Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / CodeGen / MachineScheduler.h
blob705799877028141543ea8368eda809b3e2cd57d1
1 //===- MachineScheduler.h - MachineInstr Scheduling Pass --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides an interface for customizing the standard MachineScheduler
10 // pass. Note that the entire pass may be replaced as follows:
12 // <Target>TargetMachine::createPassConfig(PassManagerBase &PM) {
13 // PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID);
14 // ...}
16 // The MachineScheduler pass is only responsible for choosing the regions to be
17 // scheduled. Targets can override the DAG builder and scheduler without
18 // replacing the pass as follows:
20 // ScheduleDAGInstrs *<Target>PassConfig::
21 // createMachineScheduler(MachineSchedContext *C) {
22 // return new CustomMachineScheduler(C);
23 // }
25 // The default scheduler, ScheduleDAGMILive, builds the DAG and drives list
26 // scheduling while updating the instruction stream, register pressure, and live
27 // intervals. Most targets don't need to override the DAG builder and list
28 // scheduler, but subtargets that require custom scheduling heuristics may
29 // plugin an alternate MachineSchedStrategy. The strategy is responsible for
30 // selecting the highest priority node from the list:
32 // ScheduleDAGInstrs *<Target>PassConfig::
33 // createMachineScheduler(MachineSchedContext *C) {
34 // return new ScheduleDAGMILive(C, CustomStrategy(C));
35 // }
37 // The DAG builder can also be customized in a sense by adding DAG mutations
38 // that will run after DAG building and before list scheduling. DAG mutations
39 // can adjust dependencies based on target-specific knowledge or add weak edges
40 // to aid heuristics:
42 // ScheduleDAGInstrs *<Target>PassConfig::
43 // createMachineScheduler(MachineSchedContext *C) {
44 // ScheduleDAGMI *DAG = createGenericSchedLive(C);
45 // DAG->addMutation(new CustomDAGMutation(...));
46 // return DAG;
47 // }
49 // A target that supports alternative schedulers can use the
50 // MachineSchedRegistry to allow command line selection. This can be done by
51 // implementing the following boilerplate:
53 // static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) {
54 // return new CustomMachineScheduler(C);
55 // }
56 // static MachineSchedRegistry
57 // SchedCustomRegistry("custom", "Run my target's custom scheduler",
58 // createCustomMachineSched);
61 // Finally, subtargets that don't need to implement custom heuristics but would
62 // like to configure the GenericScheduler's policy for a given scheduler region,
63 // including scheduling direction and register pressure tracking policy, can do
64 // this:
66 // void <SubTarget>Subtarget::
67 // overrideSchedPolicy(MachineSchedPolicy &Policy,
68 // unsigned NumRegionInstrs) const {
69 // Policy.<Flag> = true;
70 // }
72 //===----------------------------------------------------------------------===//
74 #ifndef LLVM_CODEGEN_MACHINESCHEDULER_H
75 #define LLVM_CODEGEN_MACHINESCHEDULER_H
77 #include "llvm/ADT/ArrayRef.h"
78 #include "llvm/ADT/BitVector.h"
79 #include "llvm/ADT/STLExtras.h"
80 #include "llvm/ADT/SmallVector.h"
81 #include "llvm/ADT/StringRef.h"
82 #include "llvm/ADT/Twine.h"
83 #include "llvm/Analysis/AliasAnalysis.h"
84 #include "llvm/CodeGen/MachineBasicBlock.h"
85 #include "llvm/CodeGen/MachinePassRegistry.h"
86 #include "llvm/CodeGen/RegisterPressure.h"
87 #include "llvm/CodeGen/ScheduleDAG.h"
88 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
89 #include "llvm/CodeGen/ScheduleDAGMutation.h"
90 #include "llvm/CodeGen/TargetSchedule.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/ErrorHandling.h"
93 #include <algorithm>
94 #include <cassert>
95 #include <memory>
96 #include <string>
97 #include <vector>
99 namespace llvm {
101 extern cl::opt<bool> ForceTopDown;
102 extern cl::opt<bool> ForceBottomUp;
104 class LiveIntervals;
105 class MachineDominatorTree;
106 class MachineFunction;
107 class MachineInstr;
108 class MachineLoopInfo;
109 class RegisterClassInfo;
110 class SchedDFSResult;
111 class ScheduleHazardRecognizer;
112 class TargetInstrInfo;
113 class TargetPassConfig;
114 class TargetRegisterInfo;
116 /// MachineSchedContext provides enough context from the MachineScheduler pass
117 /// for the target to instantiate a scheduler.
