1 //===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file exposes an interface to building/using memory SSA to
11 /// walk memory instructions using a use/def graph.
13 /// Memory SSA class builds an SSA form that links together memory access
14 /// instructions such as loads, stores, atomics, and calls. Additionally, it
15 /// does a trivial form of "heap versioning" Every time the memory state changes
16 /// in the program, we generate a new heap version. It generates
17 /// MemoryDef/Uses/Phis that are overlayed on top of the existing instructions.
19 /// As a trivial example,
20 /// define i32 @main() #0 {
22 /// %call = call noalias i8* @_Znwm(i64 4) #2
23 /// %0 = bitcast i8* %call to i32*
24 /// %call1 = call noalias i8* @_Znwm(i64 4) #2
25 /// %1 = bitcast i8* %call1 to i32*
26 /// store i32 5, i32* %0, align 4
27 /// store i32 7, i32* %1, align 4
28 /// %2 = load i32* %0, align 4
29 /// %3 = load i32* %1, align 4
30 /// %add = add nsw i32 %2, %3
35 /// define i32 @main() #0 {
37 /// ; 1 = MemoryDef(0)
38 /// %call = call noalias i8* @_Znwm(i64 4) #3
39 /// %2 = bitcast i8* %call to i32*
40 /// ; 2 = MemoryDef(1)
41 /// %call1 = call noalias i8* @_Znwm(i64 4) #3
42 /// %4 = bitcast i8* %call1 to i32*
43 /// ; 3 = MemoryDef(2)
44 /// store i32 5, i32* %2, align 4
45 /// ; 4 = MemoryDef(3)
46 /// store i32 7, i32* %4, align 4
48 /// %7 = load i32* %2, align 4
50 /// %8 = load i32* %4, align 4
51 /// %add = add nsw i32 %7, %8
55 /// Given this form, all the stores that could ever effect the load at %8 can be
56 /// gotten by using the MemoryUse associated with it, and walking from use to
57 /// def until you hit the top of the function.
59 /// Each def also has a list of users associated with it, so you can walk from
60 /// both def to users, and users to defs. Note that we disambiguate MemoryUses,
61 /// but not the RHS of MemoryDefs. You can see this above at %7, which would
62 /// otherwise be a MemoryUse(4). Being disambiguated means that for a given
63 /// store, all the MemoryUses on its use lists are may-aliases of that store
64 /// (but the MemoryDefs on its use list may not be).
66 /// MemoryDefs are not disambiguated because it would require multiple reaching
67 /// definitions, which would require multiple phis, and multiple memoryaccesses
70 //===----------------------------------------------------------------------===//
72 #ifndef LLVM_ANALYSIS_MEMORYSSA_H
73 #define LLVM_ANALYSIS_MEMORYSSA_H
75 #include "llvm/ADT/DenseMap.h"
76 #include "llvm/ADT/GraphTraits.h"
77 #include "llvm/ADT/SmallPtrSet.h"
78 #include "llvm/ADT/SmallVector.h"
79 #include "llvm/ADT/ilist.h"
80 #include "llvm/ADT/ilist_node.h"
81 #include "llvm/ADT/iterator.h"
82 #include "llvm/ADT/iterator_range.h"
83 #include "llvm/ADT/simple_ilist.h"
84 #include "llvm/Analysis/AliasAnalysis.h"
85 #include "llvm/Analysis/MemoryLocation.h"
86 #include "llvm/Analysis/PHITransAddr.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/DerivedUser.h"
89 #include "llvm/IR/Dominators.h"
90 #include "llvm/IR/Module.h"
91 #include "llvm/IR/Type.h"
92 #include "llvm/IR/Use.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/IR/ValueHandle.h"
96 #include "llvm/Pass.h"
97 #include "llvm/Support/Casting.h"
110 class MemorySSAWalker
;
114 namespace MSSAHelpers
{
116 struct AllAccessTag
{};
117 struct DefsOnlyTag
{};
119 } // end namespace MSSAHelpers
122 // Used to signify what the default invalid ID is for MemoryAccess's
124 INVALID_MEMORYACCESS_ID
= -1U
127 template <class T
> class memoryaccess_def_iterator_base
;
128 using memoryaccess_def_iterator
= memoryaccess_def_iterator_base
<MemoryAccess
>;
129 using const_memoryaccess_def_iterator
=
130 memoryaccess_def_iterator_base
<const MemoryAccess
>;
132 // The base for all memory accesses. All memory accesses in a block are
133 // linked together using an intrusive list.
135 : public DerivedUser
,
136 public ilist_node
<MemoryAccess
, ilist_tag
<MSSAHelpers::AllAccessTag
>>,
137 public ilist_node
<MemoryAccess
, ilist_tag
<MSSAHelpers::DefsOnlyTag
>> {
139 using AllAccessType
=
140 ilist_node
<MemoryAccess
, ilist_tag
<MSSAHelpers::AllAccessTag
>>;
142 ilist_node
<MemoryAccess
, ilist_tag
<MSSAHelpers::DefsOnlyTag
>>;
144 MemoryAccess(const MemoryAccess
&) = delete;
145 MemoryAccess
&operator=(const MemoryAccess
&) = delete;
147 void *operator new(size_t) = delete;
149 // Methods for support type inquiry through isa, cast, and
151 static bool classof(const Value
*V
) {
152 unsigned ID
= V
->getValueID();
153 return ID
== MemoryUseVal
|| ID
== MemoryPhiVal
|| ID
== MemoryDefVal
;
156 BasicBlock
*getBlock() const { return Block
; }
158 void print(raw_ostream
&OS
) const;
161 /// The user iterators for a memory access
162 using iterator
= user_iterator
;
163 using const_iterator
= const_user_iterator
;
165 /// This iterator walks over all of the defs in a given
166 /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For
167 /// MemoryUse/MemoryDef, this walks the defining access.
168 memoryaccess_def_iterator
defs_begin();
169 const_memoryaccess_def_iterator
defs_begin() const;
170 memoryaccess_def_iterator
defs_end();
171 const_memoryaccess_def_iterator
defs_end() const;
173 /// Get the iterators for the all access list and the defs only list
174 /// We default to the all access list.
