Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / Analysis / TargetTransformInfo.h
blob60dbf6775a644a3f215be20ec126f72fe2526dfd
1 //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This pass exposes codegen information to IR-level passes. Every
10 /// transformation that uses codegen information is broken into three parts:
11 /// 1. The IR-level analysis pass.
12 /// 2. The IR-level transformation interface which provides the needed
13 /// information.
14 /// 3. Codegen-level implementation which uses target-specific hooks.
15 ///
16 /// This file defines #2, which is the interface that IR-level transformations
17 /// use for querying the codegen.
18 ///
19 //===----------------------------------------------------------------------===//
21 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
22 #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/PassManager.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/AtomicOrdering.h"
29 #include "llvm/Support/DataTypes.h"
30 #include <functional>
32 namespace llvm {
34 namespace Intrinsic {
35 enum ID : unsigned;
38 class Function;
39 class GlobalValue;
40 class IntrinsicInst;
41 class LoadInst;
42 class Loop;
43 class SCEV;
44 class ScalarEvolution;
45 class StoreInst;
46 class SwitchInst;
47 class Type;
48 class User;
49 class Value;
51 /// Information about a load/store intrinsic defined by the target.
52 struct MemIntrinsicInfo {
53 /// This is the pointer that the intrinsic is loading from or storing to.
54 /// If this is non-null, then analysis/optimization passes can assume that
55 /// this intrinsic is functionally equivalent to a load/store from this
56 /// pointer.
57 Value *PtrVal = nullptr;
59 // Ordering for atomic operations.
60 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
62 // Same Id is set by the target for corresponding load/store intrinsics.
63 unsigned short MatchingId = 0;
65 bool ReadMem = false;
66 bool WriteMem = false;
67 bool IsVolatile = false;
69 bool isUnordered() const {
70 return (Ordering == AtomicOrdering::NotAtomic ||
71 Ordering == AtomicOrdering::Unordered) && !IsVolatile;
75 /// This pass provides access to the codegen interfaces that are needed
76 /// for IR-level transformations.
77 class TargetTransformInfo {
78 public:
79 /// Construct a TTI object using a type implementing the \c Concept
80 /// API below.
81 ///
82 /// This is used by targets to construct a TTI wrapping their target-specific
83 /// implementaion that encodes appropriate costs for their target.
84 template <typename T> TargetTransformInfo(T Impl);
86 /// Construct a baseline TTI object using a minimal implementation of
87 /// the \c Concept API below.
88 ///
89 /// The TTI implementation will reflect the information in the DataLayout
90 /// provided if non-null.
91 explicit TargetTransformInfo(const DataLayout &DL);
93 // Provide move semantics.
94 TargetTransformInfo(TargetTransformInfo &&Arg);
95 TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
97 // We need to define the destructor out-of-line to define our sub-classes
98 // out-of-line.
99 ~TargetTransformInfo();
101 /// Handle the invalidation of this information.
103 /// When used as a result of \c TargetIRAnalysis this method will be called
104 /// when the function this was computed for changes. When it returns false,
105 /// the information is preserved across those changes.
106 bool invalidate(Function &, const PreservedAnalyses &,
107 FunctionAnalysisManager::Invalidator &) {
108 // FIXME: We should probably in some way ensure that the subtarget
109 // information for a function hasn't changed.
110 return false;
113 /// \name Generic Target Information
114 /// @{
116 /// The kind of cost model.
118 /// There are several different cost models that can be customized by the
119 /// target. The normalization of each cost model may be target specific.
120 enum TargetCostKind {
121 TCK_RecipThroughput, ///< Reciprocal throughput.
122 TCK_Latency, ///< The latency of instruction.
123 TCK_CodeSize ///< Instruction code size.
126 /// Query the cost of a specified instruction.
128 /// Clients should use this interface to query the cost of an existing
129 /// instruction. The instruction must have a valid parent (basic block).
131 /// Note, this method does not cache the cost calculation and it
132 /// can be expensive in some cases.
133 int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const {
134 switch (kind){
135 case TCK_RecipThroughput:
136 return getInstructionThroughput(I);
138 case TCK_Latency:
139 return getInstructionLatency(I);
141 case TCK_CodeSize:
142 return getUserCost(I);
144 llvm_unreachable("Unknown instruction cost kind");
147 /// Underlying constants for 'cost' values in this interface.
149 /// Many APIs in this interface return a cost. This enum defines the
150 /// fundamental values that should be used to interpret (and produce) those
151 /// costs. The costs are returned as an int rather than a member of this
152 /// enumeration because it is expected that the cost of one IR instruction
153 /// may have a multiplicative factor to it or otherwise won't fit directly
154 /// into the enum. Moreover, it is common to sum or average costs which works
155 /// better as simple integral values. Thus this enum only provides constants.
156 /// Also note that the returned costs are signed integers to make it natural
157 /// to add, subtract, and test with zero (a common boundary condition). It is
158 /// not expected that 2^32 is a realistic cost to be modeling at any point.
160 /// Note that these costs should usually reflect the intersection of code-size
161 /// cost and execution cost. A free instruction is typically one that folds
162 /// into another instruction. For example, reg-to-reg moves can often be
163 /// skipped by renaming the registers in the CPU, but they still are encoded
164 /// and thus wouldn't be considered 'free' here.
165 enum TargetCostConstants {
166 TCC_Free = 0, ///< Expected to fold away in lowering.
167 TCC_Basic = 1, ///< The cost of a typical 'add' instruction.
168 TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
171 /// Estimate the cost of a specific operation when lowered.
173 /// Note that this is designed to work on an arbitrary synthetic opcode, and
174 /// thus work for hypothetical queries before an instruction has even been
175 /// formed. However, this does *not* work for GEPs, and must not be called
176 /// for a GEP instruction. Instead, use the dedicated getGEPCost interface as
177 /// analyzing a GEP's cost required more information.
179 /// Typically only the result type is required, and the operand type can be
180 /// omitted. However, if the opcode is one of the cast instructions, the
181 /// operand type is required.
183 /// The returned cost is defined in terms of \c TargetCostConstants, see its
184 /// comments for a detailed explanation of the cost values.
185 int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy = nullptr) const;
187 /// Estimate the cost of a GEP operation when lowered.
189 /// The contract for this function is the same as \c getOperationCost except
190 /// that it supports an interface that provides extra information specific to
191 /// the GEP operation.
192 int getGEPCost(Type *PointeeType, const Value *Ptr,
193 ArrayRef<const Value *> Operands) const;
195 /// Estimate the cost of a EXT operation when lowered.
197 /// The contract for this function is the same as \c getOperationCost except
198 /// that it supports an interface that provides extra information specific to
199 /// the EXT operation.
200 int getExtCost(const Instruction *I, const Value *Src) const;
202 /// Estimate the cost of a function call when lowered.
204 /// The contract for this is the same as \c getOperationCost except that it
205 /// supports an interface that provides extra information specific to call
206 /// instructions.
208 /// This is the most basic query for estimating call cost: it only knows the
209 /// function type and (potentially) the number of arguments at the call site.
210 /// The latter is only interesting for varargs function types.
211 int getCallCost(FunctionType *FTy, int NumArgs = -1) const;
213 /// Estimate the cost of calling a specific function when lowered.
215 /// This overload adds the ability to reason about the particular function
216 /// being called in the event it is a library call with special lowering.
217 int getCallCost(const Function *F, int NumArgs = -1) const;
219 /// Estimate the cost of calling a specific function when lowered.
221 /// This overload allows specifying a set of candidate argument values.
222 int getCallCost(const Function *F, ArrayRef<const Value *> Arguments) const;
224 /// \returns A value by which our inlining threshold should be multiplied.
225 /// This is primarily used to bump up the inlining threshold wholesale on
226 /// targets where calls are unusually expensive.
228 /// TODO: This is a rather blunt instrument. Perhaps altering the costs of
229 /// individual classes of instructions would be better.
230 unsigned getInliningThresholdMultiplier() const;
232 /// Estimate the cost of an intrinsic when lowered.
234 /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
235 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
236 ArrayRef<Type *> ParamTys) const;
238 /// Estimate the cost of an intrinsic when lowered.
240 /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
241 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
242 ArrayRef<const Value *> Arguments) const;
244 /// \return The estimated number of case clusters when lowering \p 'SI'.
