Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / LTO / LTO.h
blob1f9d764f068b3c15601654fff6ea347b2576b515
1 //===-LTO.h - LLVM Link Time Optimizer ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares functions and classes used to support LTO. It is intended
10 // to be used both by LTO classes as well as by clients (gold-plugin) that
11 // don't utilize the LTO code generator interfaces.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_LTO_LTO_H
16 #define LLVM_LTO_LTO_H
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/StringSet.h"
21 #include "llvm/IR/DiagnosticInfo.h"
22 #include "llvm/IR/ModuleSummaryIndex.h"
23 #include "llvm/LTO/Config.h"
24 #include "llvm/Linker/IRMover.h"
25 #include "llvm/Object/IRSymtab.h"
26 #include "llvm/Support/Error.h"
27 #include "llvm/Support/ToolOutputFile.h"
28 #include "llvm/Support/thread.h"
29 #include "llvm/Target/TargetOptions.h"
30 #include "llvm/Transforms/IPO/FunctionImport.h"
32 namespace llvm {
34 class BitcodeModule;
35 class Error;
36 class LLVMContext;
37 class MemoryBufferRef;
38 class Module;
39 class Target;
40 class raw_pwrite_stream;
42 /// Resolve linkage for prevailing symbols in the \p Index. Linkage changes
43 /// recorded in the index and the ThinLTO backends must apply the changes to
44 /// the module via thinLTOResolvePrevailingInModule.
45 ///
46 /// This is done for correctness (if value exported, ensure we always
47 /// emit a copy), and compile-time optimization (allow drop of duplicates).
48 void thinLTOResolvePrevailingInIndex(
49 ModuleSummaryIndex &Index,
50 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
51 isPrevailing,
52 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
53 recordNewLinkage);
55 /// Update the linkages in the given \p Index to mark exported values
56 /// as external and non-exported values as internal. The ThinLTO backends
57 /// must apply the changes to the Module via thinLTOInternalizeModule.
58 void thinLTOInternalizeAndPromoteInIndex(
59 ModuleSummaryIndex &Index,
60 function_ref<bool(StringRef, GlobalValue::GUID)> isExported);
62 /// Computes a unique hash for the Module considering the current list of
63 /// export/import and other global analysis results.
64 /// The hash is produced in \p Key.
65 void computeLTOCacheKey(
66 SmallString<40> &Key, const lto::Config &Conf,
67 const ModuleSummaryIndex &Index, StringRef ModuleID,
68 const FunctionImporter::ImportMapTy &ImportList,
69 const FunctionImporter::ExportSetTy &ExportList,
70 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
71 const GVSummaryMapTy &DefinedGlobals,
72 const std::set<GlobalValue::GUID> &CfiFunctionDefs = {},
73 const std::set<GlobalValue::GUID> &CfiFunctionDecls = {});
75 namespace lto {
77 /// Given the original \p Path to an output file, replace any path
78 /// prefix matching \p OldPrefix with \p NewPrefix. Also, create the
79 /// resulting directory if it does not yet exist.
80 std::string getThinLTOOutputFile(const std::string &Path,
81 const std::string &OldPrefix,
82 const std::string &NewPrefix);
84 /// Setup optimization remarks.
85 Expected<std::unique_ptr<ToolOutputFile>>
86 setupOptimizationRemarks(LLVMContext &Context, StringRef LTORemarksFilename,
87 bool LTOPassRemarksWithHotness, int Count = -1);
89 class LTO;
90 struct SymbolResolution;
91 class ThinBackendProc;
93 /// An input file. This is a symbol table wrapper that only exposes the
94 /// information that an LTO client should need in order to do symbol resolution.
95 class InputFile {
96 public:
97 class Symbol;
99 private:
100 // FIXME: Remove LTO class friendship once we have bitcode symbol tables.
101 friend LTO;
102 InputFile() = default;
104 std::vector<BitcodeModule> Mods;
105 SmallVector<char, 0> Strtab;
106 std::vector<Symbol> Symbols;
108 // [begin, end) for each module
109 std::vector<std::pair<size_t, size_t>> ModuleSymIndices;
111 StringRef TargetTriple, SourceFileName, COFFLinkerOpts;
112 std::vector<StringRef> ComdatTable;
114 public:
115 ~InputFile();
117 /// Create an InputFile.
