *N, SDNode *E) override {
641 DC.removeFromWorklist(N);
645 } // end anonymous namespace
647 //===----------------------------------------------------------------------===//
648 // TargetLowering::DAGCombinerInfo implementation
649 //===----------------------------------------------------------------------===//
651 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
652 ((DAGCombiner*)DC)->AddToWorklist(N);
655 SDValue TargetLowering::DAGCombinerInfo::
656 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
657 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
660 SDValue TargetLowering::DAGCombinerInfo::
661 CombineTo(SDNode *N, SDValue Res, bool AddTo) {
662 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
665 SDValue TargetLowering::DAGCombinerInfo::
666 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
667 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
670 void TargetLowering::DAGCombinerInfo::
671 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
672 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
675 //===----------------------------------------------------------------------===//
676 // Helper Functions
677 //===----------------------------------------------------------------------===//
679 void DAGCombiner::deleteAndRecombine(SDNode *N) {
680 removeFromWorklist(N);
682 // If the operands of this node are only used by the node, they will now be
683 // dead. Make sure to re-visit them and recursively delete dead nodes.
684 for (const SDValue &Op : N->ops())
685 // For an operand generating multiple values, one of the values may
686 // become dead allowing further simplification (e.g. split index
687 // arithmetic from an indexed load).
688 if (Op->hasOneUse() || Op->getNumValues() > 1)
689 AddToWorklist(Op.getNode());
691 DAG.DeleteNode(N);
694 /// Return 1 if we can compute the negated form of the specified expression for
695 /// the same cost as the expression itself, or 2 if we can compute the negated
696 /// form more cheaply than the expression itself.
697 static char isNegatibleForFree(SDValue Op, bool LegalOperations,
698 const TargetLowering &TLI,
699 const TargetOptions *Options,
700 unsigned Depth = 0) {
701 // fneg is removable even if it has multiple uses.
702 if (Op.getOpcode() == ISD::FNEG) return 2;
704 // Don't allow anything with multiple uses unless we know it is free.
705 EVT VT = Op.getValueType();
706 const SDNodeFlags Flags = Op->getFlags();
707 if (!Op.hasOneUse())
708 if (!(Op.getOpcode() == ISD::FP_EXTEND &&
709 TLI.isFPExtFree(VT, Op.getOperand(0).getValueType())))
710 return 0;
712 // Don't recurse exponentially.
713 if (Depth > 6) return 0;
715 switch (Op.getOpcode()) {
716 default: return false;
717 case ISD::ConstantFP: {
718 if (!LegalOperations)
719 return 1;
721 // Don't invert constant FP values after legalization unless the target says
722 // the negated constant is legal.
723 return TLI.isOperationLegal(ISD::ConstantFP, VT) ||
724 TLI.isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT);
726 case ISD::FADD:
727 if (!Options->UnsafeFPMath && !Flags.hasNoSignedZeros())
728 return 0;
730 // After operation legalization, it might not be legal to create new FSUBs.
731 if (LegalOperations && !TLI.isOperationLegalOrCustom(ISD::FSUB, VT))
732 return 0;
734 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
735 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
736 Options, Depth + 1))
737 return V;
738 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
739 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
740 Depth + 1);
741 case ISD::FSUB:
742 // We can't turn -(A-B) into B-A when we honor signed zeros.
743 if (!Options->NoSignedZerosFPMath &&
744 !Flags.hasNoSignedZeros())
745 return 0;
747 // fold (fneg (fsub A, B)) -> (fsub B, A)
748 return 1;
750 case ISD::FMUL:
751 case ISD::FDIV:
752 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
753 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
754 Options, Depth + 1))
755 return V;
757 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
758 Depth + 1);
760 case ISD::FP_EXTEND:
761 case ISD::FP_ROUND:
762 case ISD::FSIN:
763 return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
764 Depth + 1);
768 /// If isNegatibleForFree returns true, return the newly negated expression.
769 static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
770 bool LegalOperations, unsigned Depth = 0) {
771 const TargetOptions &Options = DAG.getTarget().Options;
772 // fneg is removable even if it has multiple uses.
773 if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
775 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
777 const SDNodeFlags Flags = Op.getNode()->getFlags();
779 switch (Op.getOpcode()) {
780 default: llvm_unreachable("Unknown code");
781 case ISD::ConstantFP: {
782 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
783 V.changeSign();
784 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
786 case ISD::FADD:
787 assert(Options.UnsafeFPMath || Flags.hasNoSignedZeros());
789 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
790 if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
791 DAG.getTargetLoweringInfo(), &Options, Depth+1))
792 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
793 GetNegatedExpression(Op.getOperand(0), DAG,
794 LegalOperations, Depth+1),
795 Op.getOperand(1), Flags);
796 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
797 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
798 GetNegatedExpression(Op.getOperand(1), DAG,
799 LegalOperations, Depth+1),
800 Op.getOperand(0), Flags);
801 case ISD::FSUB:
802 // fold (fneg (fsub 0, B)) -> B
803 if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
804 if (N0CFP->isZero())
805 return Op.getOperand(1);
807 // fold (fneg (fsub A, B)) -> (fsub B, A)
808 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
809 Op.getOperand(1), Op.getOperand(0), Flags);
811 case ISD::FMUL:
812 case ISD::FDIV:
813 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
814 if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
815 DAG.getTargetLoweringInfo(), &Options, Depth+1))
816 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
817 GetNegatedExpression(Op.getOperand(0), DAG,
818 LegalOperations, Depth+1),
819 Op.getOperand(1), Flags);
821 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
822 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
823 Op.getOperand(0),
824 GetNegatedExpression(Op.getOperand(1), DAG,
825 LegalOperations, Depth+1), Flags);
827 case ISD::FP_EXTEND:
828 case ISD::FSIN:
829 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
830 GetNegatedExpression(Op.getOperand(0), DAG,
831 LegalOperations, Depth+1));
832 case ISD::FP_ROUND:
833 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
834 GetNegatedExpression(Op.getOperand(0), DAG,
835 LegalOperations, Depth+1),
836 Op.getOperand(1));
840 // APInts must be the same size for most operations, this helper
841 // function zero extends the shorter of the pair so that they match.
842 // We provide an Offset so that we can create bitwidths that won't overflow.
843 static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) {
844 unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth());
845 LHS = LHS.zextOrSelf(Bits);
846 RHS = RHS.zextOrSelf(Bits);
849 // Return true if this node is a setcc, or is a select_cc
850 // that selects between the target values used for true and false, making it
851 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
852 // the appropriate nodes based on the type of node we are checking. This
853 // simplifies life a bit for the callers.
854 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
855 SDValue &CC) const {
856 if (N.getOpcode() == ISD::SETCC) {
857 LHS = N.getOperand(0);
858 RHS = N.getOperand(1);
859 CC = N.getOperand(2);
860 return true;
863 if (N.getOpcode() != ISD::SELECT_CC ||
864 !TLI.isConstTrueVal(N.getOperand(2).getNode()) ||
865 !TLI.isConstFalseVal(N.getOperand(3).getNode()))
866 return false;
868 if (TLI.getBooleanContents(N.getValueType()) ==
869 TargetLowering::UndefinedBooleanContent)
870 return false;
872 LHS = N.getOperand(0);
873 RHS = N.getOperand(1);
874 CC = N.getOperand(4);
875 return true;
878 /// Return true if this is a SetCC-equivalent operation with only one use.
879 /// If this is true, it allows the users to invert the operation for free when
880 /// it is profitable to do so.
881 bool DAGCombiner::isOneUseSetCC(SDValue N) const {
882 SDValue N0, N1, N2;
883 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
884 return true;
885 return false;
888 // Returns the SDNode if it is a constant float BuildVector
889 // or constant float.
890 static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) {
891 if (isa<ConstantFPSDNode>(N))
892 return N.getNode();
893 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
894 return N.getNode();
895 return nullptr;
898 // Determines if it is a constant integer or a build vector of constant
899 // integers (and undefs).
900 // Do not permit build vector implicit truncation.
901 static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) {
902 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N))
903 return !(Const->isOpaque() && NoOpaques);
904 if (N.getOpcode() != ISD::BUILD_VECTOR)
905 return false;
906 unsigned BitWidth = N.getScalarValueSizeInBits();
907 for (const SDValue &Op : N->op_values()) {
908 if (Op.isUndef())
909 continue;
910 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op);
911 if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth ||
912 (Const->isOpaque() && NoOpaques))
913 return false;
915 return true;
918 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
919 // undef's.
920 static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) {
921 if (V.getOpcode() != ISD::BUILD_VECTOR)
922 return false;
923 return isConstantOrConstantVector(V, NoOpaques) ||
924 ISD::isBuildVectorOfConstantFPSDNodes(V.getNode());
927 SDValue DAGCombiner::ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
928 SDValue N1, SDNodeFlags Flags) {
929 // Don't reassociate reductions.
930 if (Flags.hasVectorReduction())
931 return SDValue();
933 EVT VT = N0.getValueType();
934 if (N0.getOpcode() == Opc && !N0->getFlags().hasVectorReduction()) {
935 if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) {
936 if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
937 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
938 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R))
939 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
940 return SDValue();
942 if (N0.hasOneUse()) {
943 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one
944 // use
945 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1);
946 if (!OpNode.getNode())
947 return SDValue();
948 AddToWorklist(OpNode.getNode());
949 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
954 if (N1.getOpcode() == Opc && !N1->getFlags().hasVectorReduction()) {
955 if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) {
956 if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
957 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
958 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L))
959 return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
960 return SDValue();
962 if (N1.hasOneUse()) {
963 // reassoc. (op x, (op y, c1)) -> (op (op x, y), c1) iff x+c1 has one
964 // use
965 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0, N1.getOperand(0));
966 if (!OpNode.getNode())
967 return SDValue();
968 AddToWorklist(OpNode.getNode());
969 return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
974 return SDValue();
977 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
978 bool AddTo) {
979 assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
980 ++NodesCombined;
981 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: ";
982 To[0].getNode()->dump(&DAG);
983 dbgs() << " and " << NumTo - 1 << " other values\n");
984 for (unsigned i = 0, e = NumTo; i != e; ++i)
985 assert((!To[i].getNode() ||
986 N->getValueType(i) == To[i].getValueType()) &&
987 "Cannot combine value to value of different type!");
989 WorklistRemover DeadNodes(*this);
990 DAG.ReplaceAllUsesWith(N, To);
991 if (AddTo) {
992 // Push the new nodes and any users onto the worklist
993 for (unsigned i = 0, e = NumTo; i != e; ++i) {
994 if (To[i].getNode()) {
995 AddToWorklist(To[i].getNode());
996 AddUsersToWorklist(To[i].getNode());
1001 // Finally, if the node is now dead, remove it from the graph. The node
1002 // may not be dead if the replacement process recursively simplified to
1003 // something else needing this node.
1004 if (N->use_empty())
1005 deleteAndRecombine(N);
1006 return SDValue(N, 0);
1009 void DAGCombiner::
1010 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
1011 // Replace all uses. If any nodes become isomorphic to other nodes and
1012 // are deleted, make sure to remove them from our worklist.
1013 WorklistRemover DeadNodes(*this);
1014 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
1016 // Push the new node and any (possibly new) users onto the worklist.
1017 AddToWorklist(TLO.New.getNode());
1018 AddUsersToWorklist(TLO.New.getNode());
1020 // Finally, if the node is now dead, remove it from the graph. The node
1021 // may not be dead if the replacement process recursively simplified to
1022 // something else needing this node.
1023 if (TLO.Old.getNode()->use_empty())
1024 deleteAndRecombine(TLO.Old.getNode());
1027 /// Check the specified integer node value to see if it can be simplified or if
1028 /// things it uses can be simplified by bit propagation. If so, return true.
1029 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
1030 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
1031 KnownBits Known;
1032 if (!TLI.SimplifyDemandedBits(Op, Demanded, Known, TLO))
1033 return false;
1035 // Revisit the node.
1036 AddToWorklist(Op.getNode());
1038 // Replace the old value with the new one.
1039 ++NodesCombined;
1040 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG);
1041 dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG);
1042 dbgs() << '\n');
1044 CommitTargetLoweringOpt(TLO);
1045 return true;
1048 /// Check the specified vector node value to see if it can be simplified or
1049 /// if things it uses can be simplified as it only uses some of the elements.
1050 /// If so, return true.
1051 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, const APInt &Demanded,
1052 bool AssumeSingleUse) {
1053 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
1054 APInt KnownUndef, KnownZero;
1055 if (!TLI.SimplifyDemandedVectorElts(Op, Demanded, KnownUndef, KnownZero, TLO,
1056 0, AssumeSingleUse))
1057 return false;
1059 // Revisit the node.
1060 AddToWorklist(Op.getNode());
1062 // Replace the old value with the new one.
1063 ++NodesCombined;
1064 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG);
1065 dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG);
1066 dbgs() << '\n');
1068 CommitTargetLoweringOpt(TLO);
1069 return true;
1072 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
1073 SDLoc DL(Load);
1074 EVT VT = Load->getValueType(0);
1075 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0));
1077 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: ";
1078 Trunc.getNode()->dump(&DAG); dbgs() << '\n');
1079 WorklistRemover DeadNodes(*this);
1080 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
1081 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
1082 deleteAndRecombine(Load);
1083 AddToWorklist(Trunc.getNode());
1086 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
1087 Replace = false;
1088 SDLoc DL(Op);
1089 if (ISD::isUNINDEXEDLoad(Op.getNode())) {
1090 LoadSDNode *LD = cast<LoadSDNode>(Op);
1091 EVT MemVT = LD->getMemoryVT();
1092 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
1093 : LD->getExtensionType();
1094 Replace = true;
1095 return DAG.getExtLoad(ExtType, DL, PVT,
1096 LD->getChain(), LD->getBasePtr(),
1097 MemVT, LD->getMemOperand());
1100 unsigned Opc = Op.getOpcode();
1101 switch (Opc) {
1102 default: break;
1103 case ISD::AssertSext:
1104 if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT))
1105 return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1));
1106 break;
1107 case ISD::AssertZext:
1108 if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT))
1109 return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1));
1110 break;
1111 case ISD::Constant: {
1112 unsigned ExtOpc =
1113 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1114 return DAG.getNode(ExtOpc, DL, PVT, Op);
1118 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
1119 return SDValue();
1120 return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op);
1123 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
1124 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
1125 return SDValue();
1126 EVT OldVT = Op.getValueType();
1127 SDLoc DL(Op);
1128 bool Replace = false;
1129 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1130 if (!NewOp.getNode())
1131 return SDValue();
1132 AddToWorklist(NewOp.getNode());
1134 if (Replace)
1135 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1136 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp,
1137 DAG.getValueType(OldVT));
1140 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
1141 EVT OldVT = Op.getValueType();
1142 SDLoc DL(Op);
1143 bool Replace = false;
1144 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1145 if (!NewOp.getNode())
1146 return SDValue();
1147 AddToWorklist(NewOp.getNode());
1149 if (Replace)
1150 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1151 return DAG.getZeroExtendInReg(NewOp, DL, OldVT);
1154 /// Promote the specified integer binary operation if the target indicates it is
1155 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1156 /// i32 since i16 instructions are longer.
1157 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
1158 if (!LegalOperations)
1159 return SDValue();
1161 EVT VT = Op.getValueType();
1162 if (VT.isVector() || !VT.isInteger())
1163 return SDValue();
1165 // If operation type is 'undesirable', e.g. i16 on x86, consider
1166 // promoting it.
1167 unsigned Opc = Op.getOpcode();
1168 if (TLI.isTypeDesirableForOp(Opc, VT))
1169 return SDValue();
1171 EVT PVT = VT;
1172 // Consult target whether it is a good idea to promote this operation and
1173 // what's the right type to promote it to.
1174 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1175 assert(PVT != VT && "Don't know what type to promote to!");
1177 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
1179 bool Replace0 = false;
1180 SDValue N0 = Op.getOperand(0);
1181 SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
1183 bool Replace1 = false;
1184 SDValue N1 = Op.getOperand(1);
1185 SDValue NN1 = PromoteOperand(N1, PVT, Replace1);
1186 SDLoc DL(Op);
1188 SDValue RV =
1189 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1));
1191 // We are always replacing N0/N1's use in N and only need
1192 // additional replacements if there are additional uses.
1193 Replace0 &= !N0->hasOneUse();
1194 Replace1 &= (N0 != N1) && !N1->hasOneUse();
1196 // Combine Op here so it is preserved past replacements.
1197 CombineTo(Op.getNode(), RV);
1199 // If operands have a use ordering, make sure we deal with
1200 // predecessor first.
1201 if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) {
1202 std::swap(N0, N1);
1203 std::swap(NN0, NN1);
1206 if (Replace0) {
1207 AddToWorklist(NN0.getNode());
1208 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
1210 if (Replace1) {
1211 AddToWorklist(NN1.getNode());
1212 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
1214 return Op;
1216 return SDValue();
1219 /// Promote the specified integer shift operation if the target indicates it is
1220 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1221 /// i32 since i16 instructions are longer.
1222 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
1223 if (!LegalOperations)
1224 return SDValue();
1226 EVT VT = Op.getValueType();
1227 if (VT.isVector() || !VT.isInteger())
1228 return SDValue();
1230 // If operation type is 'undesirable', e.g. i16 on x86, consider
1231 // promoting it.
1232 unsigned Opc = Op.getOpcode();
1233 if (TLI.isTypeDesirableForOp(Opc, VT))
1234 return SDValue();
1236 EVT PVT = VT;
1237 // Consult target whether it is a good idea to promote this operation and
1238 // what's the right type to promote it to.
1239 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1240 assert(PVT != VT && "Don't know what type to promote to!");
1242 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
1244 bool Replace = false;
1245 SDValue N0 = Op.getOperand(0);
1246 SDValue N1 = Op.getOperand(1);
1247 if (Opc == ISD::SRA)
1248 N0 = SExtPromoteOperand(N0, PVT);
1249 else if (Opc == ISD::SRL)
1250 N0 = ZExtPromoteOperand(N0, PVT);
1251 else
1252 N0 = PromoteOperand(N0, PVT, Replace);
1254 if (!N0.getNode())
1255 return SDValue();
1257 SDLoc DL(Op);
1258 SDValue RV =
1259 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1));
1261 AddToWorklist(N0.getNode());
1262 if (Replace)
1263 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
1265 // Deal with Op being deleted.
1266 if (Op && Op.getOpcode() != ISD::DELETED_NODE)
1267 return RV;
1269 return SDValue();
1272 SDValue DAGCombiner::PromoteExtend(SDValue Op) {
1273 if (!LegalOperations)
1274 return SDValue();
1276 EVT VT = Op.getValueType();
1277 if (VT.isVector() || !VT.isInteger())
1278 return SDValue();
1280 // If operation type is 'undesirable', e.g. i16 on x86, consider
1281 // promoting it.
1282 unsigned Opc = Op.getOpcode();
1283 if (TLI.isTypeDesirableForOp(Opc, VT))
1284 return SDValue();
1286 EVT PVT = VT;
1287 // Consult target whether it is a good idea to promote this operation and
1288 // what's the right type to promote it to.
1289 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1290 assert(PVT != VT && "Don't know what type to promote to!");
1291 // fold (aext (aext x)) -> (aext x)
1292 // fold (aext (zext x)) -> (zext x)
1293 // fold (aext (sext x)) -> (sext x)
1294 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
1295 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
1297 return SDValue();
1300 bool DAGCombiner::PromoteLoad(SDValue Op) {
1301 if (!LegalOperations)
1302 return false;
1304 if (!ISD::isUNINDEXEDLoad(Op.getNode()))
1305 return false;
1307 EVT VT = Op.getValueType();
1308 if (VT.isVector() || !VT.isInteger())
1309 return false;
1311 // If operation type is 'undesirable', e.g. i16 on x86, consider
1312 // promoting it.
1313 unsigned Opc = Op.getOpcode();
1314 if (TLI.isTypeDesirableForOp(Opc, VT))
1315 return false;
1317 EVT PVT = VT;
1318 // Consult target whether it is a good idea to promote this operation and
1319 // what's the right type to promote it to.
1320 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1321 assert(PVT != VT && "Don't know what type to promote to!");
1323 SDLoc DL(Op);
1324 SDNode *N = Op.getNode();
1325 LoadSDNode *LD = cast<LoadSDNode>(N);
1326 EVT MemVT = LD->getMemoryVT();
1327 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
1328 : LD->getExtensionType();
1329 SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT,
1330 LD->getChain(), LD->getBasePtr(),
1331 MemVT, LD->getMemOperand());
1332 SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD);
1334 LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: ";
1335 Result.getNode()->dump(&DAG); dbgs() << '\n');
1336 WorklistRemover DeadNodes(*this);
1337 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1338 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
1339 deleteAndRecombine(N);
1340 AddToWorklist(Result.getNode());
1341 return true;
1343 return false;
1346 /// Recursively delete a node which has no uses and any operands for
1347 /// which it is the only use.
1349 /// Note that this both deletes the nodes and removes them from the worklist.
1350 /// It also adds any nodes who have had a user deleted to the worklist as they
1351 /// may now have only one use and subject to other combines.
1352 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
1353 if (!N->use_empty())
1354 return false;
1356 SmallSetVector<SDNode *, 16> Nodes;
1357 Nodes.insert(N);
1358 do {
1359 N = Nodes.pop_back_val();
1360 if (!N)
1361 continue;
1363 if (N->use_empty()) {
1364 for (const SDValue &ChildN : N->op_values())
1365 Nodes.insert(ChildN.getNode());
1367 removeFromWorklist(N);
1368 DAG.DeleteNode(N);
1369 } else {
1370 AddToWorklist(N);
1372 } while (!Nodes.empty());
1373 return true;
1376 //===----------------------------------------------------------------------===//
1377 // Main DAG Combiner implementation
1378 //===----------------------------------------------------------------------===//
1380 void DAGCombiner::Run(CombineLevel AtLevel) {
1381 // set the instance variables, so that the various visit routines may use it.
1382 Level = AtLevel;
1383 LegalOperations = Level >= AfterLegalizeVectorOps;
1384 LegalTypes = Level >= AfterLegalizeTypes;
1386 // Add all the dag nodes to the worklist.
1387 for (SDNode &Node : DAG.allnodes())
1388 AddToWorklist(&Node);
1390 // Create a dummy node (which is not added to allnodes), that adds a reference
1391 // to the root node, preventing it from being deleted, and tracking any
1392 // changes of the root.
1393 HandleSDNode Dummy(DAG.getRoot());
1395 // While the worklist isn't empty, find a node and try to combine it.
1396 while (!WorklistMap.empty()) {
1397 SDNode *N;
1398 // The Worklist holds the SDNodes in order, but it may contain null entries.
1399 do {
1400 N = Worklist.pop_back_val();
1401 } while (!N);
1403 bool GoodWorklistEntry = WorklistMap.erase(N);
1404 (void)GoodWorklistEntry;
1405 assert(GoodWorklistEntry &&
1406 "Found a worklist entry without a corresponding map entry!");
1408 // If N has no uses, it is dead. Make sure to revisit all N's operands once
1409 // N is deleted from the DAG, since they too may now be dead or may have a
1410 // reduced number of uses, allowing other xforms.
1411 if (recursivelyDeleteUnusedNodes(N))
1412 continue;
1414 WorklistRemover DeadNodes(*this);
1416 // If this combine is running after legalizing the DAG, re-legalize any
1417 // nodes pulled off the worklist.
1418 if (Level == AfterLegalizeDAG) {
1419 SmallSetVector<SDNode *, 16> UpdatedNodes;
1420 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
1422 for (SDNode *LN : UpdatedNodes) {
1423 AddToWorklist(LN);
1424 AddUsersToWorklist(LN);
1426 if (!NIsValid)
1427 continue;
1430 LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));
1432 // Add any operands of the new node which have not yet been combined to the
1433 // worklist as well. Because the worklist uniques things already, this
1434 // won't repeatedly process the same operand.
1435 CombinedNodes.insert(N);
1436 for (const SDValue &ChildN : N->op_values())
1437 if (!CombinedNodes.count(ChildN.getNode()))
1438 AddToWorklist(ChildN.getNode());
1440 SDValue RV = combine(N);
1442 if (!RV.getNode())
1443 continue;
1445 ++NodesCombined;
1447 // If we get back the same node we passed in, rather than a new node or
1448 // zero, we know that the node must have defined multiple values and
1449 // CombineTo was used. Since CombineTo takes care of the worklist
1450 // mechanics for us, we have no work to do in this case.
1451 if (RV.getNode() == N)
1452 continue;
1454 assert(N->getOpcode() != ISD::DELETED_NODE &&
1455 RV.getOpcode() != ISD::DELETED_NODE &&
1456 "Node was deleted but visit returned new node!");
1458 LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG));
1460 if (N->getNumValues() == RV.getNode()->getNumValues())
1461 DAG.ReplaceAllUsesWith(N, RV.getNode());
1462 else {
1463 assert(N->getValueType(0) == RV.getValueType() &&
1464 N->getNumValues() == 1 && "Type mismatch");
1465 DAG.ReplaceAllUsesWith(N, &RV);
1468 // Push the new node and any users onto the worklist
1469 AddToWorklist(RV.getNode());
1470 AddUsersToWorklist(RV.getNode());
1472 // Finally, if the node is now dead, remove it from the graph. The node
1473 // may not be dead if the replacement process recursively simplified to
1474 // something else needing this node. This will also take care of adding any
1475 // operands which have lost a user to the worklist.
1476 recursivelyDeleteUnusedNodes(N);
1479 // If the root changed (e.g. it was a dead load, update the root).
1480 DAG.setRoot(Dummy.getValue());
1481 DAG.RemoveDeadNodes();
1484 SDValue DAGCombiner::visit(SDNode *N) {
1485 switch (N->getOpcode()) {
1486 default: break;
1487 case ISD::TokenFactor: return visitTokenFactor(N);
1488 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
1489 case ISD::ADD: return visitADD(N);
1490 case ISD::SUB: return visitSUB(N);
1491 case ISD::SADDSAT:
1492 case ISD::UADDSAT: return visitADDSAT(N);
1493 case ISD::SSUBSAT:
1494 case ISD::USUBSAT: return visitSUBSAT(N);
1495 case ISD::ADDC: return visitADDC(N);
1496 case ISD::UADDO: return visitUADDO(N);
1497 case ISD::SUBC: return visitSUBC(N);
1498 case ISD::USUBO: return visitUSUBO(N);
1499 case ISD::ADDE: return visitADDE(N);
1500 case ISD::ADDCARRY: return visitADDCARRY(N);
1501 case ISD::SUBE: return visitSUBE(N);
1502 case ISD::SUBCARRY: return visitSUBCARRY(N);
1503 case ISD::MUL: return visitMUL(N);
1504 case ISD::SDIV: return visitSDIV(N);
1505 case ISD::UDIV: return visitUDIV(N);
1506 case ISD::SREM:
1507 case ISD::UREM: return visitREM(N);
1508 case ISD::MULHU: return visitMULHU(N);
1509 case ISD::MULHS: return visitMULHS(N);
1510 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
1511 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
1512 case ISD::SMULO: return visitSMULO(N);
1513 case ISD::UMULO: return visitUMULO(N);
1514 case ISD::SMIN:
1515 case ISD::SMAX:
1516 case ISD::UMIN:
1517 case ISD::UMAX: return visitIMINMAX(N);
1518 case ISD::AND: return visitAND(N);
1519 case ISD::OR: return visitOR(N);
1520 case ISD::XOR: return visitXOR(N);
1521 case ISD::SHL: return visitSHL(N);
1522 case ISD::SRA: return visitSRA(N);
1523 case ISD::SRL: return visitSRL(N);
1524 case ISD::ROTR:
1525 case ISD::ROTL: return visitRotate(N);
1526 case ISD::FSHL:
1527 case ISD::FSHR: return visitFunnelShift(N);
1528 case ISD::ABS: return visitABS(N);
1529 case ISD::BSWAP: return visitBSWAP(N);
1530 case ISD::BITREVERSE: return visitBITREVERSE(N);
1531 case ISD::CTLZ: return visitCTLZ(N);
1532 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N);
1533 case ISD::CTTZ: return visitCTTZ(N);
1534 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N);
1535 case ISD::CTPOP: return visitCTPOP(N);
1536 case ISD::SELECT: return visitSELECT(N);
1537 case ISD::VSELECT: return visitVSELECT(N);
1538 case ISD::SELECT_CC: return visitSELECT_CC(N);
1539 case ISD::SETCC: return visitSETCC(N);
1540 case ISD::SETCCCARRY: return visitSETCCCARRY(N);
1541 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
1542 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
1543 case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
1544 case ISD::AssertSext:
1545 case ISD::AssertZext: return visitAssertExt(N);
1546 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
1547 case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N);
1548 case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N);
1549 case ISD::TRUNCATE: return visitTRUNCATE(N);
1550 case ISD::BITCAST: return visitBITCAST(N);
1551 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
1552 case ISD::FADD: return visitFADD(N);
1553 case ISD::FSUB: return visitFSUB(N);
1554 case ISD::FMUL: return visitFMUL(N);
1555 case ISD::FMA: return visitFMA(N);
1556 case ISD::FDIV: return visitFDIV(N);
1557 case ISD::FREM: return visitFREM(N);
1558 case ISD::FSQRT: return visitFSQRT(N);
1559 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
1560 case ISD::FPOW: return visitFPOW(N);
1561 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
1562 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
1563 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
1564 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
1565 case ISD::FP_ROUND: return visitFP_ROUND(N);
1566 case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N);
1567 case ISD::FP_EXTEND: return visitFP_EXTEND(N);
1568 case ISD::FNEG: return visitFNEG(N);
1569 case ISD::FABS: return visitFABS(N);
1570 case ISD::FFLOOR: return visitFFLOOR(N);
1571 case ISD::FMINNUM: return visitFMINNUM(N);
1572 case ISD::FMAXNUM: return visitFMAXNUM(N);
1573 case ISD::FMINIMUM: return visitFMINIMUM(N);
1574 case ISD::FMAXIMUM: return visitFMAXIMUM(N);
1575 case ISD::FCEIL: return visitFCEIL(N);
1576 case ISD::FTRUNC: return visitFTRUNC(N);
1577 case ISD::BRCOND: return visitBRCOND(N);
1578 case ISD::BR_CC: return visitBR_CC(N);
1579 case ISD::LOAD: return visitLOAD(N);
1580 case ISD::STORE: return visitSTORE(N);
1581 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
1582 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1583 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
1584 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
1585 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
1586 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
1587 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N);
1588 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N);
1589 case ISD::MGATHER: return visitMGATHER(N);
1590 case ISD::MLOAD: return visitMLOAD(N);
1591 case ISD::MSCATTER: return visitMSCATTER(N);
1592 case ISD::MSTORE: return visitMSTORE(N);
1593 case ISD::LIFETIME_END: return visitLIFETIME_END(N);
1594 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N);
1595 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N);
1597 return SDValue();
1600 SDValue DAGCombiner::combine(SDNode *N) {
1601 SDValue RV = visit(N);
1603 // If nothing happened, try a target-specific DAG combine.
1604 if (!RV.getNode()) {
1605 assert(N->getOpcode() != ISD::DELETED_NODE &&
1606 "Node was deleted but visit returned NULL!");
1608 if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1609 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1611 // Expose the DAG combiner to the target combiner impls.
1612 TargetLowering::DAGCombinerInfo
1613 DagCombineInfo(DAG, Level, false, this);
1615 RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1619 // If nothing happened still, try promoting the operation.
1620 if (!RV.getNode()) {
1621 switch (N->getOpcode()) {
1622 default: break;
1623 case ISD::ADD:
1624 case ISD::SUB:
1625 case ISD::MUL:
1626 case ISD::AND:
1627 case ISD::OR:
1628 case ISD::XOR:
1629 RV = PromoteIntBinOp(SDValue(N, 0));
1630 break;
1631 case ISD::SHL:
1632 case ISD::SRA:
1633 case ISD::SRL:
1634 RV = PromoteIntShiftOp(SDValue(N, 0));
1635 break;
1636 case ISD::SIGN_EXTEND:
1637 case ISD::ZERO_EXTEND:
1638 case ISD::ANY_EXTEND:
1639 RV = PromoteExtend(SDValue(N, 0));
1640 break;
1641 case ISD::LOAD:
1642 if (PromoteLoad(SDValue(N, 0)))
1643 RV = SDValue(N, 0);
1644 break;
1648 // If N is a commutative binary node, try eliminate it if the commuted
1649 // version is already present in the DAG.
1650 if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) &&
1651 N->getNumValues() == 1) {
1652 SDValue N0 = N->getOperand(0);
1653 SDValue N1 = N->getOperand(1);
1655 // Constant operands are canonicalized to RHS.
1656 if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) {
1657 SDValue Ops[] = {N1, N0};
1658 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
1659 N->getFlags());
1660 if (CSENode)
1661 return SDValue(CSENode, 0);
1665 return RV;
1668 /// Given a node, return its input chain if it has one, otherwise return a null
1669 /// sd operand.
1670 static SDValue getInputChainForNode(SDNode *N) {
1671 if (unsigned NumOps = N->getNumOperands()) {
1672 if (N->getOperand(0).getValueType() == MVT::Other)
1673 return N->getOperand(0);
1674 if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1675 return N->getOperand(NumOps-1);
1676 for (unsigned i = 1; i < NumOps-1; ++i)
1677 if (N->getOperand(i).getValueType() == MVT::Other)
1678 return N->getOperand(i);
1680 return SDValue();
1683 SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1684 // If N has two operands, where one has an input chain equal to the other,
1685 // the 'other' chain is redundant.
1686 if (N->getNumOperands() == 2) {
1687 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1688 return N->getOperand(0);
1689 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1690 return N->getOperand(1);
1693 // Don't simplify token factors if optnone.
1694 if (OptLevel == CodeGenOpt::None)
1695 return SDValue();
1697 SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
1698 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
1699 SmallPtrSet<SDNode*, 16> SeenOps;
1700 bool Changed = false; // If we should replace this token factor.
1702 // Start out with this token factor.
1703 TFs.push_back(N);
1705 // Iterate through token factors. The TFs grows when new token factors are
1706 // encountered.
1707 for (unsigned i = 0; i < TFs.size(); ++i) {
1708 SDNode *TF = TFs[i];
1710 // Check each of the operands.
1711 for (const SDValue &Op : TF->op_values()) {
1712 switch (Op.getOpcode()) {
1713 case ISD::EntryToken:
1714 // Entry tokens don't need to be added to the list. They are
1715 // redundant.
1716 Changed = true;
1717 break;
1719 case ISD::TokenFactor:
1720 if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) {
1721 // Queue up for processing.
1722 TFs.push_back(Op.getNode());
1723 // Clean up in case the token factor is removed.
1724 AddToWorklist(Op.getNode());
1725 Changed = true;
1726 break;
1728 LLVM_FALLTHROUGH;
1730 default:
1731 // Only add if it isn't already in the list.
1732 if (SeenOps.insert(Op.getNode()).second)
1733 Ops.push_back(Op);
1734 else
1735 Changed = true;
1736 break;
1741 // Remove Nodes that are chained to another node in the list. Do so
1742 // by walking up chains breath-first stopping when we've seen
1743 // another operand. In general we must climb to the EntryNode, but we can exit
1744 // early if we find all remaining work is associated with just one operand as
1745 // no further pruning is possible.
1747 // List of nodes to search through and original Ops from which they originate.
1748 SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist;
1749 SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op.
1750 SmallPtrSet<SDNode *, 16> SeenChains;
1751 bool DidPruneOps = false;
1753 unsigned NumLeftToConsider = 0;
1754 for (const SDValue &Op : Ops) {
1755 Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++));
1756 OpWorkCount.push_back(1);
1759 auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) {
1760 // If this is an Op, we can remove the op from the list. Remark any
1761 // search associated with it as from the current OpNumber.
1762 if (SeenOps.count(Op) != 0) {
1763 Changed = true;
1764 DidPruneOps = true;
1765 unsigned OrigOpNumber = 0;
1766 while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op)
1767 OrigOpNumber++;
1768 assert((OrigOpNumber != Ops.size()) &&
1769 "expected to find TokenFactor Operand");
1770 // Re-mark worklist from OrigOpNumber to OpNumber
1771 for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) {
1772 if (Worklist[i].second == OrigOpNumber) {
1773 Worklist[i].second = OpNumber;
1776 OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber];
1777 OpWorkCount[OrigOpNumber] = 0;
1778 NumLeftToConsider--;
1780 // Add if it's a new chain
1781 if (SeenChains.insert(Op).second) {
1782 OpWorkCount[OpNumber]++;
1783 Worklist.push_back(std::make_pair(Op, OpNumber));
1787 for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) {
1788 // We need at least be consider at least 2 Ops to prune.
1789 if (NumLeftToConsider <= 1)
1790 break;
1791 auto CurNode = Worklist[i].first;
1792 auto CurOpNumber = Worklist[i].second;
1793 assert((OpWorkCount[CurOpNumber] > 0) &&
1794 "Node should not appear in worklist");
1795 switch (CurNode->getOpcode()) {
1796 case ISD::EntryToken:
1797 // Hitting EntryToken is the only way for the search to terminate without
1798 // hitting
1799 // another operand's search. Prevent us from marking this operand
1800 // considered.
1801 NumLeftToConsider++;
1802 break;
1803 case ISD::TokenFactor:
1804 for (const SDValue &Op : CurNode->op_values())
1805 AddToWorklist(i, Op.getNode(), CurOpNumber);
1806 break;
1807 case ISD::CopyFromReg:
1808 case ISD::CopyToReg:
1809 AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber);
1810 break;
1811 default:
1812 if (auto *MemNode = dyn_cast<MemSDNode>(CurNode))
1813 AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber);
1814 break;
1816 OpWorkCount[CurOpNumber]--;
1817 if (OpWorkCount[CurOpNumber] == 0)
1818 NumLeftToConsider--;
1821 // If we've changed things around then replace token factor.
1822 if (Changed) {
1823 SDValue Result;
1824 if (Ops.empty()) {
1825 // The entry token is the only possible outcome.
1826 Result = DAG.getEntryNode();
1827 } else {
1828 if (DidPruneOps) {
1829 SmallVector<SDValue, 8> PrunedOps;
1831 for (const SDValue &Op : Ops) {
1832 if (SeenChains.count(Op.getNode()) == 0)
1833 PrunedOps.push_back(Op);
1835 Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, PrunedOps);
1836 } else {
1837 Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops);
1840 return Result;
1842 return SDValue();
1845 /// MERGE_VALUES can always be eliminated.
1846 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1847 WorklistRemover DeadNodes(*this);
1848 // Replacing results may cause a different MERGE_VALUES to suddenly
1849 // be CSE'd with N, and carry its uses with it. Iterate until no
1850 // uses remain, to ensure that the node can be safely deleted.
1851 // First add the users of this node to the work list so that they
1852 // can be tried again once they have new operands.
1853 AddUsersToWorklist(N);
1854 do {
1855 // Do as a single replacement to avoid rewalking use lists.
1856 SmallVector<SDValue, 8> Ops;
1857 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1858 Ops.push_back(N->getOperand(i));
1859 DAG.ReplaceAllUsesWith(N, Ops.data());
1860 } while (!N->use_empty());
1861 deleteAndRecombine(N);
1862 return SDValue(N, 0); // Return N so it doesn't get rechecked!
1865 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
1866 /// ConstantSDNode pointer else nullptr.
1867 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) {
1868 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N);
1869 return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
1872 SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) {
1873 assert(ISD::isBinaryOp(BO) && "Unexpected binary operator");
1875 // Don't do this unless the old select is going away. We want to eliminate the
1876 // binary operator, not replace a binop with a select.
1877 // TODO: Handle ISD::SELECT_CC.
1878 unsigned SelOpNo = 0;
1879 SDValue Sel = BO->getOperand(0);
1880 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) {
1881 SelOpNo = 1;
1882 Sel = BO->getOperand(1);
1885 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse())
1886 return SDValue();
1888 SDValue CT = Sel.getOperand(1);
1889 if (!isConstantOrConstantVector(CT, true) &&
1890 !isConstantFPBuildVectorOrConstantFP(CT))
1891 return SDValue();
1893 SDValue CF = Sel.getOperand(2);
1894 if (!isConstantOrConstantVector(CF, true) &&
1895 !isConstantFPBuildVectorOrConstantFP(CF))
1896 return SDValue();
1898 // Bail out if any constants are opaque because we can't constant fold those.
1899 // The exception is "and" and "or" with either 0 or -1 in which case we can
1900 // propagate non constant operands into select. I.e.:
1901 // and (select Cond, 0, -1), X --> select Cond, 0, X
1902 // or X, (select Cond, -1, 0) --> select Cond, -1, X
1903 auto BinOpcode = BO->getOpcode();
1904 bool CanFoldNonConst =
1905 (BinOpcode == ISD::AND || BinOpcode == ISD::OR) &&
1906 (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) &&
1907 (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF));
1909 SDValue CBO = BO->getOperand(SelOpNo ^ 1);
1910 if (!CanFoldNonConst &&
1911 !isConstantOrConstantVector(CBO, true) &&
1912 !isConstantFPBuildVectorOrConstantFP(CBO))
1913 return SDValue();
1915 EVT VT = Sel.getValueType();
1917 // In case of shift value and shift amount may have different VT. For instance
1918 // on x86 shift amount is i8 regardles of LHS type. Bail out if we have
1919 // swapped operands and value types do not match. NB: x86 is fine if operands
1920 // are not swapped with shift amount VT being not bigger than shifted value.
1921 // TODO: that is possible to check for a shift operation, correct VTs and
1922 // still perform optimization on x86 if needed.
1923 if (SelOpNo && VT != CBO.getValueType())
1924 return SDValue();
1926 // We have a select-of-constants followed by a binary operator with a
1927 // constant. Eliminate the binop by pulling the constant math into the select.
1928 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
1929 SDLoc DL(Sel);
1930 SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT)
1931 : DAG.getNode(BinOpcode, DL, VT, CT, CBO);
1932 if (!CanFoldNonConst && !NewCT.isUndef() &&
1933 !isConstantOrConstantVector(NewCT, true) &&
1934 !isConstantFPBuildVectorOrConstantFP(NewCT))
1935 return SDValue();
1937 SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF)
1938 : DAG.getNode(BinOpcode, DL, VT, CF, CBO);
1939 if (!CanFoldNonConst && !NewCF.isUndef() &&
1940 !isConstantOrConstantVector(NewCF, true) &&
1941 !isConstantFPBuildVectorOrConstantFP(NewCF))
1942 return SDValue();
1944 return DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF);
1947 static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) {
1948 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
1949 "Expecting add or sub");
1951 // Match a constant operand and a zext operand for the math instruction:
1952 // add Z, C
1953 // sub C, Z
1954 bool IsAdd = N->getOpcode() == ISD::ADD;
1955 SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0);
1956 SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1);
1957 auto *CN = dyn_cast<ConstantSDNode>(C);
1958 if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND)
1959 return SDValue();
1961 // Match the zext operand as a setcc of a boolean.
1962 if (Z.getOperand(0).getOpcode() != ISD::SETCC ||
1963 Z.getOperand(0).getValueType() != MVT::i1)
1964 return SDValue();
1966 // Match the compare as: setcc (X & 1), 0, eq.
1967 SDValue SetCC = Z.getOperand(0);
1968 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
1969 if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) ||
1970 SetCC.getOperand(0).getOpcode() != ISD::AND ||
1971 !isOneConstant(SetCC.getOperand(0).getOperand(1)))
1972 return SDValue();
1974 // We are adding/subtracting a constant and an inverted low bit. Turn that
1975 // into a subtract/add of the low bit with incremented/decremented constant:
1976 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
1977 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
1978 EVT VT = C.getValueType();
1979 SDLoc DL(N);
1980 SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT);
1981 SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) :
1982 DAG.getConstant(CN->getAPIntValue() - 1, DL, VT);
1983 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit);
1986 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
1987 /// a shift and add with a different constant.
1988 static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) {
1989 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
1990 "Expecting add or sub");
1992 // We need a constant operand for the add/sub, and the other operand is a
1993 // logical shift right: add (srl), C or sub C, (srl).
1994 bool IsAdd = N->getOpcode() == ISD::ADD;
1995 SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0);
1996 SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1);
1997 ConstantSDNode *C = isConstOrConstSplat(ConstantOp);
1998 if (!C || ShiftOp.getOpcode() != ISD::SRL)
1999 return SDValue();
2001 // The shift must be of a 'not' value.
2002 SDValue Not = ShiftOp.getOperand(0);
2003 if (!Not.hasOneUse() || !isBitwiseNot(Not))
2004 return SDValue();
2006 // The shift must be moving the sign bit to the least-significant-bit.
2007 EVT VT = ShiftOp.getValueType();
2008 SDValue ShAmt = ShiftOp.getOperand(1);
2009 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
2010 if (!ShAmtC || ShAmtC->getZExtValue() != VT.getScalarSizeInBits() - 1)
2011 return SDValue();
2013 // Eliminate the 'not' by adjusting the shift and add/sub constant:
2014 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
2015 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
2016 SDLoc DL(N);
2017 auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL;
2018 SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt);
2019 APInt NewC = IsAdd ? C->getAPIntValue() + 1 : C->getAPIntValue() - 1;
2020 return DAG.getNode(ISD::ADD, DL, VT, NewShift, DAG.getConstant(NewC, DL, VT));
2023 SDValue DAGCombiner::visitADD(SDNode *N) {
2024 SDValue N0 = N->getOperand(0);
2025 SDValue N1 = N->getOperand(1);
2026 EVT VT = N0.getValueType();
2027 SDLoc DL(N);
2029 // fold vector ops
2030 if (VT.isVector()) {
2031 if (SDValue FoldedVOp = SimplifyVBinOp(N))
2032 return FoldedVOp;
2034 // fold (add x, 0) -> x, vector edition
2035 if (ISD::isBuildVectorAllZeros(N1.getNode()))
2036 return N0;
2037 if (ISD::isBuildVectorAllZeros(N0.getNode()))
2038 return N1;
2041 // fold (add x, undef) -> undef
2042 if (N0.isUndef())
2043 return N0;
2045 if (N1.isUndef())
2046 return N1;
2048 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
2049 // canonicalize constant to RHS
2050 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
2051 return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
2052 // fold (add c1, c2) -> c1+c2
2053 return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N0.getNode(),
2054 N1.getNode());
2057 // fold (add x, 0) -> x
2058 if (isNullConstant(N1))
2059 return N0;
2061 if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) {
2062 // fold ((c1-A)+c2) -> (c1+c2)-A
2063 if (N0.getOpcode() == ISD::SUB &&
2064 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) {
2065 // FIXME: Adding 2 constants should be handled by FoldConstantArithmetic.
2066 return DAG.getNode(ISD::SUB, DL, VT,
2067 DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)),
2068 N0.getOperand(1));
2071 // add (sext i1 X), 1 -> zext (not i1 X)
2072 // We don't transform this pattern:
2073 // add (zext i1 X), -1 -> sext (not i1 X)
2074 // because most (?) targets generate better code for the zext form.
2075 if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() &&
2076 isOneOrOneSplat(N1)) {
2077 SDValue X = N0.getOperand(0);
2078 if ((!LegalOperations ||
2079 (TLI.isOperationLegal(ISD::XOR, X.getValueType()) &&
2080 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) &&
2081 X.getScalarValueSizeInBits() == 1) {
2082 SDValue Not = DAG.getNOT(DL, X, X.getValueType());
2083 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not);
2087 // Undo the add -> or combine to merge constant offsets from a frame index.
2088 if (N0.getOpcode() == ISD::OR &&
2089 isa<FrameIndexSDNode>(N0.getOperand(0)) &&
2090 isa<ConstantSDNode>(N0.getOperand(1)) &&
2091 DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) {
2092 SDValue Add0 = DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(1));
2093 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0);
2097 if (SDValue NewSel = foldBinOpIntoSelect(N))
2098 return NewSel;
2100 // reassociate add
2101 if (SDValue RADD = ReassociateOps(ISD::ADD, DL, N0, N1, N->getFlags()))
2102 return RADD;
2104 // fold ((0-A) + B) -> B-A
2105 if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0)))
2106 return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
2108 // fold (A + (0-B)) -> A-B
2109 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
2110 return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1));
2112 // fold (A+(B-A)) -> B
2113 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
2114 return N1.getOperand(0);
2116 // fold ((B-A)+A) -> B
2117 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
2118 return N0.getOperand(0);
2120 // fold ((A-B)+(C-A)) -> (C-B)
2121 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
2122 N0.getOperand(0) == N1.getOperand(1))
2123 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
2124 N0.getOperand(1));
2126 // fold ((A-B)+(B-C)) -> (A-C)
2127 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
2128 N0.getOperand(1) == N1.getOperand(0))
2129 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
2130 N1.getOperand(1));
2132 // fold (A+(B-(A+C))) to (B-C)
2133 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
2134 N0 == N1.getOperand(1).getOperand(0))
2135 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
2136 N1.getOperand(1).getOperand(1));
2138 // fold (A+(B-(C+A))) to (B-C)
2139 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
2140 N0 == N1.getOperand(1).getOperand(1))
2141 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
2142 N1.getOperand(1).getOperand(0));
2144 // fold (A+((B-A)+or-C)) to (B+or-C)
2145 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
2146 N1.getOperand(0).getOpcode() == ISD::SUB &&
2147 N0 == N1.getOperand(0).getOperand(1))
2148 return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0),
2149 N1.getOperand(1));
2151 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
2152 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
2153 SDValue N00 = N0.getOperand(0);
2154 SDValue N01 = N0.getOperand(1);
2155 SDValue N10 = N1.getOperand(0);
2156 SDValue N11 = N1.getOperand(1);
2158 if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10))
2159 return DAG.getNode(ISD::SUB, DL, VT,
2160 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
2161 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
2164 // fold (add (umax X, C), -C) --> (usubsat X, C)
2165 if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) {
2166 auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) {
2167 return (!Max && !Op) ||
2168 (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue()));
2170 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT,
2171 /*AllowUndefs*/ true))
2172 return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0),
2173 N0.getOperand(1));
2176 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
2177 return V;
2179 if (SDValue V = foldAddSubOfSignBit(N, DAG))
2180 return V;
2182 if (SimplifyDemandedBits(SDValue(N, 0)))
2183 return SDValue(N, 0);
2185 // fold (a+b) -> (a|b) iff a and b share no bits.
2186 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
2187 DAG.haveNoCommonBitsSet(N0, N1))
2188 return DAG.getNode(ISD::OR, DL, VT, N0, N1);
2190 // fold (add (xor a, -1), 1) -> (sub 0, a)
2191 if (isBitwiseNot(N0) && isOneOrOneSplat(N1))
2192 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
2193 N0.getOperand(0));
2195 if (SDValue Combined = visitADDLike(N0, N1, N))
2196 return Combined;
2198 if (SDValue Combined = visitADDLike(N1, N0, N))
2199 return Combined;
2201 return SDValue();
2204 SDValue DAGCombiner::visitADDSAT(SDNode *N) {
2205 unsigned Opcode = N->getOpcode();
2206 SDValue N0 = N->getOperand(0);
2207 SDValue N1 = N->getOperand(1);
2208 EVT VT = N0.getValueType();
2209 SDLoc DL(N);
2211 // fold vector ops
2212 if (VT.isVector()) {
2213 // TODO SimplifyVBinOp
2215 // fold (add_sat x, 0) -> x, vector edition
2216 if (ISD::isBuildVectorAllZeros(N1.getNode()))
2217 return N0;
2218 if (ISD::isBuildVectorAllZeros(N0.getNode()))
2219 return N1;
2222 // fold (add_sat x, undef) -> -1
2223 if (N0.isUndef() || N1.isUndef())
2224 return DAG.getAllOnesConstant(DL, VT);
2226 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
2227 // canonicalize constant to RHS
2228 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
2229 return DAG.getNode(Opcode, DL, VT, N1, N0);
2230 // fold (add_sat c1, c2) -> c3
2231 return DAG.FoldConstantArithmetic(Opcode, DL, VT, N0.getNode(),
2232 N1.getNode());
2235 // fold (add_sat x, 0) -> x
2236 if (isNullConstant(N1))
2237 return N0;
2239 // If it cannot overflow, transform into an add.
2240 if (Opcode == ISD::UADDSAT)
2241 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
2242 return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
2244 return SDValue();
2247 static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) {
2248 bool Masked = false;
2250 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
2251 while (true) {
2252 if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) {
2253 V = V.getOperand(0);
2254 continue;
2257 if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) {
2258 Masked = true;
2259 V = V.getOperand(0);
2260 continue;
2263 break;
2266 // If this is not a carry, return.
2267 if (V.getResNo() != 1)
2268 return SDValue();
2270 if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY &&
2271 V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO)
2272 return SDValue();
2274 // If the result is masked, then no matter what kind of bool it is we can
2275 // return. If it isn't, then we need to make sure the bool type is either 0 or
2276 // 1 and not other values.
2277 if (Masked ||
2278 TLI.getBooleanContents(V.getValueType()) ==
2279 TargetLoweringBase::ZeroOrOneBooleanContent)
2280 return V;
2282 return SDValue();
2285 /// Given the operands of an add/sub operation, see if the 2nd operand is a
2286 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert
2287 /// the opcode and bypass the mask operation.
2288 static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1,
2289 SelectionDAG &DAG, const SDLoc &DL) {
2290 if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1)))
2291 return SDValue();
2293 EVT VT = N0.getValueType();
2294 if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits())
2295 return SDValue();
2297 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X
2298 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X
2299 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0));
2302 SDValue DAGCombiner::visitADDLike(SDValue N0, SDValue N1, SDNode *LocReference) {
2303 EVT VT = N0.getValueType();
2304 SDLoc DL(LocReference);
2306 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
2307 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB &&
2308 isNullOrNullSplat(N1.getOperand(0).getOperand(0)))
2309 return DAG.getNode(ISD::SUB, DL, VT, N0,
2310 DAG.getNode(ISD::SHL, DL, VT,
2311 N1.getOperand(0).getOperand(1),
2312 N1.getOperand(1)));
2314 if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL))
2315 return V;
2317 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1'
2318 // rather than 'add 0/-1' (the zext should get folded).
2319 // add (sext i1 Y), X --> sub X, (zext i1 Y)
2320 if (N0.getOpcode() == ISD::SIGN_EXTEND &&
2321 N0.getOperand(0).getScalarValueSizeInBits() == 1 &&
2322 TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) {
2323 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
2324 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
2327 // add X, (sextinreg Y i1) -> sub X, (and Y 1)
2328 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
2329 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
2330 if (TN->getVT() == MVT::i1) {
2331 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
2332 DAG.getConstant(1, DL, VT));
2333 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
2337 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2338 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) &&
2339 N1.getResNo() == 0)
2340 return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(),
2341 N0, N1.getOperand(0), N1.getOperand(2));
2343 // (add X, Carry) -> (addcarry X, 0, Carry)
2344 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
2345 if (SDValue Carry = getAsCarry(TLI, N1))
2346 return DAG.getNode(ISD::ADDCARRY, DL,
2347 DAG.getVTList(VT, Carry.getValueType()), N0,
2348 DAG.getConstant(0, DL, VT), Carry);
2350 return SDValue();
2353 SDValue DAGCombiner::visitADDC(SDNode *N) {
2354 SDValue N0 = N->getOperand(0);
2355 SDValue N1 = N->getOperand(1);
2356 EVT VT = N0.getValueType();
2357 SDLoc DL(N);
2359 // If the flag result is dead, turn this into an ADD.
2360 if (!N->hasAnyUseOfValue(1))
2361 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2362 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2364 // canonicalize constant to RHS.
2365 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2366 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2367 if (N0C && !N1C)
2368 return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0);
2370 // fold (addc x, 0) -> x + no carry out
2371 if (isNullConstant(N1))
2372 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
2373 DL, MVT::Glue));
2375 // If it cannot overflow, transform into an add.
2376 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
2377 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2378 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2380 return SDValue();
2383 static SDValue flipBoolean(SDValue V, const SDLoc &DL, EVT VT,
2384 SelectionDAG &DAG, const TargetLowering &TLI) {
2385 SDValue Cst;
2386 switch (TLI.getBooleanContents(VT)) {
2387 case TargetLowering::ZeroOrOneBooleanContent:
2388 case TargetLowering::UndefinedBooleanContent:
2389 Cst = DAG.getConstant(1, DL, VT);
2390 break;
2391 case TargetLowering::ZeroOrNegativeOneBooleanContent:
2392 Cst = DAG.getConstant(-1, DL, VT);
2393 break;
2396 return DAG.getNode(ISD::XOR, DL, VT, V, Cst);
2399 static bool isBooleanFlip(SDValue V, EVT VT, const TargetLowering &TLI) {
2400 if (V.getOpcode() != ISD::XOR) return false;
2401 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V.getOperand(1));
2402 if (!Const) return false;
2404 switch(TLI.getBooleanContents(VT)) {
2405 case TargetLowering::ZeroOrOneBooleanContent:
2406 return Const->isOne();
2407 case TargetLowering::ZeroOrNegativeOneBooleanContent:
2408 return Const->isAllOnesValue();
2409 case TargetLowering::UndefinedBooleanContent:
2410 return (Const->getAPIntValue() & 0x01) == 1;
2412 llvm_unreachable("Unsupported boolean content");
2415 SDValue DAGCombiner::visitUADDO(SDNode *N) {
2416 SDValue N0 = N->getOperand(0);
2417 SDValue N1 = N->getOperand(1);
2418 EVT VT = N0.getValueType();
2419 if (VT.isVector())
2420 return SDValue();
2422 EVT CarryVT = N->getValueType(1);
2423 SDLoc DL(N);
2425 // If the flag result is dead, turn this into an ADD.
2426 if (!N->hasAnyUseOfValue(1))
2427 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2428 DAG.getUNDEF(CarryVT));
2430 // canonicalize constant to RHS.
2431 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2432 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2433 if (N0C && !N1C)
2434 return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N1, N0);
2436 // fold (uaddo x, 0) -> x + no carry out
2437 if (isNullConstant(N1))
2438 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
2440 // If it cannot overflow, transform into an add.
2441 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
2442 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2443 DAG.getConstant(0, DL, CarryVT));
2445 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
2446 if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) {
2447 SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(),
2448 DAG.getConstant(0, DL, VT),
2449 N0.getOperand(0));
2450 return CombineTo(N, Sub,
2451 flipBoolean(Sub.getValue(1), DL, CarryVT, DAG, TLI));
2454 if (SDValue Combined = visitUADDOLike(N0, N1, N))
2455 return Combined;
2457 if (SDValue Combined = visitUADDOLike(N1, N0, N))
2458 return Combined;
2460 return SDValue();
2463 SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) {
2464 auto VT = N0.getValueType();
2466 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2467 // If Y + 1 cannot overflow.
2468 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) {
2469 SDValue Y = N1.getOperand(0);
2470 SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType());
2471 if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never)
2472 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y,
2473 N1.getOperand(2));
2476 // (uaddo X, Carry) -> (addcarry X, 0, Carry)
2477 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
2478 if (SDValue Carry = getAsCarry(TLI, N1))
2479 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0,
2480 DAG.getConstant(0, SDLoc(N), VT), Carry);
2482 return SDValue();
2485 SDValue DAGCombiner::visitADDE(SDNode *N) {
2486 SDValue N0 = N->getOperand(0);
2487 SDValue N1 = N->getOperand(1);
2488 SDValue CarryIn = N->getOperand(2);
2490 // canonicalize constant to RHS
2491 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2492 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2493 if (N0C && !N1C)
2494 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
2495 N1, N0, CarryIn);
2497 // fold (adde x, y, false) -> (addc x, y)
2498 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
2499 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
2501 return SDValue();
2504 SDValue DAGCombiner::visitADDCARRY(SDNode *N) {
2505 SDValue N0 = N->getOperand(0);
2506 SDValue N1 = N->getOperand(1);
2507 SDValue CarryIn = N->getOperand(2);
2508 SDLoc DL(N);
2510 // canonicalize constant to RHS
2511 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2512 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2513 if (N0C && !N1C)
2514 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn);
2516 // fold (addcarry x, y, false) -> (uaddo x, y)
2517 if (isNullConstant(CarryIn)) {
2518 if (!LegalOperations ||
2519 TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0)))
2520 return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1);
2523 EVT CarryVT = CarryIn.getValueType();
2525 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
2526 if (isNullConstant(N0) && isNullConstant(N1)) {
2527 EVT VT = N0.getValueType();
2528 SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT);
2529 AddToWorklist(CarryExt.getNode());
2530 return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt,
2531 DAG.getConstant(1, DL, VT)),
2532 DAG.getConstant(0, DL, CarryVT));
2535 // fold (addcarry (xor a, -1), 0, !b) -> (subcarry 0, a, b) and flip carry.
2536 if (isBitwiseNot(N0) && isNullConstant(N1) &&
2537 isBooleanFlip(CarryIn, CarryVT, TLI)) {
2538 SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(),
2539 DAG.getConstant(0, DL, N0.getValueType()),
2540 N0.getOperand(0), CarryIn.getOperand(0));
2541 return CombineTo(N, Sub,
2542 flipBoolean(Sub.getValue(1), DL, CarryVT, DAG, TLI));
2545 if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N))
2546 return Combined;
2548 if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N))
2549 return Combined;
2551 return SDValue();
2554 SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn,
2555 SDNode *N) {
2556 // Iff the flag result is dead:
2557 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry)
2558 if ((N0.getOpcode() == ISD::ADD ||
2559 (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0)) &&
2560 isNullConstant(N1) && !N->hasAnyUseOfValue(1))
2561 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(),
2562 N0.getOperand(0), N0.getOperand(1), CarryIn);
2565 * When one of the addcarry argument is itself a carry, we may be facing
2566 * a diamond carry propagation. In which case we try to transform the DAG
2567 * to ensure linear carry propagation if that is possible.
2569 * We are trying to get:
2570 * (addcarry X, 0, (addcarry A, B, Z):Carry)
2572 if (auto Y = getAsCarry(TLI, N1)) {
2574 * (uaddo A, B)
2575 * / \
2576 * Carry Sum
2577 * | \
2578 * | (addcarry *, 0, Z)
2579 * | /
2580 * \ Carry
2581 * | /
2582 * (addcarry X, *, *)
2584 if (Y.getOpcode() == ISD::UADDO &&
2585 CarryIn.getResNo() == 1 &&
2586 CarryIn.getOpcode() == ISD::ADDCARRY &&
2587 isNullConstant(CarryIn.getOperand(1)) &&
2588 CarryIn.getOperand(0) == Y.getValue(0)) {
2589 auto NewY = DAG.getNode(ISD::ADDCARRY, SDLoc(N), Y->getVTList(),
2590 Y.getOperand(0), Y.getOperand(1),
2591 CarryIn.getOperand(2));
2592 AddToWorklist(NewY.getNode());
2593 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0,
2594 DAG.getConstant(0, SDLoc(N), N0.getValueType()),
2595 NewY.getValue(1));
2599 return SDValue();
2602 // Since it may not be valid to emit a fold to zero for vector initializers
2603 // check if we can before folding.
2604 static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT,
2605 SelectionDAG &DAG, bool LegalOperations) {
2606 if (!VT.isVector())
2607 return DAG.getConstant(0, DL, VT);
2608 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
2609 return DAG.getConstant(0, DL, VT);
2610 return SDValue();
2613 SDValue DAGCombiner::visitSUB(SDNode *N) {
2614 SDValue N0 = N->getOperand(0);
2615 SDValue N1 = N->getOperand(1);
2616 EVT VT = N0.getValueType();
2617 SDLoc DL(N);
2619 // fold vector ops
2620 if (VT.isVector()) {
2621 if (SDValue FoldedVOp = SimplifyVBinOp(N))
2622 return FoldedVOp;
2624 // fold (sub x, 0) -> x, vector edition
2625 if (ISD::isBuildVectorAllZeros(N1.getNode()))
2626 return N0;
2629 // fold (sub x, x) -> 0
2630 // FIXME: Refactor this and xor and other similar operations together.
2631 if (N0 == N1)
2632 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
2633 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
2634 DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
2635 // fold (sub c1, c2) -> c1-c2
2636 return DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(),
2637 N1.getNode());
2640 if (SDValue NewSel = foldBinOpIntoSelect(N))
2641 return NewSel;
2643 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
2645 // fold (sub x, c) -> (add x, -c)
2646 if (N1C) {
2647 return DAG.getNode(ISD::ADD, DL, VT, N0,
2648 DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
2651 if (isNullOrNullSplat(N0)) {
2652 unsigned BitWidth = VT.getScalarSizeInBits();
2653 // Right-shifting everything out but the sign bit followed by negation is
2654 // the same as flipping arithmetic/logical shift type without the negation:
2655 // -(X >>u 31) -> (X >>s 31)
2656 // -(X >>s 31) -> (X >>u 31)
2657 if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) {
2658 ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1));
2659 if (ShiftAmt && ShiftAmt->getZExtValue() == BitWidth - 1) {
2660 auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA;
2661 if (!LegalOperations || TLI.isOperationLegal(NewSh, VT))
2662 return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1));
2666 // 0 - X --> 0 if the sub is NUW.
2667 if (N->getFlags().hasNoUnsignedWrap())
2668 return N0;
2670 if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) {
2671 // N1 is either 0 or the minimum signed value. If the sub is NSW, then
2672 // N1 must be 0 because negating the minimum signed value is undefined.
2673 if (N->getFlags().hasNoSignedWrap())
2674 return N0;
2676 // 0 - X --> X if X is 0 or the minimum signed value.
2677 return N1;
2681 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
2682 if (isAllOnesOrAllOnesSplat(N0))
2683 return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
2685 // fold (A - (0-B)) -> A+B
2686 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
2687 return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1));
2689 // fold A-(A-B) -> B
2690 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
2691 return N1.getOperand(1);
2693 // fold (A+B)-A -> B
2694 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
2695 return N0.getOperand(1);
2697 // fold (A+B)-B -> A
2698 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
2699 return N0.getOperand(0);
2701 // fold C2-(A+C1) -> (C2-C1)-A
2702 if (N1.getOpcode() == ISD::ADD) {
2703 SDValue N11 = N1.getOperand(1);
2704 if (isConstantOrConstantVector(N0, /* NoOpaques */ true) &&
2705 isConstantOrConstantVector(N11, /* NoOpaques */ true)) {
2706 SDValue NewC = DAG.getNode(ISD::SUB, DL, VT, N0, N11);
2707 return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0));
2711 // fold ((A+(B+or-C))-B) -> A+or-C
2712 if (N0.getOpcode() == ISD::ADD &&
2713 (N0.getOperand(1).getOpcode() == ISD::SUB ||
2714 N0.getOperand(1).getOpcode() == ISD::ADD) &&
2715 N0.getOperand(1).getOperand(0) == N1)
2716 return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0),
2717 N0.getOperand(1).getOperand(1));
2719 // fold ((A+(C+B))-B) -> A+C
2720 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD &&
2721 N0.getOperand(1).getOperand(1) == N1)
2722 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0),
2723 N0.getOperand(1).getOperand(0));
2725 // fold ((A-(B-C))-C) -> A-B
2726 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB &&
2727 N0.getOperand(1).getOperand(1) == N1)
2728 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
2729 N0.getOperand(1).getOperand(0));
2731 // fold (A-(B-C)) -> A+(C-B)
2732 if (N1.getOpcode() == ISD::SUB && N1.hasOneUse())
2733 return DAG.getNode(ISD::ADD, DL, VT, N0,
2734 DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1),
2735 N1.getOperand(0)));
2737 // fold (X - (-Y * Z)) -> (X + (Y * Z))
2738 if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) {
2739 if (N1.getOperand(0).getOpcode() == ISD::SUB &&
2740 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) {
2741 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
2742 N1.getOperand(0).getOperand(1),
2743 N1.getOperand(1));
2744 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
2746 if (N1.getOperand(1).getOpcode() == ISD::SUB &&
2747 isNullOrNullSplat(N1.getOperand(1).getOperand(0))) {
2748 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
2749 N1.getOperand(0),
2750 N1.getOperand(1).getOperand(1));
2751 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
2755 // If either operand of a sub is undef, the result is undef
2756 if (N0.isUndef())
2757 return N0;
2758 if (N1.isUndef())
2759 return N1;
2761 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
2762 return V;
2764 if (SDValue V = foldAddSubOfSignBit(N, DAG))
2765 return V;
2767 if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N)))
2768 return V;
2770 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1'
2771 // rather than 'sub 0/1' (the sext should get folded).
2772 // sub X, (zext i1 Y) --> add X, (sext i1 Y)
2773 if (N1.getOpcode() == ISD::ZERO_EXTEND &&
2774 N1.getOperand(0).getScalarValueSizeInBits() == 1 &&
2775 TLI.getBooleanContents(VT) ==
2776 TargetLowering::ZeroOrNegativeOneBooleanContent) {
2777 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0));
2778 return DAG.getNode(ISD::ADD, DL, VT, N0, SExt);
2781 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X)
2782 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
2783 if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) {
2784 SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1);
2785 SDValue S0 = N1.getOperand(0);
2786 if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) {
2787 unsigned OpSizeInBits = VT.getScalarSizeInBits();
2788 if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1)))
2789 if (C->getAPIntValue() == (OpSizeInBits - 1))
2790 return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0);
2795 // If the relocation model supports it, consider symbol offsets.
2796 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
2797 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
2798 // fold (sub Sym, c) -> Sym-c
2799 if (N1C && GA->getOpcode() == ISD::GlobalAddress)
2800 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
2801 GA->getOffset() -
2802 (uint64_t)N1C->getSExtValue());
2803 // fold (sub Sym+c1, Sym+c2) -> c1-c2
2804 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
2805 if (GA->getGlobal() == GB->getGlobal())
2806 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
2807 DL, VT);
2810 // sub X, (sextinreg Y i1) -> add X, (and Y 1)
2811 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
2812 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
2813 if (TN->getVT() == MVT::i1) {
2814 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
2815 DAG.getConstant(1, DL, VT));
2816 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
2820 // Prefer an add for more folding potential and possibly better codegen:
2821 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
2822 if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) {
2823 SDValue ShAmt = N1.getOperand(1);
2824 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
2825 if (ShAmtC && ShAmtC->getZExtValue() == N1.getScalarValueSizeInBits() - 1) {
2826 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt);
2827 return DAG.getNode(ISD::ADD, DL, VT, N0, SRA);
2831 return SDValue();
2834 SDValue DAGCombiner::visitSUBSAT(SDNode *N) {
2835 SDValue N0 = N->getOperand(0);
2836 SDValue N1 = N->getOperand(1);
2837 EVT VT = N0.getValueType();
2838 SDLoc DL(N);
2840 // fold vector ops
2841 if (VT.isVector()) {
2842 // TODO SimplifyVBinOp
2844 // fold (sub_sat x, 0) -> x, vector edition
2845 if (ISD::isBuildVectorAllZeros(N1.getNode()))
2846 return N0;
2849 // fold (sub_sat x, undef) -> 0
2850 if (N0.isUndef() || N1.isUndef())
2851 return DAG.getConstant(0, DL, VT);
2853 // fold (sub_sat x, x) -> 0
2854 if (N0 == N1)
2855 return DAG.getConstant(0, DL, VT);
2857 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
2858 DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
2859 // fold (sub_sat c1, c2) -> c3
2860 return DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, N0.getNode(),
2861 N1.getNode());
2864 // fold (sub_sat x, 0) -> x
2865 if (isNullConstant(N1))
2866 return N0;
2868 return SDValue();
2871 SDValue DAGCombiner::visitSUBC(SDNode *N) {
2872 SDValue N0 = N->getOperand(0);
2873 SDValue N1 = N->getOperand(1);
2874 EVT VT = N0.getValueType();
2875 SDLoc DL(N);
2877 // If the flag result is dead, turn this into an SUB.
2878 if (!N->hasAnyUseOfValue(1))
2879 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
2880 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2882 // fold (subc x, x) -> 0 + no borrow
2883 if (N0 == N1)
2884 return CombineTo(N, DAG.getConstant(0, DL, VT),
2885 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2887 // fold (subc x, 0) -> x + no borrow
2888 if (isNullConstant(N1))
2889 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2891 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
2892 if (isAllOnesConstant(N0))
2893 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
2894 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2896 return SDValue();
2899 SDValue DAGCombiner::visitUSUBO(SDNode *N) {
2900 SDValue N0 = N->getOperand(0);
2901 SDValue N1 = N->getOperand(1);
2902 EVT VT = N0.getValueType();
2903 if (VT.isVector())
2904 return SDValue();
2906 EVT CarryVT = N->getValueType(1);
2907 SDLoc DL(N);
2909 // If the flag result is dead, turn this into an SUB.
2910 if (!N->hasAnyUseOfValue(1))
2911 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
2912 DAG.getUNDEF(CarryVT));
2914 // fold (usubo x, x) -> 0 + no borrow
2915 if (N0 == N1)
2916 return CombineTo(N, DAG.getConstant(0, DL, VT),
2917 DAG.getConstant(0, DL, CarryVT));
2919 // fold (usubo x, 0) -> x + no borrow
2920 if (isNullConstant(N1))
2921 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
2923 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
2924 if (isAllOnesConstant(N0))
2925 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
2926 DAG.getConstant(0, DL, CarryVT));
2928 return SDValue();
2931 SDValue DAGCombiner::visitSUBE(SDNode *N) {
2932 SDValue N0 = N->getOperand(0);
2933 SDValue N1 = N->getOperand(1);
2934 SDValue CarryIn = N->getOperand(2);
2936 // fold (sube x, y, false) -> (subc x, y)
2937 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
2938 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
2940 return SDValue();
2943 SDValue DAGCombiner::visitSUBCARRY(SDNode *N) {
2944 SDValue N0 = N->getOperand(0);
2945 SDValue N1 = N->getOperand(1);
2946 SDValue CarryIn = N->getOperand(2);
2948 // fold (subcarry x, y, false) -> (usubo x, y)
2949 if (isNullConstant(CarryIn)) {
2950 if (!LegalOperations ||
2951 TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0)))
2952 return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1);
2955 return SDValue();
2958 SDValue DAGCombiner::visitMUL(SDNode *N) {
2959 SDValue N0 = N->getOperand(0);
2960 SDValue N1 = N->getOperand(1);
2961 EVT VT = N0.getValueType();
2963 // fold (mul x, undef) -> 0
2964 if (N0.isUndef() || N1.isUndef())
2965 return DAG.getConstant(0, SDLoc(N), VT);
2967 bool N0IsConst = false;
2968 bool N1IsConst = false;
2969 bool N1IsOpaqueConst = false;
2970 bool N0IsOpaqueConst = false;
2971 APInt ConstValue0, ConstValue1;
2972 // fold vector ops
2973 if (VT.isVector()) {
2974 if (SDValue FoldedVOp = SimplifyVBinOp(N))
2975 return FoldedVOp;
2977 N0IsConst = ISD::isConstantSplatVector(N0.getNode(), ConstValue0);
2978 N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1);
2979 assert((!N0IsConst ||
2980 ConstValue0.getBitWidth() == VT.getScalarSizeInBits()) &&
2981 "Splat APInt should be element width");
2982 assert((!N1IsConst ||
2983 ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) &&
2984 "Splat APInt should be element width");
2985 } else {
2986 N0IsConst = isa<ConstantSDNode>(N0);
2987 if (N0IsConst) {
2988 ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue();
2989 N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque();
2991 N1IsConst = isa<ConstantSDNode>(N1);
2992 if (N1IsConst) {
2993 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue();
2994 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
2998 // fold (mul c1, c2) -> c1*c2
2999 if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst)
3000 return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT,
3001 N0.getNode(), N1.getNode());
3003 // canonicalize constant to RHS (vector doesn't have to splat)
3004 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3005 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
3006 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
3007 // fold (mul x, 0) -> 0
3008 if (N1IsConst && ConstValue1.isNullValue())
3009 return N1;
3010 // fold (mul x, 1) -> x
3011 if (N1IsConst && ConstValue1.isOneValue())
3012 return N0;
3014 if (SDValue NewSel = foldBinOpIntoSelect(N))
3015 return NewSel;
3017 // fold (mul x, -1) -> 0-x
3018 if (N1IsConst && ConstValue1.isAllOnesValue()) {
3019 SDLoc DL(N);
3020 return DAG.getNode(ISD::SUB, DL, VT,
3021 DAG.getConstant(0, DL, VT), N0);
3023 // fold (mul x, (1 << c)) -> x << c
3024 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
3025 DAG.isKnownToBeAPowerOfTwo(N1) &&
3026 (!VT.isVector() || Level <= AfterLegalizeVectorOps)) {
3027 SDLoc DL(N);
3028 SDValue LogBase2 = BuildLogBase2(N1, DL);
3029 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
3030 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
3031 return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc);
3033 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
3034 if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) {
3035 unsigned Log2Val = (-ConstValue1).logBase2();
3036 SDLoc DL(N);
3037 // FIXME: If the input is something that is easily negated (e.g. a
3038 // single-use add), we should put the negate there.
3039 return DAG.getNode(ISD::SUB, DL, VT,
3040 DAG.getConstant(0, DL, VT),
3041 DAG.getNode(ISD::SHL, DL, VT, N0,
3042 DAG.getConstant(Log2Val, DL,
3043 getShiftAmountTy(N0.getValueType()))));
3046 // Try to transform multiply-by-(power-of-2 +/- 1) into shift and add/sub.
3047 // mul x, (2^N + 1) --> add (shl x, N), x
3048 // mul x, (2^N - 1) --> sub (shl x, N), x
3049 // Examples: x * 33 --> (x << 5) + x
3050 // x * 15 --> (x << 4) - x
3051 // x * -33 --> -((x << 5) + x)
3052 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
3053 if (N1IsConst && TLI.decomposeMulByConstant(VT, N1)) {
3054 // TODO: We could handle more general decomposition of any constant by
3055 // having the target set a limit on number of ops and making a
3056 // callback to determine that sequence (similar to sqrt expansion).
3057 unsigned MathOp = ISD::DELETED_NODE;
3058 APInt MulC = ConstValue1.abs();
3059 if ((MulC - 1).isPowerOf2())
3060 MathOp = ISD::ADD;
3061 else if ((MulC + 1).isPowerOf2())
3062 MathOp = ISD::SUB;
3064 if (MathOp != ISD::DELETED_NODE) {
3065 unsigned ShAmt = MathOp == ISD::ADD ? (MulC - 1).logBase2()
3066 : (MulC + 1).logBase2();
3067 assert(ShAmt > 0 && ShAmt < VT.getScalarSizeInBits() &&
3068 "Not expecting multiply-by-constant that could have simplified");
3069 SDLoc DL(N);
3070 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, N0,
3071 DAG.getConstant(ShAmt, DL, VT));
3072 SDValue R = DAG.getNode(MathOp, DL, VT, Shl, N0);
3073 if (ConstValue1.isNegative())
3074 R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R);
3075 return R;
3079 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
3080 if (N0.getOpcode() == ISD::SHL &&
3081 isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
3082 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
3083 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1));
3084 if (isConstantOrConstantVector(C3))
3085 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3);
3088 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
3089 // use.
