Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / CodeGen / SelectionDAG.h
blobc475599552654bb00592cda89e046118a8d2631a
1 //===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the SelectionDAG class, and transitively defines the
10 // SDNode class and subclasses.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_CODEGEN_SELECTIONDAG_H
15 #define LLVM_CODEGEN_SELECTIONDAG_H
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/ilist.h"
27 #include "llvm/ADT/iterator.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
31 #include "llvm/CodeGen/DAGCombine.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/ArrayRecycler.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CodeGen.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/MachineValueType.h"
48 #include "llvm/Support/RecyclingAllocator.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <functional>
53 #include <map>
54 #include <string>
55 #include <tuple>
56 #include <utility>
57 #include <vector>
59 namespace llvm {
61 class BlockAddress;
62 class Constant;
63 class ConstantFP;
64 class ConstantInt;
65 class DataLayout;
66 struct fltSemantics;
67 class GlobalValue;
68 struct KnownBits;
69 class LLVMContext;
70 class MachineBasicBlock;
71 class MachineConstantPoolValue;
72 class MCSymbol;
73 class OptimizationRemarkEmitter;
74 class SDDbgValue;
75 class SDDbgLabel;
76 class SelectionDAG;
77 class SelectionDAGTargetInfo;
78 class TargetLibraryInfo;
79 class TargetLowering;
80 class TargetMachine;
81 class TargetSubtargetInfo;
82 class Value;
84 class SDVTListNode : public FoldingSetNode {
85 friend struct FoldingSetTrait<SDVTListNode>;
87 /// A reference to an Interned FoldingSetNodeID for this node.
88 /// The Allocator in SelectionDAG holds the data.
89 /// SDVTList contains all types which are frequently accessed in SelectionDAG.
90 /// The size of this list is not expected to be big so it won't introduce
91 /// a memory penalty.
92 FoldingSetNodeIDRef FastID;
93 const EVT *VTs;
94 unsigned int NumVTs;
95 /// The hash value for SDVTList is fixed, so cache it to avoid
96 /// hash calculation.
97 unsigned HashValue;
99 public:
100 SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
101 FastID(ID), VTs(VT), NumVTs(Num) {
102 HashValue = ID.ComputeHash();
105 SDVTList getSDVTList() {
106 SDVTList result = {VTs, NumVTs};
107 return result;
111 /// Specialize FoldingSetTrait for SDVTListNode
112 /// to avoid computing temp FoldingSetNodeID and hash value.
113 template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
114 static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
115 ID = X.FastID;
118 static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
119 unsigned IDHash, FoldingSetNodeID &TempID) {
120 if (X.HashValue != IDHash)
121 return false;
122 return ID == X.FastID;
125 static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
126 return X.HashValue;
130 template <> struct ilist_alloc_traits<SDNode> {
131 static void deleteNode(SDNode *) {
132 llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
136 /// Keeps track of dbg_value information through SDISel. We do
137 /// not build SDNodes for these so as not to perturb the generated code;
138 /// instead the info is kept off to the side in this structure. Each SDNode may
139 /// have one or more associated dbg_value entries. This information is kept in
140 /// DbgValMap.
141 /// Byval parameters are handled separately because they don't use alloca's,
142 /// which busts the normal mechanism. There is good reason for handling all
143 /// parameters separately: they may not have code generated for them, they
144 /// should always go at the beginning of the function regardless of other code
145 /// motion, and debug info for them is potentially useful even if the parameter
146 /// is unused. Right now only byval parameters are handled separately.
147 class SDDbgInfo {
148 BumpPtrAllocator Alloc;
149 SmallVector<SDDbgValue*, 32> DbgValues;
150 SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
151 SmallVector<SDDbgLabel*, 4> DbgLabels;
152 using DbgValMapType = DenseMap<const SDNode *, SmallVector<SDDbgValue *, 2>>;
153 DbgValMapType DbgValMap;
155 public:
156 SDDbgInfo() = default;
157 SDDbgInfo(const SDDbgInfo &) = delete;
158 SDDbgInfo &operator=(const SDDbgInfo &) = delete;
160 void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
161 if (isParameter) {
162 ByvalParmDbgValues.push_back(V);
163 } else DbgValues.push_back(V);
164 if (Node)
165 DbgValMap[Node].push_back(V);
168 void add(SDDbgLabel *L) {
169 DbgLabels.push_back(L);
172 /// Invalidate all DbgValues attached to the node and remove
173 /// it from the Node-to-DbgValues map.
174 void erase(const SDNode *Node);
176 void clear() {
177 DbgValMap.clear();
178 DbgValues.clear();
179 ByvalParmDbgValues.clear();
180 DbgLabels.clear();
181 Alloc.Reset();
184 BumpPtrAllocator &getAlloc() { return Alloc; }
186 bool empty() const {
187 return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty();
190 ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) const {
191 auto I = DbgValMap.find(Node);
192 if (I != DbgValMap.end())
193 return I->second;
194 return ArrayRef<SDDbgValue*>();
197 using DbgIterator = SmallVectorImpl<SDDbgValue*>::iterator;
198 using DbgLabelIterator = SmallVectorImpl<SDDbgLabel*>::iterator;
200 DbgIterator DbgBegin() { return DbgValues.begin(); }
201 DbgIterator DbgEnd() { return DbgValues.end(); }
202 DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
203 DbgIterator ByvalParmDbgEnd() { return ByvalParmDbgValues.end(); }
204 DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); }
205 DbgLabelIterator DbgLabelEnd() { return DbgLabels.end(); }
208 void checkForCycles(const SelectionDAG *DAG, bool force = false);
210 /// This is used to represent a portion of an LLVM function in a low-level
211 /// Data Dependence DAG representation suitable for instruction selection.
212 /// This DAG is constructed as the first step of instruction selection in order
213 /// to allow implementation of machine specific optimizations
214 /// and code simplifications.
216 /// The representation used by the SelectionDAG is a target-independent
217 /// representation, which has some similarities to the GCC RTL representation,
218 /// but is significantly more simple, powerful, and is a graph form instead of a
219 /// linear form.
221 class SelectionDAG {
222 const TargetMachine &TM;
223 const SelectionDAGTargetInfo *TSI = nullptr;
224 const TargetLowering *TLI = nullptr;
225 const TargetLibraryInfo *LibInfo = nullptr;
226 MachineFunction *MF;
227 Pass *SDAGISelPass = nullptr;
228 LLVMContext *Context;
229 CodeGenOpt::Level OptLevel;
231 LegacyDivergenceAnalysis * DA = nullptr;
232 FunctionLoweringInfo * FLI = nullptr;
234 /// The function-level optimization remark emitter. Used to emit remarks
235 /// whenever manipulating the DAG.
236 OptimizationRemarkEmitter *ORE;
238 /// The starting token.
239 SDNode EntryNode;
241 /// The root of the entire DAG.
242 SDValue Root;
244 /// A linked list of nodes in the current DAG.
245 ilist<SDNode> AllNodes;
247 /// The AllocatorType for allocating SDNodes. We use
248 /// pool allocation with recycling.
249 using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode,
250 sizeof(LargestSDNode),
251 alignof(MostAlignedSDNode)>;
253 /// Pool allocation for nodes.