118 static Expected<std::unique_ptr<InputFile>> create(MemoryBufferRef Object);
120 /// The purpose of this class is to only expose the symbol information that an
121 /// LTO client should need in order to do symbol resolution.
122 class Symbol : irsymtab::Symbol {
123 friend LTO;
125 public:
126 Symbol(const irsymtab::Symbol &S) : irsymtab::Symbol(S) {}
128 using irsymtab::Symbol::isUndefined;
129 using irsymtab::Symbol::isCommon;
130 using irsymtab::Symbol::isWeak;
131 using irsymtab::Symbol::isIndirect;
132 using irsymtab::Symbol::getName;
133 using irsymtab::Symbol::getVisibility;
134 using irsymtab::Symbol::canBeOmittedFromSymbolTable;
135 using irsymtab::Symbol::isTLS;
136 using irsymtab::Symbol::getComdatIndex;
137 using irsymtab::Symbol::getCommonSize;
138 using irsymtab::Symbol::getCommonAlignment;
139 using irsymtab::Symbol::getCOFFWeakExternalFallback;
140 using irsymtab::Symbol::getSectionName;
141 using irsymtab::Symbol::isExecutable;
144 /// A range over the symbols in this InputFile.
145 ArrayRef<Symbol> symbols() const { return Symbols; }
147 /// Returns linker options specified in the input file.
148 StringRef getCOFFLinkerOpts() const { return COFFLinkerOpts; }
150 /// Returns the path to the InputFile.
151 StringRef getName() const;
153 /// Returns the input file's target triple.
154 StringRef getTargetTriple() const { return TargetTriple; }
156 /// Returns the source file path specified at compile time.
157 StringRef getSourceFileName() const { return SourceFileName; }
159 // Returns a table with all the comdats used by this file.
160 ArrayRef<StringRef> getComdatTable() const { return ComdatTable; }
162 private:
163 ArrayRef<Symbol> module_symbols(unsigned I) const {
164 const auto &Indices = ModuleSymIndices[I];
165 return {Symbols.data() + Indices.first, Symbols.data() + Indices.second};
169 /// This class wraps an output stream for a native object. Most clients should
170 /// just be able to return an instance of this base class from the stream
171 /// callback, but if a client needs to perform some action after the stream is
172 /// written to, that can be done by deriving from this class and overriding the
173 /// destructor.
174 class NativeObjectStream {
175 public:
176 NativeObjectStream(std::unique_ptr<raw_pwrite_stream> OS) : OS(std::move(OS)) {}
177 std::unique_ptr<raw_pwrite_stream> OS;
178 virtual ~NativeObjectStream() = default;
181 /// This type defines the callback to add a native object that is generated on
182 /// the fly.
184 /// Stream callbacks must be thread safe.
185 typedef std::function<std::unique_ptr<NativeObjectStream>(unsigned Task)>
186 AddStreamFn;
188 /// This is the type of a native object cache. To request an item from the
189 /// cache, pass a unique string as the Key. For hits, the cached file will be
190 /// added to the link and this function will return AddStreamFn(). For misses,
191 /// the cache will return a stream callback which must be called at most once to
192 /// produce content for the stream. The native object stream produced by the
193 /// stream callback will add the file to the link after the stream is written
194 /// to.
196 /// Clients generally look like this:
198 /// if (AddStreamFn AddStream = Cache(Task, Key))
199 /// ProduceContent(AddStream);
200 typedef std::function<AddStreamFn(unsigned Task, StringRef Key)>
201 NativeObjectCache;
203 /// A ThinBackend defines what happens after the thin-link phase during ThinLTO.
204 /// The details of this type definition aren't important; clients can only
205 /// create a ThinBackend using one of the create*ThinBackend() functions below.
206 typedef std::function<std::unique_ptr<ThinBackendProc>(
207 Config &C, ModuleSummaryIndex &CombinedIndex,
208 StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
209 AddStreamFn AddStream, NativeObjectCache Cache)>
210 ThinBackend;
212 /// This ThinBackend runs the individual backend jobs in-process.
213 ThinBackend createInProcessThinBackend(unsigned ParallelismLevel);
215 /// This ThinBackend writes individual module indexes to files, instead of
216 /// running the individual backend jobs. This backend is for distributed builds
217 /// where separate processes will invoke the real backends.