118 struct MachineSchedContext {
119 MachineFunction *MF = nullptr;
120 const MachineLoopInfo *MLI = nullptr;
121 const MachineDominatorTree *MDT = nullptr;
122 const TargetPassConfig *PassConfig = nullptr;
123 AliasAnalysis *AA = nullptr;
124 LiveIntervals *LIS = nullptr;
126 RegisterClassInfo *RegClassInfo;
128 MachineSchedContext();
129 virtual ~MachineSchedContext();
132 /// MachineSchedRegistry provides a selection of available machine instruction
133 /// schedulers.
134 class MachineSchedRegistry
135 : public MachinePassRegistryNode<
136 ScheduleDAGInstrs *(*)(MachineSchedContext *)> {
137 public:
138 using ScheduleDAGCtor = ScheduleDAGInstrs *(*)(MachineSchedContext *);
140 // RegisterPassParser requires a (misnamed) FunctionPassCtor type.
141 using FunctionPassCtor = ScheduleDAGCtor;
143 static MachinePassRegistry<ScheduleDAGCtor> Registry;
145 MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C)
146 : MachinePassRegistryNode(N, D, C) {
147 Registry.Add(this);
150 ~MachineSchedRegistry() { Registry.Remove(this); }
152 // Accessors.
154 MachineSchedRegistry *getNext() const {
155 return (MachineSchedRegistry *)MachinePassRegistryNode::getNext();
158 static MachineSchedRegistry *getList() {
159 return (MachineSchedRegistry *)Registry.getList();
162 static void setListener(MachinePassRegistryListener<FunctionPassCtor> *L) {
163 Registry.setListener(L);
167 class ScheduleDAGMI;
169 /// Define a generic scheduling policy for targets that don't provide their own
170 /// MachineSchedStrategy. This can be overriden for each scheduling region
171 /// before building the DAG.
172 struct MachineSchedPolicy {
173 // Allow the scheduler to disable register pressure tracking.
174 bool ShouldTrackPressure = false;
175 /// Track LaneMasks to allow reordering of independent subregister writes
176 /// of the same vreg. \sa MachineSchedStrategy::shouldTrackLaneMasks()
177 bool ShouldTrackLaneMasks = false;
179 // Allow the scheduler to force top-down or bottom-up scheduling. If neither
180 // is true, the scheduler runs in both directions and converges.
181 bool OnlyTopDown = false;
182 bool OnlyBottomUp = false;
184 // Disable heuristic that tries to fetch nodes from long dependency chains
185 // first.
186 bool DisableLatencyHeuristic = false;
188 MachineSchedPolicy() = default;
191 /// MachineSchedStrategy - Interface to the scheduling algorithm used by
192 /// ScheduleDAGMI.
194 /// Initialization sequence:
195 /// initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots
196 class MachineSchedStrategy {
197 virtual void anchor();
199 public:
200 virtual ~MachineSchedStrategy() = default;
202 /// Optionally override the per-region scheduling policy.
203 virtual void initPolicy(MachineBasicBlock::iterator Begin,
204 MachineBasicBlock::iterator End,
205 unsigned NumRegionInstrs) {}
207 virtual void dumpPolicy() const {}
209 /// Check if pressure tracking is needed before building the DAG and
210 /// initializing this strategy. Called after initPolicy.
211 virtual bool shouldTrackPressure() const { return true; }
213 /// Returns true if lanemasks should be tracked. LaneMask tracking is
214 /// necessary to reorder independent subregister defs for the same vreg.
215 /// This has to be enabled in combination with shouldTrackPressure().
216 virtual bool shouldTrackLaneMasks() const { return false; }
218 // If this method returns true, handling of the scheduling regions
219 // themselves (in case of a scheduling boundary in MBB) will be done
220 // beginning with the topmost region of MBB.
221 virtual bool doMBBSchedRegionsTopDown() const { return false; }
223 /// Initialize the strategy after building the DAG for a new region.
224 virtual void initialize(ScheduleDAGMI *DAG) = 0;
226 /// Tell the strategy that MBB is about to be processed.
227 virtual void enterMBB(MachineBasicBlock *MBB) {};
229 /// Tell the strategy that current MBB is done.
230 virtual void leaveMBB() {};
232 /// Notify this strategy that all roots have been released (including those
233 /// that depend on EntrySU or ExitSU).
234 virtual void registerRoots() {}
236 /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
237 /// schedule the node at the top of the unscheduled region. Otherwise it will
238 /// be scheduled at the bottom.
239 virtual SUnit *pickNode(bool &IsTopNode) = 0;
241 /// Scheduler callback to notify that a new subtree is scheduled.
242 virtual void scheduleTree(unsigned SubtreeID) {}
244 /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an
245 /// instruction and updated scheduled/remaining flags in the DAG nodes.
246 virtual void schedNode(SUnit *SU, bool IsTopNode) = 0;
248 /// When all predecessor dependencies have been resolved, free this node for
249 /// top-down scheduling.
