Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / Analysis / BlockFrequencyInfoImpl.h
blob813bad49888043598feb9fa0afa3b1f06bda9f04
1 //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Shared implementation of BlockFrequency for IR and Machine Instructions.
10 // See the documentation below for BlockFrequencyInfoImpl for details.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
15 #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/SparseBitVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/Support/BlockFrequency.h"
28 #include "llvm/Support/BranchProbability.h"
29 #include "llvm/Support/DOTGraphTraits.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/Format.h"
33 #include "llvm/Support/ScaledNumber.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cassert>
37 #include <cstddef>
38 #include <cstdint>
39 #include <deque>
40 #include <iterator>
41 #include <limits>
42 #include <list>
43 #include <string>
44 #include <utility>
45 #include <vector>
47 #define DEBUG_TYPE "block-freq"
49 namespace llvm {
51 class BranchProbabilityInfo;
52 class Function;
53 class Loop;
54 class LoopInfo;
55 class MachineBasicBlock;
56 class MachineBranchProbabilityInfo;
57 class MachineFunction;
58 class MachineLoop;
59 class MachineLoopInfo;
61 namespace bfi_detail {
63 struct IrreducibleGraph;
65 // This is part of a workaround for a GCC 4.7 crash on lambdas.
66 template <class BT> struct BlockEdgesAdder;
68 /// Mass of a block.
69 ///
70 /// This class implements a sort of fixed-point fraction always between 0.0 and
71 /// 1.0. getMass() == std::numeric_limits<uint64_t>::max() indicates a value of
72 /// 1.0.
73 ///
74 /// Masses can be added and subtracted. Simple saturation arithmetic is used,
75 /// so arithmetic operations never overflow or underflow.
76 ///
77 /// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses
78 /// an inexpensive floating-point algorithm that's off-by-one (almost, but not
79 /// quite, maximum precision).
80 ///
81 /// Masses can be scaled by \a BranchProbability at maximum precision.
82 class BlockMass {
83 uint64_t Mass = 0;
85 public:
86 BlockMass() = default;
87 explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
89 static BlockMass getEmpty() { return BlockMass(); }
91 static BlockMass getFull() {
92 return BlockMass(std::numeric_limits<uint64_t>::max());
95 uint64_t getMass() const { return Mass; }
97 bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); }
98 bool isEmpty() const { return !Mass; }
100 bool operator!() const { return isEmpty(); }
102 /// Add another mass.
104 /// Adds another mass, saturating at \a isFull() rather than overflowing.
105 BlockMass &operator+=(BlockMass X) {
106 uint64_t Sum = Mass + X.Mass;
107 Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum;
108 return *this;
111 /// Subtract another mass.
113 /// Subtracts another mass, saturating at \a isEmpty() rather than
114 /// undeflowing.
115 BlockMass &operator-=(BlockMass X) {
116 uint64_t Diff = Mass - X.Mass;
117 Mass = Diff > Mass ? 0 : Diff;
118 return *this;
121 BlockMass &operator*=(BranchProbability P) {
122 Mass = P.scale(Mass);
123 return *this;
126 bool operator==(BlockMass X) const { return Mass == X.Mass; }
127 bool operator!=(BlockMass X) const { return Mass != X.Mass; }
128 bool operator<=(BlockMass X) const { return Mass <= X.Mass; }
129 bool operator>=(BlockMass X) const { return Mass >= X.Mass; }
130 bool operator<(BlockMass X) const { return Mass < X.Mass; }
131 bool operator>(BlockMass X) const { return Mass > X.Mass; }
133 /// Convert to scaled number.
135 /// Convert to \a ScaledNumber. \a isFull() gives 1.0, while \a isEmpty()
136 /// gives slightly above 0.0.
137 ScaledNumber<uint64_t> toScaled() const;
139 void dump() const;
140 raw_ostream &print(raw_ostream &OS) const;
143 inline BlockMass operator+(BlockMass L, BlockMass R) {
144 return BlockMass(L) += R;
146 inline BlockMass operator-(BlockMass L, BlockMass R) {
147 return BlockMass(L) -= R;
149 inline BlockMass operator*(BlockMass L, BranchProbability R) {
150 return BlockMass(L) *= R;
152 inline BlockMass operator*(BranchProbability L, BlockMass R) {
153 return BlockMass(R) *= L;
156 inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) {
157 return X.print(OS);
160 } // end namespace bfi_detail
162 /// Base class for BlockFrequencyInfoImpl
164 /// BlockFrequencyInfoImplBase has supporting data structures and some
165 /// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on
166 /// the block type (or that call such algorithms) are skipped here.
168 /// Nevertheless, the majority of the overall algorithm documention lives with
169 /// BlockFrequencyInfoImpl. See there for details.
170 class BlockFrequencyInfoImplBase {
171 public:
172 using Scaled64 = ScaledNumber<uint64_t>;
173 using BlockMass = bfi_detail::BlockMass;
175 /// Representative of a block.
177 /// This is a simple wrapper around an index into the reverse-post-order
178 /// traversal of the blocks.
180 /// Unlike a block pointer, its order has meaning (location in the
181 /// topological sort) and it's class is the same regardless of block type.
182 struct BlockNode {
183 using IndexType = uint32_t;
185 IndexType Index;
187 BlockNode() : Index(std::numeric_limits<uint32_t>::max()) {}
188 BlockNode(IndexType Index) : Index(Index) {}
190 bool operator==(const BlockNode &X) const { return Index == X.Index; }
191 bool operator!=(const BlockNode &X) const { return Index != X.Index; }
192 bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
193 bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
194 bool operator<(const BlockNode &X) const { return Index < X.Index; }
195 bool operator>(const BlockNode &X) const { return Index > X.Index; }
197 bool isValid() const { return Index <= getMaxIndex(); }
199 static size_t getMaxIndex() {
200 return std::numeric_limits<uint32_t>::max() - 1;
204 /// Stats about a block itself.
205 struct FrequencyData {
206 Scaled64 Scaled;
207 uint64_t Integer;
210 /// Data about a loop.
212 /// Contains the data necessary to represent a loop as a pseudo-node once it's
213 /// packaged.
