[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / Analysis / GlobalsModRef.cpp
blob0d6c0ffb18a851dfd8780fcbcf2b681a0abdb88e
1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This simple pass provides alias and mod/ref information for global values
10 // that do not have their address taken, and keeps track of whether functions
11 // read or write memory (are "pure"). For this simple (but very common) case,
12 // we can provide pretty accurate and useful information.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/GlobalsModRef.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InstIterator.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/CommandLine.h"
30 using namespace llvm;
32 #define DEBUG_TYPE "globalsmodref-aa"
34 STATISTIC(NumNonAddrTakenGlobalVars,
35 "Number of global vars without address taken");
36 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
37 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
38 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
39 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
41 // An option to enable unsafe alias results from the GlobalsModRef analysis.
42 // When enabled, GlobalsModRef will provide no-alias results which in extremely
43 // rare cases may not be conservatively correct. In particular, in the face of
44 // transforms which cause assymetry between how effective GetUnderlyingObject
45 // is for two pointers, it may produce incorrect results.
47 // These unsafe results have been returned by GMR for many years without
48 // causing significant issues in the wild and so we provide a mechanism to
49 // re-enable them for users of LLVM that have a particular performance
50 // sensitivity and no known issues. The option also makes it easy to evaluate
51 // the performance impact of these results.
52 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
53 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
55 /// The mod/ref information collected for a particular function.
56 ///
57 /// We collect information about mod/ref behavior of a function here, both in
58 /// general and as pertains to specific globals. We only have this detailed
59 /// information when we know *something* useful about the behavior. If we
60 /// saturate to fully general mod/ref, we remove the info for the function.
61 class GlobalsAAResult::FunctionInfo {
62 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
64 /// Build a wrapper struct that has 8-byte alignment. All heap allocations
65 /// should provide this much alignment at least, but this makes it clear we
66 /// specifically rely on this amount of alignment.
67 struct alignas(8) AlignedMap {
68 AlignedMap() {}
69 AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {}
70 GlobalInfoMapType Map;
73 /// Pointer traits for our aligned map.
74 struct AlignedMapPointerTraits {
75 static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
76 static inline AlignedMap *getFromVoidPointer(void *P) {
77 return (AlignedMap *)P;
79 enum { NumLowBitsAvailable = 3 };
80 static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable),
81 "AlignedMap insufficiently aligned to have enough low bits.");
84 /// The bit that flags that this function may read any global. This is
85 /// chosen to mix together with ModRefInfo bits.
86 /// FIXME: This assumes ModRefInfo lattice will remain 4 bits!
87 /// It overlaps with ModRefInfo::Must bit!
88 /// FunctionInfo.getModRefInfo() masks out everything except ModRef so
89 /// this remains correct, but the Must info is lost.
90 enum { MayReadAnyGlobal = 4 };
92 /// Checks to document the invariants of the bit packing here.
93 static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::MustModRef)) ==
95 "ModRef and the MayReadAnyGlobal flag bits overlap.");
96 static_assert(((MayReadAnyGlobal |
97 static_cast<int>(ModRefInfo::MustModRef)) >>
98 AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
99 "Insufficient low bits to store our flag and ModRef info.");
101 public:
102 FunctionInfo() : Info() {}
103 ~FunctionInfo() {
104 delete Info.getPointer();
106 // Spell out the copy ond move constructors and assignment operators to get
107 // deep copy semantics and correct move semantics in the face of the
108 // pointer-int pair.
109 FunctionInfo(const FunctionInfo &Arg)
110 : Info(nullptr, Arg.Info.getInt()) {
111 if (const auto *ArgPtr = Arg.Info.getPointer())
112 Info.setPointer(new AlignedMap(*ArgPtr));
114 FunctionInfo(FunctionInfo &&Arg)
115 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
116 Arg.Info.setPointerAndInt(nullptr, 0);
118 FunctionInfo &operator=(const FunctionInfo &RHS) {
119 delete Info.getPointer();
120 Info.setPointerAndInt(nullptr, RHS.Info.getInt());
121 if (const auto *RHSPtr = RHS.Info.getPointer())
122 Info.setPointer(new AlignedMap(*RHSPtr));
123 return *this;
125 FunctionInfo &operator=(FunctionInfo &&RHS) {
126 delete Info.getPointer();
127 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
128 RHS.Info.setPointerAndInt(nullptr, 0);
129 return *this;
132 /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return
133 /// the corresponding ModRefInfo. It must align in functionality with
134 /// clearMust().