250 virtual void releaseTopNode(SUnit *SU) = 0;
252 /// When all successor dependencies have been resolved, free this node for
253 /// bottom-up scheduling.
254 virtual void releaseBottomNode(SUnit *SU) = 0;
257 /// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply
258 /// schedules machine instructions according to the given MachineSchedStrategy
259 /// without much extra book-keeping. This is the common functionality between
260 /// PreRA and PostRA MachineScheduler.
261 class ScheduleDAGMI : public ScheduleDAGInstrs {
262 protected:
263 AliasAnalysis *AA;
264 LiveIntervals *LIS;
265 std::unique_ptr<MachineSchedStrategy> SchedImpl;
267 /// Topo - A topological ordering for SUnits which permits fast IsReachable
268 /// and similar queries.
269 ScheduleDAGTopologicalSort Topo;
271 /// Ordered list of DAG postprocessing steps.
272 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
274 /// The top of the unscheduled zone.
275 MachineBasicBlock::iterator CurrentTop;
277 /// The bottom of the unscheduled zone.
278 MachineBasicBlock::iterator CurrentBottom;
280 /// Record the next node in a scheduled cluster.
281 const SUnit *NextClusterPred = nullptr;
282 const SUnit *NextClusterSucc = nullptr;
284 #ifndef NDEBUG
285 /// The number of instructions scheduled so far. Used to cut off the
286 /// scheduler at the point determined by misched-cutoff.
287 unsigned NumInstrsScheduled = 0;
288 #endif
290 public:
291 ScheduleDAGMI(MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
292 bool RemoveKillFlags)
293 : ScheduleDAGInstrs(*C->MF, C->MLI, RemoveKillFlags), AA(C->AA),
294 LIS(C->LIS), SchedImpl(std::move(S)), Topo(SUnits, &ExitSU) {}
296 // Provide a vtable anchor
297 ~ScheduleDAGMI() override;
299 /// If this method returns true, handling of the scheduling regions
300 /// themselves (in case of a scheduling boundary in MBB) will be done
301 /// beginning with the topmost region of MBB.
302 bool doMBBSchedRegionsTopDown() const override {
303 return SchedImpl->doMBBSchedRegionsTopDown();
306 // Returns LiveIntervals instance for use in DAG mutators and such.
307 LiveIntervals *getLIS() const { return LIS; }
309 /// Return true if this DAG supports VReg liveness and RegPressure.
310 virtual bool hasVRegLiveness() const { return false; }
312 /// Add a postprocessing step to the DAG builder.
313 /// Mutations are applied in the order that they are added after normal DAG
314 /// building and before MachineSchedStrategy initialization.
316 /// ScheduleDAGMI takes ownership of the Mutation object.
317 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
318 if (Mutation)
319 Mutations.push_back(std::move(Mutation));
322 /// True if an edge can be added from PredSU to SuccSU without creating
323 /// a cycle.
324 bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);
326 /// Add a DAG edge to the given SU with the given predecessor
327 /// dependence data.
329 /// \returns true if the edge may be added without creating a cycle OR if an
330 /// equivalent edge already existed (false indicates failure).
331 bool addEdge(SUnit *SuccSU, const SDep &PredDep);
333 MachineBasicBlock::iterator top() const { return CurrentTop; }
334 MachineBasicBlock::iterator bottom() const { return CurrentBottom; }
336 /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
337 /// region. This covers all instructions in a block, while schedule() may only
338 /// cover a subset.
339 void enterRegion(MachineBasicBlock *bb,
340 MachineBasicBlock::iterator begin,
341 MachineBasicBlock::iterator end,
342 unsigned regioninstrs) override;
344 /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
345 /// reorderable instructions.
346 void schedule() override;
348 void startBlock(MachineBasicBlock *bb) override;
349 void finishBlock() override;
351 /// Change the position of an instruction within the basic block and update
352 /// live ranges and region boundary iterators.
353 void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);
355 const SUnit *getNextClusterPred() const { return NextClusterPred; }
357 const SUnit *getNextClusterSucc() const { return NextClusterSucc; }
359 void viewGraph(const Twine &Name, const Twine &Title) override;
360 void viewGraph() override;
362 protected:
363 // Top-Level entry points for the schedule() driver...
365 /// Apply each ScheduleDAGMutation step in order. This allows different
366 /// instances of ScheduleDAGMI to perform custom DAG postprocessing.
367 void postprocessDAG();
369 /// Release ExitSU predecessors and setup scheduler queues.
370 void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
372 /// Update scheduler DAG and queues after scheduling an instruction.
373 void updateQueues(SUnit *SU, bool IsTopNode);
375 /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
376 void placeDebugValues();
378 /// dump the scheduled Sequence.