3091 SDValue Sh(nullptr, 0), Y(nullptr, 0);
3093 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
3094 if (N0.getOpcode() == ISD::SHL &&
3095 isConstantOrConstantVector(N0.getOperand(1)) &&
3096 N0.getNode()->hasOneUse()) {
3097 Sh = N0; Y = N1;
3098 } else if (N1.getOpcode() == ISD::SHL &&
3099 isConstantOrConstantVector(N1.getOperand(1)) &&
3100 N1.getNode()->hasOneUse()) {
3101 Sh = N1; Y = N0;
3104 if (Sh.getNode()) {
3105 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y);
3106 return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1));
3110 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
3111 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
3112 N0.getOpcode() == ISD::ADD &&
3113 DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
3114 isMulAddWithConstProfitable(N, N0, N1))
3115 return DAG.getNode(ISD::ADD, SDLoc(N), VT,
3116 DAG.getNode(ISD::MUL, SDLoc(N0), VT,
3117 N0.getOperand(0), N1),
3118 DAG.getNode(ISD::MUL, SDLoc(N1), VT,
3119 N0.getOperand(1), N1));
3121 // reassociate mul
3122 if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags()))
3123 return RMUL;
3125 return SDValue();
3128 /// Return true if divmod libcall is available.
3129 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
3130 const TargetLowering &TLI) {
3131 RTLIB::Libcall LC;
3132 EVT NodeType = Node->getValueType(0);
3133 if (!NodeType.isSimple())
3134 return false;
3135 switch (NodeType.getSimpleVT().SimpleTy) {
3136 default: return false; // No libcall for vector types.
3137 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
3138 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
3139 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
3140 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
3141 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
3144 return TLI.getLibcallName(LC) != nullptr;
3147 /// Issue divrem if both quotient and remainder are needed.
3148 SDValue DAGCombiner::useDivRem(SDNode *Node) {
3149 if (Node->use_empty())
3150 return SDValue(); // This is a dead node, leave it alone.
3152 unsigned Opcode = Node->getOpcode();
3153 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM);
3154 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3156 // DivMod lib calls can still work on non-legal types if using lib-calls.
3157 EVT VT = Node->getValueType(0);
3158 if (VT.isVector() || !VT.isInteger())
3159 return SDValue();
3161 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT))
3162 return SDValue();
3164 // If DIVREM is going to get expanded into a libcall,
3165 // but there is no libcall available, then don't combine.
3166 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) &&
3167 !isDivRemLibcallAvailable(Node, isSigned, TLI))
3168 return SDValue();
3170 // If div is legal, it's better to do the normal expansion
3171 unsigned OtherOpcode = 0;
3172 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) {
3173 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM;
3174 if (TLI.isOperationLegalOrCustom(Opcode, VT))
3175 return SDValue();
3176 } else {
3177 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
3178 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT))
3179 return SDValue();
3182 SDValue Op0 = Node->getOperand(0);
3183 SDValue Op1 = Node->getOperand(1);
3184 SDValue combined;
3185 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
3186 UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
3187 SDNode *User = *UI;
3188 if (User == Node || User->getOpcode() == ISD::DELETED_NODE ||
3189 User->use_empty())
3190 continue;
3191 // Convert the other matching node(s), too;
3192 // otherwise, the DIVREM may get target-legalized into something
3193 // target-specific that we won't be able to recognize.
3194 unsigned UserOpc = User->getOpcode();
3195 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) &&
3196 User->getOperand(0) == Op0 &&
3197 User->getOperand(1) == Op1) {
3198 if (!combined) {
3199 if (UserOpc == OtherOpcode) {
3200 SDVTList VTs = DAG.getVTList(VT, VT);
3201 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1);
3202 } else if (UserOpc == DivRemOpc) {
3203 combined = SDValue(User, 0);
3204 } else {
3205 assert(UserOpc == Opcode);
3206 continue;
3209 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV)
3210 CombineTo(User, combined);
3211 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM)
3212 CombineTo(User, combined.getValue(1));
3215 return combined;
3218 static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) {
3219 SDValue N0 = N->getOperand(0);
3220 SDValue N1 = N->getOperand(1);
3221 EVT VT = N->getValueType(0);
3222 SDLoc DL(N);
3224 unsigned Opc = N->getOpcode();
3225 bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc);
3226 ConstantSDNode *N1C = isConstOrConstSplat(N1);
3228 // X / undef -> undef
3229 // X % undef -> undef
3230 // X / 0 -> undef
3231 // X % 0 -> undef
3232 // NOTE: This includes vectors where any divisor element is zero/undef.
3233 if (DAG.isUndef(Opc, {N0, N1}))
3234 return DAG.getUNDEF(VT);
3236 // undef / X -> 0
3237 // undef % X -> 0
3238 if (N0.isUndef())
3239 return DAG.getConstant(0, DL, VT);
3241 // 0 / X -> 0
3242 // 0 % X -> 0
3243 ConstantSDNode *N0C = isConstOrConstSplat(N0);
3244 if (N0C && N0C->isNullValue())
3245 return N0;
3247 // X / X -> 1
3248 // X % X -> 0
3249 if (N0 == N1)
3250 return DAG.getConstant(IsDiv ? 1 : 0, DL, VT);
3252 // X / 1 -> X
3253 // X % 1 -> 0
3254 // If this is a boolean op (single-bit element type), we can't have
3255 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
3256 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume
3257 // it's a 1.
3258 if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1))
3259 return IsDiv ? N0 : DAG.getConstant(0, DL, VT);
3261 return SDValue();
3264 SDValue DAGCombiner::visitSDIV(SDNode *N) {
3265 SDValue N0 = N->getOperand(0);
3266 SDValue N1 = N->getOperand(1);
3267 EVT VT = N->getValueType(0);
3268 EVT CCVT = getSetCCResultType(VT);
3270 // fold vector ops
3271 if (VT.isVector())
3272 if (SDValue FoldedVOp = SimplifyVBinOp(N))
3273 return FoldedVOp;
3275 SDLoc DL(N);
3277 // fold (sdiv c1, c2) -> c1/c2
3278 ConstantSDNode *N0C = isConstOrConstSplat(N0);
3279 ConstantSDNode *N1C = isConstOrConstSplat(N1);
3280 if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque())
3281 return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C);
3282 // fold (sdiv X, -1) -> 0-X
3283 if (N1C && N1C->isAllOnesValue())
3284 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0);
3285 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
3286 if (N1C && N1C->getAPIntValue().isMinSignedValue())
3287 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
3288 DAG.getConstant(1, DL, VT),
3289 DAG.getConstant(0, DL, VT));
3291 if (SDValue V = simplifyDivRem(N, DAG))
3292 return V;
3294 if (SDValue NewSel = foldBinOpIntoSelect(N))
3295 return NewSel;
3297 // If we know the sign bits of both operands are zero, strength reduce to a
3298 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
3299 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
3300 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
3302 if (SDValue V = visitSDIVLike(N0, N1, N)) {
3303 // If the corresponding remainder node exists, update its users with
3304 // (Dividend - (Quotient * Divisor).
3305 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(),
3306 { N0, N1 })) {
3307 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
3308 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
3309 AddToWorklist(Mul.getNode());
3310 AddToWorklist(Sub.getNode());
3311 CombineTo(RemNode, Sub);
3313 return V;
3316 // sdiv, srem -> sdivrem
3317 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
3318 // true. Otherwise, we break the simplification logic in visitREM().
3319 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3320 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
3321 if (SDValue DivRem = useDivRem(N))
3322 return DivRem;
3324 return SDValue();
3327 SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) {
3328 SDLoc DL(N);
3329 EVT VT = N->getValueType(0);
3330 EVT CCVT = getSetCCResultType(VT);
3331 unsigned BitWidth = VT.getScalarSizeInBits();
3333 // Helper for determining whether a value is a power-2 constant scalar or a
3334 // vector of such elements.
3335 auto IsPowerOfTwo = [](ConstantSDNode *C) {
3336 if (C->isNullValue() || C->isOpaque())
3337 return false;
3338 if (C->getAPIntValue().isPowerOf2())
3339 return true;
3340 if ((-C->getAPIntValue()).isPowerOf2())
3341 return true;
3342 return false;
3345 // fold (sdiv X, pow2) -> simple ops after legalize
3346 // FIXME: We check for the exact bit here because the generic lowering gives
3347 // better results in that case. The target-specific lowering should learn how
3348 // to handle exact sdivs efficiently.
3349 if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) {
3350 // Target-specific implementation of sdiv x, pow2.
3351 if (SDValue Res = BuildSDIVPow2(N))
3352 return Res;
3354 // Create constants that are functions of the shift amount value.
3355 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
3356 SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy);
3357 SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1);
3358 C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy);
3359 SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1);
3360 if (!isConstantOrConstantVector(Inexact))
3361 return SDValue();
3363 // Splat the sign bit into the register
3364 SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0,
3365 DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy));
3366 AddToWorklist(Sign.getNode());
3368 // Add (N0 < 0) ? abs2 - 1 : 0;
3369 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact);
3370 AddToWorklist(Srl.getNode());
3371 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl);
3372 AddToWorklist(Add.getNode());
3373 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1);
3374 AddToWorklist(Sra.getNode());
3376 // Special case: (sdiv X, 1) -> X
3377 // Special Case: (sdiv X, -1) -> 0-X
3378 SDValue One = DAG.getConstant(1, DL, VT);
3379 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
3380 SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ);
3381 SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ);
3382 SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes);
3383 Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra);
3385 // If dividing by a positive value, we're done. Otherwise, the result must
3386 // be negated.
3387 SDValue Zero = DAG.getConstant(0, DL, VT);
3388 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra);
3390 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
3391 SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT);
3392 SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra);
3393 return Res;
3396 // If integer divide is expensive and we satisfy the requirements, emit an
3397 // alternate sequence. Targets may check function attributes for size/speed
3398 // trade-offs.
3399 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3400 if (isConstantOrConstantVector(N1) &&
3401 !TLI.isIntDivCheap(N->getValueType(0), Attr))
3402 if (SDValue Op = BuildSDIV(N))
3403 return Op;
3405 return SDValue();
3408 SDValue DAGCombiner::visitUDIV(SDNode *N) {
3409 SDValue N0 = N->getOperand(0);
3410 SDValue N1 = N->getOperand(1);
3411 EVT VT = N->getValueType(0);
3412 EVT CCVT = getSetCCResultType(VT);
3414 // fold vector ops
3415 if (VT.isVector())
3416 if (SDValue FoldedVOp = SimplifyVBinOp(N))
3417 return FoldedVOp;
3419 SDLoc DL(N);
3421 // fold (udiv c1, c2) -> c1/c2
3422 ConstantSDNode *N0C = isConstOrConstSplat(N0);
3423 ConstantSDNode *N1C = isConstOrConstSplat(N1);
3424 if (N0C && N1C)
3425 if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT,
3426 N0C, N1C))
3427 return Folded;
3428 // fold (udiv X, -1) -> select(X == -1, 1, 0)
3429 if (N1C && N1C->getAPIntValue().isAllOnesValue())
3430 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
3431 DAG.getConstant(1, DL, VT),
3432 DAG.getConstant(0, DL, VT));
3434 if (SDValue V = simplifyDivRem(N, DAG))
3435 return V;
3437 if (SDValue NewSel = foldBinOpIntoSelect(N))
3438 return NewSel;
3440 if (SDValue V = visitUDIVLike(N0, N1, N)) {
3441 // If the corresponding remainder node exists, update its users with
3442 // (Dividend - (Quotient * Divisor).
3443 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(),
3444 { N0, N1 })) {
3445 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
3446 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
3447 AddToWorklist(Mul.getNode());
3448 AddToWorklist(Sub.getNode());
3449 CombineTo(RemNode, Sub);
3451 return V;
3454 // sdiv, srem -> sdivrem
3455 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
3456 // true. Otherwise, we break the simplification logic in visitREM().
3457 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3458 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
3459 if (SDValue DivRem = useDivRem(N))
3460 return DivRem;
3462 return SDValue();
3465 SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) {
3466 SDLoc DL(N);
3467 EVT VT = N->getValueType(0);
3469 // fold (udiv x, (1 << c)) -> x >>u c
3470 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
3471 DAG.isKnownToBeAPowerOfTwo(N1)) {
3472 SDValue LogBase2 = BuildLogBase2(N1, DL);
3473 AddToWorklist(LogBase2.getNode());
3475 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
3476 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
3477 AddToWorklist(Trunc.getNode());
3478 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
3481 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
3482 if (N1.getOpcode() == ISD::SHL) {
3483 SDValue N10 = N1.getOperand(0);
3484 if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) &&
3485 DAG.isKnownToBeAPowerOfTwo(N10)) {
3486 SDValue LogBase2 = BuildLogBase2(N10, DL);
3487 AddToWorklist(LogBase2.getNode());
3489 EVT ADDVT = N1.getOperand(1).getValueType();
3490 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT);
3491 AddToWorklist(Trunc.getNode());
3492 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc);
3493 AddToWorklist(Add.getNode());
3494 return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
3498 // fold (udiv x, c) -> alternate
3499 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3500 if (isConstantOrConstantVector(N1) &&
3501 !TLI.isIntDivCheap(N->getValueType(0), Attr))
3502 if (SDValue Op = BuildUDIV(N))
3503 return Op;
3505 return SDValue();
3508 // handles ISD::SREM and ISD::UREM
3509 SDValue DAGCombiner::visitREM(SDNode *N) {
3510 unsigned Opcode = N->getOpcode();
3511 SDValue N0 = N->getOperand(0);
3512 SDValue N1 = N->getOperand(1);
3513 EVT VT = N->getValueType(0);
3514 EVT CCVT = getSetCCResultType(VT);
3516 bool isSigned = (Opcode == ISD::SREM);
3517 SDLoc DL(N);
3519 // fold (rem c1, c2) -> c1%c2
3520 ConstantSDNode *N0C = isConstOrConstSplat(N0);
3521 ConstantSDNode *N1C = isConstOrConstSplat(N1);
3522 if (N0C && N1C)
3523 if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C))
3524 return Folded;
3525 // fold (urem X, -1) -> select(X == -1, 0, x)
3526 if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue())
3527 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
3528 DAG.getConstant(0, DL, VT), N0);
3530 if (SDValue V = simplifyDivRem(N, DAG))
3531 return V;
3533 if (SDValue NewSel = foldBinOpIntoSelect(N))
3534 return NewSel;
3536 if (isSigned) {
3537 // If we know the sign bits of both operands are zero, strength reduce to a
3538 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
3539 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
3540 return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
3541 } else {
3542 SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
3543 if (DAG.isKnownToBeAPowerOfTwo(N1)) {
3544 // fold (urem x, pow2) -> (and x, pow2-1)
3545 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
3546 AddToWorklist(Add.getNode());
3547 return DAG.getNode(ISD::AND, DL, VT, N0, Add);
3549 if (N1.getOpcode() == ISD::SHL &&
3550 DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) {
3551 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
3552 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
3553 AddToWorklist(Add.getNode());
3554 return DAG.getNode(ISD::AND, DL, VT, N0, Add);
3558 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3560 // If X/C can be simplified by the division-by-constant logic, lower
3561 // X%C to the equivalent of X-X/C*C.
3562 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
3563 // speculative DIV must not cause a DIVREM conversion. We guard against this
3564 // by skipping the simplification if isIntDivCheap(). When div is not cheap,
3565 // combine will not return a DIVREM. Regardless, checking cheapness here
3566 // makes sense since the simplification results in fatter code.
3567 if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) {
3568 SDValue OptimizedDiv =
3569 isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N);
3570 if (OptimizedDiv.getNode()) {
3571 // If the equivalent Div node also exists, update its users.
3572 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
3573 if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(),
3574 { N0, N1 }))
3575 CombineTo(DivNode, OptimizedDiv);
3576 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1);
3577 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
3578 AddToWorklist(OptimizedDiv.getNode());
3579 AddToWorklist(Mul.getNode());
3580 return Sub;
3584 // sdiv, srem -> sdivrem
3585 if (SDValue DivRem = useDivRem(N))
3586 return DivRem.getValue(1);
3588 return SDValue();
3591 SDValue DAGCombiner::visitMULHS(SDNode *N) {
3592 SDValue N0 = N->getOperand(0);
3593 SDValue N1 = N->getOperand(1);
3594 EVT VT = N->getValueType(0);
3595 SDLoc DL(N);
3597 if (VT.isVector()) {
3598 // fold (mulhs x, 0) -> 0
3599 if (ISD::isBuildVectorAllZeros(N1.getNode()))
3600 return N1;
3601 if (ISD::isBuildVectorAllZeros(N0.getNode()))
3602 return N0;
3605 // fold (mulhs x, 0) -> 0
3606 if (isNullConstant(N1))
3607 return N1;
3608 // fold (mulhs x, 1) -> (sra x, size(x)-1)
3609 if (isOneConstant(N1))
3610 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0,
3611 DAG.getConstant(N0.getValueSizeInBits() - 1, DL,
3612 getShiftAmountTy(N0.getValueType())));
3614 // fold (mulhs x, undef) -> 0
3615 if (N0.isUndef() || N1.isUndef())
3616 return DAG.getConstant(0, DL, VT);
3618 // If the type twice as wide is legal, transform the mulhs to a wider multiply
3619 // plus a shift.
3620 if (VT.isSimple() && !VT.isVector()) {
3621 MVT Simple = VT.getSimpleVT();
3622 unsigned SimpleSize = Simple.getSizeInBits();
3623 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
3624 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
3625 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
3626 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
3627 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
3628 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
3629 DAG.getConstant(SimpleSize, DL,
3630 getShiftAmountTy(N1.getValueType())));
3631 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
3635 return SDValue();
3638 SDValue DAGCombiner::visitMULHU(SDNode *N) {
3639 SDValue N0 = N->getOperand(0);
3640 SDValue N1 = N->getOperand(1);
3641 EVT VT = N->getValueType(0);
3642 SDLoc DL(N);
3644 if (VT.isVector()) {
3645 // fold (mulhu x, 0) -> 0
3646 if (ISD::isBuildVectorAllZeros(N1.getNode()))
3647 return N1;
3648 if (ISD::isBuildVectorAllZeros(N0.getNode()))
3649 return N0;
3652 // fold (mulhu x, 0) -> 0
3653 if (isNullConstant(N1))
3654 return N1;
3655 // fold (mulhu x, 1) -> 0
3656 if (isOneConstant(N1))
3657 return DAG.getConstant(0, DL, N0.getValueType());
3658 // fold (mulhu x, undef) -> 0
3659 if (N0.isUndef() || N1.isUndef())
3660 return DAG.getConstant(0, DL, VT);
3662 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
3663 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
3664 DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) {
3665 SDLoc DL(N);
3666 unsigned NumEltBits = VT.getScalarSizeInBits();
3667 SDValue LogBase2 = BuildLogBase2(N1, DL);
3668 SDValue SRLAmt = DAG.getNode(
3669 ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2);
3670 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
3671 SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT);
3672 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
3675 // If the type twice as wide is legal, transform the mulhu to a wider multiply
3676 // plus a shift.
3677 if (VT.isSimple() && !VT.isVector()) {
3678 MVT Simple = VT.getSimpleVT();
3679 unsigned SimpleSize = Simple.getSizeInBits();
3680 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
3681 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
3682 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
3683 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
3684 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
3685 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
3686 DAG.getConstant(SimpleSize, DL,
3687 getShiftAmountTy(N1.getValueType())));
3688 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
3692 return SDValue();
3695 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp
3696 /// give the opcodes for the two computations that are being performed. Return
3697 /// true if a simplification was made.
3698 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
3699 unsigned HiOp) {
3700 // If the high half is not needed, just compute the low half.
3701 bool HiExists = N->hasAnyUseOfValue(1);
3702 if (!HiExists && (!LegalOperations ||
3703 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
3704 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
3705 return CombineTo(N, Res, Res);
3708 // If the low half is not needed, just compute the high half.
3709 bool LoExists = N->hasAnyUseOfValue(0);
3710 if (!LoExists && (!LegalOperations ||
3711 TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) {
3712 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
3713 return CombineTo(N, Res, Res);
3716 // If both halves are used, return as it is.
3717 if (LoExists && HiExists)
3718 return SDValue();
3720 // If the two computed results can be simplified separately, separate them.
3721 if (LoExists) {
3722 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
3723 AddToWorklist(Lo.getNode());
3724 SDValue LoOpt = combine(Lo.getNode());
3725 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
3726 (!LegalOperations ||
3727 TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType())))
3728 return CombineTo(N, LoOpt, LoOpt);
3731 if (HiExists) {
3732 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
3733 AddToWorklist(Hi.getNode());
3734 SDValue HiOpt = combine(Hi.getNode());
3735 if (HiOpt.getNode() && HiOpt != Hi &&
3736 (!LegalOperations ||
3737 TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType())))
3738 return CombineTo(N, HiOpt, HiOpt);
3741 return SDValue();
3744 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
3745 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
3746 return Res;
3748 EVT VT = N->getValueType(0);
3749 SDLoc DL(N);
3751 // If the type is twice as wide is legal, transform the mulhu to a wider
3752 // multiply plus a shift.
3753 if (VT.isSimple() && !VT.isVector()) {
3754 MVT Simple = VT.getSimpleVT();
3755 unsigned SimpleSize = Simple.getSizeInBits();
3756 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
3757 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
3758 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
3759 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
3760 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
3761 // Compute the high part as N1.
3762 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
3763 DAG.getConstant(SimpleSize, DL,
3764 getShiftAmountTy(Lo.getValueType())));
3765 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
3766 // Compute the low part as N0.
3767 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
3768 return CombineTo(N, Lo, Hi);
3772 return SDValue();
3775 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
3776 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
3777 return Res;
3779 EVT VT = N->getValueType(0);
3780 SDLoc DL(N);
3782 // If the type is twice as wide is legal, transform the mulhu to a wider
3783 // multiply plus a shift.
3784 if (VT.isSimple() && !VT.isVector()) {
3785 MVT Simple = VT.getSimpleVT();
3786 unsigned SimpleSize = Simple.getSizeInBits();
3787 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
3788 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
3789 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
3790 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
3791 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
3792 // Compute the high part as N1.
3793 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
3794 DAG.getConstant(SimpleSize, DL,
3795 getShiftAmountTy(Lo.getValueType())));
3796 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
3797 // Compute the low part as N0.
3798 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
3799 return CombineTo(N, Lo, Hi);
3803 return SDValue();
3806 SDValue DAGCombiner::visitSMULO(SDNode *N) {
3807 // (smulo x, 2) -> (saddo x, x)
3808 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
3809 if (C2->getAPIntValue() == 2)
3810 return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
3811 N->getOperand(0), N->getOperand(0));
3813 return SDValue();
3816 SDValue DAGCombiner::visitUMULO(SDNode *N) {
3817 // (umulo x, 2) -> (uaddo x, x)
3818 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
3819 if (C2->getAPIntValue() == 2)
3820 return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
3821 N->getOperand(0), N->getOperand(0));
3823 return SDValue();
3826 SDValue DAGCombiner::visitIMINMAX(SDNode *N) {
3827 SDValue N0 = N->getOperand(0);
3828 SDValue N1 = N->getOperand(1);
3829 EVT VT = N0.getValueType();
3831 // fold vector ops
3832 if (VT.isVector())
3833 if (SDValue FoldedVOp = SimplifyVBinOp(N))
3834 return FoldedVOp;
3836 // fold operation with constant operands.
3837 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
3838 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
3839 if (N0C && N1C)
3840 return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C);
3842 // canonicalize constant to RHS
3843 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3844 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
3845 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
3847 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
3848 // Only do this if the current op isn't legal and the flipped is.
3849 unsigned Opcode = N->getOpcode();
3850 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3851 if (!TLI.isOperationLegal(Opcode, VT) &&
3852 (N0.isUndef() || DAG.SignBitIsZero(N0)) &&
3853 (N1.isUndef() || DAG.SignBitIsZero(N1))) {
3854 unsigned AltOpcode;
3855 switch (Opcode) {
3856 case ISD::SMIN: AltOpcode = ISD::UMIN; break;
3857 case ISD::SMAX: AltOpcode = ISD::UMAX; break;
3858 case ISD::UMIN: AltOpcode = ISD::SMIN; break;
3859 case ISD::UMAX: AltOpcode = ISD::SMAX; break;
3860 default: llvm_unreachable("Unknown MINMAX opcode");
3862 if (TLI.isOperationLegal(AltOpcode, VT))
3863 return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1);
3866 return SDValue();
3869 /// If this is a bitwise logic instruction and both operands have the same
3870 /// opcode, try to sink the other opcode after the logic instruction.
3871 SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) {
3872 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
3873 EVT VT = N0.getValueType();
3874 unsigned LogicOpcode = N->getOpcode();
3875 unsigned HandOpcode = N0.getOpcode();
3876 assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR ||
3877 LogicOpcode == ISD::XOR) && "Expected logic opcode");
3878 assert(HandOpcode == N1.getOpcode() && "Bad input!");
3880 // Bail early if none of these transforms apply.
3881 if (N0.getNumOperands() == 0)
3882 return SDValue();
3884 // FIXME: We should check number of uses of the operands to not increase
3885 // the instruction count for all transforms.
3887 // Handle size-changing casts.
3888 SDValue X = N0.getOperand(0);
3889 SDValue Y = N1.getOperand(0);
3890 EVT XVT = X.getValueType();
3891 SDLoc DL(N);
3892 if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND ||
3893 HandOpcode == ISD::SIGN_EXTEND) {
3894 // If both operands have other uses, this transform would create extra
3895 // instructions without eliminating anything.
3896 if (!N0.hasOneUse() && !N1.hasOneUse())
3897 return SDValue();
3898 // We need matching integer source types.
3899 if (XVT != Y.getValueType())
3900 return SDValue();
3901 // Don't create an illegal op during or after legalization. Don't ever
3902 // create an unsupported vector op.
3903 if ((VT.isVector() || LegalOperations) &&
3904 !TLI.isOperationLegalOrCustom(LogicOpcode, XVT))
3905 return SDValue();
3906 // Avoid infinite looping with PromoteIntBinOp.
3907 // TODO: Should we apply desirable/legal constraints to all opcodes?
3908 if (HandOpcode == ISD::ANY_EXTEND && LegalTypes &&
3909 !TLI.isTypeDesirableForOp(LogicOpcode, XVT))
3910 return SDValue();
3911 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
3912 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
3913 return DAG.getNode(HandOpcode, DL, VT, Logic);
3916 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
3917 if (HandOpcode == ISD::TRUNCATE) {
3918 // If both operands have other uses, this transform would create extra
3919 // instructions without eliminating anything.
3920 if (!N0.hasOneUse() && !N1.hasOneUse())
3921 return SDValue();
3922 // We need matching source types.
3923 if (XVT != Y.getValueType())
3924 return SDValue();
3925 // Don't create an illegal op during or after legalization.
3926 if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT))
3927 return SDValue();
3928 // Be extra careful sinking truncate. If it's free, there's no benefit in
3929 // widening a binop. Also, don't create a logic op on an illegal type.
3930 if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT))
3931 return SDValue();
3932 if (!TLI.isTypeLegal(XVT))
3933 return SDValue();
3934 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
3935 return DAG.getNode(HandOpcode, DL, VT, Logic);
3938 // For binops SHL/SRL/SRA/AND:
3939 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
3940 if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL ||
3941 HandOpcode == ISD::SRA || HandOpcode == ISD::AND) &&
3942 N0.getOperand(1) == N1.getOperand(1)) {
3943 // If either operand has other uses, this transform is not an improvement.
3944 if (!N0.hasOneUse() || !N1.hasOneUse())
3945 return SDValue();
3946 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
3947 return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1));
3950 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
3951 if (HandOpcode == ISD::BSWAP) {
3952 // If either operand has other uses, this transform is not an improvement.
3953 if (!N0.hasOneUse() || !N1.hasOneUse())
3954 return SDValue();
3955 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
3956 return DAG.getNode(HandOpcode, DL, VT, Logic);
3959 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
3960 // Only perform this optimization up until type legalization, before
3961 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
3962 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
3963 // we don't want to undo this promotion.
3964 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
3965 // on scalars.
3966 if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) &&
3967 Level <= AfterLegalizeTypes) {
3968 // Input types must be integer and the same.
3969 if (XVT.isInteger() && XVT == Y.getValueType()) {
3970 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
3971 return DAG.getNode(HandOpcode, DL, VT, Logic);
3975 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
3976 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
3977 // If both shuffles use the same mask, and both shuffle within a single
3978 // vector, then it is worthwhile to move the swizzle after the operation.
3979 // The type-legalizer generates this pattern when loading illegal
3980 // vector types from memory. In many cases this allows additional shuffle
3981 // optimizations.
3982 // There are other cases where moving the shuffle after the xor/and/or
3983 // is profitable even if shuffles don't perform a swizzle.
3984 // If both shuffles use the same mask, and both shuffles have the same first
3985 // or second operand, then it might still be profitable to move the shuffle
3986 // after the xor/and/or operation.
3987 if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
3988 auto *SVN0 = cast<ShuffleVectorSDNode>(N0);
3989 auto *SVN1 = cast<ShuffleVectorSDNode>(N1);
3990 assert(X.getValueType() == Y.getValueType() &&
3991 "Inputs to shuffles are not the same type");
3993 // Check that both shuffles use the same mask. The masks are known to be of
3994 // the same length because the result vector type is the same.
3995 // Check also that shuffles have only one use to avoid introducing extra
3996 // instructions.
3997 if (!SVN0->hasOneUse() || !SVN1->hasOneUse() ||
3998 !SVN0->getMask().equals(SVN1->getMask()))
3999 return SDValue();
4001 // Don't try to fold this node if it requires introducing a
4002 // build vector of all zeros that might be illegal at this stage.
4003 SDValue ShOp = N0.getOperand(1);
4004 if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
4005 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
4007 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
4008 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
4009 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT,
4010 N0.getOperand(0), N1.getOperand(0));
4011 return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask());
4014 // Don't try to fold this node if it requires introducing a
4015 // build vector of all zeros that might be illegal at this stage.
4016 ShOp = N0.getOperand(0);
4017 if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
4018 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
4020 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
4021 if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) {
4022 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1),
4023 N1.getOperand(1));
4024 return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask());
4028 return SDValue();
4031 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
4032 SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
4033 const SDLoc &DL) {
4034 SDValue LL, LR, RL, RR, N0CC, N1CC;
4035 if (!isSetCCEquivalent(N0, LL, LR, N0CC) ||
4036 !isSetCCEquivalent(N1, RL, RR, N1CC))
4037 return SDValue();
4039 assert(N0.getValueType() == N1.getValueType() &&
4040 "Unexpected operand types for bitwise logic op");
4041 assert(LL.getValueType() == LR.getValueType() &&
4042 RL.getValueType() == RR.getValueType() &&
4043 "Unexpected operand types for setcc");
4045 // If we're here post-legalization or the logic op type is not i1, the logic
4046 // op type must match a setcc result type. Also, all folds require new
4047 // operations on the left and right operands, so those types must match.
4048 EVT VT = N0.getValueType();
4049 EVT OpVT = LL.getValueType();
4050 if (LegalOperations || VT.getScalarType() != MVT::i1)
4051 if (VT != getSetCCResultType(OpVT))
4052 return SDValue();
4053 if (OpVT != RL.getValueType())
4054 return SDValue();
4056 ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get();
4057 ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get();
4058 bool IsInteger = OpVT.isInteger();
4059 if (LR == RR && CC0 == CC1 && IsInteger) {
4060 bool IsZero = isNullOrNullSplat(LR);
4061 bool IsNeg1 = isAllOnesOrAllOnesSplat(LR);
4063 // All bits clear?
4064 bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero;
4065 // All sign bits clear?
4066 bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1;
4067 // Any bits set?
4068 bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero;
4069 // Any sign bits set?
4070 bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero;
4072 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
4073 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
4074 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
4075 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
4076 if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) {
4077 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL);
4078 AddToWorklist(Or.getNode());
4079 return DAG.getSetCC(DL, VT, Or, LR, CC1);
4082 // All bits set?
4083 bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1;
4084 // All sign bits set?
4085 bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero;
4086 // Any bits clear?
4087 bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1;
4088 // Any sign bits clear?
4089 bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1;
4091 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
4092 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
4093 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
4094 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
4095 if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) {
4096 SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL);
4097 AddToWorklist(And.getNode());
4098 return DAG.getSetCC(DL, VT, And, LR, CC1);
4102 // TODO: What is the 'or' equivalent of this fold?
4103 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
4104 if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 &&
4105 IsInteger && CC0 == ISD::SETNE &&
4106 ((isNullConstant(LR) && isAllOnesConstant(RR)) ||
4107 (isAllOnesConstant(LR) && isNullConstant(RR)))) {
4108 SDValue One = DAG.getConstant(1, DL, OpVT);
4109 SDValue Two = DAG.getConstant(2, DL, OpVT);
4110 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One);
4111 AddToWorklist(Add.getNode());
4112 return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE);
4115 // Try more general transforms if the predicates match and the only user of
4116 // the compares is the 'and' or 'or'.
4117 if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 &&
4118 N0.hasOneUse() && N1.hasOneUse()) {
4119 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
4120 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
4121 if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) {
4122 SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR);
4123 SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR);
4124 SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR);
4125 SDValue Zero = DAG.getConstant(0, DL, OpVT);
4126 return DAG.getSetCC(DL, VT, Or, Zero, CC1);
4129 // Turn compare of constants whose difference is 1 bit into add+and+setcc.
4130 if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) {
4131 // Match a shared variable operand and 2 non-opaque constant operands.
4132 ConstantSDNode *C0 = isConstOrConstSplat(LR);
4133 ConstantSDNode *C1 = isConstOrConstSplat(RR);
4134 if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) {
4135 // Canonicalize larger constant as C0.
4136 if (C1->getAPIntValue().ugt(C0->getAPIntValue()))
4137 std::swap(C0, C1);
4139 // The difference of the constants must be a single bit.
4140 const APInt &C0Val = C0->getAPIntValue();
4141 const APInt &C1Val = C1->getAPIntValue();
4142 if ((C0Val - C1Val).isPowerOf2()) {
4143 // and/or (setcc X, C0, ne), (setcc X, C1, ne/eq) -->
4144 // setcc ((add X, -C1), ~(C0 - C1)), 0, ne/eq
4145 SDValue OffsetC = DAG.getConstant(-C1Val, DL, OpVT);
4146 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LL, OffsetC);
4147 SDValue MaskC = DAG.getConstant(~(C0Val - C1Val), DL, OpVT);
4148 SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Add, MaskC);
4149 SDValue Zero = DAG.getConstant(0, DL, OpVT);
4150 return DAG.getSetCC(DL, VT, And, Zero, CC0);
4156 // Canonicalize equivalent operands to LL == RL.
4157 if (LL == RR && LR == RL) {
4158 CC1 = ISD::getSetCCSwappedOperands(CC1);
4159 std::swap(RL, RR);
4162 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
4163 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
4164 if (LL == RL && LR == RR) {
4165 ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, IsInteger)
4166 : ISD::getSetCCOrOperation(CC0, CC1, IsInteger);
4167 if (NewCC != ISD::SETCC_INVALID &&
4168 (!LegalOperations ||
4169 (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) &&
4170 TLI.isOperationLegal(ISD::SETCC, OpVT))))
4171 return DAG.getSetCC(DL, VT, LL, LR, NewCC);
4174 return SDValue();
4177 /// This contains all DAGCombine rules which reduce two values combined by
4178 /// an And operation to a single value. This makes them reusable in the context
4179 /// of visitSELECT(). Rules involving constants are not included as
4180 /// visitSELECT() already handles those cases.
4181 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) {
4182 EVT VT = N1.getValueType();
4183 SDLoc DL(N);
4185 // fold (and x, undef) -> 0
4186 if (N0.isUndef() || N1.isUndef())
4187 return DAG.getConstant(0, DL, VT);
4189 if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL))
4190 return V;
4192 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
4193 VT.getSizeInBits() <= 64) {
4194 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4195 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
4196 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
4197 // immediate for an add, but it is legal if its top c2 bits are set,
4198 // transform the ADD so the immediate doesn't need to be materialized
4199 // in a register.
4200 APInt ADDC = ADDI->getAPIntValue();
4201 APInt SRLC = SRLI->getAPIntValue();
4202 if (ADDC.getMinSignedBits() <= 64 &&
4203 SRLC.ult(VT.getSizeInBits()) &&
4204 !TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
4205 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
4206 SRLC.getZExtValue());
4207 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
4208 ADDC |= Mask;
4209 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
4210 SDLoc DL0(N0);
4211 SDValue NewAdd =
4212 DAG.getNode(ISD::ADD, DL0, VT,
4213 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
4214 CombineTo(N0.getNode(), NewAdd);
4215 // Return N so it doesn't get rechecked!
4216 return SDValue(N, 0);
4224 // Reduce bit extract of low half of an integer to the narrower type.
4225 // (and (srl i64:x, K), KMask) ->
4226 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
4227 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
4228 if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) {
4229 if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4230 unsigned Size = VT.getSizeInBits();
4231 const APInt &AndMask = CAnd->getAPIntValue();
4232 unsigned ShiftBits = CShift->getZExtValue();
4234 // Bail out, this node will probably disappear anyway.
4235 if (ShiftBits == 0)
4236 return SDValue();
4238 unsigned MaskBits = AndMask.countTrailingOnes();
4239 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2);
4241 if (AndMask.isMask() &&
4242 // Required bits must not span the two halves of the integer and
4243 // must fit in the half size type.
4244 (ShiftBits + MaskBits <= Size / 2) &&
4245 TLI.isNarrowingProfitable(VT, HalfVT) &&
4246 TLI.isTypeDesirableForOp(ISD::AND, HalfVT) &&
4247 TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) &&
4248 TLI.isTruncateFree(VT, HalfVT) &&
4249 TLI.isZExtFree(HalfVT, VT)) {
4250 // The isNarrowingProfitable is to avoid regressions on PPC and
4251 // AArch64 which match a few 64-bit bit insert / bit extract patterns
4252 // on downstream users of this. Those patterns could probably be
4253 // extended to handle extensions mixed in.
4255 SDValue SL(N0);
4256 assert(MaskBits <= Size);
4258 // Extracting the highest bit of the low half.
4259 EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout());
4260 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT,
4261 N0.getOperand(0));
4263 SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT);
4264 SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT);
4265 SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK);
4266 SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask);
4267 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And);
4273 return SDValue();
4276 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
4277 EVT LoadResultTy, EVT &ExtVT) {
4278 if (!AndC->getAPIntValue().isMask())
4279 return false;
4281 unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes();
4283 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
4284 EVT LoadedVT = LoadN->getMemoryVT();
4286 if (ExtVT == LoadedVT &&
4287 (!LegalOperations ||
4288 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) {
4289 // ZEXTLOAD will match without needing to change the size of the value being
4290 // loaded.
4291 return true;
4294 // Do not change the width of a volatile load.
4295 if (LoadN->isVolatile())
4296 return false;
4298 // Do not generate loads of non-round integer types since these can
4299 // be expensive (and would be wrong if the type is not byte sized).
4300 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound())
4301 return false;
4303 if (LegalOperations &&
4304 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))
4305 return false;
4307 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT))
4308 return false;
4310 return true;
4313 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST,
4314 ISD::LoadExtType ExtType, EVT &MemVT,
4315 unsigned ShAmt) {
4316 if (!LDST)
4317 return false;
4318 // Only allow byte offsets.
4319 if (ShAmt % 8)
4320 return false;
4322 // Do not generate loads of non-round integer types since these can
4323 // be expensive (and would be wrong if the type is not byte sized).
4324 if (!MemVT.isRound())
4325 return false;
4327 // Don't change the width of a volatile load.
4328 if (LDST->isVolatile())
4329 return false;
4331 // Verify that we are actually reducing a load width here.
4332 if (LDST->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits())
4333 return false;
4335 // Ensure that this isn't going to produce an unsupported unaligned access.
4336 if (ShAmt &&
4337 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
4338 LDST->getAddressSpace(), ShAmt / 8))
4339 return false;
4341 // It's not possible to generate a constant of extended or untyped type.
4342 EVT PtrType = LDST->getBasePtr().getValueType();
4343 if (PtrType == MVT::Untyped || PtrType.isExtended())
4344 return false;
4346 if (isa<LoadSDNode>(LDST)) {
4347 LoadSDNode *Load = cast<LoadSDNode>(LDST);
4348 // Don't transform one with multiple uses, this would require adding a new
4349 // load.
4350 if (!SDValue(Load, 0).hasOneUse())
4351 return false;
4353 if (LegalOperations &&
4354 !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT))
4355 return false;
4357 // For the transform to be legal, the load must produce only two values
4358 // (the value loaded and the chain). Don't transform a pre-increment
4359 // load, for example, which produces an extra value. Otherwise the
4360 // transformation is not equivalent, and the downstream logic to replace
4361 // uses gets things wrong.
4362 if (Load->getNumValues() > 2)
4363 return false;
4365 // If the load that we're shrinking is an extload and we're not just
4366 // discarding the extension we can't simply shrink the load. Bail.
4367 // TODO: It would be possible to merge the extensions in some cases.
4368 if (Load->getExtensionType() != ISD::NON_EXTLOAD &&
4369 Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
4370 return false;
4372 if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT))
4373 return false;
4374 } else {
4375 assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode");
4376 StoreSDNode *Store = cast<StoreSDNode>(LDST);
4377 // Can't write outside the original store
4378 if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
4379 return false;
4381 if (LegalOperations &&
4382 !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT))
4383 return false;
4385 return true;
4388 bool DAGCombiner::SearchForAndLoads(SDNode *N,
4389 SmallVectorImpl<LoadSDNode*> &Loads,
4390 SmallPtrSetImpl<SDNode*> &NodesWithConsts,
4391 ConstantSDNode *Mask,
4392 SDNode *&NodeToMask) {
4393 // Recursively search for the operands, looking for loads which can be
4394 // narrowed.
4395 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i) {
4396 SDValue Op = N->getOperand(i);
4398 if (Op.getValueType().isVector())
4399 return false;
4401 // Some constants may need fixing up later if they are too large.
4402 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
4403 if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) &&
4404 (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue())
4405 NodesWithConsts.insert(N);
4406 continue;
4409 if (!Op.hasOneUse())
4410 return false;
4412 switch(Op.getOpcode()) {
4413 case ISD::LOAD: {
4414 auto *Load = cast<LoadSDNode>(Op);
4415 EVT ExtVT;
4416 if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) &&
4417 isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) {
4419 // ZEXTLOAD is already small enough.
4420 if (Load->getExtensionType() == ISD::ZEXTLOAD &&
4421 ExtVT.bitsGE(Load->getMemoryVT()))
4422 continue;
4424 // Use LE to convert equal sized loads to zext.
4425 if (ExtVT.bitsLE(Load->getMemoryVT()))
4426 Loads.push_back(Load);
4428 continue;
4430 return false;
4432 case ISD::ZERO_EXTEND:
4433 case ISD::AssertZext: {
4434 unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes();
4435 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
4436 EVT VT = Op.getOpcode() == ISD::AssertZext ?
4437 cast<VTSDNode>(Op.getOperand(1))->getVT() :
4438 Op.getOperand(0).getValueType();
4440 // We can accept extending nodes if the mask is wider or an equal
4441 // width to the original type.
4442 if (ExtVT.bitsGE(VT))
4443 continue;
4444 break;
4446 case ISD::OR:
4447 case ISD::XOR:
4448 case ISD::AND:
4449 if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask,
4450 NodeToMask))
4451 return false;
4452 continue;
4455 // Allow one node which will masked along with any loads found.
4456 if (NodeToMask)
4457 return false;
4459 // Also ensure that the node to be masked only produces one data result.
4460 NodeToMask = Op.getNode();
4461 if (NodeToMask->getNumValues() > 1) {
4462 bool HasValue = false;
4463 for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) {
4464 MVT VT = SDValue(NodeToMask, i).getSimpleValueType();
4465 if (VT != MVT::Glue && VT != MVT::Other) {
4466 if (HasValue) {
4467 NodeToMask = nullptr;
4468 return false;
4470 HasValue = true;
4473 assert(HasValue && "Node to be masked has no data result?");
4476 return true;
4479 bool DAGCombiner::BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG) {
4480 auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
4481 if (!Mask)
4482 return false;
4484 if (!Mask->getAPIntValue().isMask())
4485 return false;
4487 // No need to do anything if the and directly uses a load.
4488 if (isa<LoadSDNode>(N->getOperand(0)))
4489 return false;
4491 SmallVector<LoadSDNode*, 8> Loads;
4492 SmallPtrSet<SDNode*, 2> NodesWithConsts;
4493 SDNode *FixupNode = nullptr;
4494 if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) {
4495 if (Loads.size() == 0)
4496 return false;
4498 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump());
4499 SDValue MaskOp = N->getOperand(1);
4501 // If it exists, fixup the single node we allow in the tree that needs
4502 // masking.
4503 if (FixupNode) {
4504 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump());
4505 SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode),
4506 FixupNode->getValueType(0),
4507 SDValue(FixupNode, 0), MaskOp);
4508 DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And);
4509 if (And.getOpcode() == ISD ::AND)
4510 DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp);
4513 // Narrow any constants that need it.
4514 for (auto *LogicN : NodesWithConsts) {
4515 SDValue Op0 = LogicN->getOperand(0);
4516 SDValue Op1 = LogicN->getOperand(1);
4518 if (isa<ConstantSDNode>(Op0))
4519 std::swap(Op0, Op1);
4521 SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(),
4522 Op1, MaskOp);
4524 DAG.UpdateNodeOperands(LogicN, Op0, And);
4527 // Create narrow loads.
4528 for (auto *Load : Loads) {
4529 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump());
4530 SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0),
4531 SDValue(Load, 0), MaskOp);
4532 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And);
4533 if (And.getOpcode() == ISD ::AND)
4534 And = SDValue(
4535 DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0);
4536 SDValue NewLoad = ReduceLoadWidth(And.getNode());
4537 assert(NewLoad &&
4538 "Shouldn't be masking the load if it can't be narrowed");
4539 CombineTo(Load, NewLoad, NewLoad.getValue(1));
4541 DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode());
4542 return true;
4544 return false;
4547 // Unfold
4548 // x & (-1 'logical shift' y)
4549 // To
4550 // (x 'opposite logical shift' y) 'logical shift' y
4551 // if it is better for performance.
4552 SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) {
4553 assert(N->getOpcode() == ISD::AND);
4555 SDValue N0 = N->getOperand(0);
4556 SDValue N1 = N->getOperand(1);
4558 // Do we actually prefer shifts over mask?
4559 if (!TLI.preferShiftsToClearExtremeBits(N0))
4560 return SDValue();
4562 // Try to match (-1 '[outer] logical shift' y)
4563 unsigned OuterShift;
4564 unsigned InnerShift; // The opposite direction to the OuterShift.
4565 SDValue Y; // Shift amount.
4566 auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool {
4567 if (!M.hasOneUse())
4568 return false;
4569 OuterShift = M->getOpcode();
4570 if (OuterShift == ISD::SHL)
4571 InnerShift = ISD::SRL;
4572 else if (OuterShift == ISD::SRL)
4573 InnerShift = ISD::SHL;
4574 else
4575 return false;
4576 if (!isAllOnesConstant(M->getOperand(0)))
4577 return false;
4578 Y = M->getOperand(1);
4579 return true;
4582 SDValue X;
4583 if (matchMask(N1))
4584 X = N0;
4585 else if (matchMask(N0))
4586 X = N1;
4587 else
4588 return SDValue();
4590 SDLoc DL(N);
4591 EVT VT = N->getValueType(0);
4593 // tmp = x 'opposite logical shift' y
4594 SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y);
4595 // ret = tmp 'logical shift' y
4596 SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y);
4598 return T1;
4601 SDValue DAGCombiner::visitAND(SDNode *N) {
4602 SDValue N0 = N->getOperand(0);
4603 SDValue N1 = N->getOperand(1);
4604 EVT VT = N1.getValueType();
4606 // x & x --> x
4607 if (N0 == N1)
4608 return N0;
4610 // fold vector ops
4611 if (VT.isVector()) {
4612 if (SDValue FoldedVOp = SimplifyVBinOp(N))
4613 return FoldedVOp;
4615 // fold (and x, 0) -> 0, vector edition
4616 if (ISD::isBuildVectorAllZeros(N0.getNode()))
4617 // do not return N0, because undef node may exist in N0
4618 return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()),
4619 SDLoc(N), N0.getValueType());
4620 if (ISD::isBuildVectorAllZeros(N1.getNode()))
4621 // do not return N1, because undef node may exist in N1
4622 return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()),
4623 SDLoc(N), N1.getValueType());
4625 // fold (and x, -1) -> x, vector edition
4626 if (ISD::isBuildVectorAllOnes(N0.getNode()))
4627 return N1;
4628 if (ISD::isBuildVectorAllOnes(N1.getNode()))
4629 return N0;
4632 // fold (and c1, c2) -> c1&c2
4633 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
4634 ConstantSDNode *N1C = isConstOrConstSplat(N1);
4635 if (N0C && N1C && !N1C->isOpaque())
4636 return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C);
4637 // canonicalize constant to RHS
4638 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
4639 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
4640 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
4641 // fold (and x, -1) -> x
4642 if (isAllOnesConstant(N1))
4643 return N0;
4644 // if (and x, c) is known to be zero, return 0
4645 unsigned BitWidth = VT.getScalarSizeInBits();
4646 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
4647 APInt::getAllOnesValue(BitWidth)))
4648 return DAG.getConstant(0, SDLoc(N), VT);
4650 if (SDValue NewSel = foldBinOpIntoSelect(N))
4651 return NewSel;
4653 // reassociate and
4654 if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags()))
4655 return RAND;
4657 // Try to convert a constant mask AND into a shuffle clear mask.
4658 if (VT.isVector())
4659 if (SDValue Shuffle = XformToShuffleWithZero(N))
4660 return Shuffle;
4662 // fold (and (or x, C), D) -> D if (C & D) == D
4663 auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) {
4664 return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue());
4666 if (N0.getOpcode() == ISD::OR &&
4667 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset))
4668 return N1;
4669 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
4670 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
4671 SDValue N0Op0 = N0.getOperand(0);
4672 APInt Mask = ~N1C->getAPIntValue();
4673 Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits());
4674 if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
4675 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
4676 N0.getValueType(), N0Op0);
4678 // Replace uses of the AND with uses of the Zero extend node.
4679 CombineTo(N, Zext);
4681 // We actually want to replace all uses of the any_extend with the
4682 // zero_extend, to avoid duplicating things. This will later cause this
4683 // AND to be folded.
4684 CombineTo(N0.getNode(), Zext);
4685 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4688 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
4689 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
4690 // already be zero by virtue of the width of the base type of the load.
4692 // the 'X' node here can either be nothing or an extract_vector_elt to catch
4693 // more cases.
4694 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4695 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() &&
4696 N0.getOperand(0).getOpcode() == ISD::LOAD &&
4697 N0.getOperand(0).getResNo() == 0) ||
4698 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) {
4699 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
4700 N0 : N0.getOperand(0) );
4702 // Get the constant (if applicable) the zero'th operand is being ANDed with.
4703 // This can be a pure constant or a vector splat, in which case we treat the
4704 // vector as a scalar and use the splat value.
4705 APInt Constant = APInt::getNullValue(1);
4706 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
4707 Constant = C->getAPIntValue();
4708 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
4709 APInt SplatValue, SplatUndef;
4710 unsigned SplatBitSize;
4711 bool HasAnyUndefs;
4712 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
4713 SplatBitSize, HasAnyUndefs);
4714 if (IsSplat) {
4715 // Undef bits can contribute to a possible optimisation if set, so
4716 // set them.
4717 SplatValue |= SplatUndef;
4719 // The splat value may be something like "0x00FFFFFF", which means 0 for
4720 // the first vector value and FF for the rest, repeating. We need a mask
4721 // that will apply equally to all members of the vector, so AND all the
4722 // lanes of the constant together.
4723 EVT VT = Vector->getValueType(0);
4724 unsigned BitWidth = VT.getScalarSizeInBits();
4726 // If the splat value has been compressed to a bitlength lower
4727 // than the size of the vector lane, we need to re-expand it to
4728 // the lane size.
4729 if (BitWidth > SplatBitSize)
4730 for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
4731 SplatBitSize < BitWidth;
4732 SplatBitSize = SplatBitSize * 2)
4733 SplatValue |= SplatValue.shl(SplatBitSize);
4735 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
4736 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
4737 if (SplatBitSize % BitWidth == 0) {
4738 Constant = APInt::getAllOnesValue(BitWidth);
4739 for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
4740 Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
4745 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
4746 // actually legal and isn't going to get expanded, else this is a false
4747 // optimisation.
4748 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
4749 Load->getValueType(0),
4750 Load->getMemoryVT());
4752 // Resize the constant to the same size as the original memory access before
4753 // extension. If it is still the AllOnesValue then this AND is completely
4754 // unneeded.
4755 Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits());
4757 bool B;
4758 switch (Load->getExtensionType()) {
4759 default: B = false; break;
4760 case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
4761 case ISD::ZEXTLOAD:
4762 case ISD::NON_EXTLOAD: B = true; break;
4765 if (B && Constant.isAllOnesValue()) {
4766 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
4767 // preserve semantics once we get rid of the AND.
4768 SDValue NewLoad(Load, 0);
4770 // Fold the AND away. NewLoad may get replaced immediately.
4771 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
4773 if (Load->getExtensionType() == ISD::EXTLOAD) {
4774 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
4775 Load->getValueType(0), SDLoc(Load),
4776 Load->getChain(), Load->getBasePtr(),
4777 Load->getOffset(), Load->getMemoryVT(),
4778 Load->getMemOperand());
4779 // Replace uses of the EXTLOAD with the new ZEXTLOAD.
4780 if (Load->getNumValues() == 3) {
4781 // PRE/POST_INC loads have 3 values.
4782 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
4783 NewLoad.getValue(2) };
4784 CombineTo(Load, To, 3, true);
4785 } else {
4786 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
4790 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4794 // fold (and (load x), 255) -> (zextload x, i8)
4795 // fold (and (extload x, i16), 255) -> (zextload x, i8)
4796 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
4797 if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD ||
4798 (N0.getOpcode() == ISD::ANY_EXTEND &&
4799 N0.getOperand(0).getOpcode() == ISD::LOAD))) {
4800 if (SDValue Res = ReduceLoadWidth(N)) {
4801 LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND
4802 ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0);
4803 AddToWorklist(N);
4804 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res);
4805 return SDValue(N, 0);
4809 if (Level >= AfterLegalizeTypes) {
4810 // Attempt to propagate the AND back up to the leaves which, if they're
4811 // loads, can be combined to narrow loads and the AND node can be removed.
4812 // Perform after legalization so that extend nodes will already be
4813 // combined into the loads.
4814 if (BackwardsPropagateMask(N, DAG)) {
4815 return SDValue(N, 0);
4819 if (SDValue Combined = visitANDLike(N0, N1, N))
4820 return Combined;
4822 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
4823 if (N0.getOpcode() == N1.getOpcode())
4824 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
4825 return V;
4827 // Masking the negated extension of a boolean is just the zero-extended
4828 // boolean:
4829 // and (sub 0, zext(bool X)), 1 --> zext(bool X)
4830 // and (sub 0, sext(bool X)), 1 --> zext(bool X)
4832 // Note: the SimplifyDemandedBits fold below can make an information-losing
4833 // transform, and then we have no way to find this better fold.
4834 if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) {
4835 if (isNullOrNullSplat(N0.getOperand(0))) {
4836 SDValue SubRHS = N0.getOperand(1);
4837 if (SubRHS.getOpcode() == ISD::ZERO_EXTEND &&
4838 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
4839 return SubRHS;
4840 if (SubRHS.getOpcode() == ISD::SIGN_EXTEND &&
4841 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
4842 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0));
4846 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
4847 // fold (and (sra)) -> (and (srl)) when possible.
4848 if (SimplifyDemandedBits(SDValue(N, 0)))
4849 return SDValue(N, 0);
4851 // fold (zext_inreg (extload x)) -> (zextload x)
4852 if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
4853 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4854 EVT MemVT = LN0->getMemoryVT();
4855 // If we zero all the possible extended bits, then we can turn this into
4856 // a zextload if we are running before legalize or the operation is legal.
4857 unsigned BitWidth = N1.getScalarValueSizeInBits();
4858 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
4859 BitWidth - MemVT.getScalarSizeInBits())) &&
4860 ((!LegalOperations && !LN0->isVolatile()) ||
4861 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
4862 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
4863 LN0->getChain(), LN0->getBasePtr(),
4864 MemVT, LN0->getMemOperand());
4865 AddToWorklist(N);
4866 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
4867 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4870 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
4871 if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
4872 N0.hasOneUse()) {
4873 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4874 EVT MemVT = LN0->getMemoryVT();
4875 // If we zero all the possible extended bits, then we can turn this into
4876 // a zextload if we are running before legalize or the operation is legal.
4877 unsigned BitWidth = N1.getScalarValueSizeInBits();
4878 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
4879 BitWidth - MemVT.getScalarSizeInBits())) &&
4880 ((!LegalOperations && !LN0->isVolatile()) ||
4881 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
4882 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
4883 LN0->getChain(), LN0->getBasePtr(),
4884 MemVT, LN0->getMemOperand());
4885 AddToWorklist(N);
4886 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
4887 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4890 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
4891 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
4892 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
4893 N0.getOperand(1), false))
4894 return BSwap;
4897 if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N))
4898 return Shifts;
4900 return SDValue();
4903 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
4904 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
4905 bool DemandHighBits) {
4906 if (!LegalOperations)
4907 return SDValue();
4909 EVT VT = N->getValueType(0);
4910 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
4911 return SDValue();
4912 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
4913 return SDValue();
4915 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
4916 bool LookPassAnd0 = false;
4917 bool LookPassAnd1 = false;
4918 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
4919 std::swap(N0, N1);
4920 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
4921 std::swap(N0, N1);
4922 if (N0.getOpcode() == ISD::AND) {
4923 if (!N0.getNode()->hasOneUse())
4924 return SDValue();
4925 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4926 // Also handle 0xffff since the LHS is guaranteed to have zeros there.
4927 // This is needed for X86.
4928 if (!N01C || (N01C->getZExtValue() != 0xFF00 &&
4929 N01C->getZExtValue() != 0xFFFF))
4930 return SDValue();
4931 N0 = N0.getOperand(0);
4932 LookPassAnd0 = true;
4935 if (N1.getOpcode() == ISD::AND) {
4936 if (!N1.getNode()->hasOneUse())
4937 return SDValue();
4938 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
4939 if (!N11C || N11C->getZExtValue() != 0xFF)
4940 return SDValue();
4941 N1 = N1.getOperand(0);
4942 LookPassAnd1 = true;
4945 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
4946 std::swap(N0, N1);
4947 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
4948 return SDValue();
4949 if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse())
4950 return SDValue();
4952 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4953 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
4954 if (!N01C || !N11C)
4955 return SDValue();
4956 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
4957 return SDValue();
4959 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
4960 SDValue N00 = N0->getOperand(0);
4961 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
4962 if (!N00.getNode()->hasOneUse())
4963 return SDValue();
4964 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
4965 if (!N001C || N001C->getZExtValue() != 0xFF)
4966 return SDValue();
4967 N00 = N00.getOperand(0);
4968 LookPassAnd0 = true;
4971 SDValue N10 = N1->getOperand(0);
4972 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
4973 if (!N10.getNode()->hasOneUse())
4974 return SDValue();
4975 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
4976 // Also allow 0xFFFF since the bits will be shifted out. This is needed
4977 // for X86.
4978 if (!N101C || (N101C->getZExtValue() != 0xFF00 &&
4979 N101C->getZExtValue() != 0xFFFF))
4980 return SDValue();
4981 N10 = N10.getOperand(0);
4982 LookPassAnd1 = true;
4985 if (N00 != N10)
4986 return SDValue();
4988 // Make sure everything beyond the low halfword gets set to zero since the SRL
4989 // 16 will clear the top bits.
4990 unsigned OpSizeInBits = VT.getSizeInBits();
4991 if (DemandHighBits && OpSizeInBits > 16) {
4992 // If the left-shift isn't masked out then the only way this is a bswap is
4993 // if all bits beyond the low 8 are 0. In that case the entire pattern
4994 // reduces to a left shift anyway: leave it for other parts of the combiner.
4995 if (!LookPassAnd0)
4996 return SDValue();
4998 // However, if the right shift isn't masked out then it might be because
4999 // it's not needed. See if we can spot that too.
5000 if (!LookPassAnd1 &&
5001 !DAG.MaskedValueIsZero(
5002 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
5003 return SDValue();
5006 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
5007 if (OpSizeInBits > 16) {
5008 SDLoc DL(N);
5009 Res = DAG.getNode(ISD::SRL, DL, VT, Res,
5010 DAG.getConstant(OpSizeInBits - 16, DL,
5011 getShiftAmountTy(VT)));
5013 return Res;
5016 /// Return true if the specified node is an element that makes up a 32-bit
5017 /// packed halfword byteswap.
5018 /// ((x & 0x000000ff) << 8) |
5019 /// ((x & 0x0000ff00) >> 8) |
5020 /// ((x & 0x00ff0000) << 8) |
5021 /// ((x & 0xff000000) >> 8)
5022 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) {
5023 if (!N.getNode()->hasOneUse())
5024 return false;
5026 unsigned Opc = N.getOpcode();
5027 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
5028 return false;
5030 SDValue N0 = N.getOperand(0);
5031 unsigned Opc0 = N0.getOpcode();
5032 if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL)
5033 return false;
5035 ConstantSDNode *N1C = nullptr;
5036 // SHL or SRL: look upstream for AND mask operand
5037 if (Opc == ISD::AND)
5038 N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
5039 else if (Opc0 == ISD::AND)
5040 N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5041 if (!N1C)
5042 return false;
5044 unsigned MaskByteOffset;
5045 switch (N1C->getZExtValue()) {
5046 default:
5047 return false;
5048 case 0xFF: MaskByteOffset = 0; break;
5049 case 0xFF00: MaskByteOffset = 1; break;
5050 case 0xFFFF:
5051 // In case demanded bits didn't clear the bits that will be shifted out.
5052 // This is needed for X86.
5053 if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) {
5054 MaskByteOffset = 1;
5055 break;
5057 return false;
5058 case 0xFF0000: MaskByteOffset = 2; break;
5059 case 0xFF000000: MaskByteOffset = 3; break;
5062 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
5063 if (Opc == ISD::AND) {
5064 if (MaskByteOffset == 0 || MaskByteOffset == 2) {
5065 // (x >> 8) & 0xff
5066 // (x >> 8) & 0xff0000
5067 if (Opc0 != ISD::SRL)
5068 return false;
5069 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5070 if (!C || C->getZExtValue() != 8)
5071 return false;
5072 } else {
5073 // (x << 8) & 0xff00
5074 // (x << 8) & 0xff000000
5075 if (Opc0 != ISD::SHL)
5076 return false;
5077 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5078 if (!C || C->getZExtValue() != 8)
5079 return false;
5081 } else if (Opc == ISD::SHL) {
5082 // (x & 0xff) << 8
5083 // (x & 0xff0000) << 8
5084 if (MaskByteOffset != 0 && MaskByteOffset != 2)
5085 return false;
5086 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
5087 if (!C || C->getZExtValue() != 8)
5088 return false;
5089 } else { // Opc == ISD::SRL
5090 // (x & 0xff00) >> 8
5091 // (x & 0xff000000) >> 8
5092 if (MaskByteOffset != 1 && MaskByteOffset != 3)
5093 return false;
5094 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
5095 if (!C || C->getZExtValue() != 8)
5096 return false;
5099 if (Parts[MaskByteOffset])
5100 return false;
5102 Parts[MaskByteOffset] = N0.getOperand(0).getNode();
5103 return true;
5106 /// Match a 32-bit packed halfword bswap. That is
5107 /// ((x & 0x000000ff) << 8) |
5108 /// ((x & 0x0000ff00) >> 8) |
5109 /// ((x & 0x00ff0000) << 8) |
5110 /// ((x & 0xff000000) >> 8)
5111 /// => (rotl (bswap x), 16)
5112 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
5113 if (!LegalOperations)
5114 return SDValue();
5116 EVT VT = N->getValueType(0);
5117 if (VT != MVT::i32)
5118 return SDValue();
5119 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
5120 return SDValue();
5122 // Look for either
5123 // (or (or (and), (and)), (or (and), (and)))
5124 // (or (or (or (and), (and)), (and)), (and))
5125 if (N0.getOpcode() != ISD::OR)
5126 return SDValue();
5127 SDValue N00 = N0.getOperand(0);
5128 SDValue N01 = N0.getOperand(1);
5129 SDNode *Parts[4] = {};
5131 if (N1.getOpcode() == ISD::OR &&
5132 N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
5133 // (or (or (and), (and)), (or (and), (and)))
5134 if (!isBSwapHWordElement(N00, Parts))
5135 return SDValue();
5137 if (!isBSwapHWordElement(N01, Parts))
5138 return SDValue();
5139 SDValue N10 = N1.getOperand(0);
5140 if (!isBSwapHWordElement(N10, Parts))
5141 return SDValue();
5142 SDValue N11 = N1.getOperand(1);
5143 if (!isBSwapHWordElement(N11, Parts))
5144 return SDValue();
5145 } else {
5146 // (or (or (or (and), (and)), (and)), (and))
5147 if (!isBSwapHWordElement(N1, Parts))
5148 return SDValue();
5149 if (!isBSwapHWordElement(N01, Parts))
5150 return SDValue();
5151 if (N00.getOpcode() != ISD::OR)
5152 return SDValue();
5153 SDValue N000 = N00.getOperand(0);
5154 if (!isBSwapHWordElement(N000, Parts))
5155 return SDValue();
5156 SDValue N001 = N00.getOperand(1);
5157 if (!isBSwapHWordElement(N001, Parts))
5158 return SDValue();
5161 // Make sure the parts are all coming from the same node.
5162 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
5163 return SDValue();
5165 SDLoc DL(N);
5166 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
5167 SDValue(Parts[0], 0));
5169 // Result of the bswap should be rotated by 16. If it's not legal, then
5170 // do (x << 16) | (x >> 16).
5171 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT));
5172 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
5173 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
5174 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
5175 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
5176 return DAG.getNode(ISD::OR, DL, VT,
5177 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
5178 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
5181 /// This contains all DAGCombine rules which reduce two values combined by
5182 /// an Or operation to a single value \see visitANDLike().
5183 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) {
5184 EVT VT = N1.getValueType();
5185 SDLoc DL(N);
5187 // fold (or x, undef) -> -1
5188 if (!LegalOperations && (N0.isUndef() || N1.isUndef()))
5189 return DAG.getAllOnesConstant(DL, VT);
5191 if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL))
5192 return V;
5194 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
5195 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
5196 // Don't increase # computations.
5197 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
5198 // We can only do this xform if we know that bits from X that are set in C2
5199 // but not in C1 are already zero. Likewise for Y.
5200 if (const ConstantSDNode *N0O1C =
5201 getAsNonOpaqueConstant(N0.getOperand(1))) {
5202 if (const ConstantSDNode *N1O1C =
5203 getAsNonOpaqueConstant(N1.getOperand(1))) {
5204 // We can only do this xform if we know that bits from X that are set in
5205 // C2 but not in C1 are already zero. Likewise for Y.
5206 const APInt &LHSMask = N0O1C->getAPIntValue();
5207 const APInt &RHSMask = N1O1C->getAPIntValue();
5209 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
5210 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
5211 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
5212 N0.getOperand(0), N1.getOperand(0));
5213 return DAG.getNode(ISD::AND, DL, VT, X,
5214 DAG.getConstant(LHSMask | RHSMask, DL, VT));
5220 // (or (and X, M), (and X, N)) -> (and X, (or M, N))
5221 if (N0.getOpcode() == ISD::AND &&
5222 N1.getOpcode() == ISD::AND &&
5223 N0.getOperand(0) == N1.getOperand(0) &&
5224 // Don't increase # computations.
5225 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
5226 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
5227 N0.getOperand(1), N1.getOperand(1));
5228 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X);
5231 return SDValue();
5234 SDValue DAGCombiner::visitOR(SDNode *N) {
5235 SDValue N0 = N->getOperand(0);
5236 SDValue N1 = N->getOperand(1);
5237 EVT VT = N1.getValueType();
5239 // x | x --> x
5240 if (N0 == N1)
5241 return N0;
5243 // fold vector ops
5244 if (VT.isVector()) {
5245 if (SDValue FoldedVOp = SimplifyVBinOp(N))
5246 return FoldedVOp;
5248 // fold (or x, 0) -> x, vector edition
5249 if (ISD::isBuildVectorAllZeros(N0.getNode()))
5250 return N1;
5251 if (ISD::isBuildVectorAllZeros(N1.getNode()))
5252 return N0;
5254 // fold (or x, -1) -> -1, vector edition
5255 if (ISD::isBuildVectorAllOnes(N0.getNode()))
5256 // do not return N0, because undef node may exist in N0
5257 return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType());
5258 if (ISD::isBuildVectorAllOnes(N1.getNode()))
5259 // do not return N1, because undef node may exist in N1
5260 return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType());
5262 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
5263 // Do this only if the resulting shuffle is legal.
5264 if (isa<ShuffleVectorSDNode>(N0) &&
5265 isa<ShuffleVectorSDNode>(N1) &&
5266 // Avoid folding a node with illegal type.
5267 TLI.isTypeLegal(VT)) {
5268 bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode());
5269 bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode());
5270 bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
5271 bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode());
5272 // Ensure both shuffles have a zero input.
5273 if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) {
5274 assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!");
5275 assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!");
5276 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0);
5277 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1);
5278 bool CanFold = true;
5279 int NumElts = VT.getVectorNumElements();
5280 SmallVector<int, 4> Mask(NumElts);
5282 for (int i = 0; i != NumElts; ++i) {
5283 int M0 = SV0->getMaskElt(i);
5284 int M1 = SV1->getMaskElt(i);
5286 // Determine if either index is pointing to a zero vector.
5287 bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts));
5288 bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts));
5290 // If one element is zero and the otherside is undef, keep undef.
5291 // This also handles the case that both are undef.
5292 if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) {
5293 Mask[i] = -1;
5294 continue;
5297 // Make sure only one of the elements is zero.
5298 if (M0Zero == M1Zero) {
5299 CanFold = false;
5300 break;
5303 assert((M0 >= 0 || M1 >= 0) && "Undef index!");
5305 // We have a zero and non-zero element. If the non-zero came from
5306 // SV0 make the index a LHS index. If it came from SV1, make it
5307 // a RHS index. We need to mod by NumElts because we don't care
5308 // which operand it came from in the original shuffles.
5309 Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts;
5312 if (CanFold) {
5313 SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0);
5314 SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0);
5316 bool LegalMask = TLI.isShuffleMaskLegal(Mask, VT);
5317 if (!LegalMask) {
5318 std::swap(NewLHS, NewRHS);
5319 ShuffleVectorSDNode::commuteMask(Mask);
5320 LegalMask = TLI.isShuffleMaskLegal(Mask, VT);
5323 if (LegalMask)
5324 return DAG.getVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, Mask);
5330 // fold (or c1, c2) -> c1|c2
5331 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
5332 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5333 if (N0C && N1C && !N1C->isOpaque())
5334 return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C);
5335 // canonicalize constant to RHS
5336 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
5337 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
5338 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
5339 // fold (or x, 0) -> x
5340 if (isNullConstant(N1))
5341 return N0;
5342 // fold (or x, -1) -> -1
5343 if (isAllOnesConstant(N1))
5344 return N1;
5346 if (SDValue NewSel = foldBinOpIntoSelect(N))
5347 return NewSel;
5349 // fold (or x, c) -> c iff (x & ~c) == 0
5350 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
5351 return N1;
5353 if (SDValue Combined = visitORLike(N0, N1, N))
5354 return Combined;
5356 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
5357 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1))
5358 return BSwap;
5359 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1))
5360 return BSwap;
5362 // reassociate or
5363 if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags()))
5364 return ROR;
5366 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
5367 // iff (c1 & c2) != 0 or c1/c2 are undef.
5368 auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) {
5369 return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue());
5371 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
5372 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) {
5373 if (SDValue COR = DAG.FoldConstantArithmetic(
5374 ISD::OR, SDLoc(N1), VT, N1.getNode(), N0.getOperand(1).getNode())) {
5375 SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1);
5376 AddToWorklist(IOR.getNode());
5377 return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR);
5381 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
5382 if (N0.getOpcode() == N1.getOpcode())
5383 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
5384 return V;
5386 // See if this is some rotate idiom.
5387 if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
5388 return SDValue(Rot, 0);
5390 if (SDValue Load = MatchLoadCombine(N))
5391 return Load;
5393 // Simplify the operands using demanded-bits information.
5394 if (SimplifyDemandedBits(SDValue(N, 0)))
5395 return SDValue(N, 0);
5397 return SDValue();
5400 static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) {
5401 if (Op.getOpcode() == ISD::AND &&
5402 DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) {
5403 Mask = Op.getOperand(1);
5404 return Op.getOperand(0);
5406 return Op;
5409 /// Match "(X shl/srl V1) & V2" where V2 may not be present.
5410 static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift,
5411 SDValue &Mask) {
5412 Op = stripConstantMask(DAG, Op, Mask);
5413 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
5414 Shift = Op;
5415 return true;
5417 return false;
5420 /// Helper function for visitOR to extract the needed side of a rotate idiom
5421 /// from a shl/srl/mul/udiv. This is meant to handle cases where
5422 /// InstCombine merged some outside op with one of the shifts from
5423 /// the rotate pattern.
5424 /// \returns An empty \c SDValue if the needed shift couldn't be extracted.
5425 /// Otherwise, returns an expansion of \p ExtractFrom based on the following
5426 /// patterns:
5428 /// (or (mul v c0) (shrl (mul v c1) c2)):
5429 /// expands (mul v c0) -> (shl (mul v c1) c3)
5431 /// (or (udiv v c0) (shl (udiv v c1) c2)):
5432 /// expands (udiv v c0) -> (shrl (udiv v c1) c3)
5434 /// (or (shl v c0) (shrl (shl v c1) c2)):
5435 /// expands (shl v c0) -> (shl (shl v c1) c3)
5437 /// (or (shrl v c0) (shl (shrl v c1) c2)):
5438 /// expands (shrl v c0) -> (shrl (shrl v c1) c3)
5440 /// Such that in all cases, c3+c2==bitwidth(op v c1).
5441 static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift,
5442 SDValue ExtractFrom, SDValue &Mask,
5443 const SDLoc &DL) {
5444 assert(OppShift && ExtractFrom && "Empty SDValue");
5445 assert(
5446 (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) &&
5447 "Existing shift must be valid as a rotate half");
5449 ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask);
5450 // Preconditions:
5451 // (or (op0 v c0) (shiftl/r (op0 v c1) c2))
5453 // Find opcode of the needed shift to be extracted from (op0 v c0).
5454 unsigned Opcode = ISD::DELETED_NODE;
5455 bool IsMulOrDiv = false;
5456 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
5457 // opcode or its arithmetic (mul or udiv) variant.
5458 auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) {
5459 IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant;
5460 if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift)
5461 return false;
5462 Opcode = NeededShift;
5463 return true;
5465 // op0 must be either the needed shift opcode or the mul/udiv equivalent
5466 // that the needed shift can be extracted from.
5467 if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) &&
5468 (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV)))
5469 return SDValue();
5471 // op0 must be the same opcode on both sides, have the same LHS argument,
5472 // and produce the same value type.
5473 SDValue OppShiftLHS = OppShift.getOperand(0);
5474 EVT ShiftedVT = OppShiftLHS.getValueType();
5475 if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() ||
5476 OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) ||
5477 ShiftedVT != ExtractFrom.getValueType())
5478 return SDValue();
5480 // Amount of the existing shift.
5481 ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1));
5482 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
5483 ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1));
5484 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
5485 ConstantSDNode *ExtractFromCst =
5486 isConstOrConstSplat(ExtractFrom.getOperand(1));
5487 // TODO: We should be able to handle non-uniform constant vectors for these values
5488 // Check that we have constant values.
5489 if (!OppShiftCst || !OppShiftCst->getAPIntValue() ||
5490 !OppLHSCst || !OppLHSCst->getAPIntValue() ||
5491 !ExtractFromCst || !ExtractFromCst->getAPIntValue())
5492 return SDValue();
5494 // Compute the shift amount we need to extract to complete the rotate.
5495 const unsigned VTWidth = ShiftedVT.getScalarSizeInBits();
5496 if (OppShiftCst->getAPIntValue().ugt(VTWidth))
5497 return SDValue();
5498 APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue();
5499 // Normalize the bitwidth of the two mul/udiv/shift constant operands.
5500 APInt ExtractFromAmt = ExtractFromCst->getAPIntValue();
5501 APInt OppLHSAmt = OppLHSCst->getAPIntValue();
5502 zeroExtendToMatch(ExtractFromAmt, OppLHSAmt);
5504 // Now try extract the needed shift from the ExtractFrom op and see if the
5505 // result matches up with the existing shift's LHS op.
5506 if (IsMulOrDiv) {
5507 // Op to extract from is a mul or udiv by a constant.
5508 // Check:
5509 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
5510 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
5511 const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(),
5512 NeededShiftAmt.getZExtValue());
5513 APInt ResultAmt;
5514 APInt Rem;
5515 APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem);
5516 if (Rem != 0 || ResultAmt != OppLHSAmt)
5517 return SDValue();
5518 } else {
5519 // Op to extract from is a shift by a constant.
5520 // Check:
5521 // c2 - (bitwidth(op0 v c0) - c1) == c0
5522 if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc(
5523 ExtractFromAmt.getBitWidth()))
5524 return SDValue();
5527 // Return the expanded shift op that should allow a rotate to be formed.
5528 EVT ShiftVT = OppShift.getOperand(1).getValueType();
5529 EVT ResVT = ExtractFrom.getValueType();
5530 SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT);
5531 return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode);
5534 // Return true if we can prove that, whenever Neg and Pos are both in the
5535 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
5536 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
5538 // (or (shift1 X, Neg), (shift2 X, Pos))
5540 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
5541 // in direction shift1 by Neg. The range [0, EltSize) means that we only need
5542 // to consider shift amounts with defined behavior.