245 /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
246 /// table.
247 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
248 unsigned &JTSize) const;
250 /// Estimate the cost of a given IR user when lowered.
252 /// This can estimate the cost of either a ConstantExpr or Instruction when
253 /// lowered. It has two primary advantages over the \c getOperationCost and
254 /// \c getGEPCost above, and one significant disadvantage: it can only be
255 /// used when the IR construct has already been formed.
257 /// The advantages are that it can inspect the SSA use graph to reason more
258 /// accurately about the cost. For example, all-constant-GEPs can often be
259 /// folded into a load or other instruction, but if they are used in some
260 /// other context they may not be folded. This routine can distinguish such
261 /// cases.
263 /// \p Operands is a list of operands which can be a result of transformations
264 /// of the current operands. The number of the operands on the list must equal
265 /// to the number of the current operands the IR user has. Their order on the
266 /// list must be the same as the order of the current operands the IR user
267 /// has.
269 /// The returned cost is defined in terms of \c TargetCostConstants, see its
270 /// comments for a detailed explanation of the cost values.
271 int getUserCost(const User *U, ArrayRef<const Value *> Operands) const;
273 /// This is a helper function which calls the two-argument getUserCost
274 /// with \p Operands which are the current operands U has.
275 int getUserCost(const User *U) const {
276 SmallVector<const Value *, 4> Operands(U->value_op_begin(),
277 U->value_op_end());
278 return getUserCost(U, Operands);
281 /// Return true if branch divergence exists.
283 /// Branch divergence has a significantly negative impact on GPU performance
284 /// when threads in the same wavefront take different paths due to conditional
285 /// branches.
286 bool hasBranchDivergence() const;
288 /// Returns whether V is a source of divergence.
290 /// This function provides the target-dependent information for
291 /// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis first
292 /// builds the dependency graph, and then runs the reachability algorithm
293 /// starting with the sources of divergence.
294 bool isSourceOfDivergence(const Value *V) const;
296 // Returns true for the target specific
297 // set of operations which produce uniform result
298 // even taking non-unform arguments
299 bool isAlwaysUniform(const Value *V) const;
301 /// Returns the address space ID for a target's 'flat' address space. Note
302 /// this is not necessarily the same as addrspace(0), which LLVM sometimes
303 /// refers to as the generic address space. The flat address space is a
304 /// generic address space that can be used access multiple segments of memory
305 /// with different address spaces. Access of a memory location through a
306 /// pointer with this address space is expected to be legal but slower
307 /// compared to the same memory location accessed through a pointer with a
308 /// different address space.
310 /// This is for targets with different pointer representations which can
311 /// be converted with the addrspacecast instruction. If a pointer is converted
312 /// to this address space, optimizations should attempt to replace the access
313 /// with the source address space.
315 /// \returns ~0u if the target does not have such a flat address space to
316 /// optimize away.
317 unsigned getFlatAddressSpace() const;
319 /// Test whether calls to a function lower to actual program function
320 /// calls.
322 /// The idea is to test whether the program is likely to require a 'call'
323 /// instruction or equivalent in order to call the given function.
325 /// FIXME: It's not clear that this is a good or useful query API. Client's
326 /// should probably move to simpler cost metrics using the above.
327 /// Alternatively, we could split the cost interface into distinct code-size
328 /// and execution-speed costs. This would allow modelling the core of this
329 /// query more accurately as a call is a single small instruction, but
330 /// incurs significant execution cost.
331 bool isLoweredToCall(const Function *F) const;
333 struct LSRCost {
334 /// TODO: Some of these could be merged. Also, a lexical ordering
335 /// isn't always optimal.
336 unsigned Insns;
337 unsigned NumRegs;
338 unsigned AddRecCost;
339 unsigned NumIVMuls;
340 unsigned NumBaseAdds;
341 unsigned ImmCost;
342 unsigned SetupCost;
343 unsigned ScaleCost;
346 /// Parameters that control the generic loop unrolling transformation.
347 struct UnrollingPreferences {
348 /// The cost threshold for the unrolled loop. Should be relative to the
349 /// getUserCost values returned by this API, and the expectation is that
350 /// the unrolled loop's instructions when run through that interface should
351 /// not exceed this cost. However, this is only an estimate. Also, specific
352 /// loops may be unrolled even with a cost above this threshold if deemed
353 /// profitable. Set this to UINT_MAX to disable the loop body cost
354 /// restriction.
355 unsigned Threshold;
356 /// If complete unrolling will reduce the cost of the loop, we will boost
357 /// the Threshold by a certain percent to allow more aggressive complete
358 /// unrolling. This value provides the maximum boost percentage that we
359 /// can apply to Threshold (The value should be no less than 100).
360 /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
361 /// MaxPercentThresholdBoost / 100)
362 /// E.g. if complete unrolling reduces the loop execution time by 50%
363 /// then we boost the threshold by the factor of 2x. If unrolling is not
364 /// expected to reduce the running time, then we do not increase the
365 /// threshold.
366 unsigned MaxPercentThresholdBoost;
367 /// The cost threshold for the unrolled loop when optimizing for size (set
368 /// to UINT_MAX to disable).
369 unsigned OptSizeThreshold;
370 /// The cost threshold for the unrolled loop, like Threshold, but used
371 /// for partial/runtime unrolling (set to UINT_MAX to disable).
372 unsigned PartialThreshold;
373 /// The cost threshold for the unrolled loop when optimizing for size, like
374 /// OptSizeThreshold, but used for partial/runtime unrolling (set to
375 /// UINT_MAX to disable).
376 unsigned PartialOptSizeThreshold;
377 /// A forced unrolling factor (the number of concatenated bodies of the
378 /// original loop in the unrolled loop body). When set to 0, the unrolling
379 /// transformation will select an unrolling factor based on the current cost
380 /// threshold and other factors.
381 unsigned Count;
382 /// A forced peeling factor (the number of bodied of the original loop
383 /// that should be peeled off before the loop body). When set to 0, the
384 /// unrolling transformation will select a peeling factor based on profile
385 /// information and other factors.
386 unsigned PeelCount;
387 /// Default unroll count for loops with run-time trip count.
388 unsigned DefaultUnrollRuntimeCount;
389 // Set the maximum unrolling factor. The unrolling factor may be selected
390 // using the appropriate cost threshold, but may not exceed this number
391 // (set to UINT_MAX to disable). This does not apply in cases where the
392 // loop is being fully unrolled.
393 unsigned MaxCount;
394 /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
395 /// applies even if full unrolling is selected. This allows a target to fall
396 /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
397 unsigned FullUnrollMaxCount;
398 // Represents number of instructions optimized when "back edge"
399 // becomes "fall through" in unrolled loop.
400 // For now we count a conditional branch on a backedge and a comparison
401 // feeding it.
402 unsigned BEInsns;
403 /// Allow partial unrolling (unrolling of loops to expand the size of the
404 /// loop body, not only to eliminate small constant-trip-count loops).
405 bool Partial;
406 /// Allow runtime unrolling (unrolling of loops to expand the size of the
407 /// loop body even when the number of loop iterations is not known at
408 /// compile time).
409 bool Runtime;
410 /// Allow generation of a loop remainder (extra iterations after unroll).
411 bool AllowRemainder;
412 /// Allow emitting expensive instructions (such as divisions) when computing
413 /// the trip count of a loop for runtime unrolling.
414 bool AllowExpensiveTripCount;
415 /// Apply loop unroll on any kind of loop
416 /// (mainly to loops that fail runtime unrolling).
417 bool Force;
418 /// Allow using trip count upper bound to unroll loops.
419 bool UpperBound;
420 /// Allow peeling off loop iterations for loops with low dynamic tripcount.
421 bool AllowPeeling;
422 /// Allow unrolling of all the iterations of the runtime loop remainder.
423 bool UnrollRemainder;
424 /// Allow unroll and jam. Used to enable unroll and jam for the target.
425 bool UnrollAndJam;
426 /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
427 /// value above is used during unroll and jam for the outer loop size.
428 /// This value is used in the same manner to limit the size of the inner
429 /// loop.
430 unsigned UnrollAndJamInnerLoopThreshold;
433 /// Get target-customized preferences for the generic loop unrolling
434 /// transformation. The caller will initialize UP with the current
435 /// target-independent defaults.