214 struct LoopData {
215 using ExitMap = SmallVector<std::pair<BlockNode, BlockMass>, 4>;
216 using NodeList = SmallVector<BlockNode, 4>;
217 using HeaderMassList = SmallVector<BlockMass, 1>;
219 LoopData *Parent; ///< The parent loop.
220 bool IsPackaged = false; ///< Whether this has been packaged.
221 uint32_t NumHeaders = 1; ///< Number of headers.
222 ExitMap Exits; ///< Successor edges (and weights).
223 NodeList Nodes; ///< Header and the members of the loop.
224 HeaderMassList BackedgeMass; ///< Mass returned to each loop header.
225 BlockMass Mass;
226 Scaled64 Scale;
228 LoopData(LoopData *Parent, const BlockNode &Header)
229 : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {}
231 template <class It1, class It2>
232 LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
233 It2 LastOther)
234 : Parent(Parent), Nodes(FirstHeader, LastHeader) {
235 NumHeaders = Nodes.size();
236 Nodes.insert(Nodes.end(), FirstOther, LastOther);
237 BackedgeMass.resize(NumHeaders);
240 bool isHeader(const BlockNode &Node) const {
241 if (isIrreducible())
242 return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
243 Node);
244 return Node == Nodes[0];
247 BlockNode getHeader() const { return Nodes[0]; }
248 bool isIrreducible() const { return NumHeaders > 1; }
250 HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) {
251 assert(isHeader(B) && "this is only valid on loop header blocks");
252 if (isIrreducible())
253 return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) -
254 Nodes.begin();
255 return 0;
258 NodeList::const_iterator members_begin() const {
259 return Nodes.begin() + NumHeaders;
262 NodeList::const_iterator members_end() const { return Nodes.end(); }
263 iterator_range<NodeList::const_iterator> members() const {
264 return make_range(members_begin(), members_end());
268 /// Index of loop information.
269 struct WorkingData {
270 BlockNode Node; ///< This node.
271 LoopData *Loop = nullptr; ///< The loop this block is inside.
272 BlockMass Mass; ///< Mass distribution from the entry block.
274 WorkingData(const BlockNode &Node) : Node(Node) {}
276 bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
278 bool isDoubleLoopHeader() const {
279 return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
280 Loop->Parent->isHeader(Node);
283 LoopData *getContainingLoop() const {
284 if (!isLoopHeader())
285 return Loop;
286 if (!isDoubleLoopHeader())
287 return Loop->Parent;
288 return Loop->Parent->Parent;
291 /// Resolve a node to its representative.
293 /// Get the node currently representing Node, which could be a containing
294 /// loop.
296 /// This function should only be called when distributing mass. As long as
297 /// there are no irreducible edges to Node, then it will have complexity
298 /// O(1) in this context.
300 /// In general, the complexity is O(L), where L is the number of loop
301 /// headers Node has been packaged into. Since this method is called in
302 /// the context of distributing mass, L will be the number of loop headers
303 /// an early exit edge jumps out of.
304 BlockNode getResolvedNode() const {
305 auto L = getPackagedLoop();
306 return L ? L->getHeader() : Node;
309 LoopData *getPackagedLoop() const {
310 if (!Loop || !Loop->IsPackaged)
311 return nullptr;
312 auto L = Loop;
313 while (L->Parent && L->Parent->IsPackaged)
314 L = L->Parent;
315 return L;
318 /// Get the appropriate mass for a node.
320 /// Get appropriate mass for Node. If Node is a loop-header (whose loop
321 /// has been packaged), returns the mass of its pseudo-node. If it's a
322 /// node inside a packaged loop, it returns the loop's mass.
323 BlockMass &getMass() {
324 if (!isAPackage())
325 return Mass;
326 if (!isADoublePackage())
327 return Loop->Mass;
328 return Loop->Parent->Mass;
331 /// Has ContainingLoop been packaged up?
332 bool isPackaged() const { return getResolvedNode() != Node; }
334 /// Has Loop been packaged up?
335 bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
337 /// Has Loop been packaged up twice?
338 bool isADoublePackage() const {
339 return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
343 /// Unscaled probability weight.
345 /// Probability weight for an edge in the graph (including the
346 /// successor/target node).
348 /// All edges in the original function are 32-bit. However, exit edges from
349 /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
350 /// space in general.
352 /// In addition to the raw weight amount, Weight stores the type of the edge
353 /// in the current context (i.e., the context of the loop being processed).
354 /// Is this a local edge within the loop, an exit from the loop, or a
355 /// backedge to the loop header?
356 struct Weight {
357 enum DistType { Local, Exit, Backedge };
358 DistType Type = Local;
359 BlockNode TargetNode;
360 uint64_t Amount = 0;
362 Weight() = default;
363 Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
364 : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
367 /// Distribution of unscaled probability weight.
369 /// Distribution of unscaled probability weight to a set of successors.
371 /// This class collates the successor edge weights for later processing.
373 /// \a DidOverflow indicates whether \a Total did overflow while adding to
374 /// the distribution. It should never overflow twice.
375 struct Distribution {
376 using WeightList = SmallVector<Weight, 4>;
378 WeightList Weights; ///< Individual successor weights.
379 uint64_t Total = 0; ///< Sum of all weights.
380 bool DidOverflow = false; ///< Whether \a Total did overflow.
382 Distribution() = default;
384 void addLocal(const BlockNode &Node, uint64_t Amount) {
385 add(Node, Amount, Weight::Local);
388 void addExit(const BlockNode &Node, uint64_t Amount) {
389 add(Node, Amount, Weight::Exit);
392 void addBackedge(const BlockNode &Node, uint64_t Amount) {
393 add(Node, Amount, Weight::Backedge);
396 /// Normalize the distribution.
398 /// Combines multiple edges to the same \a Weight::TargetNode and scales
399 /// down so that \a Total fits into 32-bits.
401 /// This is linear in the size of \a Weights. For the vast majority of
402 /// cases, adjacent edge weights are combined by sorting WeightList and
403 /// combining adjacent weights. However, for very large edge lists an
404 /// auxiliary hash table is used.
405 void normalize();
407 private:
408 void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
411 /// Data about each block. This is used downstream.