254 NodeAllocatorType NodeAllocator;
256 /// This structure is used to memoize nodes, automatically performing
257 /// CSE with existing nodes when a duplicate is requested.
258 FoldingSet<SDNode> CSEMap;
260 /// Pool allocation for machine-opcode SDNode operands.
261 BumpPtrAllocator OperandAllocator;
262 ArrayRecycler<SDUse> OperandRecycler;
264 /// Pool allocation for misc. objects that are created once per SelectionDAG.
265 BumpPtrAllocator Allocator;
267 /// Tracks dbg_value and dbg_label information through SDISel.
268 SDDbgInfo *DbgInfo;
270 uint16_t NextPersistentId = 0;
272 public:
273 /// Clients of various APIs that cause global effects on
274 /// the DAG can optionally implement this interface. This allows the clients
275 /// to handle the various sorts of updates that happen.
277 /// A DAGUpdateListener automatically registers itself with DAG when it is
278 /// constructed, and removes itself when destroyed in RAII fashion.
279 struct DAGUpdateListener {
280 DAGUpdateListener *const Next;
281 SelectionDAG &DAG;
283 explicit DAGUpdateListener(SelectionDAG &D)
284 : Next(D.UpdateListeners), DAG(D) {
285 DAG.UpdateListeners = this;
288 virtual ~DAGUpdateListener() {
289 assert(DAG.UpdateListeners == this &&
290 "DAGUpdateListeners must be destroyed in LIFO order");
291 DAG.UpdateListeners = Next;
294 /// The node N that was deleted and, if E is not null, an
295 /// equivalent node E that replaced it.
296 virtual void NodeDeleted(SDNode *N, SDNode *E);
298 /// The node N that was updated.
299 virtual void NodeUpdated(SDNode *N);
302 struct DAGNodeDeletedListener : public DAGUpdateListener {
303 std::function<void(SDNode *, SDNode *)> Callback;
305 DAGNodeDeletedListener(SelectionDAG &DAG,
306 std::function<void(SDNode *, SDNode *)> Callback)
307 : DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
309 void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
311 private:
312 virtual void anchor();
315 /// When true, additional steps are taken to
316 /// ensure that getConstant() and similar functions return DAG nodes that
317 /// have legal types. This is important after type legalization since
318 /// any illegally typed nodes generated after this point will not experience
319 /// type legalization.
320 bool NewNodesMustHaveLegalTypes = false;
322 private:
323 /// DAGUpdateListener is a friend so it can manipulate the listener stack.
324 friend struct DAGUpdateListener;
326 /// Linked list of registered DAGUpdateListener instances.
327 /// This stack is maintained by DAGUpdateListener RAII.
328 DAGUpdateListener *UpdateListeners = nullptr;
330 /// Implementation of setSubgraphColor.
331 /// Return whether we had to truncate the search.
332 bool setSubgraphColorHelper(SDNode *N, const char *Color,
333 DenseSet<SDNode *> &visited,
334 int level, bool &printed);
336 template <typename SDNodeT, typename... ArgTypes>
337 SDNodeT *newSDNode(ArgTypes &&... Args) {
338 return new (NodeAllocator.template Allocate<SDNodeT>())
339 SDNodeT(std::forward<ArgTypes>(Args)...);
342 /// Build a synthetic SDNodeT with the given args and extract its subclass
343 /// data as an integer (e.g. for use in a folding set).
345 /// The args to this function are the same as the args to SDNodeT's
346 /// constructor, except the second arg (assumed to be a const DebugLoc&) is
347 /// omitted.
348 template <typename SDNodeT, typename... ArgTypes>
349 static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
350 ArgTypes &&... Args) {
351 // The compiler can reduce this expression to a constant iff we pass an
352 // empty DebugLoc. Thankfully, the debug location doesn't have any bearing
353 // on the subclass data.
354 return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
355 .getRawSubclassData();
358 template <typename SDNodeTy>
359 static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order,
360 SDVTList VTs, EVT MemoryVT,
361 MachineMemOperand *MMO) {
362 return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO)
363 .getRawSubclassData();
366 void createOperands(SDNode *Node, ArrayRef<SDValue> Vals);
368 void removeOperands(SDNode *Node) {
369 if (!Node->OperandList)
370 return;
371 OperandRecycler.deallocate(
372 ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
373 Node->OperandList);
374 Node->NumOperands = 0;
375 Node->OperandList = nullptr;
377 void CreateTopologicalOrder(std::vector<SDNode*>& Order);
378 public:
379 explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level);
380 SelectionDAG(const SelectionDAG &) = delete;
381 SelectionDAG &operator=(const SelectionDAG &) = delete;
382 ~SelectionDAG();
384 /// Prepare this SelectionDAG to process code in the given MachineFunction.
385 void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE,
386 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
387 LegacyDivergenceAnalysis * Divergence);
389 void setFunctionLoweringInfo(FunctionLoweringInfo * FuncInfo) {
390 FLI = FuncInfo;
393 /// Clear state and free memory necessary to make this
394 /// SelectionDAG ready to process a new block.
395 void clear();
397 MachineFunction &getMachineFunction() const { return *MF; }
398 const Pass *getPass() const { return SDAGISelPass; }
400 const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
401 const TargetMachine &getTarget() const { return TM; }
402 const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
403 const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
404 const TargetLibraryInfo &getLibInfo() const { return *LibInfo; }
405 const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
406 LLVMContext *getContext() const {return Context; }
407 OptimizationRemarkEmitter &getORE() const { return *ORE; }
409 /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
410 void viewGraph(const std::string &Title);
411 void viewGraph();
413 #ifndef NDEBUG
414 std::map<const SDNode *, std::string> NodeGraphAttrs;
415 #endif
417 /// Clear all previously defined node graph attributes.
418 /// Intended to be used from a debugging tool (eg. gdb).
419 void clearGraphAttrs();
421 /// Set graph attributes for a node. (eg. "color=red".)
422 void setGraphAttrs(const SDNode *N, const char *Attrs);
424 /// Get graph attributes for a node. (eg. "color=red".)
425 /// Used from getNodeAttributes.
426 const std::string getGraphAttrs(const SDNode *N) const;
428 /// Convenience for setting node color attribute.
429 void setGraphColor(const SDNode *N, const char *Color);
431 /// Convenience for setting subgraph color attribute.
432 void setSubgraphColor(SDNode *N, const char *Color);
434 using allnodes_const_iterator = ilist<SDNode>::const_iterator;
436 allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
437 allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
439 using allnodes_iterator = ilist<SDNode>::iterator;
441 allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
442 allnodes_iterator allnodes_end() { return AllNodes.end(); }
444 ilist<SDNode>::size_type allnodes_size() const {
445 return AllNodes.size();
448 iterator_range<allnodes_iterator> allnodes() {
449 return make_range(allnodes_begin(), allnodes_end());
451 iterator_range<allnodes_const_iterator> allnodes() const {
452 return make_range(allnodes_begin(), allnodes_end());
455 /// Return the root tag of the SelectionDAG.
456 const SDValue &getRoot() const { return Root; }
458 /// Return the token chain corresponding to the entry of the function.
459 SDValue getEntryNode() const {
460 return SDValue(const_cast<SDNode *>(&EntryNode), 0);
463 /// Set the current root tag of the SelectionDAG.
