Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / IR / Value.h
blobd0de008db265f7c1ce1fa34ab9a1213430c1e945
1 //===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the Value class.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_IR_VALUE_H
14 #define LLVM_IR_VALUE_H
16 #include "llvm-c/Types.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/IR/Use.h"
19 #include "llvm/Support/CBindingWrapping.h"
20 #include "llvm/Support/Casting.h"
21 #include <cassert>
22 #include <iterator>
23 #include <memory>
25 namespace llvm {
27 class APInt;
28 class Argument;
29 class BasicBlock;
30 class Constant;
31 class ConstantData;
32 class ConstantAggregate;
33 class DataLayout;
34 class Function;
35 class GlobalAlias;
36 class GlobalIFunc;
37 class GlobalIndirectSymbol;
38 class GlobalObject;
39 class GlobalValue;
40 class GlobalVariable;
41 class InlineAsm;
42 class Instruction;
43 class LLVMContext;
44 class Module;
45 class ModuleSlotTracker;
46 class raw_ostream;
47 template<typename ValueTy> class StringMapEntry;
48 class StringRef;
49 class Twine;
50 class Type;
51 class User;
53 using ValueName = StringMapEntry<Value *>;
55 //===----------------------------------------------------------------------===//
56 // Value Class
57 //===----------------------------------------------------------------------===//
59 /// LLVM Value Representation
60 ///
61 /// This is a very important LLVM class. It is the base class of all values
62 /// computed by a program that may be used as operands to other values. Value is
63 /// the super class of other important classes such as Instruction and Function.
64 /// All Values have a Type. Type is not a subclass of Value. Some values can
65 /// have a name and they belong to some Module. Setting the name on the Value
66 /// automatically updates the module's symbol table.
67 ///
68 /// Every value has a "use list" that keeps track of which other Values are
69 /// using this Value. A Value can also have an arbitrary number of ValueHandle
70 /// objects that watch it and listen to RAUW and Destroy events. See
71 /// llvm/IR/ValueHandle.h for details.
72 class Value {
73 // The least-significant bit of the first word of Value *must* be zero:
74 // http://www.llvm.org/docs/ProgrammersManual.html#the-waymarking-algorithm
75 Type *VTy;
76 Use *UseList;
78 friend class ValueAsMetadata; // Allow access to IsUsedByMD.
79 friend class ValueHandleBase;
81 const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
82 unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
84 protected:
85 /// Hold subclass data that can be dropped.
86 ///
87 /// This member is similar to SubclassData, however it is for holding
88 /// information which may be used to aid optimization, but which may be
89 /// cleared to zero without affecting conservative interpretation.
90 unsigned char SubclassOptionalData : 7;
92 private:
93 /// Hold arbitrary subclass data.
94 ///
95 /// This member is defined by this class, but is not used for anything.
96 /// Subclasses can use it to hold whatever state they find useful. This
97 /// field is initialized to zero by the ctor.
98 unsigned short SubclassData;
100 protected:
101 /// The number of operands in the subclass.
103 /// This member is defined by this class, but not used for anything.
104 /// Subclasses can use it to store their number of operands, if they have
105 /// any.
107 /// This is stored here to save space in User on 64-bit hosts. Since most
108 /// instances of Value have operands, 32-bit hosts aren't significantly
109 /// affected.
111 /// Note, this should *NOT* be used directly by any class other than User.
112 /// User uses this value to find the Use list.
113 enum : unsigned { NumUserOperandsBits = 28 };
114 unsigned NumUserOperands : NumUserOperandsBits;
116 // Use the same type as the bitfield above so that MSVC will pack them.
117 unsigned IsUsedByMD : 1;
118 unsigned HasName : 1;
119 unsigned HasHungOffUses : 1;
120 unsigned HasDescriptor : 1;
122 private:
123 template <typename UseT> // UseT == 'Use' or 'const Use'
124 class use_iterator_impl
125 : public std::iterator<std::forward_iterator_tag, UseT *> {
126 friend class Value;
128 UseT *U;
130 explicit use_iterator_impl(UseT *u) : U(u) {}
132 public:
133 use_iterator_impl() : U() {}
135 bool operator==(const use_iterator_impl &x) const { return U == x.U; }
136 bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
138 use_iterator_impl &operator++() { // Preincrement
139 assert(U && "Cannot increment end iterator!");
140 U = U->getNext();
141 return *this;
144 use_iterator_impl operator++(int) { // Postincrement
145 auto tmp = *this;
146 ++*this;
147 return tmp;
150 UseT &operator*() const {
151 assert(U && "Cannot dereference end iterator!");
152 return *U;
155 UseT *operator->() const { return &operator*(); }
157 operator use_iterator_impl<const UseT>() const {
158 return use_iterator_impl<const UseT>(U);
162 template <typename UserTy> // UserTy == 'User' or 'const User'
163 class user_iterator_impl
164 : public std::iterator<std::forward_iterator_tag, UserTy *> {
165 use_iterator_impl<Use> UI;
166 explicit user_iterator_impl(Use *U) : UI(U) {}
167 friend class Value;
169 public:
170 user_iterator_impl() = default;
172 bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
173 bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
175 /// Returns true if this iterator is equal to user_end() on the value.