135 ModRefInfo globalClearMayReadAnyGlobal(int I) const {
136 return ModRefInfo((I & static_cast<int>(ModRefInfo::ModRef)) |
137 static_cast<int>(ModRefInfo::NoModRef));
140 /// Returns the \c ModRefInfo info for this function.
141 ModRefInfo getModRefInfo() const {
142 return globalClearMayReadAnyGlobal(Info.getInt());
145 /// Adds new \c ModRefInfo for this function to its state.
146 void addModRefInfo(ModRefInfo NewMRI) {
147 Info.setInt(Info.getInt() | static_cast<int>(setMust(NewMRI)));
150 /// Returns whether this function may read any global variable, and we don't
151 /// know which global.
152 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
154 /// Sets this function as potentially reading from any global.
155 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
157 /// Returns the \c ModRefInfo info for this function w.r.t. a particular
158 /// global, which may be more precise than the general information above.
159 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
160 ModRefInfo GlobalMRI =
161 mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef;
162 if (AlignedMap *P = Info.getPointer()) {
163 auto I = P->Map.find(&GV);
164 if (I != P->Map.end())
165 GlobalMRI = unionModRef(GlobalMRI, I->second);
167 return GlobalMRI;
170 /// Add mod/ref info from another function into ours, saturating towards
171 /// ModRef.
172 void addFunctionInfo(const FunctionInfo &FI) {
173 addModRefInfo(FI.getModRefInfo());
175 if (FI.mayReadAnyGlobal())
176 setMayReadAnyGlobal();
178 if (AlignedMap *P = FI.Info.getPointer())
179 for (const auto &G : P->Map)
180 addModRefInfoForGlobal(*G.first, G.second);
183 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
184 AlignedMap *P = Info.getPointer();
185 if (!P) {
186 P = new AlignedMap();
187 Info.setPointer(P);
189 auto &GlobalMRI = P->Map[&GV];
190 GlobalMRI = unionModRef(GlobalMRI, NewMRI);
193 /// Clear a global's ModRef info. Should be used when a global is being
194 /// deleted.
195 void eraseModRefInfoForGlobal(const GlobalValue &GV) {
196 if (AlignedMap *P = Info.getPointer())
197 P->Map.erase(&GV);
200 private:
201 /// All of the information is encoded into a single pointer, with a three bit
202 /// integer in the low three bits. The high bit provides a flag for when this
203 /// function may read any global. The low two bits are the ModRefInfo. And
204 /// the pointer, when non-null, points to a map from GlobalValue to
205 /// ModRefInfo specific to that GlobalValue.
206 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
209 void GlobalsAAResult::DeletionCallbackHandle::deleted() {
210 Value *V = getValPtr();
211 if (auto *F = dyn_cast<Function>(V))
212 GAR->FunctionInfos.erase(F);
214 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
215 if (GAR->NonAddressTakenGlobals.erase(GV)) {
216 // This global might be an indirect global. If so, remove it and
217 // remove any AllocRelatedValues for it.
218 if (GAR->IndirectGlobals.erase(GV)) {
219 // Remove any entries in AllocsForIndirectGlobals for this global.
220 for (auto I = GAR->AllocsForIndirectGlobals.begin(),
221 E = GAR->AllocsForIndirectGlobals.end();
222 I != E; ++I)
223 if (I->second == GV)
224 GAR->AllocsForIndirectGlobals.erase(I);
227 // Scan the function info we have collected and remove this global
228 // from all of them.
229 for (auto &FIPair : GAR->FunctionInfos)
230 FIPair.second.eraseModRefInfoForGlobal(*GV);
234 // If this is an allocation related to an indirect global, remove it.
235 GAR->AllocsForIndirectGlobals.erase(V);
237 // And clear out the handle.
238 setValPtr(nullptr);
239 GAR->Handles.erase(I);
240 // This object is now destroyed!
243 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) {
244 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
246 if (FunctionInfo *FI = getFunctionInfo(F)) {
247 if (!isModOrRefSet(FI->getModRefInfo()))
248 Min = FMRB_DoesNotAccessMemory;
249 else if (!isModSet(FI->getModRefInfo()))
250 Min = FMRB_OnlyReadsMemory;
253 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
256 FunctionModRefBehavior
257 GlobalsAAResult::getModRefBehavior(const CallBase *Call) {
258 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
260 if (!Call->hasOperandBundles())
261 if (const Function *F = Call->getCalledFunction())
262 if (FunctionInfo *FI = getFunctionInfo(F)) {
263 if (!isModOrRefSet(FI->getModRefInfo()))
264 Min = FMRB_DoesNotAccessMemory;
265 else if (!isModSet(FI->getModRefInfo()))
266 Min = FMRB_OnlyReadsMemory;
269 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min);
272 /// Returns the function info for the function, or null if we don't have
273 /// anything useful to say about it.