465 const SDValue &setRoot(SDValue N) {
466 assert((!N.getNode() || N.getValueType() == MVT::Other) &&
467 "DAG root value is not a chain!");
468 if (N.getNode())
469 checkForCycles(N.getNode(), this);
470 Root = N;
471 if (N.getNode())
472 checkForCycles(this);
473 return Root;
476 #ifndef NDEBUG
477 void VerifyDAGDiverence();
478 #endif
480 /// This iterates over the nodes in the SelectionDAG, folding
481 /// certain types of nodes together, or eliminating superfluous nodes. The
482 /// Level argument controls whether Combine is allowed to produce nodes and
483 /// types that are illegal on the target.
484 void Combine(CombineLevel Level, AliasAnalysis *AA,
485 CodeGenOpt::Level OptLevel);
487 /// This transforms the SelectionDAG into a SelectionDAG that
488 /// only uses types natively supported by the target.
489 /// Returns "true" if it made any changes.
491 /// Note that this is an involved process that may invalidate pointers into
492 /// the graph.
493 bool LegalizeTypes();
495 /// This transforms the SelectionDAG into a SelectionDAG that is
496 /// compatible with the target instruction selector, as indicated by the
497 /// TargetLowering object.
499 /// Note that this is an involved process that may invalidate pointers into
500 /// the graph.
501 void Legalize();
503 /// Transforms a SelectionDAG node and any operands to it into a node
504 /// that is compatible with the target instruction selector, as indicated by
505 /// the TargetLowering object.
507 /// \returns true if \c N is a valid, legal node after calling this.
509 /// This essentially runs a single recursive walk of the \c Legalize process
510 /// over the given node (and its operands). This can be used to incrementally
511 /// legalize the DAG. All of the nodes which are directly replaced,
512 /// potentially including N, are added to the output parameter \c
513 /// UpdatedNodes so that the delta to the DAG can be understood by the
514 /// caller.
516 /// When this returns false, N has been legalized in a way that make the
517 /// pointer passed in no longer valid. It may have even been deleted from the
518 /// DAG, and so it shouldn't be used further. When this returns true, the
519 /// N passed in is a legal node, and can be immediately processed as such.
520 /// This may still have done some work on the DAG, and will still populate
521 /// UpdatedNodes with any new nodes replacing those originally in the DAG.
522 bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
524 /// This transforms the SelectionDAG into a SelectionDAG
525 /// that only uses vector math operations supported by the target. This is
526 /// necessary as a separate step from Legalize because unrolling a vector
527 /// operation can introduce illegal types, which requires running
528 /// LegalizeTypes again.
530 /// This returns true if it made any changes; in that case, LegalizeTypes
531 /// is called again before Legalize.
533 /// Note that this is an involved process that may invalidate pointers into
534 /// the graph.
535 bool LegalizeVectors();
537 /// This method deletes all unreachable nodes in the SelectionDAG.
538 void RemoveDeadNodes();
540 /// Remove the specified node from the system. This node must
541 /// have no referrers.
542 void DeleteNode(SDNode *N);
544 /// Return an SDVTList that represents the list of values specified.
545 SDVTList getVTList(EVT VT);
546 SDVTList getVTList(EVT VT1, EVT VT2);
547 SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
548 SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
549 SDVTList getVTList(ArrayRef<EVT> VTs);
551 //===--------------------------------------------------------------------===//
552 // Node creation methods.
554 /// Create a ConstantSDNode wrapping a constant value.
555 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
557 /// If only legal types can be produced, this does the necessary
558 /// transformations (e.g., if the vector element type is illegal).
559 /// @{
560 SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
561 bool isTarget = false, bool isOpaque = false);
562 SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
563 bool isTarget = false, bool isOpaque = false);
565 SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false,
566 bool IsOpaque = false) {
567 return getConstant(APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL,
568 VT, IsTarget, IsOpaque);
571 SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
572 bool isTarget = false, bool isOpaque = false);
573 SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
574 bool isTarget = false);
575 SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
576 bool isOpaque = false) {
577 return getConstant(Val, DL, VT, true, isOpaque);
579 SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
580 bool isOpaque = false) {
581 return getConstant(Val, DL, VT, true, isOpaque);
583 SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
584 bool isOpaque = false) {
585 return getConstant(Val, DL, VT, true, isOpaque);
588 /// Create a true or false constant of type \p VT using the target's
589 /// BooleanContent for type \p OpVT.
590 SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT);
591 /// @}
593 /// Create a ConstantFPSDNode wrapping a constant value.
594 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
596 /// If only legal types can be produced, this does the necessary
597 /// transformations (e.g., if the vector element type is illegal).
598 /// The forms that take a double should only be used for simple constants
599 /// that can be exactly represented in VT. No checks are made.
600 /// @{
601 SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
602 bool isTarget = false);
603 SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
604 bool isTarget = false);
605 SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT,
606 bool isTarget = false);
607 SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
608 return getConstantFP(Val, DL, VT, true);
610 SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
611 return getConstantFP(Val, DL, VT, true);
613 SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
614 return getConstantFP(Val, DL, VT, true);
616 /// @}
618 SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
619 int64_t offset = 0, bool isTargetGA = false,
620 unsigned char TargetFlags = 0);
621 SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
622 int64_t offset = 0,
623 unsigned char TargetFlags = 0) {
624 return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
626 SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
627 SDValue getTargetFrameIndex(int FI, EVT VT) {
628 return getFrameIndex(FI, VT, true);
630 SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
631 unsigned char TargetFlags = 0);
632 SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags = 0) {
633 return getJumpTable(JTI, VT, true, TargetFlags);
635 SDValue getConstantPool(const Constant *C, EVT VT,
636 unsigned Align = 0, int Offs = 0, bool isT=false,
637 unsigned char TargetFlags = 0);
638 SDValue getTargetConstantPool(const Constant *C, EVT VT,
639 unsigned Align = 0, int Offset = 0,
640 unsigned char TargetFlags = 0) {
641 return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
643 SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
644 unsigned Align = 0, int Offs = 0, bool isT=false,
645 unsigned char TargetFlags = 0);
646 SDValue getTargetConstantPool(MachineConstantPoolValue *C,
647 EVT VT, unsigned Align = 0,
648 int Offset = 0, unsigned char TargetFlags=0) {
649 return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
651 SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
652 unsigned char TargetFlags = 0);
653 // When generating a branch to a BB, we don't in general know enough
654 // to provide debug info for the BB at that time, so keep this one around.
655 SDValue getBasicBlock(MachineBasicBlock *MBB);
656 SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
657 SDValue getExternalSymbol(const char *Sym, EVT VT);
658 SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
659 SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
660 unsigned char TargetFlags = 0);
661 SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
663 SDValue getValueType(EVT);
664 SDValue getRegister(unsigned Reg, EVT VT);
665 SDValue getRegisterMask(const uint32_t *RegMask);
666 SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
667 SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root,
668 MCSymbol *Label);
669 SDValue getBlockAddress(const BlockAddress *BA, EVT VT,
670 int64_t Offset = 0, bool isTarget = false,
671 unsigned char TargetFlags = 0);
672 SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
673 int64_t Offset = 0,
674 unsigned char TargetFlags = 0) {
675 return getBlockAddress(BA, VT, Offset, true, TargetFlags);
678 SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
679 SDValue N) {
680 return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
681 getRegister(Reg, N.getValueType()), N);
684 // This version of the getCopyToReg method takes an extra operand, which
685 // indicates that there is potentially an incoming glue value (if Glue is not
686 // null) and that there should be a glue result.