175 AllAccessType::self_iterator
getIterator() {
176 return this->AllAccessType::getIterator();
178 AllAccessType::const_self_iterator
getIterator() const {
179 return this->AllAccessType::getIterator();
181 AllAccessType::reverse_self_iterator
getReverseIterator() {
182 return this->AllAccessType::getReverseIterator();
184 AllAccessType::const_reverse_self_iterator
getReverseIterator() const {
185 return this->AllAccessType::getReverseIterator();
187 DefsOnlyType::self_iterator
getDefsIterator() {
188 return this->DefsOnlyType::getIterator();
190 DefsOnlyType::const_self_iterator
getDefsIterator() const {
191 return this->DefsOnlyType::getIterator();
193 DefsOnlyType::reverse_self_iterator
getReverseDefsIterator() {
194 return this->DefsOnlyType::getReverseIterator();
196 DefsOnlyType::const_reverse_self_iterator
getReverseDefsIterator() const {
197 return this->DefsOnlyType::getReverseIterator();
201 friend class MemoryDef
;
202 friend class MemoryPhi
;
203 friend class MemorySSA
;
204 friend class MemoryUse
;
205 friend class MemoryUseOrDef
;
207 /// Used by MemorySSA to change the block of a MemoryAccess when it is
209 void setBlock(BasicBlock
*BB
) { Block
= BB
; }
211 /// Used for debugging and tracking things about MemoryAccesses.
212 /// Guaranteed unique among MemoryAccesses, no guarantees otherwise.
213 inline unsigned getID() const;
215 MemoryAccess(LLVMContext
&C
, unsigned Vty
, DeleteValueTy DeleteValue
,
216 BasicBlock
*BB
, unsigned NumOperands
)
217 : DerivedUser(Type::getVoidTy(C
), Vty
, nullptr, NumOperands
, DeleteValue
),
220 // Use deleteValue() to delete a generic MemoryAccess.
221 ~MemoryAccess() = default;
228 struct ilist_alloc_traits
<MemoryAccess
> {
229 static void deleteNode(MemoryAccess
*MA
) { MA
->deleteValue(); }
232 inline raw_ostream
&operator<<(raw_ostream
&OS
, const MemoryAccess
&MA
) {
237 /// Class that has the common methods + fields of memory uses/defs. It's
238 /// a little awkward to have, but there are many cases where we want either a
239 /// use or def, and there are many cases where uses are needed (defs aren't
240 /// acceptable), and vice-versa.
242 /// This class should never be instantiated directly; make a MemoryUse or
243 /// MemoryDef instead.
244 class MemoryUseOrDef
: public MemoryAccess
{
246 void *operator new(size_t) = delete;
248 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess
);
250 /// Get the instruction that this MemoryUse represents.
251 Instruction
*getMemoryInst() const { return MemoryInstruction
; }
253 /// Get the access that produces the memory state used by this Use.
254 MemoryAccess
*getDefiningAccess() const { return getOperand(0); }
256 static bool classof(const Value
*MA
) {
257 return MA
->getValueID() == MemoryUseVal
|| MA
->getValueID() == MemoryDefVal
;
260 // Sadly, these have to be public because they are needed in some of the
262 inline bool isOptimized() const;
263 inline MemoryAccess
*getOptimized() const;
264 inline void setOptimized(MemoryAccess
*);
266 // Retrieve AliasResult type of the optimized access. Ideally this would be
267 // returned by the caching walker and may go away in the future.
268 Optional
<AliasResult
> getOptimizedAccessType() const {
269 return OptimizedAccessAlias
;
272 /// Reset the ID of what this MemoryUse was optimized to, causing it to
273 /// be rewalked by the walker if necessary.
274 /// This really should only be called by tests.
275 inline void resetOptimized();
278 friend class MemorySSA
;
279 friend class MemorySSAUpdater
;
281 MemoryUseOrDef(LLVMContext
&C
, MemoryAccess
*DMA
, unsigned Vty
,
282 DeleteValueTy DeleteValue
, Instruction
*MI
, BasicBlock
*BB
,
283 unsigned NumOperands
)
284 : MemoryAccess(C
, Vty
, DeleteValue
, BB
, NumOperands
),
285 MemoryInstruction(MI
), OptimizedAccessAlias(MayAlias
) {
286 setDefiningAccess(DMA
);
289 // Use deleteValue() to delete a generic MemoryUseOrDef.
290 ~MemoryUseOrDef() = default;
292 void setOptimizedAccessType(Optional
<AliasResult
> AR
) {
293 OptimizedAccessAlias
= AR
;
296 void setDefiningAccess(MemoryAccess
*DMA
, bool Optimized
= false,
297 Optional
<AliasResult
> AR
= MayAlias
) {
303 setOptimizedAccessType(AR
);
307 Instruction
*MemoryInstruction
;
308 Optional
<AliasResult
> OptimizedAccessAlias
;
311 /// Represents read-only accesses to memory
313 /// In particular, the set of Instructions that will be represented by
314 /// MemoryUse's is exactly the set of Instructions for which
315 /// AliasAnalysis::getModRefInfo returns "Ref".
316 class MemoryUse final
: public MemoryUseOrDef
{
318 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess
);
320 MemoryUse(LLVMContext
&C
, MemoryAccess
*DMA
, Instruction
*MI
, BasicBlock
*BB
)
321 : MemoryUseOrDef(C
, DMA
, MemoryUseVal
, deleteMe
, MI
, BB
,
322 /*NumOperands=*/1) {}
324 // allocate space for exactly one operand
325 void *operator new(size_t s
) { return User::operator new(s
, 1); }
327 static bool classof(const Value
*MA
) {
328 return MA
->getValueID() == MemoryUseVal
;
331 void print(raw_ostream
&OS
) const;
333 void setOptimized(MemoryAccess
*DMA
) {
334 OptimizedID
= DMA
->getID();
338 bool isOptimized() const {
339 return getDefiningAccess() && OptimizedID
== getDefiningAccess()->getID();
342 MemoryAccess
*getOptimized() const {
343 return getDefiningAccess();
346 void resetOptimized() {
347 OptimizedID
= INVALID_MEMORYACCESS_ID
;
351 friend class MemorySSA
;
354 static void deleteMe(DerivedUser
*Self
);
356 unsigned OptimizedID
= INVALID_MEMORYACCESS_ID
;
360 struct OperandTraits
<MemoryUse
> : public FixedNumOperandTraits
<MemoryUse
, 1> {};
361 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse
, MemoryAccess
)
363 /// Represents a read-write access to memory, whether it is a must-alias,
366 /// In particular, the set of Instructions that will be represented by
367 /// MemoryDef's is exactly the set of Instructions for which
368 /// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef".