274 GlobalsAAResult::FunctionInfo *
275 GlobalsAAResult::getFunctionInfo(const Function *F) {
276 auto I = FunctionInfos.find(F);
277 if (I != FunctionInfos.end())
278 return &I->second;
279 return nullptr;
282 /// AnalyzeGlobals - Scan through the users of all of the internal
283 /// GlobalValue's in the program. If none of them have their "address taken"
284 /// (really, their address passed to something nontrivial), record this fact,
285 /// and record the functions that they are used directly in.
286 void GlobalsAAResult::AnalyzeGlobals(Module &M) {
287 SmallPtrSet<Function *, 32> TrackedFunctions;
288 for (Function &F : M)
289 if (F.hasLocalLinkage())
290 if (!AnalyzeUsesOfPointer(&F)) {
291 // Remember that we are tracking this global.
292 NonAddressTakenGlobals.insert(&F);
293 TrackedFunctions.insert(&F);
294 Handles.emplace_front(*this, &F);
295 Handles.front().I = Handles.begin();
296 ++NumNonAddrTakenFunctions;
299 SmallPtrSet<Function *, 16> Readers, Writers;
300 for (GlobalVariable &GV : M.globals())
301 if (GV.hasLocalLinkage()) {
302 if (!AnalyzeUsesOfPointer(&GV, &Readers,
303 GV.isConstant() ? nullptr : &Writers)) {
304 // Remember that we are tracking this global, and the mod/ref fns
305 NonAddressTakenGlobals.insert(&GV);
306 Handles.emplace_front(*this, &GV);
307 Handles.front().I = Handles.begin();
309 for (Function *Reader : Readers) {
310 if (TrackedFunctions.insert(Reader).second) {
311 Handles.emplace_front(*this, Reader);
312 Handles.front().I = Handles.begin();
314 FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref);
317 if (!GV.isConstant()) // No need to keep track of writers to constants
318 for (Function *Writer : Writers) {
319 if (TrackedFunctions.insert(Writer).second) {
320 Handles.emplace_front(*this, Writer);
321 Handles.front().I = Handles.begin();
323 FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod);
325 ++NumNonAddrTakenGlobalVars;
327 // If this global holds a pointer type, see if it is an indirect global.
328 if (GV.getValueType()->isPointerTy() &&
329 AnalyzeIndirectGlobalMemory(&GV))
330 ++NumIndirectGlobalVars;
332 Readers.clear();
333 Writers.clear();
337 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
338 /// If this is used by anything complex (i.e., the address escapes), return
339 /// true. Also, while we are at it, keep track of those functions that read and
340 /// write to the value.
342 /// If OkayStoreDest is non-null, stores into this global are allowed.
343 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
344 SmallPtrSetImpl<Function *> *Readers,
345 SmallPtrSetImpl<Function *> *Writers,
346 GlobalValue *OkayStoreDest) {
347 if (!V->getType()->isPointerTy())
348 return true;
350 for (Use &U : V->uses()) {
351 User *I = U.getUser();
352 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
353 if (Readers)
354 Readers->insert(LI->getParent()->getParent());
355 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
356 if (V == SI->getOperand(1)) {
357 if (Writers)
358 Writers->insert(SI->getParent()->getParent());
359 } else if (SI->getOperand(1) != OkayStoreDest) {
360 return true; // Storing the pointer
362 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
363 if (AnalyzeUsesOfPointer(I, Readers, Writers))
364 return true;
365 } else if (Operator::getOpcode(I) == Instruction::BitCast) {
366 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
367 return true;
368 } else if (auto *Call = dyn_cast<CallBase>(I)) {
369 // Make sure that this is just the function being called, not that it is
370 // passing into the function.
371 if (Call->isDataOperand(&U)) {
372 // Detect calls to free.
373 if (Call->isArgOperand(&U) && isFreeCall(I, &TLI)) {
374 if (Writers)
375 Writers->insert(Call->getParent()->getParent());
376 } else {
377 return true; // Argument of an unknown call.
380 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
381 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
382 return true; // Allow comparison against null.
383 } else if (Constant *C = dyn_cast<Constant>(I)) {
384 // Ignore constants which don't have any live uses.