176 bool atEnd() const { return *this == user_iterator_impl(); }
178 user_iterator_impl &operator++() { // Preincrement
179 ++UI;
180 return *this;
183 user_iterator_impl operator++(int) { // Postincrement
184 auto tmp = *this;
185 ++*this;
186 return tmp;
189 // Retrieve a pointer to the current User.
190 UserTy *operator*() const {
191 return UI->getUser();
194 UserTy *operator->() const { return operator*(); }
196 operator user_iterator_impl<const UserTy>() const {
197 return user_iterator_impl<const UserTy>(*UI);
200 Use &getUse() const { return *UI; }
203 protected:
204 Value(Type *Ty, unsigned scid);
206 /// Value's destructor should be virtual by design, but that would require
207 /// that Value and all of its subclasses have a vtable that effectively
208 /// duplicates the information in the value ID. As a size optimization, the
209 /// destructor has been protected, and the caller should manually call
210 /// deleteValue.
211 ~Value(); // Use deleteValue() to delete a generic Value.
213 public:
214 Value(const Value &) = delete;
215 Value &operator=(const Value &) = delete;
217 /// Delete a pointer to a generic Value.
218 void deleteValue();
220 /// Support for debugging, callable in GDB: V->dump()
221 void dump() const;
223 /// Implement operator<< on Value.
224 /// @{
225 void print(raw_ostream &O, bool IsForDebug = false) const;
226 void print(raw_ostream &O, ModuleSlotTracker &MST,
227 bool IsForDebug = false) const;
228 /// @}
230 /// Print the name of this Value out to the specified raw_ostream.
232 /// This is useful when you just want to print 'int %reg126', not the
233 /// instruction that generated it. If you specify a Module for context, then
234 /// even constanst get pretty-printed; for example, the type of a null
235 /// pointer is printed symbolically.
236 /// @{
237 void printAsOperand(raw_ostream &O, bool PrintType = true,
238 const Module *M = nullptr) const;
239 void printAsOperand(raw_ostream &O, bool PrintType,
240 ModuleSlotTracker &MST) const;
241 /// @}
243 /// All values are typed, get the type of this value.
244 Type *getType() const { return VTy; }
246 /// All values hold a context through their type.
247 LLVMContext &getContext() const;
249 // All values can potentially be named.
250 bool hasName() const { return HasName; }
251 ValueName *getValueName() const;
252 void setValueName(ValueName *VN);
254 private:
255 void destroyValueName();
256 enum class ReplaceMetadataUses { No, Yes };
257 void doRAUW(Value *New, ReplaceMetadataUses);
258 void setNameImpl(const Twine &Name);
260 public:
261 /// Return a constant reference to the value's name.
263 /// This guaranteed to return the same reference as long as the value is not
264 /// modified. If the value has a name, this does a hashtable lookup, so it's
265 /// not free.
266 StringRef getName() const;
268 /// Change the name of the value.
270 /// Choose a new unique name if the provided name is taken.
272 /// \param Name The new name; or "" if the value's name should be removed.
273 void setName(const Twine &Name);
275 /// Transfer the name from V to this value.
277 /// After taking V's name, sets V's name to empty.
279 /// \note It is an error to call V->takeName(V).
280 void takeName(Value *V);
282 /// Change all uses of this to point to a new Value.
284 /// Go through the uses list for this definition and make each use point to
285 /// "V" instead of "this". After this completes, 'this's use list is
286 /// guaranteed to be empty.
287 void replaceAllUsesWith(Value *V);
289 /// Change non-metadata uses of this to point to a new Value.
291 /// Go through the uses list for this definition and make each use point to
292 /// "V" instead of "this". This function skips metadata entries in the list.