219 /// To find the path to write the index to, the backend checks if the path has a
220 /// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then
221 /// appends ".thinlto.bc" and writes the index to that path. If
222 /// ShouldEmitImportsFiles is true it also writes a list of imported files to a
223 /// similar path with ".imports" appended instead.
224 /// LinkedObjectsFile is an output stream to write the list of object files for
225 /// the final ThinLTO linking. Can be nullptr.
226 /// OnWrite is callback which receives module identifier and notifies LTO user
227 /// that index file for the module (and optionally imports file) was created.
228 using IndexWriteCallback = std::function<void(const std::string &)>;
229 ThinBackend createWriteIndexesThinBackend(std::string OldPrefix,
230 std::string NewPrefix,
231 bool ShouldEmitImportsFiles,
232 raw_fd_ostream *LinkedObjectsFile,
233 IndexWriteCallback OnWrite);
235 /// This class implements a resolution-based interface to LLVM's LTO
236 /// functionality. It supports regular LTO, parallel LTO code generation and
237 /// ThinLTO. You can use it from a linker in the following way:
238 /// - Set hooks and code generation options (see lto::Config struct defined in
239 /// Config.h), and use the lto::Config object to create an lto::LTO object.
240 /// - Create lto::InputFile objects using lto::InputFile::create(), then use
241 /// the symbols() function to enumerate its symbols and compute a resolution
242 /// for each symbol (see SymbolResolution below).
243 /// - After the linker has visited each input file (and each regular object
244 /// file) and computed a resolution for each symbol, take each lto::InputFile
245 /// and pass it and an array of symbol resolutions to the add() function.
246 /// - Call the getMaxTasks() function to get an upper bound on the number of
247 /// native object files that LTO may add to the link.
248 /// - Call the run() function. This function will use the supplied AddStream
249 /// and Cache functions to add up to getMaxTasks() native object files to
250 /// the link.
251 class LTO {
252 friend InputFile;
254 public:
255 /// Create an LTO object. A default constructed LTO object has a reasonable
256 /// production configuration, but you can customize it by passing arguments to
257 /// this constructor.
258 /// FIXME: We do currently require the DiagHandler field to be set in Conf.
259 /// Until that is fixed, a Config argument is required.
260 LTO(Config Conf, ThinBackend Backend = nullptr,
261 unsigned ParallelCodeGenParallelismLevel = 1);
262 ~LTO();
264 /// Add an input file to the LTO link, using the provided symbol resolutions.
265 /// The symbol resolutions must appear in the enumeration order given by
266 /// InputFile::symbols().
267 Error add(std::unique_ptr<InputFile> Obj, ArrayRef<SymbolResolution> Res);
269 /// Returns an upper bound on the number of tasks that the client may expect.
270 /// This may only be called after all IR object files have been added. For a
271 /// full description of tasks see LTOBackend.h.
272 unsigned getMaxTasks() const;
274 /// Runs the LTO pipeline. This function calls the supplied AddStream
275 /// function to add native object files to the link.
277 /// The Cache parameter is optional. If supplied, it will be used to cache
278 /// native object files and add them to the link.
280 /// The client will receive at most one callback (via either AddStream or
281 /// Cache) for each task identifier.
282 Error run(AddStreamFn AddStream, NativeObjectCache Cache = nullptr);
284 private:
285 Config Conf;
287 struct RegularLTOState {
288 RegularLTOState(unsigned ParallelCodeGenParallelismLevel, Config &Conf);
289 struct CommonResolution {
290 uint64_t Size = 0;
291 unsigned Align = 0;
292 /// Record if at least one instance of the common was marked as prevailing
293 bool Prevailing = false;
295 std::map<std::string, CommonResolution> Commons;
297 unsigned ParallelCodeGenParallelismLevel;
298 LTOLLVMContext Ctx;
299 std::unique_ptr<Module> CombinedModule;
300 std::unique_ptr<IRMover> Mover;
302 // This stores the information about a regular LTO module that we have added
303 // to the link. It will either be linked immediately (for modules without
304 // summaries) or after summary-based dead stripping (for modules with
305 // summaries).