436 void getUnrollingPreferences(Loop *L, ScalarEvolution &,
437 UnrollingPreferences &UP) const;
439 /// @}
441 /// \name Scalar Target Information
442 /// @{
444 /// Flags indicating the kind of support for population count.
446 /// Compared to the SW implementation, HW support is supposed to
447 /// significantly boost the performance when the population is dense, and it
448 /// may or may not degrade performance if the population is sparse. A HW
449 /// support is considered as "Fast" if it can outperform, or is on a par
450 /// with, SW implementation when the population is sparse; otherwise, it is
451 /// considered as "Slow".
452 enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
454 /// Return true if the specified immediate is legal add immediate, that
455 /// is the target has add instructions which can add a register with the
456 /// immediate without having to materialize the immediate into a register.
457 bool isLegalAddImmediate(int64_t Imm) const;
459 /// Return true if the specified immediate is legal icmp immediate,
460 /// that is the target has icmp instructions which can compare a register
461 /// against the immediate without having to materialize the immediate into a
462 /// register.
463 bool isLegalICmpImmediate(int64_t Imm) const;
465 /// Return true if the addressing mode represented by AM is legal for
466 /// this target, for a load/store of the specified type.
467 /// The type may be VoidTy, in which case only return true if the addressing
468 /// mode is legal for a load/store of any legal type.
469 /// If target returns true in LSRWithInstrQueries(), I may be valid.
470 /// TODO: Handle pre/postinc as well.
471 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
472 bool HasBaseReg, int64_t Scale,
473 unsigned AddrSpace = 0,
474 Instruction *I = nullptr) const;
476 /// Return true if LSR cost of C1 is lower than C1.
477 bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
478 TargetTransformInfo::LSRCost &C2) const;
480 /// Return true if the target can fuse a compare and branch.
481 /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
482 /// calculation for the instructions in a loop.
483 bool canMacroFuseCmp() const;
485 /// \return True is LSR should make efforts to create/preserve post-inc
486 /// addressing mode expressions.
487 bool shouldFavorPostInc() const;
489 /// Return true if LSR should make efforts to generate indexed addressing
490 /// modes that operate across loop iterations.
491 bool shouldFavorBackedgeIndex(const Loop *L) const;
493 /// Return true if the target supports masked load/store
494 /// AVX2 and AVX-512 targets allow masks for consecutive load and store
495 bool isLegalMaskedStore(Type *DataType) const;
496 bool isLegalMaskedLoad(Type *DataType) const;
498 /// Return true if the target supports masked gather/scatter
499 /// AVX-512 fully supports gather and scatter for vectors with 32 and 64
500 /// bits scalar type.
501 bool isLegalMaskedScatter(Type *DataType) const;
502 bool isLegalMaskedGather(Type *DataType) const;
504 /// Return true if the target has a unified operation to calculate division
505 /// and remainder. If so, the additional implicit multiplication and
506 /// subtraction required to calculate a remainder from division are free. This
507 /// can enable more aggressive transformations for division and remainder than
508 /// would typically be allowed using throughput or size cost models.
509 bool hasDivRemOp(Type *DataType, bool IsSigned) const;
511 /// Return true if the given instruction (assumed to be a memory access
512 /// instruction) has a volatile variant. If that's the case then we can avoid
513 /// addrspacecast to generic AS for volatile loads/stores. Default
514 /// implementation returns false, which prevents address space inference for
515 /// volatile loads/stores.
516 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
518 /// Return true if target doesn't mind addresses in vectors.
519 bool prefersVectorizedAddressing() const;
521 /// Return the cost of the scaling factor used in the addressing
522 /// mode represented by AM for this target, for a load/store
523 /// of the specified type.
524 /// If the AM is supported, the return value must be >= 0.
525 /// If the AM is not supported, it returns a negative value.
526 /// TODO: Handle pre/postinc as well.
527 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
528 bool HasBaseReg, int64_t Scale,
529 unsigned AddrSpace = 0) const;
531 /// Return true if the loop strength reduce pass should make
532 /// Instruction* based TTI queries to isLegalAddressingMode(). This is
533 /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
534 /// immediate offset and no index register.
535 bool LSRWithInstrQueries() const;
537 /// Return true if it's free to truncate a value of type Ty1 to type
538 /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
539 /// by referencing its sub-register AX.
540 bool isTruncateFree(Type *Ty1, Type *Ty2) const;
542 /// Return true if it is profitable to hoist instruction in the
543 /// then/else to before if.
544 bool isProfitableToHoist(Instruction *I) const;
546 bool useAA() const;
548 /// Return true if this type is legal.
549 bool isTypeLegal(Type *Ty) const;
551 /// Returns the target's jmp_buf alignment in bytes.
552 unsigned getJumpBufAlignment() const;
554 /// Returns the target's jmp_buf size in bytes.
555 unsigned getJumpBufSize() const;
557 /// Return true if switches should be turned into lookup tables for the
558 /// target.
559 bool shouldBuildLookupTables() const;
561 /// Return true if switches should be turned into lookup tables
562 /// containing this constant value for the target.
563 bool shouldBuildLookupTablesForConstant(Constant *C) const;
565 /// Return true if the input function which is cold at all call sites,
566 /// should use coldcc calling convention.
567 bool useColdCCForColdCall(Function &F) const;
569 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
571 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
572 unsigned VF) const;
574 /// If target has efficient vector element load/store instructions, it can
575 /// return true here so that insertion/extraction costs are not added to
576 /// the scalarization cost of a load/store.
577 bool supportsEfficientVectorElementLoadStore() const;
579 /// Don't restrict interleaved unrolling to small loops.
580 bool enableAggressiveInterleaving(bool LoopHasReductions) const;
582 /// If not nullptr, enable inline expansion of memcmp. IsZeroCmp is
583 /// true if this is the expansion of memcmp(p1, p2, s) == 0.
584 struct MemCmpExpansionOptions {
585 // The list of available load sizes (in bytes), sorted in decreasing order.
586 SmallVector<unsigned, 8> LoadSizes;
587 // Set to true to allow overlapping loads. For example, 7-byte compares can
588 // be done with two 4-byte compares instead of 4+2+1-byte compares. This
589 // requires all loads in LoadSizes to be doable in an unaligned way.
590 bool AllowOverlappingLoads = false;
592 const MemCmpExpansionOptions *enableMemCmpExpansion(bool IsZeroCmp) const;
594 /// Enable matching of interleaved access groups.
595 bool enableInterleavedAccessVectorization() const;
597 /// Enable matching of interleaved access groups that contain predicated
598 /// accesses or gaps and therefore vectorized using masked
599 /// vector loads/stores.
600 bool enableMaskedInterleavedAccessVectorization() const;
602 /// Indicate that it is potentially unsafe to automatically vectorize
603 /// floating-point operations because the semantics of vector and scalar
604 /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
605 /// does not support IEEE-754 denormal numbers, while depending on the
606 /// platform, scalar floating-point math does.
607 /// This applies to floating-point math operations and calls, not memory
608 /// operations, shuffles, or casts.
609 bool isFPVectorizationPotentiallyUnsafe() const;
611 /// Determine if the target supports unaligned memory accesses.
612 bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
613 unsigned BitWidth, unsigned AddressSpace = 0,
614 unsigned Alignment = 1,
615 bool *Fast = nullptr) const;
617 /// Return hardware support for population count.
618 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
620 /// Return true if the hardware has a fast square-root instruction.
621 bool haveFastSqrt(Type *Ty) const;
623 /// Return true if it is faster to check if a floating-point value is NaN
624 /// (or not-NaN) versus a comparison against a constant FP zero value.
625 /// Targets should override this if materializing a 0.0 for comparison is
626 /// generally as cheap as checking for ordered/unordered.
627 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
629 /// Return the expected cost of supporting the floating point operation
630 /// of the specified type.
631 int getFPOpCost(Type *Ty) const;
633 /// Return the expected cost of materializing for the given integer
634 /// immediate of the specified type.
635 int getIntImmCost(const APInt &Imm, Type *Ty) const;
637 /// Return the expected cost of materialization for the given integer
638 /// immediate of the specified type for a given instruction. The cost can be
639 /// zero if the immediate can be folded into the specified instruction.