5543 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize,
5544 SelectionDAG &DAG) {
5545 // If EltSize is a power of 2 then:
5547 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
5548 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
5550 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
5551 // for the stronger condition:
5553 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
5555 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
5556 // we can just replace Neg with Neg' for the rest of the function.
5558 // In other cases we check for the even stronger condition:
5560 // Neg == EltSize - Pos [B]
5562 // for all Neg and Pos. Note that the (or ...) then invokes undefined
5563 // behavior if Pos == 0 (and consequently Neg == EltSize).
5565 // We could actually use [A] whenever EltSize is a power of 2, but the
5566 // only extra cases that it would match are those uninteresting ones
5567 // where Neg and Pos are never in range at the same time. E.g. for
5568 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
5569 // as well as (sub 32, Pos), but:
5571 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
5573 // always invokes undefined behavior for 32-bit X.
5575 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
5576 unsigned MaskLoBits = 0;
5577 if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) {
5578 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) {
5579 KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0));
5580 unsigned Bits = Log2_64(EltSize);
5581 if (NegC->getAPIntValue().getActiveBits() <= Bits &&
5582 ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) {
5583 Neg = Neg.getOperand(0);
5584 MaskLoBits = Bits;
5589 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
5590 if (Neg.getOpcode() != ISD::SUB)
5591 return false;
5592 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0));
5593 if (!NegC)
5594 return false;
5595 SDValue NegOp1 = Neg.getOperand(1);
5597 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
5598 // Pos'. The truncation is redundant for the purpose of the equality.
5599 if (MaskLoBits && Pos.getOpcode() == ISD::AND) {
5600 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) {
5601 KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0));
5602 if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits &&
5603 ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >=
5604 MaskLoBits))
5605 Pos = Pos.getOperand(0);
5609 // The condition we need is now:
5611 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
5613 // If NegOp1 == Pos then we need:
5615 // EltSize & Mask == NegC & Mask
5617 // (because "x & Mask" is a truncation and distributes through subtraction).
5618 APInt Width;
5619 if (Pos == NegOp1)
5620 Width = NegC->getAPIntValue();
5622 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
5623 // Then the condition we want to prove becomes:
5625 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
5627 // which, again because "x & Mask" is a truncation, becomes:
5629 // NegC & Mask == (EltSize - PosC) & Mask
5630 // EltSize & Mask == (NegC + PosC) & Mask
5631 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
5632 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
5633 Width = PosC->getAPIntValue() + NegC->getAPIntValue();
5634 else
5635 return false;
5636 } else
5637 return false;
5639 // Now we just need to check that EltSize & Mask == Width & Mask.
5640 if (MaskLoBits)
5641 // EltSize & Mask is 0 since Mask is EltSize - 1.
5642 return Width.getLoBits(MaskLoBits) == 0;
5643 return Width == EltSize;
5646 // A subroutine of MatchRotate used once we have found an OR of two opposite
5647 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
5648 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
5649 // former being preferred if supported. InnerPos and InnerNeg are Pos and
5650 // Neg with outer conversions stripped away.
5651 SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
5652 SDValue Neg, SDValue InnerPos,
5653 SDValue InnerNeg, unsigned PosOpcode,
5654 unsigned NegOpcode, const SDLoc &DL) {
5655 // fold (or (shl x, (*ext y)),
5656 // (srl x, (*ext (sub 32, y)))) ->
5657 // (rotl x, y) or (rotr x, (sub 32, y))
5659 // fold (or (shl x, (*ext (sub 32, y))),
5660 // (srl x, (*ext y))) ->
5661 // (rotr x, y) or (rotl x, (sub 32, y))
5662 EVT VT = Shifted.getValueType();
5663 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG)) {
5664 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
5665 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
5666 HasPos ? Pos : Neg).getNode();
5669 return nullptr;
5672 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
5673 // idioms for rotate, and if the target supports rotation instructions, generate
5674 // a rot[lr].
5675 SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) {
5676 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
5677 EVT VT = LHS.getValueType();
5678 if (!TLI.isTypeLegal(VT)) return nullptr;
5680 // The target must have at least one rotate flavor.
5681 bool HasROTL = hasOperation(ISD::ROTL, VT);
5682 bool HasROTR = hasOperation(ISD::ROTR, VT);
5683 if (!HasROTL && !HasROTR) return nullptr;
5685 // Check for truncated rotate.
5686 if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE &&
5687 LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) {
5688 assert(LHS.getValueType() == RHS.getValueType());
5689 if (SDNode *Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) {
5690 return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(),
5691 SDValue(Rot, 0)).getNode();
5695 // Match "(X shl/srl V1) & V2" where V2 may not be present.
5696 SDValue LHSShift; // The shift.
5697 SDValue LHSMask; // AND value if any.
5698 matchRotateHalf(DAG, LHS, LHSShift, LHSMask);
5700 SDValue RHSShift; // The shift.
5701 SDValue RHSMask; // AND value if any.
5702 matchRotateHalf(DAG, RHS, RHSShift, RHSMask);
5704 // If neither side matched a rotate half, bail
5705 if (!LHSShift && !RHSShift)
5706 return nullptr;
5708 // InstCombine may have combined a constant shl, srl, mul, or udiv with one
5709 // side of the rotate, so try to handle that here. In all cases we need to
5710 // pass the matched shift from the opposite side to compute the opcode and
5711 // needed shift amount to extract. We still want to do this if both sides
5712 // matched a rotate half because one half may be a potential overshift that
5713 // can be broken down (ie if InstCombine merged two shl or srl ops into a
5714 // single one).
5716 // Have LHS side of the rotate, try to extract the needed shift from the RHS.
5717 if (LHSShift)
5718 if (SDValue NewRHSShift =
5719 extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL))
5720 RHSShift = NewRHSShift;
5721 // Have RHS side of the rotate, try to extract the needed shift from the LHS.
5722 if (RHSShift)
5723 if (SDValue NewLHSShift =
5724 extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL))
5725 LHSShift = NewLHSShift;
5727 // If a side is still missing, nothing else we can do.
5728 if (!RHSShift || !LHSShift)
5729 return nullptr;
5731 // At this point we've matched or extracted a shift op on each side.
5733 if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
5734 return nullptr; // Not shifting the same value.
5736 if (LHSShift.getOpcode() == RHSShift.getOpcode())
5737 return nullptr; // Shifts must disagree.
5739 // Canonicalize shl to left side in a shl/srl pair.
5740 if (RHSShift.getOpcode() == ISD::SHL) {
5741 std::swap(LHS, RHS);
5742 std::swap(LHSShift, RHSShift);
5743 std::swap(LHSMask, RHSMask);
5746 unsigned EltSizeInBits = VT.getScalarSizeInBits();
5747 SDValue LHSShiftArg = LHSShift.getOperand(0);
5748 SDValue LHSShiftAmt = LHSShift.getOperand(1);
5749 SDValue RHSShiftArg = RHSShift.getOperand(0);
5750 SDValue RHSShiftAmt = RHSShift.getOperand(1);
5752 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
5753 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
5754 auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS,
5755 ConstantSDNode *RHS) {
5756 return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits;
5758 if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) {
5759 SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
5760 LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
5762 // If there is an AND of either shifted operand, apply it to the result.
5763 if (LHSMask.getNode() || RHSMask.getNode()) {
5764 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
5765 SDValue Mask = AllOnes;
5767 if (LHSMask.getNode()) {
5768 SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt);
5769 Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
5770 DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits));
5772 if (RHSMask.getNode()) {
5773 SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt);
5774 Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
5775 DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits));
5778 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask);
5781 return Rot.getNode();
5784 // If there is a mask here, and we have a variable shift, we can't be sure
5785 // that we're masking out the right stuff.
5786 if (LHSMask.getNode() || RHSMask.getNode())
5787 return nullptr;
5789 // If the shift amount is sign/zext/any-extended just peel it off.
5790 SDValue LExtOp0 = LHSShiftAmt;
5791 SDValue RExtOp0 = RHSShiftAmt;
5792 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
5793 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
5794 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
5795 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
5796 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
5797 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
5798 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
5799 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
5800 LExtOp0 = LHSShiftAmt.getOperand(0);
5801 RExtOp0 = RHSShiftAmt.getOperand(0);
5804 SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt,
5805 LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL);
5806 if (TryL)
5807 return TryL;
5809 SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
5810 RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL);
5811 if (TryR)
5812 return TryR;
5814 return nullptr;
5817 namespace {
5819 /// Represents known origin of an individual byte in load combine pattern. The
5820 /// value of the byte is either constant zero or comes from memory.
5821 struct ByteProvider {
5822 // For constant zero providers Load is set to nullptr. For memory providers
5823 // Load represents the node which loads the byte from memory.
5824 // ByteOffset is the offset of the byte in the value produced by the load.
5825 LoadSDNode *Load = nullptr;
5826 unsigned ByteOffset = 0;
5828 ByteProvider() = default;
5830 static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) {
5831 return ByteProvider(Load, ByteOffset);
5834 static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); }
5836 bool isConstantZero() const { return !Load; }
5837 bool isMemory() const { return Load; }
5839 bool operator==(const ByteProvider &Other) const {
5840 return Other.Load == Load && Other.ByteOffset == ByteOffset;
5843 private:
5844 ByteProvider(LoadSDNode *Load, unsigned ByteOffset)
5845 : Load(Load), ByteOffset(ByteOffset) {}
5848 } // end anonymous namespace
5850 /// Recursively traverses the expression calculating the origin of the requested
5851 /// byte of the given value. Returns None if the provider can't be calculated.
5853 /// For all the values except the root of the expression verifies that the value
5854 /// has exactly one use and if it's not true return None. This way if the origin
5855 /// of the byte is returned it's guaranteed that the values which contribute to
5856 /// the byte are not used outside of this expression.
5858 /// Because the parts of the expression are not allowed to have more than one
5859 /// use this function iterates over trees, not DAGs. So it never visits the same
5860 /// node more than once.
5861 static const Optional<ByteProvider>
5862 calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth,
5863 bool Root = false) {
5864 // Typical i64 by i8 pattern requires recursion up to 8 calls depth
5865 if (Depth == 10)
5866 return None;
5868 if (!Root && !Op.hasOneUse())
5869 return None;
5871 assert(Op.getValueType().isScalarInteger() && "can't handle other types");
5872 unsigned BitWidth = Op.getValueSizeInBits();
5873 if (BitWidth % 8 != 0)
5874 return None;
5875 unsigned ByteWidth = BitWidth / 8;
5876 assert(Index < ByteWidth && "invalid index requested");
5877 (void) ByteWidth;
5879 switch (Op.getOpcode()) {
5880 case ISD::OR: {
5881 auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1);
5882 if (!LHS)
5883 return None;
5884 auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1);
5885 if (!RHS)
5886 return None;
5888 if (LHS->isConstantZero())
5889 return RHS;
5890 if (RHS->isConstantZero())
5891 return LHS;
5892 return None;
5894 case ISD::SHL: {
5895 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
5896 if (!ShiftOp)
5897 return None;
5899 uint64_t BitShift = ShiftOp->getZExtValue();
5900 if (BitShift % 8 != 0)
5901 return None;
5902 uint64_t ByteShift = BitShift / 8;
5904 return Index < ByteShift
5905 ? ByteProvider::getConstantZero()
5906 : calculateByteProvider(Op->getOperand(0), Index - ByteShift,
5907 Depth + 1);
5909 case ISD::ANY_EXTEND:
5910 case ISD::SIGN_EXTEND:
5911 case ISD::ZERO_EXTEND: {
5912 SDValue NarrowOp = Op->getOperand(0);
5913 unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
5914 if (NarrowBitWidth % 8 != 0)
5915 return None;
5916 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
5918 if (Index >= NarrowByteWidth)
5919 return Op.getOpcode() == ISD::ZERO_EXTEND
5920 ? Optional<ByteProvider>(ByteProvider::getConstantZero())
5921 : None;
5922 return calculateByteProvider(NarrowOp, Index, Depth + 1);
5924 case ISD::BSWAP:
5925 return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1,
5926 Depth + 1);
5927 case ISD::LOAD: {
5928 auto L = cast<LoadSDNode>(Op.getNode());
5929 if (L->isVolatile() || L->isIndexed())
5930 return None;
5932 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
5933 if (NarrowBitWidth % 8 != 0)
5934 return None;
5935 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
5937 if (Index >= NarrowByteWidth)
5938 return L->getExtensionType() == ISD::ZEXTLOAD
5939 ? Optional<ByteProvider>(ByteProvider::getConstantZero())
5940 : None;
5941 return ByteProvider::getMemory(L, Index);
5945 return None;
5948 /// Match a pattern where a wide type scalar value is loaded by several narrow
5949 /// loads and combined by shifts and ors. Fold it into a single load or a load
5950 /// and a BSWAP if the targets supports it.
5952 /// Assuming little endian target:
5953 /// i8 *a = ...
5954 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
5955 /// =>
5956 /// i32 val = *((i32)a)
5958 /// i8 *a = ...
5959 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
5960 /// =>
5961 /// i32 val = BSWAP(*((i32)a))
5963 /// TODO: This rule matches complex patterns with OR node roots and doesn't
5964 /// interact well with the worklist mechanism. When a part of the pattern is
5965 /// updated (e.g. one of the loads) its direct users are put into the worklist,
5966 /// but the root node of the pattern which triggers the load combine is not
5967 /// necessarily a direct user of the changed node. For example, once the address
5968 /// of t28 load is reassociated load combine won't be triggered:
5969 /// t25: i32 = add t4, Constant:i32<2>
5970 /// t26: i64 = sign_extend t25
5971 /// t27: i64 = add t2, t26
5972 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
5973 /// t29: i32 = zero_extend t28
5974 /// t32: i32 = shl t29, Constant:i8<8>
5975 /// t33: i32 = or t23, t32
5976 /// As a possible fix visitLoad can check if the load can be a part of a load
5977 /// combine pattern and add corresponding OR roots to the worklist.
5978 SDValue DAGCombiner::MatchLoadCombine(SDNode *N) {
5979 assert(N->getOpcode() == ISD::OR &&
5980 "Can only match load combining against OR nodes");
5982 // Handles simple types only
5983 EVT VT = N->getValueType(0);
5984 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
5985 return SDValue();
5986 unsigned ByteWidth = VT.getSizeInBits() / 8;
5988 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5989 // Before legalize we can introduce too wide illegal loads which will be later
5990 // split into legal sized loads. This enables us to combine i64 load by i8
5991 // patterns to a couple of i32 loads on 32 bit targets.
5992 if (LegalOperations && !TLI.isOperationLegal(ISD::LOAD, VT))
5993 return SDValue();
5995 std::function<unsigned(unsigned, unsigned)> LittleEndianByteAt = [](
5996 unsigned BW, unsigned i) { return i; };
5997 std::function<unsigned(unsigned, unsigned)> BigEndianByteAt = [](
5998 unsigned BW, unsigned i) { return BW - i - 1; };
6000 bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian();
6001 auto MemoryByteOffset = [&] (ByteProvider P) {
6002 assert(P.isMemory() && "Must be a memory byte provider");
6003 unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits();
6004 assert(LoadBitWidth % 8 == 0 &&
6005 "can only analyze providers for individual bytes not bit");
6006 unsigned LoadByteWidth = LoadBitWidth / 8;
6007 return IsBigEndianTarget
6008 ? BigEndianByteAt(LoadByteWidth, P.ByteOffset)
6009 : LittleEndianByteAt(LoadByteWidth, P.ByteOffset);
6012 Optional<BaseIndexOffset> Base;
6013 SDValue Chain;
6015 SmallPtrSet<LoadSDNode *, 8> Loads;
6016 Optional<ByteProvider> FirstByteProvider;
6017 int64_t FirstOffset = INT64_MAX;
6019 // Check if all the bytes of the OR we are looking at are loaded from the same
6020 // base address. Collect bytes offsets from Base address in ByteOffsets.
6021 SmallVector<int64_t, 4> ByteOffsets(ByteWidth);
6022 for (unsigned i = 0; i < ByteWidth; i++) {
6023 auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true);
6024 if (!P || !P->isMemory()) // All the bytes must be loaded from memory
6025 return SDValue();
6027 LoadSDNode *L = P->Load;
6028 assert(L->hasNUsesOfValue(1, 0) && !L->isVolatile() && !L->isIndexed() &&
6029 "Must be enforced by calculateByteProvider");
6030 assert(L->getOffset().isUndef() && "Unindexed load must have undef offset");
6032 // All loads must share the same chain
6033 SDValue LChain = L->getChain();
6034 if (!Chain)
6035 Chain = LChain;
6036 else if (Chain != LChain)
6037 return SDValue();
6039 // Loads must share the same base address
6040 BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG);
6041 int64_t ByteOffsetFromBase = 0;
6042 if (!Base)
6043 Base = Ptr;
6044 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
6045 return SDValue();
6047 // Calculate the offset of the current byte from the base address
6048 ByteOffsetFromBase += MemoryByteOffset(*P);
6049 ByteOffsets[i] = ByteOffsetFromBase;
6051 // Remember the first byte load
6052 if (ByteOffsetFromBase < FirstOffset) {
6053 FirstByteProvider = P;
6054 FirstOffset = ByteOffsetFromBase;
6057 Loads.insert(L);
6059 assert(!Loads.empty() && "All the bytes of the value must be loaded from "
6060 "memory, so there must be at least one load which produces the value");
6061 assert(Base && "Base address of the accessed memory location must be set");
6062 assert(FirstOffset != INT64_MAX && "First byte offset must be set");
6064 // Check if the bytes of the OR we are looking at match with either big or
6065 // little endian value load
6066 bool BigEndian = true, LittleEndian = true;
6067 for (unsigned i = 0; i < ByteWidth; i++) {
6068 int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset;
6069 LittleEndian &= CurrentByteOffset == LittleEndianByteAt(ByteWidth, i);
6070 BigEndian &= CurrentByteOffset == BigEndianByteAt(ByteWidth, i);
6071 if (!BigEndian && !LittleEndian)
6072 return SDValue();
6074 assert((BigEndian != LittleEndian) && "should be either or");
6075 assert(FirstByteProvider && "must be set");
6077 // Ensure that the first byte is loaded from zero offset of the first load.
6078 // So the combined value can be loaded from the first load address.
6079 if (MemoryByteOffset(*FirstByteProvider) != 0)
6080 return SDValue();
6081 LoadSDNode *FirstLoad = FirstByteProvider->Load;
6083 // The node we are looking at matches with the pattern, check if we can
6084 // replace it with a single load and bswap if needed.
6086 // If the load needs byte swap check if the target supports it
6087 bool NeedsBswap = IsBigEndianTarget != BigEndian;
6089 // Before legalize we can introduce illegal bswaps which will be later
6090 // converted to an explicit bswap sequence. This way we end up with a single
6091 // load and byte shuffling instead of several loads and byte shuffling.
6092 if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT))
6093 return SDValue();
6095 // Check that a load of the wide type is both allowed and fast on the target
6096 bool Fast = false;
6097 bool Allowed = TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(),
6098 VT, FirstLoad->getAddressSpace(),
6099 FirstLoad->getAlignment(), &Fast);
6100 if (!Allowed || !Fast)
6101 return SDValue();
6103 SDValue NewLoad =
6104 DAG.getLoad(VT, SDLoc(N), Chain, FirstLoad->getBasePtr(),
6105 FirstLoad->getPointerInfo(), FirstLoad->getAlignment());
6107 // Transfer chain users from old loads to the new load.
6108 for (LoadSDNode *L : Loads)
6109 DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1));
6111 return NeedsBswap ? DAG.getNode(ISD::BSWAP, SDLoc(N), VT, NewLoad) : NewLoad;
6114 // If the target has andn, bsl, or a similar bit-select instruction,
6115 // we want to unfold masked merge, with canonical pattern of:
6116 // | A | |B|
6117 // ((x ^ y) & m) ^ y
6118 // | D |
6119 // Into:
6120 // (x & m) | (y & ~m)
6121 // If y is a constant, and the 'andn' does not work with immediates,
6122 // we unfold into a different pattern:
6123 // ~(~x & m) & (m | y)
6124 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
6125 // the very least that breaks andnpd / andnps patterns, and because those
6126 // patterns are simplified in IR and shouldn't be created in the DAG
6127 SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) {
6128 assert(N->getOpcode() == ISD::XOR);
6130 // Don't touch 'not' (i.e. where y = -1).
6131 if (isAllOnesOrAllOnesSplat(N->getOperand(1)))
6132 return SDValue();
6134 EVT VT = N->getValueType(0);
6136 // There are 3 commutable operators in the pattern,
6137 // so we have to deal with 8 possible variants of the basic pattern.
6138 SDValue X, Y, M;
6139 auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) {
6140 if (And.getOpcode() != ISD::AND || !And.hasOneUse())
6141 return false;
6142 SDValue Xor = And.getOperand(XorIdx);
6143 if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse())
6144 return false;
6145 SDValue Xor0 = Xor.getOperand(0);
6146 SDValue Xor1 = Xor.getOperand(1);
6147 // Don't touch 'not' (i.e. where y = -1).
6148 if (isAllOnesOrAllOnesSplat(Xor1))
6149 return false;
6150 if (Other == Xor0)
6151 std::swap(Xor0, Xor1);
6152 if (Other != Xor1)
6153 return false;
6154 X = Xor0;
6155 Y = Xor1;
6156 M = And.getOperand(XorIdx ? 0 : 1);
6157 return true;
6160 SDValue N0 = N->getOperand(0);
6161 SDValue N1 = N->getOperand(1);
6162 if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) &&
6163 !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0))
6164 return SDValue();
6166 // Don't do anything if the mask is constant. This should not be reachable.
6167 // InstCombine should have already unfolded this pattern, and DAGCombiner
6168 // probably shouldn't produce it, too.
6169 if (isa<ConstantSDNode>(M.getNode()))
6170 return SDValue();
6172 // We can transform if the target has AndNot
6173 if (!TLI.hasAndNot(M))
6174 return SDValue();
6176 SDLoc DL(N);
6178 // If Y is a constant, check that 'andn' works with immediates.
6179 if (!TLI.hasAndNot(Y)) {
6180 assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable.");
6181 // If not, we need to do a bit more work to make sure andn is still used.
6182 SDValue NotX = DAG.getNOT(DL, X, VT);
6183 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M);
6184 SDValue NotLHS = DAG.getNOT(DL, LHS, VT);
6185 SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y);
6186 return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS);
6189 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M);
6190 SDValue NotM = DAG.getNOT(DL, M, VT);
6191 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM);
6193 return DAG.getNode(ISD::OR, DL, VT, LHS, RHS);
6196 SDValue DAGCombiner::visitXOR(SDNode *N) {
6197 SDValue N0 = N->getOperand(0);
6198 SDValue N1 = N->getOperand(1);
6199 EVT VT = N0.getValueType();
6201 // fold vector ops
6202 if (VT.isVector()) {
6203 if (SDValue FoldedVOp = SimplifyVBinOp(N))
6204 return FoldedVOp;
6206 // fold (xor x, 0) -> x, vector edition
6207 if (ISD::isBuildVectorAllZeros(N0.getNode()))
6208 return N1;
6209 if (ISD::isBuildVectorAllZeros(N1.getNode()))
6210 return N0;
6213 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
6214 SDLoc DL(N);
6215 if (N0.isUndef() && N1.isUndef())
6216 return DAG.getConstant(0, DL, VT);
6217 // fold (xor x, undef) -> undef
6218 if (N0.isUndef())
6219 return N0;
6220 if (N1.isUndef())
6221 return N1;
6222 // fold (xor c1, c2) -> c1^c2
6223 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
6224 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
6225 if (N0C && N1C)
6226 return DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, N0C, N1C);
6227 // canonicalize constant to RHS
6228 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
6229 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
6230 return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
6231 // fold (xor x, 0) -> x
6232 if (isNullConstant(N1))
6233 return N0;
6235 if (SDValue NewSel = foldBinOpIntoSelect(N))
6236 return NewSel;
6238 // reassociate xor
6239 if (SDValue RXOR = ReassociateOps(ISD::XOR, DL, N0, N1, N->getFlags()))
6240 return RXOR;
6242 // fold !(x cc y) -> (x !cc y)
6243 unsigned N0Opcode = N0.getOpcode();
6244 SDValue LHS, RHS, CC;
6245 if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) {
6246 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
6247 LHS.getValueType().isInteger());
6248 if (!LegalOperations ||
6249 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
6250 switch (N0Opcode) {
6251 default:
6252 llvm_unreachable("Unhandled SetCC Equivalent!");
6253 case ISD::SETCC:
6254 return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC);
6255 case ISD::SELECT_CC:
6256 return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2),
6257 N0.getOperand(3), NotCC);
6262 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
6263 if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() &&
6264 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
6265 SDValue V = N0.getOperand(0);
6266 SDLoc DL0(N0);
6267 V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V,
6268 DAG.getConstant(1, DL0, V.getValueType()));
6269 AddToWorklist(V.getNode());
6270 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V);
6273 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
6274 if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() &&
6275 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
6276 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
6277 if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
6278 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
6279 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
6280 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
6281 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode());
6282 return DAG.getNode(NewOpcode, DL, VT, LHS, RHS);
6285 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
6286 if (isAllOnesConstant(N1) && N0.hasOneUse() &&
6287 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
6288 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
6289 if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
6290 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
6291 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
6292 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
6293 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode());
6294 return DAG.getNode(NewOpcode, DL, VT, LHS, RHS);
6297 // fold (xor (and x, y), y) -> (and (not x), y)
6298 if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) {
6299 SDValue X = N0.getOperand(0);
6300 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
6301 AddToWorklist(NotX.getNode());
6302 return DAG.getNode(ISD::AND, DL, VT, NotX, N1);
6305 if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) {
6306 ConstantSDNode *XorC = isConstOrConstSplat(N1);
6307 ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1));
6308 unsigned BitWidth = VT.getScalarSizeInBits();
6309 if (XorC && ShiftC) {
6310 // Don't crash on an oversized shift. We can not guarantee that a bogus
6311 // shift has been simplified to undef.
6312 uint64_t ShiftAmt = ShiftC->getLimitedValue();
6313 if (ShiftAmt < BitWidth) {
6314 APInt Ones = APInt::getAllOnesValue(BitWidth);
6315 Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt);
6316 if (XorC->getAPIntValue() == Ones) {
6317 // If the xor constant is a shifted -1, do a 'not' before the shift:
6318 // xor (X << ShiftC), XorC --> (not X) << ShiftC
6319 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
6320 SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT);
6321 return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1));
6327 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
6328 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
6329 SDValue A = N0Opcode == ISD::ADD ? N0 : N1;
6330 SDValue S = N0Opcode == ISD::SRA ? N0 : N1;
6331 if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) {
6332 SDValue A0 = A.getOperand(0), A1 = A.getOperand(1);
6333 SDValue S0 = S.getOperand(0);
6334 if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) {
6335 unsigned OpSizeInBits = VT.getScalarSizeInBits();
6336 if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1)))
6337 if (C->getAPIntValue() == (OpSizeInBits - 1))
6338 return DAG.getNode(ISD::ABS, DL, VT, S0);
6343 // fold (xor x, x) -> 0
6344 if (N0 == N1)
6345 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
6347 // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
6348 // Here is a concrete example of this equivalence:
6349 // i16 x == 14
6350 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000
6351 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
6353 // =>
6355 // i16 ~1 == 0b1111111111111110
6356 // i16 rol(~1, 14) == 0b1011111111111111
6358 // Some additional tips to help conceptualize this transform:
6359 // - Try to see the operation as placing a single zero in a value of all ones.
6360 // - There exists no value for x which would allow the result to contain zero.
6361 // - Values of x larger than the bitwidth are undefined and do not require a
6362 // consistent result.
6363 // - Pushing the zero left requires shifting one bits in from the right.
6364 // A rotate left of ~1 is a nice way of achieving the desired result.
6365 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL &&
6366 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) {
6367 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT),
6368 N0.getOperand(1));
6371 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
6372 if (N0Opcode == N1.getOpcode())
6373 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
6374 return V;
6376 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
6377 if (SDValue MM = unfoldMaskedMerge(N))
6378 return MM;
6380 // Simplify the expression using non-local knowledge.
6381 if (SimplifyDemandedBits(SDValue(N, 0)))
6382 return SDValue(N, 0);
6384 return SDValue();
6387 /// Handle transforms common to the three shifts, when the shift amount is a
6388 /// constant.
6389 SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) {
6390 // Do not turn a 'not' into a regular xor.
6391 if (isBitwiseNot(N->getOperand(0)))
6392 return SDValue();
6394 SDNode *LHS = N->getOperand(0).getNode();
6395 if (!LHS->hasOneUse()) return SDValue();
6397 // We want to pull some binops through shifts, so that we have (and (shift))
6398 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
6399 // thing happens with address calculations, so it's important to canonicalize
6400 // it.
6401 bool HighBitSet = false; // Can we transform this if the high bit is set?
6403 switch (LHS->getOpcode()) {
6404 default: return SDValue();
6405 case ISD::OR:
6406 case ISD::XOR:
6407 HighBitSet = false; // We can only transform sra if the high bit is clear.
6408 break;
6409 case ISD::AND:
6410 HighBitSet = true; // We can only transform sra if the high bit is set.
6411 break;
6412 case ISD::ADD:
6413 if (N->getOpcode() != ISD::SHL)
6414 return SDValue(); // only shl(add) not sr[al](add).
6415 HighBitSet = false; // We can only transform sra if the high bit is clear.
6416 break;
6419 // We require the RHS of the binop to be a constant and not opaque as well.
6420 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1));
6421 if (!BinOpCst) return SDValue();
6423 // FIXME: disable this unless the input to the binop is a shift by a constant
6424 // or is copy/select.Enable this in other cases when figure out it's exactly profitable.
6425 SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
6426 bool isShift = BinOpLHSVal->getOpcode() == ISD::SHL ||
6427 BinOpLHSVal->getOpcode() == ISD::SRA ||
6428 BinOpLHSVal->getOpcode() == ISD::SRL;
6429 bool isCopyOrSelect = BinOpLHSVal->getOpcode() == ISD::CopyFromReg ||
6430 BinOpLHSVal->getOpcode() == ISD::SELECT;
6432 if ((!isShift || !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) &&
6433 !isCopyOrSelect)
6434 return SDValue();
6436 if (isCopyOrSelect && N->hasOneUse())
6437 return SDValue();
6439 EVT VT = N->getValueType(0);
6441 // If this is a signed shift right, and the high bit is modified by the
6442 // logical operation, do not perform the transformation. The highBitSet
6443 // boolean indicates the value of the high bit of the constant which would
6444 // cause it to be modified for this operation.
6445 if (N->getOpcode() == ISD::SRA) {
6446 bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
6447 if (BinOpRHSSignSet != HighBitSet)
6448 return SDValue();
6451 if (!TLI.isDesirableToCommuteWithShift(N, Level))
6452 return SDValue();
6454 // Fold the constants, shifting the binop RHS by the shift amount.
6455 SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
6456 N->getValueType(0),
6457 LHS->getOperand(1), N->getOperand(1));
6458 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!");
6460 // Create the new shift.
6461 SDValue NewShift = DAG.getNode(N->getOpcode(),
6462 SDLoc(LHS->getOperand(0)),
6463 VT, LHS->getOperand(0), N->getOperand(1));
6465 // Create the new binop.
6466 return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
6469 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
6470 assert(N->getOpcode() == ISD::TRUNCATE);
6471 assert(N->getOperand(0).getOpcode() == ISD::AND);
6473 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
6474 if (N->hasOneUse() && N->getOperand(0).hasOneUse()) {
6475 SDValue N01 = N->getOperand(0).getOperand(1);
6476 if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) {
6477 SDLoc DL(N);
6478 EVT TruncVT = N->getValueType(0);
6479 SDValue N00 = N->getOperand(0).getOperand(0);
6480 SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00);
6481 SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01);
6482 AddToWorklist(Trunc00.getNode());
6483 AddToWorklist(Trunc01.getNode());
6484 return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01);
6488 return SDValue();
6491 SDValue DAGCombiner::visitRotate(SDNode *N) {
6492 SDLoc dl(N);
6493 SDValue N0 = N->getOperand(0);
6494 SDValue N1 = N->getOperand(1);
6495 EVT VT = N->getValueType(0);
6496 unsigned Bitsize = VT.getScalarSizeInBits();
6498 // fold (rot x, 0) -> x
6499 if (isNullOrNullSplat(N1))
6500 return N0;
6502 // fold (rot x, c) -> x iff (c % BitSize) == 0
6503 if (isPowerOf2_32(Bitsize) && Bitsize > 1) {
6504 APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1);
6505 if (DAG.MaskedValueIsZero(N1, ModuloMask))
6506 return N0;
6509 // fold (rot x, c) -> (rot x, c % BitSize)
6510 if (ConstantSDNode *Cst = isConstOrConstSplat(N1)) {
6511 if (Cst->getAPIntValue().uge(Bitsize)) {
6512 uint64_t RotAmt = Cst->getAPIntValue().urem(Bitsize);
6513 return DAG.getNode(N->getOpcode(), dl, VT, N0,
6514 DAG.getConstant(RotAmt, dl, N1.getValueType()));
6518 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
6519 if (N1.getOpcode() == ISD::TRUNCATE &&
6520 N1.getOperand(0).getOpcode() == ISD::AND) {
6521 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
6522 return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1);
6525 unsigned NextOp = N0.getOpcode();
6526 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize)
6527 if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) {
6528 SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1);
6529 SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1));
6530 if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) {
6531 EVT ShiftVT = C1->getValueType(0);
6532 bool SameSide = (N->getOpcode() == NextOp);
6533 unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB;
6534 if (SDValue CombinedShift =
6535 DAG.FoldConstantArithmetic(CombineOp, dl, ShiftVT, C1, C2)) {
6536 SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT);
6537 SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic(
6538 ISD::SREM, dl, ShiftVT, CombinedShift.getNode(),
6539 BitsizeC.getNode());
6540 return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0),
6541 CombinedShiftNorm);
6545 return SDValue();
6548 SDValue DAGCombiner::visitSHL(SDNode *N) {
6549 SDValue N0 = N->getOperand(0);
6550 SDValue N1 = N->getOperand(1);
6551 if (SDValue V = DAG.simplifyShift(N0, N1))
6552 return V;
6554 EVT VT = N0.getValueType();
6555 unsigned OpSizeInBits = VT.getScalarSizeInBits();
6557 // fold vector ops
6558 if (VT.isVector()) {
6559 if (SDValue FoldedVOp = SimplifyVBinOp(N))
6560 return FoldedVOp;
6562 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
6563 // If setcc produces all-one true value then:
6564 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
6565 if (N1CV && N1CV->isConstant()) {
6566 if (N0.getOpcode() == ISD::AND) {
6567 SDValue N00 = N0->getOperand(0);
6568 SDValue N01 = N0->getOperand(1);
6569 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
6571 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
6572 TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
6573 TargetLowering::ZeroOrNegativeOneBooleanContent) {
6574 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT,
6575 N01CV, N1CV))
6576 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
6582 ConstantSDNode *N1C = isConstOrConstSplat(N1);
6584 // fold (shl c1, c2) -> c1<<c2
6585 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
6586 if (N0C && N1C && !N1C->isOpaque())
6587 return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C);
6589 if (SDValue NewSel = foldBinOpIntoSelect(N))
6590 return NewSel;
6592 // if (shl x, c) is known to be zero, return 0
6593 if (DAG.MaskedValueIsZero(SDValue(N, 0),
6594 APInt::getAllOnesValue(OpSizeInBits)))
6595 return DAG.getConstant(0, SDLoc(N), VT);
6596 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
6597 if (N1.getOpcode() == ISD::TRUNCATE &&
6598 N1.getOperand(0).getOpcode() == ISD::AND) {
6599 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
6600 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1);
6603 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
6604 return SDValue(N, 0);
6606 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
6607 if (N0.getOpcode() == ISD::SHL) {
6608 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
6609 ConstantSDNode *RHS) {
6610 APInt c1 = LHS->getAPIntValue();
6611 APInt c2 = RHS->getAPIntValue();
6612 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
6613 return (c1 + c2).uge(OpSizeInBits);
6615 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
6616 return DAG.getConstant(0, SDLoc(N), VT);
6618 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
6619 ConstantSDNode *RHS) {
6620 APInt c1 = LHS->getAPIntValue();
6621 APInt c2 = RHS->getAPIntValue();
6622 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
6623 return (c1 + c2).ult(OpSizeInBits);
6625 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
6626 SDLoc DL(N);
6627 EVT ShiftVT = N1.getValueType();
6628 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
6629 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum);
6633 // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
6634 // For this to be valid, the second form must not preserve any of the bits
6635 // that are shifted out by the inner shift in the first form. This means
6636 // the outer shift size must be >= the number of bits added by the ext.
6637 // As a corollary, we don't care what kind of ext it is.
6638 if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
6639 N0.getOpcode() == ISD::ANY_EXTEND ||
6640 N0.getOpcode() == ISD::SIGN_EXTEND) &&
6641 N0.getOperand(0).getOpcode() == ISD::SHL) {
6642 SDValue N0Op0 = N0.getOperand(0);
6643 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
6644 APInt c1 = N0Op0C1->getAPIntValue();
6645 APInt c2 = N1C->getAPIntValue();
6646 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
6648 EVT InnerShiftVT = N0Op0.getValueType();
6649 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
6650 if (c2.uge(OpSizeInBits - InnerShiftSize)) {
6651 SDLoc DL(N0);
6652 APInt Sum = c1 + c2;
6653 if (Sum.uge(OpSizeInBits))
6654 return DAG.getConstant(0, DL, VT);
6656 return DAG.getNode(
6657 ISD::SHL, DL, VT,
6658 DAG.getNode(N0.getOpcode(), DL, VT, N0Op0->getOperand(0)),
6659 DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType()));
6664 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
6665 // Only fold this if the inner zext has no other uses to avoid increasing
6666 // the total number of instructions.
6667 if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
6668 N0.getOperand(0).getOpcode() == ISD::SRL) {
6669 SDValue N0Op0 = N0.getOperand(0);
6670 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
6671 if (N0Op0C1->getAPIntValue().ult(VT.getScalarSizeInBits())) {
6672 uint64_t c1 = N0Op0C1->getZExtValue();
6673 uint64_t c2 = N1C->getZExtValue();
6674 if (c1 == c2) {
6675 SDValue NewOp0 = N0.getOperand(0);
6676 EVT CountVT = NewOp0.getOperand(1).getValueType();
6677 SDLoc DL(N);
6678 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(),
6679 NewOp0,
6680 DAG.getConstant(c2, DL, CountVT));
6681 AddToWorklist(NewSHL.getNode());
6682 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
6688 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
6689 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2
6690 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) &&
6691 N0->getFlags().hasExact()) {
6692 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
6693 uint64_t C1 = N0C1->getZExtValue();
6694 uint64_t C2 = N1C->getZExtValue();
6695 SDLoc DL(N);
6696 if (C1 <= C2)
6697 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
6698 DAG.getConstant(C2 - C1, DL, N1.getValueType()));
6699 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0),
6700 DAG.getConstant(C1 - C2, DL, N1.getValueType()));
6704 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
6705 // (and (srl x, (sub c1, c2), MASK)
6706 // Only fold this if the inner shift has no other uses -- if it does, folding
6707 // this will increase the total number of instructions.
6708 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
6709 TLI.shouldFoldShiftPairToMask(N, Level)) {
6710 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
6711 uint64_t c1 = N0C1->getZExtValue();
6712 if (c1 < OpSizeInBits) {
6713 uint64_t c2 = N1C->getZExtValue();
6714 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1);
6715 SDValue Shift;
6716 if (c2 > c1) {
6717 Mask <<= c2 - c1;
6718 SDLoc DL(N);
6719 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
6720 DAG.getConstant(c2 - c1, DL, N1.getValueType()));
6721 } else {
6722 Mask.lshrInPlace(c1 - c2);
6723 SDLoc DL(N);
6724 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
6725 DAG.getConstant(c1 - c2, DL, N1.getValueType()));
6727 SDLoc DL(N0);
6728 return DAG.getNode(ISD::AND, DL, VT, Shift,
6729 DAG.getConstant(Mask, DL, VT));
6734 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
6735 if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) &&
6736 isConstantOrConstantVector(N1, /* No Opaques */ true)) {
6737 SDLoc DL(N);
6738 SDValue AllBits = DAG.getAllOnesConstant(DL, VT);
6739 SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1);
6740 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask);
6743 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
6744 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
6745 // Variant of version done on multiply, except mul by a power of 2 is turned
6746 // into a shift.
6747 if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) &&
6748 N0.getNode()->hasOneUse() &&
6749 isConstantOrConstantVector(N1, /* No Opaques */ true) &&
6750 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) &&
6751 TLI.isDesirableToCommuteWithShift(N, Level)) {
6752 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
6753 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
6754 AddToWorklist(Shl0.getNode());
6755 AddToWorklist(Shl1.getNode());
6756 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1);
6759 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
6760 if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() &&
6761 isConstantOrConstantVector(N1, /* No Opaques */ true) &&
6762 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) {
6763 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
6764 if (isConstantOrConstantVector(Shl))
6765 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl);
6768 if (N1C && !N1C->isOpaque())
6769 if (SDValue NewSHL = visitShiftByConstant(N, N1C))
6770 return NewSHL;
6772 return SDValue();
6775 SDValue DAGCombiner::visitSRA(SDNode *N) {
6776 SDValue N0 = N->getOperand(0);
6777 SDValue N1 = N->getOperand(1);
6778 if (SDValue V = DAG.simplifyShift(N0, N1))
6779 return V;
6781 EVT VT = N0.getValueType();
6782 unsigned OpSizeInBits = VT.getScalarSizeInBits();
6784 // Arithmetic shifting an all-sign-bit value is a no-op.
6785 // fold (sra 0, x) -> 0
6786 // fold (sra -1, x) -> -1
6787 if (DAG.ComputeNumSignBits(N0) == OpSizeInBits)
6788 return N0;
6790 // fold vector ops
6791 if (VT.isVector())
6792 if (SDValue FoldedVOp = SimplifyVBinOp(N))
6793 return FoldedVOp;
6795 ConstantSDNode *N1C = isConstOrConstSplat(N1);
6797 // fold (sra c1, c2) -> (sra c1, c2)
6798 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
6799 if (N0C && N1C && !N1C->isOpaque())
6800 return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C);
6802 if (SDValue NewSel = foldBinOpIntoSelect(N))
6803 return NewSel;
6805 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
6806 // sext_inreg.
6807 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
6808 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
6809 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
6810 if (VT.isVector())
6811 ExtVT = EVT::getVectorVT(*DAG.getContext(),
6812 ExtVT, VT.getVectorNumElements());
6813 if ((!LegalOperations ||
6814 TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
6815 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
6816 N0.getOperand(0), DAG.getValueType(ExtVT));
6819 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
6820 // clamp (add c1, c2) to max shift.
6821 if (N0.getOpcode() == ISD::SRA) {
6822 SDLoc DL(N);
6823 EVT ShiftVT = N1.getValueType();
6824 EVT ShiftSVT = ShiftVT.getScalarType();
6825 SmallVector<SDValue, 16> ShiftValues;
6827 auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) {
6828 APInt c1 = LHS->getAPIntValue();
6829 APInt c2 = RHS->getAPIntValue();
6830 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
6831 APInt Sum = c1 + c2;
6832 unsigned ShiftSum =
6833 Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue();
6834 ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT));
6835 return true;
6837 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) {
6838 SDValue ShiftValue;
6839 if (VT.isVector())
6840 ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues);
6841 else
6842 ShiftValue = ShiftValues[0];
6843 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue);
6847 // fold (sra (shl X, m), (sub result_size, n))
6848 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
6849 // result_size - n != m.
6850 // If truncate is free for the target sext(shl) is likely to result in better
6851 // code.
6852 if (N0.getOpcode() == ISD::SHL && N1C) {
6853 // Get the two constanst of the shifts, CN0 = m, CN = n.
6854 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
6855 if (N01C) {
6856 LLVMContext &Ctx = *DAG.getContext();
6857 // Determine what the truncate's result bitsize and type would be.
6858 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
6860 if (VT.isVector())
6861 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements());
6863 // Determine the residual right-shift amount.
6864 int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
6866 // If the shift is not a no-op (in which case this should be just a sign
6867 // extend already), the truncated to type is legal, sign_extend is legal
6868 // on that type, and the truncate to that type is both legal and free,
6869 // perform the transform.
6870 if ((ShiftAmt > 0) &&
6871 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
6872 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
6873 TLI.isTruncateFree(VT, TruncVT)) {
6874 SDLoc DL(N);
6875 SDValue Amt = DAG.getConstant(ShiftAmt, DL,
6876 getShiftAmountTy(N0.getOperand(0).getValueType()));
6877 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
6878 N0.getOperand(0), Amt);
6879 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
6880 Shift);
6881 return DAG.getNode(ISD::SIGN_EXTEND, DL,
6882 N->getValueType(0), Trunc);
6887 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
6888 if (N1.getOpcode() == ISD::TRUNCATE &&
6889 N1.getOperand(0).getOpcode() == ISD::AND) {
6890 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
6891 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1);
6894 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
6895 // if c1 is equal to the number of bits the trunc removes
6896 if (N0.getOpcode() == ISD::TRUNCATE &&
6897 (N0.getOperand(0).getOpcode() == ISD::SRL ||
6898 N0.getOperand(0).getOpcode() == ISD::SRA) &&
6899 N0.getOperand(0).hasOneUse() &&
6900 N0.getOperand(0).getOperand(1).hasOneUse() &&
6901 N1C) {
6902 SDValue N0Op0 = N0.getOperand(0);
6903 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
6904 unsigned LargeShiftVal = LargeShift->getZExtValue();
6905 EVT LargeVT = N0Op0.getValueType();
6907 if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) {
6908 SDLoc DL(N);
6909 SDValue Amt =
6910 DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL,
6911 getShiftAmountTy(N0Op0.getOperand(0).getValueType()));
6912 SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT,
6913 N0Op0.getOperand(0), Amt);
6914 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
6919 // Simplify, based on bits shifted out of the LHS.
6920 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
6921 return SDValue(N, 0);
6923 // If the sign bit is known to be zero, switch this to a SRL.
6924 if (DAG.SignBitIsZero(N0))
6925 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
6927 if (N1C && !N1C->isOpaque())
6928 if (SDValue NewSRA = visitShiftByConstant(N, N1C))
6929 return NewSRA;
6931 return SDValue();
6934 SDValue DAGCombiner::visitSRL(SDNode *N) {
6935 SDValue N0 = N->getOperand(0);
6936 SDValue N1 = N->getOperand(1);
6937 if (SDValue V = DAG.simplifyShift(N0, N1))
6938 return V;
6940 EVT VT = N0.getValueType();
6941 unsigned OpSizeInBits = VT.getScalarSizeInBits();
6943 // fold vector ops
6944 if (VT.isVector())
6945 if (SDValue FoldedVOp = SimplifyVBinOp(N))
6946 return FoldedVOp;
6948 ConstantSDNode *N1C = isConstOrConstSplat(N1);
6950 // fold (srl c1, c2) -> c1 >>u c2
6951 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
6952 if (N0C && N1C && !N1C->isOpaque())
6953 return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C);
6955 if (SDValue NewSel = foldBinOpIntoSelect(N))
6956 return NewSel;
6958 // if (srl x, c) is known to be zero, return 0
6959 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
6960 APInt::getAllOnesValue(OpSizeInBits)))
6961 return DAG.getConstant(0, SDLoc(N), VT);
6963 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
6964 if (N0.getOpcode() == ISD::SRL) {
6965 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
6966 ConstantSDNode *RHS) {
6967 APInt c1 = LHS->getAPIntValue();
6968 APInt c2 = RHS->getAPIntValue();
6969 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
6970 return (c1 + c2).uge(OpSizeInBits);
6972 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
6973 return DAG.getConstant(0, SDLoc(N), VT);
6975 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
6976 ConstantSDNode *RHS) {
6977 APInt c1 = LHS->getAPIntValue();
6978 APInt c2 = RHS->getAPIntValue();
6979 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
6980 return (c1 + c2).ult(OpSizeInBits);
6982 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
6983 SDLoc DL(N);
6984 EVT ShiftVT = N1.getValueType();
6985 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
6986 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum);
6990 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
6991 if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
6992 N0.getOperand(0).getOpcode() == ISD::SRL) {
6993 if (auto N001C = isConstOrConstSplat(N0.getOperand(0).getOperand(1))) {
6994 uint64_t c1 = N001C->getZExtValue();
6995 uint64_t c2 = N1C->getZExtValue();
6996 EVT InnerShiftVT = N0.getOperand(0).getValueType();
6997 EVT ShiftCountVT = N0.getOperand(0).getOperand(1).getValueType();
6998 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
6999 // This is only valid if the OpSizeInBits + c1 = size of inner shift.
7000 if (c1 + OpSizeInBits == InnerShiftSize) {
7001 SDLoc DL(N0);
7002 if (c1 + c2 >= InnerShiftSize)
7003 return DAG.getConstant(0, DL, VT);
7004 return DAG.getNode(ISD::TRUNCATE, DL, VT,
7005 DAG.getNode(ISD::SRL, DL, InnerShiftVT,
7006 N0.getOperand(0).getOperand(0),
7007 DAG.getConstant(c1 + c2, DL,
7008 ShiftCountVT)));
7013 // fold (srl (shl x, c), c) -> (and x, cst2)
7014 if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
7015 isConstantOrConstantVector(N1, /* NoOpaques */ true)) {
7016 SDLoc DL(N);
7017 SDValue Mask =
7018 DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1);
7019 AddToWorklist(Mask.getNode());
7020 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask);
7023 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
7024 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
7025 // Shifting in all undef bits?
7026 EVT SmallVT = N0.getOperand(0).getValueType();
7027 unsigned BitSize = SmallVT.getScalarSizeInBits();
7028 if (N1C->getZExtValue() >= BitSize)
7029 return DAG.getUNDEF(VT);
7031 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
7032 uint64_t ShiftAmt = N1C->getZExtValue();
7033 SDLoc DL0(N0);
7034 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT,
7035 N0.getOperand(0),
7036 DAG.getConstant(ShiftAmt, DL0,
7037 getShiftAmountTy(SmallVT)));
7038 AddToWorklist(SmallShift.getNode());
7039 APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt);
7040 SDLoc DL(N);
7041 return DAG.getNode(ISD::AND, DL, VT,
7042 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
7043 DAG.getConstant(Mask, DL, VT));
7047 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
7048 // bit, which is unmodified by sra.
7049 if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) {
7050 if (N0.getOpcode() == ISD::SRA)
7051 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
7054 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
7055 if (N1C && N0.getOpcode() == ISD::CTLZ &&
7056 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
7057 KnownBits Known = DAG.computeKnownBits(N0.getOperand(0));
7059 // If any of the input bits are KnownOne, then the input couldn't be all
7060 // zeros, thus the result of the srl will always be zero.
7061 if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);
7063 // If all of the bits input the to ctlz node are known to be zero, then
7064 // the result of the ctlz is "32" and the result of the shift is one.
7065 APInt UnknownBits = ~Known.Zero;
7066 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);
7068 // Otherwise, check to see if there is exactly one bit input to the ctlz.
7069 if (UnknownBits.isPowerOf2()) {
7070 // Okay, we know that only that the single bit specified by UnknownBits
7071 // could be set on input to the CTLZ node. If this bit is set, the SRL
7072 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
7073 // to an SRL/XOR pair, which is likely to simplify more.
7074 unsigned ShAmt = UnknownBits.countTrailingZeros();
7075 SDValue Op = N0.getOperand(0);
7077 if (ShAmt) {
7078 SDLoc DL(N0);
7079 Op = DAG.getNode(ISD::SRL, DL, VT, Op,
7080 DAG.getConstant(ShAmt, DL,
7081 getShiftAmountTy(Op.getValueType())));
7082 AddToWorklist(Op.getNode());
7085 SDLoc DL(N);
7086 return DAG.getNode(ISD::XOR, DL, VT,
7087 Op, DAG.getConstant(1, DL, VT));
7091 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
7092 if (N1.getOpcode() == ISD::TRUNCATE &&
7093 N1.getOperand(0).getOpcode() == ISD::AND) {
7094 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
7095 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1);
7098 // fold operands of srl based on knowledge that the low bits are not
7099 // demanded.
7100 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
7101 return SDValue(N, 0);
7103 if (N1C && !N1C->isOpaque())
7104 if (SDValue NewSRL = visitShiftByConstant(N, N1C))
7105 return NewSRL;
7107 // Attempt to convert a srl of a load into a narrower zero-extending load.
7108 if (SDValue NarrowLoad = ReduceLoadWidth(N))
7109 return NarrowLoad;
7111 // Here is a common situation. We want to optimize:
7113 // %a = ...
7114 // %b = and i32 %a, 2
7115 // %c = srl i32 %b, 1
7116 // brcond i32 %c ...
7118 // into
7120 // %a = ...
7121 // %b = and %a, 2
7122 // %c = setcc eq %b, 0
7123 // brcond %c ...
7125 // However when after the source operand of SRL is optimized into AND, the SRL
7126 // itself may not be optimized further. Look for it and add the BRCOND into
7127 // the worklist.
7128 if (N->hasOneUse()) {
7129 SDNode *Use = *N->use_begin();
7130 if (Use->getOpcode() == ISD::BRCOND)
7131 AddToWorklist(Use);
7132 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
7133 // Also look pass the truncate.
7134 Use = *Use->use_begin();
7135 if (Use->getOpcode() == ISD::BRCOND)
7136 AddToWorklist(Use);
7140 return SDValue();
7143 SDValue DAGCombiner::visitFunnelShift(SDNode *N) {
7144 EVT VT = N->getValueType(0);
7145 SDValue N0 = N->getOperand(0);
7146 SDValue N1 = N->getOperand(1);
7147 SDValue N2 = N->getOperand(2);
7148 bool IsFSHL = N->getOpcode() == ISD::FSHL;
7149 unsigned BitWidth = VT.getScalarSizeInBits();
7151 // fold (fshl N0, N1, 0) -> N0
7152 // fold (fshr N0, N1, 0) -> N1
7153 if (isPowerOf2_32(BitWidth))
7154 if (DAG.MaskedValueIsZero(
7155 N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1)))
7156 return IsFSHL ? N0 : N1;
7158 auto IsUndefOrZero = [](SDValue V) {
7159 return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true);
7162 if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) {
7163 EVT ShAmtTy = N2.getValueType();
7165 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
7166 if (Cst->getAPIntValue().uge(BitWidth)) {
7167 uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth);
7168 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1,
7169 DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy));
7172 unsigned ShAmt = Cst->getZExtValue();
7173 if (ShAmt == 0)
7174 return IsFSHL ? N0 : N1;
7176 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C)
7177 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C)
7178 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C)
7179 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C)
7180 if (IsUndefOrZero(N0))
7181 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1,
7182 DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt,
7183 SDLoc(N), ShAmtTy));
7184 if (IsUndefOrZero(N1))
7185 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
7186 DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt,
7187 SDLoc(N), ShAmtTy));
7190 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2)
7191 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2)
7192 // iff We know the shift amount is in range.
7193 // TODO: when is it worth doing SUB(BW, N2) as well?
7194 if (isPowerOf2_32(BitWidth)) {
7195 APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1);
7196 if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
7197 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2);
7198 if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
7199 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2);
7202 // fold (fshl N0, N0, N2) -> (rotl N0, N2)
7203 // fold (fshr N0, N0, N2) -> (rotr N0, N2)
7204 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift
7205 // is legal as well we might be better off avoiding non-constant (BW - N2).
7206 unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR;
7207 if (N0 == N1 && hasOperation(RotOpc, VT))
7208 return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2);
7210 // Simplify, based on bits shifted out of N0/N1.
7211 if (SimplifyDemandedBits(SDValue(N, 0)))
7212 return SDValue(N, 0);
7214 return SDValue();
7217 SDValue DAGCombiner::visitABS(SDNode *N) {
7218 SDValue N0 = N->getOperand(0);
7219 EVT VT = N->getValueType(0);
7221 // fold (abs c1) -> c2
7222 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
7223 return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0);
7224 // fold (abs (abs x)) -> (abs x)
7225 if (N0.getOpcode() == ISD::ABS)
7226 return N0;
7227 // fold (abs x) -> x iff not-negative
7228 if (DAG.SignBitIsZero(N0))
7229 return N0;
7230 return SDValue();
7233 SDValue DAGCombiner::visitBSWAP(SDNode *N) {
7234 SDValue N0 = N->getOperand(0);
7235 EVT VT = N->getValueType(0);
7237 // fold (bswap c1) -> c2
7238 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
7239 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0);
7240 // fold (bswap (bswap x)) -> x
7241 if (N0.getOpcode() == ISD::BSWAP)
7242 return N0->getOperand(0);
7243 return SDValue();
7246 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) {
7247 SDValue N0 = N->getOperand(0);
7248 EVT VT = N->getValueType(0);
7250 // fold (bitreverse c1) -> c2
7251 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
7252 return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0);
7253 // fold (bitreverse (bitreverse x)) -> x
7254 if (N0.getOpcode() == ISD::BITREVERSE)
7255 return N0.getOperand(0);
7256 return SDValue();
7259 SDValue DAGCombiner::visitCTLZ(SDNode *N) {
7260 SDValue N0 = N->getOperand(0);
7261 EVT VT = N->getValueType(0);
7263 // fold (ctlz c1) -> c2
7264 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
7265 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
7267 // If the value is known never to be zero, switch to the undef version.
7268 if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) {
7269 if (DAG.isKnownNeverZero(N0))
7270 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
7273 return SDValue();
7276 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
7277 SDValue N0 = N->getOperand(0);
7278 EVT VT = N->getValueType(0);
7280 // fold (ctlz_zero_undef c1) -> c2
7281 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
7282 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
7283 return SDValue();
7286 SDValue DAGCombiner::visitCTTZ(SDNode *N) {
7287 SDValue N0 = N->getOperand(0);
7288 EVT VT = N->getValueType(0);
7290 // fold (cttz c1) -> c2
7291 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
7292 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
7294 // If the value is known never to be zero, switch to the undef version.
7295 if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) {
7296 if (DAG.isKnownNeverZero(N0))
7297 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
7300 return SDValue();
7303 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
7304 SDValue N0 = N->getOperand(0);
7305 EVT VT = N->getValueType(0);
7307 // fold (cttz_zero_undef c1) -> c2
7308 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
7309 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
7310 return SDValue();
7313 SDValue DAGCombiner::visitCTPOP(SDNode *N) {
7314 SDValue N0 = N->getOperand(0);
7315 EVT VT = N->getValueType(0);
7317 // fold (ctpop c1) -> c2
7318 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
7319 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
7320 return SDValue();
7323 // FIXME: This should be checking for no signed zeros on individual operands, as
7324 // well as no nans.
7325 static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS,
7326 SDValue RHS,
7327 const TargetLowering &TLI) {
7328 const TargetOptions &Options = DAG.getTarget().Options;
7329 EVT VT = LHS.getValueType();
7331 return Options.NoSignedZerosFPMath && VT.isFloatingPoint() &&
7332 TLI.isProfitableToCombineMinNumMaxNum(VT) &&
7333 DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS);
7336 /// Generate Min/Max node
7337 static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
7338 SDValue RHS, SDValue True, SDValue False,
7339 ISD::CondCode CC, const TargetLowering &TLI,
7340 SelectionDAG &DAG) {
7341 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
7342 return SDValue();
7344 EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
7345 switch (CC) {
7346 case ISD::SETOLT:
7347 case ISD::SETOLE:
7348 case ISD::SETLT:
7349 case ISD::SETLE:
7350 case ISD::SETULT:
7351 case ISD::SETULE: {
7352 // Since it's known never nan to get here already, either fminnum or
7353 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
7354 // expanded in terms of it.
7355 unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7356 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
7357 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
7359 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
7360 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
7361 return DAG.getNode(Opcode, DL, VT, LHS, RHS);
7362 return SDValue();
7364 case ISD::SETOGT:
7365 case ISD::SETOGE:
7366 case ISD::SETGT:
7367 case ISD::SETGE:
7368 case ISD::SETUGT:
7369 case ISD::SETUGE: {
7370 unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
7371 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
7372 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
7374 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
7375 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
7376 return DAG.getNode(Opcode, DL, VT, LHS, RHS);
7377 return SDValue();
7379 default:
7380 return SDValue();
7384 SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) {
7385 SDValue Cond = N->getOperand(0);
7386 SDValue N1 = N->getOperand(1);
7387 SDValue N2 = N->getOperand(2);
7388 EVT VT = N->getValueType(0);
7389 EVT CondVT = Cond.getValueType();
7390 SDLoc DL(N);
7392 if (!VT.isInteger())
7393 return SDValue();
7395 auto *C1 = dyn_cast<ConstantSDNode>(N1);
7396 auto *C2 = dyn_cast<ConstantSDNode>(N2);
7397 if (!C1 || !C2)
7398 return SDValue();
7400 // Only do this before legalization to avoid conflicting with target-specific
7401 // transforms in the other direction (create a select from a zext/sext). There
7402 // is also a target-independent combine here in DAGCombiner in the other
7403 // direction for (select Cond, -1, 0) when the condition is not i1.
7404 if (CondVT == MVT::i1 && !LegalOperations) {
7405 if (C1->isNullValue() && C2->isOne()) {
7406 // select Cond, 0, 1 --> zext (!Cond)
7407 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
7408 if (VT != MVT::i1)
7409 NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond);
7410 return NotCond;
7412 if (C1->isNullValue() && C2->isAllOnesValue()) {
7413 // select Cond, 0, -1 --> sext (!Cond)
7414 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
7415 if (VT != MVT::i1)
7416 NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond);
7417 return NotCond;
7419 if (C1->isOne() && C2->isNullValue()) {
7420 // select Cond, 1, 0 --> zext (Cond)
7421 if (VT != MVT::i1)
7422 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
7423 return Cond;
7425 if (C1->isAllOnesValue() && C2->isNullValue()) {
7426 // select Cond, -1, 0 --> sext (Cond)
7427 if (VT != MVT::i1)
7428 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
7429 return Cond;
7432 // For any constants that differ by 1, we can transform the select into an
7433 // extend and add. Use a target hook because some targets may prefer to
7434 // transform in the other direction.
7435 if (TLI.convertSelectOfConstantsToMath(VT)) {
7436 if (C1->getAPIntValue() - 1 == C2->getAPIntValue()) {
7437 // select Cond, C1, C1-1 --> add (zext Cond), C1-1
7438 if (VT != MVT::i1)
7439 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
7440 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
7442 if (C1->getAPIntValue() + 1 == C2->getAPIntValue()) {
7443 // select Cond, C1, C1+1 --> add (sext Cond), C1+1
7444 if (VT != MVT::i1)
7445 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
7446 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
7450 return SDValue();
7453 // fold (select Cond, 0, 1) -> (xor Cond, 1)
7454 // We can't do this reliably if integer based booleans have different contents
7455 // to floating point based booleans. This is because we can't tell whether we
7456 // have an integer-based boolean or a floating-point-based boolean unless we
7457 // can find the SETCC that produced it and inspect its operands. This is
7458 // fairly easy if C is the SETCC node, but it can potentially be
7459 // undiscoverable (or not reasonably discoverable). For example, it could be
7460 // in another basic block or it could require searching a complicated
7461 // expression.
7462 if (CondVT.isInteger() &&
7463 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
7464 TargetLowering::ZeroOrOneBooleanContent &&
7465 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
7466 TargetLowering::ZeroOrOneBooleanContent &&
7467 C1->isNullValue() && C2->isOne()) {
7468 SDValue NotCond =
7469 DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT));
7470 if (VT.bitsEq(CondVT))
7471 return NotCond;
7472 return DAG.getZExtOrTrunc(NotCond, DL, VT);
7475 return SDValue();
7478 SDValue DAGCombiner::visitSELECT(SDNode *N) {
7479 SDValue N0 = N->getOperand(0);
7480 SDValue N1 = N->getOperand(1);
7481 SDValue N2 = N->getOperand(2);
7482 EVT VT = N->getValueType(0);
7483 EVT VT0 = N0.getValueType();
7484 SDLoc DL(N);
7486 if (SDValue V = DAG.simplifySelect(N0, N1, N2))
7487 return V;
7489 // fold (select X, X, Y) -> (or X, Y)
7490 // fold (select X, 1, Y) -> (or C, Y)
7491 if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1)))
7492 return DAG.getNode(ISD::OR, DL, VT, N0, N2);
7494 if (SDValue V = foldSelectOfConstants(N))
7495 return V;
7497 // fold (select C, 0, X) -> (and (not C), X)
7498 if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) {
7499 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
7500 AddToWorklist(NOTNode.getNode());
7501 return DAG.getNode(ISD::AND, DL, VT, NOTNode, N2);
7503 // fold (select C, X, 1) -> (or (not C), X)
7504 if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) {
7505 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
7506 AddToWorklist(NOTNode.getNode());
7507 return DAG.getNode(ISD::OR, DL, VT, NOTNode, N1);
7509 // fold (select X, Y, X) -> (and X, Y)
7510 // fold (select X, Y, 0) -> (and X, Y)
7511 if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2)))
7512 return DAG.getNode(ISD::AND, DL, VT, N0, N1);
7514 // If we can fold this based on the true/false value, do so.
7515 if (SimplifySelectOps(N, N1, N2))
7516 return SDValue(N, 0); // Don't revisit N.
7518 if (VT0 == MVT::i1) {
7519 // The code in this block deals with the following 2 equivalences:
7520 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
7521 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
7522 // The target can specify its preferred form with the
7523 // shouldNormalizeToSelectSequence() callback. However we always transform
7524 // to the right anyway if we find the inner select exists in the DAG anyway
7525 // and we always transform to the left side if we know that we can further
7526 // optimize the combination of the conditions.
7527 bool normalizeToSequence =
7528 TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT);
7529 // select (and Cond0, Cond1), X, Y
7530 // -> select Cond0, (select Cond1, X, Y), Y
7531 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
7532 SDValue Cond0 = N0->getOperand(0);
7533 SDValue Cond1 = N0->getOperand(1);
7534 SDValue InnerSelect =
7535 DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2);
7536 if (normalizeToSequence || !InnerSelect.use_empty())
7537 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0,
7538 InnerSelect, N2);
7539 // Cleanup on failure.
7540 if (InnerSelect.use_empty())
7541 recursivelyDeleteUnusedNodes(InnerSelect.getNode());
7543 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
7544 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
7545 SDValue Cond0 = N0->getOperand(0);
7546 SDValue Cond1 = N0->getOperand(1);
7547 SDValue InnerSelect =
7548 DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2);
7549 if (normalizeToSequence || !InnerSelect.use_empty())
7550 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1,
7551 InnerSelect);
7552 // Cleanup on failure.
7553 if (InnerSelect.use_empty())
7554 recursivelyDeleteUnusedNodes(InnerSelect.getNode());
7557 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
7558 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) {
7559 SDValue N1_0 = N1->getOperand(0);
7560 SDValue N1_1 = N1->getOperand(1);
7561 SDValue N1_2 = N1->getOperand(2);
7562 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
7563 // Create the actual and node if we can generate good code for it.
7564 if (!normalizeToSequence) {
7565 SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0);
7566 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, N2);
7568 // Otherwise see if we can optimize the "and" to a better pattern.
7569 if (SDValue Combined = visitANDLike(N0, N1_0, N))
7570 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1,
7571 N2);
7574 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
7575 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) {
7576 SDValue N2_0 = N2->getOperand(0);
7577 SDValue N2_1 = N2->getOperand(1);
7578 SDValue N2_2 = N2->getOperand(2);
7579 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
7580 // Create the actual or node if we can generate good code for it.
7581 if (!normalizeToSequence) {
7582 SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0);
7583 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, N2_2);
7585 // Otherwise see if we can optimize to a better pattern.
7586 if (SDValue Combined = visitORLike(N0, N2_0, N))
7587 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1,
7588 N2_2);
7593 if (VT0 == MVT::i1) {
7594 // select (not Cond), N1, N2 -> select Cond, N2, N1
7595 if (isBitwiseNot(N0))
7596 return DAG.getNode(ISD::SELECT, DL, VT, N0->getOperand(0), N2, N1);
7599 // Fold selects based on a setcc into other things, such as min/max/abs.
7600 if (N0.getOpcode() == ISD::SETCC) {
7601 SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1);
7602 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
7604 // select (fcmp lt x, y), x, y -> fminnum x, y
7605 // select (fcmp gt x, y), x, y -> fmaxnum x, y
7607 // This is OK if we don't care what happens if either operand is a NaN.
7608 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI))
7609 if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2,
7610 CC, TLI, DAG))
7611 return FMinMax;
7613 // Use 'unsigned add with overflow' to optimize an unsigned saturating add.
7614 // This is conservatively limited to pre-legal-operations to give targets
7615 // a chance to reverse the transform if they want to do that. Also, it is
7616 // unlikely that the pattern would be formed late, so it's probably not
7617 // worth going through the other checks.
7618 if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) &&
7619 CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) &&
7620 N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) {
7621 auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1));
7622 auto *NotC = dyn_cast<ConstantSDNode>(Cond1);
7623 if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) {
7624 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
7625 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0
7627 // The IR equivalent of this transform would have this form:
7628 // %a = add %x, C
7629 // %c = icmp ugt %x, ~C
7630 // %r = select %c, -1, %a
7631 // =>
7632 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
7633 // %u0 = extractvalue %u, 0
7634 // %u1 = extractvalue %u, 1
7635 // %r = select %u1, -1, %u0
7636 SDVTList VTs = DAG.getVTList(VT, VT0);
7637 SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1));
7638 return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0));
7642 if (TLI.isOperationLegal(ISD::SELECT_CC, VT) ||
7643 (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)))
7644 return DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, N2,
7645 N0.getOperand(2));
7647 return SimplifySelect(DL, N0, N1, N2);
7650 return SDValue();
7653 static
7654 std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) {
7655 SDLoc DL(N);
7656 EVT LoVT, HiVT;
7657 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
7659 // Split the inputs.
7660 SDValue Lo, Hi, LL, LH, RL, RH;
7661 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
7662 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
7664 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
7665 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
7667 return std::make_pair(Lo, Hi);
7670 // This function assumes all the vselect's arguments are CONCAT_VECTOR
7671 // nodes and that the condition is a BV of ConstantSDNodes (or undefs).
7672 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
7673 SDLoc DL(N);
7674 SDValue Cond = N->getOperand(0);
7675 SDValue LHS = N->getOperand(1);
7676 SDValue RHS = N->getOperand(2);
7677 EVT VT = N->getValueType(0);
7678 int NumElems = VT.getVectorNumElements();
7679 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
7680 RHS.getOpcode() == ISD::CONCAT_VECTORS &&
7681 Cond.getOpcode() == ISD::BUILD_VECTOR);
7683 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
7684 // binary ones here.
7685 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
7686 return SDValue();
7688 // We're sure we have an even number of elements due to the
7689 // concat_vectors we have as arguments to vselect.
7690 // Skip BV elements until we find one that's not an UNDEF
7691 // After we find an UNDEF element, keep looping until we get to half the
7692 // length of the BV and see if all the non-undef nodes are the same.
7693 ConstantSDNode *BottomHalf = nullptr;
7694 for (int i = 0; i < NumElems / 2; ++i) {
7695 if (Cond->getOperand(i)->isUndef())
7696 continue;
7698 if (BottomHalf == nullptr)
7699 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
7700 else if (Cond->getOperand(i).getNode() != BottomHalf)
7701 return SDValue();
7704 // Do the same for the second half of the BuildVector
7705 ConstantSDNode *TopHalf = nullptr;
7706 for (int i = NumElems / 2; i < NumElems; ++i) {
7707 if (Cond->getOperand(i)->isUndef())
7708 continue;
7710 if (TopHalf == nullptr)
7711 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
7712 else if (Cond->getOperand(i).getNode() != TopHalf)
7713 return SDValue();
7716 assert(TopHalf && BottomHalf &&
7717 "One half of the selector was all UNDEFs and the other was all the "
7718 "same value. This should have been addressed before this function.");
7719 return DAG.getNode(
7720 ISD::CONCAT_VECTORS, DL, VT,
7721 BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0),
7722 TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
7725 SDValue DAGCombiner::visitMSCATTER(SDNode *N) {
7726 if (Level >= AfterLegalizeTypes)
7727 return SDValue();
7729 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
7730 SDValue Mask = MSC->getMask();
7731 SDValue Data = MSC->getValue();
7732 SDLoc DL(N);
7734 // If the MSCATTER data type requires splitting and the mask is provided by a
7735 // SETCC, then split both nodes and its operands before legalization. This
7736 // prevents the type legalizer from unrolling SETCC into scalar comparisons
7737 // and enables future optimizations (e.g. min/max pattern matching on X86).
7738 if (Mask.getOpcode() != ISD::SETCC)
7739 return SDValue();
7741 // Check if any splitting is required.
7742 if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) !=
7743 TargetLowering::TypeSplitVector)
7744 return SDValue();
7745 SDValue MaskLo, MaskHi;
7746 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
7748 EVT LoVT, HiVT;
7749 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0));
7751 SDValue Chain = MSC->getChain();
7753 EVT MemoryVT = MSC->getMemoryVT();
7754 unsigned Alignment = MSC->getOriginalAlignment();
7756 EVT LoMemVT, HiMemVT;
7757 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
7759 SDValue DataLo, DataHi;
7760 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
7762 SDValue Scale = MSC->getScale();
7763 SDValue BasePtr = MSC->getBasePtr();
7764 SDValue IndexLo, IndexHi;
7765 std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL);
7767 MachineMemOperand *MMO = DAG.getMachineFunction().
7768 getMachineMemOperand(MSC->getPointerInfo(),
7769 MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
7770 Alignment, MSC->getAAInfo(), MSC->getRanges());
7772 SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo, Scale };
7773 SDValue Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other),
7774 DataLo.getValueType(), DL, OpsLo, MMO);
7776 // The order of the Scatter operation after split is well defined. The "Hi"
7777 // part comes after the "Lo". So these two operations should be chained one
7778 // after another.
7779 SDValue OpsHi[] = { Lo, DataHi, MaskHi, BasePtr, IndexHi, Scale };
7780 return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(),
7781 DL, OpsHi, MMO);
7784 SDValue DAGCombiner::visitMSTORE(SDNode *N) {
7785 if (Level >= AfterLegalizeTypes)
7786 return SDValue();
7788 MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N);
7789 SDValue Mask = MST->getMask();
7790 SDValue Data = MST->getValue();
7791 EVT VT = Data.getValueType();
7792 SDLoc DL(N);
7794 // If the MSTORE data type requires splitting and the mask is provided by a
7795 // SETCC, then split both nodes and its operands before legalization. This
7796 // prevents the type legalizer from unrolling SETCC into scalar comparisons
7797 // and enables future optimizations (e.g. min/max pattern matching on X86).
7798 if (Mask.getOpcode() == ISD::SETCC) {
7799 // Check if any splitting is required.
7800 if (TLI.getTypeAction(*DAG.getContext(), VT) !=
7801 TargetLowering::TypeSplitVector)
7802 return SDValue();
7804 SDValue MaskLo, MaskHi, Lo, Hi;
7805 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
7807 SDValue Chain = MST->getChain();
7808 SDValue Ptr = MST->getBasePtr();
7810 EVT MemoryVT = MST->getMemoryVT();
7811 unsigned Alignment = MST->getOriginalAlignment();
7813 // if Alignment is equal to the vector size,
7814 // take the half of it for the second part
7815 unsigned SecondHalfAlignment =
7816 (Alignment == VT.getSizeInBits() / 8) ? Alignment / 2 : Alignment;
7818 EVT LoMemVT, HiMemVT;
7819 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
7821 SDValue DataLo, DataHi;
7822 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
7824 MachineMemOperand *MMO = DAG.getMachineFunction().
7825 getMachineMemOperand(MST->getPointerInfo(),
7826 MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
7827 Alignment, MST->getAAInfo(), MST->getRanges());
7829 Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO,
7830 MST->isTruncatingStore(),
7831 MST->isCompressingStore());
7833 Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG,
7834 MST->isCompressingStore());
7835 unsigned HiOffset = LoMemVT.getStoreSize();
7837 MMO = DAG.getMachineFunction().getMachineMemOperand(
7838 MST->getPointerInfo().getWithOffset(HiOffset),
7839 MachineMemOperand::MOStore, HiMemVT.getStoreSize(), SecondHalfAlignment,
7840 MST->getAAInfo(), MST->getRanges());
7842 Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO,
7843 MST->isTruncatingStore(),
7844 MST->isCompressingStore());
7846 AddToWorklist(Lo.getNode());
7847 AddToWorklist(Hi.getNode());
7849 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
7851 return SDValue();
7854 SDValue DAGCombiner::visitMGATHER(SDNode *N) {
7855 if (Level >= AfterLegalizeTypes)
7856 return SDValue();
7858 MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N);
7859 SDValue Mask = MGT->getMask();
7860 SDLoc DL(N);
7862 // If the MGATHER result requires splitting and the mask is provided by a
7863 // SETCC, then split both nodes and its operands before legalization. This
7864 // prevents the type legalizer from unrolling SETCC into scalar comparisons
7865 // and enables future optimizations (e.g. min/max pattern matching on X86).
7867 if (Mask.getOpcode() != ISD::SETCC)
7868 return SDValue();
7870 EVT VT = N->getValueType(0);
7872 // Check if any splitting is required.
7873 if (TLI.getTypeAction(*DAG.getContext(), VT) !=
7874 TargetLowering::TypeSplitVector)
7875 return SDValue();
7877 SDValue MaskLo, MaskHi, Lo, Hi;
7878 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
7880 SDValue PassThru = MGT->getPassThru();
7881 SDValue PassThruLo, PassThruHi;
7882 std::tie(PassThruLo, PassThruHi) = DAG.SplitVector(PassThru, DL);
7884 EVT LoVT, HiVT;
7885 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
7887 SDValue Chain = MGT->getChain();
7888 EVT MemoryVT = MGT->getMemoryVT();
7889 unsigned Alignment = MGT->getOriginalAlignment();
7891 EVT LoMemVT, HiMemVT;
7892 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
7894 SDValue Scale = MGT->getScale();
7895 SDValue BasePtr = MGT->getBasePtr();
7896 SDValue Index = MGT->getIndex();
7897 SDValue IndexLo, IndexHi;
7898 std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL);
7900 MachineMemOperand *MMO = DAG.getMachineFunction().
7901 getMachineMemOperand(MGT->getPointerInfo(),
7902 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
7903 Alignment, MGT->getAAInfo(), MGT->getRanges());
7905 SDValue OpsLo[] = { Chain, PassThruLo, MaskLo, BasePtr, IndexLo, Scale };
7906 Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo,
7907 MMO);
7909 SDValue OpsHi[] = { Chain, PassThruHi, MaskHi, BasePtr, IndexHi, Scale };
7910 Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi,
7911 MMO);
7913 AddToWorklist(Lo.getNode());
7914 AddToWorklist(Hi.getNode());
7916 // Build a factor node to remember that this load is independent of the
7917 // other one.