687 SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
688 SDValue Glue) {
689 SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
690 SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
691 return getNode(ISD::CopyToReg, dl, VTs,
692 makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
695 // Similar to last getCopyToReg() except parameter Reg is a SDValue
696 SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
697 SDValue Glue) {
698 SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
699 SDValue Ops[] = { Chain, Reg, N, Glue };
700 return getNode(ISD::CopyToReg, dl, VTs,
701 makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
704 SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
705 SDVTList VTs = getVTList(VT, MVT::Other);
706 SDValue Ops[] = { Chain, getRegister(Reg, VT) };
707 return getNode(ISD::CopyFromReg, dl, VTs, Ops);
710 // This version of the getCopyFromReg method takes an extra operand, which
711 // indicates that there is potentially an incoming glue value (if Glue is not
712 // null) and that there should be a glue result.
713 SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
714 SDValue Glue) {
715 SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
716 SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
717 return getNode(ISD::CopyFromReg, dl, VTs,
718 makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
721 SDValue getCondCode(ISD::CondCode Cond);
723 /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
724 /// which must be a vector type, must match the number of mask elements
725 /// NumElts. An integer mask element equal to -1 is treated as undefined.
726 SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
727 ArrayRef<int> Mask);
729 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
730 /// which must be a vector type, must match the number of operands in Ops.
731 /// The operands must have the same type as (or, for integers, a type wider
732 /// than) VT's element type.
733 SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
734 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
735 return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
738 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
739 /// which must be a vector type, must match the number of operands in Ops.
740 /// The operands must have the same type as (or, for integers, a type wider
741 /// than) VT's element type.
742 SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDUse> Ops) {
743 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
744 return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
747 /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
748 /// elements. VT must be a vector type. Op's type must be the same as (or,
749 /// for integers, a type wider than) VT's element type.
750 SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
751 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
752 if (Op.getOpcode() == ISD::UNDEF) {
753 assert((VT.getVectorElementType() == Op.getValueType() ||
754 (VT.isInteger() &&
755 VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
756 "A splatted value must have a width equal or (for integers) "
757 "greater than the vector element type!");
758 return getNode(ISD::UNDEF, SDLoc(), VT);
761 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
762 return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
765 /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
766 /// the shuffle node in input but with swapped operands.
768 /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
769 SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
771 /// Convert Op, which must be of float type, to the
772 /// float type VT, by either extending or rounding (by truncation).
773 SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT);
775 /// Convert Op, which must be of integer type, to the
776 /// integer type VT, by either any-extending or truncating it.
777 SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
779 /// Convert Op, which must be of integer type, to the
780 /// integer type VT, by either sign-extending or truncating it.
781 SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
783 /// Convert Op, which must be of integer type, to the
784 /// integer type VT, by either zero-extending or truncating it.
785 SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
787 /// Return the expression required to zero extend the Op
788 /// value assuming it was the smaller SrcTy value.
789 SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
791 /// Convert Op, which must be of integer type, to the integer type VT,
792 /// by using an extension appropriate for the target's
793 /// BooleanContent for type OpVT or truncating it.
794 SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
796 /// Create a bitwise NOT operation as (XOR Val, -1).
797 SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
799 /// Create a logical NOT operation as (XOR Val, BooleanOne).
800 SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
802 /// Create an add instruction with appropriate flags when used for
803 /// addressing some offset of an object. i.e. if a load is split into multiple
804 /// components, create an add nuw from the base pointer to the offset.
805 SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, int64_t Offset) {
806 EVT VT = Op.getValueType();
807 return getObjectPtrOffset(SL, Op, getConstant(Offset, SL, VT));
810 SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, SDValue Offset) {
811 EVT VT = Op.getValueType();
813 // The object itself can't wrap around the address space, so it shouldn't be
814 // possible for the adds of the offsets to the split parts to overflow.
815 SDNodeFlags Flags;
816 Flags.setNoUnsignedWrap(true);
817 return getNode(ISD::ADD, SL, VT, Op, Offset, Flags);
820 /// Return a new CALLSEQ_START node, that starts new call frame, in which
821 /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
822 /// OutSize specifies part of the frame set up prior to the sequence.
823 SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize,
824 const SDLoc &DL) {
825 SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
826 SDValue Ops[] = { Chain,
827 getIntPtrConstant(InSize, DL, true),
828 getIntPtrConstant(OutSize, DL, true) };
829 return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
832 /// Return a new CALLSEQ_END node, which always must have a
833 /// glue result (to ensure it's not CSE'd).
834 /// CALLSEQ_END does not have a useful SDLoc.
835 SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
836 SDValue InGlue, const SDLoc &DL) {
837 SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
838 SmallVector<SDValue, 4> Ops;
839 Ops.push_back(Chain);
840 Ops.push_back(Op1);
841 Ops.push_back(Op2);
842 if (InGlue.getNode())
843 Ops.push_back(InGlue);
844 return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
847 /// Return true if the result of this operation is always undefined.
848 bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
850 /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
851 SDValue getUNDEF(EVT VT) {
852 return getNode(ISD::UNDEF, SDLoc(), VT);
855 /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
856 SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
857 return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
860 /// Gets or creates the specified node.
862 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
863 ArrayRef<SDUse> Ops);
864 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
865 ArrayRef<SDValue> Ops, const SDNodeFlags Flags = SDNodeFlags());
866 SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
867 ArrayRef<SDValue> Ops);
868 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
869 ArrayRef<SDValue> Ops);
871 // Specialize based on number of operands.
872 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
873 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand,
874 const SDNodeFlags Flags = SDNodeFlags());
875 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
876 SDValue N2, const SDNodeFlags Flags = SDNodeFlags());
877 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
878 SDValue N2, SDValue N3,
879 const SDNodeFlags Flags = SDNodeFlags());
880 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
881 SDValue N2, SDValue N3, SDValue N4);
882 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
883 SDValue N2, SDValue N3, SDValue N4, SDValue N5);
885 // Specialize again based on number of operands for nodes with a VTList
886 // rather than a single VT.
887 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList);
888 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N);
889 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
890 SDValue N2);
891 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
892 SDValue N2, SDValue N3);
893 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
894 SDValue N2, SDValue N3, SDValue N4);
895 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
896 SDValue N2, SDValue N3, SDValue N4, SDValue N5);
898 /// Compute a TokenFactor to force all the incoming stack arguments to be
899 /// loaded from the stack. This is used in tail call lowering to protect
900 /// stack arguments from being clobbered.