293 void replaceNonMetadataUsesWith(Value *V);
295 /// replaceUsesOutsideBlock - Go through the uses list for this definition and
296 /// make each use point to "V" instead of "this" when the use is outside the
297 /// block. 'This's use list is expected to have at least one element.
298 /// Unlike replaceAllUsesWith this function does not support basic block
299 /// values or constant users.
300 void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
302 //----------------------------------------------------------------------
303 // Methods for handling the chain of uses of this Value.
305 // Materializing a function can introduce new uses, so these methods come in
306 // two variants:
307 // The methods that start with materialized_ check the uses that are
308 // currently known given which functions are materialized. Be very careful
309 // when using them since you might not get all uses.
310 // The methods that don't start with materialized_ assert that modules is
311 // fully materialized.
312 void assertModuleIsMaterializedImpl() const;
313 // This indirection exists so we can keep assertModuleIsMaterializedImpl()
314 // around in release builds of Value.cpp to be linked with other code built
315 // in debug mode. But this avoids calling it in any of the release built code.
316 void assertModuleIsMaterialized() const {
317 #ifndef NDEBUG
318 assertModuleIsMaterializedImpl();
319 #endif
322 bool use_empty() const {
323 assertModuleIsMaterialized();
324 return UseList == nullptr;
327 bool materialized_use_empty() const {
328 return UseList == nullptr;
331 using use_iterator = use_iterator_impl<Use>;
332 using const_use_iterator = use_iterator_impl<const Use>;
334 use_iterator materialized_use_begin() { return use_iterator(UseList); }
335 const_use_iterator materialized_use_begin() const {
336 return const_use_iterator(UseList);
338 use_iterator use_begin() {
339 assertModuleIsMaterialized();
340 return materialized_use_begin();
342 const_use_iterator use_begin() const {
343 assertModuleIsMaterialized();
344 return materialized_use_begin();
346 use_iterator use_end() { return use_iterator(); }
347 const_use_iterator use_end() const { return const_use_iterator(); }
348 iterator_range<use_iterator> materialized_uses() {
349 return make_range(materialized_use_begin(), use_end());
351 iterator_range<const_use_iterator> materialized_uses() const {
352 return make_range(materialized_use_begin(), use_end());
354 iterator_range<use_iterator> uses() {
355 assertModuleIsMaterialized();
356 return materialized_uses();
358 iterator_range<const_use_iterator> uses() const {
359 assertModuleIsMaterialized();
360 return materialized_uses();
363 bool user_empty() const {
364 assertModuleIsMaterialized();
365 return UseList == nullptr;
368 using user_iterator = user_iterator_impl<User>;
369 using const_user_iterator = user_iterator_impl<const User>;
371 user_iterator materialized_user_begin() { return user_iterator(UseList); }
372 const_user_iterator materialized_user_begin() const {
373 return const_user_iterator(UseList);
375 user_iterator user_begin() {
376 assertModuleIsMaterialized();
377 return materialized_user_begin();
379 const_user_iterator user_begin() const {
380 assertModuleIsMaterialized();
381 return materialized_user_begin();
383 user_iterator user_end() { return user_iterator(); }
384 const_user_iterator user_end() const { return const_user_iterator(); }
385 User *user_back() {
386 assertModuleIsMaterialized();
387 return *materialized_user_begin();
389 const User *user_back() const {
390 assertModuleIsMaterialized();
391 return *materialized_user_begin();
393 iterator_range<user_iterator> materialized_users() {
394 return make_range(materialized_user_begin(), user_end());
396 iterator_range<const_user_iterator> materialized_users() const {
397 return make_range(materialized_user_begin(), user_end());
399 iterator_range<user_iterator> users() {
400 assertModuleIsMaterialized();
401 return materialized_users();
403 iterator_range<const_user_iterator> users() const {
404 assertModuleIsMaterialized();
405 return materialized_users();
408 /// Return true if there is exactly one user of this value.
410 /// This is specialized because it is a common request and does not require
411 /// traversing the whole use list.
412 bool hasOneUse() const {
413 const_use_iterator I = use_begin(), E = use_end();
414 if (I == E) return false;
415 return ++I == E;
418 /// Return true if this Value has exactly N users.
419 bool hasNUses(unsigned N) const;
421 /// Return true if this value has N users or more.
423 /// This is logically equivalent to getNumUses() >= N.
424 bool hasNUsesOrMore(unsigned N) const;
426 /// Check if this value is used in the specified basic block.
427 bool isUsedInBasicBlock(const BasicBlock *BB) const;
429 /// This method computes the number of uses of this Value.