369 /// Note that, in order to provide def-def chains, all defs also have a use
370 /// associated with them. This use points to the nearest reaching
371 /// MemoryDef/MemoryPhi.
372 class MemoryDef final
: public MemoryUseOrDef
{
374 friend class MemorySSA
;
376 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess
);
378 MemoryDef(LLVMContext
&C
, MemoryAccess
*DMA
, Instruction
*MI
, BasicBlock
*BB
,
380 : MemoryUseOrDef(C
, DMA
, MemoryDefVal
, deleteMe
, MI
, BB
,
384 // allocate space for exactly two operands
385 void *operator new(size_t s
) { return User::operator new(s
, 2); }
387 static bool classof(const Value
*MA
) {
388 return MA
->getValueID() == MemoryDefVal
;
391 void setOptimized(MemoryAccess
*MA
) {
393 OptimizedID
= MA
->getID();
396 MemoryAccess
*getOptimized() const {
397 return cast_or_null
<MemoryAccess
>(getOperand(1));
400 bool isOptimized() const {
401 return getOptimized() && OptimizedID
== getOptimized()->getID();
404 void resetOptimized() {
405 OptimizedID
= INVALID_MEMORYACCESS_ID
;
406 setOperand(1, nullptr);
409 void print(raw_ostream
&OS
) const;
411 unsigned getID() const { return ID
; }
414 static void deleteMe(DerivedUser
*Self
);
417 unsigned OptimizedID
= INVALID_MEMORYACCESS_ID
;
421 struct OperandTraits
<MemoryDef
> : public FixedNumOperandTraits
<MemoryDef
, 2> {};
422 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef
, MemoryAccess
)
425 struct OperandTraits
<MemoryUseOrDef
> {
426 static Use
*op_begin(MemoryUseOrDef
*MUD
) {
427 if (auto *MU
= dyn_cast
<MemoryUse
>(MUD
))
428 return OperandTraits
<MemoryUse
>::op_begin(MU
);
429 return OperandTraits
<MemoryDef
>::op_begin(cast
<MemoryDef
>(MUD
));
432 static Use
*op_end(MemoryUseOrDef
*MUD
) {
433 if (auto *MU
= dyn_cast
<MemoryUse
>(MUD
))
434 return OperandTraits
<MemoryUse
>::op_end(MU
);
435 return OperandTraits
<MemoryDef
>::op_end(cast
<MemoryDef
>(MUD
));
438 static unsigned operands(const MemoryUseOrDef
*MUD
) {
439 if (const auto *MU
= dyn_cast
<MemoryUse
>(MUD
))
440 return OperandTraits
<MemoryUse
>::operands(MU
);
441 return OperandTraits
<MemoryDef
>::operands(cast
<MemoryDef
>(MUD
));
444 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef
, MemoryAccess
)
446 /// Represents phi nodes for memory accesses.
448 /// These have the same semantic as regular phi nodes, with the exception that
449 /// only one phi will ever exist in a given basic block.
450 /// Guaranteeing one phi per block means guaranteeing there is only ever one
451 /// valid reaching MemoryDef/MemoryPHI along each path to the phi node.
452 /// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or
453 /// a MemoryPhi's operands.
459 /// it *must* be transformed into
461 /// 1 = MemoryDef(liveOnEntry)
468 /// 1 = MemoryDef(liveOnEntry)
470 /// 2 = MemoryDef(liveOnEntry)
473 /// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the
474 /// end of the branch, and if there are not two phi nodes, one will be
475 /// disconnected completely from the SSA graph below that point.
476 /// Because MemoryUse's do not generate new definitions, they do not have this
478 class MemoryPhi final
: public MemoryAccess
{
479 // allocate space for exactly zero operands
480 void *operator new(size_t s
) { return User::operator new(s
); }
483 /// Provide fast operand accessors
484 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess
);
486 MemoryPhi(LLVMContext
&C
, BasicBlock
*BB
, unsigned Ver
, unsigned NumPreds
= 0)
487 : MemoryAccess(C
, MemoryPhiVal
, deleteMe
, BB
, 0), ID(Ver
),
488 ReservedSpace(NumPreds
) {
489 allocHungoffUses(ReservedSpace
);
492 // Block iterator interface. This provides access to the list of incoming
493 // basic blocks, which parallels the list of incoming values.
494 using block_iterator
= BasicBlock
**;
495 using const_block_iterator
= BasicBlock
*const *;
497 block_iterator
block_begin() {
498 auto *Ref
= reinterpret_cast<Use::UserRef
*>(op_begin() + ReservedSpace
);
499 return reinterpret_cast<block_iterator
>(Ref
+ 1);
502 const_block_iterator
block_begin() const {
504 reinterpret_cast<const Use::UserRef
*>(op_begin() + ReservedSpace
);
505 return reinterpret_cast<const_block_iterator
>(Ref
+ 1);
508 block_iterator
block_end() { return block_begin() + getNumOperands(); }
510 const_block_iterator
block_end() const {
511 return block_begin() + getNumOperands();
514 iterator_range
<block_iterator
> blocks() {
515 return make_range(block_begin(), block_end());
518 iterator_range
<const_block_iterator
> blocks() const {
519 return make_range(block_begin(), block_end());
522 op_range
incoming_values() { return operands(); }
524 const_op_range
incoming_values() const { return operands(); }
526 /// Return the number of incoming edges
527 unsigned getNumIncomingValues() const { return getNumOperands(); }
529 /// Return incoming value number x
530 MemoryAccess
*getIncomingValue(unsigned I
) const { return getOperand(I
); }
531 void setIncomingValue(unsigned I
, MemoryAccess
*V
) {
532 assert(V
&& "PHI node got a null value!");
536 static unsigned getOperandNumForIncomingValue(unsigned I
) { return I
; }
537 static unsigned getIncomingValueNumForOperand(unsigned I
) { return I
; }
539 /// Return incoming basic block number @p i.