385 if (isa<GlobalValue>(C) || C->isConstantUsed())
386 return true;
387 } else {
388 return true;
392 return false;
395 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
396 /// which holds a pointer type. See if the global always points to non-aliased
397 /// heap memory: that is, all initializers of the globals are allocations, and
398 /// those allocations have no use other than initialization of the global.
399 /// Further, all loads out of GV must directly use the memory, not store the
400 /// pointer somewhere. If this is true, we consider the memory pointed to by
401 /// GV to be owned by GV and can disambiguate other pointers from it.
402 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
403 // Keep track of values related to the allocation of the memory, f.e. the
404 // value produced by the malloc call and any casts.
405 std::vector<Value *> AllocRelatedValues;
407 // If the initializer is a valid pointer, bail.
408 if (Constant *C = GV->getInitializer())
409 if (!C->isNullValue())
410 return false;
412 // Walk the user list of the global. If we find anything other than a direct
413 // load or store, bail out.
414 for (User *U : GV->users()) {
415 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
416 // The pointer loaded from the global can only be used in simple ways:
417 // we allow addressing of it and loading storing to it. We do *not* allow
418 // storing the loaded pointer somewhere else or passing to a function.
419 if (AnalyzeUsesOfPointer(LI))
420 return false; // Loaded pointer escapes.
421 // TODO: Could try some IP mod/ref of the loaded pointer.
422 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
423 // Storing the global itself.
424 if (SI->getOperand(0) == GV)
425 return false;
427 // If storing the null pointer, ignore it.
428 if (isa<ConstantPointerNull>(SI->getOperand(0)))
429 continue;
431 // Check the value being stored.
432 Value *Ptr = GetUnderlyingObject(SI->getOperand(0),
433 GV->getParent()->getDataLayout());
435 if (!isAllocLikeFn(Ptr, &TLI))
436 return false; // Too hard to analyze.
438 // Analyze all uses of the allocation. If any of them are used in a
439 // non-simple way (e.g. stored to another global) bail out.
440 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
441 GV))
442 return false; // Loaded pointer escapes.
444 // Remember that this allocation is related to the indirect global.
445 AllocRelatedValues.push_back(Ptr);
446 } else {
447 // Something complex, bail out.
448 return false;
452 // Okay, this is an indirect global. Remember all of the allocations for
453 // this global in AllocsForIndirectGlobals.
454 while (!AllocRelatedValues.empty()) {
455 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
456 Handles.emplace_front(*this, AllocRelatedValues.back());
457 Handles.front().I = Handles.begin();
458 AllocRelatedValues.pop_back();
460 IndirectGlobals.insert(GV);
461 Handles.emplace_front(*this, GV);
462 Handles.front().I = Handles.begin();
463 return true;
466 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {
467 // We do a bottom-up SCC traversal of the call graph. In other words, we
468 // visit all callees before callers (leaf-first).
469 unsigned SCCID = 0;
470 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
471 const std::vector<CallGraphNode *> &SCC = *I;
472 assert(!SCC.empty() && "SCC with no functions?");
474 for (auto *CGN : SCC)
475 if (Function *F = CGN->getFunction())
476 FunctionToSCCMap[F] = SCCID;
477 ++SCCID;
481 /// AnalyzeCallGraph - At this point, we know the functions where globals are
482 /// immediately stored to and read from. Propagate this information up the call
483 /// graph to all callers and compute the mod/ref info for all memory for each
484 /// function.
485 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
486 // We do a bottom-up SCC traversal of the call graph. In other words, we
487 // visit all callees before callers (leaf-first).
488 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
489 const std::vector<CallGraphNode *> &SCC = *I;
490 assert(!SCC.empty() && "SCC with no functions?");
492 Function *F = SCC[0]->getFunction();
494 if (!F || !F->isDefinitionExact()) {
495 // Calls externally or not exact - can't say anything useful. Remove any
496 // existing function records (may have been created when scanning
497 // globals).
498 for (auto *Node : SCC)
499 FunctionInfos.erase(Node->getFunction());
500 continue;
503 FunctionInfo &FI = FunctionInfos[F];
504 Handles.emplace_front(*this, F);
505 Handles.front().I = Handles.begin();
506 bool KnowNothing = false;
508 // Collect the mod/ref properties due to called functions. We only compute
509 // one mod-ref set.
510 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
511 if (!F) {
512 KnowNothing = true;
513 break;
516 if (F->isDeclaration() || F->hasOptNone()) {
517 // Try to get mod/ref behaviour from function attributes.