7918 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
7919 Hi.getValue(1));
7921 // Legalized the chain result - switch anything that used the old chain to
7922 // use the new one.
7923 DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain);
7925 SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
7927 SDValue RetOps[] = { GatherRes, Chain };
7928 return DAG.getMergeValues(RetOps, DL);
7931 SDValue DAGCombiner::visitMLOAD(SDNode *N) {
7932 if (Level >= AfterLegalizeTypes)
7933 return SDValue();
7935 MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N);
7936 SDValue Mask = MLD->getMask();
7937 SDLoc DL(N);
7939 // If the MLOAD result requires splitting and the mask is provided by a
7940 // SETCC, then split both nodes and its operands before legalization. This
7941 // prevents the type legalizer from unrolling SETCC into scalar comparisons
7942 // and enables future optimizations (e.g. min/max pattern matching on X86).
7943 if (Mask.getOpcode() == ISD::SETCC) {
7944 EVT VT = N->getValueType(0);
7946 // Check if any splitting is required.
7947 if (TLI.getTypeAction(*DAG.getContext(), VT) !=
7948 TargetLowering::TypeSplitVector)
7949 return SDValue();
7951 SDValue MaskLo, MaskHi, Lo, Hi;
7952 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
7954 SDValue PassThru = MLD->getPassThru();
7955 SDValue PassThruLo, PassThruHi;
7956 std::tie(PassThruLo, PassThruHi) = DAG.SplitVector(PassThru, DL);
7958 EVT LoVT, HiVT;
7959 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0));
7961 SDValue Chain = MLD->getChain();
7962 SDValue Ptr = MLD->getBasePtr();
7963 EVT MemoryVT = MLD->getMemoryVT();
7964 unsigned Alignment = MLD->getOriginalAlignment();
7966 // if Alignment is equal to the vector size,
7967 // take the half of it for the second part
7968 unsigned SecondHalfAlignment =
7969 (Alignment == MLD->getValueType(0).getSizeInBits()/8) ?
7970 Alignment/2 : Alignment;
7972 EVT LoMemVT, HiMemVT;
7973 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
7975 MachineMemOperand *MMO = DAG.getMachineFunction().
7976 getMachineMemOperand(MLD->getPointerInfo(),
7977 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
7978 Alignment, MLD->getAAInfo(), MLD->getRanges());
7980 Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, PassThruLo, LoMemVT,
7981 MMO, ISD::NON_EXTLOAD, MLD->isExpandingLoad());
7983 Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG,
7984 MLD->isExpandingLoad());
7985 unsigned HiOffset = LoMemVT.getStoreSize();
7987 MMO = DAG.getMachineFunction().getMachineMemOperand(
7988 MLD->getPointerInfo().getWithOffset(HiOffset),
7989 MachineMemOperand::MOLoad, HiMemVT.getStoreSize(), SecondHalfAlignment,
7990 MLD->getAAInfo(), MLD->getRanges());
7992 Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, PassThruHi, HiMemVT,
7993 MMO, ISD::NON_EXTLOAD, MLD->isExpandingLoad());
7995 AddToWorklist(Lo.getNode());
7996 AddToWorklist(Hi.getNode());
7998 // Build a factor node to remember that this load is independent of the
7999 // other one.
8000 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
8001 Hi.getValue(1));
8003 // Legalized the chain result - switch anything that used the old chain to
8004 // use the new one.
8005 DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain);
8007 SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
8009 SDValue RetOps[] = { LoadRes, Chain };
8010 return DAG.getMergeValues(RetOps, DL);
8012 return SDValue();
8015 /// A vector select of 2 constant vectors can be simplified to math/logic to
8016 /// avoid a variable select instruction and possibly avoid constant loads.
8017 SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) {
8018 SDValue Cond = N->getOperand(0);
8019 SDValue N1 = N->getOperand(1);
8020 SDValue N2 = N->getOperand(2);
8021 EVT VT = N->getValueType(0);
8022 if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 ||
8023 !TLI.convertSelectOfConstantsToMath(VT) ||
8024 !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) ||
8025 !ISD::isBuildVectorOfConstantSDNodes(N2.getNode()))
8026 return SDValue();
8028 // Check if we can use the condition value to increment/decrement a single
8029 // constant value. This simplifies a select to an add and removes a constant
8030 // load/materialization from the general case.
8031 bool AllAddOne = true;
8032 bool AllSubOne = true;
8033 unsigned Elts = VT.getVectorNumElements();
8034 for (unsigned i = 0; i != Elts; ++i) {
8035 SDValue N1Elt = N1.getOperand(i);
8036 SDValue N2Elt = N2.getOperand(i);
8037 if (N1Elt.isUndef() || N2Elt.isUndef())
8038 continue;
8040 const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue();
8041 const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue();
8042 if (C1 != C2 + 1)
8043 AllAddOne = false;
8044 if (C1 != C2 - 1)
8045 AllSubOne = false;
8048 // Further simplifications for the extra-special cases where the constants are
8049 // all 0 or all -1 should be implemented as folds of these patterns.
8050 SDLoc DL(N);
8051 if (AllAddOne || AllSubOne) {
8052 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
8053 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
8054 auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
8055 SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond);
8056 return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2);
8059 // The general case for select-of-constants:
8060 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
8061 // ...but that only makes sense if a vselect is slower than 2 logic ops, so
8062 // leave that to a machine-specific pass.
8063 return SDValue();
8066 SDValue DAGCombiner::visitVSELECT(SDNode *N) {
8067 SDValue N0 = N->getOperand(0);
8068 SDValue N1 = N->getOperand(1);
8069 SDValue N2 = N->getOperand(2);
8070 SDLoc DL(N);
8072 if (SDValue V = DAG.simplifySelect(N0, N1, N2))
8073 return V;
8075 // Canonicalize integer abs.
8076 // vselect (setg[te] X, 0), X, -X ->
8077 // vselect (setgt X, -1), X, -X ->
8078 // vselect (setl[te] X, 0), -X, X ->
8079 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
8080 if (N0.getOpcode() == ISD::SETCC) {
8081 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
8082 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
8083 bool isAbs = false;
8084 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
8086 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
8087 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
8088 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
8089 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
8090 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
8091 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
8092 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
8094 if (isAbs) {
8095 EVT VT = LHS.getValueType();
8096 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT))
8097 return DAG.getNode(ISD::ABS, DL, VT, LHS);
8099 SDValue Shift = DAG.getNode(
8100 ISD::SRA, DL, VT, LHS,
8101 DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT));
8102 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
8103 AddToWorklist(Shift.getNode());
8104 AddToWorklist(Add.getNode());
8105 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
8108 // vselect x, y (fcmp lt x, y) -> fminnum x, y
8109 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y
8111 // This is OK if we don't care about what happens if either operand is a
8112 // NaN.
8114 EVT VT = N->getValueType(0);
8115 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(
8116 DAG, N0.getOperand(0), N0.getOperand(1), TLI)) {
8117 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
8118 if (SDValue FMinMax = combineMinNumMaxNum(
8119 DL, VT, N0.getOperand(0), N0.getOperand(1), N1, N2, CC, TLI, DAG))
8120 return FMinMax;
8123 // If this select has a condition (setcc) with narrower operands than the
8124 // select, try to widen the compare to match the select width.
8125 // TODO: This should be extended to handle any constant.
8126 // TODO: This could be extended to handle non-loading patterns, but that
8127 // requires thorough testing to avoid regressions.
8128 if (isNullOrNullSplat(RHS)) {
8129 EVT NarrowVT = LHS.getValueType();
8130 EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger();
8131 EVT SetCCVT = getSetCCResultType(LHS.getValueType());
8132 unsigned SetCCWidth = SetCCVT.getScalarSizeInBits();
8133 unsigned WideWidth = WideVT.getScalarSizeInBits();
8134 bool IsSigned = isSignedIntSetCC(CC);
8135 auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
8136 if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() &&
8137 SetCCWidth != 1 && SetCCWidth < WideWidth &&
8138 TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) &&
8139 TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) {
8140 // Both compare operands can be widened for free. The LHS can use an
8141 // extended load, and the RHS is a constant:
8142 // vselect (ext (setcc load(X), C)), N1, N2 -->
8143 // vselect (setcc extload(X), C'), N1, N2
8144 auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
8145 SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS);
8146 SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS);
8147 EVT WideSetCCVT = getSetCCResultType(WideVT);
8148 SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC);
8149 return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2);
8154 if (SimplifySelectOps(N, N1, N2))
8155 return SDValue(N, 0); // Don't revisit N.
8157 // Fold (vselect (build_vector all_ones), N1, N2) -> N1
8158 if (ISD::isBuildVectorAllOnes(N0.getNode()))
8159 return N1;
8160 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2
8161 if (ISD::isBuildVectorAllZeros(N0.getNode()))
8162 return N2;
8164 // The ConvertSelectToConcatVector function is assuming both the above
8165 // checks for (vselect (build_vector all{ones,zeros) ...) have been made
8166 // and addressed.
8167 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
8168 N2.getOpcode() == ISD::CONCAT_VECTORS &&
8169 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
8170 if (SDValue CV = ConvertSelectToConcatVector(N, DAG))
8171 return CV;
8174 if (SDValue V = foldVSelectOfConstants(N))
8175 return V;
8177 return SDValue();
8180 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
8181 SDValue N0 = N->getOperand(0);
8182 SDValue N1 = N->getOperand(1);
8183 SDValue N2 = N->getOperand(2);
8184 SDValue N3 = N->getOperand(3);
8185 SDValue N4 = N->getOperand(4);
8186 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
8188 // fold select_cc lhs, rhs, x, x, cc -> x
8189 if (N2 == N3)
8190 return N2;
8192 // Determine if the condition we're dealing with is constant
8193 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1,
8194 CC, SDLoc(N), false)) {
8195 AddToWorklist(SCC.getNode());
8197 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
8198 if (!SCCC->isNullValue())
8199 return N2; // cond always true -> true val
8200 else
8201 return N3; // cond always false -> false val
8202 } else if (SCC->isUndef()) {
8203 // When the condition is UNDEF, just return the first operand. This is
8204 // coherent the DAG creation, no setcc node is created in this case
8205 return N2;
8206 } else if (SCC.getOpcode() == ISD::SETCC) {
8207 // Fold to a simpler select_cc
8208 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
8209 SCC.getOperand(0), SCC.getOperand(1), N2, N3,
8210 SCC.getOperand(2));
8214 // If we can fold this based on the true/false value, do so.
8215 if (SimplifySelectOps(N, N2, N3))
8216 return SDValue(N, 0); // Don't revisit N.
8218 // fold select_cc into other things, such as min/max/abs
8219 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
8222 SDValue DAGCombiner::visitSETCC(SDNode *N) {
8223 // setcc is very commonly used as an argument to brcond. This pattern
8224 // also lend itself to numerous combines and, as a result, it is desired
8225 // we keep the argument to a brcond as a setcc as much as possible.
8226 bool PreferSetCC =
8227 N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND;
8229 SDValue Combined = SimplifySetCC(
8230 N->getValueType(0), N->getOperand(0), N->getOperand(1),
8231 cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC);
8233 if (!Combined)
8234 return SDValue();
8236 // If we prefer to have a setcc, and we don't, we'll try our best to
8237 // recreate one using rebuildSetCC.
8238 if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) {
8239 SDValue NewSetCC = rebuildSetCC(Combined);
8241 // We don't have anything interesting to combine to.
8242 if (NewSetCC.getNode() == N)
8243 return SDValue();
8245 if (NewSetCC)
8246 return NewSetCC;
8249 return Combined;
8252 SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) {
8253 SDValue LHS = N->getOperand(0);
8254 SDValue RHS = N->getOperand(1);
8255 SDValue Carry = N->getOperand(2);
8256 SDValue Cond = N->getOperand(3);
8258 // If Carry is false, fold to a regular SETCC.
8259 if (isNullConstant(Carry))
8260 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond);
8262 return SDValue();
8265 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
8266 /// a build_vector of constants.
8267 /// This function is called by the DAGCombiner when visiting sext/zext/aext
8268 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
8269 /// Vector extends are not folded if operations are legal; this is to
8270 /// avoid introducing illegal build_vector dag nodes.
8271 static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI,
8272 SelectionDAG &DAG, bool LegalTypes) {
8273 unsigned Opcode = N->getOpcode();
8274 SDValue N0 = N->getOperand(0);
8275 EVT VT = N->getValueType(0);
8277 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
8278 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
8279 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG)
8280 && "Expected EXTEND dag node in input!");
8282 // fold (sext c1) -> c1
8283 // fold (zext c1) -> c1
8284 // fold (aext c1) -> c1
8285 if (isa<ConstantSDNode>(N0))
8286 return DAG.getNode(Opcode, SDLoc(N), VT, N0);
8288 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
8289 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
8290 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
8291 EVT SVT = VT.getScalarType();
8292 if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) &&
8293 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())))
8294 return SDValue();
8296 // We can fold this node into a build_vector.
8297 unsigned VTBits = SVT.getSizeInBits();
8298 unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits();
8299 SmallVector<SDValue, 8> Elts;
8300 unsigned NumElts = VT.getVectorNumElements();
8301 SDLoc DL(N);
8303 // For zero-extensions, UNDEF elements still guarantee to have the upper
8304 // bits set to zero.
8305 bool IsZext =
8306 Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG;
8308 for (unsigned i = 0; i != NumElts; ++i) {
8309 SDValue Op = N0.getOperand(i);
8310 if (Op.isUndef()) {
8311 Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT));
8312 continue;
8315 SDLoc DL(Op);
8316 // Get the constant value and if needed trunc it to the size of the type.
8317 // Nodes like build_vector might have constants wider than the scalar type.
8318 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits);
8319 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
8320 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT));
8321 else
8322 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT));
8325 return DAG.getBuildVector(VT, DL, Elts);
8328 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
8329 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
8330 // transformation. Returns true if extension are possible and the above
8331 // mentioned transformation is profitable.
8332 static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0,
8333 unsigned ExtOpc,
8334 SmallVectorImpl<SDNode *> &ExtendNodes,
8335 const TargetLowering &TLI) {
8336 bool HasCopyToRegUses = false;
8337 bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType());
8338 for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
8339 UE = N0.getNode()->use_end();
8340 UI != UE; ++UI) {
8341 SDNode *User = *UI;
8342 if (User == N)
8343 continue;
8344 if (UI.getUse().getResNo() != N0.getResNo())
8345 continue;
8346 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
8347 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
8348 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
8349 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
8350 // Sign bits will be lost after a zext.
8351 return false;
8352 bool Add = false;
8353 for (unsigned i = 0; i != 2; ++i) {
8354 SDValue UseOp = User->getOperand(i);
8355 if (UseOp == N0)
8356 continue;
8357 if (!isa<ConstantSDNode>(UseOp))
8358 return false;
8359 Add = true;
8361 if (Add)
8362 ExtendNodes.push_back(User);
8363 continue;
8365 // If truncates aren't free and there are users we can't
8366 // extend, it isn't worthwhile.
8367 if (!isTruncFree)
8368 return false;
8369 // Remember if this value is live-out.
8370 if (User->getOpcode() == ISD::CopyToReg)
8371 HasCopyToRegUses = true;
8374 if (HasCopyToRegUses) {
8375 bool BothLiveOut = false;
8376 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8377 UI != UE; ++UI) {
8378 SDUse &Use = UI.getUse();
8379 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
8380 BothLiveOut = true;
8381 break;
8384 if (BothLiveOut)
8385 // Both unextended and extended values are live out. There had better be
8386 // a good reason for the transformation.
8387 return ExtendNodes.size();
8389 return true;
8392 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
8393 SDValue OrigLoad, SDValue ExtLoad,
8394 ISD::NodeType ExtType) {
8395 // Extend SetCC uses if necessary.
8396 SDLoc DL(ExtLoad);
8397 for (SDNode *SetCC : SetCCs) {
8398 SmallVector<SDValue, 4> Ops;
8400 for (unsigned j = 0; j != 2; ++j) {
8401 SDValue SOp = SetCC->getOperand(j);
8402 if (SOp == OrigLoad)
8403 Ops.push_back(ExtLoad);
8404 else
8405 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
8408 Ops.push_back(SetCC->getOperand(2));
8409 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
8413 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
8414 SDValue DAGCombiner::CombineExtLoad(SDNode *N) {
8415 SDValue N0 = N->getOperand(0);
8416 EVT DstVT = N->getValueType(0);
8417 EVT SrcVT = N0.getValueType();
8419 assert((N->getOpcode() == ISD::SIGN_EXTEND ||
8420 N->getOpcode() == ISD::ZERO_EXTEND) &&
8421 "Unexpected node type (not an extend)!");
8423 // fold (sext (load x)) to multiple smaller sextloads; same for zext.
8424 // For example, on a target with legal v4i32, but illegal v8i32, turn:
8425 // (v8i32 (sext (v8i16 (load x))))
8426 // into:
8427 // (v8i32 (concat_vectors (v4i32 (sextload x)),
8428 // (v4i32 (sextload (x + 16)))))
8429 // Where uses of the original load, i.e.:
8430 // (v8i16 (load x))
8431 // are replaced with:
8432 // (v8i16 (truncate
8433 // (v8i32 (concat_vectors (v4i32 (sextload x)),
8434 // (v4i32 (sextload (x + 16)))))))
8436 // This combine is only applicable to illegal, but splittable, vectors.
8437 // All legal types, and illegal non-vector types, are handled elsewhere.
8438 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
8440 if (N0->getOpcode() != ISD::LOAD)
8441 return SDValue();
8443 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
8445 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) ||
8446 !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() ||
8447 !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
8448 return SDValue();
8450 SmallVector<SDNode *, 4> SetCCs;
8451 if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI))
8452 return SDValue();
8454 ISD::LoadExtType ExtType =
8455 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
8457 // Try to split the vector types to get down to legal types.
8458 EVT SplitSrcVT = SrcVT;
8459 EVT SplitDstVT = DstVT;
8460 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) &&
8461 SplitSrcVT.getVectorNumElements() > 1) {
8462 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first;
8463 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first;
8466 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT))
8467 return SDValue();
8469 SDLoc DL(N);
8470 const unsigned NumSplits =
8471 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements();
8472 const unsigned Stride = SplitSrcVT.getStoreSize();
8473 SmallVector<SDValue, 4> Loads;
8474 SmallVector<SDValue, 4> Chains;
8476 SDValue BasePtr = LN0->getBasePtr();
8477 for (unsigned Idx = 0; Idx < NumSplits; Idx++) {
8478 const unsigned Offset = Idx * Stride;
8479 const unsigned Align = MinAlign(LN0->getAlignment(), Offset);
8481 SDValue SplitLoad = DAG.getExtLoad(
8482 ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr,
8483 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align,
8484 LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
8486 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
8487 DAG.getConstant(Stride, DL, BasePtr.getValueType()));
8489 Loads.push_back(SplitLoad.getValue(0));
8490 Chains.push_back(SplitLoad.getValue(1));
8493 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
8494 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads);
8496 // Simplify TF.
8497 AddToWorklist(NewChain.getNode());
8499 CombineTo(N, NewValue);
8501 // Replace uses of the original load (before extension)
8502 // with a truncate of the concatenated sextloaded vectors.
8503 SDValue Trunc =
8504 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue);
8505 ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode());
8506 CombineTo(N0.getNode(), Trunc, NewChain);
8507 return SDValue(N, 0); // Return N so it doesn't get rechecked!
8510 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
8511 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
8512 SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) {
8513 assert(N->getOpcode() == ISD::ZERO_EXTEND);
8514 EVT VT = N->getValueType(0);
8515 EVT OrigVT = N->getOperand(0).getValueType();
8516 if (TLI.isZExtFree(OrigVT, VT))
8517 return SDValue();
8519 // and/or/xor
8520 SDValue N0 = N->getOperand(0);
8521 if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
8522 N0.getOpcode() == ISD::XOR) ||
8523 N0.getOperand(1).getOpcode() != ISD::Constant ||
8524 (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT)))
8525 return SDValue();
8527 // shl/shr
8528 SDValue N1 = N0->getOperand(0);
8529 if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) ||
8530 N1.getOperand(1).getOpcode() != ISD::Constant ||
8531 (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT)))
8532 return SDValue();
8534 // load
8535 if (!isa<LoadSDNode>(N1.getOperand(0)))
8536 return SDValue();
8537 LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0));
8538 EVT MemVT = Load->getMemoryVT();
8539 if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) ||
8540 Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed())
8541 return SDValue();
8544 // If the shift op is SHL, the logic op must be AND, otherwise the result
8545 // will be wrong.
8546 if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND)
8547 return SDValue();
8549 if (!N0.hasOneUse() || !N1.hasOneUse())
8550 return SDValue();
8552 SmallVector<SDNode*, 4> SetCCs;
8553 if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0),
8554 ISD::ZERO_EXTEND, SetCCs, TLI))
8555 return SDValue();
8557 // Actually do the transformation.
8558 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT,
8559 Load->getChain(), Load->getBasePtr(),
8560 Load->getMemoryVT(), Load->getMemOperand());
8562 SDLoc DL1(N1);
8563 SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad,
8564 N1.getOperand(1));
8566 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
8567 Mask = Mask.zext(VT.getSizeInBits());
8568 SDLoc DL0(N0);
8569 SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift,
8570 DAG.getConstant(Mask, DL0, VT));
8572 ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
8573 CombineTo(N, And);
8574 if (SDValue(Load, 0).hasOneUse()) {
8575 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1));
8576 } else {
8577 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load),
8578 Load->getValueType(0), ExtLoad);
8579 CombineTo(Load, Trunc, ExtLoad.getValue(1));
8582 // N0 is dead at this point.
8583 recursivelyDeleteUnusedNodes(N0.getNode());
8585 return SDValue(N,0); // Return N so it doesn't get rechecked!
8588 /// If we're narrowing or widening the result of a vector select and the final
8589 /// size is the same size as a setcc (compare) feeding the select, then try to
8590 /// apply the cast operation to the select's operands because matching vector
8591 /// sizes for a select condition and other operands should be more efficient.
8592 SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) {
8593 unsigned CastOpcode = Cast->getOpcode();
8594 assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND ||
8595 CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND ||
8596 CastOpcode == ISD::FP_ROUND) &&
8597 "Unexpected opcode for vector select narrowing/widening");
8599 // We only do this transform before legal ops because the pattern may be
8600 // obfuscated by target-specific operations after legalization. Do not create
8601 // an illegal select op, however, because that may be difficult to lower.
8602 EVT VT = Cast->getValueType(0);
8603 if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
8604 return SDValue();
8606 SDValue VSel = Cast->getOperand(0);
8607 if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() ||
8608 VSel.getOperand(0).getOpcode() != ISD::SETCC)
8609 return SDValue();
8611 // Does the setcc have the same vector size as the casted select?
8612 SDValue SetCC = VSel.getOperand(0);
8613 EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType());
8614 if (SetCCVT.getSizeInBits() != VT.getSizeInBits())
8615 return SDValue();
8617 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
8618 SDValue A = VSel.getOperand(1);
8619 SDValue B = VSel.getOperand(2);
8620 SDValue CastA, CastB;
8621 SDLoc DL(Cast);
8622 if (CastOpcode == ISD::FP_ROUND) {
8623 // FP_ROUND (fptrunc) has an extra flag operand to pass along.
8624 CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1));
8625 CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1));
8626 } else {
8627 CastA = DAG.getNode(CastOpcode, DL, VT, A);
8628 CastB = DAG.getNode(CastOpcode, DL, VT, B);
8630 return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB);
8633 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
8634 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
8635 static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner,
8636 const TargetLowering &TLI, EVT VT,
8637 bool LegalOperations, SDNode *N,
8638 SDValue N0, ISD::LoadExtType ExtLoadType) {
8639 SDNode *N0Node = N0.getNode();
8640 bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node)
8641 : ISD::isZEXTLoad(N0Node);
8642 if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) ||
8643 !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse())
8644 return SDValue();
8646 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
8647 EVT MemVT = LN0->getMemoryVT();
8648 if ((LegalOperations || LN0->isVolatile() || VT.isVector()) &&
8649 !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT))
8650 return SDValue();
8652 SDValue ExtLoad =
8653 DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
8654 LN0->getBasePtr(), MemVT, LN0->getMemOperand());
8655 Combiner.CombineTo(N, ExtLoad);
8656 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
8657 if (LN0->use_empty())
8658 Combiner.recursivelyDeleteUnusedNodes(LN0);
8659 return SDValue(N, 0); // Return N so it doesn't get rechecked!
8662 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
8663 // Only generate vector extloads when 1) they're legal, and 2) they are
8664 // deemed desirable by the target.
8665 static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner,
8666 const TargetLowering &TLI, EVT VT,
8667 bool LegalOperations, SDNode *N, SDValue N0,
8668 ISD::LoadExtType ExtLoadType,
8669 ISD::NodeType ExtOpc) {
8670 if (!ISD::isNON_EXTLoad(N0.getNode()) ||
8671 !ISD::isUNINDEXEDLoad(N0.getNode()) ||
8672 ((LegalOperations || VT.isVector() ||
8673 cast<LoadSDNode>(N0)->isVolatile()) &&
8674 !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType())))
8675 return {};
8677 bool DoXform = true;
8678 SmallVector<SDNode *, 4> SetCCs;
8679 if (!N0.hasOneUse())
8680 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI);
8681 if (VT.isVector())
8682 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
8683 if (!DoXform)
8684 return {};
8686 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
8687 SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
8688 LN0->getBasePtr(), N0.getValueType(),
8689 LN0->getMemOperand());
8690 Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc);
8691 // If the load value is used only by N, replace it via CombineTo N.
8692 bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse();
8693 Combiner.CombineTo(N, ExtLoad);
8694 if (NoReplaceTrunc) {
8695 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
8696 Combiner.recursivelyDeleteUnusedNodes(LN0);
8697 } else {
8698 SDValue Trunc =
8699 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
8700 Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1));
8702 return SDValue(N, 0); // Return N so it doesn't get rechecked!
8705 static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG,
8706 bool LegalOperations) {
8707 assert((N->getOpcode() == ISD::SIGN_EXTEND ||
8708 N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext");
8710 SDValue SetCC = N->getOperand(0);
8711 if (LegalOperations || SetCC.getOpcode() != ISD::SETCC ||
8712 !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1)
8713 return SDValue();
8715 SDValue X = SetCC.getOperand(0);
8716 SDValue Ones = SetCC.getOperand(1);
8717 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
8718 EVT VT = N->getValueType(0);
8719 EVT XVT = X.getValueType();
8720 // setge X, C is canonicalized to setgt, so we do not need to match that
8721 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does
8722 // not require the 'not' op.
8723 if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) {
8724 // Invert and smear/shift the sign bit:
8725 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
8726 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
8727 SDLoc DL(N);
8728 SDValue NotX = DAG.getNOT(DL, X, VT);
8729 SDValue ShiftAmount = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
8730 auto ShiftOpcode = N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL;
8731 return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount);
8733 return SDValue();
8736 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
8737 SDValue N0 = N->getOperand(0);
8738 EVT VT = N->getValueType(0);
8739 SDLoc DL(N);
8741 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
8742 return Res;
8744 // fold (sext (sext x)) -> (sext x)
8745 // fold (sext (aext x)) -> (sext x)
8746 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
8747 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0));
8749 if (N0.getOpcode() == ISD::TRUNCATE) {
8750 // fold (sext (truncate (load x))) -> (sext (smaller load x))
8751 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
8752 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
8753 SDNode *oye = N0.getOperand(0).getNode();
8754 if (NarrowLoad.getNode() != N0.getNode()) {
8755 CombineTo(N0.getNode(), NarrowLoad);
8756 // CombineTo deleted the truncate, if needed, but not what's under it.
8757 AddToWorklist(oye);
8759 return SDValue(N, 0); // Return N so it doesn't get rechecked!
8762 // See if the value being truncated is already sign extended. If so, just
8763 // eliminate the trunc/sext pair.
8764 SDValue Op = N0.getOperand(0);
8765 unsigned OpBits = Op.getScalarValueSizeInBits();
8766 unsigned MidBits = N0.getScalarValueSizeInBits();
8767 unsigned DestBits = VT.getScalarSizeInBits();
8768 unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
8770 if (OpBits == DestBits) {
8771 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
8772 // bits, it is already ready.
8773 if (NumSignBits > DestBits-MidBits)
8774 return Op;
8775 } else if (OpBits < DestBits) {
8776 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
8777 // bits, just sext from i32.
8778 if (NumSignBits > OpBits-MidBits)
8779 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op);
8780 } else {
8781 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
8782 // bits, just truncate to i32.
8783 if (NumSignBits > OpBits-MidBits)
8784 return DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
8787 // fold (sext (truncate x)) -> (sextinreg x).
8788 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
8789 N0.getValueType())) {
8790 if (OpBits < DestBits)
8791 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
8792 else if (OpBits > DestBits)
8793 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
8794 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op,
8795 DAG.getValueType(N0.getValueType()));
8799 // Try to simplify (sext (load x)).
8800 if (SDValue foldedExt =
8801 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
8802 ISD::SEXTLOAD, ISD::SIGN_EXTEND))
8803 return foldedExt;
8805 // fold (sext (load x)) to multiple smaller sextloads.
8806 // Only on illegal but splittable vectors.
8807 if (SDValue ExtLoad = CombineExtLoad(N))
8808 return ExtLoad;
8810 // Try to simplify (sext (sextload x)).
8811 if (SDValue foldedExt = tryToFoldExtOfExtload(
8812 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD))
8813 return foldedExt;
8815 // fold (sext (and/or/xor (load x), cst)) ->
8816 // (and/or/xor (sextload x), (sext cst))
8817 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
8818 N0.getOpcode() == ISD::XOR) &&
8819 isa<LoadSDNode>(N0.getOperand(0)) &&
8820 N0.getOperand(1).getOpcode() == ISD::Constant &&
8821 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
8822 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
8823 EVT MemVT = LN00->getMemoryVT();
8824 if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) &&
8825 LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) {
8826 SmallVector<SDNode*, 4> SetCCs;
8827 bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
8828 ISD::SIGN_EXTEND, SetCCs, TLI);
8829 if (DoXform) {
8830 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT,
8831 LN00->getChain(), LN00->getBasePtr(),
8832 LN00->getMemoryVT(),
8833 LN00->getMemOperand());
8834 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
8835 Mask = Mask.sext(VT.getSizeInBits());
8836 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
8837 ExtLoad, DAG.getConstant(Mask, DL, VT));
8838 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND);
8839 bool NoReplaceTruncAnd = !N0.hasOneUse();
8840 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
8841 CombineTo(N, And);
8842 // If N0 has multiple uses, change other uses as well.
8843 if (NoReplaceTruncAnd) {
8844 SDValue TruncAnd =
8845 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
8846 CombineTo(N0.getNode(), TruncAnd);
8848 if (NoReplaceTrunc) {
8849 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
8850 } else {
8851 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
8852 LN00->getValueType(0), ExtLoad);
8853 CombineTo(LN00, Trunc, ExtLoad.getValue(1));
8855 return SDValue(N,0); // Return N so it doesn't get rechecked!
8860 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
8861 return V;
8863 if (N0.getOpcode() == ISD::SETCC) {
8864 SDValue N00 = N0.getOperand(0);
8865 SDValue N01 = N0.getOperand(1);
8866 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
8867 EVT N00VT = N0.getOperand(0).getValueType();
8869 // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
8870 // Only do this before legalize for now.
8871 if (VT.isVector() && !LegalOperations &&
8872 TLI.getBooleanContents(N00VT) ==
8873 TargetLowering::ZeroOrNegativeOneBooleanContent) {
8874 // On some architectures (such as SSE/NEON/etc) the SETCC result type is
8875 // of the same size as the compared operands. Only optimize sext(setcc())
8876 // if this is the case.
8877 EVT SVT = getSetCCResultType(N00VT);
8879 // If we already have the desired type, don't change it.
8880 if (SVT != N0.getValueType()) {
8881 // We know that the # elements of the results is the same as the
8882 // # elements of the compare (and the # elements of the compare result
8883 // for that matter). Check to see that they are the same size. If so,
8884 // we know that the element size of the sext'd result matches the
8885 // element size of the compare operands.
8886 if (VT.getSizeInBits() == SVT.getSizeInBits())
8887 return DAG.getSetCC(DL, VT, N00, N01, CC);
8889 // If the desired elements are smaller or larger than the source
8890 // elements, we can use a matching integer vector type and then
8891 // truncate/sign extend.
8892 EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger();
8893 if (SVT == MatchingVecType) {
8894 SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC);
8895 return DAG.getSExtOrTrunc(VsetCC, DL, VT);
8900 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
8901 // Here, T can be 1 or -1, depending on the type of the setcc and
8902 // getBooleanContents().
8903 unsigned SetCCWidth = N0.getScalarValueSizeInBits();
8905 // To determine the "true" side of the select, we need to know the high bit
8906 // of the value returned by the setcc if it evaluates to true.
8907 // If the type of the setcc is i1, then the true case of the select is just
8908 // sext(i1 1), that is, -1.
8909 // If the type of the setcc is larger (say, i8) then the value of the high
8910 // bit depends on getBooleanContents(), so ask TLI for a real "true" value
8911 // of the appropriate width.
8912 SDValue ExtTrueVal = (SetCCWidth == 1)
8913 ? DAG.getAllOnesConstant(DL, VT)
8914 : DAG.getBoolConstant(true, DL, VT, N00VT);
8915 SDValue Zero = DAG.getConstant(0, DL, VT);
8916 if (SDValue SCC =
8917 SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true))
8918 return SCC;
8920 if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) {
8921 EVT SetCCVT = getSetCCResultType(N00VT);
8922 // Don't do this transform for i1 because there's a select transform
8923 // that would reverse it.
8924 // TODO: We should not do this transform at all without a target hook
8925 // because a sext is likely cheaper than a select?
8926 if (SetCCVT.getScalarSizeInBits() != 1 &&
8927 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) {
8928 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC);
8929 return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero);
8934 // fold (sext x) -> (zext x) if the sign bit is known zero.
8935 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
8936 DAG.SignBitIsZero(N0))
8937 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0);
8939 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
8940 return NewVSel;
8942 return SDValue();
8945 // isTruncateOf - If N is a truncate of some other value, return true, record
8946 // the value being truncated in Op and which of Op's bits are zero/one in Known.
8947 // This function computes KnownBits to avoid a duplicated call to
8948 // computeKnownBits in the caller.
8949 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
8950 KnownBits &Known) {
8951 if (N->getOpcode() == ISD::TRUNCATE) {
8952 Op = N->getOperand(0);
8953 Known = DAG.computeKnownBits(Op);
8954 return true;
8957 if (N.getOpcode() != ISD::SETCC ||
8958 N.getValueType().getScalarType() != MVT::i1 ||
8959 cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE)
8960 return false;
8962 SDValue Op0 = N->getOperand(0);
8963 SDValue Op1 = N->getOperand(1);
8964 assert(Op0.getValueType() == Op1.getValueType());
8966 if (isNullOrNullSplat(Op0))
8967 Op = Op1;
8968 else if (isNullOrNullSplat(Op1))
8969 Op = Op0;
8970 else
8971 return false;
8973 Known = DAG.computeKnownBits(Op);
8975 return (Known.Zero | 1).isAllOnesValue();
8978 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
8979 SDValue N0 = N->getOperand(0);
8980 EVT VT = N->getValueType(0);
8982 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
8983 return Res;
8985 // fold (zext (zext x)) -> (zext x)
8986 // fold (zext (aext x)) -> (zext x)
8987 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
8988 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
8989 N0.getOperand(0));
8991 // fold (zext (truncate x)) -> (zext x) or
8992 // (zext (truncate x)) -> (truncate x)
8993 // This is valid when the truncated bits of x are already zero.
8994 SDValue Op;
8995 KnownBits Known;
8996 if (isTruncateOf(DAG, N0, Op, Known)) {
8997 APInt TruncatedBits =
8998 (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ?
8999 APInt(Op.getScalarValueSizeInBits(), 0) :
9000 APInt::getBitsSet(Op.getScalarValueSizeInBits(),
9001 N0.getScalarValueSizeInBits(),
9002 std::min(Op.getScalarValueSizeInBits(),
9003 VT.getScalarSizeInBits()));
9004 if (TruncatedBits.isSubsetOf(Known.Zero))
9005 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
9008 // fold (zext (truncate x)) -> (and x, mask)
9009 if (N0.getOpcode() == ISD::TRUNCATE) {
9010 // fold (zext (truncate (load x))) -> (zext (smaller load x))
9011 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
9012 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
9013 SDNode *oye = N0.getOperand(0).getNode();
9014 if (NarrowLoad.getNode() != N0.getNode()) {
9015 CombineTo(N0.getNode(), NarrowLoad);
9016 // CombineTo deleted the truncate, if needed, but not what's under it.
9017 AddToWorklist(oye);
9019 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9022 EVT SrcVT = N0.getOperand(0).getValueType();
9023 EVT MinVT = N0.getValueType();
9025 // Try to mask before the extension to avoid having to generate a larger mask,
9026 // possibly over several sub-vectors.
9027 if (SrcVT.bitsLT(VT) && VT.isVector()) {
9028 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) &&
9029 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) {
9030 SDValue Op = N0.getOperand(0);
9031 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
9032 AddToWorklist(Op.getNode());
9033 SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
9034 // Transfer the debug info; the new node is equivalent to N0.
9035 DAG.transferDbgValues(N0, ZExtOrTrunc);
9036 return ZExtOrTrunc;
9040 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) {
9041 SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
9042 AddToWorklist(Op.getNode());
9043 SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
9044 // We may safely transfer the debug info describing the truncate node over
9045 // to the equivalent and operation.
9046 DAG.transferDbgValues(N0, And);
9047 return And;
9051 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
9052 // if either of the casts is not free.
9053 if (N0.getOpcode() == ISD::AND &&
9054 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
9055 N0.getOperand(1).getOpcode() == ISD::Constant &&
9056 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
9057 N0.getValueType()) ||
9058 !TLI.isZExtFree(N0.getValueType(), VT))) {
9059 SDValue X = N0.getOperand(0).getOperand(0);
9060 X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT);
9061 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9062 Mask = Mask.zext(VT.getSizeInBits());
9063 SDLoc DL(N);
9064 return DAG.getNode(ISD::AND, DL, VT,
9065 X, DAG.getConstant(Mask, DL, VT));
9068 // Try to simplify (zext (load x)).
9069 if (SDValue foldedExt =
9070 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
9071 ISD::ZEXTLOAD, ISD::ZERO_EXTEND))
9072 return foldedExt;
9074 // fold (zext (load x)) to multiple smaller zextloads.
9075 // Only on illegal but splittable vectors.
9076 if (SDValue ExtLoad = CombineExtLoad(N))
9077 return ExtLoad;
9079 // fold (zext (and/or/xor (load x), cst)) ->
9080 // (and/or/xor (zextload x), (zext cst))
9081 // Unless (and (load x) cst) will match as a zextload already and has
9082 // additional users.
9083 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
9084 N0.getOpcode() == ISD::XOR) &&
9085 isa<LoadSDNode>(N0.getOperand(0)) &&
9086 N0.getOperand(1).getOpcode() == ISD::Constant &&
9087 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
9088 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
9089 EVT MemVT = LN00->getMemoryVT();
9090 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) &&
9091 LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) {
9092 bool DoXform = true;
9093 SmallVector<SDNode*, 4> SetCCs;
9094 if (!N0.hasOneUse()) {
9095 if (N0.getOpcode() == ISD::AND) {
9096 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1));
9097 EVT LoadResultTy = AndC->getValueType(0);
9098 EVT ExtVT;
9099 if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT))
9100 DoXform = false;
9103 if (DoXform)
9104 DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
9105 ISD::ZERO_EXTEND, SetCCs, TLI);
9106 if (DoXform) {
9107 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT,
9108 LN00->getChain(), LN00->getBasePtr(),
9109 LN00->getMemoryVT(),
9110 LN00->getMemOperand());
9111 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9112 Mask = Mask.zext(VT.getSizeInBits());
9113 SDLoc DL(N);
9114 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
9115 ExtLoad, DAG.getConstant(Mask, DL, VT));
9116 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
9117 bool NoReplaceTruncAnd = !N0.hasOneUse();
9118 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
9119 CombineTo(N, And);
9120 // If N0 has multiple uses, change other uses as well.
9121 if (NoReplaceTruncAnd) {
9122 SDValue TruncAnd =
9123 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
9124 CombineTo(N0.getNode(), TruncAnd);
9126 if (NoReplaceTrunc) {
9127 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
9128 } else {
9129 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
9130 LN00->getValueType(0), ExtLoad);
9131 CombineTo(LN00, Trunc, ExtLoad.getValue(1));
9133 return SDValue(N,0); // Return N so it doesn't get rechecked!
9138 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
9139 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
9140 if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N))
9141 return ZExtLoad;
9143 // Try to simplify (zext (zextload x)).
9144 if (SDValue foldedExt = tryToFoldExtOfExtload(
9145 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD))
9146 return foldedExt;
9148 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
9149 return V;
9151 if (N0.getOpcode() == ISD::SETCC) {
9152 // Only do this before legalize for now.
9153 if (!LegalOperations && VT.isVector() &&
9154 N0.getValueType().getVectorElementType() == MVT::i1) {
9155 EVT N00VT = N0.getOperand(0).getValueType();
9156 if (getSetCCResultType(N00VT) == N0.getValueType())
9157 return SDValue();
9159 // We know that the # elements of the results is the same as the #
9160 // elements of the compare (and the # elements of the compare result for
9161 // that matter). Check to see that they are the same size. If so, we know
9162 // that the element size of the sext'd result matches the element size of
9163 // the compare operands.
9164 SDLoc DL(N);
9165 SDValue VecOnes = DAG.getConstant(1, DL, VT);
9166 if (VT.getSizeInBits() == N00VT.getSizeInBits()) {
9167 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
9168 SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0),
9169 N0.getOperand(1), N0.getOperand(2));
9170 return DAG.getNode(ISD::AND, DL, VT, VSetCC, VecOnes);
9173 // If the desired elements are smaller or larger than the source
9174 // elements we can use a matching integer vector type and then
9175 // truncate/sign extend.
9176 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
9177 SDValue VsetCC =
9178 DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0),
9179 N0.getOperand(1), N0.getOperand(2));
9180 return DAG.getNode(ISD::AND, DL, VT, DAG.getSExtOrTrunc(VsetCC, DL, VT),
9181 VecOnes);
9184 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
9185 SDLoc DL(N);
9186 if (SDValue SCC = SimplifySelectCC(
9187 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
9188 DAG.getConstant(0, DL, VT),
9189 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
9190 return SCC;
9193 // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
9194 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
9195 isa<ConstantSDNode>(N0.getOperand(1)) &&
9196 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
9197 N0.hasOneUse()) {
9198 SDValue ShAmt = N0.getOperand(1);
9199 unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
9200 if (N0.getOpcode() == ISD::SHL) {
9201 SDValue InnerZExt = N0.getOperand(0);
9202 // If the original shl may be shifting out bits, do not perform this
9203 // transformation.
9204 unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() -
9205 InnerZExt.getOperand(0).getValueSizeInBits();
9206 if (ShAmtVal > KnownZeroBits)
9207 return SDValue();
9210 SDLoc DL(N);
9212 // Ensure that the shift amount is wide enough for the shifted value.
9213 if (VT.getSizeInBits() >= 256)
9214 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
9216 return DAG.getNode(N0.getOpcode(), DL, VT,
9217 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
9218 ShAmt);
9221 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
9222 return NewVSel;
9224 return SDValue();
9227 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
9228 SDValue N0 = N->getOperand(0);
9229 EVT VT = N->getValueType(0);
9231 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
9232 return Res;
9234 // fold (aext (aext x)) -> (aext x)
9235 // fold (aext (zext x)) -> (zext x)
9236 // fold (aext (sext x)) -> (sext x)
9237 if (N0.getOpcode() == ISD::ANY_EXTEND ||
9238 N0.getOpcode() == ISD::ZERO_EXTEND ||
9239 N0.getOpcode() == ISD::SIGN_EXTEND)
9240 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
9242 // fold (aext (truncate (load x))) -> (aext (smaller load x))
9243 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
9244 if (N0.getOpcode() == ISD::TRUNCATE) {
9245 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
9246 SDNode *oye = N0.getOperand(0).getNode();
9247 if (NarrowLoad.getNode() != N0.getNode()) {
9248 CombineTo(N0.getNode(), NarrowLoad);
9249 // CombineTo deleted the truncate, if needed, but not what's under it.
9250 AddToWorklist(oye);
9252 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9256 // fold (aext (truncate x))
9257 if (N0.getOpcode() == ISD::TRUNCATE)
9258 return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
9260 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
9261 // if the trunc is not free.
9262 if (N0.getOpcode() == ISD::AND &&
9263 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
9264 N0.getOperand(1).getOpcode() == ISD::Constant &&
9265 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
9266 N0.getValueType())) {
9267 SDLoc DL(N);
9268 SDValue X = N0.getOperand(0).getOperand(0);
9269 X = DAG.getAnyExtOrTrunc(X, DL, VT);
9270 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9271 Mask = Mask.zext(VT.getSizeInBits());
9272 return DAG.getNode(ISD::AND, DL, VT,
9273 X, DAG.getConstant(Mask, DL, VT));
9276 // fold (aext (load x)) -> (aext (truncate (extload x)))
9277 // None of the supported targets knows how to perform load and any_ext
9278 // on vectors in one instruction. We only perform this transformation on
9279 // scalars.
9280 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
9281 ISD::isUNINDEXEDLoad(N0.getNode()) &&
9282 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
9283 bool DoXform = true;
9284 SmallVector<SDNode*, 4> SetCCs;
9285 if (!N0.hasOneUse())
9286 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs,
9287 TLI);
9288 if (DoXform) {
9289 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9290 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
9291 LN0->getChain(),
9292 LN0->getBasePtr(), N0.getValueType(),
9293 LN0->getMemOperand());
9294 ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND);
9295 // If the load value is used only by N, replace it via CombineTo N.
9296 bool NoReplaceTrunc = N0.hasOneUse();
9297 CombineTo(N, ExtLoad);
9298 if (NoReplaceTrunc) {
9299 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
9300 recursivelyDeleteUnusedNodes(LN0);
9301 } else {
9302 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
9303 N0.getValueType(), ExtLoad);
9304 CombineTo(LN0, Trunc, ExtLoad.getValue(1));
9306 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9310 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
9311 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
9312 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
9313 if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) &&
9314 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
9315 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9316 ISD::LoadExtType ExtType = LN0->getExtensionType();
9317 EVT MemVT = LN0->getMemoryVT();
9318 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
9319 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N),
9320 VT, LN0->getChain(), LN0->getBasePtr(),
9321 MemVT, LN0->getMemOperand());
9322 CombineTo(N, ExtLoad);
9323 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
9324 recursivelyDeleteUnusedNodes(LN0);
9325 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9329 if (N0.getOpcode() == ISD::SETCC) {
9330 // For vectors:
9331 // aext(setcc) -> vsetcc
9332 // aext(setcc) -> truncate(vsetcc)
9333 // aext(setcc) -> aext(vsetcc)
9334 // Only do this before legalize for now.
9335 if (VT.isVector() && !LegalOperations) {
9336 EVT N00VT = N0.getOperand(0).getValueType();
9337 if (getSetCCResultType(N00VT) == N0.getValueType())
9338 return SDValue();
9340 // We know that the # elements of the results is the same as the
9341 // # elements of the compare (and the # elements of the compare result
9342 // for that matter). Check to see that they are the same size. If so,
9343 // we know that the element size of the sext'd result matches the
9344 // element size of the compare operands.
9345 if (VT.getSizeInBits() == N00VT.getSizeInBits())
9346 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
9347 N0.getOperand(1),
9348 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9350 // If the desired elements are smaller or larger than the source
9351 // elements we can use a matching integer vector type and then
9352 // truncate/any extend
9353 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
9354 SDValue VsetCC =
9355 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
9356 N0.getOperand(1),
9357 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9358 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT);
9361 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
9362 SDLoc DL(N);
9363 if (SDValue SCC = SimplifySelectCC(
9364 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
9365 DAG.getConstant(0, DL, VT),
9366 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
9367 return SCC;
9370 return SDValue();
9373 SDValue DAGCombiner::visitAssertExt(SDNode *N) {
9374 unsigned Opcode = N->getOpcode();
9375 SDValue N0 = N->getOperand(0);
9376 SDValue N1 = N->getOperand(1);
9377 EVT AssertVT = cast<VTSDNode>(N1)->getVT();
9379 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
9380 if (N0.getOpcode() == Opcode &&
9381 AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT())
9382 return N0;
9384 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
9385 N0.getOperand(0).getOpcode() == Opcode) {
9386 // We have an assert, truncate, assert sandwich. Make one stronger assert
9387 // by asserting on the smallest asserted type to the larger source type.
9388 // This eliminates the later assert:
9389 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
9390 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
9391 SDValue BigA = N0.getOperand(0);
9392 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
9393 assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&
9394 "Asserting zero/sign-extended bits to a type larger than the "
9395 "truncated destination does not provide information");
9397 SDLoc DL(N);
9398 EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT;
9399 SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT);
9400 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
9401 BigA.getOperand(0), MinAssertVTVal);
9402 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
9405 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller
9406 // than X. Just move the AssertZext in front of the truncate and drop the
9407 // AssertSExt.
9408 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
9409 N0.getOperand(0).getOpcode() == ISD::AssertSext &&
9410 Opcode == ISD::AssertZext) {
9411 SDValue BigA = N0.getOperand(0);
9412 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
9413 assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&
9414 "Asserting zero/sign-extended bits to a type larger than the "
9415 "truncated destination does not provide information");
9417 if (AssertVT.bitsLT(BigA_AssertVT)) {
9418 SDLoc DL(N);
9419 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
9420 BigA.getOperand(0), N1);
9421 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
9425 return SDValue();
9428 /// If the result of a wider load is shifted to right of N bits and then
9429 /// truncated to a narrower type and where N is a multiple of number of bits of
9430 /// the narrower type, transform it to a narrower load from address + N / num of
9431 /// bits of new type. Also narrow the load if the result is masked with an AND
9432 /// to effectively produce a smaller type. If the result is to be extended, also
9433 /// fold the extension to form a extending load.
9434 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
9435 unsigned Opc = N->getOpcode();
9437 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
9438 SDValue N0 = N->getOperand(0);
9439 EVT VT = N->getValueType(0);
9440 EVT ExtVT = VT;
9442 // This transformation isn't valid for vector loads.
9443 if (VT.isVector())
9444 return SDValue();
9446 unsigned ShAmt = 0;
9447 bool HasShiftedOffset = false;
9448 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
9449 // extended to VT.
9450 if (Opc == ISD::SIGN_EXTEND_INREG) {
9451 ExtType = ISD::SEXTLOAD;
9452 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
9453 } else if (Opc == ISD::SRL) {
9454 // Another special-case: SRL is basically zero-extending a narrower value,
9455 // or it maybe shifting a higher subword, half or byte into the lowest
9456 // bits.
9457 ExtType = ISD::ZEXTLOAD;
9458 N0 = SDValue(N, 0);
9460 auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0));
9461 auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9462 if (!N01 || !LN0)
9463 return SDValue();
9465 uint64_t ShiftAmt = N01->getZExtValue();
9466 uint64_t MemoryWidth = LN0->getMemoryVT().getSizeInBits();
9467 if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt)
9468 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt);
9469 else
9470 ExtVT = EVT::getIntegerVT(*DAG.getContext(),
9471 VT.getSizeInBits() - ShiftAmt);
9472 } else if (Opc == ISD::AND) {
9473 // An AND with a constant mask is the same as a truncate + zero-extend.
9474 auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1));
9475 if (!AndC)
9476 return SDValue();
9478 const APInt &Mask = AndC->getAPIntValue();
9479 unsigned ActiveBits = 0;
9480 if (Mask.isMask()) {
9481 ActiveBits = Mask.countTrailingOnes();
9482 } else if (Mask.isShiftedMask()) {
9483 ShAmt = Mask.countTrailingZeros();
9484 APInt ShiftedMask = Mask.lshr(ShAmt);
9485 ActiveBits = ShiftedMask.countTrailingOnes();
9486 HasShiftedOffset = true;
9487 } else
9488 return SDValue();
9490 ExtType = ISD::ZEXTLOAD;
9491 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
9494 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
9495 SDValue SRL = N0;
9496 if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) {
9497 ShAmt = ConstShift->getZExtValue();
9498 unsigned EVTBits = ExtVT.getSizeInBits();
9499 // Is the shift amount a multiple of size of VT?
9500 if ((ShAmt & (EVTBits-1)) == 0) {
9501 N0 = N0.getOperand(0);
9502 // Is the load width a multiple of size of VT?
9503 if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0)
9504 return SDValue();
9507 // At this point, we must have a load or else we can't do the transform.
9508 if (!isa<LoadSDNode>(N0)) return SDValue();
9510 auto *LN0 = cast<LoadSDNode>(N0);
9512 // Because a SRL must be assumed to *need* to zero-extend the high bits
9513 // (as opposed to anyext the high bits), we can't combine the zextload
9514 // lowering of SRL and an sextload.
9515 if (LN0->getExtensionType() == ISD::SEXTLOAD)
9516 return SDValue();
9518 // If the shift amount is larger than the input type then we're not
9519 // accessing any of the loaded bytes. If the load was a zextload/extload
9520 // then the result of the shift+trunc is zero/undef (handled elsewhere).
9521 if (ShAmt >= LN0->getMemoryVT().getSizeInBits())
9522 return SDValue();
9524 // If the SRL is only used by a masking AND, we may be able to adjust
9525 // the ExtVT to make the AND redundant.
9526 SDNode *Mask = *(SRL->use_begin());
9527 if (Mask->getOpcode() == ISD::AND &&
9528 isa<ConstantSDNode>(Mask->getOperand(1))) {
9529 const APInt &ShiftMask =
9530 cast<ConstantSDNode>(Mask->getOperand(1))->getAPIntValue();
9531 if (ShiftMask.isMask()) {
9532 EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(),
9533 ShiftMask.countTrailingOnes());
9534 // If the mask is smaller, recompute the type.
9535 if ((ExtVT.getSizeInBits() > MaskedVT.getSizeInBits()) &&
9536 TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT))
9537 ExtVT = MaskedVT;
9543 // If the load is shifted left (and the result isn't shifted back right),
9544 // we can fold the truncate through the shift.
9545 unsigned ShLeftAmt = 0;
9546 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
9547 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
9548 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
9549 ShLeftAmt = N01->getZExtValue();
9550 N0 = N0.getOperand(0);
9554 // If we haven't found a load, we can't narrow it.
9555 if (!isa<LoadSDNode>(N0))
9556 return SDValue();
9558 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9559 if (!isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt))
9560 return SDValue();
9562 auto AdjustBigEndianShift = [&](unsigned ShAmt) {
9563 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
9564 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
9565 return LVTStoreBits - EVTStoreBits - ShAmt;
9568 // For big endian targets, we need to adjust the offset to the pointer to
9569 // load the correct bytes.
9570 if (DAG.getDataLayout().isBigEndian())
9571 ShAmt = AdjustBigEndianShift(ShAmt);
9573 EVT PtrType = N0.getOperand(1).getValueType();
9574 uint64_t PtrOff = ShAmt / 8;
9575 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
9576 SDLoc DL(LN0);
9577 // The original load itself didn't wrap, so an offset within it doesn't.
9578 SDNodeFlags Flags;
9579 Flags.setNoUnsignedWrap(true);
9580 SDValue NewPtr = DAG.getNode(ISD::ADD, DL,
9581 PtrType, LN0->getBasePtr(),
9582 DAG.getConstant(PtrOff, DL, PtrType),
9583 Flags);
9584 AddToWorklist(NewPtr.getNode());
9586 SDValue Load;
9587 if (ExtType == ISD::NON_EXTLOAD)
9588 Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
9589 LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign,
9590 LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
9591 else
9592 Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(), NewPtr,
9593 LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT,
9594 NewAlign, LN0->getMemOperand()->getFlags(),
9595 LN0->getAAInfo());
9597 // Replace the old load's chain with the new load's chain.
9598 WorklistRemover DeadNodes(*this);
9599 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
9601 // Shift the result left, if we've swallowed a left shift.
9602 SDValue Result = Load;
9603 if (ShLeftAmt != 0) {
9604 EVT ShImmTy = getShiftAmountTy(Result.getValueType());
9605 if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
9606 ShImmTy = VT;
9607 // If the shift amount is as large as the result size (but, presumably,
9608 // no larger than the source) then the useful bits of the result are
9609 // zero; we can't simply return the shortened shift, because the result
9610 // of that operation is undefined.
9611 SDLoc DL(N0);
9612 if (ShLeftAmt >= VT.getSizeInBits())
9613 Result = DAG.getConstant(0, DL, VT);
9614 else
9615 Result = DAG.getNode(ISD::SHL, DL, VT,
9616 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy));
9619 if (HasShiftedOffset) {
9620 // Recalculate the shift amount after it has been altered to calculate
9621 // the offset.
9622 if (DAG.getDataLayout().isBigEndian())
9623 ShAmt = AdjustBigEndianShift(ShAmt);
9625 // We're using a shifted mask, so the load now has an offset. This means
9626 // that data has been loaded into the lower bytes than it would have been
9627 // before, so we need to shl the loaded data into the correct position in the
9628 // register.
9629 SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT);
9630 Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC);
9631 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
9634 // Return the new loaded value.
9635 return Result;
9638 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
9639 SDValue N0 = N->getOperand(0);
9640 SDValue N1 = N->getOperand(1);
9641 EVT VT = N->getValueType(0);
9642 EVT EVT = cast<VTSDNode>(N1)->getVT();
9643 unsigned VTBits = VT.getScalarSizeInBits();
9644 unsigned EVTBits = EVT.getScalarSizeInBits();
9646 if (N0.isUndef())
9647 return DAG.getUNDEF(VT);
9649 // fold (sext_in_reg c1) -> c1
9650 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
9651 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
9653 // If the input is already sign extended, just drop the extension.
9654 if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
9655 return N0;
9657 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
9658 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
9659 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
9660 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
9661 N0.getOperand(0), N1);
9663 // fold (sext_in_reg (sext x)) -> (sext x)
9664 // fold (sext_in_reg (aext x)) -> (sext x)
9665 // if x is small enough or if we know that x has more than 1 sign bit and the
9666 // sign_extend_inreg is extending from one of them.
9667 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
9668 SDValue N00 = N0.getOperand(0);
9669 unsigned N00Bits = N00.getScalarValueSizeInBits();
9670 if ((N00Bits <= EVTBits ||
9671 (N00Bits - DAG.ComputeNumSignBits(N00)) < EVTBits) &&
9672 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
9673 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00);
9676 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
9677 if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG ||
9678 N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG ||
9679 N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) &&
9680 N0.getOperand(0).getScalarValueSizeInBits() == EVTBits) {
9681 if (!LegalOperations ||
9682 TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT))
9683 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT,
9684 N0.getOperand(0));
9687 // fold (sext_in_reg (zext x)) -> (sext x)
9688 // iff we are extending the source sign bit.
9689 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
9690 SDValue N00 = N0.getOperand(0);
9691 if (N00.getScalarValueSizeInBits() == EVTBits &&
9692 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
9693 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
9696 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
9697 if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, EVTBits - 1)))
9698 return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT.getScalarType());
9700 // fold operands of sext_in_reg based on knowledge that the top bits are not
9701 // demanded.
9702 if (SimplifyDemandedBits(SDValue(N, 0)))
9703 return SDValue(N, 0);
9705 // fold (sext_in_reg (load x)) -> (smaller sextload x)
9706 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
9707 if (SDValue NarrowLoad = ReduceLoadWidth(N))
9708 return NarrowLoad;
9710 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
9711 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
9712 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
9713 if (N0.getOpcode() == ISD::SRL) {
9714 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
9715 if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
9716 // We can turn this into an SRA iff the input to the SRL is already sign
9717 // extended enough.
9718 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
9719 if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
9720 return DAG.getNode(ISD::SRA, SDLoc(N), VT,
9721 N0.getOperand(0), N0.getOperand(1));
9725 // fold (sext_inreg (extload x)) -> (sextload x)
9726 // If sextload is not supported by target, we can only do the combine when
9727 // load has one use. Doing otherwise can block folding the extload with other
9728 // extends that the target does support.
9729 if (ISD::isEXTLoad(N0.getNode()) &&
9730 ISD::isUNINDEXEDLoad(N0.getNode()) &&
9731 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
9732 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile() &&
9733 N0.hasOneUse()) ||
9734 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
9735 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9736 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
9737 LN0->getChain(),
9738 LN0->getBasePtr(), EVT,
9739 LN0->getMemOperand());
9740 CombineTo(N, ExtLoad);
9741 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
9742 AddToWorklist(ExtLoad.getNode());
9743 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9745 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
9746 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
9747 N0.hasOneUse() &&
9748 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
9749 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
9750 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
9751 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9752 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
9753 LN0->getChain(),
9754 LN0->getBasePtr(), EVT,
9755 LN0->getMemOperand());
9756 CombineTo(N, ExtLoad);
9757 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
9758 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9761 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
9762 if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
9763 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
9764 N0.getOperand(1), false))
9765 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
9766 BSwap, N1);
9769 return SDValue();
9772 SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) {
9773 SDValue N0 = N->getOperand(0);
9774 EVT VT = N->getValueType(0);
9776 if (N0.isUndef())
9777 return DAG.getUNDEF(VT);
9779 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
9780 return Res;
9782 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
9783 return SDValue(N, 0);
9785 return SDValue();
9788 SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) {
9789 SDValue N0 = N->getOperand(0);
9790 EVT VT = N->getValueType(0);
9792 if (N0.isUndef())
9793 return DAG.getUNDEF(VT);
9795 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
9796 return Res;
9798 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
9799 return SDValue(N, 0);
9801 return SDValue();
9804 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
9805 SDValue N0 = N->getOperand(0);
9806 EVT VT = N->getValueType(0);
9807 bool isLE = DAG.getDataLayout().isLittleEndian();
9809 // noop truncate
9810 if (N0.getValueType() == N->getValueType(0))
9811 return N0;
9813 // fold (truncate (truncate x)) -> (truncate x)
9814 if (N0.getOpcode() == ISD::TRUNCATE)
9815 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
9817 // fold (truncate c1) -> c1
9818 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
9819 SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
9820 if (C.getNode() != N)
9821 return C;
9824 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
9825 if (N0.getOpcode() == ISD::ZERO_EXTEND ||
9826 N0.getOpcode() == ISD::SIGN_EXTEND ||
9827 N0.getOpcode() == ISD::ANY_EXTEND) {
9828 // if the source is smaller than the dest, we still need an extend.
9829 if (N0.getOperand(0).getValueType().bitsLT(VT))
9830 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
9831 // if the source is larger than the dest, than we just need the truncate.
9832 if (N0.getOperand(0).getValueType().bitsGT(VT))
9833 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
9834 // if the source and dest are the same type, we can drop both the extend
9835 // and the truncate.
9836 return N0.getOperand(0);
9839 // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
9840 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND))
9841 return SDValue();
9843 // Fold extract-and-trunc into a narrow extract. For example:
9844 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
9845 // i32 y = TRUNCATE(i64 x)
9846 // -- becomes --
9847 // v16i8 b = BITCAST (v2i64 val)
9848 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
9850 // Note: We only run this optimization after type legalization (which often
9851 // creates this pattern) and before operation legalization after which
9852 // we need to be more careful about the vector instructions that we generate.
9853 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
9854 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) {
9855 EVT VecTy = N0.getOperand(0).getValueType();
9856 EVT ExTy = N0.getValueType();
9857 EVT TrTy = N->getValueType(0);
9859 unsigned NumElem = VecTy.getVectorNumElements();
9860 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
9862 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
9863 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
9865 SDValue EltNo = N0->getOperand(1);
9866 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
9867 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9868 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
9869 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
9871 SDLoc DL(N);
9872 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy,
9873 DAG.getBitcast(NVT, N0.getOperand(0)),
9874 DAG.getConstant(Index, DL, IndexTy));
9878 // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
9879 if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) {
9880 EVT SrcVT = N0.getValueType();
9881 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) &&
9882 TLI.isTruncateFree(SrcVT, VT)) {
9883 SDLoc SL(N0);
9884 SDValue Cond = N0.getOperand(0);
9885 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
9886 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2));
9887 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1);
9891 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
9892 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
9893 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) &&
9894 TLI.isTypeDesirableForOp(ISD::SHL, VT)) {
9895 SDValue Amt = N0.getOperand(1);
9896 KnownBits Known = DAG.computeKnownBits(Amt);
9897 unsigned Size = VT.getScalarSizeInBits();
9898 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) {
9899 SDLoc SL(N);
9900 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
9902 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
9903 if (AmtVT != Amt.getValueType()) {
9904 Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT);
9905 AddToWorklist(Amt.getNode());
9907 return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt);
9911 // Fold a series of buildvector, bitcast, and truncate if possible.
9912 // For example fold
9913 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
9914 // (2xi32 (buildvector x, y)).
9915 if (Level == AfterLegalizeVectorOps && VT.isVector() &&
9916 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
9917 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
9918 N0.getOperand(0).hasOneUse()) {
9919 SDValue BuildVect = N0.getOperand(0);
9920 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
9921 EVT TruncVecEltTy = VT.getVectorElementType();
9923 // Check that the element types match.
9924 if (BuildVectEltTy == TruncVecEltTy) {
9925 // Now we only need to compute the offset of the truncated elements.
9926 unsigned BuildVecNumElts = BuildVect.getNumOperands();
9927 unsigned TruncVecNumElts = VT.getVectorNumElements();
9928 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
9930 assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
9931 "Invalid number of elements");
9933 SmallVector<SDValue, 8> Opnds;
9934 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
9935 Opnds.push_back(BuildVect.getOperand(i));
9937 return DAG.getBuildVector(VT, SDLoc(N), Opnds);
9941 // See if we can simplify the input to this truncate through knowledge that
9942 // only the low bits are being used.
9943 // For example "trunc (or (shl x, 8), y)" // -> trunc y
9944 // Currently we only perform this optimization on scalars because vectors
9945 // may have different active low bits.
9946 if (!VT.isVector()) {
9947 APInt Mask =
9948 APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits());
9949 if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask))
9950 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
9953 // fold (truncate (load x)) -> (smaller load x)
9954 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
9955 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
9956 if (SDValue Reduced = ReduceLoadWidth(N))
9957 return Reduced;
9959 // Handle the case where the load remains an extending load even
9960 // after truncation.
9961 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
9962 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9963 if (!LN0->isVolatile() &&
9964 LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) {
9965 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0),
9966 VT, LN0->getChain(), LN0->getBasePtr(),
9967 LN0->getMemoryVT(),
9968 LN0->getMemOperand());
9969 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
9970 return NewLoad;
9975 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
9976 // where ... are all 'undef'.
9977 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
9978 SmallVector<EVT, 8> VTs;
9979 SDValue V;
9980 unsigned Idx = 0;
9981 unsigned NumDefs = 0;
9983 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
9984 SDValue X = N0.getOperand(i);
9985 if (!X.isUndef()) {
9986 V = X;
9987 Idx = i;
9988 NumDefs++;
9990 // Stop if more than one members are non-undef.
9991 if (NumDefs > 1)
9992 break;
9993 VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
9994 VT.getVectorElementType(),
9995 X.getValueType().getVectorNumElements()));
9998 if (NumDefs == 0)
9999 return DAG.getUNDEF(VT);
10001 if (NumDefs == 1) {
10002 assert(V.getNode() && "The single defined operand is empty!");
10003 SmallVector<SDValue, 8> Opnds;
10004 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
10005 if (i != Idx) {
10006 Opnds.push_back(DAG.getUNDEF(VTs[i]));
10007 continue;
10009 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
10010 AddToWorklist(NV.getNode());
10011 Opnds.push_back(NV);
10013 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds);
10017 // Fold truncate of a bitcast of a vector to an extract of the low vector
10018 // element.
10020 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
10021 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) {
10022 SDValue VecSrc = N0.getOperand(0);
10023 EVT SrcVT = VecSrc.getValueType();
10024 if (SrcVT.isVector() && SrcVT.getScalarType() == VT &&
10025 (!LegalOperations ||
10026 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, SrcVT))) {
10027 SDLoc SL(N);
10029 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
10030 unsigned Idx = isLE ? 0 : SrcVT.getVectorNumElements() - 1;
10031 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT,
10032 VecSrc, DAG.getConstant(Idx, SL, IdxVT));
10036 // Simplify the operands using demanded-bits information.
10037 if (!VT.isVector() &&
10038 SimplifyDemandedBits(SDValue(N, 0)))
10039 return SDValue(N, 0);
10041 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
10042 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry)
10043 // When the adde's carry is not used.
10044 if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) &&
10045 N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) &&
10046 (!LegalOperations || TLI.isOperationLegal(N0.getOpcode(), VT))) {
10047 SDLoc SL(N);
10048 auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
10049 auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
10050 auto VTs = DAG.getVTList(VT, N0->getValueType(1));
10051 return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2));
10054 // fold (truncate (extract_subvector(ext x))) ->
10055 // (extract_subvector x)
10056 // TODO: This can be generalized to cover cases where the truncate and extract
10057 // do not fully cancel each other out.
10058 if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
10059 SDValue N00 = N0.getOperand(0);
10060 if (N00.getOpcode() == ISD::SIGN_EXTEND ||
10061 N00.getOpcode() == ISD::ZERO_EXTEND ||
10062 N00.getOpcode() == ISD::ANY_EXTEND) {
10063 if (N00.getOperand(0)->getValueType(0).getVectorElementType() ==
10064 VT.getVectorElementType())
10065 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT,
10066 N00.getOperand(0), N0.getOperand(1));
10070 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
10071 return NewVSel;
10073 // Narrow a suitable binary operation with a non-opaque constant operand by
10074 // moving it ahead of the truncate. This is limited to pre-legalization
10075 // because targets may prefer a wider type during later combines and invert
10076 // this transform.
10077 switch (N0.getOpcode()) {
10078 case ISD::ADD:
10079 case ISD::SUB:
10080 case ISD::MUL:
10081 case ISD::AND:
10082 case ISD::OR:
10083 case ISD::XOR:
10084 if (!LegalOperations && N0.hasOneUse() &&
10085 (isConstantOrConstantVector(N0.getOperand(0), true) ||
10086 isConstantOrConstantVector(N0.getOperand(1), true))) {
10087 // TODO: We already restricted this to pre-legalization, but for vectors
10088 // we are extra cautious to not create an unsupported operation.
10089 // Target-specific changes are likely needed to avoid regressions here.
10090 if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) {
10091 SDLoc DL(N);
10092 SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
10093 SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1));
10094 return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR);
10099 return SDValue();
10102 static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
10103 SDValue Elt = N->getOperand(i);
10104 if (Elt.getOpcode() != ISD::MERGE_VALUES)
10105 return Elt.getNode();
10106 return Elt.getOperand(Elt.getResNo()).getNode();
10109 /// build_pair (load, load) -> load
10110 /// if load locations are consecutive.
10111 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
10112 assert(N->getOpcode() == ISD::BUILD_PAIR);
10114 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
10115 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
10117 // A BUILD_PAIR is always having the least significant part in elt 0 and the
10118 // most significant part in elt 1. So when combining into one large load, we
10119 // need to consider the endianness.
10120 if (DAG.getDataLayout().isBigEndian())
10121 std::swap(LD1, LD2);
10123 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
10124 LD1->getAddressSpace() != LD2->getAddressSpace())
10125 return SDValue();
10126 EVT LD1VT = LD1->getValueType(0);
10127 unsigned LD1Bytes = LD1VT.getStoreSize();
10128 if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() &&
10129 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) {
10130 unsigned Align = LD1->getAlignment();
10131 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
10132 VT.getTypeForEVT(*DAG.getContext()));
10134 if (NewAlign <= Align &&
10135 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
10136 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(),
10137 LD1->getPointerInfo(), Align);
10140 return SDValue();
10143 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) {
10144 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
10145 // and Lo parts; on big-endian machines it doesn't.
10146 return DAG.getDataLayout().isBigEndian() ? 1 : 0;
10149 static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG,
10150 const TargetLowering &TLI) {
10151 // If this is not a bitcast to an FP type or if the target doesn't have
10152 // IEEE754-compliant FP logic, we're done.
10153 EVT VT = N->getValueType(0);
10154 if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT))
10155 return SDValue();
10157 // TODO: Handle cases where the integer constant is a different scalar
10158 // bitwidth to the FP.
10159 SDValue N0 = N->getOperand(0);
10160 EVT SourceVT = N0.getValueType();
10161 if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits())
10162 return SDValue();
10164 unsigned FPOpcode;
10165 APInt SignMask;
10166 switch (N0.getOpcode()) {
10167 case ISD::AND:
10168 FPOpcode = ISD::FABS;
10169 SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits());
10170 break;
10171 case ISD::XOR:
10172 FPOpcode = ISD::FNEG;
10173 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
10174 break;
10175 case ISD::OR:
10176 FPOpcode = ISD::FABS;
10177 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
10178 break;
10179 default:
10180 return SDValue();
10183 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
10184 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
10185 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
10186 // fneg (fabs X)
10187 SDValue LogicOp0 = N0.getOperand(0);
10188 ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true);
10189 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask &&
10190 LogicOp0.getOpcode() == ISD::BITCAST &&
10191 LogicOp0.getOperand(0).getValueType() == VT) {
10192 SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0));
10193 NumFPLogicOpsConv++;
10194 if (N0.getOpcode() == ISD::OR)
10195 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp);
10196 return FPOp;
10199 return SDValue();
10202 SDValue DAGCombiner::visitBITCAST(SDNode *N) {
10203 SDValue N0 = N->getOperand(0);
10204 EVT VT = N->getValueType(0);
10206 if (N0.isUndef())
10207 return DAG.getUNDEF(VT);
10209 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
10210 // Only do this before legalize types, since we might create an illegal
10211 // scalar type. Even if we knew we wouldn't create an illegal scalar type
10212 // we can only do this before legalize ops, since the target maybe
10213 // depending on the bitcast.
10214 // First check to see if this is all constant.
10215 if (!LegalTypes &&
10216 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
10217 VT.isVector() && cast<BuildVectorSDNode>(N0)->isConstant())
10218 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(),
10219 VT.getVectorElementType());
10221 // If the input is a constant, let getNode fold it.
10222 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
10223 // If we can't allow illegal operations, we need to check that this is just
10224 // a fp -> int or int -> conversion and that the resulting operation will
10225 // be legal.
10226 if (!LegalOperations ||
10227 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() &&
10228 TLI.isOperationLegal(ISD::ConstantFP, VT)) ||
10229 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() &&
10230 TLI.isOperationLegal(ISD::Constant, VT))) {
10231 SDValue C = DAG.getBitcast(VT, N0);
10232 if (C.getNode() != N)
10233 return C;
10237 // (conv (conv x, t1), t2) -> (conv x, t2)
10238 if (N0.getOpcode() == ISD::BITCAST)
10239 return DAG.getBitcast(VT, N0.getOperand(0));
10241 // fold (conv (load x)) -> (load (conv*)x)
10242 // If the resultant load doesn't need a higher alignment than the original!
10243 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
10244 // Do not remove the cast if the types differ in endian layout.
10245 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) ==
10246 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) &&
10247 // If the load is volatile, we only want to change the load type if the
10248 // resulting load is legal. Otherwise we might increase the number of
10249 // memory accesses. We don't care if the original type was legal or not
10250 // as we assume software couldn't rely on the number of accesses of an
10251 // illegal type.
10252 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
10253 TLI.isOperationLegal(ISD::LOAD, VT)) &&
10254 TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) {
10255 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10256 unsigned OrigAlign = LN0->getAlignment();
10258 bool Fast = false;
10259 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
10260 LN0->getAddressSpace(), OrigAlign, &Fast) &&
10261 Fast) {
10262 SDValue Load =
10263 DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
10264 LN0->getPointerInfo(), OrigAlign,
10265 LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
10266 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
10267 return Load;
10271 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI))
10272 return V;
10274 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
10275 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
10277 // For ppc_fp128:
10278 // fold (bitcast (fneg x)) ->
10279 // flipbit = signbit
10280 // (xor (bitcast x) (build_pair flipbit, flipbit))
10282 // fold (bitcast (fabs x)) ->
10283 // flipbit = (and (extract_element (bitcast x), 0), signbit)
10284 // (xor (bitcast x) (build_pair flipbit, flipbit))
10285 // This often reduces constant pool loads.
10286 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
10287 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
10288 N0.getNode()->hasOneUse() && VT.isInteger() &&
10289 !VT.isVector() && !N0.getValueType().isVector()) {
10290 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0));
10291 AddToWorklist(NewConv.getNode());
10293 SDLoc DL(N);
10294 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
10295 assert(VT.getSizeInBits() == 128);
10296 SDValue SignBit = DAG.getConstant(
10297 APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64);
10298 SDValue FlipBit;
10299 if (N0.getOpcode() == ISD::FNEG) {
10300 FlipBit = SignBit;
10301 AddToWorklist(FlipBit.getNode());
10302 } else {
10303 assert(N0.getOpcode() == ISD::FABS);
10304 SDValue Hi =
10305 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv,
10306 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
10307 SDLoc(NewConv)));
10308 AddToWorklist(Hi.getNode());
10309 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit);
10310 AddToWorklist(FlipBit.getNode());
10312 SDValue FlipBits =
10313 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
10314 AddToWorklist(FlipBits.getNode());
10315 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits);
10317 APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
10318 if (N0.getOpcode() == ISD::FNEG)
10319 return DAG.getNode(ISD::XOR, DL, VT,
10320 NewConv, DAG.getConstant(SignBit, DL, VT));
10321 assert(N0.getOpcode() == ISD::FABS);
10322 return DAG.getNode(ISD::AND, DL, VT,
10323 NewConv, DAG.getConstant(~SignBit, DL, VT));
10326 // fold (bitconvert (fcopysign cst, x)) ->
10327 // (or (and (bitconvert x), sign), (and cst, (not sign)))
10328 // Note that we don't handle (copysign x, cst) because this can always be
10329 // folded to an fneg or fabs.