640 int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
641 Type *Ty) const;
642 int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
643 Type *Ty) const;
645 /// Return the expected cost for the given integer when optimising
646 /// for size. This is different than the other integer immediate cost
647 /// functions in that it is subtarget agnostic. This is useful when you e.g.
648 /// target one ISA such as Aarch32 but smaller encodings could be possible
649 /// with another such as Thumb. This return value is used as a penalty when
650 /// the total costs for a constant is calculated (the bigger the cost, the
651 /// more beneficial constant hoisting is).
652 int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
653 Type *Ty) const;
654 /// @}
656 /// \name Vector Target Information
657 /// @{
659 /// The various kinds of shuffle patterns for vector queries.
660 enum ShuffleKind {
661 SK_Broadcast, ///< Broadcast element 0 to all other elements.
662 SK_Reverse, ///< Reverse the order of the vector.
663 SK_Select, ///< Selects elements from the corresponding lane of
664 ///< either source operand. This is equivalent to a
665 ///< vector select with a constant condition operand.
666 SK_Transpose, ///< Transpose two vectors.
667 SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
668 SK_ExtractSubvector,///< ExtractSubvector Index indicates start offset.
669 SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one
670 ///< with any shuffle mask.
671 SK_PermuteSingleSrc ///< Shuffle elements of single source vector with any
672 ///< shuffle mask.
675 /// Additional information about an operand's possible values.
676 enum OperandValueKind {
677 OK_AnyValue, // Operand can have any value.
678 OK_UniformValue, // Operand is uniform (splat of a value).
679 OK_UniformConstantValue, // Operand is uniform constant.
680 OK_NonUniformConstantValue // Operand is a non uniform constant value.
683 /// Additional properties of an operand's values.
684 enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 };
686 /// \return The number of scalar or vector registers that the target has.
687 /// If 'Vectors' is true, it returns the number of vector registers. If it is
688 /// set to false, it returns the number of scalar registers.
689 unsigned getNumberOfRegisters(bool Vector) const;
691 /// \return The width of the largest scalar or vector register type.
692 unsigned getRegisterBitWidth(bool Vector) const;
694 /// \return The width of the smallest vector register type.
695 unsigned getMinVectorRegisterBitWidth() const;
697 /// \return True if the vectorization factor should be chosen to
698 /// make the vector of the smallest element type match the size of a
699 /// vector register. For wider element types, this could result in
700 /// creating vectors that span multiple vector registers.
701 /// If false, the vectorization factor will be chosen based on the
702 /// size of the widest element type.
703 bool shouldMaximizeVectorBandwidth(bool OptSize) const;
705 /// \return The minimum vectorization factor for types of given element
706 /// bit width, or 0 if there is no mimimum VF. The returned value only
707 /// applies when shouldMaximizeVectorBandwidth returns true.
708 unsigned getMinimumVF(unsigned ElemWidth) const;
710 /// \return True if it should be considered for address type promotion.
711 /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
712 /// profitable without finding other extensions fed by the same input.
713 bool shouldConsiderAddressTypePromotion(
714 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
716 /// \return The size of a cache line in bytes.
717 unsigned getCacheLineSize() const;
719 /// The possible cache levels
720 enum class CacheLevel {
721 L1D, // The L1 data cache
722 L2D, // The L2 data cache
724 // We currently do not model L3 caches, as their sizes differ widely between
725 // microarchitectures. Also, we currently do not have a use for L3 cache
726 // size modeling yet.
729 /// \return The size of the cache level in bytes, if available.
730 llvm::Optional<unsigned> getCacheSize(CacheLevel Level) const;
732 /// \return The associativity of the cache level, if available.
733 llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
735 /// \return How much before a load we should place the prefetch instruction.
736 /// This is currently measured in number of instructions.
737 unsigned getPrefetchDistance() const;
739 /// \return Some HW prefetchers can handle accesses up to a certain constant
740 /// stride. This is the minimum stride in bytes where it makes sense to start
741 /// adding SW prefetches. The default is 1, i.e. prefetch with any stride.
742 unsigned getMinPrefetchStride() const;
744 /// \return The maximum number of iterations to prefetch ahead. If the
745 /// required number of iterations is more than this number, no prefetching is
746 /// performed.
747 unsigned getMaxPrefetchIterationsAhead() const;
749 /// \return The maximum interleave factor that any transform should try to
750 /// perform for this target. This number depends on the level of parallelism
751 /// and the number of execution units in the CPU.
752 unsigned getMaxInterleaveFactor(unsigned VF) const;
754 /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
755 static OperandValueKind getOperandInfo(Value *V,
756 OperandValueProperties &OpProps);
758 /// This is an approximation of reciprocal throughput of a math/logic op.
759 /// A higher cost indicates less expected throughput.
760 /// From Agner Fog's guides, reciprocal throughput is "the average number of
761 /// clock cycles per instruction when the instructions are not part of a
762 /// limiting dependency chain."
763 /// Therefore, costs should be scaled to account for multiple execution units
764 /// on the target that can process this type of instruction. For example, if
765 /// there are 5 scalar integer units and 2 vector integer units that can
766 /// calculate an 'add' in a single cycle, this model should indicate that the
767 /// cost of the vector add instruction is 2.5 times the cost of the scalar
768 /// add instruction.
769 /// \p Args is an optional argument which holds the instruction operands
770 /// values so the TTI can analyze those values searching for special
771 /// cases or optimizations based on those values.
772 int getArithmeticInstrCost(
773 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue,
774 OperandValueKind Opd2Info = OK_AnyValue,
775 OperandValueProperties Opd1PropInfo = OP_None,
776 OperandValueProperties Opd2PropInfo = OP_None,
777 ArrayRef<const Value *> Args = ArrayRef<const Value *>()) const;
779 /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
780 /// The index and subtype parameters are used by the subvector insertion and
781 /// extraction shuffle kinds to show the insert/extract point and the type of
782 /// the subvector being inserted/extracted.
783 /// NOTE: For subvector extractions Tp represents the source type.
784 int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0,
785 Type *SubTp = nullptr) const;
787 /// \return The expected cost of cast instructions, such as bitcast, trunc,
788 /// zext, etc. If there is an existing instruction that holds Opcode, it
789 /// may be passed in the 'I' parameter.
790 int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
791 const Instruction *I = nullptr) const;
793 /// \return The expected cost of a sign- or zero-extended vector extract. Use
794 /// -1 to indicate that there is no information about the index value.
795 int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
796 unsigned Index = -1) const;
798 /// \return The expected cost of control-flow related instructions such as
799 /// Phi, Ret, Br.
800 int getCFInstrCost(unsigned Opcode) const;
802 /// \returns The expected cost of compare and select instructions. If there
803 /// is an existing instruction that holds Opcode, it may be passed in the
804 /// 'I' parameter.
805 int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
806 Type *CondTy = nullptr, const Instruction *I = nullptr) const;
808 /// \return The expected cost of vector Insert and Extract.
809 /// Use -1 to indicate that there is no information on the index value.
810 int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const;
812 /// \return The cost of Load and Store instructions.
813 int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
814 unsigned AddressSpace, const Instruction *I = nullptr) const;
816 /// \return The cost of masked Load and Store instructions.
817 int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
818 unsigned AddressSpace) const;
820 /// \return The cost of Gather or Scatter operation
821 /// \p Opcode - is a type of memory access Load or Store
822 /// \p DataTy - a vector type of the data to be loaded or stored
823 /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
824 /// \p VariableMask - true when the memory access is predicated with a mask
825 /// that is not a compile-time constant
826 /// \p Alignment - alignment of single element
827 int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
828 bool VariableMask, unsigned Alignment) const;
830 /// \return The cost of the interleaved memory operation.
831 /// \p Opcode is the memory operation code
832 /// \p VecTy is the vector type of the interleaved access.
833 /// \p Factor is the interleave factor
834 /// \p Indices is the indices for interleaved load members (as interleaved
835 /// load allows gaps)
836 /// \p Alignment is the alignment of the memory operation
837 /// \p AddressSpace is address space of the pointer.
838 /// \p UseMaskForCond indicates if the memory access is predicated.
839 /// \p UseMaskForGaps indicates if gaps should be masked.