412 std::vector<FrequencyData> Freqs;
414 /// Whether each block is an irreducible loop header.
415 /// This is used downstream.
416 SparseBitVector<> IsIrrLoopHeader;
418 /// Loop data: see initializeLoops().
419 std::vector<WorkingData> Working;
421 /// Indexed information about loops.
422 std::list<LoopData> Loops;
424 /// Virtual destructor.
426 /// Need a virtual destructor to mask the compiler warning about
427 /// getBlockName().
428 virtual ~BlockFrequencyInfoImplBase() = default;
430 /// Add all edges out of a packaged loop to the distribution.
432 /// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each
433 /// successor edge.
435 /// \return \c true unless there's an irreducible backedge.
436 bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
437 Distribution &Dist);
439 /// Add an edge to the distribution.
441 /// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the
442 /// edge is local/exit/backedge is in the context of LoopHead. Otherwise,
443 /// every edge should be a local edge (since all the loops are packaged up).
445 /// \return \c true unless aborted due to an irreducible backedge.
446 bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
447 const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
449 LoopData &getLoopPackage(const BlockNode &Head) {
450 assert(Head.Index < Working.size());
451 assert(Working[Head.Index].isLoopHeader());
452 return *Working[Head.Index].Loop;
455 /// Analyze irreducible SCCs.
457 /// Separate irreducible SCCs from \c G, which is an explict graph of \c
458 /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
459 /// Insert them into \a Loops before \c Insert.
461 /// \return the \c LoopData nodes representing the irreducible SCCs.
462 iterator_range<std::list<LoopData>::iterator>
463 analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
464 std::list<LoopData>::iterator Insert);
466 /// Update a loop after packaging irreducible SCCs inside of it.
468 /// Update \c OuterLoop. Before finding irreducible control flow, it was
469 /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
470 /// LoopData::BackedgeMass need to be reset. Also, nodes that were packaged
471 /// up need to be removed from \a OuterLoop::Nodes.
472 void updateLoopWithIrreducible(LoopData &OuterLoop);
474 /// Distribute mass according to a distribution.
476 /// Distributes the mass in Source according to Dist. If LoopHead.isValid(),
477 /// backedges and exits are stored in its entry in Loops.
479 /// Mass is distributed in parallel from two copies of the source mass.
480 void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
481 Distribution &Dist);
483 /// Compute the loop scale for a loop.
484 void computeLoopScale(LoopData &Loop);
486 /// Adjust the mass of all headers in an irreducible loop.
488 /// Initially, irreducible loops are assumed to distribute their mass
489 /// equally among its headers. This can lead to wrong frequency estimates
490 /// since some headers may be executed more frequently than others.
492 /// This adjusts header mass distribution so it matches the weights of
493 /// the backedges going into each of the loop headers.
494 void adjustLoopHeaderMass(LoopData &Loop);
496 void distributeIrrLoopHeaderMass(Distribution &Dist);
498 /// Package up a loop.
499 void packageLoop(LoopData &Loop);
501 /// Unwrap loops.
502 void unwrapLoops();
504 /// Finalize frequency metrics.
506 /// Calculates final frequencies and cleans up no-longer-needed data
507 /// structures.
508 void finalizeMetrics();
510 /// Clear all memory.
511 void clear();
513 virtual std::string getBlockName(const BlockNode &Node) const;
514 std::string getLoopName(const LoopData &Loop) const;
516 virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
517 void dump() const { print(dbgs()); }
519 Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
521 BlockFrequency getBlockFreq(const BlockNode &Node) const;
522 Optional<uint64_t> getBlockProfileCount(const Function &F,
523 const BlockNode &Node) const;
524 Optional<uint64_t> getProfileCountFromFreq(const Function &F,
525 uint64_t Freq) const;
526 bool isIrrLoopHeader(const BlockNode &Node);
528 void setBlockFreq(const BlockNode &Node, uint64_t Freq);
530 raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
531 raw_ostream &printBlockFreq(raw_ostream &OS,
532 const BlockFrequency &Freq) const;
534 uint64_t getEntryFreq() const {
535 assert(!Freqs.empty());
536 return Freqs[0].Integer;
540 namespace bfi_detail {
542 template <class BlockT> struct TypeMap {};
543 template <> struct TypeMap<BasicBlock> {
544 using BlockT = BasicBlock;
545 using FunctionT = Function;
546 using BranchProbabilityInfoT = BranchProbabilityInfo;
547 using LoopT = Loop;
548 using LoopInfoT = LoopInfo;
550 template <> struct TypeMap<MachineBasicBlock> {
551 using BlockT = MachineBasicBlock;
552 using FunctionT = MachineFunction;
553 using BranchProbabilityInfoT = MachineBranchProbabilityInfo;
554 using LoopT = MachineLoop;
555 using LoopInfoT = MachineLoopInfo;
558 /// Get the name of a MachineBasicBlock.
560 /// Get the name of a MachineBasicBlock. It's templated so that including from
561 /// CodeGen is unnecessary (that would be a layering issue).
563 /// This is used mainly for debug output. The name is similar to
564 /// MachineBasicBlock::getFullName(), but skips the name of the function.
565 template <class BlockT> std::string getBlockName(const BlockT *BB) {
566 assert(BB && "Unexpected nullptr");
567 auto MachineName = "BB" + Twine(BB->getNumber());
568 if (BB->getBasicBlock())
569 return (MachineName + "[" + BB->getName() + "]").str();
570 return MachineName.str();
572 /// Get the name of a BasicBlock.
573 template <> inline std::string getBlockName(const BasicBlock *BB) {
574 assert(BB && "Unexpected nullptr");
575 return BB->getName().str();
578 /// Graph of irreducible control flow.
580 /// This graph is used for determining the SCCs in a loop (or top-level
581 /// function) that has irreducible control flow.
583 /// During the block frequency algorithm, the local graphs are defined in a
584 /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
585 /// graphs for most edges, but getting others from \a LoopData::ExitMap. The
586 /// latter only has successor information.
588 /// \a IrreducibleGraph makes this graph explicit. It's in a form that can use
589 /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
590 /// and it explicitly lists predecessors and successors. The initialization
591 /// that relies on \c MachineBasicBlock is defined in the header.