901 SDValue getStackArgumentTokenFactor(SDValue Chain);
903 SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
904 SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
905 bool isTailCall, MachinePointerInfo DstPtrInfo,
906 MachinePointerInfo SrcPtrInfo);
908 SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
909 SDValue Size, unsigned Align, bool isVol, bool isTailCall,
910 MachinePointerInfo DstPtrInfo,
911 MachinePointerInfo SrcPtrInfo);
913 SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
914 SDValue Size, unsigned Align, bool isVol, bool isTailCall,
915 MachinePointerInfo DstPtrInfo);
917 SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
918 unsigned DstAlign, SDValue Src, unsigned SrcAlign,
919 SDValue Size, Type *SizeTy, unsigned ElemSz,
920 bool isTailCall, MachinePointerInfo DstPtrInfo,
921 MachinePointerInfo SrcPtrInfo);
923 SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
924 unsigned DstAlign, SDValue Src, unsigned SrcAlign,
925 SDValue Size, Type *SizeTy, unsigned ElemSz,
926 bool isTailCall, MachinePointerInfo DstPtrInfo,
927 MachinePointerInfo SrcPtrInfo);
929 SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
930 unsigned DstAlign, SDValue Value, SDValue Size,
931 Type *SizeTy, unsigned ElemSz, bool isTailCall,
932 MachinePointerInfo DstPtrInfo);
934 /// Helper function to make it easier to build SetCC's if you just have an
935 /// ISD::CondCode instead of an SDValue.
936 SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
937 ISD::CondCode Cond) {
938 assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
939 "Cannot compare scalars to vectors");
940 assert(LHS.getValueType().isVector() == VT.isVector() &&
941 "Cannot compare scalars to vectors");
942 assert(Cond != ISD::SETCC_INVALID &&
943 "Cannot create a setCC of an invalid node.");
944 return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
947 /// Helper function to make it easier to build Select's if you just have
948 /// operands and don't want to check for vector.
949 SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
950 SDValue RHS) {
951 assert(LHS.getValueType() == RHS.getValueType() &&
952 "Cannot use select on differing types");
953 assert(VT.isVector() == LHS.getValueType().isVector() &&
954 "Cannot mix vectors and scalars");
955 auto Opcode = Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
956 return getNode(Opcode, DL, VT, Cond, LHS, RHS);
959 /// Helper function to make it easier to build SelectCC's if you just have an
960 /// ISD::CondCode instead of an SDValue.
961 SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
962 SDValue False, ISD::CondCode Cond) {
963 return getNode(ISD::SELECT_CC, DL, True.getValueType(), LHS, RHS, True,
964 False, getCondCode(Cond));
967 /// Try to simplify a select/vselect into 1 of its operands or a constant.
968 SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal);
970 /// Try to simplify a shift into 1 of its operands or a constant.
971 SDValue simplifyShift(SDValue X, SDValue Y);
973 /// VAArg produces a result and token chain, and takes a pointer
974 /// and a source value as input.
975 SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
976 SDValue SV, unsigned Align);
978 /// Gets a node for an atomic cmpxchg op. There are two
979 /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
980 /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
981 /// a success flag (initially i1), and a chain.
982 SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
983 SDVTList VTs, SDValue Chain, SDValue Ptr,
984 SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
986 /// Gets a node for an atomic op, produces result (if relevant)
987 /// and chain and takes 2 operands.
988 SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
989 SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
991 /// Gets a node for an atomic op, produces result and chain and
992 /// takes 1 operand.
993 SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
994 SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
996 /// Gets a node for an atomic op, produces result and chain and takes N
997 /// operands.
998 SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
999 SDVTList VTList, ArrayRef<SDValue> Ops,
1000 MachineMemOperand *MMO);
1002 /// Creates a MemIntrinsicNode that may produce a
1003 /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
1004 /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
1005 /// less than FIRST_TARGET_MEMORY_OPCODE.
1006 SDValue getMemIntrinsicNode(
1007 unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1008 ArrayRef<SDValue> Ops, EVT MemVT,
1009 MachinePointerInfo PtrInfo,
1010 unsigned Align = 0,
1011 MachineMemOperand::Flags Flags
1012 = MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
1013 unsigned Size = 0);
1015 SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1016 ArrayRef<SDValue> Ops, EVT MemVT,
1017 MachineMemOperand *MMO);
1019 /// Create a MERGE_VALUES node from the given operands.
1020 SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
1022 /// Loads are not normal binary operators: their result type is not
1023 /// determined by their operands, and they produce a value AND a token chain.
1025 /// This function will set the MOLoad flag on MMOFlags, but you can set it if
1026 /// you want. The MOStore flag must not be set.
1027 SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1028 MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1029 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1030 const AAMDNodes &AAInfo = AAMDNodes(),
1031 const MDNode *Ranges = nullptr);
1032 SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1033 MachineMemOperand *MMO);
1034 SDValue
1035 getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
1036 SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
1037 unsigned Alignment = 0,
1038 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1039 const AAMDNodes &AAInfo = AAMDNodes());
1040 SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
1041 SDValue Chain, SDValue Ptr, EVT MemVT,
1042 MachineMemOperand *MMO);
1043 SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
1044 SDValue Offset, ISD::MemIndexedMode AM);
1045 SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1046 const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1047 MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0,
1048 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1049 const AAMDNodes &AAInfo = AAMDNodes(),
1050 const MDNode *Ranges = nullptr);
1051 SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1052 const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1053 EVT MemVT, MachineMemOperand *MMO);
1055 /// Helper function to build ISD::STORE nodes.
1057 /// This function will set the MOStore flag on MMOFlags, but you can set it if
1058 /// you want. The MOLoad and MOInvariant flags must not be set.
1059 SDValue
1060 getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1061 MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1062 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1063 const AAMDNodes &AAInfo = AAMDNodes());
1064 SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1065 MachineMemOperand *MMO);
1066 SDValue
1067 getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1068 MachinePointerInfo PtrInfo, EVT SVT, unsigned Alignment = 0,
1069 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1070 const AAMDNodes &AAInfo = AAMDNodes());
1071 SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1072 SDValue Ptr, EVT SVT, MachineMemOperand *MMO);
1073 SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base,
1074 SDValue Offset, ISD::MemIndexedMode AM);
1076 /// Returns sum of the base pointer and offset.
1077 SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL);
1079 SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1080 SDValue Mask, SDValue Src0, EVT MemVT,
1081 MachineMemOperand *MMO, ISD::LoadExtType,
1082 bool IsExpanding = false);
1083 SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1084 SDValue Ptr, SDValue Mask, EVT MemVT,
1085 MachineMemOperand *MMO, bool IsTruncating = false,
1086 bool IsCompressing = false);
1087 SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
1088 ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
1089 SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
1090 ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
1092 /// Return (create a new or find existing) a target-specific node.
1093 /// TargetMemSDNode should be derived class from MemSDNode.
1094 template <class TargetMemSDNode>
1095 SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops,
1096 const SDLoc &dl, EVT MemVT,
1097 MachineMemOperand *MMO);
1099 /// Construct a node to track a Value* through the backend.
1100 SDValue getSrcValue(const Value *v);
1102 /// Return an MDNodeSDNode which holds an MDNode.
1103 SDValue getMDNode(const MDNode *MD);
1105 /// Return a bitcast using the SDLoc of the value operand, and casting to the
1106 /// provided type. Use getNode to set a custom SDLoc.
1107 SDValue getBitcast(EVT VT, SDValue V);
1109 /// Return an AddrSpaceCastSDNode.