431 /// This is a linear time operation. Use hasOneUse, hasNUses, or
432 /// hasNUsesOrMore to check for specific values.
433 unsigned getNumUses() const;
435 /// This method should only be used by the Use class.
436 void addUse(Use &U) { U.addToList(&UseList); }
438 /// Concrete subclass of this.
440 /// An enumeration for keeping track of the concrete subclass of Value that
441 /// is actually instantiated. Values of this enumeration are kept in the
442 /// Value classes SubclassID field. They are used for concrete type
443 /// identification.
444 enum ValueTy {
445 #define HANDLE_VALUE(Name) Name##Val,
446 #include "llvm/IR/Value.def"
448 // Markers:
449 #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
450 #include "llvm/IR/Value.def"
453 /// Return an ID for the concrete type of this object.
455 /// This is used to implement the classof checks. This should not be used
456 /// for any other purpose, as the values may change as LLVM evolves. Also,
457 /// note that for instructions, the Instruction's opcode is added to
458 /// InstructionVal. So this means three things:
459 /// # there is no value with code InstructionVal (no opcode==0).
460 /// # there are more possible values for the value type than in ValueTy enum.
461 /// # the InstructionVal enumerator must be the highest valued enumerator in
462 /// the ValueTy enum.
463 unsigned getValueID() const {
464 return SubclassID;
467 /// Return the raw optional flags value contained in this value.
469 /// This should only be used when testing two Values for equivalence.
470 unsigned getRawSubclassOptionalData() const {
471 return SubclassOptionalData;
474 /// Clear the optional flags contained in this value.
475 void clearSubclassOptionalData() {
476 SubclassOptionalData = 0;
479 /// Check the optional flags for equality.
480 bool hasSameSubclassOptionalData(const Value *V) const {
481 return SubclassOptionalData == V->SubclassOptionalData;
484 /// Return true if there is a value handle associated with this value.
485 bool hasValueHandle() const { return HasValueHandle; }
487 /// Return true if there is metadata referencing this value.
488 bool isUsedByMetadata() const { return IsUsedByMD; }
490 /// Return true if this value is a swifterror value.
492 /// swifterror values can be either a function argument or an alloca with a
493 /// swifterror attribute.
494 bool isSwiftError() const;
496 /// Strip off pointer casts, all-zero GEPs, and aliases.
498 /// Returns the original uncasted value. If this is called on a non-pointer
499 /// value, it returns 'this'.
500 const Value *stripPointerCasts() const;
501 Value *stripPointerCasts() {
502 return const_cast<Value *>(
503 static_cast<const Value *>(this)->stripPointerCasts());
506 /// Strip off pointer casts, all-zero GEPs, aliases and invariant group
507 /// info.
509 /// Returns the original uncasted value. If this is called on a non-pointer
510 /// value, it returns 'this'. This function should be used only in
511 /// Alias analysis.
512 const Value *stripPointerCastsAndInvariantGroups() const;
513 Value *stripPointerCastsAndInvariantGroups() {
514 return const_cast<Value *>(
515 static_cast<const Value *>(this)->stripPointerCastsAndInvariantGroups());
518 /// Strip off pointer casts and all-zero GEPs.
520 /// Returns the original uncasted value. If this is called on a non-pointer
521 /// value, it returns 'this'.
522 const Value *stripPointerCastsNoFollowAliases() const;
523 Value *stripPointerCastsNoFollowAliases() {
524 return const_cast<Value *>(
525 static_cast<const Value *>(this)->stripPointerCastsNoFollowAliases());
528 /// Strip off pointer casts and all-constant inbounds GEPs.
530 /// Returns the original pointer value. If this is called on a non-pointer
531 /// value, it returns 'this'.
532 const Value *stripInBoundsConstantOffsets() const;
533 Value *stripInBoundsConstantOffsets() {
534 return const_cast<Value *>(
535 static_cast<const Value *>(this)->stripInBoundsConstantOffsets());
538 /// Accumulate offsets from \a stripInBoundsConstantOffsets().
540 /// Stores the resulting constant offset stripped into the APInt provided.
541 /// The provided APInt will be extended or truncated as needed to be the
542 /// correct bitwidth for an offset of this pointer type.
544 /// If this is called on a non-pointer value, it returns 'this'.
545 const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
546 APInt &Offset) const;
547 Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
548 APInt &Offset) {
549 return const_cast<Value *>(static_cast<const Value *>(this)
550 ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset));
553 /// Strip off pointer casts and inbounds GEPs.