840 int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
841 ArrayRef<unsigned> Indices, unsigned Alignment,
842 unsigned AddressSpace,
843 bool UseMaskForCond = false,
844 bool UseMaskForGaps = false) const;
846 /// Calculate the cost of performing a vector reduction.
848 /// This is the cost of reducing the vector value of type \p Ty to a scalar
849 /// value using the operation denoted by \p Opcode. The form of the reduction
850 /// can either be a pairwise reduction or a reduction that splits the vector
851 /// at every reduction level.
853 /// Pairwise:
854 /// (v0, v1, v2, v3)
855 /// ((v0+v1), (v2+v3), undef, undef)
856 /// Split:
857 /// (v0, v1, v2, v3)
858 /// ((v0+v2), (v1+v3), undef, undef)
859 int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
860 bool IsPairwiseForm) const;
861 int getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwiseForm,
862 bool IsUnsigned) const;
864 /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
865 /// Three cases are handled: 1. scalar instruction 2. vector instruction
866 /// 3. scalar instruction which is to be vectorized with VF.
867 int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
868 ArrayRef<Value *> Args, FastMathFlags FMF,
869 unsigned VF = 1) const;
871 /// \returns The cost of Intrinsic instructions. Types analysis only.
872 /// If ScalarizationCostPassed is UINT_MAX, the cost of scalarizing the
873 /// arguments and the return value will be computed based on types.
874 int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
875 ArrayRef<Type *> Tys, FastMathFlags FMF,
876 unsigned ScalarizationCostPassed = UINT_MAX) const;
878 /// \returns The cost of Call instructions.
879 int getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) const;
881 /// \returns The number of pieces into which the provided type must be
882 /// split during legalization. Zero is returned when the answer is unknown.
883 unsigned getNumberOfParts(Type *Tp) const;
885 /// \returns The cost of the address computation. For most targets this can be
886 /// merged into the instruction indexing mode. Some targets might want to
887 /// distinguish between address computation for memory operations on vector
888 /// types and scalar types. Such targets should override this function.
889 /// The 'SE' parameter holds pointer for the scalar evolution object which
890 /// is used in order to get the Ptr step value in case of constant stride.
891 /// The 'Ptr' parameter holds SCEV of the access pointer.
892 int getAddressComputationCost(Type *Ty, ScalarEvolution *SE = nullptr,
893 const SCEV *Ptr = nullptr) const;
895 /// \returns The cost, if any, of keeping values of the given types alive
896 /// over a callsite.
898 /// Some types may require the use of register classes that do not have
899 /// any callee-saved registers, so would require a spill and fill.
900 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
902 /// \returns True if the intrinsic is a supported memory intrinsic. Info
903 /// will contain additional information - whether the intrinsic may write
904 /// or read to memory, volatility and the pointer. Info is undefined
905 /// if false is returned.
906 bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
908 /// \returns The maximum element size, in bytes, for an element
909 /// unordered-atomic memory intrinsic.
910 unsigned getAtomicMemIntrinsicMaxElementSize() const;
912 /// \returns A value which is the result of the given memory intrinsic. New
913 /// instructions may be created to extract the result from the given intrinsic
914 /// memory operation. Returns nullptr if the target cannot create a result
915 /// from the given intrinsic.
916 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
917 Type *ExpectedType) const;
919 /// \returns The type to use in a loop expansion of a memcpy call.
920 Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
921 unsigned SrcAlign, unsigned DestAlign) const;
923 /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
924 /// \param RemainingBytes The number of bytes to copy.
926 /// Calculates the operand types to use when copying \p RemainingBytes of
927 /// memory, where source and destination alignments are \p SrcAlign and
928 /// \p DestAlign respectively.
929 void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
930 LLVMContext &Context,
931 unsigned RemainingBytes,
932 unsigned SrcAlign,
933 unsigned DestAlign) const;
935 /// \returns True if the two functions have compatible attributes for inlining
936 /// purposes.
937 bool areInlineCompatible(const Function *Caller,
938 const Function *Callee) const;
940 /// \returns True if the caller and callee agree on how \p Args will be passed
941 /// to the callee.
942 /// \param[out] Args The list of compatible arguments. The implementation may
943 /// filter out any incompatible args from this list.
944 bool areFunctionArgsABICompatible(const Function *Caller,
945 const Function *Callee,
946 SmallPtrSetImpl<Argument *> &Args) const;
948 /// The type of load/store indexing.
949 enum MemIndexedMode {
950 MIM_Unindexed, ///< No indexing.
951 MIM_PreInc, ///< Pre-incrementing.
952 MIM_PreDec, ///< Pre-decrementing.
953 MIM_PostInc, ///< Post-incrementing.
954 MIM_PostDec ///< Post-decrementing.
957 /// \returns True if the specified indexed load for the given type is legal.
958 bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
960 /// \returns True if the specified indexed store for the given type is legal.
961 bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
963 /// \returns The bitwidth of the largest vector type that should be used to
964 /// load/store in the given address space.
965 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
967 /// \returns True if the load instruction is legal to vectorize.
968 bool isLegalToVectorizeLoad(LoadInst *LI) const;
970 /// \returns True if the store instruction is legal to vectorize.
971 bool isLegalToVectorizeStore(StoreInst *SI) const;
973 /// \returns True if it is legal to vectorize the given load chain.
974 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
975 unsigned Alignment,
976 unsigned AddrSpace) const;
978 /// \returns True if it is legal to vectorize the given store chain.
979 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
980 unsigned Alignment,
981 unsigned AddrSpace) const;
983 /// \returns The new vector factor value if the target doesn't support \p
984 /// SizeInBytes loads or has a better vector factor.
985 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
986 unsigned ChainSizeInBytes,
987 VectorType *VecTy) const;
989 /// \returns The new vector factor value if the target doesn't support \p
990 /// SizeInBytes stores or has a better vector factor.
991 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
992 unsigned ChainSizeInBytes,
993 VectorType *VecTy) const;
995 /// Flags describing the kind of vector reduction.
996 struct ReductionFlags {
997 ReductionFlags() : IsMaxOp(false), IsSigned(false), NoNaN(false) {}
998 bool IsMaxOp; ///< If the op a min/max kind, true if it's a max operation.
999 bool IsSigned; ///< Whether the operation is a signed int reduction.
1000 bool NoNaN; ///< If op is an fp min/max, whether NaNs may be present.
1003 /// \returns True if the target wants to handle the given reduction idiom in
1004 /// the intrinsics form instead of the shuffle form.
1005 bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
1006 ReductionFlags Flags) const;
1008 /// \returns True if the target wants to expand the given reduction intrinsic
1009 /// into a shuffle sequence.
1010 bool shouldExpandReduction(const IntrinsicInst *II) const;
1011 /// @}
1013 private:
1014 /// Estimate the latency of specified instruction.
1015 /// Returns 1 as the default value.
1016 int getInstructionLatency(const Instruction *I) const;
1018 /// Returns the expected throughput cost of the instruction.
1019 /// Returns -1 if the cost is unknown.
1020 int getInstructionThroughput(const Instruction *I) const;
1022 /// The abstract base class used to type erase specific TTI
1023 /// implementations.
1024 class Concept;
1026 /// The template model for the base class which wraps a concrete
1027 /// implementation in a type erased interface.