379 void dumpSchedule() const;
381 // Lesser helpers...
382 bool checkSchedLimit();
384 void findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
385 SmallVectorImpl<SUnit*> &BotRoots);
387 void releaseSucc(SUnit *SU, SDep *SuccEdge);
388 void releaseSuccessors(SUnit *SU);
389 void releasePred(SUnit *SU, SDep *PredEdge);
390 void releasePredecessors(SUnit *SU);
393 /// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules
394 /// machine instructions while updating LiveIntervals and tracking regpressure.
395 class ScheduleDAGMILive : public ScheduleDAGMI {
396 protected:
397 RegisterClassInfo *RegClassInfo;
399 /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees
400 /// will be empty.
401 SchedDFSResult *DFSResult = nullptr;
402 BitVector ScheduledTrees;
404 MachineBasicBlock::iterator LiveRegionEnd;
406 /// Maps vregs to the SUnits of their uses in the current scheduling region.
407 VReg2SUnitMultiMap VRegUses;
409 // Map each SU to its summary of pressure changes. This array is updated for
410 // liveness during bottom-up scheduling. Top-down scheduling may proceed but
411 // has no affect on the pressure diffs.
412 PressureDiffs SUPressureDiffs;
414 /// Register pressure in this region computed by initRegPressure.
415 bool ShouldTrackPressure = false;
416 bool ShouldTrackLaneMasks = false;
417 IntervalPressure RegPressure;
418 RegPressureTracker RPTracker;
420 /// List of pressure sets that exceed the target's pressure limit before
421 /// scheduling, listed in increasing set ID order. Each pressure set is paired
422 /// with its max pressure in the currently scheduled regions.
423 std::vector<PressureChange> RegionCriticalPSets;
425 /// The top of the unscheduled zone.
426 IntervalPressure TopPressure;
427 RegPressureTracker TopRPTracker;
429 /// The bottom of the unscheduled zone.
430 IntervalPressure BotPressure;
431 RegPressureTracker BotRPTracker;
433 /// True if disconnected subregister components are already renamed.
434 /// The renaming is only done on demand if lane masks are tracked.
435 bool DisconnectedComponentsRenamed = false;
437 public:
438 ScheduleDAGMILive(MachineSchedContext *C,
439 std::unique_ptr<MachineSchedStrategy> S)
440 : ScheduleDAGMI(C, std::move(S), /*RemoveKillFlags=*/false),
441 RegClassInfo(C->RegClassInfo), RPTracker(RegPressure),
442 TopRPTracker(TopPressure), BotRPTracker(BotPressure) {}
444 ~ScheduleDAGMILive() override;
446 /// Return true if this DAG supports VReg liveness and RegPressure.
447 bool hasVRegLiveness() const override { return true; }
449 /// Return true if register pressure tracking is enabled.
450 bool isTrackingPressure() const { return ShouldTrackPressure; }
452 /// Get current register pressure for the top scheduled instructions.
453 const IntervalPressure &getTopPressure() const { return TopPressure; }
454 const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }
456 /// Get current register pressure for the bottom scheduled instructions.
457 const IntervalPressure &getBotPressure() const { return BotPressure; }
458 const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }
460 /// Get register pressure for the entire scheduling region before scheduling.
461 const IntervalPressure &getRegPressure() const { return RegPressure; }
463 const std::vector<PressureChange> &getRegionCriticalPSets() const {
464 return RegionCriticalPSets;
467 PressureDiff &getPressureDiff(const SUnit *SU) {
468 return SUPressureDiffs[SU->NodeNum];
470 const PressureDiff &getPressureDiff(const SUnit *SU) const {
471 return SUPressureDiffs[SU->NodeNum];
474 /// Compute a DFSResult after DAG building is complete, and before any
475 /// queue comparisons.
476 void computeDFSResult();
478 /// Return a non-null DFS result if the scheduling strategy initialized it.
479 const SchedDFSResult *getDFSResult() const { return DFSResult; }
481 BitVector &getScheduledTrees() { return ScheduledTrees; }
483 /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
484 /// region. This covers all instructions in a block, while schedule() may only
485 /// cover a subset.
486 void enterRegion(MachineBasicBlock *bb,
487 MachineBasicBlock::iterator begin,
488 MachineBasicBlock::iterator end,
489 unsigned regioninstrs) override;
491 /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
492 /// reorderable instructions.
493 void schedule() override;
495 /// Compute the cyclic critical path through the DAG.
496 unsigned computeCyclicCriticalPath();
498 void dump() const override;
500 protected:
501 // Top-Level entry points for the schedule() driver...