555 /// Returns the original pointer value. If this is called on a non-pointer
556 /// value, it returns 'this'.
557 const Value *stripInBoundsOffsets() const;
558 Value *stripInBoundsOffsets() {
559 return const_cast<Value *>(
560 static_cast<const Value *>(this)->stripInBoundsOffsets());
563 /// Returns the number of bytes known to be dereferenceable for the
564 /// pointer value.
566 /// If CanBeNull is set by this function the pointer can either be null or be
567 /// dereferenceable up to the returned number of bytes.
568 uint64_t getPointerDereferenceableBytes(const DataLayout &DL,
569 bool &CanBeNull) const;
571 /// Returns an alignment of the pointer value.
573 /// Returns an alignment which is either specified explicitly, e.g. via
574 /// align attribute of a function argument, or guaranteed by DataLayout.
575 unsigned getPointerAlignment(const DataLayout &DL) const;
577 /// Translate PHI node to its predecessor from the given basic block.
579 /// If this value is a PHI node with CurBB as its parent, return the value in
580 /// the PHI node corresponding to PredBB. If not, return ourself. This is
581 /// useful if you want to know the value something has in a predecessor
582 /// block.
583 const Value *DoPHITranslation(const BasicBlock *CurBB,
584 const BasicBlock *PredBB) const;
585 Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) {
586 return const_cast<Value *>(
587 static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB));
590 /// The maximum alignment for instructions.
592 /// This is the greatest alignment value supported by load, store, and alloca
593 /// instructions, and global values.
594 static const unsigned MaxAlignmentExponent = 29;
595 static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
597 /// Mutate the type of this Value to be of the specified type.
599 /// Note that this is an extremely dangerous operation which can create
600 /// completely invalid IR very easily. It is strongly recommended that you
601 /// recreate IR objects with the right types instead of mutating them in
602 /// place.
603 void mutateType(Type *Ty) {
604 VTy = Ty;
607 /// Sort the use-list.
609 /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is
610 /// expected to compare two \a Use references.
611 template <class Compare> void sortUseList(Compare Cmp);
613 /// Reverse the use-list.
614 void reverseUseList();
616 private:
617 /// Merge two lists together.
619 /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes
620 /// "equal" items from L before items from R.
622 /// \return the first element in the list.
624 /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
625 template <class Compare>
626 static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
627 Use *Merged;
628 Use **Next = &Merged;
630 while (true) {
631 if (!L) {
632 *Next = R;
633 break;
635 if (!R) {
636 *Next = L;
637 break;
639 if (Cmp(*R, *L)) {
640 *Next = R;
641 Next = &R->Next;
642 R = R->Next;
643 } else {
644 *Next = L;
645 Next = &L->Next;
646 L = L->Next;
650 return Merged;
653 protected:
654 unsigned short getSubclassDataFromValue() const { return SubclassData; }
655 void setValueSubclassData(unsigned short D) { SubclassData = D; }
658 struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } };
660 /// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>.
661 /// Those don't work because Value and Instruction's destructors are protected,
662 /// aren't virtual, and won't destroy the complete object.
663 using unique_value = std::unique_ptr<Value, ValueDeleter>;
665 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
666 V.print(OS);
667 return OS;
670 void Use::set(Value *V) {
671 if (Val) removeFromList();
672 Val = V;
673 if (V) V->addUse(*this);
676 Value *Use::operator=(Value *RHS) {
677 set(RHS);
678 return RHS;
681 const Use &Use::operator=(const Use &RHS) {
682 set(RHS.Val);
683 return *this;
686 template <class Compare> void Value::sortUseList(Compare Cmp) {
687 if (!UseList || !UseList->Next)
688 // No need to sort 0 or 1 uses.
689 return;
691 // Note: this function completely ignores Prev pointers until the end when
692 // they're fixed en masse.
694 // Create a binomial vector of sorted lists, visiting uses one at a time and
695 // merging lists as necessary.
696 const unsigned MaxSlots = 32;
697 Use *Slots[MaxSlots];
699 // Collect the first use, turning it into a single-item list.
700 Use *Next = UseList->Next;
701 UseList->Next = nullptr;
702 unsigned NumSlots = 1;
703 Slots[0] = UseList;
705 // Collect all but the last use.
706 while (Next->Next) {
707 Use *Current = Next;
708 Next = Current->Next;
710 // Turn Current into a single-item list.
711 Current->Next = nullptr;
713 // Save Current in the first available slot, merging on collisions.