1110 SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
1111 unsigned DestAS);
1113 /// Return the specified value casted to
1114 /// the target's desired shift amount type.
1115 SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
1117 /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
1118 SDValue expandVAArg(SDNode *Node);
1120 /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
1121 SDValue expandVACopy(SDNode *Node);
1123 /// Returs an GlobalAddress of the function from the current module with
1124 /// name matching the given ExternalSymbol. Additionally can provide the
1125 /// matched function.
1126 /// Panics the function doesn't exists.
1127 SDValue getSymbolFunctionGlobalAddress(SDValue Op,
1128 Function **TargetFunction = nullptr);
1130 /// *Mutate* the specified node in-place to have the
1131 /// specified operands. If the resultant node already exists in the DAG,
1132 /// this does not modify the specified node, instead it returns the node that
1133 /// already exists. If the resultant node does not exist in the DAG, the
1134 /// input node is returned. As a degenerate case, if you specify the same
1135 /// input operands as the node already has, the input node is returned.
1136 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
1137 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
1138 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1139 SDValue Op3);
1140 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1141 SDValue Op3, SDValue Op4);
1142 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1143 SDValue Op3, SDValue Op4, SDValue Op5);
1144 SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
1146 /// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k
1147 /// values or more, move values into new TokenFactors in 64k-1 blocks, until
1148 /// the final TokenFactor has less than 64k operands.
1149 SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl<SDValue> &Vals);
1151 /// *Mutate* the specified machine node's memory references to the provided
1152 /// list.
1153 void setNodeMemRefs(MachineSDNode *N,
1154 ArrayRef<MachineMemOperand *> NewMemRefs);
1156 // Propagates the change in divergence to users
1157 void updateDivergence(SDNode * N);
1159 /// These are used for target selectors to *mutate* the
1160 /// specified node to have the specified return type, Target opcode, and
1161 /// operands. Note that target opcodes are stored as
1162 /// ~TargetOpcode in the node opcode field. The resultant node is returned.
1163 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT);
1164 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1);
1165 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1166 SDValue Op1, SDValue Op2);
1167 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1168 SDValue Op1, SDValue Op2, SDValue Op3);
1169 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1170 ArrayRef<SDValue> Ops);
1171 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2);
1172 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1173 EVT VT2, ArrayRef<SDValue> Ops);
1174 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1175 EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1176 SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1177 EVT VT2, SDValue Op1);
1178 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1179 EVT VT2, SDValue Op1, SDValue Op2);
1180 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs,
1181 ArrayRef<SDValue> Ops);
1183 /// This *mutates* the specified node to have the specified
1184 /// return type, opcode, and operands.
1185 SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
1186 ArrayRef<SDValue> Ops);
1188 /// Mutate the specified strict FP node to its non-strict equivalent,
1189 /// unlinking the node from its chain and dropping the metadata arguments.
1190 /// The node must be a strict FP node.
1191 SDNode *mutateStrictFPToFP(SDNode *Node);
1193 /// These are used for target selectors to create a new node
1194 /// with specified return type(s), MachineInstr opcode, and operands.
1196 /// Note that getMachineNode returns the resultant node. If there is already
1197 /// a node of the specified opcode and operands, it returns that node instead
1198 /// of the current one.
1199 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
1200 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1201 SDValue Op1);
1202 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1203 SDValue Op1, SDValue Op2);
1204 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1205 SDValue Op1, SDValue Op2, SDValue Op3);
1206 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1207 ArrayRef<SDValue> Ops);
1208 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1209 EVT VT2, SDValue Op1, SDValue Op2);
1210 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1211 EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
1212 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1213 EVT VT2, ArrayRef<SDValue> Ops);
1214 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1215 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
1216 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1217 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
1218 SDValue Op3);
1219 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1220 EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1221 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1222 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
1223 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
1224 ArrayRef<SDValue> Ops);
1226 /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
1227 SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1228 SDValue Operand);
1230 /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
1231 SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1232 SDValue Operand, SDValue Subreg);
1234 /// Get the specified node if it's already available, or else return NULL.
1235 SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef<SDValue> Ops,
1236 const SDNodeFlags Flags = SDNodeFlags());
1238 /// Creates a SDDbgValue node.
1239 SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N,
1240 unsigned R, bool IsIndirect, const DebugLoc &DL,
1241 unsigned O);
1243 /// Creates a constant SDDbgValue node.
1244 SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr,
1245 const Value *C, const DebugLoc &DL,
1246 unsigned O);
1248 /// Creates a FrameIndex SDDbgValue node.
1249 SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr,
1250 unsigned FI, bool IsIndirect,
1251 const DebugLoc &DL, unsigned O);
1253 /// Creates a VReg SDDbgValue node.
1254 SDDbgValue *getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
1255 unsigned VReg, bool IsIndirect,
1256 const DebugLoc &DL, unsigned O);
1258 /// Creates a SDDbgLabel node.
1259 SDDbgLabel *getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O);
1261 /// Transfer debug values from one node to another, while optionally
1262 /// generating fragment expressions for split-up values. If \p InvalidateDbg
1263 /// is set, debug values are invalidated after they are transferred.
1264 void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0,
1265 unsigned SizeInBits = 0, bool InvalidateDbg = true);
1267 /// Remove the specified node from the system. If any of its
1268 /// operands then becomes dead, remove them as well. Inform UpdateListener
1269 /// for each node deleted.
1270 void RemoveDeadNode(SDNode *N);
1272 /// This method deletes the unreachable nodes in the
1273 /// given list, and any nodes that become unreachable as a result.
1274 void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
1276 /// Modify anything using 'From' to use 'To' instead.
1277 /// This can cause recursive merging of nodes in the DAG. Use the first
1278 /// version if 'From' is known to have a single result, use the second
1279 /// if you have two nodes with identical results (or if 'To' has a superset
1280 /// of the results of 'From'), use the third otherwise.
1282 /// These methods all take an optional UpdateListener, which (if not null) is
1283 /// informed about nodes that are deleted and modified due to recursive
1284 /// changes in the dag.
1286 /// These functions only replace all existing uses. It's possible that as
1287 /// these replacements are being performed, CSE may cause the From node
1288 /// to be given new uses. These new uses of From are left in place, and
1289 /// not automatically transferred to To.
1291 void ReplaceAllUsesWith(SDValue From, SDValue To);
1292 void ReplaceAllUsesWith(SDNode *From, SDNode *To);
1293 void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
1295 /// Replace any uses of From with To, leaving
1296 /// uses of other values produced by From.getNode() alone.
1297 void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
1299 /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
1300 /// This correctly handles the case where
1301 /// there is an overlap between the From values and the To values.
1302 void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
1303 unsigned Num);
1305 /// If an existing load has uses of its chain, create a token factor node with
1306 /// that chain and the new memory node's chain and update users of the old
1307 /// chain to the token factor. This ensures that the new memory node will have
1308 /// the same relative memory dependency position as the old load. Returns the
1309 /// new merged load chain.
1310 SDValue makeEquivalentMemoryOrdering(LoadSDNode *Old, SDValue New);
1312 /// Topological-sort the AllNodes list and a
1313 /// assign a unique node id for each node in the DAG based on their
1314 /// topological order. Returns the number of nodes.