518 if (F->doesNotAccessMemory()) {
519 // Can't do better than that!
520 } else if (F->onlyReadsMemory()) {
521 FI.addModRefInfo(ModRefInfo::Ref);
522 if (!F->isIntrinsic() && !F->onlyAccessesArgMemory())
523 // This function might call back into the module and read a global -
524 // consider every global as possibly being read by this function.
525 FI.setMayReadAnyGlobal();
526 } else {
527 FI.addModRefInfo(ModRefInfo::ModRef);
528 // Can't say anything useful unless it's an intrinsic - they don't
529 // read or write global variables of the kind considered here.
530 KnowNothing = !F->isIntrinsic();
532 continue;
535 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
536 CI != E && !KnowNothing; ++CI)
537 if (Function *Callee = CI->second->getFunction()) {
538 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
539 // Propagate function effect up.
540 FI.addFunctionInfo(*CalleeFI);
541 } else {
542 // Can't say anything about it. However, if it is inside our SCC,
543 // then nothing needs to be done.
544 CallGraphNode *CalleeNode = CG[Callee];
545 if (!is_contained(SCC, CalleeNode))
546 KnowNothing = true;
548 } else {
549 KnowNothing = true;
553 // If we can't say anything useful about this SCC, remove all SCC functions
554 // from the FunctionInfos map.
555 if (KnowNothing) {
556 for (auto *Node : SCC)
557 FunctionInfos.erase(Node->getFunction());
558 continue;
561 // Scan the function bodies for explicit loads or stores.
562 for (auto *Node : SCC) {
563 if (isModAndRefSet(FI.getModRefInfo()))
564 break; // The mod/ref lattice saturates here.
566 // Don't prove any properties based on the implementation of an optnone
567 // function. Function attributes were already used as a best approximation
568 // above.
569 if (Node->getFunction()->hasOptNone())
570 continue;
572 for (Instruction &I : instructions(Node->getFunction())) {
573 if (isModAndRefSet(FI.getModRefInfo()))
574 break; // The mod/ref lattice saturates here.
576 // We handle calls specially because the graph-relevant aspects are
577 // handled above.
578 if (auto *Call = dyn_cast<CallBase>(&I)) {
579 if (isAllocationFn(Call, &TLI) || isFreeCall(Call, &TLI)) {
580 // FIXME: It is completely unclear why this is necessary and not
581 // handled by the above graph code.
582 FI.addModRefInfo(ModRefInfo::ModRef);
583 } else if (Function *Callee = Call->getCalledFunction()) {
584 // The callgraph doesn't include intrinsic calls.
585 if (Callee->isIntrinsic()) {
586 if (isa<DbgInfoIntrinsic>(Call))
587 // Don't let dbg intrinsics affect alias info.
588 continue;
590 FunctionModRefBehavior Behaviour =
591 AAResultBase::getModRefBehavior(Callee);
592 FI.addModRefInfo(createModRefInfo(Behaviour));
595 continue;
598 // All non-call instructions we use the primary predicates for whether
599 // they read or write memory.
600 if (I.mayReadFromMemory())
601 FI.addModRefInfo(ModRefInfo::Ref);
602 if (I.mayWriteToMemory())
603 FI.addModRefInfo(ModRefInfo::Mod);
607 if (!isModSet(FI.getModRefInfo()))
608 ++NumReadMemFunctions;
609 if (!isModOrRefSet(FI.getModRefInfo()))
610 ++NumNoMemFunctions;
612 // Finally, now that we know the full effect on this SCC, clone the
613 // information to each function in the SCC.
614 // FI is a reference into FunctionInfos, so copy it now so that it doesn't
615 // get invalidated if DenseMap decides to re-hash.
616 FunctionInfo CachedFI = FI;
617 for (unsigned i = 1, e = SCC.size(); i != e; ++i)
618 FunctionInfos[SCC[i]->getFunction()] = CachedFI;
622 // GV is a non-escaping global. V is a pointer address that has been loaded from.
623 // If we can prove that V must escape, we can conclude that a load from V cannot
624 // alias GV.
625 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
626 const Value *V,
627 int &Depth,
628 const DataLayout &DL) {
629 SmallPtrSet<const Value *, 8> Visited;
630 SmallVector<const Value *, 8> Inputs;
631 Visited.insert(V);
632 Inputs.push_back(V);
633 do {
634 const Value *Input = Inputs.pop_back_val();
636 if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
637 isa<InvokeInst>(Input))
638 // Arguments to functions or returns from functions are inherently
639 // escaping, so we can immediately classify those as not aliasing any
640 // non-addr-taken globals.
