1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
10 // both before and after the DAG is legalized.
12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
13 // primarily intended to handle simplification opportunities that are implicit
14 // in the LLVM IR and exposed by the various codegen lowering phases.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/IntervalMap.h"
23 #include "llvm/ADT/None.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/CodeGen/DAGCombine.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAG.h"
40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
41 #include "llvm/CodeGen/SelectionDAGNodes.h"
42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Attributes.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/KnownBits.h"
61 #include "llvm/Support/MachineValueType.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
77 #define DEBUG_TYPE "dagcombine"
79 STATISTIC(NodesCombined
, "Number of dag nodes combined");
80 STATISTIC(PreIndexedNodes
, "Number of pre-indexed nodes created");
81 STATISTIC(PostIndexedNodes
, "Number of post-indexed nodes created");
82 STATISTIC(OpsNarrowed
, "Number of load/op/store narrowed");
83 STATISTIC(LdStFP2Int
, "Number of fp load/store pairs transformed to int");
84 STATISTIC(SlicedLoads
, "Number of load sliced");
85 STATISTIC(NumFPLogicOpsConv
, "Number of logic ops converted to fp ops");
88 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden
,
89 cl::desc("Enable DAG combiner's use of IR alias analysis"));
92 UseTBAA("combiner-use-tbaa", cl::Hidden
, cl::init(true),
93 cl::desc("Enable DAG combiner's use of TBAA"));
96 static cl::opt
<std::string
>
97 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden
,
98 cl::desc("Only use DAG-combiner alias analysis in this"
102 /// Hidden option to stress test load slicing, i.e., when this option
103 /// is enabled, load slicing bypasses most of its profitability guards.
105 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden
,
106 cl::desc("Bypass the profitability model of load slicing"),
110 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden
, cl::init(true),
111 cl::desc("DAG combiner may split indexing from loads"));
114 EnableStoreMerging("combiner-store-merging", cl::Hidden
, cl::init(true),
115 cl::desc("DAG combiner enable merging multiple stores "
116 "into a wider store"));
118 static cl::opt
<unsigned> TokenFactorInlineLimit(
119 "combiner-tokenfactor-inline-limit", cl::Hidden
, cl::init(2048),
120 cl::desc("Limit the number of operands to inline for Token Factors"));
122 static cl::opt
<unsigned> StoreMergeDependenceLimit(
123 "combiner-store-merge-dependence-limit", cl::Hidden
, cl::init(10),
124 cl::desc("Limit the number of times for the same StoreNode and RootNode "
125 "to bail out in store merging dependence check"));
131 const TargetLowering
&TLI
;
133 CodeGenOpt::Level OptLevel
;
134 bool LegalOperations
= false;
135 bool LegalTypes
= false;
138 /// Worklist of all of the nodes that need to be simplified.
140 /// This must behave as a stack -- new nodes to process are pushed onto the
141 /// back and when processing we pop off of the back.
143 /// The worklist will not contain duplicates but may contain null entries
144 /// due to nodes being deleted from the underlying DAG.
145 SmallVector
<SDNode
*, 64> Worklist
;
147 /// Mapping from an SDNode to its position on the worklist.
149 /// This is used to find and remove nodes from the worklist (by nulling
150 /// them) when they are deleted from the underlying DAG. It relies on
151 /// stable indices of nodes within the worklist.
152 DenseMap
<SDNode
*, unsigned> WorklistMap
;
153 /// This records all nodes attempted to add to the worklist since we
154 /// considered a new worklist entry. As we keep do not add duplicate nodes
155 /// in the worklist, this is different from the tail of the worklist.
156 SmallSetVector
<SDNode
*, 32> PruningList
;
158 /// Set of nodes which have been combined (at least once).
160 /// This is used to allow us to reliably add any operands of a DAG node
161 /// which have not yet been combined to the worklist.
162 SmallPtrSet
<SDNode
*, 32> CombinedNodes
;
164 /// Map from candidate StoreNode to the pair of RootNode and count.
165 /// The count is used to track how many times we have seen the StoreNode
166 /// with the same RootNode bail out in dependence check. If we have seen
167 /// the bail out for the same pair many times over a limit, we won't
168 /// consider the StoreNode with the same RootNode as store merging
170 DenseMap
<SDNode
*, std::pair
<SDNode
*, unsigned>> StoreRootCountMap
;
172 // AA - Used for DAG load/store alias analysis.
175 /// When an instruction is simplified, add all users of the instruction to
176 /// the work lists because they might get more simplified now.
177 void AddUsersToWorklist(SDNode
*N
) {
178 for (SDNode
*Node
: N
->uses())
182 // Prune potentially dangling nodes. This is called after
183 // any visit to a node, but should also be called during a visit after any
184 // failed combine which may have created a DAG node.