592 struct IrreducibleGraph {
593 using BFIBase = BlockFrequencyInfoImplBase;
595 BFIBase &BFI;
597 using BlockNode = BFIBase::BlockNode;
598 struct IrrNode {
599 BlockNode Node;
600 unsigned NumIn = 0;
601 std::deque<const IrrNode *> Edges;
603 IrrNode(const BlockNode &Node) : Node(Node) {}
605 using iterator = std::deque<const IrrNode *>::const_iterator;
607 iterator pred_begin() const { return Edges.begin(); }
608 iterator succ_begin() const { return Edges.begin() + NumIn; }
609 iterator pred_end() const { return succ_begin(); }
610 iterator succ_end() const { return Edges.end(); }
612 BlockNode Start;
613 const IrrNode *StartIrr = nullptr;
614 std::vector<IrrNode> Nodes;
615 SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
617 /// Construct an explicit graph containing irreducible control flow.
619 /// Construct an explicit graph of the control flow in \c OuterLoop (or the
620 /// top-level function, if \c OuterLoop is \c nullptr). Uses \c
621 /// addBlockEdges to add block successors that have not been packaged into
622 /// loops.
624 /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
625 /// user of this.
626 template <class BlockEdgesAdder>
627 IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
628 BlockEdgesAdder addBlockEdges) : BFI(BFI) {
629 initialize(OuterLoop, addBlockEdges);
632 template <class BlockEdgesAdder>
633 void initialize(const BFIBase::LoopData *OuterLoop,
634 BlockEdgesAdder addBlockEdges);
635 void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
636 void addNodesInFunction();
638 void addNode(const BlockNode &Node) {
639 Nodes.emplace_back(Node);
640 BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
643 void indexNodes();
644 template <class BlockEdgesAdder>
645 void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
646 BlockEdgesAdder addBlockEdges);
647 void addEdge(IrrNode &Irr, const BlockNode &Succ,
648 const BFIBase::LoopData *OuterLoop);
651 template <class BlockEdgesAdder>
652 void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
653 BlockEdgesAdder addBlockEdges) {
654 if (OuterLoop) {
655 addNodesInLoop(*OuterLoop);
656 for (auto N : OuterLoop->Nodes)
657 addEdges(N, OuterLoop, addBlockEdges);
658 } else {
659 addNodesInFunction();
660 for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
661 addEdges(Index, OuterLoop, addBlockEdges);
663 StartIrr = Lookup[Start.Index];
666 template <class BlockEdgesAdder>
667 void IrreducibleGraph::addEdges(const BlockNode &Node,
668 const BFIBase::LoopData *OuterLoop,
669 BlockEdgesAdder addBlockEdges) {
670 auto L = Lookup.find(Node.Index);
671 if (L == Lookup.end())
672 return;
673 IrrNode &Irr = *L->second;
674 const auto &Working = BFI.Working[Node.Index];
676 if (Working.isAPackage())
677 for (const auto &I : Working.Loop->Exits)
678 addEdge(Irr, I.first, OuterLoop);
679 else
680 addBlockEdges(*this, Irr, OuterLoop);
683 } // end namespace bfi_detail
685 /// Shared implementation for block frequency analysis.
687 /// This is a shared implementation of BlockFrequencyInfo and
688 /// MachineBlockFrequencyInfo, and calculates the relative frequencies of
689 /// blocks.
691 /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
692 /// which is called the header. A given loop, L, can have sub-loops, which are
693 /// loops within the subgraph of L that exclude its header. (A "trivial" SCC
694 /// consists of a single block that does not have a self-edge.)
696 /// In addition to loops, this algorithm has limited support for irreducible
697 /// SCCs, which are SCCs with multiple entry blocks. Irreducible SCCs are
698 /// discovered on they fly, and modelled as loops with multiple headers.
700 /// The headers of irreducible sub-SCCs consist of its entry blocks and all
701 /// nodes that are targets of a backedge within it (excluding backedges within
702 /// true sub-loops). Block frequency calculations act as if a block is
703 /// inserted that intercepts all the edges to the headers. All backedges and
704 /// entries point to this block. Its successors are the headers, which split
705 /// the frequency evenly.
707 /// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
708 /// separates mass distribution from loop scaling, and dithers to eliminate
709 /// probability mass loss.
711 /// The implementation is split between BlockFrequencyInfoImpl, which knows the
712 /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
713 /// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a
714 /// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in
715 /// reverse-post order. This gives two advantages: it's easy to compare the
716 /// relative ordering of two nodes, and maps keyed on BlockT can be represented
717 /// by vectors.
719 /// This algorithm is O(V+E), unless there is irreducible control flow, in
720 /// which case it's O(V*E) in the worst case.
722 /// These are the main stages:
724 /// 0. Reverse post-order traversal (\a initializeRPOT()).
726 /// Run a single post-order traversal and save it (in reverse) in RPOT.
727 /// All other stages make use of this ordering. Save a lookup from BlockT
728 /// to BlockNode (the index into RPOT) in Nodes.
730 /// 1. Loop initialization (\a initializeLoops()).
732 /// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
733 /// the algorithm. In particular, store the immediate members of each loop
734 /// in reverse post-order.
736 /// 2. Calculate mass and scale in loops (\a computeMassInLoops()).
738 /// For each loop (bottom-up), distribute mass through the DAG resulting
739 /// from ignoring backedges and treating sub-loops as a single pseudo-node.
740 /// Track the backedge mass distributed to the loop header, and use it to
741 /// calculate the loop scale (number of loop iterations). Immediate
742 /// members that represent sub-loops will already have been visited and
743 /// packaged into a pseudo-node.
745 /// Distributing mass in a loop is a reverse-post-order traversal through
746 /// the loop. Start by assigning full mass to the Loop header. For each
747 /// node in the loop:
749 /// - Fetch and categorize the weight distribution for its successors.
750 /// If this is a packaged-subloop, the weight distribution is stored
751 /// in \a LoopData::Exits. Otherwise, fetch it from
752 /// BranchProbabilityInfo.
754 /// - Each successor is categorized as \a Weight::Local, a local edge
755 /// within the current loop, \a Weight::Backedge, a backedge to the
756 /// loop header, or \a Weight::Exit, any successor outside the loop.