503 /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking
504 /// enabled. This sets up three trackers. RPTracker will cover the entire DAG
505 /// region, TopTracker and BottomTracker will be initialized to the top and
506 /// bottom of the DAG region without covereing any unscheduled instruction.
507 void buildDAGWithRegPressure();
509 /// Release ExitSU predecessors and setup scheduler queues. Re-position
510 /// the Top RP tracker in case the region beginning has changed.
511 void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
513 /// Move an instruction and update register pressure.
514 void scheduleMI(SUnit *SU, bool IsTopNode);
516 // Lesser helpers...
518 void initRegPressure();
520 void updatePressureDiffs(ArrayRef<RegisterMaskPair> LiveUses);
522 void updateScheduledPressure(const SUnit *SU,
523 const std::vector<unsigned> &NewMaxPressure);
525 void collectVRegUses(SUnit &SU);
528 //===----------------------------------------------------------------------===//
530 /// Helpers for implementing custom MachineSchedStrategy classes. These take
531 /// care of the book-keeping associated with list scheduling heuristics.
533 //===----------------------------------------------------------------------===//
535 /// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience
536 /// methods for pushing and removing nodes. ReadyQueue's are uniquely identified
537 /// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in.
539 /// This is a convenience class that may be used by implementations of
540 /// MachineSchedStrategy.
541 class ReadyQueue {
542 unsigned ID;
543 std::string Name;
544 std::vector<SUnit*> Queue;
546 public:
547 ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {}
549 unsigned getID() const { return ID; }
551 StringRef getName() const { return Name; }
553 // SU is in this queue if it's NodeQueueID is a superset of this ID.
554 bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); }
556 bool empty() const { return Queue.empty(); }
558 void clear() { Queue.clear(); }
560 unsigned size() const { return Queue.size(); }
562 using iterator = std::vector<SUnit*>::iterator;
564 iterator begin() { return Queue.begin(); }
566 iterator end() { return Queue.end(); }
568 ArrayRef<SUnit*> elements() { return Queue; }
570 iterator find(SUnit *SU) { return llvm::find(Queue, SU); }
572 void push(SUnit *SU) {
573 Queue.push_back(SU);
574 SU->NodeQueueId |= ID;
577 iterator remove(iterator I) {
578 (*I)->NodeQueueId &= ~ID;
579 *I = Queue.back();
580 unsigned idx = I - Queue.begin();
581 Queue.pop_back();
582 return Queue.begin() + idx;
585 void dump() const;
588 /// Summarize the unscheduled region.
589 struct SchedRemainder {
590 // Critical path through the DAG in expected latency.
591 unsigned CriticalPath;
592 unsigned CyclicCritPath;
594 // Scaled count of micro-ops left to schedule.
595 unsigned RemIssueCount;
597 bool IsAcyclicLatencyLimited;
599 // Unscheduled resources
600 SmallVector<unsigned, 16> RemainingCounts;
602 SchedRemainder() { reset(); }
604 void reset() {
605 CriticalPath = 0;
606 CyclicCritPath = 0;
607 RemIssueCount = 0;
608 IsAcyclicLatencyLimited = false;
609 RemainingCounts.clear();
612 void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
615 /// Each Scheduling boundary is associated with ready queues. It tracks the
616 /// current cycle in the direction of movement, and maintains the state
617 /// of "hazards" and other interlocks at the current cycle.
618 class SchedBoundary {
619 public:
620 /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
621 enum {
622 TopQID = 1,
623 BotQID = 2,
624 LogMaxQID = 2
627 ScheduleDAGMI *DAG = nullptr;
628 const TargetSchedModel *SchedModel = nullptr;
629 SchedRemainder *Rem = nullptr;
631 ReadyQueue Available;
632 ReadyQueue Pending;
634 ScheduleHazardRecognizer *HazardRec = nullptr;
636 private:
637 /// True if the pending Q should be checked/updated before scheduling another
638 /// instruction.
639 bool CheckPending;
641 /// Number of cycles it takes to issue the instructions scheduled in this
642 /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
643 /// See getStalls().
644 unsigned CurrCycle;
646 /// Micro-ops issued in the current cycle
647 unsigned CurrMOps;
649 /// MinReadyCycle - Cycle of the soonest available instruction.
650 unsigned MinReadyCycle;
652 // The expected latency of the critical path in this scheduled zone.
653 unsigned ExpectedLatency;
655 // The latency of dependence chains leading into this zone.
656 // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
657 // For each cycle scheduled: DLat -= 1.
658 unsigned DependentLatency;
660 /// Count the scheduled (issued) micro-ops that can be retired by
661 /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
662 unsigned RetiredMOps;
664 // Count scheduled resources that have been executed. Resources are
665 // considered executed if they become ready in the time that it takes to
666 // saturate any resource including the one in question. Counts are scaled
667 // for direct comparison with other resources. Counts can be compared with
668 // MOps * getMicroOpFactor and Latency * getLatencyFactor.