540 BasicBlock
*getIncomingBlock(unsigned I
) const { return block_begin()[I
]; }
542 /// Return incoming basic block corresponding
543 /// to an operand of the PHI.
544 BasicBlock
*getIncomingBlock(const Use
&U
) const {
545 assert(this == U
.getUser() && "Iterator doesn't point to PHI's Uses?");
546 return getIncomingBlock(unsigned(&U
- op_begin()));
549 /// Return incoming basic block corresponding
550 /// to value use iterator.
551 BasicBlock
*getIncomingBlock(MemoryAccess::const_user_iterator I
) const {
552 return getIncomingBlock(I
.getUse());
555 void setIncomingBlock(unsigned I
, BasicBlock
*BB
) {
556 assert(BB
&& "PHI node got a null basic block!");
557 block_begin()[I
] = BB
;
560 /// Add an incoming value to the end of the PHI list
561 void addIncoming(MemoryAccess
*V
, BasicBlock
*BB
) {
562 if (getNumOperands() == ReservedSpace
)
563 growOperands(); // Get more space!
564 // Initialize some new operands.
565 setNumHungOffUseOperands(getNumOperands() + 1);
566 setIncomingValue(getNumOperands() - 1, V
);
567 setIncomingBlock(getNumOperands() - 1, BB
);
570 /// Return the first index of the specified basic
571 /// block in the value list for this PHI. Returns -1 if no instance.
572 int getBasicBlockIndex(const BasicBlock
*BB
) const {
573 for (unsigned I
= 0, E
= getNumOperands(); I
!= E
; ++I
)
574 if (block_begin()[I
] == BB
)
579 MemoryAccess
*getIncomingValueForBlock(const BasicBlock
*BB
) const {
580 int Idx
= getBasicBlockIndex(BB
);
581 assert(Idx
>= 0 && "Invalid basic block argument!");
582 return getIncomingValue(Idx
);
585 // After deleting incoming position I, the order of incoming may be changed.
586 void unorderedDeleteIncoming(unsigned I
) {
587 unsigned E
= getNumOperands();
588 assert(I
< E
&& "Cannot remove out of bounds Phi entry.");
589 // MemoryPhi must have at least two incoming values, otherwise the MemoryPhi
590 // itself should be deleted.
591 assert(E
>= 2 && "Cannot only remove incoming values in MemoryPhis with "
592 "at least 2 values.");
593 setIncomingValue(I
, getIncomingValue(E
- 1));
594 setIncomingBlock(I
, block_begin()[E
- 1]);
595 setOperand(E
- 1, nullptr);
596 block_begin()[E
- 1] = nullptr;
597 setNumHungOffUseOperands(getNumOperands() - 1);
600 // After deleting entries that satisfy Pred, remaining entries may have
602 template <typename Fn
> void unorderedDeleteIncomingIf(Fn
&&Pred
) {
603 for (unsigned I
= 0, E
= getNumOperands(); I
!= E
; ++I
)
604 if (Pred(getIncomingValue(I
), getIncomingBlock(I
))) {
605 unorderedDeleteIncoming(I
);
606 E
= getNumOperands();
609 assert(getNumOperands() >= 1 &&
610 "Cannot remove all incoming blocks in a MemoryPhi.");
613 // After deleting incoming block BB, the incoming blocks order may be changed.
614 void unorderedDeleteIncomingBlock(const BasicBlock
*BB
) {
615 unorderedDeleteIncomingIf(
616 [&](const MemoryAccess
*, const BasicBlock
*B
) { return BB
== B
; });
619 // After deleting incoming memory access MA, the incoming accesses order may
621 void unorderedDeleteIncomingValue(const MemoryAccess
*MA
) {
622 unorderedDeleteIncomingIf(
623 [&](const MemoryAccess
*M
, const BasicBlock
*) { return MA
== M
; });
626 static bool classof(const Value
*V
) {
627 return V
->getValueID() == MemoryPhiVal
;
630 void print(raw_ostream
&OS
) const;
632 unsigned getID() const { return ID
; }
635 friend class MemorySSA
;
637 /// this is more complicated than the generic
638 /// User::allocHungoffUses, because we have to allocate Uses for the incoming
639 /// values and pointers to the incoming blocks, all in one allocation.
640 void allocHungoffUses(unsigned N
) {
641 User::allocHungoffUses(N
, /* IsPhi */ true);
645 // For debugging only
647 unsigned ReservedSpace
;
649 /// This grows the operand list in response to a push_back style of
650 /// operation. This grows the number of ops by 1.5 times.
651 void growOperands() {
652 unsigned E
= getNumOperands();
653 // 2 op PHI nodes are VERY common, so reserve at least enough for that.
654 ReservedSpace
= std::max(E
+ E
/ 2, 2u);
655 growHungoffUses(ReservedSpace
, /* IsPhi */ true);
658 static void deleteMe(DerivedUser
*Self
);
661 inline unsigned MemoryAccess::getID() const {
662 assert((isa
<MemoryDef
>(this) || isa
<MemoryPhi
>(this)) &&
663 "only memory defs and phis have ids");
664 if (const auto *MD
= dyn_cast
<MemoryDef
>(this))
666 return cast
<MemoryPhi
>(this)->getID();
669 inline bool MemoryUseOrDef::isOptimized() const {
670 if (const auto *MD
= dyn_cast
<MemoryDef
>(this))
671 return MD
->isOptimized();
672 return cast
<MemoryUse
>(this)->isOptimized();
675 inline MemoryAccess
*MemoryUseOrDef::getOptimized() const {
676 if (const auto *MD
= dyn_cast
<MemoryDef
>(this))
677 return MD
->getOptimized();
678 return cast
<MemoryUse
>(this)->getOptimized();
681 inline void MemoryUseOrDef::setOptimized(MemoryAccess
*MA
) {
682 if (auto *MD
= dyn_cast
<MemoryDef
>(this))
683 MD
->setOptimized(MA
);
685 cast
<MemoryUse
>(this)->setOptimized(MA
);
688 inline void MemoryUseOrDef::resetOptimized() {
689 if (auto *MD
= dyn_cast
<MemoryDef
>(this))
690 MD
->resetOptimized();
692 cast
<MemoryUse
>(this)->resetOptimized();
695 template <> struct OperandTraits
<MemoryPhi
> : public HungoffOperandTraits
<2> {};
696 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi
, MemoryAccess
)
698 /// Encapsulates MemorySSA, including all data associated with memory
702 MemorySSA(Function
&, AliasAnalysis
*, DominatorTree
*);
705 MemorySSAWalker
*getWalker();
706 MemorySSAWalker
*getSkipSelfWalker();
708 /// Given a memory Mod/Ref'ing instruction, get the MemorySSA
709 /// access associated with it. If passed a basic block gets the memory phi
710 /// node that exists for that block, if there is one. Otherwise, this will get
711 /// a MemoryUseOrDef.