10331 // For ppc_fp128:
10332 // fold (bitcast (fcopysign cst, x)) ->
10333 // flipbit = (and (extract_element
10334 // (xor (bitcast cst), (bitcast x)), 0),
10335 // signbit)
10336 // (xor (bitcast cst) (build_pair flipbit, flipbit))
10337 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
10338 isa<ConstantFPSDNode>(N0.getOperand(0)) &&
10339 VT.isInteger() && !VT.isVector()) {
10340 unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits();
10341 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
10342 if (isTypeLegal(IntXVT)) {
10343 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1));
10344 AddToWorklist(X.getNode());
10346 // If X has a different width than the result/lhs, sext it or truncate it.
10347 unsigned VTWidth = VT.getSizeInBits();
10348 if (OrigXWidth < VTWidth) {
10349 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
10350 AddToWorklist(X.getNode());
10351 } else if (OrigXWidth > VTWidth) {
10352 // To get the sign bit in the right place, we have to shift it right
10353 // before truncating.
10354 SDLoc DL(X);
10355 X = DAG.getNode(ISD::SRL, DL,
10356 X.getValueType(), X,
10357 DAG.getConstant(OrigXWidth-VTWidth, DL,
10358 X.getValueType()));
10359 AddToWorklist(X.getNode());
10360 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
10361 AddToWorklist(X.getNode());
10364 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
10365 APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2);
10366 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
10367 AddToWorklist(Cst.getNode());
10368 SDValue X = DAG.getBitcast(VT, N0.getOperand(1));
10369 AddToWorklist(X.getNode());
10370 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X);
10371 AddToWorklist(XorResult.getNode());
10372 SDValue XorResult64 = DAG.getNode(
10373 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult,
10374 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
10375 SDLoc(XorResult)));
10376 AddToWorklist(XorResult64.getNode());
10377 SDValue FlipBit =
10378 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64,
10379 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64));
10380 AddToWorklist(FlipBit.getNode());
10381 SDValue FlipBits =
10382 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
10383 AddToWorklist(FlipBits.getNode());
10384 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits);
10386 APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
10387 X = DAG.getNode(ISD::AND, SDLoc(X), VT,
10388 X, DAG.getConstant(SignBit, SDLoc(X), VT));
10389 AddToWorklist(X.getNode());
10391 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
10392 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
10393 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT));
10394 AddToWorklist(Cst.getNode());
10396 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
10400 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
10401 if (N0.getOpcode() == ISD::BUILD_PAIR)
10402 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT))
10403 return CombineLD;
10405 // Remove double bitcasts from shuffles - this is often a legacy of
10406 // XformToShuffleWithZero being used to combine bitmaskings (of
10407 // float vectors bitcast to integer vectors) into shuffles.
10408 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
10409 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() &&
10410 N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() &&
10411 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() &&
10412 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) {
10413 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0);
10415 // If operands are a bitcast, peek through if it casts the original VT.
10416 // If operands are a constant, just bitcast back to original VT.
10417 auto PeekThroughBitcast = [&](SDValue Op) {
10418 if (Op.getOpcode() == ISD::BITCAST &&
10419 Op.getOperand(0).getValueType() == VT)
10420 return SDValue(Op.getOperand(0));
10421 if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) ||
10422 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode()))
10423 return DAG.getBitcast(VT, Op);
10424 return SDValue();
10427 // FIXME: If either input vector is bitcast, try to convert the shuffle to
10428 // the result type of this bitcast. This would eliminate at least one
10429 // bitcast. See the transform in InstCombine.
10430 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0));
10431 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1));
10432 if (!(SV0 && SV1))
10433 return SDValue();
10435 int MaskScale =
10436 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements();
10437 SmallVector<int, 8> NewMask;
10438 for (int M : SVN->getMask())
10439 for (int i = 0; i != MaskScale; ++i)
10440 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i);
10442 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT);
10443 if (!LegalMask) {
10444 std::swap(SV0, SV1);
10445 ShuffleVectorSDNode::commuteMask(NewMask);
10446 LegalMask = TLI.isShuffleMaskLegal(NewMask, VT);
10449 if (LegalMask)
10450 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask);
10453 return SDValue();
10456 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
10457 EVT VT = N->getValueType(0);
10458 return CombineConsecutiveLoads(N, VT);
10461 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef
10462 /// operands. DstEltVT indicates the destination element value type.
10463 SDValue DAGCombiner::
10464 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
10465 EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
10467 // If this is already the right type, we're done.
10468 if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
10470 unsigned SrcBitSize = SrcEltVT.getSizeInBits();
10471 unsigned DstBitSize = DstEltVT.getSizeInBits();
10473 // If this is a conversion of N elements of one type to N elements of another
10474 // type, convert each element. This handles FP<->INT cases.
10475 if (SrcBitSize == DstBitSize) {
10476 SmallVector<SDValue, 8> Ops;
10477 for (SDValue Op : BV->op_values()) {
10478 // If the vector element type is not legal, the BUILD_VECTOR operands
10479 // are promoted and implicitly truncated. Make that explicit here.
10480 if (Op.getValueType() != SrcEltVT)
10481 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
10482 Ops.push_back(DAG.getBitcast(DstEltVT, Op));
10483 AddToWorklist(Ops.back().getNode());
10485 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
10486 BV->getValueType(0).getVectorNumElements());
10487 return DAG.getBuildVector(VT, SDLoc(BV), Ops);
10490 // Otherwise, we're growing or shrinking the elements. To avoid having to
10491 // handle annoying details of growing/shrinking FP values, we convert them to
10492 // int first.
10493 if (SrcEltVT.isFloatingPoint()) {
10494 // Convert the input float vector to a int vector where the elements are the
10495 // same sizes.
10496 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
10497 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
10498 SrcEltVT = IntVT;
10501 // Now we know the input is an integer vector. If the output is a FP type,
10502 // convert to integer first, then to FP of the right size.
10503 if (DstEltVT.isFloatingPoint()) {
10504 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
10505 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
10507 // Next, convert to FP elements of the same size.
10508 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
10511 SDLoc DL(BV);
10513 // Okay, we know the src/dst types are both integers of differing types.
10514 // Handling growing first.
10515 assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
10516 if (SrcBitSize < DstBitSize) {
10517 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
10519 SmallVector<SDValue, 8> Ops;
10520 for (unsigned i = 0, e = BV->getNumOperands(); i != e;
10521 i += NumInputsPerOutput) {
10522 bool isLE = DAG.getDataLayout().isLittleEndian();
10523 APInt NewBits = APInt(DstBitSize, 0);
10524 bool EltIsUndef = true;
10525 for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
10526 // Shift the previously computed bits over.
10527 NewBits <<= SrcBitSize;
10528 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
10529 if (Op.isUndef()) continue;
10530 EltIsUndef = false;
10532 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
10533 zextOrTrunc(SrcBitSize).zext(DstBitSize);
10536 if (EltIsUndef)
10537 Ops.push_back(DAG.getUNDEF(DstEltVT));
10538 else
10539 Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT));
10542 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
10543 return DAG.getBuildVector(VT, DL, Ops);
10546 // Finally, this must be the case where we are shrinking elements: each input
10547 // turns into multiple outputs.
10548 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
10549 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
10550 NumOutputsPerInput*BV->getNumOperands());
10551 SmallVector<SDValue, 8> Ops;
10553 for (const SDValue &Op : BV->op_values()) {
10554 if (Op.isUndef()) {
10555 Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT));
10556 continue;
10559 APInt OpVal = cast<ConstantSDNode>(Op)->
10560 getAPIntValue().zextOrTrunc(SrcBitSize);
10562 for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
10563 APInt ThisVal = OpVal.trunc(DstBitSize);
10564 Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT));
10565 OpVal.lshrInPlace(DstBitSize);
10568 // For big endian targets, swap the order of the pieces of each element.
10569 if (DAG.getDataLayout().isBigEndian())
10570 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
10573 return DAG.getBuildVector(VT, DL, Ops);
10576 static bool isContractable(SDNode *N) {
10577 SDNodeFlags F = N->getFlags();
10578 return F.hasAllowContract() || F.hasAllowReassociation();
10581 /// Try to perform FMA combining on a given FADD node.
10582 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
10583 SDValue N0 = N->getOperand(0);
10584 SDValue N1 = N->getOperand(1);
10585 EVT VT = N->getValueType(0);
10586 SDLoc SL(N);
10588 const TargetOptions &Options = DAG.getTarget().Options;
10590 // Floating-point multiply-add with intermediate rounding.
10591 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
10593 // Floating-point multiply-add without intermediate rounding.
10594 bool HasFMA =
10595 TLI.isFMAFasterThanFMulAndFAdd(VT) &&
10596 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
10598 // No valid opcode, do not combine.
10599 if (!HasFMAD && !HasFMA)
10600 return SDValue();
10602 SDNodeFlags Flags = N->getFlags();
10603 bool CanFuse = Options.UnsafeFPMath || isContractable(N);
10604 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
10605 CanFuse || HasFMAD);
10606 // If the addition is not contractable, do not combine.
10607 if (!AllowFusionGlobally && !isContractable(N))
10608 return SDValue();
10610 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo();
10611 if (STI && STI->generateFMAsInMachineCombiner(OptLevel))
10612 return SDValue();
10614 // Always prefer FMAD to FMA for precision.
10615 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
10616 bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
10618 // Is the node an FMUL and contractable either due to global flags or
10619 // SDNodeFlags.
10620 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
10621 if (N.getOpcode() != ISD::FMUL)
10622 return false;
10623 return AllowFusionGlobally || isContractable(N.getNode());
10625 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
10626 // prefer to fold the multiply with fewer uses.
10627 if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) {
10628 if (N0.getNode()->use_size() > N1.getNode()->use_size())
10629 std::swap(N0, N1);
10632 // fold (fadd (fmul x, y), z) -> (fma x, y, z)
10633 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
10634 return DAG.getNode(PreferredFusedOpcode, SL, VT,
10635 N0.getOperand(0), N0.getOperand(1), N1, Flags);
10638 // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
10639 // Note: Commutes FADD operands.
10640 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
10641 return DAG.getNode(PreferredFusedOpcode, SL, VT,
10642 N1.getOperand(0), N1.getOperand(1), N0, Flags);
10645 // Look through FP_EXTEND nodes to do more combining.
10647 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
10648 if (N0.getOpcode() == ISD::FP_EXTEND) {
10649 SDValue N00 = N0.getOperand(0);
10650 if (isContractableFMUL(N00) &&
10651 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
10652 return DAG.getNode(PreferredFusedOpcode, SL, VT,
10653 DAG.getNode(ISD::FP_EXTEND, SL, VT,
10654 N00.getOperand(0)),
10655 DAG.getNode(ISD::FP_EXTEND, SL, VT,
10656 N00.getOperand(1)), N1, Flags);
10660 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
10661 // Note: Commutes FADD operands.
10662 if (N1.getOpcode() == ISD::FP_EXTEND) {
10663 SDValue N10 = N1.getOperand(0);
10664 if (isContractableFMUL(N10) &&
10665 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
10666 return DAG.getNode(PreferredFusedOpcode, SL, VT,
10667 DAG.getNode(ISD::FP_EXTEND, SL, VT,
10668 N10.getOperand(0)),
10669 DAG.getNode(ISD::FP_EXTEND, SL, VT,
10670 N10.getOperand(1)), N0, Flags);
10674 // More folding opportunities when target permits.
10675 if (Aggressive) {
10676 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z))
10677 if (CanFuse &&
10678 N0.getOpcode() == PreferredFusedOpcode &&
10679 N0.getOperand(2).getOpcode() == ISD::FMUL &&
10680 N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) {
10681 return DAG.getNode(PreferredFusedOpcode, SL, VT,
10682 N0.getOperand(0), N0.getOperand(1),
10683 DAG.getNode(PreferredFusedOpcode, SL, VT,
10684 N0.getOperand(2).getOperand(0),
10685 N0.getOperand(2).getOperand(1),
10686 N1, Flags), Flags);
10689 // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x))
10690 if (CanFuse &&
10691 N1->getOpcode() == PreferredFusedOpcode &&
10692 N1.getOperand(2).getOpcode() == ISD::FMUL &&
10693 N1->hasOneUse() && N1.getOperand(2)->hasOneUse()) {
10694 return DAG.getNode(PreferredFusedOpcode, SL, VT,
10695 N1.getOperand(0), N1.getOperand(1),
10696 DAG.getNode(PreferredFusedOpcode, SL, VT,
10697 N1.getOperand(2).getOperand(0),
10698 N1.getOperand(2).getOperand(1),
10699 N0, Flags), Flags);
10703 // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
10704 // -> (fma x, y, (fma (fpext u), (fpext v), z))
10705 auto FoldFAddFMAFPExtFMul = [&] (
10706 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z,
10707 SDNodeFlags Flags) {
10708 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y,
10709 DAG.getNode(PreferredFusedOpcode, SL, VT,
10710 DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
10711 DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
10712 Z, Flags), Flags);
10714 if (N0.getOpcode() == PreferredFusedOpcode) {
10715 SDValue N02 = N0.getOperand(2);
10716 if (N02.getOpcode() == ISD::FP_EXTEND) {
10717 SDValue N020 = N02.getOperand(0);
10718 if (isContractableFMUL(N020) &&
10719 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) {
10720 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1),
10721 N020.getOperand(0), N020.getOperand(1),
10722 N1, Flags);
10727 // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
10728 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
10729 // FIXME: This turns two single-precision and one double-precision
10730 // operation into two double-precision operations, which might not be
10731 // interesting for all targets, especially GPUs.
10732 auto FoldFAddFPExtFMAFMul = [&] (
10733 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z,
10734 SDNodeFlags Flags) {
10735 return DAG.getNode(PreferredFusedOpcode, SL, VT,
10736 DAG.getNode(ISD::FP_EXTEND, SL, VT, X),
10737 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y),
10738 DAG.getNode(PreferredFusedOpcode, SL, VT,
10739 DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
10740 DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
10741 Z, Flags), Flags);
10743 if (N0.getOpcode() == ISD::FP_EXTEND) {
10744 SDValue N00 = N0.getOperand(0);
10745 if (N00.getOpcode() == PreferredFusedOpcode) {
10746 SDValue N002 = N00.getOperand(2);
10747 if (isContractableFMUL(N002) &&
10748 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
10749 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1),
10750 N002.getOperand(0), N002.getOperand(1),
10751 N1, Flags);
10756 // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
10757 // -> (fma y, z, (fma (fpext u), (fpext v), x))
10758 if (N1.getOpcode() == PreferredFusedOpcode) {
10759 SDValue N12 = N1.getOperand(2);
10760 if (N12.getOpcode() == ISD::FP_EXTEND) {
10761 SDValue N120 = N12.getOperand(0);
10762 if (isContractableFMUL(N120) &&
10763 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) {
10764 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1),
10765 N120.getOperand(0), N120.getOperand(1),
10766 N0, Flags);
10771 // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
10772 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
10773 // FIXME: This turns two single-precision and one double-precision
10774 // operation into two double-precision operations, which might not be
10775 // interesting for all targets, especially GPUs.
10776 if (N1.getOpcode() == ISD::FP_EXTEND) {
10777 SDValue N10 = N1.getOperand(0);
10778 if (N10.getOpcode() == PreferredFusedOpcode) {
10779 SDValue N102 = N10.getOperand(2);
10780 if (isContractableFMUL(N102) &&
10781 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
10782 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1),
10783 N102.getOperand(0), N102.getOperand(1),
10784 N0, Flags);
10790 return SDValue();
10793 /// Try to perform FMA combining on a given FSUB node.
10794 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
10795 SDValue N0 = N->getOperand(0);
10796 SDValue N1 = N->getOperand(1);
10797 EVT VT = N->getValueType(0);
10798 SDLoc SL(N);
10800 const TargetOptions &Options = DAG.getTarget().Options;
10801 // Floating-point multiply-add with intermediate rounding.
10802 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
10804 // Floating-point multiply-add without intermediate rounding.
10805 bool HasFMA =
10806 TLI.isFMAFasterThanFMulAndFAdd(VT) &&
10807 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
10809 // No valid opcode, do not combine.
10810 if (!HasFMAD && !HasFMA)
10811 return SDValue();
10813 const SDNodeFlags Flags = N->getFlags();
10814 bool CanFuse = Options.UnsafeFPMath || isContractable(N);
10815 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
10816 CanFuse || HasFMAD);
10818 // If the subtraction is not contractable, do not combine.
10819 if (!AllowFusionGlobally && !isContractable(N))
10820 return SDValue();
10822 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo();
10823 if (STI && STI->generateFMAsInMachineCombiner(OptLevel))
10824 return SDValue();
10826 // Always prefer FMAD to FMA for precision.
10827 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
10828 bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
10830 // Is the node an FMUL and contractable either due to global flags or
10831 // SDNodeFlags.
10832 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
10833 if (N.getOpcode() != ISD::FMUL)
10834 return false;
10835 return AllowFusionGlobally || isContractable(N.getNode());
10838 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
10839 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
10840 return DAG.getNode(PreferredFusedOpcode, SL, VT,
10841 N0.getOperand(0), N0.getOperand(1),
10842 DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
10845 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
10846 // Note: Commutes FSUB operands.
10847 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
10848 return DAG.getNode(PreferredFusedOpcode, SL, VT,
10849 DAG.getNode(ISD::FNEG, SL, VT,
10850 N1.getOperand(0)),
10851 N1.getOperand(1), N0, Flags);
10854 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
10855 if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) &&
10856 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) {
10857 SDValue N00 = N0.getOperand(0).getOperand(0);
10858 SDValue N01 = N0.getOperand(0).getOperand(1);
10859 return DAG.getNode(PreferredFusedOpcode, SL, VT,
10860 DAG.getNode(ISD::FNEG, SL, VT, N00), N01,
10861 DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
10864 // Look through FP_EXTEND nodes to do more combining.
10866 // fold (fsub (fpext (fmul x, y)), z)
10867 // -> (fma (fpext x), (fpext y), (fneg z))
10868 if (N0.getOpcode() == ISD::FP_EXTEND) {
10869 SDValue N00 = N0.getOperand(0);
10870 if (isContractableFMUL(N00) &&
10871 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
10872 return DAG.getNode(PreferredFusedOpcode, SL, VT,
10873 DAG.getNode(ISD::FP_EXTEND, SL, VT,
10874 N00.getOperand(0)),
10875 DAG.getNode(ISD::FP_EXTEND, SL, VT,
10876 N00.getOperand(1)),
10877 DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
10881 // fold (fsub x, (fpext (fmul y, z)))
10882 // -> (fma (fneg (fpext y)), (fpext z), x)
10883 // Note: Commutes FSUB operands.
10884 if (N1.getOpcode() == ISD::FP_EXTEND) {
10885 SDValue N10 = N1.getOperand(0);
10886 if (isContractableFMUL(N10) &&
10887 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
10888 return DAG.getNode(PreferredFusedOpcode, SL, VT,
10889 DAG.getNode(ISD::FNEG, SL, VT,
10890 DAG.getNode(ISD::FP_EXTEND, SL, VT,
10891 N10.getOperand(0))),
10892 DAG.getNode(ISD::FP_EXTEND, SL, VT,
10893 N10.getOperand(1)),
10894 N0, Flags);
10898 // fold (fsub (fpext (fneg (fmul, x, y))), z)
10899 // -> (fneg (fma (fpext x), (fpext y), z))
10900 // Note: This could be removed with appropriate canonicalization of the
10901 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
10902 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
10903 // from implementing the canonicalization in visitFSUB.
10904 if (N0.getOpcode() == ISD::FP_EXTEND) {
10905 SDValue N00 = N0.getOperand(0);
10906 if (N00.getOpcode() == ISD::FNEG) {
10907 SDValue N000 = N00.getOperand(0);
10908 if (isContractableFMUL(N000) &&
10909 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
10910 return DAG.getNode(ISD::FNEG, SL, VT,
10911 DAG.getNode(PreferredFusedOpcode, SL, VT,
10912 DAG.getNode(ISD::FP_EXTEND, SL, VT,
10913 N000.getOperand(0)),
10914 DAG.getNode(ISD::FP_EXTEND, SL, VT,
10915 N000.getOperand(1)),
10916 N1, Flags));
10921 // fold (fsub (fneg (fpext (fmul, x, y))), z)
10922 // -> (fneg (fma (fpext x)), (fpext y), z)
10923 // Note: This could be removed with appropriate canonicalization of the
10924 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
10925 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
10926 // from implementing the canonicalization in visitFSUB.
10927 if (N0.getOpcode() == ISD::FNEG) {
10928 SDValue N00 = N0.getOperand(0);
10929 if (N00.getOpcode() == ISD::FP_EXTEND) {
10930 SDValue N000 = N00.getOperand(0);
10931 if (isContractableFMUL(N000) &&
10932 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N000.getValueType())) {
10933 return DAG.getNode(ISD::FNEG, SL, VT,
10934 DAG.getNode(PreferredFusedOpcode, SL, VT,
10935 DAG.getNode(ISD::FP_EXTEND, SL, VT,
10936 N000.getOperand(0)),
10937 DAG.getNode(ISD::FP_EXTEND, SL, VT,
10938 N000.getOperand(1)),
10939 N1, Flags));
10944 // More folding opportunities when target permits.
10945 if (Aggressive) {
10946 // fold (fsub (fma x, y, (fmul u, v)), z)
10947 // -> (fma x, y (fma u, v, (fneg z)))
10948 if (CanFuse && N0.getOpcode() == PreferredFusedOpcode &&
10949 isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() &&
10950 N0.getOperand(2)->hasOneUse()) {
10951 return DAG.getNode(PreferredFusedOpcode, SL, VT,
10952 N0.getOperand(0), N0.getOperand(1),
10953 DAG.getNode(PreferredFusedOpcode, SL, VT,
10954 N0.getOperand(2).getOperand(0),
10955 N0.getOperand(2).getOperand(1),
10956 DAG.getNode(ISD::FNEG, SL, VT,
10957 N1), Flags), Flags);
10960 // fold (fsub x, (fma y, z, (fmul u, v)))
10961 // -> (fma (fneg y), z, (fma (fneg u), v, x))
10962 if (CanFuse && N1.getOpcode() == PreferredFusedOpcode &&
10963 isContractableFMUL(N1.getOperand(2))) {
10964 SDValue N20 = N1.getOperand(2).getOperand(0);
10965 SDValue N21 = N1.getOperand(2).getOperand(1);
10966 return DAG.getNode(PreferredFusedOpcode, SL, VT,
10967 DAG.getNode(ISD::FNEG, SL, VT,
10968 N1.getOperand(0)),
10969 N1.getOperand(1),
10970 DAG.getNode(PreferredFusedOpcode, SL, VT,
10971 DAG.getNode(ISD::FNEG, SL, VT, N20),
10972 N21, N0, Flags), Flags);
10976 // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
10977 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
10978 if (N0.getOpcode() == PreferredFusedOpcode) {
10979 SDValue N02 = N0.getOperand(2);
10980 if (N02.getOpcode() == ISD::FP_EXTEND) {
10981 SDValue N020 = N02.getOperand(0);
10982 if (isContractableFMUL(N020) &&
10983 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) {
10984 return DAG.getNode(PreferredFusedOpcode, SL, VT,
10985 N0.getOperand(0), N0.getOperand(1),
10986 DAG.getNode(PreferredFusedOpcode, SL, VT,
10987 DAG.getNode(ISD::FP_EXTEND, SL, VT,
10988 N020.getOperand(0)),
10989 DAG.getNode(ISD::FP_EXTEND, SL, VT,
10990 N020.getOperand(1)),
10991 DAG.getNode(ISD::FNEG, SL, VT,
10992 N1), Flags), Flags);
10997 // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
10998 // -> (fma (fpext x), (fpext y),
10999 // (fma (fpext u), (fpext v), (fneg z)))
11000 // FIXME: This turns two single-precision and one double-precision
11001 // operation into two double-precision operations, which might not be
11002 // interesting for all targets, especially GPUs.
11003 if (N0.getOpcode() == ISD::FP_EXTEND) {
11004 SDValue N00 = N0.getOperand(0);
11005 if (N00.getOpcode() == PreferredFusedOpcode) {
11006 SDValue N002 = N00.getOperand(2);
11007 if (isContractableFMUL(N002) &&
11008 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
11009 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11010 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11011 N00.getOperand(0)),
11012 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11013 N00.getOperand(1)),
11014 DAG.getNode(PreferredFusedOpcode, SL, VT,
11015 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11016 N002.getOperand(0)),
11017 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11018 N002.getOperand(1)),
11019 DAG.getNode(ISD::FNEG, SL, VT,
11020 N1), Flags), Flags);
11025 // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
11026 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
11027 if (N1.getOpcode() == PreferredFusedOpcode &&
11028 N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) {
11029 SDValue N120 = N1.getOperand(2).getOperand(0);
11030 if (isContractableFMUL(N120) &&
11031 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) {
11032 SDValue N1200 = N120.getOperand(0);
11033 SDValue N1201 = N120.getOperand(1);
11034 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11035 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)),
11036 N1.getOperand(1),
11037 DAG.getNode(PreferredFusedOpcode, SL, VT,
11038 DAG.getNode(ISD::FNEG, SL, VT,
11039 DAG.getNode(ISD::FP_EXTEND, SL,
11040 VT, N1200)),
11041 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11042 N1201),
11043 N0, Flags), Flags);
11047 // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
11048 // -> (fma (fneg (fpext y)), (fpext z),
11049 // (fma (fneg (fpext u)), (fpext v), x))
11050 // FIXME: This turns two single-precision and one double-precision
11051 // operation into two double-precision operations, which might not be
11052 // interesting for all targets, especially GPUs.
11053 if (N1.getOpcode() == ISD::FP_EXTEND &&
11054 N1.getOperand(0).getOpcode() == PreferredFusedOpcode) {
11055 SDValue CvtSrc = N1.getOperand(0);
11056 SDValue N100 = CvtSrc.getOperand(0);
11057 SDValue N101 = CvtSrc.getOperand(1);
11058 SDValue N102 = CvtSrc.getOperand(2);
11059 if (isContractableFMUL(N102) &&
11060 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, CvtSrc.getValueType())) {
11061 SDValue N1020 = N102.getOperand(0);
11062 SDValue N1021 = N102.getOperand(1);
11063 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11064 DAG.getNode(ISD::FNEG, SL, VT,
11065 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11066 N100)),
11067 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101),
11068 DAG.getNode(PreferredFusedOpcode, SL, VT,
11069 DAG.getNode(ISD::FNEG, SL, VT,
11070 DAG.getNode(ISD::FP_EXTEND, SL,
11071 VT, N1020)),
11072 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11073 N1021),
11074 N0, Flags), Flags);
11079 return SDValue();
11082 /// Try to perform FMA combining on a given FMUL node based on the distributive
11083 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
11084 /// subtraction instead of addition).
11085 SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) {
11086 SDValue N0 = N->getOperand(0);
11087 SDValue N1 = N->getOperand(1);
11088 EVT VT = N->getValueType(0);
11089 SDLoc SL(N);
11090 const SDNodeFlags Flags = N->getFlags();
11092 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation");
11094 const TargetOptions &Options = DAG.getTarget().Options;
11096 // The transforms below are incorrect when x == 0 and y == inf, because the
11097 // intermediate multiplication produces a nan.
11098 if (!Options.NoInfsFPMath)
11099 return SDValue();
11101 // Floating-point multiply-add without intermediate rounding.
11102 bool HasFMA =
11103 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) &&
11104 TLI.isFMAFasterThanFMulAndFAdd(VT) &&
11105 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
11107 // Floating-point multiply-add with intermediate rounding. This can result
11108 // in a less precise result due to the changed rounding order.
11109 bool HasFMAD = Options.UnsafeFPMath &&
11110 (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
11112 // No valid opcode, do not combine.
11113 if (!HasFMAD && !HasFMA)
11114 return SDValue();
11116 // Always prefer FMAD to FMA for precision.
11117 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
11118 bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
11120 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
11121 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
11122 auto FuseFADD = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) {
11123 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) {
11124 if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) {
11125 if (C->isExactlyValue(+1.0))
11126 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
11127 Y, Flags);
11128 if (C->isExactlyValue(-1.0))
11129 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
11130 DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
11133 return SDValue();
11136 if (SDValue FMA = FuseFADD(N0, N1, Flags))
11137 return FMA;
11138 if (SDValue FMA = FuseFADD(N1, N0, Flags))
11139 return FMA;
11141 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
11142 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
11143 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
11144 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
11145 auto FuseFSUB = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) {
11146 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) {
11147 if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) {
11148 if (C0->isExactlyValue(+1.0))
11149 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11150 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
11151 Y, Flags);
11152 if (C0->isExactlyValue(-1.0))
11153 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11154 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
11155 DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
11157 if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) {
11158 if (C1->isExactlyValue(+1.0))
11159 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
11160 DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
11161 if (C1->isExactlyValue(-1.0))
11162 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
11163 Y, Flags);
11166 return SDValue();
11169 if (SDValue FMA = FuseFSUB(N0, N1, Flags))
11170 return FMA;
11171 if (SDValue FMA = FuseFSUB(N1, N0, Flags))
11172 return FMA;
11174 return SDValue();
11177 SDValue DAGCombiner::visitFADD(SDNode *N) {
11178 SDValue N0 = N->getOperand(0);
11179 SDValue N1 = N->getOperand(1);
11180 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0);
11181 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
11182 EVT VT = N->getValueType(0);
11183 SDLoc DL(N);
11184 const TargetOptions &Options = DAG.getTarget().Options;
11185 const SDNodeFlags Flags = N->getFlags();
11187 // fold vector ops
11188 if (VT.isVector())
11189 if (SDValue FoldedVOp = SimplifyVBinOp(N))
11190 return FoldedVOp;
11192 // fold (fadd c1, c2) -> c1 + c2
11193 if (N0CFP && N1CFP)
11194 return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags);
11196 // canonicalize constant to RHS
11197 if (N0CFP && !N1CFP)
11198 return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags);
11200 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
11201 ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true);
11202 if (N1C && N1C->isZero())
11203 if (N1C->isNegative() || Options.UnsafeFPMath || Flags.hasNoSignedZeros())
11204 return N0;
11206 if (SDValue NewSel = foldBinOpIntoSelect(N))
11207 return NewSel;
11209 // fold (fadd A, (fneg B)) -> (fsub A, B)
11210 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
11211 isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2)
11212 return DAG.getNode(ISD::FSUB, DL, VT, N0,
11213 GetNegatedExpression(N1, DAG, LegalOperations), Flags);
11215 // fold (fadd (fneg A), B) -> (fsub B, A)
11216 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
11217 isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2)
11218 return DAG.getNode(ISD::FSUB, DL, VT, N1,
11219 GetNegatedExpression(N0, DAG, LegalOperations), Flags);
11221 auto isFMulNegTwo = [](SDValue FMul) {
11222 if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL)
11223 return false;
11224 auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true);
11225 return C && C->isExactlyValue(-2.0);
11228 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
11229 if (isFMulNegTwo(N0)) {
11230 SDValue B = N0.getOperand(0);
11231 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags);
11232 return DAG.getNode(ISD::FSUB, DL, VT, N1, Add, Flags);
11234 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
11235 if (isFMulNegTwo(N1)) {
11236 SDValue B = N1.getOperand(0);
11237 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags);
11238 return DAG.getNode(ISD::FSUB, DL, VT, N0, Add, Flags);
11241 // No FP constant should be created after legalization as Instruction
11242 // Selection pass has a hard time dealing with FP constants.
11243 bool AllowNewConst = (Level < AfterLegalizeDAG);
11245 // If 'unsafe math' or nnan is enabled, fold lots of things.
11246 if ((Options.UnsafeFPMath || Flags.hasNoNaNs()) && AllowNewConst) {
11247 // If allowed, fold (fadd (fneg x), x) -> 0.0
11248 if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
11249 return DAG.getConstantFP(0.0, DL, VT);
11251 // If allowed, fold (fadd x, (fneg x)) -> 0.0
11252 if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
11253 return DAG.getConstantFP(0.0, DL, VT);
11256 // If 'unsafe math' or reassoc and nsz, fold lots of things.
11257 // TODO: break out portions of the transformations below for which Unsafe is
11258 // considered and which do not require both nsz and reassoc
11259 if ((Options.UnsafeFPMath ||
11260 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
11261 AllowNewConst) {
11262 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2
11263 if (N1CFP && N0.getOpcode() == ISD::FADD &&
11264 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
11265 SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, Flags);
11266 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC, Flags);
11269 // We can fold chains of FADD's of the same value into multiplications.
11270 // This transform is not safe in general because we are reducing the number
11271 // of rounding steps.
11272 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
11273 if (N0.getOpcode() == ISD::FMUL) {
11274 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
11275 bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1));
11277 // (fadd (fmul x, c), x) -> (fmul x, c+1)
11278 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
11279 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
11280 DAG.getConstantFP(1.0, DL, VT), Flags);
11281 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags);
11284 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
11285 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
11286 N1.getOperand(0) == N1.getOperand(1) &&
11287 N0.getOperand(0) == N1.getOperand(0)) {
11288 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
11289 DAG.getConstantFP(2.0, DL, VT), Flags);
11290 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags);
11294 if (N1.getOpcode() == ISD::FMUL) {
11295 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
11296 bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1));
11298 // (fadd x, (fmul x, c)) -> (fmul x, c+1)
11299 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
11300 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
11301 DAG.getConstantFP(1.0, DL, VT), Flags);
11302 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags);
11305 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
11306 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
11307 N0.getOperand(0) == N0.getOperand(1) &&
11308 N1.getOperand(0) == N0.getOperand(0)) {
11309 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
11310 DAG.getConstantFP(2.0, DL, VT), Flags);
11311 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags);
11315 if (N0.getOpcode() == ISD::FADD) {
11316 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
11317 // (fadd (fadd x, x), x) -> (fmul x, 3.0)
11318 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) &&
11319 (N0.getOperand(0) == N1)) {
11320 return DAG.getNode(ISD::FMUL, DL, VT,
11321 N1, DAG.getConstantFP(3.0, DL, VT), Flags);
11325 if (N1.getOpcode() == ISD::FADD) {
11326 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
11327 // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
11328 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
11329 N1.getOperand(0) == N0) {
11330 return DAG.getNode(ISD::FMUL, DL, VT,
11331 N0, DAG.getConstantFP(3.0, DL, VT), Flags);
11335 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
11336 if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
11337 N0.getOperand(0) == N0.getOperand(1) &&
11338 N1.getOperand(0) == N1.getOperand(1) &&
11339 N0.getOperand(0) == N1.getOperand(0)) {
11340 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0),
11341 DAG.getConstantFP(4.0, DL, VT), Flags);
11344 } // enable-unsafe-fp-math
11346 // FADD -> FMA combines:
11347 if (SDValue Fused = visitFADDForFMACombine(N)) {
11348 AddToWorklist(Fused.getNode());
11349 return Fused;
11351 return SDValue();
11354 SDValue DAGCombiner::visitFSUB(SDNode *N) {
11355 SDValue N0 = N->getOperand(0);
11356 SDValue N1 = N->getOperand(1);
11357 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
11358 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
11359 EVT VT = N->getValueType(0);
11360 SDLoc DL(N);
11361 const TargetOptions &Options = DAG.getTarget().Options;
11362 const SDNodeFlags Flags = N->getFlags();
11364 // fold vector ops
11365 if (VT.isVector())
11366 if (SDValue FoldedVOp = SimplifyVBinOp(N))
11367 return FoldedVOp;
11369 // fold (fsub c1, c2) -> c1-c2
11370 if (N0CFP && N1CFP)
11371 return DAG.getNode(ISD::FSUB, DL, VT, N0, N1, Flags);
11373 if (SDValue NewSel = foldBinOpIntoSelect(N))
11374 return NewSel;
11376 // (fsub A, 0) -> A
11377 if (N1CFP && N1CFP->isZero()) {
11378 if (!N1CFP->isNegative() || Options.UnsafeFPMath ||
11379 Flags.hasNoSignedZeros()) {
11380 return N0;
11384 if (N0 == N1) {
11385 // (fsub x, x) -> 0.0
11386 if (Options.UnsafeFPMath || Flags.hasNoNaNs())
11387 return DAG.getConstantFP(0.0f, DL, VT);
11390 // (fsub -0.0, N1) -> -N1
11391 if (N0CFP && N0CFP->isZero()) {
11392 if (N0CFP->isNegative() ||
11393 (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) {
11394 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
11395 return GetNegatedExpression(N1, DAG, LegalOperations);
11396 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
11397 return DAG.getNode(ISD::FNEG, DL, VT, N1, Flags);
11401 if ((Options.UnsafeFPMath ||
11402 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros()))
11403 && N1.getOpcode() == ISD::FADD) {
11404 // X - (X + Y) -> -Y
11405 if (N0 == N1->getOperand(0))
11406 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1), Flags);
11407 // X - (Y + X) -> -Y
11408 if (N0 == N1->getOperand(1))
11409 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0), Flags);
11412 // fold (fsub A, (fneg B)) -> (fadd A, B)
11413 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
11414 return DAG.getNode(ISD::FADD, DL, VT, N0,
11415 GetNegatedExpression(N1, DAG, LegalOperations), Flags);
11417 // FSUB -> FMA combines:
11418 if (SDValue Fused = visitFSUBForFMACombine(N)) {
11419 AddToWorklist(Fused.getNode());
11420 return Fused;
11423 return SDValue();
11426 SDValue DAGCombiner::visitFMUL(SDNode *N) {
11427 SDValue N0 = N->getOperand(0);
11428 SDValue N1 = N->getOperand(1);
11429 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
11430 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
11431 EVT VT = N->getValueType(0);
11432 SDLoc DL(N);
11433 const TargetOptions &Options = DAG.getTarget().Options;
11434 const SDNodeFlags Flags = N->getFlags();
11436 // fold vector ops
11437 if (VT.isVector()) {
11438 // This just handles C1 * C2 for vectors. Other vector folds are below.
11439 if (SDValue FoldedVOp = SimplifyVBinOp(N))
11440 return FoldedVOp;
11443 // fold (fmul c1, c2) -> c1*c2
11444 if (N0CFP && N1CFP)
11445 return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags);
11447 // canonicalize constant to RHS
11448 if (isConstantFPBuildVectorOrConstantFP(N0) &&
11449 !isConstantFPBuildVectorOrConstantFP(N1))
11450 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags);
11452 // fold (fmul A, 1.0) -> A
11453 if (N1CFP && N1CFP->isExactlyValue(1.0))
11454 return N0;
11456 if (SDValue NewSel = foldBinOpIntoSelect(N))
11457 return NewSel;
11459 if (Options.UnsafeFPMath ||
11460 (Flags.hasNoNaNs() && Flags.hasNoSignedZeros())) {
11461 // fold (fmul A, 0) -> 0
11462 if (N1CFP && N1CFP->isZero())
11463 return N1;
11466 if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) {
11467 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2
11468 if (isConstantFPBuildVectorOrConstantFP(N1) &&
11469 N0.getOpcode() == ISD::FMUL) {
11470 SDValue N00 = N0.getOperand(0);
11471 SDValue N01 = N0.getOperand(1);
11472 // Avoid an infinite loop by making sure that N00 is not a constant
11473 // (the inner multiply has not been constant folded yet).
11474 if (isConstantFPBuildVectorOrConstantFP(N01) &&
11475 !isConstantFPBuildVectorOrConstantFP(N00)) {
11476 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags);
11477 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags);
11481 // Match a special-case: we convert X * 2.0 into fadd.
11482 // fmul (fadd X, X), C -> fmul X, 2.0 * C
11483 if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() &&
11484 N0.getOperand(0) == N0.getOperand(1)) {
11485 const SDValue Two = DAG.getConstantFP(2.0, DL, VT);
11486 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags);
11487 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags);
11491 // fold (fmul X, 2.0) -> (fadd X, X)
11492 if (N1CFP && N1CFP->isExactlyValue(+2.0))
11493 return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags);
11495 // fold (fmul X, -1.0) -> (fneg X)
11496 if (N1CFP && N1CFP->isExactlyValue(-1.0))
11497 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
11498 return DAG.getNode(ISD::FNEG, DL, VT, N0);
11500 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
11501 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) {
11502 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) {
11503 // Both can be negated for free, check to see if at least one is cheaper
11504 // negated.
11505 if (LHSNeg == 2 || RHSNeg == 2)
11506 return DAG.getNode(ISD::FMUL, DL, VT,
11507 GetNegatedExpression(N0, DAG, LegalOperations),
11508 GetNegatedExpression(N1, DAG, LegalOperations),
11509 Flags);
11513 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
11514 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
11515 if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() &&
11516 (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) &&
11517 TLI.isOperationLegal(ISD::FABS, VT)) {
11518 SDValue Select = N0, X = N1;
11519 if (Select.getOpcode() != ISD::SELECT)
11520 std::swap(Select, X);
11522 SDValue Cond = Select.getOperand(0);
11523 auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1));
11524 auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2));
11526 if (TrueOpnd && FalseOpnd &&
11527 Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X &&
11528 isa<ConstantFPSDNode>(Cond.getOperand(1)) &&
11529 cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) {
11530 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
11531 switch (CC) {
11532 default: break;
11533 case ISD::SETOLT:
11534 case ISD::SETULT:
11535 case ISD::SETOLE:
11536 case ISD::SETULE:
11537 case ISD::SETLT:
11538 case ISD::SETLE:
11539 std::swap(TrueOpnd, FalseOpnd);
11540 LLVM_FALLTHROUGH;
11541 case ISD::SETOGT:
11542 case ISD::SETUGT:
11543 case ISD::SETOGE:
11544 case ISD::SETUGE:
11545 case ISD::SETGT:
11546 case ISD::SETGE:
11547 if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) &&
11548 TLI.isOperationLegal(ISD::FNEG, VT))
11549 return DAG.getNode(ISD::FNEG, DL, VT,
11550 DAG.getNode(ISD::FABS, DL, VT, X));
11551 if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0))
11552 return DAG.getNode(ISD::FABS, DL, VT, X);
11554 break;
11559 // FMUL -> FMA combines:
11560 if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) {
11561 AddToWorklist(Fused.getNode());
11562 return Fused;
11565 return SDValue();
11568 SDValue DAGCombiner::visitFMA(SDNode *N) {
11569 SDValue N0 = N->getOperand(0);
11570 SDValue N1 = N->getOperand(1);
11571 SDValue N2 = N->getOperand(2);
11572 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
11573 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
11574 EVT VT = N->getValueType(0);
11575 SDLoc DL(N);
11576 const TargetOptions &Options = DAG.getTarget().Options;
11578 // FMA nodes have flags that propagate to the created nodes.
11579 const SDNodeFlags Flags = N->getFlags();
11580 bool UnsafeFPMath = Options.UnsafeFPMath || isContractable(N);
11582 // Constant fold FMA.
11583 if (isa<ConstantFPSDNode>(N0) &&
11584 isa<ConstantFPSDNode>(N1) &&
11585 isa<ConstantFPSDNode>(N2)) {
11586 return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2);
11589 if (UnsafeFPMath) {
11590 if (N0CFP && N0CFP->isZero())
11591 return N2;
11592 if (N1CFP && N1CFP->isZero())
11593 return N2;
11595 // TODO: The FMA node should have flags that propagate to these nodes.
11596 if (N0CFP && N0CFP->isExactlyValue(1.0))
11597 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
11598 if (N1CFP && N1CFP->isExactlyValue(1.0))
11599 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
11601 // Canonicalize (fma c, x, y) -> (fma x, c, y)
11602 if (isConstantFPBuildVectorOrConstantFP(N0) &&
11603 !isConstantFPBuildVectorOrConstantFP(N1))
11604 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
11606 if (UnsafeFPMath) {
11607 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
11608 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) &&
11609 isConstantFPBuildVectorOrConstantFP(N1) &&
11610 isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) {
11611 return DAG.getNode(ISD::FMUL, DL, VT, N0,
11612 DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1),
11613 Flags), Flags);
11616 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
11617 if (N0.getOpcode() == ISD::FMUL &&
11618 isConstantFPBuildVectorOrConstantFP(N1) &&
11619 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
11620 return DAG.getNode(ISD::FMA, DL, VT,
11621 N0.getOperand(0),
11622 DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1),
11623 Flags),
11624 N2);
11628 // (fma x, 1, y) -> (fadd x, y)
11629 // (fma x, -1, y) -> (fadd (fneg x), y)
11630 if (N1CFP) {
11631 if (N1CFP->isExactlyValue(1.0))
11632 // TODO: The FMA node should have flags that propagate to this node.
11633 return DAG.getNode(ISD::FADD, DL, VT, N0, N2);
11635 if (N1CFP->isExactlyValue(-1.0) &&
11636 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
11637 SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0);
11638 AddToWorklist(RHSNeg.getNode());
11639 // TODO: The FMA node should have flags that propagate to this node.
11640 return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg);
11643 // fma (fneg x), K, y -> fma x -K, y
11644 if (N0.getOpcode() == ISD::FNEG &&
11645 (TLI.isOperationLegal(ISD::ConstantFP, VT) ||
11646 (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT)))) {
11647 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0),
11648 DAG.getNode(ISD::FNEG, DL, VT, N1, Flags), N2);
11652 if (UnsafeFPMath) {
11653 // (fma x, c, x) -> (fmul x, (c+1))
11654 if (N1CFP && N0 == N2) {
11655 return DAG.getNode(ISD::FMUL, DL, VT, N0,
11656 DAG.getNode(ISD::FADD, DL, VT, N1,
11657 DAG.getConstantFP(1.0, DL, VT), Flags),
11658 Flags);
11661 // (fma x, c, (fneg x)) -> (fmul x, (c-1))
11662 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
11663 return DAG.getNode(ISD::FMUL, DL, VT, N0,
11664 DAG.getNode(ISD::FADD, DL, VT, N1,
11665 DAG.getConstantFP(-1.0, DL, VT), Flags),
11666 Flags);
11670 return SDValue();
11673 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11674 // reciprocal.
11675 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
11676 // Notice that this is not always beneficial. One reason is different targets
11677 // may have different costs for FDIV and FMUL, so sometimes the cost of two
11678 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
11679 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
11680 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) {
11681 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath;
11682 const SDNodeFlags Flags = N->getFlags();
11683 if (!UnsafeMath && !Flags.hasAllowReciprocal())
11684 return SDValue();
11686 // Skip if current node is a reciprocal.
11687 SDValue N0 = N->getOperand(0);
11688 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
11689 if (N0CFP && N0CFP->isExactlyValue(1.0))
11690 return SDValue();
11692 // Exit early if the target does not want this transform or if there can't
11693 // possibly be enough uses of the divisor to make the transform worthwhile.
11694 SDValue N1 = N->getOperand(1);
11695 unsigned MinUses = TLI.combineRepeatedFPDivisors();
11696 if (!MinUses || N1->use_size() < MinUses)
11697 return SDValue();
11699 // Find all FDIV users of the same divisor.
11700 // Use a set because duplicates may be present in the user list.
11701 SetVector<SDNode *> Users;
11702 for (auto *U : N1->uses()) {
11703 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) {
11704 // This division is eligible for optimization only if global unsafe math
11705 // is enabled or if this division allows reciprocal formation.
11706 if (UnsafeMath || U->getFlags().hasAllowReciprocal())
11707 Users.insert(U);
11711 // Now that we have the actual number of divisor uses, make sure it meets
11712 // the minimum threshold specified by the target.
11713 if (Users.size() < MinUses)
11714 return SDValue();
11716 EVT VT = N->getValueType(0);
11717 SDLoc DL(N);
11718 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
11719 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags);
11721 // Dividend / Divisor -> Dividend * Reciprocal
11722 for (auto *U : Users) {
11723 SDValue Dividend = U->getOperand(0);
11724 if (Dividend != FPOne) {
11725 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend,
11726 Reciprocal, Flags);
11727 CombineTo(U, NewNode);
11728 } else if (U != Reciprocal.getNode()) {
11729 // In the absence of fast-math-flags, this user node is always the
11730 // same node as Reciprocal, but with FMF they may be different nodes.
11731 CombineTo(U, Reciprocal);
11734 return SDValue(N, 0); // N was replaced.
11737 SDValue DAGCombiner::visitFDIV(SDNode *N) {
11738 SDValue N0 = N->getOperand(0);
11739 SDValue N1 = N->getOperand(1);
11740 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
11741 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
11742 EVT VT = N->getValueType(0);
11743 SDLoc DL(N);
11744 const TargetOptions &Options = DAG.getTarget().Options;
11745 SDNodeFlags Flags = N->getFlags();
11747 // fold vector ops
11748 if (VT.isVector())
11749 if (SDValue FoldedVOp = SimplifyVBinOp(N))
11750 return FoldedVOp;
11752 // fold (fdiv c1, c2) -> c1/c2
11753 if (N0CFP && N1CFP)
11754 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags);
11756 if (SDValue NewSel = foldBinOpIntoSelect(N))
11757 return NewSel;
11759 if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) {
11760 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
11761 if (N1CFP) {
11762 // Compute the reciprocal 1.0 / c2.
11763 const APFloat &N1APF = N1CFP->getValueAPF();
11764 APFloat Recip(N1APF.getSemantics(), 1); // 1.0
11765 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
11766 // Only do the transform if the reciprocal is a legal fp immediate that
11767 // isn't too nasty (eg NaN, denormal, ...).
11768 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
11769 (!LegalOperations ||
11770 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
11771 // backend)... we should handle this gracefully after Legalize.
11772 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
11773 TLI.isOperationLegal(ISD::ConstantFP, VT) ||
11774 TLI.isFPImmLegal(Recip, VT)))
11775 return DAG.getNode(ISD::FMUL, DL, VT, N0,
11776 DAG.getConstantFP(Recip, DL, VT), Flags);
11779 // If this FDIV is part of a reciprocal square root, it may be folded
11780 // into a target-specific square root estimate instruction.
11781 if (N1.getOpcode() == ISD::FSQRT) {
11782 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) {
11783 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
11785 } else if (N1.getOpcode() == ISD::FP_EXTEND &&
11786 N1.getOperand(0).getOpcode() == ISD::FSQRT) {
11787 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0),
11788 Flags)) {
11789 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
11790 AddToWorklist(RV.getNode());
11791 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
11793 } else if (N1.getOpcode() == ISD::FP_ROUND &&
11794 N1.getOperand(0).getOpcode() == ISD::FSQRT) {
11795 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0),
11796 Flags)) {
11797 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
11798 AddToWorklist(RV.getNode());
11799 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
11801 } else if (N1.getOpcode() == ISD::FMUL) {
11802 // Look through an FMUL. Even though this won't remove the FDIV directly,
11803 // it's still worthwhile to get rid of the FSQRT if possible.
11804 SDValue SqrtOp;
11805 SDValue OtherOp;
11806 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
11807 SqrtOp = N1.getOperand(0);
11808 OtherOp = N1.getOperand(1);
11809 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
11810 SqrtOp = N1.getOperand(1);
11811 OtherOp = N1.getOperand(0);
11813 if (SqrtOp.getNode()) {
11814 // We found a FSQRT, so try to make this fold:
11815 // x / (y * sqrt(z)) -> x * (rsqrt(z) / y)
11816 if (SDValue RV = buildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) {
11817 RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags);
11818 AddToWorklist(RV.getNode());
11819 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
11824 // Fold into a reciprocal estimate and multiply instead of a real divide.
11825 if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) {
11826 AddToWorklist(RV.getNode());
11827 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
11831 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
11832 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) {
11833 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) {
11834 // Both can be negated for free, check to see if at least one is cheaper
11835 // negated.
11836 if (LHSNeg == 2 || RHSNeg == 2)
11837 return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
11838 GetNegatedExpression(N0, DAG, LegalOperations),
11839 GetNegatedExpression(N1, DAG, LegalOperations),
11840 Flags);
11844 if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N))
11845 return CombineRepeatedDivisors;
11847 return SDValue();
11850 SDValue DAGCombiner::visitFREM(SDNode *N) {
11851 SDValue N0 = N->getOperand(0);
11852 SDValue N1 = N->getOperand(1);
11853 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
11854 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
11855 EVT VT = N->getValueType(0);
11857 // fold (frem c1, c2) -> fmod(c1,c2)
11858 if (N0CFP && N1CFP)
11859 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, N->getFlags());
11861 if (SDValue NewSel = foldBinOpIntoSelect(N))
11862 return NewSel;
11864 return SDValue();
11867 SDValue DAGCombiner::visitFSQRT(SDNode *N) {
11868 SDNodeFlags Flags = N->getFlags();
11869 if (!DAG.getTarget().Options.UnsafeFPMath &&
11870 !Flags.hasApproximateFuncs())
11871 return SDValue();
11873 SDValue N0 = N->getOperand(0);
11874 if (TLI.isFsqrtCheap(N0, DAG))
11875 return SDValue();
11877 // FSQRT nodes have flags that propagate to the created nodes.
11878 return buildSqrtEstimate(N0, Flags);
11881 /// copysign(x, fp_extend(y)) -> copysign(x, y)
11882 /// copysign(x, fp_round(y)) -> copysign(x, y)
11883 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) {
11884 SDValue N1 = N->getOperand(1);
11885 if ((N1.getOpcode() == ISD::FP_EXTEND ||
11886 N1.getOpcode() == ISD::FP_ROUND)) {
11887 // Do not optimize out type conversion of f128 type yet.
11888 // For some targets like x86_64, configuration is changed to keep one f128
11889 // value in one SSE register, but instruction selection cannot handle
11890 // FCOPYSIGN on SSE registers yet.
11891 EVT N1VT = N1->getValueType(0);
11892 EVT N1Op0VT = N1->getOperand(0).getValueType();
11893 return (N1VT == N1Op0VT || N1Op0VT != MVT::f128);
11895 return false;
11898 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
11899 SDValue N0 = N->getOperand(0);
11900 SDValue N1 = N->getOperand(1);
11901 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0);
11902 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
11903 EVT VT = N->getValueType(0);
11905 if (N0CFP && N1CFP) // Constant fold
11906 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
11908 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) {
11909 const APFloat &V = N1C->getValueAPF();
11910 // copysign(x, c1) -> fabs(x) iff ispos(c1)
11911 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
11912 if (!V.isNegative()) {
11913 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
11914 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
11915 } else {
11916 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
11917 return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
11918 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
11922 // copysign(fabs(x), y) -> copysign(x, y)
11923 // copysign(fneg(x), y) -> copysign(x, y)
11924 // copysign(copysign(x,z), y) -> copysign(x, y)
11925 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
11926 N0.getOpcode() == ISD::FCOPYSIGN)
11927 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1);
11929 // copysign(x, abs(y)) -> abs(x)
11930 if (N1.getOpcode() == ISD::FABS)
11931 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
11933 // copysign(x, copysign(y,z)) -> copysign(x, z)
11934 if (N1.getOpcode() == ISD::FCOPYSIGN)
11935 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1));
11937 // copysign(x, fp_extend(y)) -> copysign(x, y)
11938 // copysign(x, fp_round(y)) -> copysign(x, y)
11939 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N))
11940 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0));
11942 return SDValue();
11945 SDValue DAGCombiner::visitFPOW(SDNode *N) {
11946 ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1));
11947 if (!ExponentC)
11948 return SDValue();
11950 // Try to convert x ** (1/3) into cube root.
11951 // TODO: Handle the various flavors of long double.
11952 // TODO: Since we're approximating, we don't need an exact 1/3 exponent.
11953 // Some range near 1/3 should be fine.
11954 EVT VT = N->getValueType(0);
11955 if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) ||
11956 (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) {
11957 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
11958 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
11959 // pow(-val, 1/3) = nan; cbrt(-val) = -num.
11960 // For regular numbers, rounding may cause the results to differ.
11961 // Therefore, we require { nsz ninf nnan afn } for this transform.
11962 // TODO: We could select out the special cases if we don't have nsz/ninf.
11963 SDNodeFlags Flags = N->getFlags();
11964 if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() ||
11965 !Flags.hasApproximateFuncs())
11966 return SDValue();
11968 // Do not create a cbrt() libcall if the target does not have it, and do not
11969 // turn a pow that has lowering support into a cbrt() libcall.
11970 if (!DAG.getLibInfo().has(LibFunc_cbrt) ||
11971 (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) &&
11972 DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT)))
11973 return SDValue();
11975 return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0), Flags);
11978 // Try to convert x ** (1/4) and x ** (3/4) into square roots.
11979 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
11980 // TODO: This could be extended (using a target hook) to handle smaller
11981 // power-of-2 fractional exponents.
11982 bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25);
11983 bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75);
11984 if (ExponentIs025 || ExponentIs075) {
11985 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
11986 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN.
11987 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0.
11988 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN.
11989 // For regular numbers, rounding may cause the results to differ.
11990 // Therefore, we require { nsz ninf afn } for this transform.
11991 // TODO: We could select out the special cases if we don't have nsz/ninf.
11992 SDNodeFlags Flags = N->getFlags();
11994 // We only need no signed zeros for the 0.25 case.
11995 if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() ||
11996 !Flags.hasApproximateFuncs())
11997 return SDValue();
11999 // Don't double the number of libcalls. We are trying to inline fast code.
12000 if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT))
12001 return SDValue();
12003 // Assume that libcalls are the smallest code.
12004 // TODO: This restriction should probably be lifted for vectors.
12005 if (DAG.getMachineFunction().getFunction().optForSize())
12006 return SDValue();
12008 // pow(X, 0.25) --> sqrt(sqrt(X))
12009 SDLoc DL(N);
12010 SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0), Flags);
12011 SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt, Flags);
12012 if (ExponentIs025)
12013 return SqrtSqrt;
12014 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X))
12015 return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt, Flags);
12018 return SDValue();
12021 static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG,
12022 const TargetLowering &TLI) {
12023 // This optimization is guarded by a function attribute because it may produce
12024 // unexpected results. Ie, programs may be relying on the platform-specific
12025 // undefined behavior when the float-to-int conversion overflows.
12026 const Function &F = DAG.getMachineFunction().getFunction();
12027 Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow");
12028 if (StrictOverflow.getValueAsString().equals("false"))
12029 return SDValue();
12031 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be
12032 // replacing casts with a libcall. We also must be allowed to ignore -0.0
12033 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
12034 // conversions would return +0.0.
12035 // FIXME: We should be able to use node-level FMF here.
12036 // TODO: If strict math, should we use FABS (+ range check for signed cast)?
12037 EVT VT = N->getValueType(0);
12038 if (!TLI.isOperationLegal(ISD::FTRUNC, VT) ||
12039 !DAG.getTarget().Options.NoSignedZerosFPMath)
12040 return SDValue();
12042 // fptosi/fptoui round towards zero, so converting from FP to integer and
12043 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
12044 SDValue N0 = N->getOperand(0);
12045 if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT &&
12046 N0.getOperand(0).getValueType() == VT)
12047 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
12049 if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT &&
12050 N0.getOperand(0).getValueType() == VT)
12051 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
12053 return SDValue();
12056 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
12057 SDValue N0 = N->getOperand(0);
12058 EVT VT = N->getValueType(0);
12059 EVT OpVT = N0.getValueType();
12061 // fold (sint_to_fp c1) -> c1fp
12062 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
12063 // ...but only if the target supports immediate floating-point values
12064 (!LegalOperations ||
12065 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
12066 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
12068 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
12069 // but UINT_TO_FP is legal on this target, try to convert.
12070 if (!hasOperation(ISD::SINT_TO_FP, OpVT) &&
12071 hasOperation(ISD::UINT_TO_FP, OpVT)) {
12072 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
12073 if (DAG.SignBitIsZero(N0))
12074 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
12077 // The next optimizations are desirable only if SELECT_CC can be lowered.
12078 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
12079 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
12080 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
12081 !VT.isVector() &&
12082 (!LegalOperations ||
12083 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
12084 SDLoc DL(N);
12085 SDValue Ops[] =
12086 { N0.getOperand(0), N0.getOperand(1),
12087 DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
12088 N0.getOperand(2) };
12089 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
12092 // fold (sint_to_fp (zext (setcc x, y, cc))) ->
12093 // (select_cc x, y, 1.0, 0.0,, cc)
12094 if (N0.getOpcode() == ISD::ZERO_EXTEND &&
12095 N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
12096 (!LegalOperations ||
12097 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
12098 SDLoc DL(N);
12099 SDValue Ops[] =
12100 { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
12101 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
12102 N0.getOperand(0).getOperand(2) };
12103 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
12107 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
12108 return FTrunc;
12110 return SDValue();
12113 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
12114 SDValue N0 = N->getOperand(0);
12115 EVT VT = N->getValueType(0);
12116 EVT OpVT = N0.getValueType();
12118 // fold (uint_to_fp c1) -> c1fp
12119 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
12120 // ...but only if the target supports immediate floating-point values
12121 (!LegalOperations ||
12122 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
12123 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
12125 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
12126 // but SINT_TO_FP is legal on this target, try to convert.
12127 if (!hasOperation(ISD::UINT_TO_FP, OpVT) &&
12128 hasOperation(ISD::SINT_TO_FP, OpVT)) {
12129 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
12130 if (DAG.SignBitIsZero(N0))
12131 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
12134 // The next optimizations are desirable only if SELECT_CC can be lowered.
12135 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
12136 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
12137 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
12138 (!LegalOperations ||
12139 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
12140 SDLoc DL(N);
12141 SDValue Ops[] =
12142 { N0.getOperand(0), N0.getOperand(1),
12143 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
12144 N0.getOperand(2) };
12145 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
12149 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
12150 return FTrunc;
12152 return SDValue();
12155 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
12156 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) {
12157 SDValue N0 = N->getOperand(0);
12158 EVT VT = N->getValueType(0);
12160 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP)
12161 return SDValue();
12163 SDValue Src = N0.getOperand(0);
12164 EVT SrcVT = Src.getValueType();
12165 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP;
12166 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT;
12168 // We can safely assume the conversion won't overflow the output range,
12169 // because (for example) (uint8_t)18293.f is undefined behavior.
12171 // Since we can assume the conversion won't overflow, our decision as to
12172 // whether the input will fit in the float should depend on the minimum
12173 // of the input range and output range.
12175 // This means this is also safe for a signed input and unsigned output, since
12176 // a negative input would lead to undefined behavior.
12177 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned;
12178 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned;
12179 unsigned ActualSize = std::min(InputSize, OutputSize);
12180 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType());
12182 // We can only fold away the float conversion if the input range can be
12183 // represented exactly in the float range.
12184 if (APFloat::semanticsPrecision(sem) >= ActualSize) {
12185 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) {
12186 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND
12187 : ISD::ZERO_EXTEND;
12188 return DAG.getNode(ExtOp, SDLoc(N), VT, Src);
12190 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits())
12191 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src);
12192 return DAG.getBitcast(VT, Src);
12194 return SDValue();
12197 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
12198 SDValue N0 = N->getOperand(0);
12199 EVT VT = N->getValueType(0);
12201 // fold (fp_to_sint c1fp) -> c1
12202 if (isConstantFPBuildVectorOrConstantFP(N0))
12203 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
12205 return FoldIntToFPToInt(N, DAG);
12208 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
12209 SDValue N0 = N->getOperand(0);
12210 EVT VT = N->getValueType(0);
12212 // fold (fp_to_uint c1fp) -> c1
12213 if (isConstantFPBuildVectorOrConstantFP(N0))
12214 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
12216 return FoldIntToFPToInt(N, DAG);
12219 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
12220 SDValue N0 = N->getOperand(0);
12221 SDValue N1 = N->getOperand(1);
12222 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
12223 EVT VT = N->getValueType(0);
12225 // fold (fp_round c1fp) -> c1fp
12226 if (N0CFP)
12227 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
12229 // fold (fp_round (fp_extend x)) -> x
12230 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
12231 return N0.getOperand(0);
12233 // fold (fp_round (fp_round x)) -> (fp_round x)
12234 if (N0.getOpcode() == ISD::FP_ROUND) {
12235 const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
12236 const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1;
12238 // Skip this folding if it results in an fp_round from f80 to f16.
12240 // f80 to f16 always generates an expensive (and as yet, unimplemented)
12241 // libcall to __truncxfhf2 instead of selecting native f16 conversion
12242 // instructions from f32 or f64. Moreover, the first (value-preserving)
12243 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
12244 // x86.
12245 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16)
12246 return SDValue();
12248 // If the first fp_round isn't a value preserving truncation, it might
12249 // introduce a tie in the second fp_round, that wouldn't occur in the
12250 // single-step fp_round we want to fold to.
12251 // In other words, double rounding isn't the same as rounding.
12252 // Also, this is a value preserving truncation iff both fp_round's are.
12253 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) {
12254 SDLoc DL(N);
12255 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0),
12256 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL));
12260 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
12261 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
12262 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
12263 N0.getOperand(0), N1);
12264 AddToWorklist(Tmp.getNode());
12265 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
12266 Tmp, N0.getOperand(1));
12269 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
12270 return NewVSel;
12272 return SDValue();
12275 SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
12276 SDValue N0 = N->getOperand(0);
12277 EVT VT = N->getValueType(0);
12278 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
12279 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
12281 // fold (fp_round_inreg c1fp) -> c1fp
12282 if (N0CFP && isTypeLegal(EVT)) {
12283 SDLoc DL(N);
12284 SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT);
12285 return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round);
12288 return SDValue();
12291 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
12292 SDValue N0 = N->getOperand(0);
12293 EVT VT = N->getValueType(0);
12295 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
12296 if (N->hasOneUse() &&
12297 N->use_begin()->getOpcode() == ISD::FP_ROUND)
12298 return SDValue();
12300 // fold (fp_extend c1fp) -> c1fp
12301 if (isConstantFPBuildVectorOrConstantFP(N0))
12302 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
12304 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
12305 if (N0.getOpcode() == ISD::FP16_TO_FP &&
12306 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal)
12307 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0));
12309 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
12310 // value of X.
12311 if (N0.getOpcode() == ISD::FP_ROUND
12312 && N0.getConstantOperandVal(1) == 1) {
12313 SDValue In = N0.getOperand(0);
12314 if (In.getValueType() == VT) return In;
12315 if (VT.bitsLT(In.getValueType()))
12316 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
12317 In, N0.getOperand(1));
12318 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
12321 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
12322 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
12323 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
12324 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
12325 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
12326 LN0->getChain(),
12327 LN0->getBasePtr(), N0.getValueType(),
12328 LN0->getMemOperand());
12329 CombineTo(N, ExtLoad);
12330 CombineTo(N0.getNode(),
12331 DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
12332 N0.getValueType(), ExtLoad,
12333 DAG.getIntPtrConstant(1, SDLoc(N0))),
12334 ExtLoad.getValue(1));
12335 return SDValue(N, 0); // Return N so it doesn't get rechecked!
12338 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
12339 return NewVSel;
12341 return SDValue();
12344 SDValue DAGCombiner::visitFCEIL(SDNode *N) {
12345 SDValue N0 = N->getOperand(0);
12346 EVT VT = N->getValueType(0);
12348 // fold (fceil c1) -> fceil(c1)
12349 if (isConstantFPBuildVectorOrConstantFP(N0))
12350 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
12352 return SDValue();
12355 SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
12356 SDValue N0 = N->getOperand(0);
12357 EVT VT = N->getValueType(0);
12359 // fold (ftrunc c1) -> ftrunc(c1)
12360 if (isConstantFPBuildVectorOrConstantFP(N0))
12361 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
12363 // fold ftrunc (known rounded int x) -> x
12364 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
12365 // likely to be generated to extract integer from a rounded floating value.
12366 switch (N0.getOpcode()) {
12367 default: break;
12368 case ISD::FRINT:
12369 case ISD::FTRUNC:
12370 case ISD::FNEARBYINT:
12371 case ISD::FFLOOR:
12372 case ISD::FCEIL:
12373 return N0;
12376 return SDValue();
12379 SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
12380 SDValue N0 = N->getOperand(0);
12381 EVT VT = N->getValueType(0);
12383 // fold (ffloor c1) -> ffloor(c1)
12384 if (isConstantFPBuildVectorOrConstantFP(N0))
12385 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
12387 return SDValue();
12390 // FIXME: FNEG and FABS have a lot in common; refactor.
12391 SDValue DAGCombiner::visitFNEG(SDNode *N) {
12392 SDValue N0 = N->getOperand(0);
12393 EVT VT = N->getValueType(0);
12395 // Constant fold FNEG.
12396 if (isConstantFPBuildVectorOrConstantFP(N0))
12397 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
12399 if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
12400 &DAG.getTarget().Options))
12401 return GetNegatedExpression(N0, DAG, LegalOperations);
12403 // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading
12404 // constant pool values.
12405 if (!TLI.isFNegFree(VT) &&
12406 N0.getOpcode() == ISD::BITCAST &&
12407 N0.getNode()->hasOneUse()) {
12408 SDValue Int = N0.getOperand(0);
12409 EVT IntVT = Int.getValueType();
12410 if (IntVT.isInteger() && !IntVT.isVector()) {
12411 APInt SignMask;
12412 if (N0.getValueType().isVector()) {
12413 // For a vector, get a mask such as 0x80... per scalar element
12414 // and splat it.
12415 SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits());
12416 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
12417 } else {
12418 // For a scalar, just generate 0x80...
12419 SignMask = APInt::getSignMask(IntVT.getSizeInBits());
12421 SDLoc DL0(N0);
12422 Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int,
12423 DAG.getConstant(SignMask, DL0, IntVT));
12424 AddToWorklist(Int.getNode());
12425 return DAG.getBitcast(VT, Int);
12429 // (fneg (fmul c, x)) -> (fmul -c, x)
12430 if (N0.getOpcode() == ISD::FMUL &&
12431 (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) {
12432 ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
12433 if (CFP1) {
12434 APFloat CVal = CFP1->getValueAPF();
12435 CVal.changeSign();
12436 if (Level >= AfterLegalizeDAG &&
12437 (TLI.isFPImmLegal(CVal, VT) ||
12438 TLI.isOperationLegal(ISD::ConstantFP, VT)))
12439 return DAG.getNode(
12440 ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
12441 DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0.getOperand(1)),
12442 N0->getFlags());
12446 return SDValue();
12449 static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N,
12450 APFloat (*Op)(const APFloat &, const APFloat &)) {
12451 SDValue N0 = N->getOperand(0);
12452 SDValue N1 = N->getOperand(1);
12453 EVT VT = N->getValueType(0);
12454 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
12455 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
12457 if (N0CFP && N1CFP) {
12458 const APFloat &C0 = N0CFP->getValueAPF();
12459 const APFloat &C1 = N1CFP->getValueAPF();
12460 return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT);
12463 // Canonicalize to constant on RHS.
12464 if (isConstantFPBuildVectorOrConstantFP(N0) &&
12465 !isConstantFPBuildVectorOrConstantFP(N1))
12466 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
12468 return SDValue();
12471 SDValue DAGCombiner::visitFMINNUM(SDNode *N) {
12472 return visitFMinMax(DAG, N, minnum);
12475 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) {
12476 return visitFMinMax(DAG, N, maxnum);
12479 SDValue DAGCombiner::visitFMINIMUM(SDNode *N) {
12480 return visitFMinMax(DAG, N, minimum);
12483 SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) {
12484 return visitFMinMax(DAG, N, maximum);
12487 SDValue DAGCombiner::visitFABS(SDNode *N) {
12488 SDValue N0 = N->getOperand(0);
12489 EVT VT = N->getValueType(0);
12491 // fold (fabs c1) -> fabs(c1)
12492 if (isConstantFPBuildVectorOrConstantFP(N0))
12493 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
12495 // fold (fabs (fabs x)) -> (fabs x)
12496 if (N0.getOpcode() == ISD::FABS)
12497 return N->getOperand(0);
12499 // fold (fabs (fneg x)) -> (fabs x)
12500 // fold (fabs (fcopysign x, y)) -> (fabs x)
12501 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
12502 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
12504 // fabs(bitcast(x)) -> bitcast(x & ~sign) to avoid constant pool loads.
12505 if (!TLI.isFAbsFree(VT) && N0.getOpcode() == ISD::BITCAST && N0.hasOneUse()) {
12506 SDValue Int = N0.getOperand(0);
12507 EVT IntVT = Int.getValueType();
12508 if (IntVT.isInteger() && !IntVT.isVector()) {
12509 APInt SignMask;
12510 if (N0.getValueType().isVector()) {
12511 // For a vector, get a mask such as 0x7f... per scalar element
12512 // and splat it.
12513 SignMask = ~APInt::getSignMask(N0.getScalarValueSizeInBits());
12514 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
12515 } else {
12516 // For a scalar, just generate 0x7f...
12517 SignMask = ~APInt::getSignMask(IntVT.getSizeInBits());
12519 SDLoc DL(N0);
12520 Int = DAG.getNode(ISD::AND, DL, IntVT, Int,
12521 DAG.getConstant(SignMask, DL, IntVT));
12522 AddToWorklist(Int.getNode());
12523 return DAG.getBitcast(N->getValueType(0), Int);
12527 return SDValue();
12530 SDValue DAGCombiner::visitBRCOND(SDNode *N) {
12531 SDValue Chain = N->getOperand(0);
12532 SDValue N1 = N->getOperand(1);
12533 SDValue N2 = N->getOperand(2);
12535 // If N is a constant we could fold this into a fallthrough or unconditional
12536 // branch. However that doesn't happen very often in normal code, because
12537 // Instcombine/SimplifyCFG should have handled the available opportunities.
12538 // If we did this folding here, it would be necessary to update the
12539 // MachineBasicBlock CFG, which is awkward.
12541 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
12542 // on the target.
12543 if (N1.getOpcode() == ISD::SETCC &&
12544 TLI.isOperationLegalOrCustom(ISD::BR_CC,
12545 N1.getOperand(0).getValueType())) {
12546 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
12547 Chain, N1.getOperand(2),
12548 N1.getOperand(0), N1.getOperand(1), N2);
12551 if (N1.hasOneUse()) {
12552 if (SDValue NewN1 = rebuildSetCC(N1))
12553 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, NewN1, N2);
12556 return SDValue();
12559 SDValue DAGCombiner::rebuildSetCC(SDValue N) {
12560 if (N.getOpcode() == ISD::SRL ||
12561 (N.getOpcode() == ISD::TRUNCATE &&
12562 (N.getOperand(0).hasOneUse() &&
12563 N.getOperand(0).getOpcode() == ISD::SRL))) {
12564 // Look pass the truncate.
12565 if (N.getOpcode() == ISD::TRUNCATE)
12566 N = N.getOperand(0);
12568 // Match this pattern so that we can generate simpler code:
12570 // %a = ...
12571 // %b = and i32 %a, 2
12572 // %c = srl i32 %b, 1
12573 // brcond i32 %c ...
12575 // into
12577 // %a = ...
12578 // %b = and i32 %a, 2
12579 // %c = setcc eq %b, 0
12580 // brcond %c ...
12582 // This applies only when the AND constant value has one bit set and the
12583 // SRL constant is equal to the log2 of the AND constant. The back-end is
12584 // smart enough to convert the result into a TEST/JMP sequence.
12585 SDValue Op0 = N.getOperand(0);
12586 SDValue Op1 = N.getOperand(1);
12588 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) {
12589 SDValue AndOp1 = Op0.getOperand(1);
12591 if (AndOp1.getOpcode() == ISD::Constant) {
12592 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
12594 if (AndConst.isPowerOf2() &&
12595 cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) {
12596 SDLoc DL(N);
12597 return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()),
12598 Op0, DAG.getConstant(0, DL, Op0.getValueType()),
12599 ISD::SETNE);
12605 // Transform br(xor(x, y)) -> br(x != y)
12606 // Transform br(xor(xor(x,y), 1)) -> br (x == y)
12607 if (N.getOpcode() == ISD::XOR) {
12608 // Because we may call this on a speculatively constructed
12609 // SimplifiedSetCC Node, we need to simplify this node first.
12610 // Ideally this should be folded into SimplifySetCC and not
12611 // here. For now, grab a handle to N so we don't lose it from
12612 // replacements interal to the visit.
12613 HandleSDNode XORHandle(N);
12614 while (N.getOpcode() == ISD::XOR) {
12615 SDValue Tmp = visitXOR(N.getNode());
12616 // No simplification done.
12617 if (!Tmp.getNode())
12618 break;
12619 // Returning N is form in-visit replacement that may invalidated
12620 // N. Grab value from Handle.
12621 if (Tmp.getNode() == N.getNode())
12622 N = XORHandle.getValue();
12623 else // Node simplified. Try simplifying again.
12624 N = Tmp;
12627 if (N.getOpcode() != ISD::XOR)
12628 return N;
12630 SDNode *TheXor = N.getNode();
12632 SDValue Op0 = TheXor->getOperand(0);
12633 SDValue Op1 = TheXor->getOperand(1);
12635 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
12636 bool Equal = false;
12637 if (isOneConstant(Op0) && Op0.hasOneUse() &&
12638 Op0.getOpcode() == ISD::XOR) {
12639 TheXor = Op0.getNode();
12640 Equal = true;
12643 EVT SetCCVT = N.getValueType();
12644 if (LegalTypes)
12645 SetCCVT = getSetCCResultType(SetCCVT);
12646 // Replace the uses of XOR with SETCC
12647 return DAG.getSetCC(SDLoc(TheXor), SetCCVT, Op0, Op1,
12648 Equal ? ISD::SETEQ : ISD::SETNE);
12652 return SDValue();
12655 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
12657 SDValue DAGCombiner::visitBR_CC(SDNode *N) {
12658 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
12659 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
12661 // If N is a constant we could fold this into a fallthrough or unconditional
12662 // branch. However that doesn't happen very often in normal code, because
12663 // Instcombine/SimplifyCFG should have handled the available opportunities.
12664 // If we did this folding here, it would be necessary to update the
12665 // MachineBasicBlock CFG, which is awkward.
12667 // Use SimplifySetCC to simplify SETCC's.
12668 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
12669 CondLHS, CondRHS, CC->get(), SDLoc(N),
12670 false);
12671 if (Simp.getNode()) AddToWorklist(Simp.getNode());
12673 // fold to a simpler setcc
12674 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
12675 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
12676 N->getOperand(0), Simp.getOperand(2),
12677 Simp.getOperand(0), Simp.getOperand(1),
12678 N->getOperand(4));
12680 return SDValue();
12683 /// Return true if 'Use' is a load or a store that uses N as its base pointer
12684 /// and that N may be folded in the load / store addressing mode.