714 unsigned I;
715 for (I = 0; I < NumSlots; ++I) {
716 if (!Slots[I])
717 break;
719 // Merge two lists, doubling the size of Current and emptying slot I.
721 // Since the uses in Slots[I] originally preceded those in Current, send
722 // Slots[I] in as the left parameter to maintain a stable sort.
723 Current = mergeUseLists(Slots[I], Current, Cmp);
724 Slots[I] = nullptr;
726 // Check if this is a new slot.
727 if (I == NumSlots) {
728 ++NumSlots;
729 assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
732 // Found an open slot.
733 Slots[I] = Current;
736 // Merge all the lists together.
737 assert(Next && "Expected one more Use");
738 assert(!Next->Next && "Expected only one Use");
739 UseList = Next;
740 for (unsigned I = 0; I < NumSlots; ++I)
741 if (Slots[I])
742 // Since the uses in Slots[I] originally preceded those in UseList, send
743 // Slots[I] in as the left parameter to maintain a stable sort.
744 UseList = mergeUseLists(Slots[I], UseList, Cmp);
746 // Fix the Prev pointers.
747 for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
748 I->setPrev(Prev);
749 Prev = &I->Next;
753 // isa - Provide some specializations of isa so that we don't have to include
754 // the subtype header files to test to see if the value is a subclass...
756 template <> struct isa_impl<Constant, Value> {
757 static inline bool doit(const Value &Val) {
758 static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal");
759 return Val.getValueID() <= Value::ConstantLastVal;
763 template <> struct isa_impl<ConstantData, Value> {
764 static inline bool doit(const Value &Val) {
765 return Val.getValueID() >= Value::ConstantDataFirstVal &&
766 Val.getValueID() <= Value::ConstantDataLastVal;
770 template <> struct isa_impl<ConstantAggregate, Value> {
771 static inline bool doit(const Value &Val) {
772 return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
773 Val.getValueID() <= Value::ConstantAggregateLastVal;
777 template <> struct isa_impl<Argument, Value> {
778 static inline bool doit (const Value &Val) {
779 return Val.getValueID() == Value::ArgumentVal;
783 template <> struct isa_impl<InlineAsm, Value> {
784 static inline bool doit(const Value &Val) {
785 return Val.getValueID() == Value::InlineAsmVal;
789 template <> struct isa_impl<Instruction, Value> {
790 static inline bool doit(const Value &Val) {
791 return Val.getValueID() >= Value::InstructionVal;
795 template <> struct isa_impl<BasicBlock, Value> {
796 static inline bool doit(const Value &Val) {
797 return Val.getValueID() == Value::BasicBlockVal;
801 template <> struct isa_impl<Function, Value> {
802 static inline bool doit(const Value &Val) {
803 return Val.getValueID() == Value::FunctionVal;
807 template <> struct isa_impl<GlobalVariable, Value> {
808 static inline bool doit(const Value &Val) {
809 return Val.getValueID() == Value::GlobalVariableVal;
813 template <> struct isa_impl<GlobalAlias, Value> {
814 static inline bool doit(const Value &Val) {
815 return Val.getValueID() == Value::GlobalAliasVal;
819 template <> struct isa_impl<GlobalIFunc, Value> {
820 static inline bool doit(const Value &Val) {
821 return Val.getValueID() == Value::GlobalIFuncVal;
825 template <> struct isa_impl<GlobalIndirectSymbol, Value> {
826 static inline bool doit(const Value &Val) {
827 return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val);
831 template <> struct isa_impl<GlobalValue, Value> {
832 static inline bool doit(const Value &Val) {
833 return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val);
837 template <> struct isa_impl<GlobalObject, Value> {
838 static inline bool doit(const Value &Val) {
839 return isa<GlobalVariable>(Val) || isa<Function>(Val);
843 // Create wrappers for C Binding types (see CBindingWrapping.h).
844 DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
846 // Specialized opaque value conversions.
847 inline Value **unwrap(LLVMValueRef *Vals) {
848 return reinterpret_cast<Value**>(Vals);
851 template<typename T>
852 inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
853 #ifndef NDEBUG
854 for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
855 unwrap<T>(*I); // For side effect of calling assert on invalid usage.
856 #endif
857 (void)Length;
858 return reinterpret_cast<T**>(Vals);
861 inline LLVMValueRef *wrap(const Value **Vals) {
862 return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
865 } // end namespace llvm
867 #endif // LLVM_IR_VALUE_H