757 /// The weight, the successor, and its category are stored in \a
758 /// Distribution. There can be multiple edges to each successor.
760 /// - If there's a backedge to a non-header, there's an irreducible SCC.
761 /// The usual flow is temporarily aborted. \a
762 /// computeIrreducibleMass() finds the irreducible SCCs within the
763 /// loop, packages them up, and restarts the flow.
765 /// - Normalize the distribution: scale weights down so that their sum
766 /// is 32-bits, and coalesce multiple edges to the same node.
768 /// - Distribute the mass accordingly, dithering to minimize mass loss,
769 /// as described in \a distributeMass().
771 /// In the case of irreducible loops, instead of a single loop header,
772 /// there will be several. The computation of backedge masses is similar
773 /// but instead of having a single backedge mass, there will be one
774 /// backedge per loop header. In these cases, each backedge will carry
775 /// a mass proportional to the edge weights along the corresponding
776 /// path.
778 /// At the end of propagation, the full mass assigned to the loop will be
779 /// distributed among the loop headers proportionally according to the
780 /// mass flowing through their backedges.
782 /// Finally, calculate the loop scale from the accumulated backedge mass.
784 /// 3. Distribute mass in the function (\a computeMassInFunction()).
786 /// Finally, distribute mass through the DAG resulting from packaging all
787 /// loops in the function. This uses the same algorithm as distributing
788 /// mass in a loop, except that there are no exit or backedge edges.
790 /// 4. Unpackage loops (\a unwrapLoops()).
792 /// Initialize each block's frequency to a floating point representation of
793 /// its mass.
795 /// Visit loops top-down, scaling the frequencies of its immediate members
796 /// by the loop's pseudo-node's frequency.
798 /// 5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
800 /// Using the min and max frequencies as a guide, translate floating point
801 /// frequencies to an appropriate range in uint64_t.
803 /// It has some known flaws.
805 /// - The model of irreducible control flow is a rough approximation.
807 /// Modelling irreducible control flow exactly involves setting up and
808 /// solving a group of infinite geometric series. Such precision is
809 /// unlikely to be worthwhile, since most of our algorithms give up on
810 /// irreducible control flow anyway.
812 /// Nevertheless, we might find that we need to get closer. Here's a sort
813 /// of TODO list for the model with diminishing returns, to be completed as
814 /// necessary.
816 /// - The headers for the \a LoopData representing an irreducible SCC
817 /// include non-entry blocks. When these extra blocks exist, they
818 /// indicate a self-contained irreducible sub-SCC. We could treat them
819 /// as sub-loops, rather than arbitrarily shoving the problematic
820 /// blocks into the headers of the main irreducible SCC.
822 /// - Entry frequencies are assumed to be evenly split between the
823 /// headers of a given irreducible SCC, which is the only option if we
824 /// need to compute mass in the SCC before its parent loop. Instead,
825 /// we could partially compute mass in the parent loop, and stop when
826 /// we get to the SCC. Here, we have the correct ratio of entry
827 /// masses, which we can use to adjust their relative frequencies.
828 /// Compute mass in the SCC, and then continue propagation in the
829 /// parent.
831 /// - We can propagate mass iteratively through the SCC, for some fixed
832 /// number of iterations. Each iteration starts by assigning the entry
833 /// blocks their backedge mass from the prior iteration. The final
834 /// mass for each block (and each exit, and the total backedge mass
835 /// used for computing loop scale) is the sum of all iterations.
836 /// (Running this until fixed point would "solve" the geometric
837 /// series by simulation.)
838 template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
839 // This is part of a workaround for a GCC 4.7 crash on lambdas.
840 friend struct bfi_detail::BlockEdgesAdder<BT>;
842 using BlockT = typename bfi_detail::TypeMap<BT>::BlockT;
843 using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT;
844 using BranchProbabilityInfoT =
845 typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT;
846 using LoopT = typename bfi_detail::TypeMap<BT>::LoopT;
847 using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT;
848 using Successor = GraphTraits<const BlockT *>;
849 using Predecessor = GraphTraits<Inverse<const BlockT *>>;
851 const BranchProbabilityInfoT *BPI = nullptr;
852 const LoopInfoT *LI = nullptr;
853 const FunctionT *F = nullptr;
855 // All blocks in reverse postorder.
856 std::vector<const BlockT *> RPOT;
857 DenseMap<const BlockT *, BlockNode> Nodes;
859 using rpot_iterator = typename std::vector<const BlockT *>::const_iterator;
861 rpot_iterator rpot_begin() const { return RPOT.begin(); }
862 rpot_iterator rpot_end() const { return RPOT.end(); }
864 size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
866 BlockNode getNode(const rpot_iterator &I) const {
867 return BlockNode(getIndex(I));
869 BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }
871 const BlockT *getBlock(const BlockNode &Node) const {
872 assert(Node.Index < RPOT.size());
873 return RPOT[Node.Index];
876 /// Run (and save) a post-order traversal.
878 /// Saves a reverse post-order traversal of all the nodes in \a F.
879 void initializeRPOT();
881 /// Initialize loop data.
883 /// Build up \a Loops using \a LoopInfo. \a LoopInfo gives us a mapping from
884 /// each block to the deepest loop it's in, but we need the inverse. For each
885 /// loop, we store in reverse post-order its "immediate" members, defined as
886 /// the header, the headers of immediate sub-loops, and all other blocks in
887 /// the loop that are not in sub-loops.
888 void initializeLoops();
890 /// Propagate to a block's successors.
892 /// In the context of distributing mass through \c OuterLoop, divide the mass
893 /// currently assigned to \c Node between its successors.
895 /// \return \c true unless there's an irreducible backedge.
896 bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
898 /// Compute mass in a particular loop.
900 /// Assign mass to \c Loop's header, and then for each block in \c Loop in
901 /// reverse post-order, distribute mass to its successors. Only visits nodes
902 /// that have not been packaged into sub-loops.
904 /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
905 /// \return \c true unless there's an irreducible backedge.
906 bool computeMassInLoop(LoopData &Loop);
908 /// Try to compute mass in the top-level function.