1315 unsigned AssignTopologicalOrder();
1317 /// Move node N in the AllNodes list to be immediately
1318 /// before the given iterator Position. This may be used to update the
1319 /// topological ordering when the list of nodes is modified.
1320 void RepositionNode(allnodes_iterator Position, SDNode *N) {
1321 AllNodes.insert(Position, AllNodes.remove(N));
1324 /// Returns an APFloat semantics tag appropriate for the given type. If VT is
1325 /// a vector type, the element semantics are returned.
1326 static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
1327 switch (VT.getScalarType().getSimpleVT().SimpleTy) {
1328 default: llvm_unreachable("Unknown FP format");
1329 case MVT::f16: return APFloat::IEEEhalf();
1330 case MVT::f32: return APFloat::IEEEsingle();
1331 case MVT::f64: return APFloat::IEEEdouble();
1332 case MVT::f80: return APFloat::x87DoubleExtended();
1333 case MVT::f128: return APFloat::IEEEquad();
1334 case MVT::ppcf128: return APFloat::PPCDoubleDouble();
1338 /// Add a dbg_value SDNode. If SD is non-null that means the
1339 /// value is produced by SD.
1340 void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);
1342 /// Add a dbg_label SDNode.
1343 void AddDbgLabel(SDDbgLabel *DB);
1345 /// Get the debug values which reference the given SDNode.
1346 ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) const {
1347 return DbgInfo->getSDDbgValues(SD);
1350 public:
1351 /// Return true if there are any SDDbgValue nodes associated
1352 /// with this SelectionDAG.
1353 bool hasDebugValues() const { return !DbgInfo->empty(); }
1355 SDDbgInfo::DbgIterator DbgBegin() const { return DbgInfo->DbgBegin(); }
1356 SDDbgInfo::DbgIterator DbgEnd() const { return DbgInfo->DbgEnd(); }
1358 SDDbgInfo::DbgIterator ByvalParmDbgBegin() const {
1359 return DbgInfo->ByvalParmDbgBegin();
1361 SDDbgInfo::DbgIterator ByvalParmDbgEnd() const {
1362 return DbgInfo->ByvalParmDbgEnd();
1365 SDDbgInfo::DbgLabelIterator DbgLabelBegin() const {
1366 return DbgInfo->DbgLabelBegin();
1368 SDDbgInfo::DbgLabelIterator DbgLabelEnd() const {
1369 return DbgInfo->DbgLabelEnd();
1372 /// To be invoked on an SDNode that is slated to be erased. This
1373 /// function mirrors \c llvm::salvageDebugInfo.
1374 void salvageDebugInfo(SDNode &N);
1376 void dump() const;
1378 /// Create a stack temporary, suitable for holding the specified value type.
1379 /// If minAlign is specified, the slot size will have at least that alignment.
1380 SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
1382 /// Create a stack temporary suitable for holding either of the specified
1383 /// value types.
1384 SDValue CreateStackTemporary(EVT VT1, EVT VT2);
1386 SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
1387 const GlobalAddressSDNode *GA,
1388 const SDNode *N2);
1390 SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1391 SDNode *N1, SDNode *N2);
1393 SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1394 const ConstantSDNode *C1,
1395 const ConstantSDNode *C2);
1397 SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1398 ArrayRef<SDValue> Ops,
1399 const SDNodeFlags Flags = SDNodeFlags());
1401 /// Constant fold a setcc to true or false.
1402 SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
1403 const SDLoc &dl);
1405 /// See if the specified operand can be simplified with the knowledge that only
1406 /// the bits specified by Mask are used. If so, return the simpler operand,
1407 /// otherwise return a null SDValue.
1409 /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1410 /// simplify nodes with multiple uses more aggressively.)
1411 SDValue GetDemandedBits(SDValue V, const APInt &Mask);
1413 /// Return true if the sign bit of Op is known to be zero.
1414 /// We use this predicate to simplify operations downstream.
1415 bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
1417 /// Return true if 'Op & Mask' is known to be zero. We
1418 /// use this predicate to simplify operations downstream. Op and Mask are
1419 /// known to be the same type.
1420 bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0)
1421 const;
1423 /// Determine which bits of Op are known to be either zero or one and return
1424 /// them in Known. For vectors, the known bits are those that are shared by
1425 /// every vector element.
1426 /// Targets can implement the computeKnownBitsForTargetNode method in the
1427 /// TargetLowering class to allow target nodes to be understood.
1428 KnownBits computeKnownBits(SDValue Op, unsigned Depth = 0) const;
1430 /// Determine which bits of Op are known to be either zero or one and return
1431 /// them in Known. The DemandedElts argument allows us to only collect the
1432 /// known bits that are shared by the requested vector elements.
1433 /// Targets can implement the computeKnownBitsForTargetNode method in the
1434 /// TargetLowering class to allow target nodes to be understood.
1435 KnownBits computeKnownBits(SDValue Op, const APInt &DemandedElts,
1436 unsigned Depth = 0) const;
1438 /// Used to represent the possible overflow behavior of an operation.
1439 /// Never: the operation cannot overflow.
1440 /// Always: the operation will always overflow.
1441 /// Sometime: the operation may or may not overflow.
1442 enum OverflowKind {
1443 OFK_Never,
1444 OFK_Sometime,
1445 OFK_Always,
1448 /// Determine if the result of the addition of 2 node can overflow.
1449 OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const;
1451 /// Test if the given value is known to have exactly one bit set. This differs
1452 /// from computeKnownBits in that it doesn't necessarily determine which bit
1453 /// is set.
1454 bool isKnownToBeAPowerOfTwo(SDValue Val) const;
1456 /// Return the number of times the sign bit of the register is replicated into
1457 /// the other bits. We know that at least 1 bit is always equal to the sign
1458 /// bit (itself), but other cases can give us information. For example,
1459 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1460 /// to each other, so we return 3. Targets can implement the
1461 /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
1462 /// target nodes to be understood.
1463 unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
1465 /// Return the number of times the sign bit of the register is replicated into
1466 /// the other bits. We know that at least 1 bit is always equal to the sign
1467 /// bit (itself), but other cases can give us information. For example,
1468 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1469 /// to each other, so we return 3. The DemandedElts argument allows
1470 /// us to only collect the minimum sign bits of the requested vector elements.
1471 /// Targets can implement the ComputeNumSignBitsForTarget method in the
1472 /// TargetLowering class to allow target nodes to be understood.
1473 unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
1474 unsigned Depth = 0) const;
1476 /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
1477 /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
1478 /// is guaranteed to have the same semantics as an ADD. This handles the
1479 /// equivalence:
1480 /// X|Cst == X+Cst iff X&Cst = 0.
1481 bool isBaseWithConstantOffset(SDValue Op) const;
1483 /// Test whether the given SDValue is known to never be NaN. If \p SNaN is
1484 /// true, returns if \p Op is known to never be a signaling NaN (it may still
1485 /// be a qNaN).
1486 bool isKnownNeverNaN(SDValue Op, bool SNaN = false, unsigned Depth = 0) const;
1488 /// \returns true if \p Op is known to never be a signaling NaN.
1489 bool isKnownNeverSNaN(SDValue Op, unsigned Depth = 0) const {
1490 return isKnownNeverNaN(Op, true, Depth);
1493 /// Test whether the given floating point SDValue is known to never be
1494 /// positive or negative zero.