1028 template <typename T> class Model;
1030 std::unique_ptr<Concept> TTIImpl;
1033 class TargetTransformInfo::Concept {
1034 public:
1035 virtual ~Concept() = 0;
1036 virtual const DataLayout &getDataLayout() const = 0;
1037 virtual int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) = 0;
1038 virtual int getGEPCost(Type *PointeeType, const Value *Ptr,
1039 ArrayRef<const Value *> Operands) = 0;
1040 virtual int getExtCost(const Instruction *I, const Value *Src) = 0;
1041 virtual int getCallCost(FunctionType *FTy, int NumArgs) = 0;
1042 virtual int getCallCost(const Function *F, int NumArgs) = 0;
1043 virtual int getCallCost(const Function *F,
1044 ArrayRef<const Value *> Arguments) = 0;
1045 virtual unsigned getInliningThresholdMultiplier() = 0;
1046 virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1047 ArrayRef<Type *> ParamTys) = 0;
1048 virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1049 ArrayRef<const Value *> Arguments) = 0;
1050 virtual unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
1051 unsigned &JTSize) = 0;
1052 virtual int
1053 getUserCost(const User *U, ArrayRef<const Value *> Operands) = 0;
1054 virtual bool hasBranchDivergence() = 0;
1055 virtual bool isSourceOfDivergence(const Value *V) = 0;
1056 virtual bool isAlwaysUniform(const Value *V) = 0;
1057 virtual unsigned getFlatAddressSpace() = 0;
1058 virtual bool isLoweredToCall(const Function *F) = 0;
1059 virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
1060 UnrollingPreferences &UP) = 0;
1061 virtual bool isLegalAddImmediate(int64_t Imm) = 0;
1062 virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
1063 virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
1064 int64_t BaseOffset, bool HasBaseReg,
1065 int64_t Scale,
1066 unsigned AddrSpace,
1067 Instruction *I) = 0;
1068 virtual bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1069 TargetTransformInfo::LSRCost &C2) = 0;
1070 virtual bool canMacroFuseCmp() = 0;
1071 virtual bool shouldFavorPostInc() const = 0;
1072 virtual bool shouldFavorBackedgeIndex(const Loop *L) const = 0;
1073 virtual bool isLegalMaskedStore(Type *DataType) = 0;
1074 virtual bool isLegalMaskedLoad(Type *DataType) = 0;
1075 virtual bool isLegalMaskedScatter(Type *DataType) = 0;
1076 virtual bool isLegalMaskedGather(Type *DataType) = 0;
1077 virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
1078 virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
1079 virtual bool prefersVectorizedAddressing() = 0;
1080 virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
1081 int64_t BaseOffset, bool HasBaseReg,
1082 int64_t Scale, unsigned AddrSpace) = 0;
1083 virtual bool LSRWithInstrQueries() = 0;
1084 virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
1085 virtual bool isProfitableToHoist(Instruction *I) = 0;
1086 virtual bool useAA() = 0;
1087 virtual bool isTypeLegal(Type *Ty) = 0;
1088 virtual unsigned getJumpBufAlignment() = 0;
1089 virtual unsigned getJumpBufSize() = 0;
1090 virtual bool shouldBuildLookupTables() = 0;
1091 virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
1092 virtual bool useColdCCForColdCall(Function &F) = 0;
1093 virtual unsigned
1094 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) = 0;
1095 virtual unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
1096 unsigned VF) = 0;
1097 virtual bool supportsEfficientVectorElementLoadStore() = 0;
1098 virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
1099 virtual const MemCmpExpansionOptions *enableMemCmpExpansion(
1100 bool IsZeroCmp) const = 0;
1101 virtual bool enableInterleavedAccessVectorization() = 0;
1102 virtual bool enableMaskedInterleavedAccessVectorization() = 0;
1103 virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
1104 virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
1105 unsigned BitWidth,
1106 unsigned AddressSpace,
1107 unsigned Alignment,
1108 bool *Fast) = 0;
1109 virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
1110 virtual bool haveFastSqrt(Type *Ty) = 0;
1111 virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
1112 virtual int getFPOpCost(Type *Ty) = 0;
1113 virtual int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1114 Type *Ty) = 0;
1115 virtual int getIntImmCost(const APInt &Imm, Type *Ty) = 0;
1116 virtual int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1117 Type *Ty) = 0;
1118 virtual int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1119 Type *Ty) = 0;
1120 virtual unsigned getNumberOfRegisters(bool Vector) = 0;
1121 virtual unsigned getRegisterBitWidth(bool Vector) const = 0;
1122 virtual unsigned getMinVectorRegisterBitWidth() = 0;
1123 virtual bool shouldMaximizeVectorBandwidth(bool OptSize) const = 0;
1124 virtual unsigned getMinimumVF(unsigned ElemWidth) const = 0;
1125 virtual bool shouldConsiderAddressTypePromotion(
1126 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
1127 virtual unsigned getCacheLineSize() = 0;
1128 virtual llvm::Optional<unsigned> getCacheSize(CacheLevel Level) = 0;
1129 virtual llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) = 0;
1130 virtual unsigned getPrefetchDistance() = 0;
1131 virtual unsigned getMinPrefetchStride() = 0;
1132 virtual unsigned getMaxPrefetchIterationsAhead() = 0;
1133 virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
1134 virtual unsigned
1135 getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
1136 OperandValueKind Opd2Info,
1137 OperandValueProperties Opd1PropInfo,
1138 OperandValueProperties Opd2PropInfo,
1139 ArrayRef<const Value *> Args) = 0;
1140 virtual int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
1141 Type *SubTp) = 0;
1142 virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1143 const Instruction *I) = 0;
1144 virtual int getExtractWithExtendCost(unsigned Opcode, Type *Dst,
1145 VectorType *VecTy, unsigned Index) = 0;
1146 virtual int getCFInstrCost(unsigned Opcode) = 0;
1147 virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
1148 Type *CondTy, const Instruction *I) = 0;
1149 virtual int getVectorInstrCost(unsigned Opcode, Type *Val,
1150 unsigned Index) = 0;
1151 virtual int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1152 unsigned AddressSpace, const Instruction *I) = 0;
1153 virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
1154 unsigned Alignment,
1155 unsigned AddressSpace) = 0;
1156 virtual int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
1157 Value *Ptr, bool VariableMask,
1158 unsigned Alignment) = 0;
1159 virtual int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
1160 unsigned Factor,
1161 ArrayRef<unsigned> Indices,
1162 unsigned Alignment,
1163 unsigned AddressSpace,
1164 bool UseMaskForCond = false,
1165 bool UseMaskForGaps = false) = 0;
1166 virtual int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
1167 bool IsPairwiseForm) = 0;
1168 virtual int getMinMaxReductionCost(Type *Ty, Type *CondTy,
1169 bool IsPairwiseForm, bool IsUnsigned) = 0;
1170 virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1171 ArrayRef<Type *> Tys, FastMathFlags FMF,
1172 unsigned ScalarizationCostPassed) = 0;
1173 virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1174 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) = 0;
1175 virtual int getCallInstrCost(Function *F, Type *RetTy,
1176 ArrayRef<Type *> Tys) = 0;
1177 virtual unsigned getNumberOfParts(Type *Tp) = 0;
1178 virtual int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1179 const SCEV *Ptr) = 0;
1180 virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
1181 virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
1182 MemIntrinsicInfo &Info) = 0;
1183 virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
1184 virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1185 Type *ExpectedType) = 0;
1186 virtual Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
1187 unsigned SrcAlign,
1188 unsigned DestAlign) const = 0;
1189 virtual void getMemcpyLoopResidualLoweringType(
1190 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1191 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const = 0;
1192 virtual bool areInlineCompatible(const Function *Caller,
1193 const Function *Callee) const = 0;
1194 virtual bool
1195 areFunctionArgsABICompatible(const Function *Caller, const Function *Callee,
1196 SmallPtrSetImpl<Argument *> &Args) const = 0;
1197 virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
1198 virtual bool isIndexedStoreLegal(MemIndexedMode Mode,Type *Ty) const = 0;
1199 virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
1200 virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
1201 virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
1202 virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1203 unsigned Alignment,
1204 unsigned AddrSpace) const = 0;
1205 virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1206 unsigned Alignment,
1207 unsigned AddrSpace) const = 0;
1208 virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1209 unsigned ChainSizeInBytes,
1210 VectorType *VecTy) const = 0;
1211 virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1212 unsigned ChainSizeInBytes,
1213 VectorType *VecTy) const = 0;
1214 virtual bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
1215 ReductionFlags) const = 0;
1216 virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
1217 virtual int getInstructionLatency(const Instruction *I) = 0;
1220 template <typename T>