12685 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
12686 SelectionDAG &DAG,
12687 const TargetLowering &TLI) {
12688 EVT VT;
12689 unsigned AS;
12691 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
12692 if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
12693 return false;
12694 VT = LD->getMemoryVT();
12695 AS = LD->getAddressSpace();
12696 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
12697 if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
12698 return false;
12699 VT = ST->getMemoryVT();
12700 AS = ST->getAddressSpace();
12701 } else
12702 return false;
12704 TargetLowering::AddrMode AM;
12705 if (N->getOpcode() == ISD::ADD) {
12706 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
12707 if (Offset)
12708 // [reg +/- imm]
12709 AM.BaseOffs = Offset->getSExtValue();
12710 else
12711 // [reg +/- reg]
12712 AM.Scale = 1;
12713 } else if (N->getOpcode() == ISD::SUB) {
12714 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
12715 if (Offset)
12716 // [reg +/- imm]
12717 AM.BaseOffs = -Offset->getSExtValue();
12718 else
12719 // [reg +/- reg]
12720 AM.Scale = 1;
12721 } else
12722 return false;
12724 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM,
12725 VT.getTypeForEVT(*DAG.getContext()), AS);
12728 /// Try turning a load/store into a pre-indexed load/store when the base
12729 /// pointer is an add or subtract and it has other uses besides the load/store.
12730 /// After the transformation, the new indexed load/store has effectively folded
12731 /// the add/subtract in and all of its other uses are redirected to the
12732 /// new load/store.
12733 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
12734 if (Level < AfterLegalizeDAG)
12735 return false;
12737 bool isLoad = true;
12738 SDValue Ptr;
12739 EVT VT;
12740 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
12741 if (LD->isIndexed())
12742 return false;
12743 VT = LD->getMemoryVT();
12744 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
12745 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
12746 return false;
12747 Ptr = LD->getBasePtr();
12748 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
12749 if (ST->isIndexed())
12750 return false;
12751 VT = ST->getMemoryVT();
12752 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
12753 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
12754 return false;
12755 Ptr = ST->getBasePtr();
12756 isLoad = false;
12757 } else {
12758 return false;
12761 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
12762 // out. There is no reason to make this a preinc/predec.
12763 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
12764 Ptr.getNode()->hasOneUse())
12765 return false;
12767 // Ask the target to do addressing mode selection.
12768 SDValue BasePtr;
12769 SDValue Offset;
12770 ISD::MemIndexedMode AM = ISD::UNINDEXED;
12771 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
12772 return false;
12774 // Backends without true r+i pre-indexed forms may need to pass a
12775 // constant base with a variable offset so that constant coercion
12776 // will work with the patterns in canonical form.
12777 bool Swapped = false;
12778 if (isa<ConstantSDNode>(BasePtr)) {
12779 std::swap(BasePtr, Offset);
12780 Swapped = true;
12783 // Don't create a indexed load / store with zero offset.
12784 if (isNullConstant(Offset))
12785 return false;
12787 // Try turning it into a pre-indexed load / store except when:
12788 // 1) The new base ptr is a frame index.
12789 // 2) If N is a store and the new base ptr is either the same as or is a
12790 // predecessor of the value being stored.
12791 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
12792 // that would create a cycle.
12793 // 4) All uses are load / store ops that use it as old base ptr.
12795 // Check #1. Preinc'ing a frame index would require copying the stack pointer
12796 // (plus the implicit offset) to a register to preinc anyway.
12797 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
12798 return false;
12800 // Check #2.
12801 if (!isLoad) {
12802 SDValue Val = cast<StoreSDNode>(N)->getValue();
12804 // Would require a copy.
12805 if (Val == BasePtr)
12806 return false;
12808 // Would create a cycle.
12809 if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode()))
12810 return false;
12813 // Caches for hasPredecessorHelper.
12814 SmallPtrSet<const SDNode *, 32> Visited;
12815 SmallVector<const SDNode *, 16> Worklist;
12816 Worklist.push_back(N);
12818 // If the offset is a constant, there may be other adds of constants that
12819 // can be folded with this one. We should do this to avoid having to keep
12820 // a copy of the original base pointer.
12821 SmallVector<SDNode *, 16> OtherUses;
12822 if (isa<ConstantSDNode>(Offset))
12823 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(),
12824 UE = BasePtr.getNode()->use_end();
12825 UI != UE; ++UI) {
12826 SDUse &Use = UI.getUse();
12827 // Skip the use that is Ptr and uses of other results from BasePtr's
12828 // node (important for nodes that return multiple results).
12829 if (Use.getUser() == Ptr.getNode() || Use != BasePtr)
12830 continue;
12832 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist))
12833 continue;
12835 if (Use.getUser()->getOpcode() != ISD::ADD &&
12836 Use.getUser()->getOpcode() != ISD::SUB) {
12837 OtherUses.clear();
12838 break;
12841 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1);
12842 if (!isa<ConstantSDNode>(Op1)) {
12843 OtherUses.clear();
12844 break;
12847 // FIXME: In some cases, we can be smarter about this.
12848 if (Op1.getValueType() != Offset.getValueType()) {
12849 OtherUses.clear();
12850 break;
12853 OtherUses.push_back(Use.getUser());
12856 if (Swapped)
12857 std::swap(BasePtr, Offset);
12859 // Now check for #3 and #4.
12860 bool RealUse = false;
12862 for (SDNode *Use : Ptr.getNode()->uses()) {
12863 if (Use == N)
12864 continue;
12865 if (SDNode::hasPredecessorHelper(Use, Visited, Worklist))
12866 return false;
12868 // If Ptr may be folded in addressing mode of other use, then it's
12869 // not profitable to do this transformation.
12870 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
12871 RealUse = true;
12874 if (!RealUse)
12875 return false;
12877 SDValue Result;
12878 if (isLoad)
12879 Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
12880 BasePtr, Offset, AM);
12881 else
12882 Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
12883 BasePtr, Offset, AM);
12884 ++PreIndexedNodes;
12885 ++NodesCombined;
12886 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: ";
12887 Result.getNode()->dump(&DAG); dbgs() << '\n');
12888 WorklistRemover DeadNodes(*this);
12889 if (isLoad) {
12890 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
12891 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
12892 } else {
12893 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
12896 // Finally, since the node is now dead, remove it from the graph.
12897 deleteAndRecombine(N);
12899 if (Swapped)
12900 std::swap(BasePtr, Offset);
12902 // Replace other uses of BasePtr that can be updated to use Ptr
12903 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
12904 unsigned OffsetIdx = 1;
12905 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
12906 OffsetIdx = 0;
12907 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
12908 BasePtr.getNode() && "Expected BasePtr operand");
12910 // We need to replace ptr0 in the following expression:
12911 // x0 * offset0 + y0 * ptr0 = t0
12912 // knowing that
12913 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
12915 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
12916 // indexed load/store and the expression that needs to be re-written.
12918 // Therefore, we have:
12919 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
12921 ConstantSDNode *CN =
12922 cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
12923 int X0, X1, Y0, Y1;
12924 const APInt &Offset0 = CN->getAPIntValue();
12925 APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
12927 X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
12928 Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
12929 X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
12930 Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
12932 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
12934 APInt CNV = Offset0;
12935 if (X0 < 0) CNV = -CNV;
12936 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
12937 else CNV = CNV - Offset1;
12939 SDLoc DL(OtherUses[i]);
12941 // We can now generate the new expression.
12942 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0));
12943 SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
12945 SDValue NewUse = DAG.getNode(Opcode,
12947 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
12948 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
12949 deleteAndRecombine(OtherUses[i]);
12952 // Replace the uses of Ptr with uses of the updated base value.
12953 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
12954 deleteAndRecombine(Ptr.getNode());
12955 AddToWorklist(Result.getNode());
12957 return true;
12960 /// Try to combine a load/store with a add/sub of the base pointer node into a
12961 /// post-indexed load/store. The transformation folded the add/subtract into the
12962 /// new indexed load/store effectively and all of its uses are redirected to the
12963 /// new load/store.
12964 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
12965 if (Level < AfterLegalizeDAG)
12966 return false;
12968 bool isLoad = true;
12969 SDValue Ptr;
12970 EVT VT;
12971 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
12972 if (LD->isIndexed())
12973 return false;
12974 VT = LD->getMemoryVT();
12975 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
12976 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
12977 return false;
12978 Ptr = LD->getBasePtr();
12979 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
12980 if (ST->isIndexed())
12981 return false;
12982 VT = ST->getMemoryVT();
12983 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
12984 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
12985 return false;
12986 Ptr = ST->getBasePtr();
12987 isLoad = false;
12988 } else {
12989 return false;
12992 if (Ptr.getNode()->hasOneUse())
12993 return false;
12995 for (SDNode *Op : Ptr.getNode()->uses()) {
12996 if (Op == N ||
12997 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
12998 continue;
13000 SDValue BasePtr;
13001 SDValue Offset;
13002 ISD::MemIndexedMode AM = ISD::UNINDEXED;
13003 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
13004 // Don't create a indexed load / store with zero offset.
13005 if (isNullConstant(Offset))
13006 continue;
13008 // Try turning it into a post-indexed load / store except when
13009 // 1) All uses are load / store ops that use it as base ptr (and
13010 // it may be folded as addressing mmode).
13011 // 2) Op must be independent of N, i.e. Op is neither a predecessor
13012 // nor a successor of N. Otherwise, if Op is folded that would
13013 // create a cycle.
13015 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
13016 continue;
13018 // Check for #1.
13019 bool TryNext = false;
13020 for (SDNode *Use : BasePtr.getNode()->uses()) {
13021 if (Use == Ptr.getNode())
13022 continue;
13024 // If all the uses are load / store addresses, then don't do the
13025 // transformation.
13026 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
13027 bool RealUse = false;
13028 for (SDNode *UseUse : Use->uses()) {
13029 if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
13030 RealUse = true;
13033 if (!RealUse) {
13034 TryNext = true;
13035 break;
13040 if (TryNext)
13041 continue;
13043 // Check for #2.
13044 SmallPtrSet<const SDNode *, 32> Visited;
13045 SmallVector<const SDNode *, 8> Worklist;
13046 // Ptr is predecessor to both N and Op.
13047 Visited.insert(Ptr.getNode());
13048 Worklist.push_back(N);
13049 Worklist.push_back(Op);
13050 if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) &&
13051 !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) {
13052 SDValue Result = isLoad
13053 ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
13054 BasePtr, Offset, AM)
13055 : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
13056 BasePtr, Offset, AM);
13057 ++PostIndexedNodes;
13058 ++NodesCombined;
13059 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG);
13060 dbgs() << "\nWith: "; Result.getNode()->dump(&DAG);
13061 dbgs() << '\n');
13062 WorklistRemover DeadNodes(*this);
13063 if (isLoad) {
13064 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
13065 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
13066 } else {
13067 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
13070 // Finally, since the node is now dead, remove it from the graph.
13071 deleteAndRecombine(N);
13073 // Replace the uses of Use with uses of the updated base value.
13074 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
13075 Result.getValue(isLoad ? 1 : 0));
13076 deleteAndRecombine(Op);
13077 return true;
13082 return false;
13085 /// Return the base-pointer arithmetic from an indexed \p LD.
13086 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
13087 ISD::MemIndexedMode AM = LD->getAddressingMode();
13088 assert(AM != ISD::UNINDEXED);
13089 SDValue BP = LD->getOperand(1);
13090 SDValue Inc = LD->getOperand(2);
13092 // Some backends use TargetConstants for load offsets, but don't expect
13093 // TargetConstants in general ADD nodes. We can convert these constants into
13094 // regular Constants (if the constant is not opaque).
13095 assert((Inc.getOpcode() != ISD::TargetConstant ||
13096 !cast<ConstantSDNode>(Inc)->isOpaque()) &&
13097 "Cannot split out indexing using opaque target constants");
13098 if (Inc.getOpcode() == ISD::TargetConstant) {
13099 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
13100 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc),
13101 ConstInc->getValueType(0));
13104 unsigned Opc =
13105 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
13106 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
13109 static inline int numVectorEltsOrZero(EVT T) {
13110 return T.isVector() ? T.getVectorNumElements() : 0;
13113 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) {
13114 Val = ST->getValue();
13115 EVT STType = Val.getValueType();
13116 EVT STMemType = ST->getMemoryVT();
13117 if (STType == STMemType)
13118 return true;
13119 if (isTypeLegal(STMemType))
13120 return false; // fail.
13121 if (STType.isFloatingPoint() && STMemType.isFloatingPoint() &&
13122 TLI.isOperationLegal(ISD::FTRUNC, STMemType)) {
13123 Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val);
13124 return true;
13126 if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) &&
13127 STType.isInteger() && STMemType.isInteger()) {
13128 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val);
13129 return true;
13131 if (STType.getSizeInBits() == STMemType.getSizeInBits()) {
13132 Val = DAG.getBitcast(STMemType, Val);
13133 return true;
13135 return false; // fail.
13138 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) {
13139 EVT LDMemType = LD->getMemoryVT();
13140 EVT LDType = LD->getValueType(0);
13141 assert(Val.getValueType() == LDMemType &&
13142 "Attempting to extend value of non-matching type");
13143 if (LDType == LDMemType)
13144 return true;
13145 if (LDMemType.isInteger() && LDType.isInteger()) {
13146 switch (LD->getExtensionType()) {
13147 case ISD::NON_EXTLOAD:
13148 Val = DAG.getBitcast(LDType, Val);
13149 return true;
13150 case ISD::EXTLOAD:
13151 Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val);
13152 return true;
13153 case ISD::SEXTLOAD:
13154 Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val);
13155 return true;
13156 case ISD::ZEXTLOAD:
13157 Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val);
13158 return true;
13161 return false;
13164 SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) {
13165 if (OptLevel == CodeGenOpt::None || LD->isVolatile())
13166 return SDValue();
13167 SDValue Chain = LD->getOperand(0);
13168 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode());
13169 if (!ST || ST->isVolatile())
13170 return SDValue();
13172 EVT LDType = LD->getValueType(0);
13173 EVT LDMemType = LD->getMemoryVT();
13174 EVT STMemType = ST->getMemoryVT();
13175 EVT STType = ST->getValue().getValueType();
13177 BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG);
13178 BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG);
13179 int64_t Offset;
13180 if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset))
13181 return SDValue();
13183 // Normalize for Endianness. After this Offset=0 will denote that the least
13184 // significant bit in the loaded value maps to the least significant bit in
13185 // the stored value). With Offset=n (for n > 0) the loaded value starts at the
13186 // n:th least significant byte of the stored value.
13187 if (DAG.getDataLayout().isBigEndian())
13188 Offset = (STMemType.getStoreSizeInBits() -
13189 LDMemType.getStoreSizeInBits()) / 8 - Offset;
13191 // Check that the stored value cover all bits that are loaded.
13192 bool STCoversLD =
13193 (Offset >= 0) &&
13194 (Offset * 8 + LDMemType.getSizeInBits() <= STMemType.getSizeInBits());
13196 auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue {
13197 if (LD->isIndexed()) {
13198 bool IsSub = (LD->getAddressingMode() == ISD::PRE_DEC ||
13199 LD->getAddressingMode() == ISD::POST_DEC);
13200 unsigned Opc = IsSub ? ISD::SUB : ISD::ADD;
13201 SDValue Idx = DAG.getNode(Opc, SDLoc(LD), LD->getOperand(1).getValueType(),
13202 LD->getOperand(1), LD->getOperand(2));
13203 SDValue Ops[] = {Val, Idx, Chain};
13204 return CombineTo(LD, Ops, 3);
13206 return CombineTo(LD, Val, Chain);
13209 if (!STCoversLD)
13210 return SDValue();
13212 // Memory as copy space (potentially masked).
13213 if (Offset == 0 && LDType == STType && STMemType == LDMemType) {
13214 // Simple case: Direct non-truncating forwarding
13215 if (LDType.getSizeInBits() == LDMemType.getSizeInBits())
13216 return ReplaceLd(LD, ST->getValue(), Chain);
13217 // Can we model the truncate and extension with an and mask?
13218 if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() &&
13219 !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) {
13220 // Mask to size of LDMemType
13221 auto Mask =
13222 DAG.getConstant(APInt::getLowBitsSet(STType.getSizeInBits(),
13223 STMemType.getSizeInBits()),
13224 SDLoc(ST), STType);
13225 auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask);
13226 return ReplaceLd(LD, Val, Chain);
13230 // TODO: Deal with nonzero offset.
13231 if (LD->getBasePtr().isUndef() || Offset != 0)
13232 return SDValue();
13233 // Model necessary truncations / extenstions.
13234 SDValue Val;
13235 // Truncate Value To Stored Memory Size.
13236 do {
13237 if (!getTruncatedStoreValue(ST, Val))
13238 continue;
13239 if (!isTypeLegal(LDMemType))
13240 continue;
13241 if (STMemType != LDMemType) {
13242 // TODO: Support vectors? This requires extract_subvector/bitcast.
13243 if (!STMemType.isVector() && !LDMemType.isVector() &&
13244 STMemType.isInteger() && LDMemType.isInteger())
13245 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val);
13246 else
13247 continue;
13249 if (!extendLoadedValueToExtension(LD, Val))
13250 continue;
13251 return ReplaceLd(LD, Val, Chain);
13252 } while (false);
13254 // On failure, cleanup dead nodes we may have created.
13255 if (Val->use_empty())
13256 deleteAndRecombine(Val.getNode());
13257 return SDValue();
13260 SDValue DAGCombiner::visitLOAD(SDNode *N) {
13261 LoadSDNode *LD = cast<LoadSDNode>(N);
13262 SDValue Chain = LD->getChain();
13263 SDValue Ptr = LD->getBasePtr();
13265 // If load is not volatile and there are no uses of the loaded value (and
13266 // the updated indexed value in case of indexed loads), change uses of the
13267 // chain value into uses of the chain input (i.e. delete the dead load).
13268 if (!LD->isVolatile()) {
13269 if (N->getValueType(1) == MVT::Other) {
13270 // Unindexed loads.
13271 if (!N->hasAnyUseOfValue(0)) {
13272 // It's not safe to use the two value CombineTo variant here. e.g.
13273 // v1, chain2 = load chain1, loc
13274 // v2, chain3 = load chain2, loc
13275 // v3 = add v2, c
13276 // Now we replace use of chain2 with chain1. This makes the second load
13277 // isomorphic to the one we are deleting, and thus makes this load live.
13278 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG);
13279 dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG);
13280 dbgs() << "\n");
13281 WorklistRemover DeadNodes(*this);
13282 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
13283 AddUsersToWorklist(Chain.getNode());
13284 if (N->use_empty())
13285 deleteAndRecombine(N);
13287 return SDValue(N, 0); // Return N so it doesn't get rechecked!
13289 } else {
13290 // Indexed loads.
13291 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
13293 // If this load has an opaque TargetConstant offset, then we cannot split
13294 // the indexing into an add/sub directly (that TargetConstant may not be
13295 // valid for a different type of node, and we cannot convert an opaque
13296 // target constant into a regular constant).
13297 bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant &&
13298 cast<ConstantSDNode>(LD->getOperand(2))->isOpaque();
13300 if (!N->hasAnyUseOfValue(0) &&
13301 ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) {
13302 SDValue Undef = DAG.getUNDEF(N->getValueType(0));
13303 SDValue Index;
13304 if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) {
13305 Index = SplitIndexingFromLoad(LD);
13306 // Try to fold the base pointer arithmetic into subsequent loads and
13307 // stores.
13308 AddUsersToWorklist(N);
13309 } else
13310 Index = DAG.getUNDEF(N->getValueType(1));
13311 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG);
13312 dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG);
13313 dbgs() << " and 2 other values\n");
13314 WorklistRemover DeadNodes(*this);
13315 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
13316 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
13317 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
13318 deleteAndRecombine(N);
13319 return SDValue(N, 0); // Return N so it doesn't get rechecked!
13324 // If this load is directly stored, replace the load value with the stored
13325 // value.
13326 if (auto V = ForwardStoreValueToDirectLoad(LD))
13327 return V;
13329 // Try to infer better alignment information than the load already has.
13330 if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
13331 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
13332 if (Align > LD->getAlignment() && LD->getSrcValueOffset() % Align == 0) {
13333 SDValue NewLoad = DAG.getExtLoad(
13334 LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr,
13335 LD->getPointerInfo(), LD->getMemoryVT(), Align,
13336 LD->getMemOperand()->getFlags(), LD->getAAInfo());
13337 // NewLoad will always be N as we are only refining the alignment
13338 assert(NewLoad.getNode() == N);
13339 (void)NewLoad;
13344 if (LD->isUnindexed()) {
13345 // Walk up chain skipping non-aliasing memory nodes.
13346 SDValue BetterChain = FindBetterChain(LD, Chain);
13348 // If there is a better chain.
13349 if (Chain != BetterChain) {
13350 SDValue ReplLoad;
13352 // Replace the chain to void dependency.
13353 if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
13354 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
13355 BetterChain, Ptr, LD->getMemOperand());
13356 } else {
13357 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
13358 LD->getValueType(0),
13359 BetterChain, Ptr, LD->getMemoryVT(),
13360 LD->getMemOperand());
13363 // Create token factor to keep old chain connected.
13364 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
13365 MVT::Other, Chain, ReplLoad.getValue(1));
13367 // Replace uses with load result and token factor
13368 return CombineTo(N, ReplLoad.getValue(0), Token);
13372 // Try transforming N to an indexed load.
13373 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
13374 return SDValue(N, 0);
13376 // Try to slice up N to more direct loads if the slices are mapped to
13377 // different register banks or pairing can take place.
13378 if (SliceUpLoad(N))
13379 return SDValue(N, 0);
13381 return SDValue();
13384 namespace {
13386 /// Helper structure used to slice a load in smaller loads.
13387 /// Basically a slice is obtained from the following sequence:
13388 /// Origin = load Ty1, Base
13389 /// Shift = srl Ty1 Origin, CstTy Amount
13390 /// Inst = trunc Shift to Ty2
13392 /// Then, it will be rewritten into:
13393 /// Slice = load SliceTy, Base + SliceOffset
13394 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
13396 /// SliceTy is deduced from the number of bits that are actually used to
13397 /// build Inst.
13398 struct LoadedSlice {
13399 /// Helper structure used to compute the cost of a slice.
13400 struct Cost {
13401 /// Are we optimizing for code size.
13402 bool ForCodeSize;
13404 /// Various cost.
13405 unsigned Loads = 0;
13406 unsigned Truncates = 0;
13407 unsigned CrossRegisterBanksCopies = 0;
13408 unsigned ZExts = 0;
13409 unsigned Shift = 0;
13411 Cost(bool ForCodeSize = false) : ForCodeSize(ForCodeSize) {}
13413 /// Get the cost of one isolated slice.
13414 Cost(const LoadedSlice &LS, bool ForCodeSize = false)
13415 : ForCodeSize(ForCodeSize), Loads(1) {
13416 EVT TruncType = LS.Inst->getValueType(0);
13417 EVT LoadedType = LS.getLoadedType();
13418 if (TruncType != LoadedType &&
13419 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
13420 ZExts = 1;
13423 /// Account for slicing gain in the current cost.
13424 /// Slicing provide a few gains like removing a shift or a
13425 /// truncate. This method allows to grow the cost of the original
13426 /// load with the gain from this slice.
13427 void addSliceGain(const LoadedSlice &LS) {
13428 // Each slice saves a truncate.
13429 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
13430 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(),
13431 LS.Inst->getValueType(0)))
13432 ++Truncates;
13433 // If there is a shift amount, this slice gets rid of it.
13434 if (LS.Shift)
13435 ++Shift;
13436 // If this slice can merge a cross register bank copy, account for it.
13437 if (LS.canMergeExpensiveCrossRegisterBankCopy())
13438 ++CrossRegisterBanksCopies;
13441 Cost &operator+=(const Cost &RHS) {
13442 Loads += RHS.Loads;
13443 Truncates += RHS.Truncates;
13444 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
13445 ZExts += RHS.ZExts;
13446 Shift += RHS.Shift;
13447 return *this;
13450 bool operator==(const Cost &RHS) const {
13451 return Loads == RHS.Loads && Truncates == RHS.Truncates &&
13452 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
13453 ZExts == RHS.ZExts && Shift == RHS.Shift;
13456 bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
13458 bool operator<(const Cost &RHS) const {
13459 // Assume cross register banks copies are as expensive as loads.
13460 // FIXME: Do we want some more target hooks?
13461 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
13462 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
13463 // Unless we are optimizing for code size, consider the
13464 // expensive operation first.
13465 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
13466 return ExpensiveOpsLHS < ExpensiveOpsRHS;
13467 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
13468 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
13471 bool operator>(const Cost &RHS) const { return RHS < *this; }
13473 bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
13475 bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
13478 // The last instruction that represent the slice. This should be a
13479 // truncate instruction.
13480 SDNode *Inst;
13482 // The original load instruction.
13483 LoadSDNode *Origin;
13485 // The right shift amount in bits from the original load.
13486 unsigned Shift;
13488 // The DAG from which Origin came from.
13489 // This is used to get some contextual information about legal types, etc.
13490 SelectionDAG *DAG;
13492 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
13493 unsigned Shift = 0, SelectionDAG *DAG = nullptr)
13494 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
13496 /// Get the bits used in a chunk of bits \p BitWidth large.
13497 /// \return Result is \p BitWidth and has used bits set to 1 and
13498 /// not used bits set to 0.
13499 APInt getUsedBits() const {
13500 // Reproduce the trunc(lshr) sequence:
13501 // - Start from the truncated value.
13502 // - Zero extend to the desired bit width.
13503 // - Shift left.
13504 assert(Origin && "No original load to compare against.");
13505 unsigned BitWidth = Origin->getValueSizeInBits(0);
13506 assert(Inst && "This slice is not bound to an instruction");
13507 assert(Inst->getValueSizeInBits(0) <= BitWidth &&
13508 "Extracted slice is bigger than the whole type!");
13509 APInt UsedBits(Inst->getValueSizeInBits(0), 0);
13510 UsedBits.setAllBits();
13511 UsedBits = UsedBits.zext(BitWidth);
13512 UsedBits <<= Shift;
13513 return UsedBits;
13516 /// Get the size of the slice to be loaded in bytes.
13517 unsigned getLoadedSize() const {
13518 unsigned SliceSize = getUsedBits().countPopulation();
13519 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
13520 return SliceSize / 8;
13523 /// Get the type that will be loaded for this slice.
13524 /// Note: This may not be the final type for the slice.
13525 EVT getLoadedType() const {
13526 assert(DAG && "Missing context");
13527 LLVMContext &Ctxt = *DAG->getContext();
13528 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
13531 /// Get the alignment of the load used for this slice.
13532 unsigned getAlignment() const {
13533 unsigned Alignment = Origin->getAlignment();
13534 unsigned Offset = getOffsetFromBase();
13535 if (Offset != 0)
13536 Alignment = MinAlign(Alignment, Alignment + Offset);
13537 return Alignment;
13540 /// Check if this slice can be rewritten with legal operations.
13541 bool isLegal() const {
13542 // An invalid slice is not legal.
13543 if (!Origin || !Inst || !DAG)
13544 return false;
13546 // Offsets are for indexed load only, we do not handle that.
13547 if (!Origin->getOffset().isUndef())
13548 return false;
13550 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
13552 // Check that the type is legal.
13553 EVT SliceType = getLoadedType();
13554 if (!TLI.isTypeLegal(SliceType))
13555 return false;
13557 // Check that the load is legal for this type.
13558 if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
13559 return false;
13561 // Check that the offset can be computed.
13562 // 1. Check its type.
13563 EVT PtrType = Origin->getBasePtr().getValueType();
13564 if (PtrType == MVT::Untyped || PtrType.isExtended())
13565 return false;
13567 // 2. Check that it fits in the immediate.
13568 if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
13569 return false;
13571 // 3. Check that the computation is legal.
13572 if (!TLI.isOperationLegal(ISD::ADD, PtrType))
13573 return false;
13575 // Check that the zext is legal if it needs one.
13576 EVT TruncateType = Inst->getValueType(0);
13577 if (TruncateType != SliceType &&
13578 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
13579 return false;
13581 return true;
13584 /// Get the offset in bytes of this slice in the original chunk of
13585 /// bits.
13586 /// \pre DAG != nullptr.
13587 uint64_t getOffsetFromBase() const {
13588 assert(DAG && "Missing context.");
13589 bool IsBigEndian = DAG->getDataLayout().isBigEndian();
13590 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
13591 uint64_t Offset = Shift / 8;
13592 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
13593 assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
13594 "The size of the original loaded type is not a multiple of a"
13595 " byte.");
13596 // If Offset is bigger than TySizeInBytes, it means we are loading all
13597 // zeros. This should have been optimized before in the process.
13598 assert(TySizeInBytes > Offset &&
13599 "Invalid shift amount for given loaded size");
13600 if (IsBigEndian)
13601 Offset = TySizeInBytes - Offset - getLoadedSize();
13602 return Offset;
13605 /// Generate the sequence of instructions to load the slice
13606 /// represented by this object and redirect the uses of this slice to
13607 /// this new sequence of instructions.
13608 /// \pre this->Inst && this->Origin are valid Instructions and this
13609 /// object passed the legal check: LoadedSlice::isLegal returned true.
13610 /// \return The last instruction of the sequence used to load the slice.
13611 SDValue loadSlice() const {
13612 assert(Inst && Origin && "Unable to replace a non-existing slice.");
13613 const SDValue &OldBaseAddr = Origin->getBasePtr();
13614 SDValue BaseAddr = OldBaseAddr;
13615 // Get the offset in that chunk of bytes w.r.t. the endianness.
13616 int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
13617 assert(Offset >= 0 && "Offset too big to fit in int64_t!");
13618 if (Offset) {
13619 // BaseAddr = BaseAddr + Offset.
13620 EVT ArithType = BaseAddr.getValueType();
13621 SDLoc DL(Origin);
13622 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr,
13623 DAG->getConstant(Offset, DL, ArithType));
13626 // Create the type of the loaded slice according to its size.
13627 EVT SliceType = getLoadedType();
13629 // Create the load for the slice.
13630 SDValue LastInst =
13631 DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
13632 Origin->getPointerInfo().getWithOffset(Offset),
13633 getAlignment(), Origin->getMemOperand()->getFlags());
13634 // If the final type is not the same as the loaded type, this means that
13635 // we have to pad with zero. Create a zero extend for that.
13636 EVT FinalType = Inst->getValueType(0);
13637 if (SliceType != FinalType)
13638 LastInst =
13639 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
13640 return LastInst;
13643 /// Check if this slice can be merged with an expensive cross register
13644 /// bank copy. E.g.,
13645 /// i = load i32
13646 /// f = bitcast i32 i to float
13647 bool canMergeExpensiveCrossRegisterBankCopy() const {
13648 if (!Inst || !Inst->hasOneUse())
13649 return false;
13650 SDNode *Use = *Inst->use_begin();
13651 if (Use->getOpcode() != ISD::BITCAST)
13652 return false;
13653 assert(DAG && "Missing context");
13654 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
13655 EVT ResVT = Use->getValueType(0);
13656 const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT());
13657 const TargetRegisterClass *ArgRC =
13658 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT());
13659 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
13660 return false;
13662 // At this point, we know that we perform a cross-register-bank copy.
13663 // Check if it is expensive.
13664 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
13665 // Assume bitcasts are cheap, unless both register classes do not
13666 // explicitly share a common sub class.
13667 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
13668 return false;
13670 // Check if it will be merged with the load.
13671 // 1. Check the alignment constraint.
13672 unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment(
13673 ResVT.getTypeForEVT(*DAG->getContext()));
13675 if (RequiredAlignment > getAlignment())
13676 return false;
13678 // 2. Check that the load is a legal operation for that type.
13679 if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
13680 return false;
13682 // 3. Check that we do not have a zext in the way.
13683 if (Inst->getValueType(0) != getLoadedType())
13684 return false;
13686 return true;
13690 } // end anonymous namespace
13692 /// Check that all bits set in \p UsedBits form a dense region, i.e.,
13693 /// \p UsedBits looks like 0..0 1..1 0..0.
13694 static bool areUsedBitsDense(const APInt &UsedBits) {
13695 // If all the bits are one, this is dense!
13696 if (UsedBits.isAllOnesValue())
13697 return true;
13699 // Get rid of the unused bits on the right.
13700 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
13701 // Get rid of the unused bits on the left.
13702 if (NarrowedUsedBits.countLeadingZeros())
13703 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
13704 // Check that the chunk of bits is completely used.
13705 return NarrowedUsedBits.isAllOnesValue();
13708 /// Check whether or not \p First and \p Second are next to each other
13709 /// in memory. This means that there is no hole between the bits loaded
13710 /// by \p First and the bits loaded by \p Second.
13711 static bool areSlicesNextToEachOther(const LoadedSlice &First,
13712 const LoadedSlice &Second) {
13713 assert(First.Origin == Second.Origin && First.Origin &&
13714 "Unable to match different memory origins.");
13715 APInt UsedBits = First.getUsedBits();
13716 assert((UsedBits & Second.getUsedBits()) == 0 &&
13717 "Slices are not supposed to overlap.");
13718 UsedBits |= Second.getUsedBits();
13719 return areUsedBitsDense(UsedBits);
13722 /// Adjust the \p GlobalLSCost according to the target
13723 /// paring capabilities and the layout of the slices.
13724 /// \pre \p GlobalLSCost should account for at least as many loads as
13725 /// there is in the slices in \p LoadedSlices.
13726 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
13727 LoadedSlice::Cost &GlobalLSCost) {
13728 unsigned NumberOfSlices = LoadedSlices.size();
13729 // If there is less than 2 elements, no pairing is possible.
13730 if (NumberOfSlices < 2)
13731 return;
13733 // Sort the slices so that elements that are likely to be next to each
13734 // other in memory are next to each other in the list.
13735 llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) {
13736 assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
13737 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
13739 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
13740 // First (resp. Second) is the first (resp. Second) potentially candidate
13741 // to be placed in a paired load.
13742 const LoadedSlice *First = nullptr;
13743 const LoadedSlice *Second = nullptr;
13744 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
13745 // Set the beginning of the pair.
13746 First = Second) {
13747 Second = &LoadedSlices[CurrSlice];
13749 // If First is NULL, it means we start a new pair.
13750 // Get to the next slice.
13751 if (!First)
13752 continue;
13754 EVT LoadedType = First->getLoadedType();
13756 // If the types of the slices are different, we cannot pair them.
13757 if (LoadedType != Second->getLoadedType())
13758 continue;
13760 // Check if the target supplies paired loads for this type.
13761 unsigned RequiredAlignment = 0;
13762 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
13763 // move to the next pair, this type is hopeless.
13764 Second = nullptr;
13765 continue;
13767 // Check if we meet the alignment requirement.
13768 if (RequiredAlignment > First->getAlignment())
13769 continue;
13771 // Check that both loads are next to each other in memory.
13772 if (!areSlicesNextToEachOther(*First, *Second))
13773 continue;
13775 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
13776 --GlobalLSCost.Loads;
13777 // Move to the next pair.
13778 Second = nullptr;
13782 /// Check the profitability of all involved LoadedSlice.
13783 /// Currently, it is considered profitable if there is exactly two
13784 /// involved slices (1) which are (2) next to each other in memory, and
13785 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
13787 /// Note: The order of the elements in \p LoadedSlices may be modified, but not
13788 /// the elements themselves.
13790 /// FIXME: When the cost model will be mature enough, we can relax
13791 /// constraints (1) and (2).
13792 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
13793 const APInt &UsedBits, bool ForCodeSize) {
13794 unsigned NumberOfSlices = LoadedSlices.size();
13795 if (StressLoadSlicing)
13796 return NumberOfSlices > 1;
13798 // Check (1).
13799 if (NumberOfSlices != 2)
13800 return false;
13802 // Check (2).
13803 if (!areUsedBitsDense(UsedBits))
13804 return false;
13806 // Check (3).
13807 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
13808 // The original code has one big load.
13809 OrigCost.Loads = 1;
13810 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
13811 const LoadedSlice &LS = LoadedSlices[CurrSlice];
13812 // Accumulate the cost of all the slices.
13813 LoadedSlice::Cost SliceCost(LS, ForCodeSize);
13814 GlobalSlicingCost += SliceCost;
13816 // Account as cost in the original configuration the gain obtained
13817 // with the current slices.
13818 OrigCost.addSliceGain(LS);
13821 // If the target supports paired load, adjust the cost accordingly.
13822 adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
13823 return OrigCost > GlobalSlicingCost;
13826 /// If the given load, \p LI, is used only by trunc or trunc(lshr)
13827 /// operations, split it in the various pieces being extracted.
13829 /// This sort of thing is introduced by SROA.
13830 /// This slicing takes care not to insert overlapping loads.
13831 /// \pre LI is a simple load (i.e., not an atomic or volatile load).
13832 bool DAGCombiner::SliceUpLoad(SDNode *N) {
13833 if (Level < AfterLegalizeDAG)
13834 return false;
13836 LoadSDNode *LD = cast<LoadSDNode>(N);
13837 if (LD->isVolatile() || !ISD::isNormalLoad(LD) ||
13838 !LD->getValueType(0).isInteger())
13839 return false;
13841 // Keep track of already used bits to detect overlapping values.
13842 // In that case, we will just abort the transformation.
13843 APInt UsedBits(LD->getValueSizeInBits(0), 0);
13845 SmallVector<LoadedSlice, 4> LoadedSlices;
13847 // Check if this load is used as several smaller chunks of bits.
13848 // Basically, look for uses in trunc or trunc(lshr) and record a new chain
13849 // of computation for each trunc.
13850 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
13851 UI != UIEnd; ++UI) {
13852 // Skip the uses of the chain.
13853 if (UI.getUse().getResNo() != 0)
13854 continue;
13856 SDNode *User = *UI;
13857 unsigned Shift = 0;
13859 // Check if this is a trunc(lshr).
13860 if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
13861 isa<ConstantSDNode>(User->getOperand(1))) {
13862 Shift = User->getConstantOperandVal(1);
13863 User = *User->use_begin();
13866 // At this point, User is a Truncate, iff we encountered, trunc or
13867 // trunc(lshr).
13868 if (User->getOpcode() != ISD::TRUNCATE)
13869 return false;
13871 // The width of the type must be a power of 2 and greater than 8-bits.
13872 // Otherwise the load cannot be represented in LLVM IR.
13873 // Moreover, if we shifted with a non-8-bits multiple, the slice
13874 // will be across several bytes. We do not support that.
13875 unsigned Width = User->getValueSizeInBits(0);
13876 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
13877 return false;
13879 // Build the slice for this chain of computations.
13880 LoadedSlice LS(User, LD, Shift, &DAG);
13881 APInt CurrentUsedBits = LS.getUsedBits();
13883 // Check if this slice overlaps with another.
13884 if ((CurrentUsedBits & UsedBits) != 0)
13885 return false;
13886 // Update the bits used globally.
13887 UsedBits |= CurrentUsedBits;
13889 // Check if the new slice would be legal.
13890 if (!LS.isLegal())
13891 return false;
13893 // Record the slice.
13894 LoadedSlices.push_back(LS);
13897 // Abort slicing if it does not seem to be profitable.
13898 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
13899 return false;
13901 ++SlicedLoads;
13903 // Rewrite each chain to use an independent load.
13904 // By construction, each chain can be represented by a unique load.
13906 // Prepare the argument for the new token factor for all the slices.
13907 SmallVector<SDValue, 8> ArgChains;
13908 for (SmallVectorImpl<LoadedSlice>::const_iterator
13909 LSIt = LoadedSlices.begin(),
13910 LSItEnd = LoadedSlices.end();
13911 LSIt != LSItEnd; ++LSIt) {
13912 SDValue SliceInst = LSIt->loadSlice();
13913 CombineTo(LSIt->Inst, SliceInst, true);
13914 if (SliceInst.getOpcode() != ISD::LOAD)
13915 SliceInst = SliceInst.getOperand(0);
13916 assert(SliceInst->getOpcode() == ISD::LOAD &&
13917 "It takes more than a zext to get to the loaded slice!!");
13918 ArgChains.push_back(SliceInst.getValue(1));
13921 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
13922 ArgChains);
13923 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
13924 AddToWorklist(Chain.getNode());
13925 return true;
13928 /// Check to see if V is (and load (ptr), imm), where the load is having
13929 /// specific bytes cleared out. If so, return the byte size being masked out
13930 /// and the shift amount.
13931 static std::pair<unsigned, unsigned>
13932 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
13933 std::pair<unsigned, unsigned> Result(0, 0);
13935 // Check for the structure we're looking for.
13936 if (V->getOpcode() != ISD::AND ||
13937 !isa<ConstantSDNode>(V->getOperand(1)) ||
13938 !ISD::isNormalLoad(V->getOperand(0).getNode()))
13939 return Result;
13941 // Check the chain and pointer.
13942 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
13943 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer.
13945 // This only handles simple types.
13946 if (V.getValueType() != MVT::i16 &&
13947 V.getValueType() != MVT::i32 &&
13948 V.getValueType() != MVT::i64)
13949 return Result;
13951 // Check the constant mask. Invert it so that the bits being masked out are
13952 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
13953 // follow the sign bit for uniformity.
13954 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
13955 unsigned NotMaskLZ = countLeadingZeros(NotMask);
13956 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte.
13957 unsigned NotMaskTZ = countTrailingZeros(NotMask);
13958 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte.
13959 if (NotMaskLZ == 64) return Result; // All zero mask.
13961 // See if we have a continuous run of bits. If so, we have 0*1+0*
13962 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64)
13963 return Result;
13965 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
13966 if (V.getValueType() != MVT::i64 && NotMaskLZ)
13967 NotMaskLZ -= 64-V.getValueSizeInBits();
13969 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
13970 switch (MaskedBytes) {
13971 case 1:
13972 case 2:
13973 case 4: break;
13974 default: return Result; // All one mask, or 5-byte mask.
13977 // Verify that the first bit starts at a multiple of mask so that the access
13978 // is aligned the same as the access width.
13979 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
13981 // For narrowing to be valid, it must be the case that the load the
13982 // immediately preceeding memory operation before the store.
13983 if (LD == Chain.getNode())
13984 ; // ok.
13985 else if (Chain->getOpcode() == ISD::TokenFactor &&
13986 SDValue(LD, 1).hasOneUse()) {
13987 // LD has only 1 chain use so they are no indirect dependencies.
13988 bool isOk = false;
13989 for (const SDValue &ChainOp : Chain->op_values())
13990 if (ChainOp.getNode() == LD) {
13991 isOk = true;
13992 break;
13994 if (!isOk)
13995 return Result;
13996 } else
13997 return Result; // Fail.
13999 Result.first = MaskedBytes;
14000 Result.second = NotMaskTZ/8;
14001 return Result;
14004 /// Check to see if IVal is something that provides a value as specified by
14005 /// MaskInfo. If so, replace the specified store with a narrower store of
14006 /// truncated IVal.
14007 static SDNode *
14008 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
14009 SDValue IVal, StoreSDNode *St,
14010 DAGCombiner *DC) {
14011 unsigned NumBytes = MaskInfo.first;
14012 unsigned ByteShift = MaskInfo.second;
14013 SelectionDAG &DAG = DC->getDAG();
14015 // Check to see if IVal is all zeros in the part being masked in by the 'or'
14016 // that uses this. If not, this is not a replacement.
14017 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
14018 ByteShift*8, (ByteShift+NumBytes)*8);
14019 if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr;
14021 // Check that it is legal on the target to do this. It is legal if the new
14022 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
14023 // legalization.
14024 MVT VT = MVT::getIntegerVT(NumBytes*8);
14025 if (!DC->isTypeLegal(VT))
14026 return nullptr;
14028 // Okay, we can do this! Replace the 'St' store with a store of IVal that is
14029 // shifted by ByteShift and truncated down to NumBytes.
14030 if (ByteShift) {
14031 SDLoc DL(IVal);
14032 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal,
14033 DAG.getConstant(ByteShift*8, DL,
14034 DC->getShiftAmountTy(IVal.getValueType())));
14037 // Figure out the offset for the store and the alignment of the access.
14038 unsigned StOffset;
14039 unsigned NewAlign = St->getAlignment();
14041 if (DAG.getDataLayout().isLittleEndian())
14042 StOffset = ByteShift;
14043 else
14044 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
14046 SDValue Ptr = St->getBasePtr();
14047 if (StOffset) {
14048 SDLoc DL(IVal);
14049 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(),
14050 Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType()));
14051 NewAlign = MinAlign(NewAlign, StOffset);
14054 // Truncate down to the new size.
14055 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
14057 ++OpsNarrowed;
14058 return DAG
14059 .getStore(St->getChain(), SDLoc(St), IVal, Ptr,
14060 St->getPointerInfo().getWithOffset(StOffset), NewAlign)
14061 .getNode();
14064 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and
14065 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
14066 /// narrowing the load and store if it would end up being a win for performance
14067 /// or code size.
14068 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
14069 StoreSDNode *ST = cast<StoreSDNode>(N);
14070 if (ST->isVolatile())
14071 return SDValue();
14073 SDValue Chain = ST->getChain();
14074 SDValue Value = ST->getValue();
14075 SDValue Ptr = ST->getBasePtr();
14076 EVT VT = Value.getValueType();
14078 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
14079 return SDValue();
14081 unsigned Opc = Value.getOpcode();
14083 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
14084 // is a byte mask indicating a consecutive number of bytes, check to see if
14085 // Y is known to provide just those bytes. If so, we try to replace the
14086 // load + replace + store sequence with a single (narrower) store, which makes
14087 // the load dead.
14088 if (Opc == ISD::OR) {
14089 std::pair<unsigned, unsigned> MaskedLoad;
14090 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
14091 if (MaskedLoad.first)
14092 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
14093 Value.getOperand(1), ST,this))
14094 return SDValue(NewST, 0);
14096 // Or is commutative, so try swapping X and Y.
14097 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
14098 if (MaskedLoad.first)
14099 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
14100 Value.getOperand(0), ST,this))
14101 return SDValue(NewST, 0);
14104 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
14105 Value.getOperand(1).getOpcode() != ISD::Constant)
14106 return SDValue();
14108 SDValue N0 = Value.getOperand(0);
14109 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
14110 Chain == SDValue(N0.getNode(), 1)) {
14111 LoadSDNode *LD = cast<LoadSDNode>(N0);
14112 if (LD->getBasePtr() != Ptr ||
14113 LD->getPointerInfo().getAddrSpace() !=
14114 ST->getPointerInfo().getAddrSpace())
14115 return SDValue();
14117 // Find the type to narrow it the load / op / store to.
14118 SDValue N1 = Value.getOperand(1);
14119 unsigned BitWidth = N1.getValueSizeInBits();
14120 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
14121 if (Opc == ISD::AND)
14122 Imm ^= APInt::getAllOnesValue(BitWidth);
14123 if (Imm == 0 || Imm.isAllOnesValue())
14124 return SDValue();
14125 unsigned ShAmt = Imm.countTrailingZeros();
14126 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
14127 unsigned NewBW = NextPowerOf2(MSB - ShAmt);
14128 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
14129 // The narrowing should be profitable, the load/store operation should be
14130 // legal (or custom) and the store size should be equal to the NewVT width.
14131 while (NewBW < BitWidth &&
14132 (NewVT.getStoreSizeInBits() != NewBW ||
14133 !TLI.isOperationLegalOrCustom(Opc, NewVT) ||
14134 !TLI.isNarrowingProfitable(VT, NewVT))) {
14135 NewBW = NextPowerOf2(NewBW);
14136 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
14138 if (NewBW >= BitWidth)
14139 return SDValue();
14141 // If the lsb changed does not start at the type bitwidth boundary,
14142 // start at the previous one.
14143 if (ShAmt % NewBW)
14144 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
14145 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
14146 std::min(BitWidth, ShAmt + NewBW));
14147 if ((Imm & Mask) == Imm) {
14148 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
14149 if (Opc == ISD::AND)
14150 NewImm ^= APInt::getAllOnesValue(NewBW);
14151 uint64_t PtrOff = ShAmt / 8;
14152 // For big endian targets, we need to adjust the offset to the pointer to
14153 // load the correct bytes.
14154 if (DAG.getDataLayout().isBigEndian())
14155 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
14157 unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
14158 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
14159 if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy))
14160 return SDValue();
14162 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
14163 Ptr.getValueType(), Ptr,
14164 DAG.getConstant(PtrOff, SDLoc(LD),
14165 Ptr.getValueType()));
14166 SDValue NewLD =
14167 DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr,
14168 LD->getPointerInfo().getWithOffset(PtrOff), NewAlign,
14169 LD->getMemOperand()->getFlags(), LD->getAAInfo());
14170 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
14171 DAG.getConstant(NewImm, SDLoc(Value),
14172 NewVT));
14173 SDValue NewST =
14174 DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr,
14175 ST->getPointerInfo().getWithOffset(PtrOff), NewAlign);
14177 AddToWorklist(NewPtr.getNode());
14178 AddToWorklist(NewLD.getNode());
14179 AddToWorklist(NewVal.getNode());
14180 WorklistRemover DeadNodes(*this);
14181 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
14182 ++OpsNarrowed;
14183 return NewST;
14187 return SDValue();
14190 /// For a given floating point load / store pair, if the load value isn't used
14191 /// by any other operations, then consider transforming the pair to integer
14192 /// load / store operations if the target deems the transformation profitable.
14193 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
14194 StoreSDNode *ST = cast<StoreSDNode>(N);
14195 SDValue Chain = ST->getChain();
14196 SDValue Value = ST->getValue();
14197 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
14198 Value.hasOneUse() &&
14199 Chain == SDValue(Value.getNode(), 1)) {
14200 LoadSDNode *LD = cast<LoadSDNode>(Value);
14201 EVT VT = LD->getMemoryVT();
14202 if (!VT.isFloatingPoint() ||
14203 VT != ST->getMemoryVT() ||
14204 LD->isNonTemporal() ||
14205 ST->isNonTemporal() ||
14206 LD->getPointerInfo().getAddrSpace() != 0 ||
14207 ST->getPointerInfo().getAddrSpace() != 0)
14208 return SDValue();
14210 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
14211 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
14212 !TLI.isOperationLegal(ISD::STORE, IntVT) ||
14213 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
14214 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
14215 return SDValue();
14217 unsigned LDAlign = LD->getAlignment();
14218 unsigned STAlign = ST->getAlignment();
14219 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
14220 unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy);
14221 if (LDAlign < ABIAlign || STAlign < ABIAlign)
14222 return SDValue();
14224 SDValue NewLD =
14225 DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(),
14226 LD->getPointerInfo(), LDAlign);
14228 SDValue NewST =
14229 DAG.getStore(NewLD.getValue(1), SDLoc(N), NewLD, ST->getBasePtr(),
14230 ST->getPointerInfo(), STAlign);
14232 AddToWorklist(NewLD.getNode());
14233 AddToWorklist(NewST.getNode());
14234 WorklistRemover DeadNodes(*this);
14235 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
14236 ++LdStFP2Int;
14237 return NewST;
14240 return SDValue();
14243 // This is a helper function for visitMUL to check the profitability
14244 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
14245 // MulNode is the original multiply, AddNode is (add x, c1),
14246 // and ConstNode is c2.
14248 // If the (add x, c1) has multiple uses, we could increase
14249 // the number of adds if we make this transformation.
14250 // It would only be worth doing this if we can remove a
14251 // multiply in the process. Check for that here.
14252 // To illustrate:
14253 // (A + c1) * c3
14254 // (A + c2) * c3
14255 // We're checking for cases where we have common "c3 * A" expressions.
14256 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode,
14257 SDValue &AddNode,
14258 SDValue &ConstNode) {
14259 APInt Val;
14261 // If the add only has one use, this would be OK to do.
14262 if (AddNode.getNode()->hasOneUse())
14263 return true;
14265 // Walk all the users of the constant with which we're multiplying.
14266 for (SDNode *Use : ConstNode->uses()) {
14267 if (Use == MulNode) // This use is the one we're on right now. Skip it.
14268 continue;
14270 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use.
14271 SDNode *OtherOp;
14272 SDNode *MulVar = AddNode.getOperand(0).getNode();
14274 // OtherOp is what we're multiplying against the constant.
14275 if (Use->getOperand(0) == ConstNode)
14276 OtherOp = Use->getOperand(1).getNode();
14277 else
14278 OtherOp = Use->getOperand(0).getNode();
14280 // Check to see if multiply is with the same operand of our "add".
14282 // ConstNode = CONST
14283 // Use = ConstNode * A <-- visiting Use. OtherOp is A.
14284 // ...
14285 // AddNode = (A + c1) <-- MulVar is A.
14286 // = AddNode * ConstNode <-- current visiting instruction.
14288 // If we make this transformation, we will have a common
14289 // multiply (ConstNode * A) that we can save.
14290 if (OtherOp == MulVar)
14291 return true;
14293 // Now check to see if a future expansion will give us a common
14294 // multiply.
14296 // ConstNode = CONST
14297 // AddNode = (A + c1)
14298 // ... = AddNode * ConstNode <-- current visiting instruction.
14299 // ...
14300 // OtherOp = (A + c2)
14301 // Use = OtherOp * ConstNode <-- visiting Use.
14303 // If we make this transformation, we will have a common
14304 // multiply (CONST * A) after we also do the same transformation
14305 // to the "t2" instruction.
14306 if (OtherOp->getOpcode() == ISD::ADD &&
14307 DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) &&
14308 OtherOp->getOperand(0).getNode() == MulVar)
14309 return true;
14313 // Didn't find a case where this would be profitable.
14314 return false;
14317 SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
14318 unsigned NumStores) {
14319 SmallVector<SDValue, 8> Chains;
14320 SmallPtrSet<const SDNode *, 8> Visited;
14321 SDLoc StoreDL(StoreNodes[0].MemNode);
14323 for (unsigned i = 0; i < NumStores; ++i) {
14324 Visited.insert(StoreNodes[i].MemNode);
14327 // don't include nodes that are children
14328 for (unsigned i = 0; i < NumStores; ++i) {
14329 if (Visited.count(StoreNodes[i].MemNode->getChain().getNode()) == 0)
14330 Chains.push_back(StoreNodes[i].MemNode->getChain());
14333 assert(Chains.size() > 0 && "Chain should have generated a chain");
14334 return DAG.getNode(ISD::TokenFactor, StoreDL, MVT::Other, Chains);
14337 bool DAGCombiner::MergeStoresOfConstantsOrVecElts(
14338 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores,
14339 bool IsConstantSrc, bool UseVector, bool UseTrunc) {
14340 // Make sure we have something to merge.
14341 if (NumStores < 2)
14342 return false;
14344 // The latest Node in the DAG.
14345 SDLoc DL(StoreNodes[0].MemNode);
14347 int64_t ElementSizeBits = MemVT.getStoreSizeInBits();
14348 unsigned SizeInBits = NumStores * ElementSizeBits;
14349 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
14351 EVT StoreTy;
14352 if (UseVector) {
14353 unsigned Elts = NumStores * NumMemElts;
14354 // Get the type for the merged vector store.
14355 StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
14356 } else
14357 StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
14359 SDValue StoredVal;
14360 if (UseVector) {
14361 if (IsConstantSrc) {
14362 SmallVector<SDValue, 8> BuildVector;
14363 for (unsigned I = 0; I != NumStores; ++I) {
14364 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode);
14365 SDValue Val = St->getValue();
14366 // If constant is of the wrong type, convert it now.
14367 if (MemVT != Val.getValueType()) {
14368 Val = peekThroughBitcasts(Val);
14369 // Deal with constants of wrong size.
14370 if (ElementSizeBits != Val.getValueSizeInBits()) {
14371 EVT IntMemVT =
14372 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
14373 if (isa<ConstantFPSDNode>(Val)) {
14374 // Not clear how to truncate FP values.
14375 return false;
14376 } else if (auto *C = dyn_cast<ConstantSDNode>(Val))
14377 Val = DAG.getConstant(C->getAPIntValue()
14378 .zextOrTrunc(Val.getValueSizeInBits())
14379 .zextOrTrunc(ElementSizeBits),
14380 SDLoc(C), IntMemVT);
14382 // Make sure correctly size type is the correct type.
14383 Val = DAG.getBitcast(MemVT, Val);
14385 BuildVector.push_back(Val);
14387 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
14388 : ISD::BUILD_VECTOR,
14389 DL, StoreTy, BuildVector);
14390 } else {
14391 SmallVector<SDValue, 8> Ops;
14392 for (unsigned i = 0; i < NumStores; ++i) {
14393 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
14394 SDValue Val = peekThroughBitcasts(St->getValue());
14395 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
14396 // type MemVT. If the underlying value is not the correct
14397 // type, but it is an extraction of an appropriate vector we
14398 // can recast Val to be of the correct type. This may require
14399 // converting between EXTRACT_VECTOR_ELT and
14400 // EXTRACT_SUBVECTOR.
14401 if ((MemVT != Val.getValueType()) &&
14402 (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
14403 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) {
14404 EVT MemVTScalarTy = MemVT.getScalarType();
14405 // We may need to add a bitcast here to get types to line up.
14406 if (MemVTScalarTy != Val.getValueType().getScalarType()) {
14407 Val = DAG.getBitcast(MemVT, Val);
14408 } else {
14409 unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR
14410 : ISD::EXTRACT_VECTOR_ELT;
14411 SDValue Vec = Val.getOperand(0);
14412 SDValue Idx = Val.getOperand(1);
14413 Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx);
14416 Ops.push_back(Val);
14419 // Build the extracted vector elements back into a vector.
14420 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
14421 : ISD::BUILD_VECTOR,
14422 DL, StoreTy, Ops);
14424 } else {
14425 // We should always use a vector store when merging extracted vector
14426 // elements, so this path implies a store of constants.
14427 assert(IsConstantSrc && "Merged vector elements should use vector store");
14429 APInt StoreInt(SizeInBits, 0);
14431 // Construct a single integer constant which is made of the smaller
14432 // constant inputs.
14433 bool IsLE = DAG.getDataLayout().isLittleEndian();
14434 for (unsigned i = 0; i < NumStores; ++i) {
14435 unsigned Idx = IsLE ? (NumStores - 1 - i) : i;
14436 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
14438 SDValue Val = St->getValue();
14439 Val = peekThroughBitcasts(Val);
14440 StoreInt <<= ElementSizeBits;
14441 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
14442 StoreInt |= C->getAPIntValue()
14443 .zextOrTrunc(ElementSizeBits)
14444 .zextOrTrunc(SizeInBits);
14445 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
14446 StoreInt |= C->getValueAPF()
14447 .bitcastToAPInt()
14448 .zextOrTrunc(ElementSizeBits)
14449 .zextOrTrunc(SizeInBits);
14450 // If fp truncation is necessary give up for now.
14451 if (MemVT.getSizeInBits() != ElementSizeBits)
14452 return false;
14453 } else {
14454 llvm_unreachable("Invalid constant element type");
14458 // Create the new Load and Store operations.
14459 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy);
14462 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
14463 SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores);
14465 // make sure we use trunc store if it's necessary to be legal.
14466 SDValue NewStore;
14467 if (!UseTrunc) {
14468 NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(),
14469 FirstInChain->getPointerInfo(),
14470 FirstInChain->getAlignment());
14471 } else { // Must be realized as a trunc store
14472 EVT LegalizedStoredValTy =
14473 TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
14474 unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits();
14475 ConstantSDNode *C = cast<ConstantSDNode>(StoredVal);
14476 SDValue ExtendedStoreVal =
14477 DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL,
14478 LegalizedStoredValTy);
14479 NewStore = DAG.getTruncStore(
14480 NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(),
14481 FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/,
14482 FirstInChain->getAlignment(),
14483 FirstInChain->getMemOperand()->getFlags());
14486 // Replace all merged stores with the new store.
14487 for (unsigned i = 0; i < NumStores; ++i)
14488 CombineTo(StoreNodes[i].MemNode, NewStore);
14490 AddToWorklist(NewChain.getNode());
14491 return true;
14494 void DAGCombiner::getStoreMergeCandidates(
14495 StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes,
14496 SDNode *&RootNode) {
14497 // This holds the base pointer, index, and the offset in bytes from the base
14498 // pointer.
14499 BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
14500 EVT MemVT = St->getMemoryVT();
14502 SDValue Val = peekThroughBitcasts(St->getValue());
14503 // We must have a base and an offset.
14504 if (!BasePtr.getBase().getNode())
14505 return;
14507 // Do not handle stores to undef base pointers.
14508 if (BasePtr.getBase().isUndef())
14509 return;
14511 bool IsConstantSrc = isa<ConstantSDNode>(Val) || isa<ConstantFPSDNode>(Val);
14512 bool IsExtractVecSrc = (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
14513 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR);
14514 bool IsLoadSrc = isa<LoadSDNode>(Val);
14515 BaseIndexOffset LBasePtr;
14516 // Match on loadbaseptr if relevant.
14517 EVT LoadVT;
14518 if (IsLoadSrc) {
14519 auto *Ld = cast<LoadSDNode>(Val);
14520 LBasePtr = BaseIndexOffset::match(Ld, DAG);
14521 LoadVT = Ld->getMemoryVT();
14522 // Load and store should be the same type.
14523 if (MemVT != LoadVT)
14524 return;
14525 // Loads must only have one use.
14526 if (!Ld->hasNUsesOfValue(1, 0))
14527 return;
14528 // The memory operands must not be volatile.
14529 if (Ld->isVolatile() || Ld->isIndexed())
14530 return;
14532 auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr,
14533 int64_t &Offset) -> bool {
14534 if (Other->isVolatile() || Other->isIndexed())
14535 return false;
14536 SDValue Val = peekThroughBitcasts(Other->getValue());
14537 // Allow merging constants of different types as integers.
14538 bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT())
14539 : Other->getMemoryVT() != MemVT;
14540 if (IsLoadSrc) {
14541 if (NoTypeMatch)
14542 return false;
14543 // The Load's Base Ptr must also match
14544 if (LoadSDNode *OtherLd = dyn_cast<LoadSDNode>(Val)) {
14545 auto LPtr = BaseIndexOffset::match(OtherLd, DAG);
14546 if (LoadVT != OtherLd->getMemoryVT())
14547 return false;
14548 // Loads must only have one use.
14549 if (!OtherLd->hasNUsesOfValue(1, 0))
14550 return false;
14551 // The memory operands must not be volatile.
14552 if (OtherLd->isVolatile() || OtherLd->isIndexed())
14553 return false;
14554 if (!(LBasePtr.equalBaseIndex(LPtr, DAG)))
14555 return false;
14556 } else
14557 return false;
14559 if (IsConstantSrc) {
14560 if (NoTypeMatch)
14561 return false;
14562 if (!(isa<ConstantSDNode>(Val) || isa<ConstantFPSDNode>(Val)))
14563 return false;
14565 if (IsExtractVecSrc) {
14566 // Do not merge truncated stores here.
14567 if (Other->isTruncatingStore())
14568 return false;
14569 if (!MemVT.bitsEq(Val.getValueType()))
14570 return false;
14571 if (Val.getOpcode() != ISD::EXTRACT_VECTOR_ELT &&
14572 Val.getOpcode() != ISD::EXTRACT_SUBVECTOR)
14573 return false;
14575 Ptr = BaseIndexOffset::match(Other, DAG);
14576 return (BasePtr.equalBaseIndex(Ptr, DAG, Offset));
14579 // We looking for a root node which is an ancestor to all mergable
14580 // stores. We search up through a load, to our root and then down
14581 // through all children. For instance we will find Store{1,2,3} if
14582 // St is Store1, Store2. or Store3 where the root is not a load
14583 // which always true for nonvolatile ops. TODO: Expand
14584 // the search to find all valid candidates through multiple layers of loads.
14586 // Root
14587 // |-------|-------|
14588 // Load Load Store3
14589 // | |
14590 // Store1 Store2
14592 // FIXME: We should be able to climb and
14593 // descend TokenFactors to find candidates as well.
14595 RootNode = St->getChain().getNode();
14597 if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(RootNode)) {
14598 RootNode = Ldn->getChain().getNode();
14599 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); I != E; ++I)
14600 if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) // walk down chain
14601 for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2)
14602 if (I2.getOperandNo() == 0)
14603 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I2)) {
14604 BaseIndexOffset Ptr;
14605 int64_t PtrDiff;
14606 if (CandidateMatch(OtherST, Ptr, PtrDiff))
14607 StoreNodes.push_back(MemOpLink(OtherST, PtrDiff));
14609 } else
14610 for (auto I = RootNode->use_begin(), E = RootNode->use_end(); I != E; ++I)
14611 if (I.getOperandNo() == 0)
14612 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) {
14613 BaseIndexOffset Ptr;
14614 int64_t PtrDiff;
14615 if (CandidateMatch(OtherST, Ptr, PtrDiff))
14616 StoreNodes.push_back(MemOpLink(OtherST, PtrDiff));
14620 // We need to check that merging these stores does not cause a loop in
14621 // the DAG. Any store candidate may depend on another candidate
14622 // indirectly through its operand (we already consider dependencies
14623 // through the chain). Check in parallel by searching up from
14624 // non-chain operands of candidates.
14625 bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
14626 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
14627 SDNode *RootNode) {
14628 // FIXME: We should be able to truncate a full search of
14629 // predecessors by doing a BFS and keeping tabs the originating
14630 // stores from which worklist nodes come from in a similar way to
14631 // TokenFactor simplfication.
14633 SmallPtrSet<const SDNode *, 32> Visited;
14634 SmallVector<const SDNode *, 8> Worklist;
14636 // RootNode is a predecessor to all candidates so we need not search
14637 // past it. Add RootNode (peeking through TokenFactors). Do not count
14638 // these towards size check.
14640 Worklist.push_back(RootNode);
14641 while (!Worklist.empty()) {
14642 auto N = Worklist.pop_back_val();
14643 if (!Visited.insert(N).second)
14644 continue; // Already present in Visited.
14645 if (N->getOpcode() == ISD::TokenFactor) {
14646 for (SDValue Op : N->ops())
14647 Worklist.push_back(Op.getNode());
14651 // Don't count pruning nodes towards max.
14652 unsigned int Max = 1024 + Visited.size();
14653 // Search Ops of store candidates.
14654 for (unsigned i = 0; i < NumStores; ++i) {
14655 SDNode *N = StoreNodes[i].MemNode;
14656 // Of the 4 Store Operands:
14657 // * Chain (Op 0) -> We have already considered these
14658 // in candidate selection and can be
14659 // safely ignored
14660 // * Value (Op 1) -> Cycles may happen (e.g. through load chains)
14661 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant,
14662 // but aren't necessarily fromt the same base node, so
14663 // cycles possible (e.g. via indexed store).
14664 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for
14665 // non-indexed stores). Not constant on all targets (e.g. ARM)
14666 // and so can participate in a cycle.
14667 for (unsigned j = 1; j < N->getNumOperands(); ++j)
14668 Worklist.push_back(N->getOperand(j).getNode());
14670 // Search through DAG. We can stop early if we find a store node.
14671 for (unsigned i = 0; i < NumStores; ++i)
14672 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist,
14673 Max))
14674 return false;
14675 return true;
14678 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode *St) {
14679 if (OptLevel == CodeGenOpt::None)
14680 return false;
14682 EVT MemVT = St->getMemoryVT();
14683 int64_t ElementSizeBytes = MemVT.getStoreSize();
14684 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
14686 if (MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits)
14687 return false;
14689 bool NoVectors = DAG.getMachineFunction().getFunction().hasFnAttribute(
14690 Attribute::NoImplicitFloat);
14692 // This function cannot currently deal with non-byte-sized memory sizes.
14693 if (ElementSizeBytes * 8 != MemVT.getSizeInBits())
14694 return false;
14696 if (!MemVT.isSimple())
14697 return false;
14699 // Perform an early exit check. Do not bother looking at stored values that
14700 // are not constants, loads, or extracted vector elements.
14701 SDValue StoredVal = peekThroughBitcasts(St->getValue());
14702 bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
14703 bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) ||
14704 isa<ConstantFPSDNode>(StoredVal);
14705 bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
14706 StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR);
14708 if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc)
14709 return false;
14711 SmallVector<MemOpLink, 8> StoreNodes;
14712 SDNode *RootNode;
14713 // Find potential store merge candidates by searching through chain sub-DAG
14714 getStoreMergeCandidates(St, StoreNodes, RootNode);
14716 // Check if there is anything to merge.
14717 if (StoreNodes.size() < 2)
14718 return false;
14720 // Sort the memory operands according to their distance from the
14721 // base pointer.
14722 llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) {
14723 return LHS.OffsetFromBase < RHS.OffsetFromBase;
14726 // Store Merge attempts to merge the lowest stores. This generally
14727 // works out as if successful, as the remaining stores are checked
14728 // after the first collection of stores is merged. However, in the
14729 // case that a non-mergeable store is found first, e.g., {p[-2],
14730 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
14731 // mergeable cases. To prevent this, we prune such stores from the
14732 // front of StoreNodes here.
14734 bool RV = false;
14735 while (StoreNodes.size() > 1) {
14736 unsigned StartIdx = 0;
14737 while ((StartIdx + 1 < StoreNodes.size()) &&
14738 StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes !=
14739 StoreNodes[StartIdx + 1].OffsetFromBase)
14740 ++StartIdx;
14742 // Bail if we don't have enough candidates to merge.
14743 if (StartIdx + 1 >= StoreNodes.size())
14744 return RV;
14746 if (StartIdx)
14747 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx);
14749 // Scan the memory operations on the chain and find the first
14750 // non-consecutive store memory address.
14751 unsigned NumConsecutiveStores = 1;
14752 int64_t StartAddress = StoreNodes[0].OffsetFromBase;
14753 // Check that the addresses are consecutive starting from the second
14754 // element in the list of stores.
14755 for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) {
14756 int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
14757 if (CurrAddress - StartAddress != (ElementSizeBytes * i))
14758 break;
14759 NumConsecutiveStores = i + 1;
14762 if (NumConsecutiveStores < 2) {
14763 StoreNodes.erase(StoreNodes.begin(),
14764 StoreNodes.begin() + NumConsecutiveStores);
14765 continue;
14768 // The node with the lowest store address.
14769 LLVMContext &Context = *DAG.getContext();
14770 const DataLayout &DL = DAG.getDataLayout();
14772 // Store the constants into memory as one consecutive store.
14773 if (IsConstantSrc) {
14774 while (NumConsecutiveStores >= 2) {
14775 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
14776 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
14777 unsigned FirstStoreAlign = FirstInChain->getAlignment();
14778 unsigned LastLegalType = 1;
14779 unsigned LastLegalVectorType = 1;
14780 bool LastIntegerTrunc = false;
14781 bool NonZero = false;
14782 unsigned FirstZeroAfterNonZero = NumConsecutiveStores;
14783 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
14784 StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode);
14785 SDValue StoredVal = ST->getValue();
14786 bool IsElementZero = false;
14787 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal))
14788 IsElementZero = C->isNullValue();
14789 else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal))
14790 IsElementZero = C->getConstantFPValue()->isNullValue();
14791 if (IsElementZero) {
14792 if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores)
14793 FirstZeroAfterNonZero = i;
14795 NonZero |= !IsElementZero;
14797 // Find a legal type for the constant store.
14798 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
14799 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits);
14800 bool IsFast = false;
14802 // Break early when size is too large to be legal.
14803 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
14804 break;
14806 if (TLI.isTypeLegal(StoreTy) &&
14807 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
14808 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
14809 FirstStoreAlign, &IsFast) &&
14810 IsFast) {
14811 LastIntegerTrunc = false;
14812 LastLegalType = i + 1;
14813 // Or check whether a truncstore is legal.
14814 } else if (TLI.getTypeAction(Context, StoreTy) ==
14815 TargetLowering::TypePromoteInteger) {
14816 EVT LegalizedStoredValTy =
14817 TLI.getTypeToTransformTo(Context, StoredVal.getValueType());
14818 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
14819 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
14820 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
14821 FirstStoreAlign, &IsFast) &&
14822 IsFast) {
14823 LastIntegerTrunc = true;
14824 LastLegalType = i + 1;
14828 // We only use vectors if the constant is known to be zero or the
14829 // target allows it and the function is not marked with the
14830 // noimplicitfloat attribute.
14831 if ((!NonZero ||
14832 TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) &&
14833 !NoVectors) {
14834 // Find a legal type for the vector store.
14835 unsigned Elts = (i + 1) * NumMemElts;
14836 EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
14837 if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) &&
14838 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
14839 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS,
14840 FirstStoreAlign, &IsFast) &&
14841 IsFast)
14842 LastLegalVectorType = i + 1;
14846 bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
14847 unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType;
14849 // Check if we found a legal integer type that creates a meaningful
14850 // merge.
14851 if (NumElem < 2) {
14852 // We know that candidate stores are in order and of correct
14853 // shape. While there is no mergeable sequence from the
14854 // beginning one may start later in the sequence. The only
14855 // reason a merge of size N could have failed where another of
14856 // the same size would not have, is if the alignment has
14857 // improved or we've dropped a non-zero value. Drop as many
14858 // candidates as we can here.
14859 unsigned NumSkip = 1;
14860 while (
14861 (NumSkip < NumConsecutiveStores) &&
14862 (NumSkip < FirstZeroAfterNonZero) &&
14863 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
14864 NumSkip++;
14866 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
14867 NumConsecutiveStores -= NumSkip;
14868 continue;
14871 // Check that we can merge these candidates without causing a cycle.
14872 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
14873 RootNode)) {
14874 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
14875 NumConsecutiveStores -= NumElem;
14876 continue;
14879 RV |= MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, true,
14880 UseVector, LastIntegerTrunc);
14882 // Remove merged stores for next iteration.
14883 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
14884 NumConsecutiveStores -= NumElem;
14886 continue;
14889 // When extracting multiple vector elements, try to store them
14890 // in one vector store rather than a sequence of scalar stores.
14891 if (IsExtractVecSrc) {
14892 // Loop on Consecutive Stores on success.
14893 while (NumConsecutiveStores >= 2) {
14894 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
14895 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
14896 unsigned FirstStoreAlign = FirstInChain->getAlignment();
14897 unsigned NumStoresToMerge = 1;
14898 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
14899 // Find a legal type for the vector store.
14900 unsigned Elts = (i + 1) * NumMemElts;
14901 EVT Ty =
14902 EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
14903 bool IsFast;
14905 // Break early when size is too large to be legal.
14906 if (Ty.getSizeInBits() > MaximumLegalStoreInBits)
14907 break;
14909 if (TLI.isTypeLegal(Ty) &&
14910 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
14911 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS,
14912 FirstStoreAlign, &IsFast) &&
14913 IsFast)
14914 NumStoresToMerge = i + 1;
14917 // Check if we found a legal integer type creating a meaningful
14918 // merge.
14919 if (NumStoresToMerge < 2) {
14920 // We know that candidate stores are in order and of correct
14921 // shape. While there is no mergeable sequence from the
14922 // beginning one may start later in the sequence. The only
14923 // reason a merge of size N could have failed where another of
14924 // the same size would not have, is if the alignment has
14925 // improved. Drop as many candidates as we can here.
14926 unsigned NumSkip = 1;
14927 while (
14928 (NumSkip < NumConsecutiveStores) &&
14929 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
14930 NumSkip++;
14932 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
14933 NumConsecutiveStores -= NumSkip;
14934 continue;
14937 // Check that we can merge these candidates without causing a cycle.
14938 if (!checkMergeStoreCandidatesForDependencies(
14939 StoreNodes, NumStoresToMerge, RootNode)) {
14940 StoreNodes.erase(StoreNodes.begin(),
14941 StoreNodes.begin() + NumStoresToMerge);
14942 NumConsecutiveStores -= NumStoresToMerge;
14943 continue;
14946 RV |= MergeStoresOfConstantsOrVecElts(
14947 StoreNodes, MemVT, NumStoresToMerge, false, true, false);
14949 StoreNodes.erase(StoreNodes.begin(),
14950 StoreNodes.begin() + NumStoresToMerge);
14951 NumConsecutiveStores -= NumStoresToMerge;
14953 continue;
14956 // Below we handle the case of multiple consecutive stores that
14957 // come from multiple consecutive loads. We merge them into a single
14958 // wide load and a single wide store.
14960 // Look for load nodes which are used by the stored values.
14961 SmallVector<MemOpLink, 8> LoadNodes;
14963 // Find acceptable loads. Loads need to have the same chain (token factor),
14964 // must not be zext, volatile, indexed, and they must be consecutive.
14965 BaseIndexOffset LdBasePtr;
14967 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
14968 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
14969 SDValue Val = peekThroughBitcasts(St->getValue());
14970 LoadSDNode *Ld = cast<LoadSDNode>(Val);
14972 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG);
14973 // If this is not the first ptr that we check.
14974 int64_t LdOffset = 0;
14975 if (LdBasePtr.getBase().getNode()) {
14976 // The base ptr must be the same.
14977 if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset))
14978 break;
14979 } else {
14980 // Check that all other base pointers are the same as this one.
14981 LdBasePtr = LdPtr;
14984 // We found a potential memory operand to merge.
14985 LoadNodes.push_back(MemOpLink(Ld, LdOffset));
14988 while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) {
14989 // If we have load/store pair instructions and we only have two values,
14990 // don't bother merging.
14991 unsigned RequiredAlignment;
14992 if (LoadNodes.size() == 2 &&
14993 TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
14994 StoreNodes[0].MemNode->getAlignment() >= RequiredAlignment) {
14995 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2);
14996 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2);
14997 break;
14999 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
15000 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
15001 unsigned FirstStoreAlign = FirstInChain->getAlignment();
15002 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
15003 unsigned FirstLoadAS = FirstLoad->getAddressSpace();
15004 unsigned FirstLoadAlign = FirstLoad->getAlignment();
15006 // Scan the memory operations on the chain and find the first
15007 // non-consecutive load memory address. These variables hold the index in
15008 // the store node array.
15010 unsigned LastConsecutiveLoad = 1;
15012 // This variable refers to the size and not index in the array.
15013 unsigned LastLegalVectorType = 1;
15014 unsigned LastLegalIntegerType = 1;
15015 bool isDereferenceable = true;
15016 bool DoIntegerTruncate = false;
15017 StartAddress = LoadNodes[0].OffsetFromBase;
15018 SDValue FirstChain = FirstLoad->getChain();
15019 for (unsigned i = 1; i < LoadNodes.size(); ++i) {
15020 // All loads must share the same chain.
15021 if (LoadNodes[i].MemNode->getChain() != FirstChain)
15022 break;
15024 int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
15025 if (CurrAddress - StartAddress != (ElementSizeBytes * i))
15026 break;
15027 LastConsecutiveLoad = i;
15029 if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable())
15030 isDereferenceable = false;
15032 // Find a legal type for the vector store.
15033 unsigned Elts = (i + 1) * NumMemElts;
15034 EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
15036 // Break early when size is too large to be legal.
15037 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
15038 break;
15040 bool IsFastSt, IsFastLd;
15041 if (TLI.isTypeLegal(StoreTy) &&
15042 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
15043 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
15044 FirstStoreAlign, &IsFastSt) &&
15045 IsFastSt &&
15046 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS,
15047 FirstLoadAlign, &IsFastLd) &&
15048 IsFastLd) {
15049 LastLegalVectorType = i + 1;
15052 // Find a legal type for the integer store.