712 MemoryUseOrDef
*getMemoryAccess(const Instruction
*I
) const {
713 return cast_or_null
<MemoryUseOrDef
>(ValueToMemoryAccess
.lookup(I
));
716 MemoryPhi
*getMemoryAccess(const BasicBlock
*BB
) const {
717 return cast_or_null
<MemoryPhi
>(ValueToMemoryAccess
.lookup(cast
<Value
>(BB
)));
721 void print(raw_ostream
&) const;
723 /// Return true if \p MA represents the live on entry value
725 /// Loads and stores from pointer arguments and other global values may be
726 /// defined by memory operations that do not occur in the current function, so
727 /// they may be live on entry to the function. MemorySSA represents such
728 /// memory state by the live on entry definition, which is guaranteed to occur
729 /// before any other memory access in the function.
730 inline bool isLiveOnEntryDef(const MemoryAccess
*MA
) const {
731 return MA
== LiveOnEntryDef
.get();
734 inline MemoryAccess
*getLiveOnEntryDef() const {
735 return LiveOnEntryDef
.get();
738 // Sadly, iplists, by default, owns and deletes pointers added to the
739 // list. It's not currently possible to have two iplists for the same type,
740 // where one owns the pointers, and one does not. This is because the traits
741 // are per-type, not per-tag. If this ever changes, we should make the
742 // DefList an iplist.
743 using AccessList
= iplist
<MemoryAccess
, ilist_tag
<MSSAHelpers::AllAccessTag
>>;
745 simple_ilist
<MemoryAccess
, ilist_tag
<MSSAHelpers::DefsOnlyTag
>>;
747 /// Return the list of MemoryAccess's for a given basic block.
749 /// This list is not modifiable by the user.
750 const AccessList
*getBlockAccesses(const BasicBlock
*BB
) const {
751 return getWritableBlockAccesses(BB
);
754 /// Return the list of MemoryDef's and MemoryPhi's for a given basic
757 /// This list is not modifiable by the user.
758 const DefsList
*getBlockDefs(const BasicBlock
*BB
) const {
759 return getWritableBlockDefs(BB
);
762 /// Given two memory accesses in the same basic block, determine
763 /// whether MemoryAccess \p A dominates MemoryAccess \p B.
764 bool locallyDominates(const MemoryAccess
*A
, const MemoryAccess
*B
) const;
766 /// Given two memory accesses in potentially different blocks,
767 /// determine whether MemoryAccess \p A dominates MemoryAccess \p B.
768 bool dominates(const MemoryAccess
*A
, const MemoryAccess
*B
) const;
770 /// Given a MemoryAccess and a Use, determine whether MemoryAccess \p A
771 /// dominates Use \p B.
772 bool dominates(const MemoryAccess
*A
, const Use
&B
) const;
774 /// Verify that MemorySSA is self consistent (IE definitions dominate
775 /// all uses, uses appear in the right places). This is used by unit tests.
776 void verifyMemorySSA() const;
778 /// Used in various insertion functions to specify whether we are talking
779 /// about the beginning or end of a block.
780 enum InsertionPlace
{ Beginning
, End
};
783 // Used by Memory SSA annotater, dumpers, and wrapper pass
784 friend class MemorySSAAnnotatedWriter
;
785 friend class MemorySSAPrinterLegacyPass
;
786 friend class MemorySSAUpdater
;
788 void verifyDefUses(Function
&F
) const;
789 void verifyDomination(Function
&F
) const;
790 void verifyOrdering(Function
&F
) const;
791 void verifyDominationNumbers(const Function
&F
) const;
793 // This is used by the use optimizer and updater.
794 AccessList
*getWritableBlockAccesses(const BasicBlock
*BB
) const {
795 auto It
= PerBlockAccesses
.find(BB
);
796 return It
== PerBlockAccesses
.end() ? nullptr : It
->second
.get();
799 // This is used by the use optimizer and updater.
800 DefsList
*getWritableBlockDefs(const BasicBlock
*BB
) const {
801 auto It
= PerBlockDefs
.find(BB
);
802 return It
== PerBlockDefs
.end() ? nullptr : It
->second
.get();
805 // These is used by the updater to perform various internal MemorySSA
806 // machinsations. They do not always leave the IR in a correct state, and
807 // relies on the updater to fixup what it breaks, so it is not public.
809 void moveTo(MemoryUseOrDef
*What
, BasicBlock
*BB
, AccessList::iterator Where
);
810 void moveTo(MemoryAccess
*What
, BasicBlock
*BB
, InsertionPlace Point
);
812 // Rename the dominator tree branch rooted at BB.