1221 class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
1222 T Impl;
1224 public:
1225 Model(T Impl) : Impl(std::move(Impl)) {}
1226 ~Model() override {}
1228 const DataLayout &getDataLayout() const override {
1229 return Impl.getDataLayout();
1232 int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) override {
1233 return Impl.getOperationCost(Opcode, Ty, OpTy);
1235 int getGEPCost(Type *PointeeType, const Value *Ptr,
1236 ArrayRef<const Value *> Operands) override {
1237 return Impl.getGEPCost(PointeeType, Ptr, Operands);
1239 int getExtCost(const Instruction *I, const Value *Src) override {
1240 return Impl.getExtCost(I, Src);
1242 int getCallCost(FunctionType *FTy, int NumArgs) override {
1243 return Impl.getCallCost(FTy, NumArgs);
1245 int getCallCost(const Function *F, int NumArgs) override {
1246 return Impl.getCallCost(F, NumArgs);
1248 int getCallCost(const Function *F,
1249 ArrayRef<const Value *> Arguments) override {
1250 return Impl.getCallCost(F, Arguments);
1252 unsigned getInliningThresholdMultiplier() override {
1253 return Impl.getInliningThresholdMultiplier();
1255 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1256 ArrayRef<Type *> ParamTys) override {
1257 return Impl.getIntrinsicCost(IID, RetTy, ParamTys);
1259 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1260 ArrayRef<const Value *> Arguments) override {
1261 return Impl.getIntrinsicCost(IID, RetTy, Arguments);
1263 int getUserCost(const User *U, ArrayRef<const Value *> Operands) override {
1264 return Impl.getUserCost(U, Operands);
1266 bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
1267 bool isSourceOfDivergence(const Value *V) override {
1268 return Impl.isSourceOfDivergence(V);
1271 bool isAlwaysUniform(const Value *V) override {
1272 return Impl.isAlwaysUniform(V);
1275 unsigned getFlatAddressSpace() override {
1276 return Impl.getFlatAddressSpace();
1279 bool isLoweredToCall(const Function *F) override {
1280 return Impl.isLoweredToCall(F);
1282 void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1283 UnrollingPreferences &UP) override {
1284 return Impl.getUnrollingPreferences(L, SE, UP);
1286 bool isLegalAddImmediate(int64_t Imm) override {
1287 return Impl.isLegalAddImmediate(Imm);
1289 bool isLegalICmpImmediate(int64_t Imm) override {
1290 return Impl.isLegalICmpImmediate(Imm);
1292 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
1293 bool HasBaseReg, int64_t Scale,
1294 unsigned AddrSpace,
1295 Instruction *I) override {
1296 return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
1297 Scale, AddrSpace, I);
1299 bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1300 TargetTransformInfo::LSRCost &C2) override {
1301 return Impl.isLSRCostLess(C1, C2);
1303 bool canMacroFuseCmp() override {
1304 return Impl.canMacroFuseCmp();
1306 bool shouldFavorPostInc() const override {
1307 return Impl.shouldFavorPostInc();
1309 bool shouldFavorBackedgeIndex(const Loop *L) const override {
1310 return Impl.shouldFavorBackedgeIndex(L);
1312 bool isLegalMaskedStore(Type *DataType) override {
1313 return Impl.isLegalMaskedStore(DataType);
1315 bool isLegalMaskedLoad(Type *DataType) override {
1316 return Impl.isLegalMaskedLoad(DataType);
1318 bool isLegalMaskedScatter(Type *DataType) override {
1319 return Impl.isLegalMaskedScatter(DataType);
1321 bool isLegalMaskedGather(Type *DataType) override {
1322 return Impl.isLegalMaskedGather(DataType);
1324 bool hasDivRemOp(Type *DataType, bool IsSigned) override {
1325 return Impl.hasDivRemOp(DataType, IsSigned);
1327 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
1328 return Impl.hasVolatileVariant(I, AddrSpace);
1330 bool prefersVectorizedAddressing() override {
1331 return Impl.prefersVectorizedAddressing();
1333 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
1334 bool HasBaseReg, int64_t Scale,
1335 unsigned AddrSpace) override {
1336 return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
1337 Scale, AddrSpace);
1339 bool LSRWithInstrQueries() override {
1340 return Impl.LSRWithInstrQueries();
1342 bool isTruncateFree(Type *Ty1, Type *Ty2) override {
1343 return Impl.isTruncateFree(Ty1, Ty2);
1345 bool isProfitableToHoist(Instruction *I) override {
1346 return Impl.isProfitableToHoist(I);
1348 bool useAA() override { return Impl.useAA(); }
1349 bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
1350 unsigned getJumpBufAlignment() override { return Impl.getJumpBufAlignment(); }
1351 unsigned getJumpBufSize() override { return Impl.getJumpBufSize(); }
1352 bool shouldBuildLookupTables() override {
1353 return Impl.shouldBuildLookupTables();
1355 bool shouldBuildLookupTablesForConstant(Constant *C) override {
1356 return Impl.shouldBuildLookupTablesForConstant(C);
1358 bool useColdCCForColdCall(Function &F) override {
1359 return Impl.useColdCCForColdCall(F);
1362 unsigned getScalarizationOverhead(Type *Ty, bool Insert,
1363 bool Extract) override {
1364 return Impl.getScalarizationOverhead(Ty, Insert, Extract);
1366 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
1367 unsigned VF) override {
1368 return Impl.getOperandsScalarizationOverhead(Args, VF);
1371 bool supportsEfficientVectorElementLoadStore() override {
1372 return Impl.supportsEfficientVectorElementLoadStore();
1375 bool enableAggressiveInterleaving(bool LoopHasReductions) override {
1376 return Impl.enableAggressiveInterleaving(LoopHasReductions);
1378 const MemCmpExpansionOptions *enableMemCmpExpansion(
1379 bool IsZeroCmp) const override {
1380 return Impl.enableMemCmpExpansion(IsZeroCmp);
1382 bool enableInterleavedAccessVectorization() override {
1383 return Impl.enableInterleavedAccessVectorization();
1385 bool enableMaskedInterleavedAccessVectorization() override {
1386 return Impl.enableMaskedInterleavedAccessVectorization();
1388 bool isFPVectorizationPotentiallyUnsafe() override {
1389 return Impl.isFPVectorizationPotentiallyUnsafe();
1391 bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
1392 unsigned BitWidth, unsigned AddressSpace,
1393 unsigned Alignment, bool *Fast) override {
1394 return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
1395 Alignment, Fast);
1397 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
1398 return Impl.getPopcntSupport(IntTyWidthInBit);
1400 bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
1402 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
1403 return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
1406 int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); }
1408 int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1409 Type *Ty) override {
1410 return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
1412 int getIntImmCost(const APInt &Imm, Type *Ty) override {
1413 return Impl.getIntImmCost(Imm, Ty);
1415 int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1416 Type *Ty) override {
1417 return Impl.getIntImmCost(Opc, Idx, Imm, Ty);
1419 int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1420 Type *Ty) override {
1421 return Impl.getIntImmCost(IID, Idx, Imm, Ty);
1423 unsigned getNumberOfRegisters(bool Vector) override {
1424 return Impl.getNumberOfRegisters(Vector);
1426 unsigned getRegisterBitWidth(bool Vector) const override {
1427 return Impl.getRegisterBitWidth(Vector);
1429 unsigned getMinVectorRegisterBitWidth() override {
1430 return Impl.getMinVectorRegisterBitWidth();
1432 bool shouldMaximizeVectorBandwidth(bool OptSize) const override {
1433 return Impl.shouldMaximizeVectorBandwidth(OptSize);
1435 unsigned getMinimumVF(unsigned ElemWidth) const override {
1436 return Impl.getMinimumVF(ElemWidth);
1438 bool shouldConsiderAddressTypePromotion(
1439 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
1440 return Impl.shouldConsiderAddressTypePromotion(
1441 I, AllowPromotionWithoutCommonHeader);
1443 unsigned getCacheLineSize() override {
1444 return Impl.getCacheLineSize();
1446 llvm::Optional<unsigned> getCacheSize(CacheLevel Level) override {
1447 return Impl.getCacheSize(Level);
1449 llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) override {
1450 return Impl.getCacheAssociativity(Level);
1452 unsigned getPrefetchDistance() override { return Impl.getPrefetchDistance(); }
1453 unsigned getMinPrefetchStride() override {
1454 return Impl.getMinPrefetchStride();
1456 unsigned getMaxPrefetchIterationsAhead() override {
1457 return Impl.getMaxPrefetchIterationsAhead();
1459 unsigned getMaxInterleaveFactor(unsigned VF) override {
1460 return Impl.getMaxInterleaveFactor(VF);
1462 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
1463 unsigned &JTSize) override {
1464 return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize);
1466 unsigned
1467 getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
1468 OperandValueKind Opd2Info,
1469 OperandValueProperties Opd1PropInfo,
1470 OperandValueProperties Opd2PropInfo,
1471 ArrayRef<const Value *> Args) override {
1472 return Impl.getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
1473 Opd1PropInfo, Opd2PropInfo, Args);
1475 int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
1476 Type *SubTp) override {
1477 return Impl.getShuffleCost(Kind, Tp, Index, SubTp);
1479 int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1480 const Instruction *I) override {
1481 return Impl.getCastInstrCost(Opcode, Dst, Src, I);
1483 int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
1484 unsigned Index) override {
1485 return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