15053 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
15054 StoreTy = EVT::getIntegerVT(Context, SizeInBits);
15055 if (TLI.isTypeLegal(StoreTy) &&
15056 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
15057 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
15058 FirstStoreAlign, &IsFastSt) &&
15059 IsFastSt &&
15060 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS,
15061 FirstLoadAlign, &IsFastLd) &&
15062 IsFastLd) {
15063 LastLegalIntegerType = i + 1;
15064 DoIntegerTruncate = false;
15065 // Or check whether a truncstore and extload is legal.
15066 } else if (TLI.getTypeAction(Context, StoreTy) ==
15067 TargetLowering::TypePromoteInteger) {
15068 EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy);
15069 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
15070 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
15071 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy,
15072 StoreTy) &&
15073 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy,
15074 StoreTy) &&
15075 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) &&
15076 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
15077 FirstStoreAlign, &IsFastSt) &&
15078 IsFastSt &&
15079 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS,
15080 FirstLoadAlign, &IsFastLd) &&
15081 IsFastLd) {
15082 LastLegalIntegerType = i + 1;
15083 DoIntegerTruncate = true;
15088 // Only use vector types if the vector type is larger than the integer
15089 // type. If they are the same, use integers.
15090 bool UseVectorTy =
15091 LastLegalVectorType > LastLegalIntegerType && !NoVectors;
15092 unsigned LastLegalType =
15093 std::max(LastLegalVectorType, LastLegalIntegerType);
15095 // We add +1 here because the LastXXX variables refer to location while
15096 // the NumElem refers to array/index size.
15097 unsigned NumElem =
15098 std::min(NumConsecutiveStores, LastConsecutiveLoad + 1);
15099 NumElem = std::min(LastLegalType, NumElem);
15101 if (NumElem < 2) {
15102 // We know that candidate stores are in order and of correct
15103 // shape. While there is no mergeable sequence from the
15104 // beginning one may start later in the sequence. The only
15105 // reason a merge of size N could have failed where another of
15106 // the same size would not have is if the alignment or either
15107 // the load or store has improved. Drop as many candidates as we
15108 // can here.
15109 unsigned NumSkip = 1;
15110 while ((NumSkip < LoadNodes.size()) &&
15111 (LoadNodes[NumSkip].MemNode->getAlignment() <= FirstLoadAlign) &&
15112 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
15113 NumSkip++;
15114 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
15115 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip);
15116 NumConsecutiveStores -= NumSkip;
15117 continue;
15120 // Check that we can merge these candidates without causing a cycle.
15121 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
15122 RootNode)) {
15123 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
15124 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
15125 NumConsecutiveStores -= NumElem;
15126 continue;
15129 // Find if it is better to use vectors or integers to load and store
15130 // to memory.
15131 EVT JointMemOpVT;
15132 if (UseVectorTy) {
15133 // Find a legal type for the vector store.
15134 unsigned Elts = NumElem * NumMemElts;
15135 JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
15136 } else {
15137 unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
15138 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits);
15141 SDLoc LoadDL(LoadNodes[0].MemNode);
15142 SDLoc StoreDL(StoreNodes[0].MemNode);
15144 // The merged loads are required to have the same incoming chain, so
15145 // using the first's chain is acceptable.
15147 SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem);
15148 AddToWorklist(NewStoreChain.getNode());
15150 MachineMemOperand::Flags MMOFlags =
15151 isDereferenceable ? MachineMemOperand::MODereferenceable
15152 : MachineMemOperand::MONone;
15154 SDValue NewLoad, NewStore;
15155 if (UseVectorTy || !DoIntegerTruncate) {
15156 NewLoad =
15157 DAG.getLoad(JointMemOpVT, LoadDL, FirstLoad->getChain(),
15158 FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(),
15159 FirstLoadAlign, MMOFlags);
15160 NewStore = DAG.getStore(
15161 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(),
15162 FirstInChain->getPointerInfo(), FirstStoreAlign);
15163 } else { // This must be the truncstore/extload case
15164 EVT ExtendedTy =
15165 TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT);
15166 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy,
15167 FirstLoad->getChain(), FirstLoad->getBasePtr(),
15168 FirstLoad->getPointerInfo(), JointMemOpVT,
15169 FirstLoadAlign, MMOFlags);
15170 NewStore = DAG.getTruncStore(NewStoreChain, StoreDL, NewLoad,
15171 FirstInChain->getBasePtr(),
15172 FirstInChain->getPointerInfo(),
15173 JointMemOpVT, FirstInChain->getAlignment(),
15174 FirstInChain->getMemOperand()->getFlags());
15177 // Transfer chain users from old loads to the new load.
15178 for (unsigned i = 0; i < NumElem; ++i) {
15179 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
15180 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
15181 SDValue(NewLoad.getNode(), 1));
15184 // Replace the all stores with the new store. Recursively remove
15185 // corresponding value if its no longer used.
15186 for (unsigned i = 0; i < NumElem; ++i) {
15187 SDValue Val = StoreNodes[i].MemNode->getOperand(1);
15188 CombineTo(StoreNodes[i].MemNode, NewStore);
15189 if (Val.getNode()->use_empty())
15190 recursivelyDeleteUnusedNodes(Val.getNode());
15193 RV = true;
15194 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
15195 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
15196 NumConsecutiveStores -= NumElem;
15199 return RV;
15202 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) {
15203 SDLoc SL(ST);
15204 SDValue ReplStore;
15206 // Replace the chain to avoid dependency.
15207 if (ST->isTruncatingStore()) {
15208 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(),
15209 ST->getBasePtr(), ST->getMemoryVT(),
15210 ST->getMemOperand());
15211 } else {
15212 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(),
15213 ST->getMemOperand());
15216 // Create token to keep both nodes around.
15217 SDValue Token = DAG.getNode(ISD::TokenFactor, SL,
15218 MVT::Other, ST->getChain(), ReplStore);
15220 // Make sure the new and old chains are cleaned up.
15221 AddToWorklist(Token.getNode());
15223 // Don't add users to work list.
15224 return CombineTo(ST, Token, false);
15227 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) {
15228 SDValue Value = ST->getValue();
15229 if (Value.getOpcode() == ISD::TargetConstantFP)
15230 return SDValue();
15232 SDLoc DL(ST);
15234 SDValue Chain = ST->getChain();
15235 SDValue Ptr = ST->getBasePtr();
15237 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value);
15239 // NOTE: If the original store is volatile, this transform must not increase
15240 // the number of stores. For example, on x86-32 an f64 can be stored in one
15241 // processor operation but an i64 (which is not legal) requires two. So the
15242 // transform should not be done in this case.
15244 SDValue Tmp;
15245 switch (CFP->getSimpleValueType(0).SimpleTy) {
15246 default:
15247 llvm_unreachable("Unknown FP type");
15248 case MVT::f16: // We don't do this for these yet.
15249 case MVT::f80:
15250 case MVT::f128:
15251 case MVT::ppcf128:
15252 return SDValue();
15253 case MVT::f32:
15254 if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
15255 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
15257 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
15258 bitcastToAPInt().getZExtValue(), SDLoc(CFP),
15259 MVT::i32);
15260 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand());
15263 return SDValue();
15264 case MVT::f64:
15265 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
15266 !ST->isVolatile()) ||
15267 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
15269 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
15270 getZExtValue(), SDLoc(CFP), MVT::i64);
15271 return DAG.getStore(Chain, DL, Tmp,
15272 Ptr, ST->getMemOperand());
15275 if (!ST->isVolatile() &&
15276 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
15277 // Many FP stores are not made apparent until after legalize, e.g. for
15278 // argument passing. Since this is so common, custom legalize the
15279 // 64-bit integer store into two 32-bit stores.
15280 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
15281 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32);
15282 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32);
15283 if (DAG.getDataLayout().isBigEndian())
15284 std::swap(Lo, Hi);
15286 unsigned Alignment = ST->getAlignment();
15287 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
15288 AAMDNodes AAInfo = ST->getAAInfo();
15290 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
15291 ST->getAlignment(), MMOFlags, AAInfo);
15292 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
15293 DAG.getConstant(4, DL, Ptr.getValueType()));
15294 Alignment = MinAlign(Alignment, 4U);
15295 SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr,
15296 ST->getPointerInfo().getWithOffset(4),
15297 Alignment, MMOFlags, AAInfo);
15298 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
15299 St0, St1);
15302 return SDValue();
15306 SDValue DAGCombiner::visitSTORE(SDNode *N) {
15307 StoreSDNode *ST = cast<StoreSDNode>(N);
15308 SDValue Chain = ST->getChain();
15309 SDValue Value = ST->getValue();
15310 SDValue Ptr = ST->getBasePtr();
15312 // If this is a store of a bit convert, store the input value if the
15313 // resultant store does not need a higher alignment than the original.
15314 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
15315 ST->isUnindexed()) {
15316 EVT SVT = Value.getOperand(0).getValueType();
15317 // If the store is volatile, we only want to change the store type if the
15318 // resulting store is legal. Otherwise we might increase the number of
15319 // memory accesses. We don't care if the original type was legal or not
15320 // as we assume software couldn't rely on the number of accesses of an
15321 // illegal type.
15322 if (((!LegalOperations && !ST->isVolatile()) ||
15323 TLI.isOperationLegal(ISD::STORE, SVT)) &&
15324 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT)) {
15325 unsigned OrigAlign = ST->getAlignment();
15326 bool Fast = false;
15327 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), SVT,
15328 ST->getAddressSpace(), OrigAlign, &Fast) &&
15329 Fast) {
15330 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
15331 ST->getPointerInfo(), OrigAlign,
15332 ST->getMemOperand()->getFlags(), ST->getAAInfo());
15337 // Turn 'store undef, Ptr' -> nothing.
15338 if (Value.isUndef() && ST->isUnindexed())
15339 return Chain;
15341 // Try to infer better alignment information than the store already has.
15342 if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
15343 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
15344 if (Align > ST->getAlignment() && ST->getSrcValueOffset() % Align == 0) {
15345 SDValue NewStore =
15346 DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(),
15347 ST->getMemoryVT(), Align,
15348 ST->getMemOperand()->getFlags(), ST->getAAInfo());
15349 // NewStore will always be N as we are only refining the alignment
15350 assert(NewStore.getNode() == N);
15351 (void)NewStore;
15356 // Try transforming a pair floating point load / store ops to integer
15357 // load / store ops.
15358 if (SDValue NewST = TransformFPLoadStorePair(N))
15359 return NewST;
15361 if (ST->isUnindexed()) {
15362 // Walk up chain skipping non-aliasing memory nodes, on this store and any
15363 // adjacent stores.
15364 if (findBetterNeighborChains(ST)) {
15365 // replaceStoreChain uses CombineTo, which handled all of the worklist
15366 // manipulation. Return the original node to not do anything else.
15367 return SDValue(ST, 0);
15369 Chain = ST->getChain();
15372 // FIXME: is there such a thing as a truncating indexed store?
15373 if (ST->isTruncatingStore() && ST->isUnindexed() &&
15374 Value.getValueType().isInteger() &&
15375 (!isa<ConstantSDNode>(Value) ||
15376 !cast<ConstantSDNode>(Value)->isOpaque())) {
15377 // See if we can simplify the input to this truncstore with knowledge that
15378 // only the low bits are being used. For example:
15379 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
15380 SDValue Shorter = DAG.GetDemandedBits(
15381 Value, APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
15382 ST->getMemoryVT().getScalarSizeInBits()));
15383 AddToWorklist(Value.getNode());
15384 if (Shorter.getNode())
15385 return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
15386 Ptr, ST->getMemoryVT(), ST->getMemOperand());
15388 // Otherwise, see if we can simplify the operation with
15389 // SimplifyDemandedBits, which only works if the value has a single use.
15390 if (SimplifyDemandedBits(
15391 Value,
15392 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
15393 ST->getMemoryVT().getScalarSizeInBits()))) {
15394 // Re-visit the store if anything changed and the store hasn't been merged
15395 // with another node (N is deleted) SimplifyDemandedBits will add Value's
15396 // node back to the worklist if necessary, but we also need to re-visit
15397 // the Store node itself.
15398 if (N->getOpcode() != ISD::DELETED_NODE)
15399 AddToWorklist(N);
15400 return SDValue(N, 0);
15404 // If this is a load followed by a store to the same location, then the store
15405 // is dead/noop.
15406 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
15407 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
15408 ST->isUnindexed() && !ST->isVolatile() &&
15409 // There can't be any side effects between the load and store, such as
15410 // a call or store.
15411 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
15412 // The store is dead, remove it.
15413 return Chain;
15417 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
15418 if (ST->isUnindexed() && !ST->isVolatile() && ST1->isUnindexed() &&
15419 !ST1->isVolatile() && ST1->getBasePtr() == Ptr &&
15420 ST->getMemoryVT() == ST1->getMemoryVT()) {
15421 // If this is a store followed by a store with the same value to the same
15422 // location, then the store is dead/noop.
15423 if (ST1->getValue() == Value) {
15424 // The store is dead, remove it.
15425 return Chain;
15428 // If this is a store who's preceeding store to the same location
15429 // and no one other node is chained to that store we can effectively
15430 // drop the store. Do not remove stores to undef as they may be used as
15431 // data sinks.
15432 if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() &&
15433 !ST1->getBasePtr().isUndef()) {
15434 // ST1 is fully overwritten and can be elided. Combine with it's chain
15435 // value.
15436 CombineTo(ST1, ST1->getChain());
15437 return SDValue();
15442 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
15443 // truncating store. We can do this even if this is already a truncstore.
15444 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
15445 && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
15446 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
15447 ST->getMemoryVT())) {
15448 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
15449 Ptr, ST->getMemoryVT(), ST->getMemOperand());
15452 // Always perform this optimization before types are legal. If the target
15453 // prefers, also try this after legalization to catch stores that were created
15454 // by intrinsics or other nodes.
15455 if (!LegalTypes || (TLI.mergeStoresAfterLegalization())) {
15456 while (true) {
15457 // There can be multiple store sequences on the same chain.
15458 // Keep trying to merge store sequences until we are unable to do so
15459 // or until we merge the last store on the chain.
15460 bool Changed = MergeConsecutiveStores(ST);
15461 if (!Changed) break;
15462 // Return N as merge only uses CombineTo and no worklist clean
15463 // up is necessary.
15464 if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N))
15465 return SDValue(N, 0);
15469 // Try transforming N to an indexed store.
15470 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
15471 return SDValue(N, 0);
15473 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
15475 // Make sure to do this only after attempting to merge stores in order to
15476 // avoid changing the types of some subset of stores due to visit order,
15477 // preventing their merging.
15478 if (isa<ConstantFPSDNode>(ST->getValue())) {
15479 if (SDValue NewSt = replaceStoreOfFPConstant(ST))
15480 return NewSt;
15483 if (SDValue NewSt = splitMergedValStore(ST))
15484 return NewSt;
15486 return ReduceLoadOpStoreWidth(N);
15489 SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) {
15490 const auto *LifetimeEnd = cast<LifetimeSDNode>(N);
15491 if (!LifetimeEnd->hasOffset())
15492 return SDValue();
15494 const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(),
15495 LifetimeEnd->getOffset(), false);
15497 // We walk up the chains to find stores.
15498 SmallVector<SDValue, 8> Chains = {N->getOperand(0)};
15499 while (!Chains.empty()) {
15500 SDValue Chain = Chains.back();
15501 Chains.pop_back();
15502 switch (Chain.getOpcode()) {
15503 case ISD::TokenFactor:
15504 for (unsigned Nops = Chain.getNumOperands(); Nops;)
15505 Chains.push_back(Chain.getOperand(--Nops));
15506 break;
15507 case ISD::LIFETIME_START:
15508 case ISD::LIFETIME_END: {
15509 // We can forward past any lifetime start/end that can be proven not to
15510 // alias the node.
15511 const auto *LifetimeStart = cast<LifetimeSDNode>(Chain);
15512 if (!LifetimeStart->hasOffset())
15513 break; // Be conservative if we don't know the extents of the object.
15515 const BaseIndexOffset LifetimeStartBase(
15516 LifetimeStart->getOperand(1), SDValue(), LifetimeStart->getOffset(),
15517 false);
15518 bool IsAlias;
15519 if (BaseIndexOffset::computeAliasing(
15520 LifetimeEndBase, LifetimeEnd->getSize(), LifetimeStartBase,
15521 LifetimeStart->getSize(), DAG, IsAlias) &&
15522 !IsAlias) {
15523 Chains.push_back(Chain.getOperand(0));
15525 break;
15528 case ISD::STORE: {
15529 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain);
15530 if (ST->isVolatile() || !ST->hasOneUse() || ST->isIndexed())
15531 continue;
15532 const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG);
15533 // If we store purely within object bounds just before its lifetime ends,
15534 // we can remove the store.
15535 if (LifetimeEndBase.contains(LifetimeEnd->getSize(), StoreBase,
15536 ST->getMemoryVT().getStoreSize(), DAG)) {
15537 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump();
15538 dbgs() << "\nwithin LIFETIME_END of : ";
15539 LifetimeEndBase.dump(); dbgs() << "\n");
15540 CombineTo(ST, ST->getChain());
15541 return SDValue(N, 0);
15546 return SDValue();
15549 /// For the instruction sequence of store below, F and I values
15550 /// are bundled together as an i64 value before being stored into memory.
15551 /// Sometimes it is more efficent to generate separate stores for F and I,
15552 /// which can remove the bitwise instructions or sink them to colder places.
15554 /// (store (or (zext (bitcast F to i32) to i64),
15555 /// (shl (zext I to i64), 32)), addr) -->
15556 /// (store F, addr) and (store I, addr+4)
15558 /// Similarly, splitting for other merged store can also be beneficial, like:
15559 /// For pair of {i32, i32}, i64 store --> two i32 stores.
15560 /// For pair of {i32, i16}, i64 store --> two i32 stores.
15561 /// For pair of {i16, i16}, i32 store --> two i16 stores.
15562 /// For pair of {i16, i8}, i32 store --> two i16 stores.
15563 /// For pair of {i8, i8}, i16 store --> two i8 stores.
15565 /// We allow each target to determine specifically which kind of splitting is
15566 /// supported.
15568 /// The store patterns are commonly seen from the simple code snippet below
15569 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
15570 /// void goo(const std::pair<int, float> &);
15571 /// hoo() {
15572 /// ...
15573 /// goo(std::make_pair(tmp, ftmp));
15574 /// ...
15575 /// }
15577 SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) {
15578 if (OptLevel == CodeGenOpt::None)
15579 return SDValue();
15581 SDValue Val = ST->getValue();
15582 SDLoc DL(ST);
15584 // Match OR operand.
15585 if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR)
15586 return SDValue();
15588 // Match SHL operand and get Lower and Higher parts of Val.
15589 SDValue Op1 = Val.getOperand(0);
15590 SDValue Op2 = Val.getOperand(1);
15591 SDValue Lo, Hi;
15592 if (Op1.getOpcode() != ISD::SHL) {
15593 std::swap(Op1, Op2);
15594 if (Op1.getOpcode() != ISD::SHL)
15595 return SDValue();
15597 Lo = Op2;
15598 Hi = Op1.getOperand(0);
15599 if (!Op1.hasOneUse())
15600 return SDValue();
15602 // Match shift amount to HalfValBitSize.
15603 unsigned HalfValBitSize = Val.getValueSizeInBits() / 2;
15604 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1));
15605 if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize)
15606 return SDValue();
15608 // Lo and Hi are zero-extended from int with size less equal than 32
15609 // to i64.
15610 if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() ||
15611 !Lo.getOperand(0).getValueType().isScalarInteger() ||
15612 Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize ||
15613 Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() ||
15614 !Hi.getOperand(0).getValueType().isScalarInteger() ||
15615 Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize)
15616 return SDValue();
15618 // Use the EVT of low and high parts before bitcast as the input
15619 // of target query.
15620 EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST)
15621 ? Lo.getOperand(0).getValueType()
15622 : Lo.getValueType();
15623 EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST)
15624 ? Hi.getOperand(0).getValueType()
15625 : Hi.getValueType();
15626 if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
15627 return SDValue();
15629 // Start to split store.
15630 unsigned Alignment = ST->getAlignment();
15631 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
15632 AAMDNodes AAInfo = ST->getAAInfo();
15634 // Change the sizes of Lo and Hi's value types to HalfValBitSize.
15635 EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize);
15636 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0));
15637 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0));
15639 SDValue Chain = ST->getChain();
15640 SDValue Ptr = ST->getBasePtr();
15641 // Lower value store.
15642 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
15643 ST->getAlignment(), MMOFlags, AAInfo);
15644 Ptr =
15645 DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
15646 DAG.getConstant(HalfValBitSize / 8, DL, Ptr.getValueType()));
15647 // Higher value store.
15648 SDValue St1 =
15649 DAG.getStore(St0, DL, Hi, Ptr,
15650 ST->getPointerInfo().getWithOffset(HalfValBitSize / 8),
15651 Alignment / 2, MMOFlags, AAInfo);
15652 return St1;
15655 /// Convert a disguised subvector insertion into a shuffle:
15656 /// insert_vector_elt V, (bitcast X from vector type), IdxC -->
15657 /// bitcast(shuffle (bitcast V), (extended X), Mask)
15658 /// Note: We do not use an insert_subvector node because that requires a legal
15659 /// subvector type.
15660 SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) {
15661 SDValue InsertVal = N->getOperand(1);
15662 if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() ||
15663 !InsertVal.getOperand(0).getValueType().isVector())
15664 return SDValue();
15666 SDValue SubVec = InsertVal.getOperand(0);
15667 SDValue DestVec = N->getOperand(0);
15668 EVT SubVecVT = SubVec.getValueType();
15669 EVT VT = DestVec.getValueType();
15670 unsigned NumSrcElts = SubVecVT.getVectorNumElements();
15671 unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits();
15672 unsigned NumMaskVals = ExtendRatio * NumSrcElts;
15674 // Step 1: Create a shuffle mask that implements this insert operation. The
15675 // vector that we are inserting into will be operand 0 of the shuffle, so
15676 // those elements are just 'i'. The inserted subvector is in the first
15677 // positions of operand 1 of the shuffle. Example:
15678 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
15679 SmallVector<int, 16> Mask(NumMaskVals);
15680 for (unsigned i = 0; i != NumMaskVals; ++i) {
15681 if (i / NumSrcElts == InsIndex)
15682 Mask[i] = (i % NumSrcElts) + NumMaskVals;
15683 else
15684 Mask[i] = i;
15687 // Bail out if the target can not handle the shuffle we want to create.
15688 EVT SubVecEltVT = SubVecVT.getVectorElementType();
15689 EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals);
15690 if (!TLI.isShuffleMaskLegal(Mask, ShufVT))
15691 return SDValue();
15693 // Step 2: Create a wide vector from the inserted source vector by appending
15694 // undefined elements. This is the same size as our destination vector.
15695 SDLoc DL(N);
15696 SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT));
15697 ConcatOps[0] = SubVec;
15698 SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps);
15700 // Step 3: Shuffle in the padded subvector.
15701 SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec);
15702 SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask);
15703 AddToWorklist(PaddedSubV.getNode());
15704 AddToWorklist(DestVecBC.getNode());
15705 AddToWorklist(Shuf.getNode());
15706 return DAG.getBitcast(VT, Shuf);
15709 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
15710 SDValue InVec = N->getOperand(0);
15711 SDValue InVal = N->getOperand(1);
15712 SDValue EltNo = N->getOperand(2);
15713 SDLoc DL(N);
15715 // If the inserted element is an UNDEF, just use the input vector.
15716 if (InVal.isUndef())
15717 return InVec;
15719 EVT VT = InVec.getValueType();
15720 unsigned NumElts = VT.getVectorNumElements();
15722 // Remove redundant insertions:
15723 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
15724 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
15725 InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1))
15726 return InVec;
15728 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
15729 if (!IndexC) {
15730 // If this is variable insert to undef vector, it might be better to splat:
15731 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
15732 if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) {
15733 SmallVector<SDValue, 8> Ops(NumElts, InVal);
15734 return DAG.getBuildVector(VT, DL, Ops);
15736 return SDValue();
15739 // We must know which element is being inserted for folds below here.
15740 unsigned Elt = IndexC->getZExtValue();
15741 if (SDValue Shuf = combineInsertEltToShuffle(N, Elt))
15742 return Shuf;
15744 // Canonicalize insert_vector_elt dag nodes.
15745 // Example:
15746 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
15747 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
15749 // Do this only if the child insert_vector node has one use; also
15750 // do this only if indices are both constants and Idx1 < Idx0.
15751 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
15752 && isa<ConstantSDNode>(InVec.getOperand(2))) {
15753 unsigned OtherElt = InVec.getConstantOperandVal(2);
15754 if (Elt < OtherElt) {
15755 // Swap nodes.
15756 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
15757 InVec.getOperand(0), InVal, EltNo);
15758 AddToWorklist(NewOp.getNode());
15759 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
15760 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
15764 // If we can't generate a legal BUILD_VECTOR, exit
15765 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
15766 return SDValue();
15768 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
15769 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
15770 // vector elements.
15771 SmallVector<SDValue, 8> Ops;
15772 // Do not combine these two vectors if the output vector will not replace
15773 // the input vector.
15774 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
15775 Ops.append(InVec.getNode()->op_begin(),
15776 InVec.getNode()->op_end());
15777 } else if (InVec.isUndef()) {
15778 Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType()));
15779 } else {
15780 return SDValue();
15782 assert(Ops.size() == NumElts && "Unexpected vector size");
15784 // Insert the element
15785 if (Elt < Ops.size()) {
15786 // All the operands of BUILD_VECTOR must have the same type;
15787 // we enforce that here.
15788 EVT OpVT = Ops[0].getValueType();
15789 Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal;
15792 // Return the new vector
15793 return DAG.getBuildVector(VT, DL, Ops);
15796 SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
15797 SDValue EltNo,
15798 LoadSDNode *OriginalLoad) {
15799 assert(!OriginalLoad->isVolatile());
15801 EVT ResultVT = EVE->getValueType(0);
15802 EVT VecEltVT = InVecVT.getVectorElementType();
15803 unsigned Align = OriginalLoad->getAlignment();
15804 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
15805 VecEltVT.getTypeForEVT(*DAG.getContext()));
15807 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
15808 return SDValue();
15810 ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ?
15811 ISD::NON_EXTLOAD : ISD::EXTLOAD;
15812 if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT))
15813 return SDValue();
15815 Align = NewAlign;
15817 SDValue NewPtr = OriginalLoad->getBasePtr();
15818 SDValue Offset;
15819 EVT PtrType = NewPtr.getValueType();
15820 MachinePointerInfo MPI;
15821 SDLoc DL(EVE);
15822 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
15823 int Elt = ConstEltNo->getZExtValue();
15824 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8;
15825 Offset = DAG.getConstant(PtrOff, DL, PtrType);
15826 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff);
15827 } else {
15828 Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType);
15829 Offset = DAG.getNode(
15830 ISD::MUL, DL, PtrType, Offset,
15831 DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType));
15832 // Discard the pointer info except the address space because the memory
15833 // operand can't represent this new access since the offset is variable.
15834 MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace());
15836 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset);
15838 // The replacement we need to do here is a little tricky: we need to
15839 // replace an extractelement of a load with a load.
15840 // Use ReplaceAllUsesOfValuesWith to do the replacement.
15841 // Note that this replacement assumes that the extractvalue is the only
15842 // use of the load; that's okay because we don't want to perform this
15843 // transformation in other cases anyway.
15844 SDValue Load;
15845 SDValue Chain;
15846 if (ResultVT.bitsGT(VecEltVT)) {
15847 // If the result type of vextract is wider than the load, then issue an
15848 // extending load instead.
15849 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT,
15850 VecEltVT)
15851 ? ISD::ZEXTLOAD
15852 : ISD::EXTLOAD;
15853 Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT,
15854 OriginalLoad->getChain(), NewPtr, MPI, VecEltVT,
15855 Align, OriginalLoad->getMemOperand()->getFlags(),
15856 OriginalLoad->getAAInfo());
15857 Chain = Load.getValue(1);
15858 } else {
15859 Load = DAG.getLoad(VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr,
15860 MPI, Align, OriginalLoad->getMemOperand()->getFlags(),
15861 OriginalLoad->getAAInfo());
15862 Chain = Load.getValue(1);
15863 if (ResultVT.bitsLT(VecEltVT))
15864 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load);
15865 else
15866 Load = DAG.getBitcast(ResultVT, Load);
15868 WorklistRemover DeadNodes(*this);
15869 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) };
15870 SDValue To[] = { Load, Chain };
15871 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
15872 // Since we're explicitly calling ReplaceAllUses, add the new node to the
15873 // worklist explicitly as well.
15874 AddToWorklist(Load.getNode());
15875 AddUsersToWorklist(Load.getNode()); // Add users too
15876 // Make sure to revisit this node to clean it up; it will usually be dead.
15877 AddToWorklist(EVE);
15878 ++OpsNarrowed;
15879 return SDValue(EVE, 0);
15882 /// Transform a vector binary operation into a scalar binary operation by moving
15883 /// the math/logic after an extract element of a vector.
15884 static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG,
15885 bool LegalOperations) {
15886 SDValue Vec = ExtElt->getOperand(0);
15887 SDValue Index = ExtElt->getOperand(1);
15888 auto *IndexC = dyn_cast<ConstantSDNode>(Index);
15889 if (!IndexC || !ISD::isBinaryOp(Vec.getNode()) || !Vec.hasOneUse())
15890 return SDValue();
15892 // Targets may want to avoid this to prevent an expensive register transfer.
15893 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15894 if (!TLI.shouldScalarizeBinop(Vec))
15895 return SDValue();
15897 // Extracting an element of a vector constant is constant-folded, so this
15898 // transform is just replacing a vector op with a scalar op while moving the
15899 // extract.
15900 SDValue Op0 = Vec.getOperand(0);
15901 SDValue Op1 = Vec.getOperand(1);
15902 if (isAnyConstantBuildVector(Op0, true) ||
15903 isAnyConstantBuildVector(Op1, true)) {
15904 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C'
15905 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC)
15906 SDLoc DL(ExtElt);
15907 EVT VT = ExtElt->getValueType(0);
15908 SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index);
15909 SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index);
15910 return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1);
15913 return SDValue();
15916 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
15917 SDValue VecOp = N->getOperand(0);
15918 SDValue Index = N->getOperand(1);
15919 EVT ScalarVT = N->getValueType(0);
15920 EVT VecVT = VecOp.getValueType();
15921 if (VecOp.isUndef())
15922 return DAG.getUNDEF(ScalarVT);
15924 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
15926 // This only really matters if the index is non-constant since other combines
15927 // on the constant elements already work.
15928 SDLoc DL(N);
15929 if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT &&
15930 Index == VecOp.getOperand(2)) {
15931 SDValue Elt = VecOp.getOperand(1);
15932 return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt;
15935 // (vextract (scalar_to_vector val, 0) -> val
15936 if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) {
15937 // Check if the result type doesn't match the inserted element type. A
15938 // SCALAR_TO_VECTOR may truncate the inserted element and the
15939 // EXTRACT_VECTOR_ELT may widen the extracted vector.
15940 SDValue InOp = VecOp.getOperand(0);
15941 if (InOp.getValueType() != ScalarVT) {
15942 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
15943 return DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
15945 return InOp;
15948 // extract_vector_elt of out-of-bounds element -> UNDEF
15949 auto *IndexC = dyn_cast<ConstantSDNode>(Index);
15950 unsigned NumElts = VecVT.getVectorNumElements();
15951 if (IndexC && IndexC->getAPIntValue().uge(NumElts))
15952 return DAG.getUNDEF(ScalarVT);
15954 // extract_vector_elt (build_vector x, y), 1 -> y
15955 if (IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR &&
15956 TLI.isTypeLegal(VecVT) &&
15957 (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) {
15958 SDValue Elt = VecOp.getOperand(IndexC->getZExtValue());
15959 EVT InEltVT = Elt.getValueType();
15961 // Sometimes build_vector's scalar input types do not match result type.
15962 if (ScalarVT == InEltVT)
15963 return Elt;
15965 // TODO: It may be useful to truncate if free if the build_vector implicitly
15966 // converts.
15969 // TODO: These transforms should not require the 'hasOneUse' restriction, but
15970 // there are regressions on multiple targets without it. We can end up with a
15971 // mess of scalar and vector code if we reduce only part of the DAG to scalar.
15972 if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() &&
15973 VecOp.hasOneUse()) {
15974 // The vector index of the LSBs of the source depend on the endian-ness.
15975 bool IsLE = DAG.getDataLayout().isLittleEndian();
15976 unsigned ExtractIndex = IndexC->getZExtValue();
15977 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
15978 unsigned BCTruncElt = IsLE ? 0 : NumElts - 1;
15979 SDValue BCSrc = VecOp.getOperand(0);
15980 if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger())
15981 return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc);
15983 if (LegalTypes && BCSrc.getValueType().isInteger() &&
15984 BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) {
15985 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt -->
15986 // trunc i64 X to i32
15987 SDValue X = BCSrc.getOperand(0);
15988 assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() &&
15989 "Extract element and scalar to vector can't change element type "
15990 "from FP to integer.");
15991 unsigned XBitWidth = X.getValueSizeInBits();
15992 unsigned VecEltBitWidth = VecVT.getScalarSizeInBits();
15993 BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1;
15995 // An extract element return value type can be wider than its vector
15996 // operand element type. In that case, the high bits are undefined, so
15997 // it's possible that we may need to extend rather than truncate.
15998 if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) {
15999 assert(XBitWidth % VecEltBitWidth == 0 &&
16000 "Scalar bitwidth must be a multiple of vector element bitwidth");
16001 return DAG.getAnyExtOrTrunc(X, DL, ScalarVT);
16006 if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations))
16007 return BO;
16009 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
16010 // We only perform this optimization before the op legalization phase because
16011 // we may introduce new vector instructions which are not backed by TD
16012 // patterns. For example on AVX, extracting elements from a wide vector
16013 // without using extract_subvector. However, if we can find an underlying
16014 // scalar value, then we can always use that.
16015 if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) {
16016 auto *Shuf = cast<ShuffleVectorSDNode>(VecOp);
16017 // Find the new index to extract from.
16018 int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue());
16020 // Extracting an undef index is undef.
16021 if (OrigElt == -1)
16022 return DAG.getUNDEF(ScalarVT);
16024 // Select the right vector half to extract from.
16025 SDValue SVInVec;
16026 if (OrigElt < (int)NumElts) {
16027 SVInVec = VecOp.getOperand(0);
16028 } else {
16029 SVInVec = VecOp.getOperand(1);
16030 OrigElt -= NumElts;
16033 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
16034 SDValue InOp = SVInVec.getOperand(OrigElt);
16035 if (InOp.getValueType() != ScalarVT) {
16036 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
16037 InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
16040 return InOp;
16043 // FIXME: We should handle recursing on other vector shuffles and
16044 // scalar_to_vector here as well.
16046 if (!LegalOperations ||
16047 // FIXME: Should really be just isOperationLegalOrCustom.
16048 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) ||
16049 TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) {
16050 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
16051 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec,
16052 DAG.getConstant(OrigElt, DL, IndexTy));
16056 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can
16057 // simplify it based on the (valid) extraction indices.
16058 if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) {
16059 return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
16060 Use->getOperand(0) == VecOp &&
16061 isa<ConstantSDNode>(Use->getOperand(1));
16062 })) {
16063 APInt DemandedElts = APInt::getNullValue(NumElts);
16064 for (SDNode *Use : VecOp->uses()) {
16065 auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1));
16066 if (CstElt->getAPIntValue().ult(NumElts))
16067 DemandedElts.setBit(CstElt->getZExtValue());
16069 if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) {
16070 // We simplified the vector operand of this extract element. If this
16071 // extract is not dead, visit it again so it is folded properly.
16072 if (N->getOpcode() != ISD::DELETED_NODE)
16073 AddToWorklist(N);
16074 return SDValue(N, 0);
16078 // Everything under here is trying to match an extract of a loaded value.
16079 // If the result of load has to be truncated, then it's not necessarily
16080 // profitable.
16081 bool BCNumEltsChanged = false;
16082 EVT ExtVT = VecVT.getVectorElementType();
16083 EVT LVT = ExtVT;
16084 if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT))
16085 return SDValue();
16087 if (VecOp.getOpcode() == ISD::BITCAST) {
16088 // Don't duplicate a load with other uses.
16089 if (!VecOp.hasOneUse())
16090 return SDValue();
16092 EVT BCVT = VecOp.getOperand(0).getValueType();
16093 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
16094 return SDValue();
16095 if (NumElts != BCVT.getVectorNumElements())
16096 BCNumEltsChanged = true;
16097 VecOp = VecOp.getOperand(0);
16098 ExtVT = BCVT.getVectorElementType();
16101 // extract (vector load $addr), i --> load $addr + i * size
16102 if (!LegalOperations && !IndexC && VecOp.hasOneUse() &&
16103 ISD::isNormalLoad(VecOp.getNode()) &&
16104 !Index->hasPredecessor(VecOp.getNode())) {
16105 auto *VecLoad = dyn_cast<LoadSDNode>(VecOp);
16106 if (VecLoad && !VecLoad->isVolatile())
16107 return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad);
16110 // Perform only after legalization to ensure build_vector / vector_shuffle
16111 // optimizations have already been done.
16112 if (!LegalOperations || !IndexC)
16113 return SDValue();
16115 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
16116 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
16117 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
16118 int Elt = IndexC->getZExtValue();
16119 LoadSDNode *LN0 = nullptr;
16120 if (ISD::isNormalLoad(VecOp.getNode())) {
16121 LN0 = cast<LoadSDNode>(VecOp);
16122 } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
16123 VecOp.getOperand(0).getValueType() == ExtVT &&
16124 ISD::isNormalLoad(VecOp.getOperand(0).getNode())) {
16125 // Don't duplicate a load with other uses.
16126 if (!VecOp.hasOneUse())
16127 return SDValue();
16129 LN0 = cast<LoadSDNode>(VecOp.getOperand(0));
16131 if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) {
16132 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
16133 // =>
16134 // (load $addr+1*size)
16136 // Don't duplicate a load with other uses.
16137 if (!VecOp.hasOneUse())
16138 return SDValue();
16140 // If the bit convert changed the number of elements, it is unsafe
16141 // to examine the mask.
16142 if (BCNumEltsChanged)
16143 return SDValue();
16145 // Select the input vector, guarding against out of range extract vector.
16146 int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt);
16147 VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1);
16149 if (VecOp.getOpcode() == ISD::BITCAST) {
16150 // Don't duplicate a load with other uses.
16151 if (!VecOp.hasOneUse())
16152 return SDValue();
16154 VecOp = VecOp.getOperand(0);
16156 if (ISD::isNormalLoad(VecOp.getNode())) {
16157 LN0 = cast<LoadSDNode>(VecOp);
16158 Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts;
16159 Index = DAG.getConstant(Elt, DL, Index.getValueType());
16163 // Make sure we found a non-volatile load and the extractelement is
16164 // the only use.
16165 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
16166 return SDValue();
16168 // If Idx was -1 above, Elt is going to be -1, so just return undef.
16169 if (Elt == -1)
16170 return DAG.getUNDEF(LVT);
16172 return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0);
16175 // Simplify (build_vec (ext )) to (bitcast (build_vec ))
16176 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
16177 // We perform this optimization post type-legalization because
16178 // the type-legalizer often scalarizes integer-promoted vectors.
16179 // Performing this optimization before may create bit-casts which
16180 // will be type-legalized to complex code sequences.
16181 // We perform this optimization only before the operation legalizer because we
16182 // may introduce illegal operations.
16183 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
16184 return SDValue();
16186 unsigned NumInScalars = N->getNumOperands();
16187 SDLoc DL(N);
16188 EVT VT = N->getValueType(0);
16190 // Check to see if this is a BUILD_VECTOR of a bunch of values
16191 // which come from any_extend or zero_extend nodes. If so, we can create
16192 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
16193 // optimizations. We do not handle sign-extend because we can't fill the sign
16194 // using shuffles.
16195 EVT SourceType = MVT::Other;
16196 bool AllAnyExt = true;
16198 for (unsigned i = 0; i != NumInScalars; ++i) {
16199 SDValue In = N->getOperand(i);
16200 // Ignore undef inputs.
16201 if (In.isUndef()) continue;
16203 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND;
16204 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
16206 // Abort if the element is not an extension.
16207 if (!ZeroExt && !AnyExt) {
16208 SourceType = MVT::Other;
16209 break;
16212 // The input is a ZeroExt or AnyExt. Check the original type.
16213 EVT InTy = In.getOperand(0).getValueType();
16215 // Check that all of the widened source types are the same.
16216 if (SourceType == MVT::Other)
16217 // First time.
16218 SourceType = InTy;
16219 else if (InTy != SourceType) {
16220 // Multiple income types. Abort.
16221 SourceType = MVT::Other;
16222 break;
16225 // Check if all of the extends are ANY_EXTENDs.
16226 AllAnyExt &= AnyExt;
16229 // In order to have valid types, all of the inputs must be extended from the
16230 // same source type and all of the inputs must be any or zero extend.
16231 // Scalar sizes must be a power of two.
16232 EVT OutScalarTy = VT.getScalarType();
16233 bool ValidTypes = SourceType != MVT::Other &&
16234 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
16235 isPowerOf2_32(SourceType.getSizeInBits());
16237 // Create a new simpler BUILD_VECTOR sequence which other optimizations can
16238 // turn into a single shuffle instruction.
16239 if (!ValidTypes)
16240 return SDValue();
16242 bool isLE = DAG.getDataLayout().isLittleEndian();
16243 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
16244 assert(ElemRatio > 1 && "Invalid element size ratio");
16245 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
16246 DAG.getConstant(0, DL, SourceType);
16248 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
16249 SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
16251 // Populate the new build_vector
16252 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
16253 SDValue Cast = N->getOperand(i);
16254 assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
16255 Cast.getOpcode() == ISD::ZERO_EXTEND ||
16256 Cast.isUndef()) && "Invalid cast opcode");
16257 SDValue In;
16258 if (Cast.isUndef())
16259 In = DAG.getUNDEF(SourceType);
16260 else
16261 In = Cast->getOperand(0);
16262 unsigned Index = isLE ? (i * ElemRatio) :
16263 (i * ElemRatio + (ElemRatio - 1));
16265 assert(Index < Ops.size() && "Invalid index");
16266 Ops[Index] = In;
16269 // The type of the new BUILD_VECTOR node.
16270 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
16271 assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
16272 "Invalid vector size");
16273 // Check if the new vector type is legal.
16274 if (!isTypeLegal(VecVT) ||
16275 (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) &&
16276 TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)))
16277 return SDValue();
16279 // Make the new BUILD_VECTOR.
16280 SDValue BV = DAG.getBuildVector(VecVT, DL, Ops);
16282 // The new BUILD_VECTOR node has the potential to be further optimized.
16283 AddToWorklist(BV.getNode());
16284 // Bitcast to the desired type.
16285 return DAG.getBitcast(VT, BV);
16288 SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N,
16289 ArrayRef<int> VectorMask,
16290 SDValue VecIn1, SDValue VecIn2,
16291 unsigned LeftIdx) {
16292 MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
16293 SDValue ZeroIdx = DAG.getConstant(0, DL, IdxTy);
16295 EVT VT = N->getValueType(0);
16296 EVT InVT1 = VecIn1.getValueType();
16297 EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1;
16299 unsigned Vec2Offset = 0;
16300 unsigned NumElems = VT.getVectorNumElements();
16301 unsigned ShuffleNumElems = NumElems;
16303 // In case both the input vectors are extracted from same base
16304 // vector we do not need extra addend (Vec2Offset) while
16305 // computing shuffle mask.
16306 if (!VecIn2 || !(VecIn1.getOpcode() == ISD::EXTRACT_SUBVECTOR) ||
16307 !(VecIn2.getOpcode() == ISD::EXTRACT_SUBVECTOR) ||
16308 !(VecIn1.getOperand(0) == VecIn2.getOperand(0)))
16309 Vec2Offset = InVT1.getVectorNumElements();
16311 // We can't generate a shuffle node with mismatched input and output types.
16312 // Try to make the types match the type of the output.
16313 if (InVT1 != VT || InVT2 != VT) {
16314 if ((VT.getSizeInBits() % InVT1.getSizeInBits() == 0) && InVT1 == InVT2) {
16315 // If the output vector length is a multiple of both input lengths,
16316 // we can concatenate them and pad the rest with undefs.
16317 unsigned NumConcats = VT.getSizeInBits() / InVT1.getSizeInBits();
16318 assert(NumConcats >= 2 && "Concat needs at least two inputs!");
16319 SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1));
16320 ConcatOps[0] = VecIn1;
16321 ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1);
16322 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
16323 VecIn2 = SDValue();
16324 } else if (InVT1.getSizeInBits() == VT.getSizeInBits() * 2) {
16325 if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems))
16326 return SDValue();
16328 if (!VecIn2.getNode()) {
16329 // If we only have one input vector, and it's twice the size of the
16330 // output, split it in two.
16331 VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1,
16332 DAG.getConstant(NumElems, DL, IdxTy));
16333 VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx);
16334 // Since we now have shorter input vectors, adjust the offset of the
16335 // second vector's start.
16336 Vec2Offset = NumElems;
16337 } else if (InVT2.getSizeInBits() <= InVT1.getSizeInBits()) {
16338 // VecIn1 is wider than the output, and we have another, possibly
16339 // smaller input. Pad the smaller input with undefs, shuffle at the
16340 // input vector width, and extract the output.
16341 // The shuffle type is different than VT, so check legality again.
16342 if (LegalOperations &&
16343 !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1))
16344 return SDValue();
16346 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to
16347 // lower it back into a BUILD_VECTOR. So if the inserted type is
16348 // illegal, don't even try.
16349 if (InVT1 != InVT2) {
16350 if (!TLI.isTypeLegal(InVT2))
16351 return SDValue();
16352 VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1,
16353 DAG.getUNDEF(InVT1), VecIn2, ZeroIdx);
16355 ShuffleNumElems = NumElems * 2;
16356 } else {
16357 // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider
16358 // than VecIn1. We can't handle this for now - this case will disappear
16359 // when we start sorting the vectors by type.
16360 return SDValue();
16362 } else if (InVT2.getSizeInBits() * 2 == VT.getSizeInBits() &&
16363 InVT1.getSizeInBits() == VT.getSizeInBits()) {
16364 SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2));
16365 ConcatOps[0] = VecIn2;
16366 VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
16367 } else {
16368 // TODO: Support cases where the length mismatch isn't exactly by a
16369 // factor of 2.
16370 // TODO: Move this check upwards, so that if we have bad type
16371 // mismatches, we don't create any DAG nodes.
16372 return SDValue();
16376 // Initialize mask to undef.
16377 SmallVector<int, 8> Mask(ShuffleNumElems, -1);
16379 // Only need to run up to the number of elements actually used, not the
16380 // total number of elements in the shuffle - if we are shuffling a wider
16381 // vector, the high lanes should be set to undef.
16382 for (unsigned i = 0; i != NumElems; ++i) {
16383 if (VectorMask[i] <= 0)
16384 continue;
16386 unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1);
16387 if (VectorMask[i] == (int)LeftIdx) {
16388 Mask[i] = ExtIndex;
16389 } else if (VectorMask[i] == (int)LeftIdx + 1) {
16390 Mask[i] = Vec2Offset + ExtIndex;
16394 // The type the input vectors may have changed above.
16395 InVT1 = VecIn1.getValueType();
16397 // If we already have a VecIn2, it should have the same type as VecIn1.
16398 // If we don't, get an undef/zero vector of the appropriate type.
16399 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1);
16400 assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type.");
16402 SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask);
16403 if (ShuffleNumElems > NumElems)
16404 Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx);
16406 return Shuffle;
16409 static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) {
16410 assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector");
16412 // First, determine where the build vector is not undef.
16413 // TODO: We could extend this to handle zero elements as well as undefs.
16414 int NumBVOps = BV->getNumOperands();
16415 int ZextElt = -1;
16416 for (int i = 0; i != NumBVOps; ++i) {
16417 SDValue Op = BV->getOperand(i);
16418 if (Op.isUndef())
16419 continue;
16420 if (ZextElt == -1)
16421 ZextElt = i;
16422 else
16423 return SDValue();
16425 // Bail out if there's no non-undef element.
16426 if (ZextElt == -1)
16427 return SDValue();
16429 // The build vector contains some number of undef elements and exactly
16430 // one other element. That other element must be a zero-extended scalar
16431 // extracted from a vector at a constant index to turn this into a shuffle.
16432 // Also, require that the build vector does not implicitly truncate/extend
16433 // its elements.
16434 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND.
16435 EVT VT = BV->getValueType(0);
16436 SDValue Zext = BV->getOperand(ZextElt);
16437 if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() ||
16438 Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
16439 !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) ||
16440 Zext.getValueSizeInBits() != VT.getScalarSizeInBits())
16441 return SDValue();
16443 // The zero-extend must be a multiple of the source size, and we must be
16444 // building a vector of the same size as the source of the extract element.
16445 SDValue Extract = Zext.getOperand(0);
16446 unsigned DestSize = Zext.getValueSizeInBits();
16447 unsigned SrcSize = Extract.getValueSizeInBits();
16448 if (DestSize % SrcSize != 0 ||
16449 Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits())
16450 return SDValue();
16452 // Create a shuffle mask that will combine the extracted element with zeros
16453 // and undefs.
16454 int ZextRatio = DestSize / SrcSize;
16455 int NumMaskElts = NumBVOps * ZextRatio;
16456 SmallVector<int, 32> ShufMask(NumMaskElts, -1);
16457 for (int i = 0; i != NumMaskElts; ++i) {
16458 if (i / ZextRatio == ZextElt) {
16459 // The low bits of the (potentially translated) extracted element map to
16460 // the source vector. The high bits map to zero. We will use a zero vector
16461 // as the 2nd source operand of the shuffle, so use the 1st element of
16462 // that vector (mask value is number-of-elements) for the high bits.
16463 if (i % ZextRatio == 0)
16464 ShufMask[i] = Extract.getConstantOperandVal(1);
16465 else
16466 ShufMask[i] = NumMaskElts;
16469 // Undef elements of the build vector remain undef because we initialize
16470 // the shuffle mask with -1.
16473 // Turn this into a shuffle with zero if that's legal.
16474 EVT VecVT = Extract.getOperand(0).getValueType();
16475 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(ShufMask, VecVT))
16476 return SDValue();
16478 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... -->
16479 // bitcast (shuffle V, ZeroVec, VectorMask)
16480 SDLoc DL(BV);
16481 SDValue ZeroVec = DAG.getConstant(0, DL, VecVT);
16482 SDValue Shuf = DAG.getVectorShuffle(VecVT, DL, Extract.getOperand(0), ZeroVec,
16483 ShufMask);
16484 return DAG.getBitcast(VT, Shuf);
16487 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
16488 // operations. If the types of the vectors we're extracting from allow it,
16489 // turn this into a vector_shuffle node.
16490 SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) {
16491 SDLoc DL(N);
16492 EVT VT = N->getValueType(0);
16494 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
16495 if (!isTypeLegal(VT))
16496 return SDValue();
16498 if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG))
16499 return V;
16501 // May only combine to shuffle after legalize if shuffle is legal.
16502 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
16503 return SDValue();
16505 bool UsesZeroVector = false;
16506 unsigned NumElems = N->getNumOperands();
16508 // Record, for each element of the newly built vector, which input vector
16509 // that element comes from. -1 stands for undef, 0 for the zero vector,
16510 // and positive values for the input vectors.
16511 // VectorMask maps each element to its vector number, and VecIn maps vector
16512 // numbers to their initial SDValues.
16514 SmallVector<int, 8> VectorMask(NumElems, -1);
16515 SmallVector<SDValue, 8> VecIn;
16516 VecIn.push_back(SDValue());
16518 for (unsigned i = 0; i != NumElems; ++i) {
16519 SDValue Op = N->getOperand(i);
16521 if (Op.isUndef())
16522 continue;
16524 // See if we can use a blend with a zero vector.
16525 // TODO: Should we generalize this to a blend with an arbitrary constant
16526 // vector?
16527 if (isNullConstant(Op) || isNullFPConstant(Op)) {
16528 UsesZeroVector = true;
16529 VectorMask[i] = 0;
16530 continue;
16533 // Not an undef or zero. If the input is something other than an
16534 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
16535 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
16536 !isa<ConstantSDNode>(Op.getOperand(1)))
16537 return SDValue();
16538 SDValue ExtractedFromVec = Op.getOperand(0);
16540 const APInt &ExtractIdx = Op.getConstantOperandAPInt(1);
16541 if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements()))
16542 return SDValue();
16544 // All inputs must have the same element type as the output.
16545 if (VT.getVectorElementType() !=
16546 ExtractedFromVec.getValueType().getVectorElementType())
16547 return SDValue();
16549 // Have we seen this input vector before?
16550 // The vectors are expected to be tiny (usually 1 or 2 elements), so using
16551 // a map back from SDValues to numbers isn't worth it.
16552 unsigned Idx = std::distance(
16553 VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec));
16554 if (Idx == VecIn.size())
16555 VecIn.push_back(ExtractedFromVec);
16557 VectorMask[i] = Idx;
16560 // If we didn't find at least one input vector, bail out.
16561 if (VecIn.size() < 2)
16562 return SDValue();
16564 // If all the Operands of BUILD_VECTOR extract from same
16565 // vector, then split the vector efficiently based on the maximum
16566 // vector access index and adjust the VectorMask and
16567 // VecIn accordingly.
16568 if (VecIn.size() == 2) {
16569 unsigned MaxIndex = 0;
16570 unsigned NearestPow2 = 0;
16571 SDValue Vec = VecIn.back();
16572 EVT InVT = Vec.getValueType();
16573 MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
16574 SmallVector<unsigned, 8> IndexVec(NumElems, 0);
16576 for (unsigned i = 0; i < NumElems; i++) {
16577 if (VectorMask[i] <= 0)
16578 continue;
16579 unsigned Index = N->getOperand(i).getConstantOperandVal(1);
16580 IndexVec[i] = Index;
16581 MaxIndex = std::max(MaxIndex, Index);
16584 NearestPow2 = PowerOf2Ceil(MaxIndex);
16585 if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 &&
16586 NumElems * 2 < NearestPow2) {
16587 unsigned SplitSize = NearestPow2 / 2;
16588 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(),
16589 InVT.getVectorElementType(), SplitSize);
16590 if (TLI.isTypeLegal(SplitVT)) {
16591 SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
16592 DAG.getConstant(SplitSize, DL, IdxTy));
16593 SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
16594 DAG.getConstant(0, DL, IdxTy));
16595 VecIn.pop_back();
16596 VecIn.push_back(VecIn1);
16597 VecIn.push_back(VecIn2);
16599 for (unsigned i = 0; i < NumElems; i++) {
16600 if (VectorMask[i] <= 0)
16601 continue;
16602 VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2;
16608 // TODO: We want to sort the vectors by descending length, so that adjacent
16609 // pairs have similar length, and the longer vector is always first in the
16610 // pair.
16612 // TODO: Should this fire if some of the input vectors has illegal type (like
16613 // it does now), or should we let legalization run its course first?
16615 // Shuffle phase:
16616 // Take pairs of vectors, and shuffle them so that the result has elements
16617 // from these vectors in the correct places.
16618 // For example, given:
16619 // t10: i32 = extract_vector_elt t1, Constant:i64<0>
16620 // t11: i32 = extract_vector_elt t2, Constant:i64<0>
16621 // t12: i32 = extract_vector_elt t3, Constant:i64<0>
16622 // t13: i32 = extract_vector_elt t1, Constant:i64<1>
16623 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
16624 // We will generate:
16625 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
16626 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
16627 SmallVector<SDValue, 4> Shuffles;
16628 for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) {
16629 unsigned LeftIdx = 2 * In + 1;
16630 SDValue VecLeft = VecIn[LeftIdx];
16631 SDValue VecRight =
16632 (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue();
16634 if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft,
16635 VecRight, LeftIdx))
16636 Shuffles.push_back(Shuffle);
16637 else
16638 return SDValue();
16641 // If we need the zero vector as an "ingredient" in the blend tree, add it
16642 // to the list of shuffles.
16643 if (UsesZeroVector)
16644 Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT)
16645 : DAG.getConstantFP(0.0, DL, VT));
16647 // If we only have one shuffle, we're done.
16648 if (Shuffles.size() == 1)
16649 return Shuffles[0];
16651 // Update the vector mask to point to the post-shuffle vectors.
16652 for (int &Vec : VectorMask)
16653 if (Vec == 0)
16654 Vec = Shuffles.size() - 1;
16655 else
16656 Vec = (Vec - 1) / 2;
16658 // More than one shuffle. Generate a binary tree of blends, e.g. if from
16659 // the previous step we got the set of shuffles t10, t11, t12, t13, we will
16660 // generate:
16661 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
16662 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
16663 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
16664 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
16665 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
16666 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
16667 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
16669 // Make sure the initial size of the shuffle list is even.
16670 if (Shuffles.size() % 2)
16671 Shuffles.push_back(DAG.getUNDEF(VT));
16673 for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) {
16674 if (CurSize % 2) {
16675 Shuffles[CurSize] = DAG.getUNDEF(VT);
16676 CurSize++;
16678 for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) {
16679 int Left = 2 * In;
16680 int Right = 2 * In + 1;
16681 SmallVector<int, 8> Mask(NumElems, -1);
16682 for (unsigned i = 0; i != NumElems; ++i) {
16683 if (VectorMask[i] == Left) {
16684 Mask[i] = i;
16685 VectorMask[i] = In;
16686 } else if (VectorMask[i] == Right) {
16687 Mask[i] = i + NumElems;
16688 VectorMask[i] = In;
16692 Shuffles[In] =
16693 DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask);
16696 return Shuffles[0];
16699 // Try to turn a build vector of zero extends of extract vector elts into a
16700 // a vector zero extend and possibly an extract subvector.
16701 // TODO: Support sign extend or any extend?
16702 // TODO: Allow undef elements?
16703 // TODO: Don't require the extracts to start at element 0.
16704 SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) {
16705 if (LegalOperations)
16706 return SDValue();
16708 EVT VT = N->getValueType(0);
16710 SDValue Op0 = N->getOperand(0);
16711 auto checkElem = [&](SDValue Op) -> int64_t {
16712 if (Op.getOpcode() == ISD::ZERO_EXTEND &&
16713 Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
16714 Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0))
16715 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1)))
16716 return C->getZExtValue();
16717 return -1;
16720 // Make sure the first element matches
16721 // (zext (extract_vector_elt X, C))
16722 int64_t Offset = checkElem(Op0);
16723 if (Offset < 0)
16724 return SDValue();
16726 unsigned NumElems = N->getNumOperands();
16727 SDValue In = Op0.getOperand(0).getOperand(0);
16728 EVT InSVT = In.getValueType().getScalarType();
16729 EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems);
16731 // Don't create an illegal input type after type legalization.
16732 if (LegalTypes && !TLI.isTypeLegal(InVT))
16733 return SDValue();
16735 // Ensure all the elements come from the same vector and are adjacent.
16736 for (unsigned i = 1; i != NumElems; ++i) {
16737 if ((Offset + i) != checkElem(N->getOperand(i)))
16738 return SDValue();
16741 SDLoc DL(N);
16742 In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In,
16743 Op0.getOperand(0).getOperand(1));
16744 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, In);
16747 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
16748 EVT VT = N->getValueType(0);
16750 // A vector built entirely of undefs is undef.
16751 if (ISD::allOperandsUndef(N))
16752 return DAG.getUNDEF(VT);
16754 // If this is a splat of a bitcast from another vector, change to a
16755 // concat_vector.
16756 // For example:
16757 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
16758 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
16760 // If X is a build_vector itself, the concat can become a larger build_vector.
16761 // TODO: Maybe this is useful for non-splat too?
16762 if (!LegalOperations) {
16763 if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) {
16764 Splat = peekThroughBitcasts(Splat);
16765 EVT SrcVT = Splat.getValueType();
16766 if (SrcVT.isVector()) {
16767 unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements();
16768 EVT NewVT = EVT::getVectorVT(*DAG.getContext(),
16769 SrcVT.getVectorElementType(), NumElts);
16770 if (!LegalTypes || TLI.isTypeLegal(NewVT)) {
16771 SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat);
16772 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N),
16773 NewVT, Ops);
16774 return DAG.getBitcast(VT, Concat);
16780 // Check if we can express BUILD VECTOR via subvector extract.
16781 if (!LegalTypes && (N->getNumOperands() > 1)) {
16782 SDValue Op0 = N->getOperand(0);
16783 auto checkElem = [&](SDValue Op) -> uint64_t {
16784 if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) &&
16785 (Op0.getOperand(0) == Op.getOperand(0)))
16786 if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
16787 return CNode->getZExtValue();
16788 return -1;
16791 int Offset = checkElem(Op0);
16792 for (unsigned i = 0; i < N->getNumOperands(); ++i) {
16793 if (Offset + i != checkElem(N->getOperand(i))) {
16794 Offset = -1;
16795 break;
16799 if ((Offset == 0) &&
16800 (Op0.getOperand(0).getValueType() == N->getValueType(0)))
16801 return Op0.getOperand(0);
16802 if ((Offset != -1) &&
16803 ((Offset % N->getValueType(0).getVectorNumElements()) ==
16804 0)) // IDX must be multiple of output size.
16805 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0),
16806 Op0.getOperand(0), Op0.getOperand(1));
16809 if (SDValue V = convertBuildVecZextToZext(N))
16810 return V;
16812 if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
16813 return V;
16815 if (SDValue V = reduceBuildVecToShuffle(N))
16816 return V;
16818 return SDValue();
16821 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) {
16822 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16823 EVT OpVT = N->getOperand(0).getValueType();
16825 // If the operands are legal vectors, leave them alone.
16826 if (TLI.isTypeLegal(OpVT))
16827 return SDValue();
16829 SDLoc DL(N);
16830 EVT VT = N->getValueType(0);
16831 SmallVector<SDValue, 8> Ops;
16833 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
16834 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
16836 // Keep track of what we encounter.
16837 bool AnyInteger = false;
16838 bool AnyFP = false;
16839 for (const SDValue &Op : N->ops()) {
16840 if (ISD::BITCAST == Op.getOpcode() &&
16841 !Op.getOperand(0).getValueType().isVector())
16842 Ops.push_back(Op.getOperand(0));
16843 else if (ISD::UNDEF == Op.getOpcode())
16844 Ops.push_back(ScalarUndef);
16845 else
16846 return SDValue();
16848 // Note whether we encounter an integer or floating point scalar.
16849 // If it's neither, bail out, it could be something weird like x86mmx.
16850 EVT LastOpVT = Ops.back().getValueType();
16851 if (LastOpVT.isFloatingPoint())
16852 AnyFP = true;
16853 else if (LastOpVT.isInteger())
16854 AnyInteger = true;
16855 else
16856 return SDValue();
16859 // If any of the operands is a floating point scalar bitcast to a vector,
16860 // use floating point types throughout, and bitcast everything.
16861 // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
16862 if (AnyFP) {
16863 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits());
16864 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
16865 if (AnyInteger) {
16866 for (SDValue &Op : Ops) {
16867 if (Op.getValueType() == SVT)
16868 continue;
16869 if (Op.isUndef())
16870 Op = ScalarUndef;
16871 else
16872 Op = DAG.getBitcast(SVT, Op);
16877 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT,
16878 VT.getSizeInBits() / SVT.getSizeInBits());
16879 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops));
16882 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
16883 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
16884 // most two distinct vectors the same size as the result, attempt to turn this
16885 // into a legal shuffle.
16886 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) {
16887 EVT VT = N->getValueType(0);
16888 EVT OpVT = N->getOperand(0).getValueType();
16889 int NumElts = VT.getVectorNumElements();
16890 int NumOpElts = OpVT.getVectorNumElements();
16892 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT);
16893 SmallVector<int, 8> Mask;
16895 for (SDValue Op : N->ops()) {
16896 Op = peekThroughBitcasts(Op);
16898 // UNDEF nodes convert to UNDEF shuffle mask values.
16899 if (Op.isUndef()) {
16900 Mask.append((unsigned)NumOpElts, -1);
16901 continue;
16904 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
16905 return SDValue();
16907 // What vector are we extracting the subvector from and at what index?
16908 SDValue ExtVec = Op.getOperand(0);
16910 // We want the EVT of the original extraction to correctly scale the
16911 // extraction index.
16912 EVT ExtVT = ExtVec.getValueType();
16913 ExtVec = peekThroughBitcasts(ExtVec);
16915 // UNDEF nodes convert to UNDEF shuffle mask values.
16916 if (ExtVec.isUndef()) {
16917 Mask.append((unsigned)NumOpElts, -1);
16918 continue;
16921 if (!isa<ConstantSDNode>(Op.getOperand(1)))
16922 return SDValue();
16923 int ExtIdx = Op.getConstantOperandVal(1);
16925 // Ensure that we are extracting a subvector from a vector the same
16926 // size as the result.
16927 if (ExtVT.getSizeInBits() != VT.getSizeInBits())
16928 return SDValue();
16930 // Scale the subvector index to account for any bitcast.
16931 int NumExtElts = ExtVT.getVectorNumElements();
16932 if (0 == (NumExtElts % NumElts))
16933 ExtIdx /= (NumExtElts / NumElts);
16934 else if (0 == (NumElts % NumExtElts))
16935 ExtIdx *= (NumElts / NumExtElts);
16936 else
16937 return SDValue();
16939 // At most we can reference 2 inputs in the final shuffle.
16940 if (SV0.isUndef() || SV0 == ExtVec) {
16941 SV0 = ExtVec;
16942 for (int i = 0; i != NumOpElts; ++i)
16943 Mask.push_back(i + ExtIdx);
16944 } else if (SV1.isUndef() || SV1 == ExtVec) {
16945 SV1 = ExtVec;
16946 for (int i = 0; i != NumOpElts; ++i)
16947 Mask.push_back(i + ExtIdx + NumElts);
16948 } else {
16949 return SDValue();
16953 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT))
16954 return SDValue();
16956 return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0),
16957 DAG.getBitcast(VT, SV1), Mask);
16960 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
16961 // If we only have one input vector, we don't need to do any concatenation.
16962 if (N->getNumOperands() == 1)
16963 return N->getOperand(0);
16965 // Check if all of the operands are undefs.
16966 EVT VT = N->getValueType(0);
16967 if (ISD::allOperandsUndef(N))
16968 return DAG.getUNDEF(VT);
16970 // Optimize concat_vectors where all but the first of the vectors are undef.
16971 if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) {
16972 return Op.isUndef();
16973 })) {
16974 SDValue In = N->getOperand(0);
16975 assert(In.getValueType().isVector() && "Must concat vectors");
16977 SDValue Scalar = peekThroughOneUseBitcasts(In);
16979 // concat_vectors(scalar_to_vector(scalar), undef) ->
16980 // scalar_to_vector(scalar)
16981 if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR &&
16982 Scalar.hasOneUse()) {
16983 EVT SVT = Scalar.getValueType().getVectorElementType();
16984 if (SVT == Scalar.getOperand(0).getValueType())
16985 Scalar = Scalar.getOperand(0);
16988 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
16989 if (!Scalar.getValueType().isVector()) {
16990 // If the bitcast type isn't legal, it might be a trunc of a legal type;
16991 // look through the trunc so we can still do the transform:
16992 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
16993 if (Scalar->getOpcode() == ISD::TRUNCATE &&
16994 !TLI.isTypeLegal(Scalar.getValueType()) &&
16995 TLI.isTypeLegal(Scalar->getOperand(0).getValueType()))
16996 Scalar = Scalar->getOperand(0);
16998 EVT SclTy = Scalar.getValueType();
17000 if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
17001 return SDValue();
17003 // Bail out if the vector size is not a multiple of the scalar size.
17004 if (VT.getSizeInBits() % SclTy.getSizeInBits())
17005 return SDValue();
17007 unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits();
17008 if (VNTNumElms < 2)
17009 return SDValue();
17011 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms);
17012 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
17013 return SDValue();
17015 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar);
17016 return DAG.getBitcast(VT, Res);
17020 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
17021 // We have already tested above for an UNDEF only concatenation.
17022 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
17023 // -> (BUILD_VECTOR A, B, ..., C, D, ...)
17024 auto IsBuildVectorOrUndef = [](const SDValue &Op) {
17025 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode();
17027 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) {
17028 SmallVector<SDValue, 8> Opnds;
17029 EVT SVT = VT.getScalarType();
17031 EVT MinVT = SVT;
17032 if (!SVT.isFloatingPoint()) {
17033 // If BUILD_VECTOR are from built from integer, they may have different
17034 // operand types. Get the smallest type and truncate all operands to it.
17035 bool FoundMinVT = false;
17036 for (const SDValue &Op : N->ops())
17037 if (ISD::BUILD_VECTOR == Op.getOpcode()) {
17038 EVT OpSVT = Op.getOperand(0).getValueType();
17039 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT;
17040 FoundMinVT = true;
17042 assert(FoundMinVT && "Concat vector type mismatch");
17045 for (const SDValue &Op : N->ops()) {
17046 EVT OpVT = Op.getValueType();
17047 unsigned NumElts = OpVT.getVectorNumElements();
17049 if (ISD::UNDEF == Op.getOpcode())
17050 Opnds.append(NumElts, DAG.getUNDEF(MinVT));
17052 if (ISD::BUILD_VECTOR == Op.getOpcode()) {
17053 if (SVT.isFloatingPoint()) {
17054 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch");
17055 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts);
17056 } else {
17057 for (unsigned i = 0; i != NumElts; ++i)
17058 Opnds.push_back(
17059 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i)));
17064 assert(VT.getVectorNumElements() == Opnds.size() &&
17065 "Concat vector type mismatch");
17066 return DAG.getBuildVector(VT, SDLoc(N), Opnds);
17069 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
17070 if (SDValue V = combineConcatVectorOfScalars(N, DAG))
17071 return V;
17073 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
17074 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT))
17075 if (SDValue V = combineConcatVectorOfExtracts(N, DAG))
17076 return V;
17078 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
17079 // nodes often generate nop CONCAT_VECTOR nodes.
17080 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
17081 // place the incoming vectors at the exact same location.
17082 SDValue SingleSource = SDValue();
17083 unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
17085 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
17086 SDValue Op = N->getOperand(i);
17088 if (Op.isUndef())
17089 continue;
17091 // Check if this is the identity extract:
17092 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
17093 return SDValue();
17095 // Find the single incoming vector for the extract_subvector.
17096 if (SingleSource.getNode()) {
17097 if (Op.getOperand(0) != SingleSource)
17098 return SDValue();
17099 } else {
17100 SingleSource = Op.getOperand(0);
17102 // Check the source type is the same as the type of the result.
17103 // If not, this concat may extend the vector, so we can not
17104 // optimize it away.
17105 if (SingleSource.getValueType() != N->getValueType(0))
17106 return SDValue();
17109 unsigned IdentityIndex = i * PartNumElem;
17110 ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
17111 // The extract index must be constant.
17112 if (!CS)
17113 return SDValue();
17115 // Check that we are reading from the identity index.
17116 if (CS->getZExtValue() != IdentityIndex)
17117 return SDValue();
17120 if (SingleSource.getNode())
17121 return SingleSource;
17123 return SDValue();
17126 /// If we are extracting a subvector produced by a wide binary operator try
17127 /// to use a narrow binary operator and/or avoid concatenation and extraction.
17128 static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG) {
17129 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
17130 // some of these bailouts with other transforms.
17132 // The extract index must be a constant, so we can map it to a concat operand.
17133 auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
17134 if (!ExtractIndexC)
17135 return SDValue();
17137 // We are looking for an optionally bitcasted wide vector binary operator
17138 // feeding an extract subvector.
17139 SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0));
17140 if (!ISD::isBinaryOp(BinOp.getNode()))
17141 return SDValue();
17143 // The binop must be a vector type, so we can extract some fraction of it.
17144 EVT WideBVT = BinOp.getValueType();
17145 if (!WideBVT.isVector())
17146 return SDValue();
17148 EVT VT = Extract->getValueType(0);
17149 unsigned ExtractIndex = ExtractIndexC->getZExtValue();
17150 assert(ExtractIndex % VT.getVectorNumElements() == 0 &&
17151 "Extract index is not a multiple of the vector length.");
17153 // Bail out if this is not a proper multiple width extraction.
17154 unsigned WideWidth = WideBVT.getSizeInBits();
17155 unsigned NarrowWidth = VT.getSizeInBits();
17156 if (WideWidth % NarrowWidth != 0)
17157 return SDValue();
17159 // Bail out if we are extracting a fraction of a single operation. This can
17160 // occur because we potentially looked through a bitcast of the binop.
17161 unsigned NarrowingRatio = WideWidth / NarrowWidth;
17162 unsigned WideNumElts = WideBVT.getVectorNumElements();
17163 if (WideNumElts % NarrowingRatio != 0)
17164 return SDValue();
17166 // Bail out if the target does not support a narrower version of the binop.
17167 EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(),
17168 WideNumElts / NarrowingRatio);
17169 unsigned BOpcode = BinOp.getOpcode();
17170 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17171 if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT))
17172 return SDValue();
17174 // If extraction is cheap, we don't need to look at the binop operands
17175 // for concat ops. The narrow binop alone makes this transform profitable.
17176 // We can't just reuse the original extract index operand because we may have
17177 // bitcasted.
17178 unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements();
17179 unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements();
17180 EVT ExtBOIdxVT = Extract->getOperand(1).getValueType();
17181 if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) &&
17182 BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) {
17183 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N)
17184 SDLoc DL(Extract);
17185 SDValue NewExtIndex = DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT);
17186 SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
17187 BinOp.getOperand(0), NewExtIndex);
17188 SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
17189 BinOp.getOperand(1), NewExtIndex);
17190 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y,
17191 BinOp.getNode()->getFlags());
17192 return DAG.getBitcast(VT, NarrowBinOp);
17195 // Only handle the case where we are doubling and then halving. A larger ratio
17196 // may require more than two narrow binops to replace the wide binop.
17197 if (NarrowingRatio != 2)
17198 return SDValue();
17200 // TODO: The motivating case for this transform is an x86 AVX1 target. That
17201 // target has temptingly almost legal versions of bitwise logic ops in 256-bit
17202 // flavors, but no other 256-bit integer support. This could be extended to
17203 // handle any binop, but that may require fixing/adding other folds to avoid
17204 // codegen regressions.
17205 if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR)
17206 return SDValue();
17208 // We need at least one concatenation operation of a binop operand to make
17209 // this transform worthwhile. The concat must double the input vector sizes.
17210 // TODO: Should we also handle INSERT_SUBVECTOR patterns?
17211 SDValue LHS = peekThroughBitcasts(BinOp.getOperand(0));
17212 SDValue RHS = peekThroughBitcasts(BinOp.getOperand(1));
17213 bool ConcatL =
17214 LHS.getOpcode() == ISD::CONCAT_VECTORS && LHS.getNumOperands() == 2;
17215 bool ConcatR =
17216 RHS.getOpcode() == ISD::CONCAT_VECTORS && RHS.getNumOperands() == 2;
17217 if (!ConcatL && !ConcatR)
17218 return SDValue();
17220 // If one of the binop operands was not the result of a concat, we must
17221 // extract a half-sized operand for our new narrow binop.
17222 SDLoc DL(Extract);
17224 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
17225 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, N)
17226 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, N), YN
17227 SDValue X = ConcatL ? DAG.getBitcast(NarrowBVT, LHS.getOperand(ConcatOpNum))
17228 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
17229 BinOp.getOperand(0),
17230 DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT));
17232 SDValue Y = ConcatR ? DAG.getBitcast(NarrowBVT, RHS.getOperand(ConcatOpNum))
17233 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
17234 BinOp.getOperand(1),
17235 DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT));
17237 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y);
17238 return DAG.getBitcast(VT, NarrowBinOp);
17241 /// If we are extracting a subvector from a wide vector load, convert to a
17242 /// narrow load to eliminate the extraction:
17243 /// (extract_subvector (load wide vector)) --> (load narrow vector)
17244 static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) {
17245 // TODO: Add support for big-endian. The offset calculation must be adjusted.
17246 if (DAG.getDataLayout().isBigEndian())
17247 return SDValue();
17249 auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0));
17250 auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
17251 if (!Ld || Ld->getExtensionType() || Ld->isVolatile() || !ExtIdx)
17252 return SDValue();
17254 // Allow targets to opt-out.
17255 EVT VT = Extract->getValueType(0);
17256 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17257 if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT))
17258 return SDValue();
17260 // The narrow load will be offset from the base address of the old load if
17261 // we are extracting from something besides index 0 (little-endian).
17262 SDLoc DL(Extract);
17263 SDValue BaseAddr = Ld->getOperand(1);
17264 unsigned Offset = ExtIdx->getZExtValue() * VT.getScalarType().getStoreSize();
17266 // TODO: Use "BaseIndexOffset" to make this more effective.
17267 SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL);
17268 MachineFunction &MF = DAG.getMachineFunction();
17269 MachineMemOperand *MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset,
17270 VT.getStoreSize());
17271 SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO);
17272 DAG.makeEquivalentMemoryOrdering(Ld, NewLd);
17273 return NewLd;
17276 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
17277 EVT NVT = N->getValueType(0);
17278 SDValue V = N->getOperand(0);
17280 // Extract from UNDEF is UNDEF.
17281 if (V.isUndef())
17282 return DAG.getUNDEF(NVT);
17284 if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT))
17285 if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG))
17286 return NarrowLoad;
17288 // Combine an extract of an extract into a single extract_subvector.
17289 // ext (ext X, C), 0 --> ext X, C
17290 if (isNullConstant(N->getOperand(1)) &&
17291 V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse() &&
17292 isa<ConstantSDNode>(V.getOperand(1))) {
17293 if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(),
17294 V.getConstantOperandVal(1)) &&
17295 TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) {
17296 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0),
17297 V.getOperand(1));
17301 // Combine:
17302 // (extract_subvec (concat V1, V2, ...), i)
17303 // Into:
17304 // Vi if possible
17305 // Only operand 0 is checked as 'concat' assumes all inputs of the same
17306 // type.
17307 if (V.getOpcode() == ISD::CONCAT_VECTORS &&
17308 isa<ConstantSDNode>(N->getOperand(1)) &&
17309 V.getOperand(0).getValueType() == NVT) {
17310 unsigned Idx = N->getConstantOperandVal(1);
17311 unsigned NumElems = NVT.getVectorNumElements();
17312 assert((Idx % NumElems) == 0 &&
17313 "IDX in concat is not a multiple of the result vector length.");
17314 return V->getOperand(Idx / NumElems);
17317 V = peekThroughBitcasts(V);
17319 // If the input is a build vector. Try to make a smaller build vector.