1495 bool isKnownNeverZeroFloat(SDValue Op) const;
1497 /// Test whether the given SDValue is known to contain non-zero value(s).
1498 bool isKnownNeverZero(SDValue Op) const;
1500 /// Test whether two SDValues are known to compare equal. This
1501 /// is true if they are the same value, or if one is negative zero and the
1502 /// other positive zero.
1503 bool isEqualTo(SDValue A, SDValue B) const;
1505 /// Return true if A and B have no common bits set. As an example, this can
1506 /// allow an 'add' to be transformed into an 'or'.
1507 bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
1509 /// Test whether \p V has a splatted value for all the demanded elements.
1511 /// On success \p UndefElts will indicate the elements that have UNDEF
1512 /// values instead of the splat value, this is only guaranteed to be correct
1513 /// for \p DemandedElts.
1515 /// NOTE: The function will return true for a demanded splat of UNDEF values.
1516 bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts);
1518 /// Test whether \p V has a splatted value.
1519 bool isSplatValue(SDValue V, bool AllowUndefs = false);
1521 /// Match a binop + shuffle pyramid that represents a horizontal reduction
1522 /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p
1523 /// Extract. The reduction must use one of the opcodes listed in /p
1524 /// CandidateBinOps and on success /p BinOp will contain the matching opcode.
1525 /// Returns the vector that is being reduced on, or SDValue() if a reduction
1526 /// was not matched.
1527 SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
1528 ArrayRef<ISD::NodeType> CandidateBinOps);
1530 /// Utility function used by legalize and lowering to
1531 /// "unroll" a vector operation by splitting out the scalars and operating
1532 /// on each element individually. If the ResNE is 0, fully unroll the vector
1533 /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
1534 /// If the ResNE is greater than the width of the vector op, unroll the
1535 /// vector op and fill the end of the resulting vector with UNDEFS.
1536 SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
1538 /// Return true if loads are next to each other and can be
1539 /// merged. Check that both are nonvolatile and if LD is loading
1540 /// 'Bytes' bytes from a location that is 'Dist' units away from the
1541 /// location that the 'Base' load is loading from.
1542 bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
1543 unsigned Bytes, int Dist) const;
1545 /// Infer alignment of a load / store address. Return 0 if
1546 /// it cannot be inferred.
1547 unsigned InferPtrAlignment(SDValue Ptr) const;
1549 /// Compute the VTs needed for the low/hi parts of a type
1550 /// which is split (or expanded) into two not necessarily identical pieces.
1551 std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
1553 /// Split the vector with EXTRACT_SUBVECTOR using the provides
1554 /// VTs and return the low/high part.
1555 std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
1556 const EVT &LoVT, const EVT &HiVT);
1558 /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
1559 std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
1560 EVT LoVT, HiVT;
1561 std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
1562 return SplitVector(N, DL, LoVT, HiVT);
1565 /// Split the node's operand with EXTRACT_SUBVECTOR and
1566 /// return the low/high part.
1567 std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
1569 return SplitVector(N->getOperand(OpNo), SDLoc(N));
1572 /// Append the extracted elements from Start to Count out of the vector Op
1573 /// in Args. If Count is 0, all of the elements will be extracted.
1574 void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
1575 unsigned Start = 0, unsigned Count = 0);
1577 /// Compute the default alignment value for the given type.
1578 unsigned getEVTAlignment(EVT MemoryVT) const;
1580 /// Test whether the given value is a constant int or similar node.
1581 SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);
1583 /// Test whether the given value is a constant FP or similar node.
1584 SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N);
1586 /// \returns true if \p N is any kind of constant or build_vector of
1587 /// constants, int or float. If a vector, it may not necessarily be a splat.
1588 inline bool isConstantValueOfAnyType(SDValue N) {
1589 return isConstantIntBuildVectorOrConstantInt(N) ||
1590 isConstantFPBuildVectorOrConstantFP(N);
1593 private:
1594 void InsertNode(SDNode *N);
1595 bool RemoveNodeFromCSEMaps(SDNode *N);
1596 void AddModifiedNodeToCSEMaps(SDNode *N);
1597 SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
1598 SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
1599 void *&InsertPos);
1600 SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1601 void *&InsertPos);
1602 SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
1604 void DeleteNodeNotInCSEMaps(SDNode *N);
1605 void DeallocateNode(SDNode *N);
1607 void allnodes_clear();
1609 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1610 /// not, return the insertion token that will make insertion faster. This
1611 /// overload is for nodes other than Constant or ConstantFP, use the other one
1612 /// for those.
1613 SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
1615 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1616 /// not, return the insertion token that will make insertion faster. Performs
1617 /// additional processing for constant nodes.
1618 SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
1619 void *&InsertPos);
1621 /// List of non-single value types.
1622 FoldingSet<SDVTListNode> VTListMap;
1624 /// Maps to auto-CSE operations.
1625 std::vector<CondCodeSDNode*> CondCodeNodes;
1627 std::vector<SDNode*> ValueTypeNodes;
1628 std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
1629 StringMap<SDNode*> ExternalSymbols;
1631 std::map<std::pair<std::string, unsigned char>,SDNode*> TargetExternalSymbols;
1632 DenseMap<MCSymbol *, SDNode *> MCSymbols;
1635 template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
1636 using nodes_iterator = pointer_iterator<SelectionDAG::allnodes_iterator>;
1638 static nodes_iterator nodes_begin(SelectionDAG *G) {
1639 return nodes_iterator(G->allnodes_begin());
1642 static nodes_iterator nodes_end(SelectionDAG *G) {
1643 return nodes_iterator(G->allnodes_end());
1647 template <class TargetMemSDNode>
1648 SDValue SelectionDAG::getTargetMemSDNode(SDVTList VTs,
1649 ArrayRef<SDValue> Ops,
1650 const SDLoc &dl, EVT MemVT,
1651 MachineMemOperand *MMO) {
1652 /// Compose node ID and try to find an existing node.
1653 FoldingSetNodeID ID;
1654 unsigned Opcode =
1655 TargetMemSDNode(dl.getIROrder(), DebugLoc(), VTs, MemVT, MMO).getOpcode();
1656 ID.AddInteger(Opcode);
1657 ID.AddPointer(VTs.VTs);
1658 for (auto& Op : Ops) {
1659 ID.AddPointer(Op.getNode());
1660 ID.AddInteger(Op.getResNo());
1662 ID.AddInteger(MemVT.getRawBits());
1663 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
1664 ID.AddInteger(getSyntheticNodeSubclassData<TargetMemSDNode>(
1665 dl.getIROrder(), VTs, MemVT, MMO));
1667 void *IP = nullptr;
1668 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
1669 cast<TargetMemSDNode>(E)->refineAlignment(MMO);
1670 return SDValue(E, 0);
1673 /// Existing node was not found. Create a new one.
1674 auto *N = newSDNode<TargetMemSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
1675 MemVT, MMO);
1676 createOperands(N, Ops);
1677 CSEMap.InsertNode(N, IP);
1678 InsertNode(N);
1679 return SDValue(N, 0);
1682 } // end namespace llvm
1684 #endif // LLVM_CODEGEN_SELECTIONDAG_H