642 // (Transitive) loads from a global are also safe - if this aliased
643 // another global, its address would escape, so no alias.
644 continue;
646 // Recurse through a limited number of selects, loads and PHIs. This is an
647 // arbitrary depth of 4, lower numbers could be used to fix compile time
648 // issues if needed, but this is generally expected to be only be important
649 // for small depths.
650 if (++Depth > 4)
651 return false;
653 if (auto *LI = dyn_cast<LoadInst>(Input)) {
654 Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL));
655 continue;
657 if (auto *SI = dyn_cast<SelectInst>(Input)) {
658 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
659 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
660 if (Visited.insert(LHS).second)
661 Inputs.push_back(LHS);
662 if (Visited.insert(RHS).second)
663 Inputs.push_back(RHS);
664 continue;
666 if (auto *PN = dyn_cast<PHINode>(Input)) {
667 for (const Value *Op : PN->incoming_values()) {
668 Op = GetUnderlyingObject(Op, DL);
669 if (Visited.insert(Op).second)
670 Inputs.push_back(Op);
672 continue;
675 return false;
676 } while (!Inputs.empty());
678 // All inputs were known to be no-alias.
679 return true;
682 // There are particular cases where we can conclude no-alias between
683 // a non-addr-taken global and some other underlying object. Specifically,
684 // a non-addr-taken global is known to not be escaped from any function. It is
685 // also incorrect for a transformation to introduce an escape of a global in
686 // a way that is observable when it was not there previously. One function
687 // being transformed to introduce an escape which could possibly be observed
688 // (via loading from a global or the return value for example) within another
689 // function is never safe. If the observation is made through non-atomic
690 // operations on different threads, it is a data-race and UB. If the
691 // observation is well defined, by being observed the transformation would have
692 // changed program behavior by introducing the observed escape, making it an
693 // invalid transform.
695 // This property does require that transformations which *temporarily* escape
696 // a global that was not previously escaped, prior to restoring it, cannot rely
697 // on the results of GMR::alias. This seems a reasonable restriction, although
698 // currently there is no way to enforce it. There is also no realistic
699 // optimization pass that would make this mistake. The closest example is
700 // a transformation pass which does reg2mem of SSA values but stores them into
701 // global variables temporarily before restoring the global variable's value.
702 // This could be useful to expose "benign" races for example. However, it seems
703 // reasonable to require that a pass which introduces escapes of global
704 // variables in this way to either not trust AA results while the escape is
705 // active, or to be forced to operate as a module pass that cannot co-exist
706 // with an alias analysis such as GMR.
707 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
708 const Value *V) {
709 // In order to know that the underlying object cannot alias the
710 // non-addr-taken global, we must know that it would have to be an escape.
711 // Thus if the underlying object is a function argument, a load from
712 // a global, or the return of a function, it cannot alias. We can also
713 // recurse through PHI nodes and select nodes provided all of their inputs
714 // resolve to one of these known-escaping roots.
715 SmallPtrSet<const Value *, 8> Visited;
716 SmallVector<const Value *, 8> Inputs;
717 Visited.insert(V);
718 Inputs.push_back(V);
719 int Depth = 0;
720 do {
721 const Value *Input = Inputs.pop_back_val();
723 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
724 // If one input is the very global we're querying against, then we can't
725 // conclude no-alias.
726 if (InputGV == GV)
727 return false;
729 // Distinct GlobalVariables never alias, unless overriden or zero-sized.
730 // FIXME: The condition can be refined, but be conservative for now.
731 auto *GVar = dyn_cast<GlobalVariable>(GV);
732 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
733 if (GVar && InputGVar &&
734 !GVar->isDeclaration() && !InputGVar->isDeclaration() &&
735 !GVar->isInterposable() && !InputGVar->isInterposable()) {
736 Type *GVType = GVar->getInitializer()->getType();
737 Type *InputGVType = InputGVar->getInitializer()->getType();
738 if (GVType->isSized() && InputGVType->isSized() &&
739 (DL.getTypeAllocSize(GVType) > 0) &&
740 (DL.getTypeAllocSize(InputGVType) > 0))
741 continue;
744 // Conservatively return false, even though we could be smarter
745 // (e.g. look through GlobalAliases).
746 return false;
749 if (isa<Argument>(Input) || isa<CallInst>(Input) ||
750 isa<InvokeInst>(Input)) {
751 // Arguments to functions or returns from functions are inherently
752 // escaping, so we can immediately classify those as not aliasing any
753 // non-addr-taken globals.