306 struct AddedModule {
307 std::unique_ptr<Module> M;
308 std::vector<GlobalValue *> Keep;
310 std::vector<AddedModule> ModsWithSummaries;
311 } RegularLTO;
313 struct ThinLTOState {
314 ThinLTOState(ThinBackend Backend);
316 ThinBackend Backend;
317 ModuleSummaryIndex CombinedIndex;
318 MapVector<StringRef, BitcodeModule> ModuleMap;
319 DenseMap<GlobalValue::GUID, StringRef> PrevailingModuleForGUID;
320 } ThinLTO;
322 // The global resolution for a particular (mangled) symbol name. This is in
323 // particular necessary to track whether each symbol can be internalized.
324 // Because any input file may introduce a new cross-partition reference, we
325 // cannot make any final internalization decisions until all input files have
326 // been added and the client has called run(). During run() we apply
327 // internalization decisions either directly to the module (for regular LTO)
328 // or to the combined index (for ThinLTO).
329 struct GlobalResolution {
330 /// The unmangled name of the global.
331 std::string IRName;
333 /// Keep track if the symbol is visible outside of a module with a summary
334 /// (i.e. in either a regular object or a regular LTO module without a
335 /// summary).
336 bool VisibleOutsideSummary = false;
338 bool UnnamedAddr = true;
340 /// True if module contains the prevailing definition.
341 bool Prevailing = false;
343 /// Returns true if module contains the prevailing definition and symbol is
344 /// an IR symbol. For example when module-level inline asm block is used,
345 /// symbol can be prevailing in module but have no IR name.
346 bool isPrevailingIRSymbol() const { return Prevailing && !IRName.empty(); }
348 /// This field keeps track of the partition number of this global. The
349 /// regular LTO object is partition 0, while each ThinLTO object has its own
350 /// partition number from 1 onwards.
352 /// Any global that is defined or used by more than one partition, or that
353 /// is referenced externally, may not be internalized.
355 /// Partitions generally have a one-to-one correspondence with tasks, except
356 /// that we use partition 0 for all parallel LTO code generation partitions.
357 /// Any partitioning of the combined LTO object is done internally by the
358 /// LTO backend.
359 unsigned Partition = Unknown;
361 /// Special partition numbers.
362 enum : unsigned {
363 /// A partition number has not yet been assigned to this global.
364 Unknown = -1u,
366 /// This global is either used by more than one partition or has an
367 /// external reference, and therefore cannot be internalized.
368 External = -2u,
370 /// The RegularLTO partition
371 RegularLTO = 0,
375 // Global mapping from mangled symbol names to resolutions.
376 StringMap<GlobalResolution> GlobalResolutions;
378 void addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms,
379 ArrayRef<SymbolResolution> Res, unsigned Partition,
380 bool InSummary);
382 // These functions take a range of symbol resolutions [ResI, ResE) and consume
383 // the resolutions used by a single input module by incrementing ResI. After
384 // these functions return, [ResI, ResE) will refer to the resolution range for
385 // the remaining modules in the InputFile.
386 Error addModule(InputFile &Input, unsigned ModI,
387 const SymbolResolution *&ResI, const SymbolResolution *ResE);
389 Expected<RegularLTOState::AddedModule>
390 addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
391 const SymbolResolution *&ResI, const SymbolResolution *ResE);
392 Error linkRegularLTO(RegularLTOState::AddedModule Mod,
393 bool LivenessFromIndex);
395 Error addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
396 const SymbolResolution *&ResI, const SymbolResolution *ResE);
398 Error runRegularLTO(AddStreamFn AddStream);
399 Error runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache);
401 Error checkPartiallySplit();
403 mutable bool CalledGetMaxTasks = false;
405 // Use Optional to distinguish false from not yet initialized.
406 Optional<bool> EnableSplitLTOUnit;
409 /// The resolution for a symbol. The linker must provide a SymbolResolution for
410 /// each global symbol based on its internal resolution of that symbol.
411 struct SymbolResolution {
412 SymbolResolution()
413 : Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0),
414 LinkerRedefined(0) {}
416 /// The linker has chosen this definition of the symbol.
417 unsigned Prevailing : 1;
419 /// The definition of this symbol is unpreemptable at runtime and is known to
420 /// be in this linkage unit.
421 unsigned FinalDefinitionInLinkageUnit : 1;
423 /// The definition of this symbol is visible outside of the LTO unit.
424 unsigned VisibleToRegularObj : 1;
426 /// Linker redefined version of the symbol which appeared in -wrap or -defsym
427 /// linker option.
428 unsigned LinkerRedefined : 1;
431 } // namespace lto
432 } // namespace llvm
434 #endif