910 /// Assign mass to the entry block, and then for each block in reverse
911 /// post-order, distribute mass to its successors. Skips nodes that have
912 /// been packaged into loops.
914 /// \pre \a computeMassInLoops() has been called.
915 /// \return \c true unless there's an irreducible backedge.
916 bool tryToComputeMassInFunction();
918 /// Compute mass in (and package up) irreducible SCCs.
920 /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
921 /// of \c Insert), and call \a computeMassInLoop() on each of them.
923 /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
925 /// \pre \a computeMassInLoop() has been called for each subloop of \c
926 /// OuterLoop.
927 /// \pre \c Insert points at the last loop successfully processed by \a
928 /// computeMassInLoop().
929 /// \pre \c OuterLoop has irreducible SCCs.
930 void computeIrreducibleMass(LoopData *OuterLoop,
931 std::list<LoopData>::iterator Insert);
933 /// Compute mass in all loops.
935 /// For each loop bottom-up, call \a computeMassInLoop().
937 /// \a computeMassInLoop() aborts (and returns \c false) on loops that
938 /// contain a irreducible sub-SCCs. Use \a computeIrreducibleMass() and then
939 /// re-enter \a computeMassInLoop().
941 /// \post \a computeMassInLoop() has returned \c true for every loop.
942 void computeMassInLoops();
944 /// Compute mass in the top-level function.
946 /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
947 /// compute mass in the top-level function.
949 /// \post \a tryToComputeMassInFunction() has returned \c true.
950 void computeMassInFunction();
952 std::string getBlockName(const BlockNode &Node) const override {
953 return bfi_detail::getBlockName(getBlock(Node));
956 public:
957 BlockFrequencyInfoImpl() = default;
959 const FunctionT *getFunction() const { return F; }
961 void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI,
962 const LoopInfoT &LI);
964 using BlockFrequencyInfoImplBase::getEntryFreq;
966 BlockFrequency getBlockFreq(const BlockT *BB) const {
967 return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
970 Optional<uint64_t> getBlockProfileCount(const Function &F,
971 const BlockT *BB) const {
972 return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB));
975 Optional<uint64_t> getProfileCountFromFreq(const Function &F,
976 uint64_t Freq) const {
977 return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq);
980 bool isIrrLoopHeader(const BlockT *BB) {
981 return BlockFrequencyInfoImplBase::isIrrLoopHeader(getNode(BB));
984 void setBlockFreq(const BlockT *BB, uint64_t Freq);
986 Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
987 return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
990 const BranchProbabilityInfoT &getBPI() const { return *BPI; }
992 /// Print the frequencies for the current function.
994 /// Prints the frequencies for the blocks in the current function.
996 /// Blocks are printed in the natural iteration order of the function, rather
997 /// than reverse post-order. This provides two advantages: writing -analyze
998 /// tests is easier (since blocks come out in source order), and even
999 /// unreachable blocks are printed.
1001 /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
1002 /// we need to override it here.
1003 raw_ostream &print(raw_ostream &OS) const override;
1005 using BlockFrequencyInfoImplBase::dump;
1006 using BlockFrequencyInfoImplBase::printBlockFreq;
1008 raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
1009 return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
1013 template <class BT>
1014 void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F,
1015 const BranchProbabilityInfoT &BPI,
1016 const LoopInfoT &LI) {
1017 // Save the parameters.
1018 this->BPI = &BPI;
1019 this->LI = &LI;
1020 this->F = &F;
1022 // Clean up left-over data structures.
1023 BlockFrequencyInfoImplBase::clear();
1024 RPOT.clear();
1025 Nodes.clear();
1027 // Initialize.
1028 LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName()
1029 << "\n================="
1030 << std::string(F.getName().size(), '=') << "\n");
1031 initializeRPOT();
1032 initializeLoops();
1034 // Visit loops in post-order to find the local mass distribution, and then do
1035 // the full function.
1036 computeMassInLoops();
1037 computeMassInFunction();
1038 unwrapLoops();
1039 finalizeMetrics();
1042 template <class BT>
1043 void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) {
1044 if (Nodes.count(BB))
1045 BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq);
1046 else {
1047 // If BB is a newly added block after BFI is done, we need to create a new
1048 // BlockNode for it assigned with a new index. The index can be determined
1049 // by the size of Freqs.
1050 BlockNode NewNode(Freqs.size());
1051 Nodes[BB] = NewNode;
1052 Freqs.emplace_back();
1053 BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq);
1057 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
1058 const BlockT *Entry = &F->front();
1059 RPOT.reserve(F->size());
1060 std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
1061 std::reverse(RPOT.begin(), RPOT.end());
1063 assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
1064 "More nodes in function than Block Frequency Info supports");
1066 LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n");
1067 for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
1068 BlockNode Node = getNode(I);
1069 LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node)
1070 << "\n");
1071 Nodes[*I] = Node;
1074 Working.reserve(RPOT.size());
1075 for (size_t Index = 0; Index < RPOT.size(); ++Index)
1076 Working.emplace_back(Index);
1077 Freqs.resize(RPOT.size());
1080 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
1081 LLVM_DEBUG(dbgs() << "loop-detection\n");
1082 if (LI->empty())
1083 return;
1085 // Visit loops top down and assign them an index.
1086 std::deque<std::pair<const LoopT *, LoopData *>> Q;
1087 for (const LoopT *L : *LI)
1088 Q.emplace_back(L, nullptr);
1089 while (!Q.empty()) {
1090 const LoopT *Loop = Q.front().first;
1091 LoopData *Parent = Q.front().second;
1092 Q.pop_front();
1094 BlockNode Header = getNode(Loop->getHeader());
1095 assert(Header.isValid());
1097 Loops.emplace_back(Parent, Header);
1098 Working[Header.Index].Loop = &Loops.back();
1099 LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
1101 for (const LoopT *L : *Loop)
1102 Q.emplace_back(L, &Loops.back());
1105 // Visit nodes in reverse post-order and add them to their deepest containing
1106 // loop.
1107 for (size_t Index = 0; Index < RPOT.size(); ++Index) {
1108 // Loop headers have already been mostly mapped.