669 SmallVector<unsigned, 16> ExecutedResCounts;
671 /// Cache the max count for a single resource.
672 unsigned MaxExecutedResCount;
674 // Cache the critical resources ID in this scheduled zone.
675 unsigned ZoneCritResIdx;
677 // Is the scheduled region resource limited vs. latency limited.
678 bool IsResourceLimited;
680 // Record the highest cycle at which each resource has been reserved by a
681 // scheduled instruction.
682 SmallVector<unsigned, 16> ReservedCycles;
684 #ifndef NDEBUG
685 // Remember the greatest possible stall as an upper bound on the number of
686 // times we should retry the pending queue because of a hazard.
687 unsigned MaxObservedStall;
688 #endif
690 public:
691 /// Pending queues extend the ready queues with the same ID and the
692 /// PendingFlag set.
693 SchedBoundary(unsigned ID, const Twine &Name):
694 Available(ID, Name+".A"), Pending(ID << LogMaxQID, Name+".P") {
695 reset();
698 ~SchedBoundary();
700 void reset();
702 void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
703 SchedRemainder *rem);
705 bool isTop() const {
706 return Available.getID() == TopQID;
709 /// Number of cycles to issue the instructions scheduled in this zone.
710 unsigned getCurrCycle() const { return CurrCycle; }
712 /// Micro-ops issued in the current cycle
713 unsigned getCurrMOps() const { return CurrMOps; }
715 // The latency of dependence chains leading into this zone.
716 unsigned getDependentLatency() const { return DependentLatency; }
718 /// Get the number of latency cycles "covered" by the scheduled
719 /// instructions. This is the larger of the critical path within the zone
720 /// and the number of cycles required to issue the instructions.
721 unsigned getScheduledLatency() const {
722 return std::max(ExpectedLatency, CurrCycle);
725 unsigned getUnscheduledLatency(SUnit *SU) const {
726 return isTop() ? SU->getHeight() : SU->getDepth();
729 unsigned getResourceCount(unsigned ResIdx) const {
730 return ExecutedResCounts[ResIdx];
733 /// Get the scaled count of scheduled micro-ops and resources, including
734 /// executed resources.
735 unsigned getCriticalCount() const {
736 if (!ZoneCritResIdx)
737 return RetiredMOps * SchedModel->getMicroOpFactor();
738 return getResourceCount(ZoneCritResIdx);
741 /// Get a scaled count for the minimum execution time of the scheduled
742 /// micro-ops that are ready to execute by getExecutedCount. Notice the
743 /// feedback loop.
744 unsigned getExecutedCount() const {
745 return std::max(CurrCycle * SchedModel->getLatencyFactor(),
746 MaxExecutedResCount);
749 unsigned getZoneCritResIdx() const { return ZoneCritResIdx; }
751 // Is the scheduled region resource limited vs. latency limited.
752 bool isResourceLimited() const { return IsResourceLimited; }
754 /// Get the difference between the given SUnit's ready time and the current
755 /// cycle.
756 unsigned getLatencyStallCycles(SUnit *SU);
758 unsigned getNextResourceCycle(unsigned PIdx, unsigned Cycles);
760 bool checkHazard(SUnit *SU);
762 unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
764 unsigned getOtherResourceCount(unsigned &OtherCritIdx);
766 void releaseNode(SUnit *SU, unsigned ReadyCycle);
768 void bumpCycle(unsigned NextCycle);
770 void incExecutedResources(unsigned PIdx, unsigned Count);
772 unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
774 void bumpNode(SUnit *SU);
776 void releasePending();
778 void removeReady(SUnit *SU);
780 /// Call this before applying any other heuristics to the Available queue.
781 /// Updates the Available/Pending Q's if necessary and returns the single
782 /// available instruction, or NULL if there are multiple candidates.
783 SUnit *pickOnlyChoice();
785 void dumpScheduledState() const;
788 /// Base class for GenericScheduler. This class maintains information about
789 /// scheduling candidates based on TargetSchedModel making it easy to implement
790 /// heuristics for either preRA or postRA scheduling.
791 class GenericSchedulerBase : public MachineSchedStrategy {
792 public:
793 /// Represent the type of SchedCandidate found within a single queue.
794 /// pickNodeBidirectional depends on these listed by decreasing priority.
795 enum CandReason : uint8_t {
796 NoCand, Only1, PhysReg, RegExcess, RegCritical, Stall, Cluster, Weak,
797 RegMax, ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
798 TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
800 #ifndef NDEBUG
801 static const char *getReasonStr(GenericSchedulerBase::CandReason Reason);
802 #endif
804 /// Policy for scheduling the next instruction in the candidate's zone.