813 void renamePass(BasicBlock
*BB
, MemoryAccess
*IncomingVal
,
814 SmallPtrSetImpl
<BasicBlock
*> &Visited
) {
815 renamePass(DT
->getNode(BB
), IncomingVal
, Visited
, true, true);
818 void removeFromLookups(MemoryAccess
*);
819 void removeFromLists(MemoryAccess
*, bool ShouldDelete
= true);
820 void insertIntoListsForBlock(MemoryAccess
*, const BasicBlock
*,
822 void insertIntoListsBefore(MemoryAccess
*, const BasicBlock
*,
823 AccessList::iterator
);
824 MemoryUseOrDef
*createDefinedAccess(Instruction
*, MemoryAccess
*,
825 const MemoryUseOrDef
*Template
= nullptr);
828 class ClobberWalkerBase
;
830 class SkipSelfWalker
;
833 CachingWalker
*getWalkerImpl();
834 void buildMemorySSA();
837 void prepareForMoveTo(MemoryAccess
*, BasicBlock
*);
838 void verifyUseInDefs(MemoryAccess
*, MemoryAccess
*) const;
840 using AccessMap
= DenseMap
<const BasicBlock
*, std::unique_ptr
<AccessList
>>;
841 using DefsMap
= DenseMap
<const BasicBlock
*, std::unique_ptr
<DefsList
>>;
844 determineInsertionPoint(const SmallPtrSetImpl
<BasicBlock
*> &DefiningBlocks
);
845 void markUnreachableAsLiveOnEntry(BasicBlock
*BB
);
846 bool dominatesUse(const MemoryAccess
*, const MemoryAccess
*) const;
847 MemoryPhi
*createMemoryPhi(BasicBlock
*BB
);
848 MemoryUseOrDef
*createNewAccess(Instruction
*,
849 const MemoryUseOrDef
*Template
= nullptr);
850 MemoryAccess
*findDominatingDef(BasicBlock
*, enum InsertionPlace
);
851 void placePHINodes(const SmallPtrSetImpl
<BasicBlock
*> &);
852 MemoryAccess
*renameBlock(BasicBlock
*, MemoryAccess
*, bool);
853 void renameSuccessorPhis(BasicBlock
*, MemoryAccess
*, bool);
854 void renamePass(DomTreeNode
*, MemoryAccess
*IncomingVal
,
855 SmallPtrSetImpl
<BasicBlock
*> &Visited
,
856 bool SkipVisited
= false, bool RenameAllUses
= false);
857 AccessList
*getOrCreateAccessList(const BasicBlock
*);
858 DefsList
*getOrCreateDefsList(const BasicBlock
*);
859 void renumberBlock(const BasicBlock
*) const;
864 // Memory SSA mappings
865 DenseMap
<const Value
*, MemoryAccess
*> ValueToMemoryAccess
;
867 // These two mappings contain the main block to access/def mappings for
868 // MemorySSA. The list contained in PerBlockAccesses really owns all the
870 // Both maps maintain the invariant that if a block is found in them, the
871 // corresponding list is not empty, and if a block is not found in them, the
872 // corresponding list is empty.
873 AccessMap PerBlockAccesses
;
874 DefsMap PerBlockDefs
;
875 std::unique_ptr
<MemoryAccess
, ValueDeleter
> LiveOnEntryDef
;
877 // Domination mappings
878 // Note that the numbering is local to a block, even though the map is
880 mutable SmallPtrSet
<const BasicBlock
*, 16> BlockNumberingValid
;
881 mutable DenseMap
<const MemoryAccess
*, unsigned long> BlockNumbering
;
883 // Memory SSA building info
884 std::unique_ptr
<ClobberWalkerBase
> WalkerBase
;
885 std::unique_ptr
<CachingWalker
> Walker
;
886 std::unique_ptr
<SkipSelfWalker
> SkipWalker
;
890 // Internal MemorySSA utils, for use by MemorySSA classes and walkers
891 class MemorySSAUtil
{
893 friend class GVNHoist
;
894 friend class MemorySSAWalker
;
896 // This function should not be used by new passes.
897 static bool defClobbersUseOrDef(MemoryDef
*MD
, const MemoryUseOrDef
*MU
,
901 // This pass does eager building and then printing of MemorySSA. It is used by
902 // the tests to be able to build, dump, and verify Memory SSA.
903 class MemorySSAPrinterLegacyPass
: public FunctionPass
{
905 MemorySSAPrinterLegacyPass();
907 bool runOnFunction(Function
&) override
;
908 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
913 /// An analysis that produces \c MemorySSA for a function.
915 class MemorySSAAnalysis
: public AnalysisInfoMixin
<MemorySSAAnalysis
> {
916 friend AnalysisInfoMixin
<MemorySSAAnalysis
>;
918 static AnalysisKey Key
;
921 // Wrap MemorySSA result to ensure address stability of internal MemorySSA
922 // pointers after construction. Use a wrapper class instead of plain
923 // unique_ptr<MemorySSA> to avoid build breakage on MSVC.
925 Result(std::unique_ptr
<MemorySSA
> &&MSSA
) : MSSA(std::move(MSSA
)) {}
927 MemorySSA
&getMSSA() { return *MSSA
.get(); }
929 std::unique_ptr
<MemorySSA
> MSSA
;
932 Result
run(Function
&F
, FunctionAnalysisManager
&AM
);
935 /// Printer pass for \c MemorySSA.
936 class MemorySSAPrinterPass
: public PassInfoMixin
<MemorySSAPrinterPass
> {
940 explicit MemorySSAPrinterPass(raw_ostream
&OS
) : OS(OS
) {}
942 PreservedAnalyses
run(Function
&F
, FunctionAnalysisManager
&AM
);
945 /// Verifier pass for \c MemorySSA.
946 struct MemorySSAVerifierPass
: PassInfoMixin
<MemorySSAVerifierPass
> {
947 PreservedAnalyses
run(Function
&F
, FunctionAnalysisManager
&AM
);
950 /// Legacy analysis pass which computes \c MemorySSA.
951 class MemorySSAWrapperPass
: public FunctionPass
{
953 MemorySSAWrapperPass();
957 bool runOnFunction(Function
&) override
;
958 void releaseMemory() override
;
959 MemorySSA
&getMSSA() { return *MSSA
; }
960 const MemorySSA
&getMSSA() const { return *MSSA
; }
962 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
964 void verifyAnalysis() const override
;
965 void print(raw_ostream
&OS
, const Module
*M
= nullptr) const override
;
968 std::unique_ptr
<MemorySSA
> MSSA
;
971 /// This is the generic walker interface for walkers of MemorySSA.
972 /// Walkers are used to be able to further disambiguate the def-use chains
973 /// MemorySSA gives you, or otherwise produce better info than MemorySSA gives
975 /// In particular, while the def-use chains provide basic information, and are
976 /// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a
977 /// MemoryUse as AliasAnalysis considers it, a user mant want better or other
978 /// information. In particular, they may want to use SCEV info to further
979 /// disambiguate memory accesses, or they may want the nearest dominating
980 /// may-aliasing MemoryDef for a call or a store. This API enables a
981 /// standardized interface to getting and using that info.
982 class MemorySSAWalker
{
984 MemorySSAWalker(MemorySSA
*);
985 virtual ~MemorySSAWalker() = default;
987 using MemoryAccessSet
= SmallVector
<MemoryAccess
*, 8>;
989 /// Given a memory Mod/Ref/ModRef'ing instruction, calling this
990 /// will give you the nearest dominating MemoryAccess that Mod's the location
991 /// the instruction accesses (by skipping any def which AA can prove does not
992 /// alias the location(s) accessed by the instruction given).