17320 if (V.getOpcode() == ISD::BUILD_VECTOR) {
17321 if (auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
17322 EVT InVT = V.getValueType();
17323 unsigned ExtractSize = NVT.getSizeInBits();
17324 unsigned EltSize = InVT.getScalarSizeInBits();
17325 // Only do this if we won't split any elements.
17326 if (ExtractSize % EltSize == 0) {
17327 unsigned NumElems = ExtractSize / EltSize;
17328 EVT EltVT = InVT.getVectorElementType();
17329 EVT ExtractVT = NumElems == 1 ? EltVT :
17330 EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems);
17331 if ((Level < AfterLegalizeDAG ||
17332 (NumElems == 1 ||
17333 TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) &&
17334 (!LegalTypes || TLI.isTypeLegal(ExtractVT))) {
17335 unsigned IdxVal = (Idx->getZExtValue() * NVT.getScalarSizeInBits()) /
17336 EltSize;
17337 if (NumElems == 1) {
17338 SDValue Src = V->getOperand(IdxVal);
17339 if (EltVT != Src.getValueType())
17340 Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src);
17342 return DAG.getBitcast(NVT, Src);
17345 // Extract the pieces from the original build_vector.
17346 SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N),
17347 makeArrayRef(V->op_begin() + IdxVal,
17348 NumElems));
17349 return DAG.getBitcast(NVT, BuildVec);
17355 if (V.getOpcode() == ISD::INSERT_SUBVECTOR) {
17356 // Handle only simple case where vector being inserted and vector
17357 // being extracted are of same size.
17358 EVT SmallVT = V.getOperand(1).getValueType();
17359 if (!NVT.bitsEq(SmallVT))
17360 return SDValue();
17362 // Only handle cases where both indexes are constants.
17363 auto *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
17364 auto *InsIdx = dyn_cast<ConstantSDNode>(V.getOperand(2));
17366 if (InsIdx && ExtIdx) {
17367 // Combine:
17368 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
17369 // Into:
17370 // indices are equal or bit offsets are equal => V1
17371 // otherwise => (extract_subvec V1, ExtIdx)
17372 if (InsIdx->getZExtValue() * SmallVT.getScalarSizeInBits() ==
17373 ExtIdx->getZExtValue() * NVT.getScalarSizeInBits())
17374 return DAG.getBitcast(NVT, V.getOperand(1));
17375 return DAG.getNode(
17376 ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT,
17377 DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)),
17378 N->getOperand(1));
17382 if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG))
17383 return NarrowBOp;
17385 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
17386 return SDValue(N, 0);
17388 return SDValue();
17391 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
17392 // or turn a shuffle of a single concat into simpler shuffle then concat.
17393 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
17394 EVT VT = N->getValueType(0);
17395 unsigned NumElts = VT.getVectorNumElements();
17397 SDValue N0 = N->getOperand(0);
17398 SDValue N1 = N->getOperand(1);
17399 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
17401 SmallVector<SDValue, 4> Ops;
17402 EVT ConcatVT = N0.getOperand(0).getValueType();
17403 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
17404 unsigned NumConcats = NumElts / NumElemsPerConcat;
17406 // Special case: shuffle(concat(A,B)) can be more efficiently represented
17407 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
17408 // half vector elements.
17409 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() &&
17410 std::all_of(SVN->getMask().begin() + NumElemsPerConcat,
17411 SVN->getMask().end(), [](int i) { return i == -1; })) {
17412 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1),
17413 makeArrayRef(SVN->getMask().begin(), NumElemsPerConcat));
17414 N1 = DAG.getUNDEF(ConcatVT);
17415 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1);
17418 // Look at every vector that's inserted. We're looking for exact
17419 // subvector-sized copies from a concatenated vector
17420 for (unsigned I = 0; I != NumConcats; ++I) {
17421 // Make sure we're dealing with a copy.
17422 unsigned Begin = I * NumElemsPerConcat;
17423 bool AllUndef = true, NoUndef = true;
17424 for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
17425 if (SVN->getMaskElt(J) >= 0)
17426 AllUndef = false;
17427 else
17428 NoUndef = false;
17431 if (NoUndef) {
17432 if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
17433 return SDValue();
17435 for (unsigned J = 1; J != NumElemsPerConcat; ++J)
17436 if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
17437 return SDValue();
17439 unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
17440 if (FirstElt < N0.getNumOperands())
17441 Ops.push_back(N0.getOperand(FirstElt));
17442 else
17443 Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
17445 } else if (AllUndef) {
17446 Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
17447 } else { // Mixed with general masks and undefs, can't do optimization.
17448 return SDValue();
17452 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
17455 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
17456 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
17458 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
17459 // a simplification in some sense, but it isn't appropriate in general: some
17460 // BUILD_VECTORs are substantially cheaper than others. The general case
17461 // of a BUILD_VECTOR requires inserting each element individually (or
17462 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
17463 // all constants is a single constant pool load. A BUILD_VECTOR where each
17464 // element is identical is a splat. A BUILD_VECTOR where most of the operands
17465 // are undef lowers to a small number of element insertions.
17467 // To deal with this, we currently use a bunch of mostly arbitrary heuristics.
17468 // We don't fold shuffles where one side is a non-zero constant, and we don't
17469 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
17470 // non-constant operands. This seems to work out reasonably well in practice.
17471 static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN,
17472 SelectionDAG &DAG,
17473 const TargetLowering &TLI) {
17474 EVT VT = SVN->getValueType(0);
17475 unsigned NumElts = VT.getVectorNumElements();
17476 SDValue N0 = SVN->getOperand(0);
17477 SDValue N1 = SVN->getOperand(1);
17479 if (!N0->hasOneUse())
17480 return SDValue();
17482 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
17483 // discussed above.
17484 if (!N1.isUndef()) {
17485 if (!N1->hasOneUse())
17486 return SDValue();
17488 bool N0AnyConst = isAnyConstantBuildVector(N0);
17489 bool N1AnyConst = isAnyConstantBuildVector(N1);
17490 if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode()))
17491 return SDValue();
17492 if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode()))
17493 return SDValue();
17496 // If both inputs are splats of the same value then we can safely merge this
17497 // to a single BUILD_VECTOR with undef elements based on the shuffle mask.
17498 bool IsSplat = false;
17499 auto *BV0 = dyn_cast<BuildVectorSDNode>(N0);
17500 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
17501 if (BV0 && BV1)
17502 if (SDValue Splat0 = BV0->getSplatValue())
17503 IsSplat = (Splat0 == BV1->getSplatValue());
17505 SmallVector<SDValue, 8> Ops;
17506 SmallSet<SDValue, 16> DuplicateOps;
17507 for (int M : SVN->getMask()) {
17508 SDValue Op = DAG.getUNDEF(VT.getScalarType());
17509 if (M >= 0) {
17510 int Idx = M < (int)NumElts ? M : M - NumElts;
17511 SDValue &S = (M < (int)NumElts ? N0 : N1);
17512 if (S.getOpcode() == ISD::BUILD_VECTOR) {
17513 Op = S.getOperand(Idx);
17514 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) {
17515 assert(Idx == 0 && "Unexpected SCALAR_TO_VECTOR operand index.");
17516 Op = S.getOperand(0);
17517 } else {
17518 // Operand can't be combined - bail out.
17519 return SDValue();
17523 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're
17524 // generating a splat; semantically, this is fine, but it's likely to
17525 // generate low-quality code if the target can't reconstruct an appropriate
17526 // shuffle.
17527 if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op))
17528 if (!IsSplat && !DuplicateOps.insert(Op).second)
17529 return SDValue();
17531 Ops.push_back(Op);
17534 // BUILD_VECTOR requires all inputs to be of the same type, find the
17535 // maximum type and extend them all.
17536 EVT SVT = VT.getScalarType();
17537 if (SVT.isInteger())
17538 for (SDValue &Op : Ops)
17539 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
17540 if (SVT != VT.getScalarType())
17541 for (SDValue &Op : Ops)
17542 Op = TLI.isZExtFree(Op.getValueType(), SVT)
17543 ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT)
17544 : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT);
17545 return DAG.getBuildVector(VT, SDLoc(SVN), Ops);
17548 // Match shuffles that can be converted to any_vector_extend_in_reg.
17549 // This is often generated during legalization.
17550 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
17551 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case.
17552 static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN,
17553 SelectionDAG &DAG,
17554 const TargetLowering &TLI,
17555 bool LegalOperations) {
17556 EVT VT = SVN->getValueType(0);
17557 bool IsBigEndian = DAG.getDataLayout().isBigEndian();
17559 // TODO Add support for big-endian when we have a test case.
17560 if (!VT.isInteger() || IsBigEndian)
17561 return SDValue();
17563 unsigned NumElts = VT.getVectorNumElements();
17564 unsigned EltSizeInBits = VT.getScalarSizeInBits();
17565 ArrayRef<int> Mask = SVN->getMask();
17566 SDValue N0 = SVN->getOperand(0);
17568 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
17569 auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) {
17570 for (unsigned i = 0; i != NumElts; ++i) {
17571 if (Mask[i] < 0)
17572 continue;
17573 if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale))
17574 continue;
17575 return false;
17577 return true;
17580 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
17581 // power-of-2 extensions as they are the most likely.
17582 for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) {
17583 // Check for non power of 2 vector sizes
17584 if (NumElts % Scale != 0)
17585 continue;
17586 if (!isAnyExtend(Scale))
17587 continue;
17589 EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale);
17590 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale);
17591 // Never create an illegal type. Only create unsupported operations if we
17592 // are pre-legalization.
17593 if (TLI.isTypeLegal(OutVT))
17594 if (!LegalOperations ||
17595 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT))
17596 return DAG.getBitcast(VT,
17597 DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG,
17598 SDLoc(SVN), OutVT, N0));
17601 return SDValue();
17604 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
17605 // each source element of a large type into the lowest elements of a smaller
17606 // destination type. This is often generated during legalization.
17607 // If the source node itself was a '*_extend_vector_inreg' node then we should
17608 // then be able to remove it.
17609 static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN,
17610 SelectionDAG &DAG) {
17611 EVT VT = SVN->getValueType(0);
17612 bool IsBigEndian = DAG.getDataLayout().isBigEndian();
17614 // TODO Add support for big-endian when we have a test case.
17615 if (!VT.isInteger() || IsBigEndian)
17616 return SDValue();
17618 SDValue N0 = peekThroughBitcasts(SVN->getOperand(0));
17620 unsigned Opcode = N0.getOpcode();
17621 if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG &&
17622 Opcode != ISD::SIGN_EXTEND_VECTOR_INREG &&
17623 Opcode != ISD::ZERO_EXTEND_VECTOR_INREG)
17624 return SDValue();
17626 SDValue N00 = N0.getOperand(0);
17627 ArrayRef<int> Mask = SVN->getMask();
17628 unsigned NumElts = VT.getVectorNumElements();
17629 unsigned EltSizeInBits = VT.getScalarSizeInBits();
17630 unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits();
17631 unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits();
17633 if (ExtDstSizeInBits % ExtSrcSizeInBits != 0)
17634 return SDValue();
17635 unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits;
17637 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
17638 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
17639 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
17640 auto isTruncate = [&Mask, &NumElts](unsigned Scale) {
17641 for (unsigned i = 0; i != NumElts; ++i) {
17642 if (Mask[i] < 0)
17643 continue;
17644 if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale))
17645 continue;
17646 return false;
17648 return true;
17651 // At the moment we just handle the case where we've truncated back to the
17652 // same size as before the extension.
17653 // TODO: handle more extension/truncation cases as cases arise.
17654 if (EltSizeInBits != ExtSrcSizeInBits)
17655 return SDValue();
17657 // We can remove *extend_vector_inreg only if the truncation happens at
17658 // the same scale as the extension.
17659 if (isTruncate(ExtScale))
17660 return DAG.getBitcast(VT, N00);
17662 return SDValue();
17665 // Combine shuffles of splat-shuffles of the form:
17666 // shuffle (shuffle V, undef, splat-mask), undef, M
17667 // If splat-mask contains undef elements, we need to be careful about
17668 // introducing undef's in the folded mask which are not the result of composing
17669 // the masks of the shuffles.
17670 static SDValue combineShuffleOfSplat(ArrayRef<int> UserMask,
17671 ShuffleVectorSDNode *Splat,
17672 SelectionDAG &DAG) {
17673 ArrayRef<int> SplatMask = Splat->getMask();
17674 assert(UserMask.size() == SplatMask.size() && "Mask length mismatch");
17676 // Prefer simplifying to the splat-shuffle, if possible. This is legal if
17677 // every undef mask element in the splat-shuffle has a corresponding undef
17678 // element in the user-shuffle's mask or if the composition of mask elements
17679 // would result in undef.
17680 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
17681 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
17682 // In this case it is not legal to simplify to the splat-shuffle because we
17683 // may be exposing the users of the shuffle an undef element at index 1
17684 // which was not there before the combine.
17685 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
17686 // In this case the composition of masks yields SplatMask, so it's ok to
17687 // simplify to the splat-shuffle.
17688 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
17689 // In this case the composed mask includes all undef elements of SplatMask
17690 // and in addition sets element zero to undef. It is safe to simplify to
17691 // the splat-shuffle.
17692 auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask,
17693 ArrayRef<int> SplatMask) {
17694 for (unsigned i = 0, e = UserMask.size(); i != e; ++i)
17695 if (UserMask[i] != -1 && SplatMask[i] == -1 &&
17696 SplatMask[UserMask[i]] != -1)
17697 return false;
17698 return true;
17700 if (CanSimplifyToExistingSplat(UserMask, SplatMask))
17701 return SDValue(Splat, 0);
17703 // Create a new shuffle with a mask that is composed of the two shuffles'
17704 // masks.
17705 SmallVector<int, 32> NewMask;
17706 for (int Idx : UserMask)
17707 NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]);
17709 return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat),
17710 Splat->getOperand(0), Splat->getOperand(1),
17711 NewMask);
17714 /// If the shuffle mask is taking exactly one element from the first vector
17715 /// operand and passing through all other elements from the second vector
17716 /// operand, return the index of the mask element that is choosing an element
17717 /// from the first operand. Otherwise, return -1.
17718 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) {
17719 int MaskSize = Mask.size();
17720 int EltFromOp0 = -1;
17721 // TODO: This does not match if there are undef elements in the shuffle mask.
17722 // Should we ignore undefs in the shuffle mask instead? The trade-off is
17723 // removing an instruction (a shuffle), but losing the knowledge that some
17724 // vector lanes are not needed.
17725 for (int i = 0; i != MaskSize; ++i) {
17726 if (Mask[i] >= 0 && Mask[i] < MaskSize) {
17727 // We're looking for a shuffle of exactly one element from operand 0.
17728 if (EltFromOp0 != -1)
17729 return -1;
17730 EltFromOp0 = i;
17731 } else if (Mask[i] != i + MaskSize) {
17732 // Nothing from operand 1 can change lanes.
17733 return -1;
17736 return EltFromOp0;
17739 /// If a shuffle inserts exactly one element from a source vector operand into
17740 /// another vector operand and we can access the specified element as a scalar,
17741 /// then we can eliminate the shuffle.
17742 static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf,
17743 SelectionDAG &DAG) {
17744 // First, check if we are taking one element of a vector and shuffling that
17745 // element into another vector.
17746 ArrayRef<int> Mask = Shuf->getMask();
17747 SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end());
17748 SDValue Op0 = Shuf->getOperand(0);
17749 SDValue Op1 = Shuf->getOperand(1);
17750 int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask);
17751 if (ShufOp0Index == -1) {
17752 // Commute mask and check again.
17753 ShuffleVectorSDNode::commuteMask(CommutedMask);
17754 ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask);
17755 if (ShufOp0Index == -1)
17756 return SDValue();
17757 // Commute operands to match the commuted shuffle mask.
17758 std::swap(Op0, Op1);
17759 Mask = CommutedMask;
17762 // The shuffle inserts exactly one element from operand 0 into operand 1.
17763 // Now see if we can access that element as a scalar via a real insert element
17764 // instruction.
17765 // TODO: We can try harder to locate the element as a scalar. Examples: it
17766 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant.
17767 assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() &&
17768 "Shuffle mask value must be from operand 0");
17769 if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT)
17770 return SDValue();
17772 auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2));
17773 if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index])
17774 return SDValue();
17776 // There's an existing insertelement with constant insertion index, so we
17777 // don't need to check the legality/profitability of a replacement operation
17778 // that differs at most in the constant value. The target should be able to
17779 // lower any of those in a similar way. If not, legalization will expand this
17780 // to a scalar-to-vector plus shuffle.
17782 // Note that the shuffle may move the scalar from the position that the insert
17783 // element used. Therefore, our new insert element occurs at the shuffle's
17784 // mask index value, not the insert's index value.
17785 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
17786 SDValue NewInsIndex = DAG.getConstant(ShufOp0Index, SDLoc(Shuf),
17787 Op0.getOperand(2).getValueType());
17788 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(),
17789 Op1, Op0.getOperand(1), NewInsIndex);
17792 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
17793 EVT VT = N->getValueType(0);
17794 unsigned NumElts = VT.getVectorNumElements();
17796 SDValue N0 = N->getOperand(0);
17797 SDValue N1 = N->getOperand(1);
17799 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
17801 // Canonicalize shuffle undef, undef -> undef
17802 if (N0.isUndef() && N1.isUndef())
17803 return DAG.getUNDEF(VT);
17805 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
17807 // Canonicalize shuffle v, v -> v, undef
17808 if (N0 == N1) {
17809 SmallVector<int, 8> NewMask;
17810 for (unsigned i = 0; i != NumElts; ++i) {
17811 int Idx = SVN->getMaskElt(i);
17812 if (Idx >= (int)NumElts) Idx -= NumElts;
17813 NewMask.push_back(Idx);
17815 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask);
17818 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
17819 if (N0.isUndef())
17820 return DAG.getCommutedVectorShuffle(*SVN);
17822 // Remove references to rhs if it is undef
17823 if (N1.isUndef()) {
17824 bool Changed = false;
17825 SmallVector<int, 8> NewMask;
17826 for (unsigned i = 0; i != NumElts; ++i) {
17827 int Idx = SVN->getMaskElt(i);
17828 if (Idx >= (int)NumElts) {
17829 Idx = -1;
17830 Changed = true;
17832 NewMask.push_back(Idx);
17834 if (Changed)
17835 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask);
17838 if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG))
17839 return InsElt;
17841 // A shuffle of a single vector that is a splat can always be folded.
17842 if (auto *N0Shuf = dyn_cast<ShuffleVectorSDNode>(N0))
17843 if (N1->isUndef() && N0Shuf->isSplat())
17844 return combineShuffleOfSplat(SVN->getMask(), N0Shuf, DAG);
17846 // If it is a splat, check if the argument vector is another splat or a
17847 // build_vector.
17848 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
17849 SDNode *V = N0.getNode();
17851 // If this is a bit convert that changes the element type of the vector but
17852 // not the number of vector elements, look through it. Be careful not to
17853 // look though conversions that change things like v4f32 to v2f64.
17854 if (V->getOpcode() == ISD::BITCAST) {
17855 SDValue ConvInput = V->getOperand(0);
17856 if (ConvInput.getValueType().isVector() &&
17857 ConvInput.getValueType().getVectorNumElements() == NumElts)
17858 V = ConvInput.getNode();
17861 if (V->getOpcode() == ISD::BUILD_VECTOR) {
17862 assert(V->getNumOperands() == NumElts &&
17863 "BUILD_VECTOR has wrong number of operands");
17864 SDValue Base;
17865 bool AllSame = true;
17866 for (unsigned i = 0; i != NumElts; ++i) {
17867 if (!V->getOperand(i).isUndef()) {
17868 Base = V->getOperand(i);
17869 break;
17872 // Splat of <u, u, u, u>, return <u, u, u, u>
17873 if (!Base.getNode())
17874 return N0;
17875 for (unsigned i = 0; i != NumElts; ++i) {
17876 if (V->getOperand(i) != Base) {
17877 AllSame = false;
17878 break;
17881 // Splat of <x, x, x, x>, return <x, x, x, x>
17882 if (AllSame)
17883 return N0;
17885 // Canonicalize any other splat as a build_vector.
17886 const SDValue &Splatted = V->getOperand(SVN->getSplatIndex());
17887 SmallVector<SDValue, 8> Ops(NumElts, Splatted);
17888 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops);
17890 // We may have jumped through bitcasts, so the type of the
17891 // BUILD_VECTOR may not match the type of the shuffle.
17892 if (V->getValueType(0) != VT)
17893 NewBV = DAG.getBitcast(VT, NewBV);
17894 return NewBV;
17898 // Simplify source operands based on shuffle mask.
17899 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
17900 return SDValue(N, 0);
17902 // Match shuffles that can be converted to any_vector_extend_in_reg.
17903 if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations))
17904 return V;
17906 // Combine "truncate_vector_in_reg" style shuffles.
17907 if (SDValue V = combineTruncationShuffle(SVN, DAG))
17908 return V;
17910 if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
17911 Level < AfterLegalizeVectorOps &&
17912 (N1.isUndef() ||
17913 (N1.getOpcode() == ISD::CONCAT_VECTORS &&
17914 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
17915 if (SDValue V = partitionShuffleOfConcats(N, DAG))
17916 return V;
17919 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
17920 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
17921 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT))
17922 if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI))
17923 return Res;
17925 // If this shuffle only has a single input that is a bitcasted shuffle,
17926 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
17927 // back to their original types.
17928 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
17929 N1.isUndef() && Level < AfterLegalizeVectorOps &&
17930 TLI.isTypeLegal(VT)) {
17931 auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) {
17932 if (Scale == 1)
17933 return SmallVector<int, 8>(Mask.begin(), Mask.end());
17935 SmallVector<int, 8> NewMask;
17936 for (int M : Mask)
17937 for (int s = 0; s != Scale; ++s)
17938 NewMask.push_back(M < 0 ? -1 : Scale * M + s);
17939 return NewMask;
17942 SDValue BC0 = peekThroughOneUseBitcasts(N0);
17943 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) {
17944 EVT SVT = VT.getScalarType();
17945 EVT InnerVT = BC0->getValueType(0);
17946 EVT InnerSVT = InnerVT.getScalarType();
17948 // Determine which shuffle works with the smaller scalar type.
17949 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT;
17950 EVT ScaleSVT = ScaleVT.getScalarType();
17952 if (TLI.isTypeLegal(ScaleVT) &&
17953 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) &&
17954 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) {
17955 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits();
17956 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits();
17958 // Scale the shuffle masks to the smaller scalar type.
17959 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0);
17960 SmallVector<int, 8> InnerMask =
17961 ScaleShuffleMask(InnerSVN->getMask(), InnerScale);
17962 SmallVector<int, 8> OuterMask =
17963 ScaleShuffleMask(SVN->getMask(), OuterScale);
17965 // Merge the shuffle masks.
17966 SmallVector<int, 8> NewMask;
17967 for (int M : OuterMask)
17968 NewMask.push_back(M < 0 ? -1 : InnerMask[M]);
17970 // Test for shuffle mask legality over both commutations.
17971 SDValue SV0 = BC0->getOperand(0);
17972 SDValue SV1 = BC0->getOperand(1);
17973 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
17974 if (!LegalMask) {
17975 std::swap(SV0, SV1);
17976 ShuffleVectorSDNode::commuteMask(NewMask);
17977 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
17980 if (LegalMask) {
17981 SV0 = DAG.getBitcast(ScaleVT, SV0);
17982 SV1 = DAG.getBitcast(ScaleVT, SV1);
17983 return DAG.getBitcast(
17984 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask));
17990 // Canonicalize shuffles according to rules:
17991 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
17992 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
17993 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
17994 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
17995 N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
17996 TLI.isTypeLegal(VT)) {
17997 // The incoming shuffle must be of the same type as the result of the
17998 // current shuffle.
17999 assert(N1->getOperand(0).getValueType() == VT &&
18000 "Shuffle types don't match");
18002 SDValue SV0 = N1->getOperand(0);
18003 SDValue SV1 = N1->getOperand(1);
18004 bool HasSameOp0 = N0 == SV0;
18005 bool IsSV1Undef = SV1.isUndef();
18006 if (HasSameOp0 || IsSV1Undef || N0 == SV1)
18007 // Commute the operands of this shuffle so that next rule
18008 // will trigger.
18009 return DAG.getCommutedVectorShuffle(*SVN);
18012 // Try to fold according to rules:
18013 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
18014 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
18015 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
18016 // Don't try to fold shuffles with illegal type.
18017 // Only fold if this shuffle is the only user of the other shuffle.
18018 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) &&
18019 Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
18020 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
18022 // Don't try to fold splats; they're likely to simplify somehow, or they
18023 // might be free.
18024 if (OtherSV->isSplat())
18025 return SDValue();
18027 // The incoming shuffle must be of the same type as the result of the
18028 // current shuffle.
18029 assert(OtherSV->getOperand(0).getValueType() == VT &&
18030 "Shuffle types don't match");
18032 SDValue SV0, SV1;
18033 SmallVector<int, 4> Mask;
18034 // Compute the combined shuffle mask for a shuffle with SV0 as the first
18035 // operand, and SV1 as the second operand.
18036 for (unsigned i = 0; i != NumElts; ++i) {
18037 int Idx = SVN->getMaskElt(i);
18038 if (Idx < 0) {
18039 // Propagate Undef.
18040 Mask.push_back(Idx);
18041 continue;
18044 SDValue CurrentVec;
18045 if (Idx < (int)NumElts) {
18046 // This shuffle index refers to the inner shuffle N0. Lookup the inner
18047 // shuffle mask to identify which vector is actually referenced.
18048 Idx = OtherSV->getMaskElt(Idx);
18049 if (Idx < 0) {
18050 // Propagate Undef.
18051 Mask.push_back(Idx);
18052 continue;
18055 CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0)
18056 : OtherSV->getOperand(1);
18057 } else {
18058 // This shuffle index references an element within N1.
18059 CurrentVec = N1;
18062 // Simple case where 'CurrentVec' is UNDEF.
18063 if (CurrentVec.isUndef()) {
18064 Mask.push_back(-1);
18065 continue;
18068 // Canonicalize the shuffle index. We don't know yet if CurrentVec
18069 // will be the first or second operand of the combined shuffle.
18070 Idx = Idx % NumElts;
18071 if (!SV0.getNode() || SV0 == CurrentVec) {
18072 // Ok. CurrentVec is the left hand side.
18073 // Update the mask accordingly.
18074 SV0 = CurrentVec;
18075 Mask.push_back(Idx);
18076 continue;
18079 // Bail out if we cannot convert the shuffle pair into a single shuffle.
18080 if (SV1.getNode() && SV1 != CurrentVec)
18081 return SDValue();
18083 // Ok. CurrentVec is the right hand side.
18084 // Update the mask accordingly.
18085 SV1 = CurrentVec;
18086 Mask.push_back(Idx + NumElts);
18089 // Check if all indices in Mask are Undef. In case, propagate Undef.
18090 bool isUndefMask = true;
18091 for (unsigned i = 0; i != NumElts && isUndefMask; ++i)
18092 isUndefMask &= Mask[i] < 0;
18094 if (isUndefMask)
18095 return DAG.getUNDEF(VT);
18097 if (!SV0.getNode())
18098 SV0 = DAG.getUNDEF(VT);
18099 if (!SV1.getNode())
18100 SV1 = DAG.getUNDEF(VT);
18102 // Avoid introducing shuffles with illegal mask.
18103 if (!TLI.isShuffleMaskLegal(Mask, VT)) {
18104 ShuffleVectorSDNode::commuteMask(Mask);
18106 if (!TLI.isShuffleMaskLegal(Mask, VT))
18107 return SDValue();
18109 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
18110 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
18111 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
18112 std::swap(SV0, SV1);
18115 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
18116 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
18117 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
18118 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask);
18121 return SDValue();
18124 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
18125 SDValue InVal = N->getOperand(0);
18126 EVT VT = N->getValueType(0);
18128 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
18129 // with a VECTOR_SHUFFLE and possible truncate.
18130 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
18131 SDValue InVec = InVal->getOperand(0);
18132 SDValue EltNo = InVal->getOperand(1);
18133 auto InVecT = InVec.getValueType();
18134 if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) {
18135 SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1);
18136 int Elt = C0->getZExtValue();
18137 NewMask[0] = Elt;
18138 SDValue Val;
18139 // If we have an implict truncate do truncate here as long as it's legal.
18140 // if it's not legal, this should
18141 if (VT.getScalarType() != InVal.getValueType() &&
18142 InVal.getValueType().isScalarInteger() &&
18143 isTypeLegal(VT.getScalarType())) {
18144 Val =
18145 DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal);
18146 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val);
18148 if (VT.getScalarType() == InVecT.getScalarType() &&
18149 VT.getVectorNumElements() <= InVecT.getVectorNumElements() &&
18150 TLI.isShuffleMaskLegal(NewMask, VT)) {
18151 Val = DAG.getVectorShuffle(InVecT, SDLoc(N), InVec,
18152 DAG.getUNDEF(InVecT), NewMask);
18153 // If the initial vector is the correct size this shuffle is a
18154 // valid result.
18155 if (VT == InVecT)
18156 return Val;
18157 // If not we must truncate the vector.
18158 if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) {
18159 MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
18160 SDValue ZeroIdx = DAG.getConstant(0, SDLoc(N), IdxTy);
18161 EVT SubVT =
18162 EVT::getVectorVT(*DAG.getContext(), InVecT.getVectorElementType(),
18163 VT.getVectorNumElements());
18164 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, Val,
18165 ZeroIdx);
18166 return Val;
18172 return SDValue();
18175 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
18176 EVT VT = N->getValueType(0);
18177 SDValue N0 = N->getOperand(0);
18178 SDValue N1 = N->getOperand(1);
18179 SDValue N2 = N->getOperand(2);
18181 // If inserting an UNDEF, just return the original vector.
18182 if (N1.isUndef())
18183 return N0;
18185 // If this is an insert of an extracted vector into an undef vector, we can
18186 // just use the input to the extract.
18187 if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
18188 N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT)
18189 return N1.getOperand(0);
18191 // If we are inserting a bitcast value into an undef, with the same
18192 // number of elements, just use the bitcast input of the extract.
18193 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
18194 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
18195 if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST &&
18196 N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR &&
18197 N1.getOperand(0).getOperand(1) == N2 &&
18198 N1.getOperand(0).getOperand(0).getValueType().getVectorNumElements() ==
18199 VT.getVectorNumElements() &&
18200 N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() ==
18201 VT.getSizeInBits()) {
18202 return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0));
18205 // If both N1 and N2 are bitcast values on which insert_subvector
18206 // would makes sense, pull the bitcast through.
18207 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
18208 // BITCAST (INSERT_SUBVECTOR N0 N1 N2)
18209 if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) {
18210 SDValue CN0 = N0.getOperand(0);
18211 SDValue CN1 = N1.getOperand(0);
18212 EVT CN0VT = CN0.getValueType();
18213 EVT CN1VT = CN1.getValueType();
18214 if (CN0VT.isVector() && CN1VT.isVector() &&
18215 CN0VT.getVectorElementType() == CN1VT.getVectorElementType() &&
18216 CN0VT.getVectorNumElements() == VT.getVectorNumElements()) {
18217 SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N),
18218 CN0.getValueType(), CN0, CN1, N2);
18219 return DAG.getBitcast(VT, NewINSERT);
18223 // Combine INSERT_SUBVECTORs where we are inserting to the same index.
18224 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
18225 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
18226 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR &&
18227 N0.getOperand(1).getValueType() == N1.getValueType() &&
18228 N0.getOperand(2) == N2)
18229 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0),
18230 N1, N2);
18232 // Eliminate an intermediate insert into an undef vector:
18233 // insert_subvector undef, (insert_subvector undef, X, 0), N2 -->
18234 // insert_subvector undef, X, N2
18235 if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR &&
18236 N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2)))
18237 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0,
18238 N1.getOperand(1), N2);
18240 if (!isa<ConstantSDNode>(N2))
18241 return SDValue();
18243 unsigned InsIdx = cast<ConstantSDNode>(N2)->getZExtValue();
18245 // Canonicalize insert_subvector dag nodes.
18246 // Example:
18247 // (insert_subvector (insert_subvector A, Idx0), Idx1)
18248 // -> (insert_subvector (insert_subvector A, Idx1), Idx0)
18249 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() &&
18250 N1.getValueType() == N0.getOperand(1).getValueType() &&
18251 isa<ConstantSDNode>(N0.getOperand(2))) {
18252 unsigned OtherIdx = N0.getConstantOperandVal(2);
18253 if (InsIdx < OtherIdx) {
18254 // Swap nodes.
18255 SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT,
18256 N0.getOperand(0), N1, N2);
18257 AddToWorklist(NewOp.getNode());
18258 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()),
18259 VT, NewOp, N0.getOperand(1), N0.getOperand(2));
18263 // If the input vector is a concatenation, and the insert replaces
18264 // one of the pieces, we can optimize into a single concat_vectors.
18265 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() &&
18266 N0.getOperand(0).getValueType() == N1.getValueType()) {
18267 unsigned Factor = N1.getValueType().getVectorNumElements();
18269 SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end());
18270 Ops[cast<ConstantSDNode>(N2)->getZExtValue() / Factor] = N1;
18272 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
18275 // Simplify source operands based on insertion.
18276 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
18277 return SDValue(N, 0);
18279 return SDValue();
18282 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) {
18283 SDValue N0 = N->getOperand(0);
18285 // fold (fp_to_fp16 (fp16_to_fp op)) -> op
18286 if (N0->getOpcode() == ISD::FP16_TO_FP)
18287 return N0->getOperand(0);
18289 return SDValue();
18292 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) {
18293 SDValue N0 = N->getOperand(0);
18295 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
18296 if (N0->getOpcode() == ISD::AND) {
18297 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1));
18298 if (AndConst && AndConst->getAPIntValue() == 0xffff) {
18299 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0),
18300 N0.getOperand(0));
18304 return SDValue();
18307 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
18308 /// with the destination vector and a zero vector.
18309 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
18310 /// vector_shuffle V, Zero, <0, 4, 2, 4>
18311 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
18312 assert(N->getOpcode() == ISD::AND && "Unexpected opcode!");
18314 EVT VT = N->getValueType(0);
18315 SDValue LHS = N->getOperand(0);
18316 SDValue RHS = peekThroughBitcasts(N->getOperand(1));
18317 SDLoc DL(N);
18319 // Make sure we're not running after operation legalization where it
18320 // may have custom lowered the vector shuffles.
18321 if (LegalOperations)
18322 return SDValue();
18324 if (RHS.getOpcode() != ISD::BUILD_VECTOR)
18325 return SDValue();
18327 EVT RVT = RHS.getValueType();
18328 unsigned NumElts = RHS.getNumOperands();
18330 // Attempt to create a valid clear mask, splitting the mask into
18331 // sub elements and checking to see if each is
18332 // all zeros or all ones - suitable for shuffle masking.
18333 auto BuildClearMask = [&](int Split) {
18334 int NumSubElts = NumElts * Split;
18335 int NumSubBits = RVT.getScalarSizeInBits() / Split;
18337 SmallVector<int, 8> Indices;
18338 for (int i = 0; i != NumSubElts; ++i) {
18339 int EltIdx = i / Split;
18340 int SubIdx = i % Split;
18341 SDValue Elt = RHS.getOperand(EltIdx);
18342 if (Elt.isUndef()) {
18343 Indices.push_back(-1);
18344 continue;
18347 APInt Bits;
18348 if (isa<ConstantSDNode>(Elt))
18349 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue();
18350 else if (isa<ConstantFPSDNode>(Elt))
18351 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt();
18352 else
18353 return SDValue();
18355 // Extract the sub element from the constant bit mask.
18356 if (DAG.getDataLayout().isBigEndian()) {
18357 Bits.lshrInPlace((Split - SubIdx - 1) * NumSubBits);
18358 } else {
18359 Bits.lshrInPlace(SubIdx * NumSubBits);
18362 if (Split > 1)
18363 Bits = Bits.trunc(NumSubBits);
18365 if (Bits.isAllOnesValue())
18366 Indices.push_back(i);
18367 else if (Bits == 0)
18368 Indices.push_back(i + NumSubElts);
18369 else
18370 return SDValue();
18373 // Let's see if the target supports this vector_shuffle.
18374 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits);
18375 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts);
18376 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT))
18377 return SDValue();
18379 SDValue Zero = DAG.getConstant(0, DL, ClearVT);
18380 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL,
18381 DAG.getBitcast(ClearVT, LHS),
18382 Zero, Indices));
18385 // Determine maximum split level (byte level masking).
18386 int MaxSplit = 1;
18387 if (RVT.getScalarSizeInBits() % 8 == 0)
18388 MaxSplit = RVT.getScalarSizeInBits() / 8;
18390 for (int Split = 1; Split <= MaxSplit; ++Split)
18391 if (RVT.getScalarSizeInBits() % Split == 0)
18392 if (SDValue S = BuildClearMask(Split))
18393 return S;
18395 return SDValue();
18398 /// Visit a binary vector operation, like ADD.
18399 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
18400 assert(N->getValueType(0).isVector() &&
18401 "SimplifyVBinOp only works on vectors!");
18403 SDValue LHS = N->getOperand(0);
18404 SDValue RHS = N->getOperand(1);
18405 SDValue Ops[] = {LHS, RHS};
18406 EVT VT = N->getValueType(0);
18408 // See if we can constant fold the vector operation.
18409 if (SDValue Fold = DAG.FoldConstantVectorArithmetic(
18410 N->getOpcode(), SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags()))
18411 return Fold;
18413 // Type legalization might introduce new shuffles in the DAG.
18414 // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask)))
18415 // -> (shuffle (VBinOp (A, B)), Undef, Mask).
18416 if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) &&
18417 isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() &&
18418 LHS.getOperand(1).isUndef() &&
18419 RHS.getOperand(1).isUndef()) {
18420 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS);
18421 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS);
18423 if (SVN0->getMask().equals(SVN1->getMask())) {
18424 SDValue UndefVector = LHS.getOperand(1);
18425 SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
18426 LHS.getOperand(0), RHS.getOperand(0),
18427 N->getFlags());
18428 AddUsersToWorklist(N);
18429 return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector,
18430 SVN0->getMask());
18434 // The following pattern is likely to emerge with vector reduction ops. Moving
18435 // the binary operation ahead of insertion may allow using a narrower vector
18436 // instruction that has better performance than the wide version of the op:
18437 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z
18438 if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() &&
18439 RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() &&
18440 LHS.getOperand(2) == RHS.getOperand(2) &&
18441 (LHS.hasOneUse() || RHS.hasOneUse())) {
18442 SDValue X = LHS.getOperand(1);
18443 SDValue Y = RHS.getOperand(1);
18444 SDValue Z = LHS.getOperand(2);
18445 EVT NarrowVT = X.getValueType();
18446 if (NarrowVT == Y.getValueType() &&
18447 TLI.isOperationLegalOrCustomOrPromote(N->getOpcode(), NarrowVT)) {
18448 // (binop undef, undef) may not return undef, so compute that result.
18449 SDLoc DL(N);
18450 SDValue VecC = DAG.getNode(N->getOpcode(), DL, VT, DAG.getUNDEF(VT),
18451 DAG.getUNDEF(VT));
18452 SDValue NarrowBO = DAG.getNode(N->getOpcode(), DL, NarrowVT, X, Y);
18453 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z);
18457 return SDValue();
18460 SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1,
18461 SDValue N2) {
18462 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
18464 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
18465 cast<CondCodeSDNode>(N0.getOperand(2))->get());
18467 // If we got a simplified select_cc node back from SimplifySelectCC, then
18468 // break it down into a new SETCC node, and a new SELECT node, and then return
18469 // the SELECT node, since we were called with a SELECT node.
18470 if (SCC.getNode()) {
18471 // Check to see if we got a select_cc back (to turn into setcc/select).
18472 // Otherwise, just return whatever node we got back, like fabs.
18473 if (SCC.getOpcode() == ISD::SELECT_CC) {
18474 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
18475 N0.getValueType(),
18476 SCC.getOperand(0), SCC.getOperand(1),
18477 SCC.getOperand(4));
18478 AddToWorklist(SETCC.getNode());
18479 return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
18480 SCC.getOperand(2), SCC.getOperand(3));
18483 return SCC;
18485 return SDValue();
18488 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
18489 /// being selected between, see if we can simplify the select. Callers of this
18490 /// should assume that TheSelect is deleted if this returns true. As such, they
18491 /// should return the appropriate thing (e.g. the node) back to the top-level of
18492 /// the DAG combiner loop to avoid it being looked at.
18493 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
18494 SDValue RHS) {
18495 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
18496 // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
18497 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) {
18498 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) {
18499 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
18500 SDValue Sqrt = RHS;
18501 ISD::CondCode CC;
18502 SDValue CmpLHS;
18503 const ConstantFPSDNode *Zero = nullptr;
18505 if (TheSelect->getOpcode() == ISD::SELECT_CC) {
18506 CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get();
18507 CmpLHS = TheSelect->getOperand(0);
18508 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1));
18509 } else {
18510 // SELECT or VSELECT
18511 SDValue Cmp = TheSelect->getOperand(0);
18512 if (Cmp.getOpcode() == ISD::SETCC) {
18513 CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get();
18514 CmpLHS = Cmp.getOperand(0);
18515 Zero = isConstOrConstSplatFP(Cmp.getOperand(1));
18518 if (Zero && Zero->isZero() &&
18519 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT ||
18520 CC == ISD::SETULT || CC == ISD::SETLT)) {
18521 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
18522 CombineTo(TheSelect, Sqrt);
18523 return true;
18527 // Cannot simplify select with vector condition
18528 if (TheSelect->getOperand(0).getValueType().isVector()) return false;
18530 // If this is a select from two identical things, try to pull the operation
18531 // through the select.
18532 if (LHS.getOpcode() != RHS.getOpcode() ||
18533 !LHS.hasOneUse() || !RHS.hasOneUse())
18534 return false;
18536 // If this is a load and the token chain is identical, replace the select
18537 // of two loads with a load through a select of the address to load from.
18538 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
18539 // constants have been dropped into the constant pool.
18540 if (LHS.getOpcode() == ISD::LOAD) {
18541 LoadSDNode *LLD = cast<LoadSDNode>(LHS);
18542 LoadSDNode *RLD = cast<LoadSDNode>(RHS);
18544 // Token chains must be identical.
18545 if (LHS.getOperand(0) != RHS.getOperand(0) ||
18546 // Do not let this transformation reduce the number of volatile loads.
18547 LLD->isVolatile() || RLD->isVolatile() ||
18548 // FIXME: If either is a pre/post inc/dec load,
18549 // we'd need to split out the address adjustment.
18550 LLD->isIndexed() || RLD->isIndexed() ||
18551 // If this is an EXTLOAD, the VT's must match.
18552 LLD->getMemoryVT() != RLD->getMemoryVT() ||
18553 // If this is an EXTLOAD, the kind of extension must match.
18554 (LLD->getExtensionType() != RLD->getExtensionType() &&
18555 // The only exception is if one of the extensions is anyext.
18556 LLD->getExtensionType() != ISD::EXTLOAD &&
18557 RLD->getExtensionType() != ISD::EXTLOAD) ||
18558 // FIXME: this discards src value information. This is
18559 // over-conservative. It would be beneficial to be able to remember
18560 // both potential memory locations. Since we are discarding
18561 // src value info, don't do the transformation if the memory
18562 // locations are not in the default address space.
18563 LLD->getPointerInfo().getAddrSpace() != 0 ||
18564 RLD->getPointerInfo().getAddrSpace() != 0 ||
18565 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
18566 LLD->getBasePtr().getValueType()))
18567 return false;
18569 // The loads must not depend on one another.
18570 if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD))
18571 return false;
18573 // Check that the select condition doesn't reach either load. If so,
18574 // folding this will induce a cycle into the DAG. If not, this is safe to
18575 // xform, so create a select of the addresses.
18577 SmallPtrSet<const SDNode *, 32> Visited;
18578 SmallVector<const SDNode *, 16> Worklist;
18580 // Always fail if LLD and RLD are not independent. TheSelect is a
18581 // predecessor to all Nodes in question so we need not search past it.
18583 Visited.insert(TheSelect);
18584 Worklist.push_back(LLD);
18585 Worklist.push_back(RLD);
18587 if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) ||
18588 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))
18589 return false;
18591 SDValue Addr;
18592 if (TheSelect->getOpcode() == ISD::SELECT) {
18593 // We cannot do this optimization if any pair of {RLD, LLD} is a
18594 // predecessor to {RLD, LLD, CondNode}. As we've already compared the
18595 // Loads, we only need to check if CondNode is a successor to one of the
18596 // loads. We can further avoid this if there's no use of their chain
18597 // value.
18598 SDNode *CondNode = TheSelect->getOperand(0).getNode();
18599 Worklist.push_back(CondNode);
18601 if ((LLD->hasAnyUseOfValue(1) &&
18602 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
18603 (RLD->hasAnyUseOfValue(1) &&
18604 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
18605 return false;
18607 Addr = DAG.getSelect(SDLoc(TheSelect),
18608 LLD->getBasePtr().getValueType(),
18609 TheSelect->getOperand(0), LLD->getBasePtr(),
18610 RLD->getBasePtr());
18611 } else { // Otherwise SELECT_CC
18612 // We cannot do this optimization if any pair of {RLD, LLD} is a
18613 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
18614 // the Loads, we only need to check if CondLHS/CondRHS is a successor to
18615 // one of the loads. We can further avoid this if there's no use of their
18616 // chain value.
18618 SDNode *CondLHS = TheSelect->getOperand(0).getNode();
18619 SDNode *CondRHS = TheSelect->getOperand(1).getNode();
18620 Worklist.push_back(CondLHS);
18621 Worklist.push_back(CondRHS);
18623 if ((LLD->hasAnyUseOfValue(1) &&
18624 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
18625 (RLD->hasAnyUseOfValue(1) &&
18626 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
18627 return false;
18629 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
18630 LLD->getBasePtr().getValueType(),
18631 TheSelect->getOperand(0),
18632 TheSelect->getOperand(1),
18633 LLD->getBasePtr(), RLD->getBasePtr(),
18634 TheSelect->getOperand(4));
18637 SDValue Load;
18638 // It is safe to replace the two loads if they have different alignments,
18639 // but the new load must be the minimum (most restrictive) alignment of the
18640 // inputs.
18641 unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment());
18642 MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags();
18643 if (!RLD->isInvariant())
18644 MMOFlags &= ~MachineMemOperand::MOInvariant;
18645 if (!RLD->isDereferenceable())
18646 MMOFlags &= ~MachineMemOperand::MODereferenceable;
18647 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
18648 // FIXME: Discards pointer and AA info.
18649 Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect),
18650 LLD->getChain(), Addr, MachinePointerInfo(), Alignment,
18651 MMOFlags);
18652 } else {
18653 // FIXME: Discards pointer and AA info.
18654 Load = DAG.getExtLoad(
18655 LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType()
18656 : LLD->getExtensionType(),
18657 SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr,
18658 MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags);
18661 // Users of the select now use the result of the load.
18662 CombineTo(TheSelect, Load);
18664 // Users of the old loads now use the new load's chain. We know the
18665 // old-load value is dead now.
18666 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
18667 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
18668 return true;
18671 return false;
18674 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
18675 /// bitwise 'and'.
18676 SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0,
18677 SDValue N1, SDValue N2, SDValue N3,
18678 ISD::CondCode CC) {
18679 // If this is a select where the false operand is zero and the compare is a
18680 // check of the sign bit, see if we can perform the "gzip trick":
18681 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
18682 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
18683 EVT XType = N0.getValueType();
18684 EVT AType = N2.getValueType();
18685 if (!isNullConstant(N3) || !XType.bitsGE(AType))
18686 return SDValue();
18688 // If the comparison is testing for a positive value, we have to invert
18689 // the sign bit mask, so only do that transform if the target has a bitwise
18690 // 'and not' instruction (the invert is free).
18691 if (CC == ISD::SETGT && TLI.hasAndNot(N2)) {
18692 // (X > -1) ? A : 0
18693 // (X > 0) ? X : 0 <-- This is canonical signed max.
18694 if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2)))
18695 return SDValue();
18696 } else if (CC == ISD::SETLT) {
18697 // (X < 0) ? A : 0
18698 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
18699 if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2)))
18700 return SDValue();
18701 } else {
18702 return SDValue();
18705 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
18706 // constant.
18707 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
18708 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
18709 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
18710 unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1;
18711 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy);
18712 SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt);
18713 AddToWorklist(Shift.getNode());
18715 if (XType.bitsGT(AType)) {
18716 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
18717 AddToWorklist(Shift.getNode());
18720 if (CC == ISD::SETGT)
18721 Shift = DAG.getNOT(DL, Shift, AType);
18723 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
18726 SDValue ShiftAmt = DAG.getConstant(XType.getSizeInBits() - 1, DL, ShiftAmtTy);
18727 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt);
18728 AddToWorklist(Shift.getNode());
18730 if (XType.bitsGT(AType)) {
18731 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
18732 AddToWorklist(Shift.getNode());
18735 if (CC == ISD::SETGT)
18736 Shift = DAG.getNOT(DL, Shift, AType);
18738 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
18741 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
18742 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
18743 /// in it. This may be a win when the constant is not otherwise available
18744 /// because it replaces two constant pool loads with one.
18745 SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset(
18746 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
18747 ISD::CondCode CC) {
18748 if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType().isFloatingPoint()))
18749 return SDValue();
18751 // If we are before legalize types, we want the other legalization to happen
18752 // first (for example, to avoid messing with soft float).
18753 auto *TV = dyn_cast<ConstantFPSDNode>(N2);
18754 auto *FV = dyn_cast<ConstantFPSDNode>(N3);
18755 EVT VT = N2.getValueType();
18756 if (!TV || !FV || !TLI.isTypeLegal(VT))
18757 return SDValue();
18759 // If a constant can be materialized without loads, this does not make sense.
18760 if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal ||
18761 TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) ||
18762 TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0)))
18763 return SDValue();
18765 // If both constants have multiple uses, then we won't need to do an extra
18766 // load. The values are likely around in registers for other users.
18767 if (!TV->hasOneUse() && !FV->hasOneUse())
18768 return SDValue();
18770 Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()),
18771 const_cast<ConstantFP*>(TV->getConstantFPValue()) };
18772 Type *FPTy = Elts[0]->getType();
18773 const DataLayout &TD = DAG.getDataLayout();
18775 // Create a ConstantArray of the two constants.
18776 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
18777 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()),
18778 TD.getPrefTypeAlignment(FPTy));
18779 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
18781 // Get offsets to the 0 and 1 elements of the array, so we can select between
18782 // them.
18783 SDValue Zero = DAG.getIntPtrConstant(0, DL);
18784 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
18785 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV));
18786 SDValue Cond =
18787 DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC);
18788 AddToWorklist(Cond.getNode());
18789 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero);
18790 AddToWorklist(CstOffset.getNode());
18791 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset);
18792 AddToWorklist(CPIdx.getNode());
18793 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
18794 MachinePointerInfo::getConstantPool(
18795 DAG.getMachineFunction()), Alignment);
18798 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3
18799 /// where 'cond' is the comparison specified by CC.
18800 SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
18801 SDValue N2, SDValue N3, ISD::CondCode CC,
18802 bool NotExtCompare) {
18803 // (x ? y : y) -> y.
18804 if (N2 == N3) return N2;
18806 EVT CmpOpVT = N0.getValueType();
18807 EVT VT = N2.getValueType();
18808 auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
18809 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
18810 auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
18812 // Determine if the condition we're dealing with is constant.
18813 SDValue SCC = SimplifySetCC(getSetCCResultType(CmpOpVT), N0, N1, CC, DL,
18814 false);
18815 if (SCC.getNode()) AddToWorklist(SCC.getNode());
18817 if (auto *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
18818 // fold select_cc true, x, y -> x
18819 // fold select_cc false, x, y -> y
18820 return !SCCC->isNullValue() ? N2 : N3;
18823 if (SDValue V =
18824 convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC))
18825 return V;
18827 if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC))
18828 return V;
18830 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
18831 // where y is has a single bit set.
18832 // A plaintext description would be, we can turn the SELECT_CC into an AND
18833 // when the condition can be materialized as an all-ones register. Any
18834 // single bit-test can be materialized as an all-ones register with
18835 // shift-left and shift-right-arith.
18836 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
18837 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) {
18838 SDValue AndLHS = N0->getOperand(0);
18839 auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
18840 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
18841 // Shift the tested bit over the sign bit.
18842 const APInt &AndMask = ConstAndRHS->getAPIntValue();
18843 SDValue ShlAmt =
18844 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS),
18845 getShiftAmountTy(AndLHS.getValueType()));
18846 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
18848 // Now arithmetic right shift it all the way over, so the result is either
18849 // all-ones, or zero.
18850 SDValue ShrAmt =
18851 DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl),
18852 getShiftAmountTy(Shl.getValueType()));
18853 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
18855 return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
18859 // fold select C, 16, 0 -> shl C, 4
18860 bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2();
18861 bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2();
18863 if ((Fold || Swap) &&
18864 TLI.getBooleanContents(CmpOpVT) ==
18865 TargetLowering::ZeroOrOneBooleanContent &&
18866 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) {
18868 if (Swap) {
18869 CC = ISD::getSetCCInverse(CC, CmpOpVT.isInteger());
18870 std::swap(N2C, N3C);
18873 // If the caller doesn't want us to simplify this into a zext of a compare,
18874 // don't do it.
18875 if (NotExtCompare && N2C->isOne())
18876 return SDValue();
18878 SDValue Temp, SCC;
18879 // zext (setcc n0, n1)
18880 if (LegalTypes) {
18881 SCC = DAG.getSetCC(DL, getSetCCResultType(CmpOpVT), N0, N1, CC);
18882 if (VT.bitsLT(SCC.getValueType()))
18883 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT);
18884 else
18885 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
18886 } else {
18887 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
18888 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
18891 AddToWorklist(SCC.getNode());
18892 AddToWorklist(Temp.getNode());
18894 if (N2C->isOne())
18895 return Temp;
18897 // shl setcc result by log2 n2c
18898 return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
18899 DAG.getConstant(N2C->getAPIntValue().logBase2(),
18900 SDLoc(Temp),
18901 getShiftAmountTy(Temp.getValueType())));
18904 // Check to see if this is an integer abs.
18905 // select_cc setg[te] X, 0, X, -X ->
18906 // select_cc setgt X, -1, X, -X ->
18907 // select_cc setl[te] X, 0, -X, X ->
18908 // select_cc setlt X, 1, -X, X ->
18909 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
18910 if (N1C) {
18911 ConstantSDNode *SubC = nullptr;
18912 if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
18913 (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
18914 N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
18915 SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
18916 else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
18917 (N1C->isOne() && CC == ISD::SETLT)) &&
18918 N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
18919 SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
18921 if (SubC && SubC->isNullValue() && CmpOpVT.isInteger()) {
18922 SDLoc DL(N0);
18923 SDValue Shift = DAG.getNode(ISD::SRA, DL, CmpOpVT, N0,
18924 DAG.getConstant(CmpOpVT.getSizeInBits() - 1,
18926 getShiftAmountTy(CmpOpVT)));
18927 SDValue Add = DAG.getNode(ISD::ADD, DL, CmpOpVT, N0, Shift);
18928 AddToWorklist(Shift.getNode());
18929 AddToWorklist(Add.getNode());
18930 return DAG.getNode(ISD::XOR, DL, CmpOpVT, Add, Shift);
18934 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
18935 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
18936 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
18937 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
18938 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
18939 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
18940 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
18941 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
18942 if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
18943 SDValue ValueOnZero = N2;
18944 SDValue Count = N3;
18945 // If the condition is NE instead of E, swap the operands.
18946 if (CC == ISD::SETNE)
18947 std::swap(ValueOnZero, Count);
18948 // Check if the value on zero is a constant equal to the bits in the type.
18949 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) {
18950 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) {
18951 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is
18952 // legal, combine to just cttz.
18953 if ((Count.getOpcode() == ISD::CTTZ ||
18954 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) &&
18955 N0 == Count.getOperand(0) &&
18956 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT)))
18957 return DAG.getNode(ISD::CTTZ, DL, VT, N0);
18958 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
18959 // legal, combine to just ctlz.
18960 if ((Count.getOpcode() == ISD::CTLZ ||
18961 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) &&
18962 N0 == Count.getOperand(0) &&
18963 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT)))
18964 return DAG.getNode(ISD::CTLZ, DL, VT, N0);
18969 return SDValue();
18972 /// This is a stub for TargetLowering::SimplifySetCC.
18973 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
18974 ISD::CondCode Cond, const SDLoc &DL,
18975 bool foldBooleans) {
18976 TargetLowering::DAGCombinerInfo
18977 DagCombineInfo(DAG, Level, false, this);
18978 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
18981 /// Given an ISD::SDIV node expressing a divide by constant, return
18982 /// a DAG expression to select that will generate the same value by multiplying
18983 /// by a magic number.
18984 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
18985 SDValue DAGCombiner::BuildSDIV(SDNode *N) {
18986 // when optimising for minimum size, we don't want to expand a div to a mul
18987 // and a shift.
18988 if (DAG.getMachineFunction().getFunction().optForMinSize())
18989 return SDValue();
18991 SmallVector<SDNode *, 8> Built;
18992 if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) {
18993 for (SDNode *N : Built)
18994 AddToWorklist(N);
18995 return S;
18998 return SDValue();
19001 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
19002 /// DAG expression that will generate the same value by right shifting.
19003 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
19004 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
19005 if (!C)
19006 return SDValue();
19008 // Avoid division by zero.
19009 if (C->isNullValue())
19010 return SDValue();
19012 SmallVector<SDNode *, 8> Built;
19013 if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) {
19014 for (SDNode *N : Built)
19015 AddToWorklist(N);
19016 return S;
19019 return SDValue();
19022 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG
19023 /// expression that will generate the same value by multiplying by a magic
19024 /// number.
19025 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
19026 SDValue DAGCombiner::BuildUDIV(SDNode *N) {
19027 // when optimising for minimum size, we don't want to expand a div to a mul
19028 // and a shift.
19029 if (DAG.getMachineFunction().getFunction().optForMinSize())
19030 return SDValue();
19032 SmallVector<SDNode *, 8> Built;
19033 if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) {
19034 for (SDNode *N : Built)
19035 AddToWorklist(N);
19036 return S;
19039 return SDValue();
19042 /// Determines the LogBase2 value for a non-null input value using the
19043 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
19044 SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) {
19045 EVT VT = V.getValueType();
19046 unsigned EltBits = VT.getScalarSizeInBits();
19047 SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V);
19048 SDValue Base = DAG.getConstant(EltBits - 1, DL, VT);
19049 SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz);
19050 return LogBase2;
19053 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
19054 /// For the reciprocal, we need to find the zero of the function:
19055 /// F(X) = A X - 1 [which has a zero at X = 1/A]
19056 /// =>
19057 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
19058 /// does not require additional intermediate precision]
19059 SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags Flags) {
19060 if (Level >= AfterLegalizeDAG)
19061 return SDValue();
19063 // TODO: Handle half and/or extended types?
19064 EVT VT = Op.getValueType();
19065 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
19066 return SDValue();
19068 // If estimates are explicitly disabled for this function, we're done.
19069 MachineFunction &MF = DAG.getMachineFunction();
19070 int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF);
19071 if (Enabled == TLI.ReciprocalEstimate::Disabled)
19072 return SDValue();
19074 // Estimates may be explicitly enabled for this type with a custom number of
19075 // refinement steps.
19076 int Iterations = TLI.getDivRefinementSteps(VT, MF);
19077 if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) {
19078 AddToWorklist(Est.getNode());
19080 if (Iterations) {
19081 EVT VT = Op.getValueType();
19082 SDLoc DL(Op);
19083 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
19085 // Newton iterations: Est = Est + Est (1 - Arg * Est)
19086 for (int i = 0; i < Iterations; ++i) {
19087 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags);
19088 AddToWorklist(NewEst.getNode());
19090 NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags);
19091 AddToWorklist(NewEst.getNode());
19093 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
19094 AddToWorklist(NewEst.getNode());
19096 Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags);
19097 AddToWorklist(Est.getNode());
19100 return Est;
19103 return SDValue();
19106 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
19107 /// For the reciprocal sqrt, we need to find the zero of the function:
19108 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
19109 /// =>
19110 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
19111 /// As a result, we precompute A/2 prior to the iteration loop.
19112 SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est,
19113 unsigned Iterations,
19114 SDNodeFlags Flags, bool Reciprocal) {
19115 EVT VT = Arg.getValueType();
19116 SDLoc DL(Arg);
19117 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT);
19119 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
19120 // this entire sequence requires only one FP constant.
19121 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags);
19122 AddToWorklist(HalfArg.getNode());
19124 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags);
19125 AddToWorklist(HalfArg.getNode());
19127 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
19128 for (unsigned i = 0; i < Iterations; ++i) {
19129 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
19130 AddToWorklist(NewEst.getNode());
19132 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags);
19133 AddToWorklist(NewEst.getNode());
19135 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags);
19136 AddToWorklist(NewEst.getNode());
19138 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
19139 AddToWorklist(Est.getNode());
19142 // If non-reciprocal square root is requested, multiply the result by Arg.
19143 if (!Reciprocal) {
19144 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags);
19145 AddToWorklist(Est.getNode());
19148 return Est;
19151 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
19152 /// For the reciprocal sqrt, we need to find the zero of the function:
19153 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
19154 /// =>
19155 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
19156 SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est,
19157 unsigned Iterations,
19158 SDNodeFlags Flags, bool Reciprocal) {
19159 EVT VT = Arg.getValueType();
19160 SDLoc DL(Arg);
19161 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT);
19162 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT);
19164 // This routine must enter the loop below to work correctly
19165 // when (Reciprocal == false).
19166 assert(Iterations > 0);
19168 // Newton iterations for reciprocal square root:
19169 // E = (E * -0.5) * ((A * E) * E + -3.0)
19170 for (unsigned i = 0; i < Iterations; ++i) {
19171 SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags);
19172 AddToWorklist(AE.getNode());
19174 SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags);
19175 AddToWorklist(AEE.getNode());
19177 SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags);
19178 AddToWorklist(RHS.getNode());
19180 // When calculating a square root at the last iteration build:
19181 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
19182 // (notice a common subexpression)
19183 SDValue LHS;
19184 if (Reciprocal || (i + 1) < Iterations) {
19185 // RSQRT: LHS = (E * -0.5)
19186 LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags);
19187 } else {
19188 // SQRT: LHS = (A * E) * -0.5
19189 LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags);
19191 AddToWorklist(LHS.getNode());
19193 Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags);
19194 AddToWorklist(Est.getNode());
19197 return Est;
19200 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
19201 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
19202 /// Op can be zero.
19203 SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags,
19204 bool Reciprocal) {
19205 if (Level >= AfterLegalizeDAG)
19206 return SDValue();
19208 // TODO: Handle half and/or extended types?
19209 EVT VT = Op.getValueType();
19210 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
19211 return SDValue();
19213 // If estimates are explicitly disabled for this function, we're done.
19214 MachineFunction &MF = DAG.getMachineFunction();
19215 int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF);
19216 if (Enabled == TLI.ReciprocalEstimate::Disabled)
19217 return SDValue();
19219 // Estimates may be explicitly enabled for this type with a custom number of
19220 // refinement steps.
19221 int Iterations = TLI.getSqrtRefinementSteps(VT, MF);
19223 bool UseOneConstNR = false;
19224 if (SDValue Est =
19225 TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR,
19226 Reciprocal)) {
19227 AddToWorklist(Est.getNode());
19229 if (Iterations) {
19230 Est = UseOneConstNR
19231 ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal)
19232 : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal);
19234 if (!Reciprocal) {
19235 // The estimate is now completely wrong if the input was exactly 0.0 or
19236 // possibly a denormal. Force the answer to 0.0 for those cases.
19237 EVT VT = Op.getValueType();
19238 SDLoc DL(Op);
19239 EVT CCVT = getSetCCResultType(VT);
19240 ISD::NodeType SelOpcode = VT.isVector() ? ISD::VSELECT : ISD::SELECT;
19241 const Function &F = DAG.getMachineFunction().getFunction();
19242 Attribute Denorms = F.getFnAttribute("denormal-fp-math");
19243 if (Denorms.getValueAsString().equals("ieee")) {
19244 // fabs(X) < SmallestNormal ? 0.0 : Est
19245 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
19246 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
19247 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
19248 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
19249 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
19250 SDValue IsDenorm = DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
19251 Est = DAG.getNode(SelOpcode, DL, VT, IsDenorm, FPZero, Est);
19252 AddToWorklist(Fabs.getNode());
19253 AddToWorklist(IsDenorm.getNode());
19254 AddToWorklist(Est.getNode());
19255 } else {
19256 // X == 0.0 ? 0.0 : Est
19257 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
19258 SDValue IsZero = DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
19259 Est = DAG.getNode(SelOpcode, DL, VT, IsZero, FPZero, Est);
19260 AddToWorklist(IsZero.getNode());
19261 AddToWorklist(Est.getNode());
19265 return Est;
19268 return SDValue();
19271 SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) {
19272 return buildSqrtEstimateImpl(Op, Flags, true);
19275 SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) {
19276 return buildSqrtEstimateImpl(Op, Flags, false);
19279 /// Return true if there is any possibility that the two addresses overlap.
19280 bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const {
19281 // If they are the same then they must be aliases.
19282 if (Op0->getBasePtr() == Op1->getBasePtr()) return true;
19284 // If they are both volatile then they cannot be reordered.
19285 if (Op0->isVolatile() && Op1->isVolatile()) return true;
19287 // If one operation reads from invariant memory, and the other may store, they
19288 // cannot alias. These should really be checking the equivalent of mayWrite,
19289 // but it only matters for memory nodes other than load /store.
19290 if (Op0->isInvariant() && Op1->writeMem())
19291 return false;
19293 if (Op1->isInvariant() && Op0->writeMem())
19294 return false;
19296 unsigned NumBytes0 = Op0->getMemoryVT().getStoreSize();
19297 unsigned NumBytes1 = Op1->getMemoryVT().getStoreSize();
19299 // Check for BaseIndexOffset matching.
19300 bool IsAlias;
19301 if (BaseIndexOffset::computeAliasing(
19302 BaseIndexOffset::match(Op0, DAG), NumBytes0,
19303 BaseIndexOffset::match(Op1, DAG), NumBytes1, DAG, IsAlias))
19304 return IsAlias;
19306 // If we know required SrcValue1 and SrcValue2 have relatively large
19307 // alignment compared to the size and offset of the access, we may be able
19308 // to prove they do not alias. This check is conservative for now to catch
19309 // cases created by splitting vector types.
19310 int64_t SrcValOffset0 = Op0->getSrcValueOffset();
19311 int64_t SrcValOffset1 = Op1->getSrcValueOffset();
19312 unsigned OrigAlignment0 = Op0->getOriginalAlignment();
19313 unsigned OrigAlignment1 = Op1->getOriginalAlignment();
19314 if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 &&
19315 NumBytes0 == NumBytes1 && OrigAlignment0 > NumBytes0) {
19316 int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0;
19317 int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1;
19319 // There is no overlap between these relatively aligned accesses of
19320 // similar size. Return no alias.
19321 if ((OffAlign0 + NumBytes0) <= OffAlign1 ||
19322 (OffAlign1 + NumBytes1) <= OffAlign0)
19323 return false;
19326 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0
19327 ? CombinerGlobalAA
19328 : DAG.getSubtarget().useAA();
19329 #ifndef NDEBUG
19330 if (CombinerAAOnlyFunc.getNumOccurrences() &&
19331 CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
19332 UseAA = false;
19333 #endif
19335 if (UseAA && AA &&
19336 Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) {
19337 // Use alias analysis information.
19338 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
19339 int64_t Overlap0 = NumBytes0 + SrcValOffset0 - MinOffset;
19340 int64_t Overlap1 = NumBytes1 + SrcValOffset1 - MinOffset;
19341 AliasResult AAResult =
19342 AA->alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap0,
19343 UseTBAA ? Op0->getAAInfo() : AAMDNodes()),
19344 MemoryLocation(Op1->getMemOperand()->getValue(), Overlap1,
19345 UseTBAA ? Op1->getAAInfo() : AAMDNodes()) );
19346 if (AAResult == NoAlias)
19347 return false;
19350 // Otherwise we have to assume they alias.
19351 return true;
19354 /// Walk up chain skipping non-aliasing memory nodes,
19355 /// looking for aliasing nodes and adding them to the Aliases vector.
19356 void DAGCombiner::GatherAllAliases(LSBaseSDNode *N, SDValue OriginalChain,
19357 SmallVectorImpl<SDValue> &Aliases) {
19358 SmallVector<SDValue, 8> Chains; // List of chains to visit.
19359 SmallPtrSet<SDNode *, 16> Visited; // Visited node set.
19361 // Get alias information for node.
19362 bool IsLoad = isa<LoadSDNode>(N) && !N->isVolatile();
19363 const BaseIndexOffset LSBasePtr = BaseIndexOffset::match(N, DAG);
19364 const unsigned LSNumBytes = N->getMemoryVT().getStoreSize();
19366 // Starting off.
19367 Chains.push_back(OriginalChain);
19368 unsigned Depth = 0;
19370 // Look at each chain and determine if it is an alias. If so, add it to the
19371 // aliases list. If not, then continue up the chain looking for the next
19372 // candidate.
19373 while (!Chains.empty()) {
19374 SDValue Chain = Chains.pop_back_val();
19376 // For TokenFactor nodes, look at each operand and only continue up the
19377 // chain until we reach the depth limit.
19379 // FIXME: The depth check could be made to return the last non-aliasing
19380 // chain we found before we hit a tokenfactor rather than the original
19381 // chain.
19382 if (Depth > TLI.getGatherAllAliasesMaxDepth()) {
19383 Aliases.clear();
19384 Aliases.push_back(OriginalChain);
19385 return;
19388 // Don't bother if we've been before.
19389 if (!Visited.insert(Chain.getNode()).second)
19390 continue;
19392 switch (Chain.getOpcode()) {
19393 case ISD::EntryToken:
19394 // Entry token is ideal chain operand, but handled in FindBetterChain.
19395 break;
19397 case ISD::LOAD:
19398 case ISD::STORE: {
19399 // Get alias information for Chain.
19400 bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) &&
19401 !cast<LSBaseSDNode>(Chain.getNode())->isVolatile();
19403 // If chain is alias then stop here.
19404 if (!(IsLoad && IsOpLoad) &&
19405 isAlias(N, cast<LSBaseSDNode>(Chain.getNode()))) {
19406 Aliases.push_back(Chain);
19407 } else {
19408 // Look further up the chain.
19409 Chains.push_back(Chain.getOperand(0));
19410 ++Depth;
19412 break;
19415 case ISD::TokenFactor:
19416 // We have to check each of the operands of the token factor for "small"
19417 // token factors, so we queue them up. Adding the operands to the queue
19418 // (stack) in reverse order maintains the original order and increases the
19419 // likelihood that getNode will find a matching token factor (CSE.)
19420 if (Chain.getNumOperands() > 16) {
19421 Aliases.push_back(Chain);
19422 break;
19424 for (unsigned n = Chain.getNumOperands(); n;)
19425 Chains.push_back(Chain.getOperand(--n));
19426 ++Depth;
19427 break;
19429 case ISD::CopyFromReg:
19430 // Forward past CopyFromReg.
19431 Chains.push_back(Chain.getOperand(0));
19432 ++Depth;
19433 break;
19435 case ISD::LIFETIME_START:
19436 case ISD::LIFETIME_END: {
19437 // We can forward past any lifetime start/end that can be proven not to
19438 // alias the memory access.
19439 const auto *Lifetime = cast<LifetimeSDNode>(Chain);
19440 if (!Lifetime->hasOffset())
19441 break; // Be conservative if we don't know the extents of the object.
19443 const BaseIndexOffset LifetimePtr(Lifetime->getOperand(1), SDValue(),
19444 Lifetime->getOffset(), false);
19445 bool IsAlias;
19446 if (BaseIndexOffset::computeAliasing(LifetimePtr, Lifetime->getSize(),
19447 LSBasePtr, LSNumBytes, DAG,
19448 IsAlias) &&
19449 !IsAlias) {
19450 Chains.push_back(Chain.getOperand(0));
19451 ++Depth;
19453 break;
19456 default:
19457 // For all other instructions we will just have to take what we can get.
19458 Aliases.push_back(Chain);
19459 break;
19464 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
19465 /// (aliasing node.)
19466 SDValue DAGCombiner::FindBetterChain(LSBaseSDNode *N, SDValue OldChain) {
19467 if (OptLevel == CodeGenOpt::None)
19468 return OldChain;
19470 // Ops for replacing token factor.
19471 SmallVector<SDValue, 8> Aliases;
19473 // Accumulate all the aliases to this node.
19474 GatherAllAliases(N, OldChain, Aliases);
19476 // If no operands then chain to entry token.
19477 if (Aliases.size() == 0)
19478 return DAG.getEntryNode();
19480 // If a single operand then chain to it. We don't need to revisit it.
19481 if (Aliases.size() == 1)
19482 return Aliases[0];
19484 // Construct a custom tailored token factor.
19485 return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases);
19488 namespace {
19489 // TODO: Replace with with std::monostate when we move to C++17.
19490 struct UnitT { } Unit;
19491 bool operator==(const UnitT &, const UnitT &) { return true; }
19492 bool operator!=(const UnitT &, const UnitT &) { return false; }
19493 } // namespace
19495 // This function tries to collect a bunch of potentially interesting
19496 // nodes to improve the chains of, all at once. This might seem
19497 // redundant, as this function gets called when visiting every store
19498 // node, so why not let the work be done on each store as it's visited?
19500 // I believe this is mainly important because MergeConsecutiveStores
19501 // is unable to deal with merging stores of different sizes, so unless
19502 // we improve the chains of all the potential candidates up-front
19503 // before running MergeConsecutiveStores, it might only see some of
19504 // the nodes that will eventually be candidates, and then not be able
19505 // to go from a partially-merged state to the desired final
19506 // fully-merged state.
19508 bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) {
19509 SmallVector<StoreSDNode *, 8> ChainedStores;
19510 StoreSDNode *STChain = St;
19511 // Intervals records which offsets from BaseIndex have been covered. In
19512 // the common case, every store writes to the immediately previous address
19513 // space and thus merged with the previous interval at insertion time.
19515 using IMap =
19516 llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>;
19517 IMap::Allocator A;
19518 IMap Intervals(A);
19520 // This holds the base pointer, index, and the offset in bytes from the base
19521 // pointer.
19522 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
19524 // We must have a base and an offset.
19525 if (!BasePtr.getBase().getNode())
19526 return false;
19528 // Do not handle stores to undef base pointers.
19529 if (BasePtr.getBase().isUndef())
19530 return false;
19532 // Add ST's interval.
19533 Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit);
19535 while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) {
19536 // If the chain has more than one use, then we can't reorder the mem ops.
19537 if (!SDValue(Chain, 0)->hasOneUse())
19538 break;
19539 if (Chain->isVolatile() || Chain->isIndexed())
19540 break;
19542 // Find the base pointer and offset for this memory node.
19543 const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG);
19544 // Check that the base pointer is the same as the original one.
19545 int64_t Offset;
19546 if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset))
19547 break;
19548 int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8;
19549 // Make sure we don't overlap with other intervals by checking the ones to
19550 // the left or right before inserting.
19551 auto I = Intervals.find(Offset);
19552 // If there's a next interval, we should end before it.
19553 if (I != Intervals.end() && I.start() < (Offset + Length))
19554 break;
19555 // If there's a previous interval, we should start after it.
19556 if (I != Intervals.begin() && (--I).stop() <= Offset)
19557 break;
19558 Intervals.insert(Offset, Offset + Length, Unit);
19560 ChainedStores.push_back(Chain);
19561 STChain = Chain;
19564 // If we didn't find a chained store, exit.
19565 if (ChainedStores.size() == 0)
19566 return false;
19568 // Improve all chained stores (St and ChainedStores members) starting from
19569 // where the store chain ended and return single TokenFactor.
19570 SDValue NewChain = STChain->getChain();
19571 SmallVector<SDValue, 8> TFOps;
19572 for (unsigned I = ChainedStores.size(); I;) {
19573 StoreSDNode *S = ChainedStores[--I];
19574 SDValue BetterChain = FindBetterChain(S, NewChain);
19575 S = cast<StoreSDNode>(DAG.UpdateNodeOperands(
19576 S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3)));
19577 TFOps.push_back(SDValue(S, 0));
19578 ChainedStores[I] = S;
19581 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo.
19582 SDValue BetterChain = FindBetterChain(St, NewChain);
19583 SDValue NewST;
19584 if (St->isTruncatingStore())
19585 NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(),
19586 St->getBasePtr(), St->getMemoryVT(),
19587 St->getMemOperand());
19588 else
19589 NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(),
19590 St->getBasePtr(), St->getMemOperand());
19592 TFOps.push_back(NewST);
19594 // If we improved every element of TFOps, then we've lost the dependence on
19595 // NewChain to successors of St and we need to add it back to TFOps. Do so at
19596 // the beginning to keep relative order consistent with FindBetterChains.
19597 auto hasImprovedChain = [&](SDValue ST) -> bool {
19598 return ST->getOperand(0) != NewChain;
19600 bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain);
19601 if (AddNewChain)
19602 TFOps.insert(TFOps.begin(), NewChain);
19604 SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps);
19605 CombineTo(St, TF);
19607 AddToWorklist(STChain);
19608 // Add TF operands worklist in reverse order.
19609 for (auto I = TF->getNumOperands(); I;)
19610 AddToWorklist(TF->getOperand(--I).getNode());
19611 AddToWorklist(TF.getNode());
19612 return true;
19615 bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) {
19616 if (OptLevel == CodeGenOpt::None)
19617 return false;
19619 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
19621 // We must have a base and an offset.
19622 if (!BasePtr.getBase().getNode())
19623 return false;
19625 // Do not handle stores to undef base pointers.
19626 if (BasePtr.getBase().isUndef())
19627 return false;
19629 // Directly improve a chain of disjoint stores starting at St.
19630 if (parallelizeChainedStores(St))
19631 return true;
19633 // Improve St's Chain..
19634 SDValue BetterChain = FindBetterChain(St, St->getChain());
19635 if (St->getChain() != BetterChain) {
19636 replaceStoreChain(St, BetterChain);
19637 return true;
19639 return false;
19642 /// This is the entry point for the file.
19643 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA,
19644 CodeGenOpt::Level OptLevel) {
19645 /// This is the main entry point to this class.
19646 DAGCombiner(*this, AA, OptLevel).Run(Level);