805 struct CandPolicy {
806 bool ReduceLatency = false;
807 unsigned ReduceResIdx = 0;
808 unsigned DemandResIdx = 0;
810 CandPolicy() = default;
812 bool operator==(const CandPolicy &RHS) const {
813 return ReduceLatency == RHS.ReduceLatency &&
814 ReduceResIdx == RHS.ReduceResIdx &&
815 DemandResIdx == RHS.DemandResIdx;
817 bool operator!=(const CandPolicy &RHS) const {
818 return !(*this == RHS);
822 /// Status of an instruction's critical resource consumption.
823 struct SchedResourceDelta {
824 // Count critical resources in the scheduled region required by SU.
825 unsigned CritResources = 0;
827 // Count critical resources from another region consumed by SU.
828 unsigned DemandedResources = 0;
830 SchedResourceDelta() = default;
832 bool operator==(const SchedResourceDelta &RHS) const {
833 return CritResources == RHS.CritResources
834 && DemandedResources == RHS.DemandedResources;
836 bool operator!=(const SchedResourceDelta &RHS) const {
837 return !operator==(RHS);
841 /// Store the state used by GenericScheduler heuristics, required for the
842 /// lifetime of one invocation of pickNode().
843 struct SchedCandidate {
844 CandPolicy Policy;
846 // The best SUnit candidate.
847 SUnit *SU;
849 // The reason for this candidate.
850 CandReason Reason;
852 // Whether this candidate should be scheduled at top/bottom.
853 bool AtTop;
855 // Register pressure values for the best candidate.
856 RegPressureDelta RPDelta;
858 // Critical resource consumption of the best candidate.
859 SchedResourceDelta ResDelta;
861 SchedCandidate() { reset(CandPolicy()); }
862 SchedCandidate(const CandPolicy &Policy) { reset(Policy); }
864 void reset(const CandPolicy &NewPolicy) {
865 Policy = NewPolicy;
866 SU = nullptr;
867 Reason = NoCand;
868 AtTop = false;
869 RPDelta = RegPressureDelta();
870 ResDelta = SchedResourceDelta();
873 bool isValid() const { return SU; }
875 // Copy the status of another candidate without changing policy.
876 void setBest(SchedCandidate &Best) {
877 assert(Best.Reason != NoCand && "uninitialized Sched candidate");
878 SU = Best.SU;
879 Reason = Best.Reason;
880 AtTop = Best.AtTop;
881 RPDelta = Best.RPDelta;
882 ResDelta = Best.ResDelta;
885 void initResourceDelta(const ScheduleDAGMI *DAG,
886 const TargetSchedModel *SchedModel);
889 protected:
890 const MachineSchedContext *Context;
891 const TargetSchedModel *SchedModel = nullptr;
892 const TargetRegisterInfo *TRI = nullptr;
894 SchedRemainder Rem;
896 GenericSchedulerBase(const MachineSchedContext *C) : Context(C) {}
898 void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone,
899 SchedBoundary *OtherZone);
901 #ifndef NDEBUG
902 void traceCandidate(const SchedCandidate &Cand);
903 #endif
905 private:
906 bool shouldReduceLatency(const CandPolicy &Policy, SchedBoundary &CurrZone,
907 bool ComputeRemLatency, unsigned &RemLatency) const;
910 // Utility functions used by heuristics in tryCandidate().
911 bool tryLess(int TryVal, int CandVal,
912 GenericSchedulerBase::SchedCandidate &TryCand,
913 GenericSchedulerBase::SchedCandidate &Cand,
914 GenericSchedulerBase::CandReason Reason);
915 bool tryGreater(int TryVal, int CandVal,
916 GenericSchedulerBase::SchedCandidate &TryCand,
917 GenericSchedulerBase::SchedCandidate &Cand,
918 GenericSchedulerBase::CandReason Reason);
919 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
920 GenericSchedulerBase::SchedCandidate &Cand,
921 SchedBoundary &Zone);
922 bool tryPressure(const PressureChange &TryP,
923 const PressureChange &CandP,
924 GenericSchedulerBase::SchedCandidate &TryCand,
925 GenericSchedulerBase::SchedCandidate &Cand,
926 GenericSchedulerBase::CandReason Reason,
927 const TargetRegisterInfo *TRI,
928 const MachineFunction &MF);
929 unsigned getWeakLeft(const SUnit *SU, bool isTop);
930 int biasPhysReg(const SUnit *SU, bool isTop);
932 /// GenericScheduler shrinks the unscheduled zone using heuristics to balance
933 /// the schedule.