754 continue;
757 // Recurse through a limited number of selects, loads and PHIs. This is an
758 // arbitrary depth of 4, lower numbers could be used to fix compile time
759 // issues if needed, but this is generally expected to be only be important
760 // for small depths.
761 if (++Depth > 4)
762 return false;
764 if (auto *LI = dyn_cast<LoadInst>(Input)) {
765 // A pointer loaded from a global would have been captured, and we know
766 // that the global is non-escaping, so no alias.
767 const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL);
768 if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
769 // The load does not alias with GV.
770 continue;
771 // Otherwise, a load could come from anywhere, so bail.
772 return false;
774 if (auto *SI = dyn_cast<SelectInst>(Input)) {
775 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
776 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
777 if (Visited.insert(LHS).second)
778 Inputs.push_back(LHS);
779 if (Visited.insert(RHS).second)
780 Inputs.push_back(RHS);
781 continue;
783 if (auto *PN = dyn_cast<PHINode>(Input)) {
784 for (const Value *Op : PN->incoming_values()) {
785 Op = GetUnderlyingObject(Op, DL);
786 if (Visited.insert(Op).second)
787 Inputs.push_back(Op);
789 continue;
792 // FIXME: It would be good to handle other obvious no-alias cases here, but
793 // it isn't clear how to do so reasonably without building a small version
794 // of BasicAA into this code. We could recurse into AAResultBase::alias
795 // here but that seems likely to go poorly as we're inside the
796 // implementation of such a query. Until then, just conservatively return
797 // false.
798 return false;
799 } while (!Inputs.empty());
801 // If all the inputs to V were definitively no-alias, then V is no-alias.
802 return true;
805 /// alias - If one of the pointers is to a global that we are tracking, and the
806 /// other is some random pointer, we know there cannot be an alias, because the
807 /// address of the global isn't taken.
808 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
809 const MemoryLocation &LocB,
810 AAQueryInfo &AAQI) {
811 // Get the base object these pointers point to.
812 const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL);
813 const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL);
815 // If either of the underlying values is a global, they may be non-addr-taken
816 // globals, which we can answer queries about.
817 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
818 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
819 if (GV1 || GV2) {
820 // If the global's address is taken, pretend we don't know it's a pointer to
821 // the global.
822 if (GV1 && !NonAddressTakenGlobals.count(GV1))
823 GV1 = nullptr;
824 if (GV2 && !NonAddressTakenGlobals.count(GV2))
825 GV2 = nullptr;
827 // If the two pointers are derived from two different non-addr-taken
828 // globals we know these can't alias.
829 if (GV1 && GV2 && GV1 != GV2)
830 return NoAlias;
832 // If one is and the other isn't, it isn't strictly safe but we can fake
833 // this result if necessary for performance. This does not appear to be
834 // a common problem in practice.
835 if (EnableUnsafeGlobalsModRefAliasResults)
836 if ((GV1 || GV2) && GV1 != GV2)
837 return NoAlias;
839 // Check for a special case where a non-escaping global can be used to
840 // conclude no-alias.
841 if ((GV1 || GV2) && GV1 != GV2) {
842 const GlobalValue *GV = GV1 ? GV1 : GV2;
843 const Value *UV = GV1 ? UV2 : UV1;
844 if (isNonEscapingGlobalNoAlias(GV, UV))
845 return NoAlias;
848 // Otherwise if they are both derived from the same addr-taken global, we
849 // can't know the two accesses don't overlap.
852 // These pointers may be based on the memory owned by an indirect global. If
853 // so, we may be able to handle this. First check to see if the base pointer
854 // is a direct load from an indirect global.
855 GV1 = GV2 = nullptr;
856 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
857 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
858 if (IndirectGlobals.count(GV))
859 GV1 = GV;
860 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
861 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
862 if (IndirectGlobals.count(GV))
863 GV2 = GV;
865 // These pointers may also be from an allocation for the indirect global. If
866 // so, also handle them.
867 if (!GV1)
868 GV1 = AllocsForIndirectGlobals.lookup(UV1);
869 if (!GV2)
870 GV2 = AllocsForIndirectGlobals.lookup(UV2);
872 // Now that we know whether the two pointers are related to indirect globals,
873 // use this to disambiguate the pointers. If the pointers are based on
874 // different indirect globals they cannot alias.
875 if (GV1 && GV2 && GV1 != GV2)
876 return NoAlias;
878 // If one is based on an indirect global and the other isn't, it isn't
879 // strictly safe but we can fake this result if necessary for performance.