1109 if (Working[Index].isLoopHeader()) {
1110 LoopData *ContainingLoop = Working[Index].getContainingLoop();
1111 if (ContainingLoop)
1112 ContainingLoop->Nodes.push_back(Index);
1113 continue;
1116 const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
1117 if (!Loop)
1118 continue;
1120 // Add this node to its containing loop's member list.
1121 BlockNode Header = getNode(Loop->getHeader());
1122 assert(Header.isValid());
1123 const auto &HeaderData = Working[Header.Index];
1124 assert(HeaderData.isLoopHeader());
1126 Working[Index].Loop = HeaderData.Loop;
1127 HeaderData.Loop->Nodes.push_back(Index);
1128 LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header)
1129 << ": member = " << getBlockName(Index) << "\n");
1133 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
1134 // Visit loops with the deepest first, and the top-level loops last.
1135 for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1136 if (computeMassInLoop(*L))
1137 continue;
1138 auto Next = std::next(L);
1139 computeIrreducibleMass(&*L, L.base());
1140 L = std::prev(Next);
1141 if (computeMassInLoop(*L))
1142 continue;
1143 llvm_unreachable("unhandled irreducible control flow");
1147 template <class BT>
1148 bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
1149 // Compute mass in loop.
1150 LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
1152 if (Loop.isIrreducible()) {
1153 LLVM_DEBUG(dbgs() << "isIrreducible = true\n");
1154 Distribution Dist;
1155 unsigned NumHeadersWithWeight = 0;
1156 Optional<uint64_t> MinHeaderWeight;
1157 DenseSet<uint32_t> HeadersWithoutWeight;
1158 HeadersWithoutWeight.reserve(Loop.NumHeaders);
1159 for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
1160 auto &HeaderNode = Loop.Nodes[H];
1161 const BlockT *Block = getBlock(HeaderNode);
1162 IsIrrLoopHeader.set(Loop.Nodes[H].Index);
1163 Optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight();
1164 if (!HeaderWeight) {
1165 LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on "
1166 << getBlockName(HeaderNode) << "\n");
1167 HeadersWithoutWeight.insert(H);
1168 continue;
1170 LLVM_DEBUG(dbgs() << getBlockName(HeaderNode)
1171 << " has irr loop header weight "
1172 << HeaderWeight.getValue() << "\n");
1173 NumHeadersWithWeight++;
1174 uint64_t HeaderWeightValue = HeaderWeight.getValue();
1175 if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight)
1176 MinHeaderWeight = HeaderWeightValue;
1177 if (HeaderWeightValue) {
1178 Dist.addLocal(HeaderNode, HeaderWeightValue);
1181 // As a heuristic, if some headers don't have a weight, give them the
1182 // minimium weight seen (not to disrupt the existing trends too much by
1183 // using a weight that's in the general range of the other headers' weights,
1184 // and the minimum seems to perform better than the average.)
1185 // FIXME: better update in the passes that drop the header weight.
1186 // If no headers have a weight, give them even weight (use weight 1).
1187 if (!MinHeaderWeight)
1188 MinHeaderWeight = 1;
1189 for (uint32_t H : HeadersWithoutWeight) {
1190 auto &HeaderNode = Loop.Nodes[H];
1191 assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() &&
1192 "Shouldn't have a weight metadata");
1193 uint64_t MinWeight = MinHeaderWeight.getValue();
1194 LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to "
1195 << getBlockName(HeaderNode) << "\n");
1196 if (MinWeight)
1197 Dist.addLocal(HeaderNode, MinWeight);
1199 distributeIrrLoopHeaderMass(Dist);
1200 for (const BlockNode &M : Loop.Nodes)
1201 if (!propagateMassToSuccessors(&Loop, M))
1202 llvm_unreachable("unhandled irreducible control flow");
1203 if (NumHeadersWithWeight == 0)
1204 // No headers have a metadata. Adjust header mass.
1205 adjustLoopHeaderMass(Loop);
1206 } else {
1207 Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
1208 if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
1209 llvm_unreachable("irreducible control flow to loop header!?");
1210 for (const BlockNode &M : Loop.members())
1211 if (!propagateMassToSuccessors(&Loop, M))
1212 // Irreducible backedge.
1213 return false;
1216 computeLoopScale(Loop);
1217 packageLoop(Loop);
1218 return true;
1221 template <class BT>
1222 bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
1223 // Compute mass in function.
1224 LLVM_DEBUG(dbgs() << "compute-mass-in-function\n");
1225 assert(!Working.empty() && "no blocks in function");
1226 assert(!Working[0].isLoopHeader() && "entry block is a loop header");
1228 Working[0].getMass() = BlockMass::getFull();
1229 for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
1230 // Check for nodes that have been packaged.
1231 BlockNode Node = getNode(I);
1232 if (Working[Node.Index].isPackaged())
1233 continue;
1235 if (!propagateMassToSuccessors(nullptr, Node))
1236 return false;
1238 return true;
1241 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
1242 if (tryToComputeMassInFunction())
1243 return;
1244 computeIrreducibleMass(nullptr, Loops.begin());
1245 if (tryToComputeMassInFunction())
1246 return;
1247 llvm_unreachable("unhandled irreducible control flow");
1250 /// \note This should be a lambda, but that crashes GCC 4.7.
1251 namespace bfi_detail {
1253 template <class BT> struct BlockEdgesAdder {
1254 using BlockT = BT;
1255 using LoopData = BlockFrequencyInfoImplBase::LoopData;
1256 using Successor = GraphTraits<const BlockT *>;
1258 const BlockFrequencyInfoImpl<BT> &BFI;
1260 explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
1261 : BFI(BFI) {}
1263 void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
1264 const LoopData *OuterLoop) {
1265 const BlockT *BB = BFI.RPOT[Irr.Node.Index];
1266 for (const auto Succ : children<const BlockT *>(BB))
1267 G.addEdge(Irr, BFI.getNode(Succ), OuterLoop);
1271 } // end namespace bfi_detail
1273 template <class BT>
1274 void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
1275 LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
1276 LLVM_DEBUG(dbgs() << "analyze-irreducible-in-";
1277 if (OuterLoop) dbgs()
1278 << "loop: " << getLoopName(*OuterLoop) << "\n";
1279 else dbgs() << "function\n");
1281 using namespace bfi_detail;
1283 // Ideally, addBlockEdges() would be declared here as a lambda, but that
1284 // crashes GCC 4.7.