994 /// Note that this will return a single access, and it must dominate the
995 /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction,
996 /// this will return the MemoryPhi, not the operand. This means that
999 /// 1 = MemoryDef(liveOnEntry)
1002 /// 2 = MemoryDef(liveOnEntry)
1005 /// 3 = MemoryPhi(2, 1)
1009 /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef
1010 /// in the if (a) branch.
1011 MemoryAccess
*getClobberingMemoryAccess(const Instruction
*I
) {
1012 MemoryAccess
*MA
= MSSA
->getMemoryAccess(I
);
1013 assert(MA
&& "Handed an instruction that MemorySSA doesn't recognize?");
1014 return getClobberingMemoryAccess(MA
);
1017 /// Does the same thing as getClobberingMemoryAccess(const Instruction *I),
1018 /// but takes a MemoryAccess instead of an Instruction.
1019 virtual MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*) = 0;
1021 /// Given a potentially clobbering memory access and a new location,
1022 /// calling this will give you the nearest dominating clobbering MemoryAccess
1023 /// (by skipping non-aliasing def links).
1025 /// This version of the function is mainly used to disambiguate phi translated
1026 /// pointers, where the value of a pointer may have changed from the initial
1027 /// memory access. Note that this expects to be handed either a MemoryUse,
1028 /// or an already potentially clobbering access. Unlike the above API, if
1029 /// given a MemoryDef that clobbers the pointer as the starting access, it
1030 /// will return that MemoryDef, whereas the above would return the clobber
1031 /// starting from the use side of the memory def.
1032 virtual MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*,
1033 const MemoryLocation
&) = 0;
1035 /// Given a memory access, invalidate anything this walker knows about
1037 /// This API is used by walkers that store information to perform basic cache
1038 /// invalidation. This will be called by MemorySSA at appropriate times for
1039 /// the walker it uses or returns.
1040 virtual void invalidateInfo(MemoryAccess
*) {}
1042 virtual void verify(const MemorySSA
*MSSA
) { assert(MSSA
== this->MSSA
); }
1045 friend class MemorySSA
; // For updating MSSA pointer in MemorySSA move
1050 /// A MemorySSAWalker that does no alias queries, or anything else. It
1051 /// simply returns the links as they were constructed by the builder.
1052 class DoNothingMemorySSAWalker final
: public MemorySSAWalker
{
1054 // Keep the overrides below from hiding the Instruction overload of
1055 // getClobberingMemoryAccess.
1056 using MemorySSAWalker::getClobberingMemoryAccess
;
1058 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*) override
;
1059 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*,
1060 const MemoryLocation
&) override
;
1063 using MemoryAccessPair
= std::pair
<MemoryAccess
*, MemoryLocation
>;
1064 using ConstMemoryAccessPair
= std::pair
<const MemoryAccess
*, MemoryLocation
>;
1066 /// Iterator base class used to implement const and non-const iterators
1067 /// over the defining accesses of a MemoryAccess.
1069 class memoryaccess_def_iterator_base
1070 : public iterator_facade_base
<memoryaccess_def_iterator_base
<T
>,
1071 std::forward_iterator_tag
, T
, ptrdiff_t, T
*,
1073 using BaseT
= typename
memoryaccess_def_iterator_base::iterator_facade_base
;
1076 memoryaccess_def_iterator_base(T
*Start
) : Access(Start
) {}
1077 memoryaccess_def_iterator_base() = default;
1079 bool operator==(const memoryaccess_def_iterator_base
&Other
) const {
1080 return Access
== Other
.Access
&& (!Access
|| ArgNo
== Other
.ArgNo
);
1083 // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the
1084 // block from the operand in constant time (In a PHINode, the uselist has
1085 // both, so it's just subtraction). We provide it as part of the
1086 // iterator to avoid callers having to linear walk to get the block.
1087 // If the operation becomes constant time on MemoryPHI's, this bit of
1088 // abstraction breaking should be removed.
1089 BasicBlock
*getPhiArgBlock() const {
1090 MemoryPhi
*MP
= dyn_cast
<MemoryPhi
>(Access
);
1091 assert(MP
&& "Tried to get phi arg block when not iterating over a PHI");
1092 return MP
->getIncomingBlock(ArgNo
);
1095 typename
BaseT::iterator::pointer
operator*() const {
1096 assert(Access
&& "Tried to access past the end of our iterator");
1097 // Go to the first argument for phis, and the defining access for everything
1099 if (MemoryPhi
*MP
= dyn_cast
<MemoryPhi
>(Access
))
1100 return MP
->getIncomingValue(ArgNo
);
1101 return cast
<MemoryUseOrDef
>(Access
)->getDefiningAccess();
1104 using BaseT::operator++;
1105 memoryaccess_def_iterator
&operator++() {
1106 assert(Access
&& "Hit end of iterator");
1107 if (MemoryPhi
*MP
= dyn_cast
<MemoryPhi
>(Access
)) {
1108 if (++ArgNo
>= MP
->getNumIncomingValues()) {
1119 T
*Access
= nullptr;
1123 inline memoryaccess_def_iterator
MemoryAccess::defs_begin() {
1124 return memoryaccess_def_iterator(this);
1127 inline const_memoryaccess_def_iterator
MemoryAccess::defs_begin() const {
1128 return const_memoryaccess_def_iterator(this);
1131 inline memoryaccess_def_iterator
MemoryAccess::defs_end() {
1132 return memoryaccess_def_iterator();
1135 inline const_memoryaccess_def_iterator
MemoryAccess::defs_end() const {
1136 return const_memoryaccess_def_iterator();
1139 /// GraphTraits for a MemoryAccess, which walks defs in the normal case,
1140 /// and uses in the inverse case.