1487 int getCFInstrCost(unsigned Opcode) override {
1488 return Impl.getCFInstrCost(Opcode);
1490 int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1491 const Instruction *I) override {
1492 return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
1494 int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override {
1495 return Impl.getVectorInstrCost(Opcode, Val, Index);
1497 int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1498 unsigned AddressSpace, const Instruction *I) override {
1499 return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
1501 int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1502 unsigned AddressSpace) override {
1503 return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
1505 int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
1506 Value *Ptr, bool VariableMask,
1507 unsigned Alignment) override {
1508 return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
1509 Alignment);
1511 int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
1512 ArrayRef<unsigned> Indices, unsigned Alignment,
1513 unsigned AddressSpace, bool UseMaskForCond,
1514 bool UseMaskForGaps) override {
1515 return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1516 Alignment, AddressSpace,
1517 UseMaskForCond, UseMaskForGaps);
1519 int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
1520 bool IsPairwiseForm) override {
1521 return Impl.getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
1523 int getMinMaxReductionCost(Type *Ty, Type *CondTy,
1524 bool IsPairwiseForm, bool IsUnsigned) override {
1525 return Impl.getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
1527 int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef<Type *> Tys,
1528 FastMathFlags FMF, unsigned ScalarizationCostPassed) override {
1529 return Impl.getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
1530 ScalarizationCostPassed);
1532 int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1533 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) override {
1534 return Impl.getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
1536 int getCallInstrCost(Function *F, Type *RetTy,
1537 ArrayRef<Type *> Tys) override {
1538 return Impl.getCallInstrCost(F, RetTy, Tys);
1540 unsigned getNumberOfParts(Type *Tp) override {
1541 return Impl.getNumberOfParts(Tp);
1543 int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1544 const SCEV *Ptr) override {
1545 return Impl.getAddressComputationCost(Ty, SE, Ptr);
1547 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
1548 return Impl.getCostOfKeepingLiveOverCall(Tys);
1550 bool getTgtMemIntrinsic(IntrinsicInst *Inst,
1551 MemIntrinsicInfo &Info) override {
1552 return Impl.getTgtMemIntrinsic(Inst, Info);
1554 unsigned getAtomicMemIntrinsicMaxElementSize() const override {
1555 return Impl.getAtomicMemIntrinsicMaxElementSize();
1557 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1558 Type *ExpectedType) override {
1559 return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
1561 Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
1562 unsigned SrcAlign,
1563 unsigned DestAlign) const override {
1564 return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAlign, DestAlign);
1566 void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
1567 LLVMContext &Context,
1568 unsigned RemainingBytes,
1569 unsigned SrcAlign,
1570 unsigned DestAlign) const override {
1571 Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
1572 SrcAlign, DestAlign);
1574 bool areInlineCompatible(const Function *Caller,
1575 const Function *Callee) const override {
1576 return Impl.areInlineCompatible(Caller, Callee);
1578 bool areFunctionArgsABICompatible(
1579 const Function *Caller, const Function *Callee,
1580 SmallPtrSetImpl<Argument *> &Args) const override {
1581 return Impl.areFunctionArgsABICompatible(Caller, Callee, Args);
1583 bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
1584 return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
1586 bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
1587 return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
1589 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
1590 return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
1592 bool isLegalToVectorizeLoad(LoadInst *LI) const override {
1593 return Impl.isLegalToVectorizeLoad(LI);
1595 bool isLegalToVectorizeStore(StoreInst *SI) const override {
1596 return Impl.isLegalToVectorizeStore(SI);
1598 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1599 unsigned Alignment,
1600 unsigned AddrSpace) const override {
1601 return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
1602 AddrSpace);
1604 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1605 unsigned Alignment,
1606 unsigned AddrSpace) const override {
1607 return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
1608 AddrSpace);
1610 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1611 unsigned ChainSizeInBytes,
1612 VectorType *VecTy) const override {
1613 return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1615 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1616 unsigned ChainSizeInBytes,
1617 VectorType *VecTy) const override {
1618 return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1620 bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
1621 ReductionFlags Flags) const override {
1622 return Impl.useReductionIntrinsic(Opcode, Ty, Flags);
1624 bool shouldExpandReduction(const IntrinsicInst *II) const override {
1625 return Impl.shouldExpandReduction(II);
1627 int getInstructionLatency(const Instruction *I) override {
1628 return Impl.getInstructionLatency(I);
1632 template <typename T>
1633 TargetTransformInfo::TargetTransformInfo(T Impl)
1634 : TTIImpl(new Model<T>(Impl)) {}
1636 /// Analysis pass providing the \c TargetTransformInfo.
1638 /// The core idea of the TargetIRAnalysis is to expose an interface through
1639 /// which LLVM targets can analyze and provide information about the middle
1640 /// end's target-independent IR. This supports use cases such as target-aware
1641 /// cost modeling of IR constructs.
1643 /// This is a function analysis because much of the cost modeling for targets
1644 /// is done in a subtarget specific way and LLVM supports compiling different
1645 /// functions targeting different subtargets in order to support runtime
1646 /// dispatch according to the observed subtarget.
1647 class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
1648 public:
1649 typedef TargetTransformInfo Result;
1651 /// Default construct a target IR analysis.
1653 /// This will use the module's datalayout to construct a baseline
1654 /// conservative TTI result.
1655 TargetIRAnalysis();
1657 /// Construct an IR analysis pass around a target-provide callback.
1659 /// The callback will be called with a particular function for which the TTI
1660 /// is needed and must return a TTI object for that function.
1661 TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
1663 // Value semantics. We spell out the constructors for MSVC.
1664 TargetIRAnalysis(const TargetIRAnalysis &Arg)
1665 : TTICallback(Arg.TTICallback) {}
1666 TargetIRAnalysis(TargetIRAnalysis &&Arg)
1667 : TTICallback(std::move(Arg.TTICallback)) {}
1668 TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
1669 TTICallback = RHS.TTICallback;
1670 return *this;
1672 TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
1673 TTICallback = std::move(RHS.TTICallback);
1674 return *this;
1677 Result run(const Function &F, FunctionAnalysisManager &);
1679 private:
1680 friend AnalysisInfoMixin<TargetIRAnalysis>;
1681 static AnalysisKey Key;
1683 /// The callback used to produce a result.
1685 /// We use a completely opaque callback so that targets can provide whatever
1686 /// mechanism they desire for constructing the TTI for a given function.
1688 /// FIXME: Should we really use std::function? It's relatively inefficient.
1689 /// It might be possible to arrange for even stateful callbacks to outlive
1690 /// the analysis and thus use a function_ref which would be lighter weight.
1691 /// This may also be less error prone as the callback is likely to reference
1692 /// the external TargetMachine, and that reference needs to never dangle.
1693 std::function<Result(const Function &)> TTICallback;
1695 /// Helper function used as the callback in the default constructor.
1696 static Result getDefaultTTI(const Function &F);
1699 /// Wrapper pass for TargetTransformInfo.
1701 /// This pass can be constructed from a TTI object which it stores internally
1702 /// and is queried by passes.
1703 class TargetTransformInfoWrapperPass : public ImmutablePass {
1704 TargetIRAnalysis TIRA;
1705 Optional<TargetTransformInfo> TTI;
1707 virtual void anchor();
1709 public:
1710 static char ID;
1712 /// We must provide a default constructor for the pass but it should
1713 /// never be used.
1715 /// Use the constructor below or call one of the creation routines.
1716 TargetTransformInfoWrapperPass();
1718 explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
1720 TargetTransformInfo &getTTI(const Function &F);
1723 /// Create an analysis pass wrapper around a TTI object.
1725 /// This analysis pass just holds the TTI instance and makes it available to
1726 /// clients.
1727 ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
1729 } // End llvm namespace
1731 #endif