1285 BlockEdgesAdder<BT> addBlockEdges(*this);
1286 IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
1288 for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
1289 computeMassInLoop(L);
1291 if (!OuterLoop)
1292 return;
1293 updateLoopWithIrreducible(*OuterLoop);
1296 // A helper function that converts a branch probability into weight.
1297 inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) {
1298 return Prob.getNumerator();
1301 template <class BT>
1302 bool
1303 BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
1304 const BlockNode &Node) {
1305 LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
1306 // Calculate probability for successors.
1307 Distribution Dist;
1308 if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
1309 assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
1310 if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
1311 // Irreducible backedge.
1312 return false;
1313 } else {
1314 const BlockT *BB = getBlock(Node);
1315 for (auto SI = GraphTraits<const BlockT *>::child_begin(BB),
1316 SE = GraphTraits<const BlockT *>::child_end(BB);
1317 SI != SE; ++SI)
1318 if (!addToDist(
1319 Dist, OuterLoop, Node, getNode(*SI),
1320 getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI))))
1321 // Irreducible backedge.
1322 return false;
1325 // Distribute mass to successors, saving exit and backedge data in the
1326 // loop header.
1327 distributeMass(Node, OuterLoop, Dist);
1328 return true;
1331 template <class BT>
1332 raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
1333 if (!F)
1334 return OS;
1335 OS << "block-frequency-info: " << F->getName() << "\n";
1336 for (const BlockT &BB : *F) {
1337 OS << " - " << bfi_detail::getBlockName(&BB) << ": float = ";
1338 getFloatingBlockFreq(&BB).print(OS, 5)
1339 << ", int = " << getBlockFreq(&BB).getFrequency();
1340 if (Optional<uint64_t> ProfileCount =
1341 BlockFrequencyInfoImplBase::getBlockProfileCount(
1342 F->getFunction(), getNode(&BB)))
1343 OS << ", count = " << ProfileCount.getValue();
1344 if (Optional<uint64_t> IrrLoopHeaderWeight =
1345 BB.getIrrLoopHeaderWeight())
1346 OS << ", irr_loop_header_weight = " << IrrLoopHeaderWeight.getValue();
1347 OS << "\n";
1350 // Add an extra newline for readability.
1351 OS << "\n";
1352 return OS;
1355 // Graph trait base class for block frequency information graph
1356 // viewer.
1358 enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count };
1360 template <class BlockFrequencyInfoT, class BranchProbabilityInfoT>
1361 struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits {
1362 using GTraits = GraphTraits<BlockFrequencyInfoT *>;
1363 using NodeRef = typename GTraits::NodeRef;
1364 using EdgeIter = typename GTraits::ChildIteratorType;
1365 using NodeIter = typename GTraits::nodes_iterator;
1367 uint64_t MaxFrequency = 0;
1369 explicit BFIDOTGraphTraitsBase(bool isSimple = false)
1370 : DefaultDOTGraphTraits(isSimple) {}
1372 static std::string getGraphName(const BlockFrequencyInfoT *G) {
1373 return G->getFunction()->getName();
1376 std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph,
1377 unsigned HotPercentThreshold = 0) {
1378 std::string Result;
1379 if (!HotPercentThreshold)
1380 return Result;
1382 // Compute MaxFrequency on the fly:
1383 if (!MaxFrequency) {
1384 for (NodeIter I = GTraits::nodes_begin(Graph),
1385 E = GTraits::nodes_end(Graph);
1386 I != E; ++I) {
1387 NodeRef N = *I;
1388 MaxFrequency =
1389 std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency());
1392 BlockFrequency Freq = Graph->getBlockFreq(Node);
1393 BlockFrequency HotFreq =
1394 (BlockFrequency(MaxFrequency) *
1395 BranchProbability::getBranchProbability(HotPercentThreshold, 100));
1397 if (Freq < HotFreq)
1398 return Result;
1400 raw_string_ostream OS(Result);
1401 OS << "color=\"red\"";
1402 OS.flush();
1403 return Result;
1406 std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph,
1407 GVDAGType GType, int layout_order = -1) {
1408 std::string Result;
1409 raw_string_ostream OS(Result);
1411 if (layout_order != -1)
1412 OS << Node->getName() << "[" << layout_order << "] : ";
1413 else
1414 OS << Node->getName() << " : ";
1415 switch (GType) {
1416 case GVDT_Fraction:
1417 Graph->printBlockFreq(OS, Node);
1418 break;
1419 case GVDT_Integer:
1420 OS << Graph->getBlockFreq(Node).getFrequency();
1421 break;
1422 case GVDT_Count: {
1423 auto Count = Graph->getBlockProfileCount(Node);
1424 if (Count)
1425 OS << Count.getValue();
1426 else
1427 OS << "Unknown";
1428 break;
1430 case GVDT_None:
1431 llvm_unreachable("If we are not supposed to render a graph we should "
1432 "never reach this point.");
1434 return Result;
1437 std::string getEdgeAttributes(NodeRef Node, EdgeIter EI,
1438 const BlockFrequencyInfoT *BFI,
1439 const BranchProbabilityInfoT *BPI,
1440 unsigned HotPercentThreshold = 0) {
1441 std::string Str;
1442 if (!BPI)
1443 return Str;
1445 BranchProbability BP = BPI->getEdgeProbability(Node, EI);
1446 uint32_t N = BP.getNumerator();
1447 uint32_t D = BP.getDenominator();
1448 double Percent = 100.0 * N / D;
1449 raw_string_ostream OS(Str);
1450 OS << format("label=\"%.1f%%\"", Percent);
1452 if (HotPercentThreshold) {
1453 BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP;
1454 BlockFrequency HotFreq = BlockFrequency(MaxFrequency) *
1455 BranchProbability(HotPercentThreshold, 100);
1457 if (EFreq >= HotFreq) {
1458 OS << ",color=\"red\"";
1462 OS.flush();
1463 return Str;
1467 } // end namespace llvm
1469 #undef DEBUG_TYPE
1471 #endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H