1141 template <> struct GraphTraits
<MemoryAccess
*> {
1142 using NodeRef
= MemoryAccess
*;
1143 using ChildIteratorType
= memoryaccess_def_iterator
;
1145 static NodeRef
getEntryNode(NodeRef N
) { return N
; }
1146 static ChildIteratorType
child_begin(NodeRef N
) { return N
->defs_begin(); }
1147 static ChildIteratorType
child_end(NodeRef N
) { return N
->defs_end(); }
1150 template <> struct GraphTraits
<Inverse
<MemoryAccess
*>> {
1151 using NodeRef
= MemoryAccess
*;
1152 using ChildIteratorType
= MemoryAccess::iterator
;
1154 static NodeRef
getEntryNode(NodeRef N
) { return N
; }
1155 static ChildIteratorType
child_begin(NodeRef N
) { return N
->user_begin(); }
1156 static ChildIteratorType
child_end(NodeRef N
) { return N
->user_end(); }
1159 /// Provide an iterator that walks defs, giving both the memory access,
1160 /// and the current pointer location, updating the pointer location as it
1161 /// changes due to phi node translation.
1163 /// This iterator, while somewhat specialized, is what most clients actually
1164 /// want when walking upwards through MemorySSA def chains. It takes a pair of
1165 /// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the
1166 /// memory location through phi nodes for the user.
1167 class upward_defs_iterator
1168 : public iterator_facade_base
<upward_defs_iterator
,
1169 std::forward_iterator_tag
,
1170 const MemoryAccessPair
> {
1171 using BaseT
= upward_defs_iterator::iterator_facade_base
;
1174 upward_defs_iterator(const MemoryAccessPair
&Info
)
1175 : DefIterator(Info
.first
), Location(Info
.second
),
1176 OriginalAccess(Info
.first
) {
1177 CurrentPair
.first
= nullptr;
1179 WalkingPhi
= Info
.first
&& isa
<MemoryPhi
>(Info
.first
);
1180 fillInCurrentPair();
1183 upward_defs_iterator() { CurrentPair
.first
= nullptr; }
1185 bool operator==(const upward_defs_iterator
&Other
) const {
1186 return DefIterator
== Other
.DefIterator
;
1189 BaseT::iterator::reference
operator*() const {
1190 assert(DefIterator
!= OriginalAccess
->defs_end() &&
1191 "Tried to access past the end of our iterator");
1195 using BaseT::operator++;
1196 upward_defs_iterator
&operator++() {
1197 assert(DefIterator
!= OriginalAccess
->defs_end() &&
1198 "Tried to access past the end of the iterator");
1200 if (DefIterator
!= OriginalAccess
->defs_end())
1201 fillInCurrentPair();
1205 BasicBlock
*getPhiArgBlock() const { return DefIterator
.getPhiArgBlock(); }
1208 void fillInCurrentPair() {
1209 CurrentPair
.first
= *DefIterator
;
1210 if (WalkingPhi
&& Location
.Ptr
) {
1211 PHITransAddr
Translator(
1212 const_cast<Value
*>(Location
.Ptr
),
1213 OriginalAccess
->getBlock()->getModule()->getDataLayout(), nullptr);
1214 if (!Translator
.PHITranslateValue(OriginalAccess
->getBlock(),
1215 DefIterator
.getPhiArgBlock(), nullptr,
1217 if (Translator
.getAddr() != Location
.Ptr
) {
1218 CurrentPair
.second
= Location
.getWithNewPtr(Translator
.getAddr());
1222 CurrentPair
.second
= Location
;
1225 MemoryAccessPair CurrentPair
;
1226 memoryaccess_def_iterator DefIterator
;
1227 MemoryLocation Location
;
1228 MemoryAccess
*OriginalAccess
= nullptr;
1229 bool WalkingPhi
= false;
1232 inline upward_defs_iterator
upward_defs_begin(const MemoryAccessPair
&Pair
) {
1233 return upward_defs_iterator(Pair
);
1236 inline upward_defs_iterator
upward_defs_end() { return upward_defs_iterator(); }
1238 inline iterator_range
<upward_defs_iterator
>
1239 upward_defs(const MemoryAccessPair
&Pair
) {
1240 return make_range(upward_defs_begin(Pair
), upward_defs_end());
1243 /// Walks the defining accesses of MemoryDefs. Stops after we hit something that
1244 /// has no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when
1245 /// comparing against a null def_chain_iterator, this will compare equal only
1246 /// after walking said Phi/liveOnEntry.
1248 /// The UseOptimizedChain flag specifies whether to walk the clobbering
1249 /// access chain, or all the accesses.
1251 /// Normally, MemoryDef are all just def/use linked together, so a def_chain on
1252 /// a MemoryDef will walk all MemoryDefs above it in the program until it hits
1253 /// a phi node. The optimized chain walks the clobbering access of a store.
1254 /// So if you are just trying to find, given a store, what the next
1255 /// thing that would clobber the same memory is, you want the optimized chain.
1256 template <class T
, bool UseOptimizedChain
= false>
1257 struct def_chain_iterator
1258 : public iterator_facade_base
<def_chain_iterator
<T
, UseOptimizedChain
>,
1259 std::forward_iterator_tag
, MemoryAccess
*> {
1260 def_chain_iterator() : MA(nullptr) {}
1261 def_chain_iterator(T MA
) : MA(MA
) {}
1263 T
operator*() const { return MA
; }
1265 def_chain_iterator
&operator++() {
1266 // N.B. liveOnEntry has a null defining access.
1267 if (auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
)) {
1268 if (UseOptimizedChain
&& MUD
->isOptimized())
1269 MA
= MUD
->getOptimized();
1271 MA
= MUD
->getDefiningAccess();
1279 bool operator==(const def_chain_iterator
&O
) const { return MA
== O
.MA
; }
1286 inline iterator_range
<def_chain_iterator
<T
>>
1287 def_chain(T MA
, MemoryAccess
*UpTo
= nullptr) {
1288 #ifdef EXPENSIVE_CHECKS
1289 assert((!UpTo
|| find(def_chain(MA
), UpTo
) != def_chain_iterator
<T
>()) &&
1290 "UpTo isn't in the def chain!");
1292 return make_range(def_chain_iterator
<T
>(MA
), def_chain_iterator
<T
>(UpTo
));
1296 inline iterator_range
<def_chain_iterator
<T
, true>> optimized_def_chain(T MA
) {
1297 return make_range(def_chain_iterator
<T
, true>(MA
),
1298 def_chain_iterator
<T
, true>(nullptr));
1301 } // end namespace llvm
1303 #endif // LLVM_ANALYSIS_MEMORYSSA_H