880 // This does not appear to be a common problem in practice.
881 if (EnableUnsafeGlobalsModRefAliasResults)
882 if ((GV1 || GV2) && GV1 != GV2)
883 return NoAlias;
885 return AAResultBase::alias(LocA, LocB, AAQI);
888 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call,
889 const GlobalValue *GV,
890 AAQueryInfo &AAQI) {
891 if (Call->doesNotAccessMemory())
892 return ModRefInfo::NoModRef;
893 ModRefInfo ConservativeResult =
894 Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef;
896 // Iterate through all the arguments to the called function. If any argument
897 // is based on GV, return the conservative result.
898 for (auto &A : Call->args()) {
899 SmallVector<const Value*, 4> Objects;
900 GetUnderlyingObjects(A, Objects, DL);
902 // All objects must be identified.
903 if (!all_of(Objects, isIdentifiedObject) &&
904 // Try ::alias to see if all objects are known not to alias GV.
905 !all_of(Objects, [&](const Value *V) {
906 return this->alias(MemoryLocation(V), MemoryLocation(GV), AAQI) ==
907 NoAlias;
909 return ConservativeResult;
911 if (is_contained(Objects, GV))
912 return ConservativeResult;
915 // We identified all objects in the argument list, and none of them were GV.
916 return ModRefInfo::NoModRef;
919 ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call,
920 const MemoryLocation &Loc,
921 AAQueryInfo &AAQI) {
922 ModRefInfo Known = ModRefInfo::ModRef;
924 // If we are asking for mod/ref info of a direct call with a pointer to a
925 // global we are tracking, return information if we have it.
926 if (const GlobalValue *GV =
927 dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL)))
928 if (GV->hasLocalLinkage())
929 if (const Function *F = Call->getCalledFunction())
930 if (NonAddressTakenGlobals.count(GV))
931 if (const FunctionInfo *FI = getFunctionInfo(F))
932 Known = unionModRef(FI->getModRefInfoForGlobal(*GV),
933 getModRefInfoForArgument(Call, GV, AAQI));
935 if (!isModOrRefSet(Known))
936 return ModRefInfo::NoModRef; // No need to query other mod/ref analyses
937 return intersectModRef(Known, AAResultBase::getModRefInfo(Call, Loc, AAQI));
940 GlobalsAAResult::GlobalsAAResult(const DataLayout &DL,
941 const TargetLibraryInfo &TLI)
942 : AAResultBase(), DL(DL), TLI(TLI) {}
944 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
945 : AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI),
946 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
947 IndirectGlobals(std::move(Arg.IndirectGlobals)),
948 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
949 FunctionInfos(std::move(Arg.FunctionInfos)),
950 Handles(std::move(Arg.Handles)) {
951 // Update the parent for each DeletionCallbackHandle.
952 for (auto &H : Handles) {
953 assert(H.GAR == &Arg);
954 H.GAR = this;
958 GlobalsAAResult::~GlobalsAAResult() {}
960 /*static*/ GlobalsAAResult
961 GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI,
962 CallGraph &CG) {
963 GlobalsAAResult Result(M.getDataLayout(), TLI);
965 // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
966 Result.CollectSCCMembership(CG);
968 // Find non-addr taken globals.
969 Result.AnalyzeGlobals(M);
971 // Propagate on CG.
972 Result.AnalyzeCallGraph(CG, M);
974 return Result;
977 AnalysisKey GlobalsAA::Key;
979 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) {
980 return GlobalsAAResult::analyzeModule(M,
981 AM.getResult<TargetLibraryAnalysis>(M),
982 AM.getResult<CallGraphAnalysis>(M));
985 char GlobalsAAWrapperPass::ID = 0;
986 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
987 "Globals Alias Analysis", false, true)
988 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
989 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
990 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
991 "Globals Alias Analysis", false, true)
993 ModulePass *llvm::createGlobalsAAWrapperPass() {
994 return new GlobalsAAWrapperPass();
997 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
998 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
1001 bool GlobalsAAWrapperPass::runOnModule(Module &M) {
1002 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
1003 M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
1004 getAnalysis<CallGraphWrapperPass>().getCallGraph())));
1005 return false;
1008 bool GlobalsAAWrapperPass::doFinalization(Module &M) {
1009 Result.reset();
1010 return false;
1013 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1014 AU.setPreservesAll();
1015 AU.addRequired<CallGraphWrapperPass>();
1016 AU.addRequired<TargetLibraryInfoWrapperPass>();