934 class GenericScheduler : public GenericSchedulerBase {
935 public:
936 GenericScheduler(const MachineSchedContext *C):
937 GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ"),
938 Bot(SchedBoundary::BotQID, "BotQ") {}
940 void initPolicy(MachineBasicBlock::iterator Begin,
941 MachineBasicBlock::iterator End,
942 unsigned NumRegionInstrs) override;
944 void dumpPolicy() const override;
946 bool shouldTrackPressure() const override {
947 return RegionPolicy.ShouldTrackPressure;
950 bool shouldTrackLaneMasks() const override {
951 return RegionPolicy.ShouldTrackLaneMasks;
954 void initialize(ScheduleDAGMI *dag) override;
956 SUnit *pickNode(bool &IsTopNode) override;
958 void schedNode(SUnit *SU, bool IsTopNode) override;
960 void releaseTopNode(SUnit *SU) override {
961 if (SU->isScheduled)
962 return;
964 Top.releaseNode(SU, SU->TopReadyCycle);
965 TopCand.SU = nullptr;
968 void releaseBottomNode(SUnit *SU) override {
969 if (SU->isScheduled)
970 return;
972 Bot.releaseNode(SU, SU->BotReadyCycle);
973 BotCand.SU = nullptr;
976 void registerRoots() override;
978 protected:
979 ScheduleDAGMILive *DAG = nullptr;
981 MachineSchedPolicy RegionPolicy;
983 // State of the top and bottom scheduled instruction boundaries.
984 SchedBoundary Top;
985 SchedBoundary Bot;
987 /// Candidate last picked from Top boundary.
988 SchedCandidate TopCand;
989 /// Candidate last picked from Bot boundary.
990 SchedCandidate BotCand;
992 void checkAcyclicLatency();
994 void initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop,
995 const RegPressureTracker &RPTracker,
996 RegPressureTracker &TempTracker);
998 virtual void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand,
999 SchedBoundary *Zone) const;
1001 SUnit *pickNodeBidirectional(bool &IsTopNode);
1003 void pickNodeFromQueue(SchedBoundary &Zone,
1004 const CandPolicy &ZonePolicy,
1005 const RegPressureTracker &RPTracker,
1006 SchedCandidate &Candidate);
1008 void reschedulePhysReg(SUnit *SU, bool isTop);
1011 /// PostGenericScheduler - Interface to the scheduling algorithm used by
1012 /// ScheduleDAGMI.
1014 /// Callbacks from ScheduleDAGMI:
1015 /// initPolicy -> initialize(DAG) -> registerRoots -> pickNode ...
1016 class PostGenericScheduler : public GenericSchedulerBase {
1017 ScheduleDAGMI *DAG;
1018 SchedBoundary Top;
1019 SmallVector<SUnit*, 8> BotRoots;
1021 public:
1022 PostGenericScheduler(const MachineSchedContext *C):
1023 GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {}
1025 ~PostGenericScheduler() override = default;
1027 void initPolicy(MachineBasicBlock::iterator Begin,
1028 MachineBasicBlock::iterator End,
1029 unsigned NumRegionInstrs) override {
1030 /* no configurable policy */
1033 /// PostRA scheduling does not track pressure.
1034 bool shouldTrackPressure() const override { return false; }
1036 void initialize(ScheduleDAGMI *Dag) override;
1038 void registerRoots() override;
1040 SUnit *pickNode(bool &IsTopNode) override;
1042 void scheduleTree(unsigned SubtreeID) override {
1043 llvm_unreachable("PostRA scheduler does not support subtree analysis.");
1046 void schedNode(SUnit *SU, bool IsTopNode) override;
1048 void releaseTopNode(SUnit *SU) override {
1049 if (SU->isScheduled)
1050 return;
1051 Top.releaseNode(SU, SU->TopReadyCycle);
1054 // Only called for roots.
1055 void releaseBottomNode(SUnit *SU) override {
1056 BotRoots.push_back(SU);
1059 protected:
1060 void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand);
1062 void pickNodeFromQueue(SchedCandidate &Cand);
1065 /// Create the standard converging machine scheduler. This will be used as the
1066 /// default scheduler if the target does not set a default.
1067 /// Adds default DAG mutations.
1068 ScheduleDAGMILive *createGenericSchedLive(MachineSchedContext *C);
1070 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
1071 ScheduleDAGMI *createGenericSchedPostRA(MachineSchedContext *C);
1073 std::unique_ptr<ScheduleDAGMutation>
1074 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1075 const TargetRegisterInfo *TRI);
1077 std::unique_ptr<ScheduleDAGMutation>
1078 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1079 const TargetRegisterInfo *TRI);
1081 std::unique_ptr<ScheduleDAGMutation>
1082 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1083 const TargetRegisterInfo *TRI);
1085 } // end namespace llvm
1087 #endif // LLVM_CODEGEN_MACHINESCHEDULER_H