185 void clearAddedDanglingWorklistEntries() {
186 // Check any nodes added to the worklist to see if they are prunable.
187 while (!PruningList
.empty()) {
188 auto *N
= PruningList
.pop_back_val();
190 recursivelyDeleteUnusedNodes(N
);
194 SDNode
*getNextWorklistEntry() {
195 // Before we do any work, remove nodes that are not in use.
196 clearAddedDanglingWorklistEntries();
198 // The Worklist holds the SDNodes in order, but it may contain null
200 while (!N
&& !Worklist
.empty()) {
201 N
= Worklist
.pop_back_val();
205 bool GoodWorklistEntry
= WorklistMap
.erase(N
);
206 (void)GoodWorklistEntry
;
207 assert(GoodWorklistEntry
&&
208 "Found a worklist entry without a corresponding map entry!");
213 /// Call the node-specific routine that folds each particular type of node.
214 SDValue
visit(SDNode
*N
);
217 DAGCombiner(SelectionDAG
&D
, AliasAnalysis
*AA
, CodeGenOpt::Level OL
)
218 : DAG(D
), TLI(D
.getTargetLoweringInfo()), Level(BeforeLegalizeTypes
),
219 OptLevel(OL
), AA(AA
) {
220 ForCodeSize
= DAG
.getMachineFunction().getFunction().hasOptSize();
222 MaximumLegalStoreInBits
= 0;
223 for (MVT VT
: MVT::all_valuetypes())
224 if (EVT(VT
).isSimple() && VT
!= MVT::Other
&&
225 TLI
.isTypeLegal(EVT(VT
)) &&
226 VT
.getSizeInBits() >= MaximumLegalStoreInBits
)
227 MaximumLegalStoreInBits
= VT
.getSizeInBits();
230 void ConsiderForPruning(SDNode
*N
) {
231 // Mark this for potential pruning.
232 PruningList
.insert(N
);
235 /// Add to the worklist making sure its instance is at the back (next to be
237 void AddToWorklist(SDNode
*N
) {
238 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
239 "Deleted Node added to Worklist");
241 // Skip handle nodes as they can't usefully be combined and confuse the
242 // zero-use deletion strategy.
243 if (N
->getOpcode() == ISD::HANDLENODE
)
246 ConsiderForPruning(N
);
248 if (WorklistMap
.insert(std::make_pair(N
, Worklist
.size())).second
)
249 Worklist
.push_back(N
);
252 /// Remove all instances of N from the worklist.
253 void removeFromWorklist(SDNode
*N
) {
254 CombinedNodes
.erase(N
);
255 PruningList
.remove(N
);
256 StoreRootCountMap
.erase(N
);
258 auto It
= WorklistMap
.find(N
);
259 if (It
== WorklistMap
.end())
260 return; // Not in the worklist.
262 // Null out the entry rather than erasing it to avoid a linear operation.
263 Worklist
[It
->second
] = nullptr;
264 WorklistMap
.erase(It
);
267 void deleteAndRecombine(SDNode
*N
);
268 bool recursivelyDeleteUnusedNodes(SDNode
*N
);
270 /// Replaces all uses of the results of one DAG node with new values.
271 SDValue
CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
274 /// Replaces all uses of the results of one DAG node with new values.
275 SDValue
CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
= true) {
276 return CombineTo(N
, &Res
, 1, AddTo
);
279 /// Replaces all uses of the results of one DAG node with new values.
280 SDValue
CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
,
282 SDValue To
[] = { Res0
, Res1
};
283 return CombineTo(N
, To
, 2, AddTo
);
286 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
);
289 unsigned MaximumLegalStoreInBits
;
291 /// Check the specified integer node value to see if it can be simplified or
292 /// if things it uses can be simplified by bit propagation.
293 /// If so, return true.
294 bool SimplifyDemandedBits(SDValue Op
) {
295 unsigned BitWidth
= Op
.getScalarValueSizeInBits();
296 APInt DemandedBits
= APInt::getAllOnesValue(BitWidth
);
297 return SimplifyDemandedBits(Op
, DemandedBits
);
300 bool SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
) {
301 EVT VT
= Op
.getValueType();
302 unsigned NumElts
= VT
.isVector() ? VT
.getVectorNumElements() : 1;
303 APInt DemandedElts
= APInt::getAllOnesValue(NumElts
);
304 return SimplifyDemandedBits(Op
, DemandedBits
, DemandedElts
);
307 /// Check the specified vector node value to see if it can be simplified or
308 /// if things it uses can be simplified as it only uses some of the
309 /// elements. If so, return true.
310 bool SimplifyDemandedVectorElts(SDValue Op
) {
311 unsigned NumElts
= Op
.getValueType().getVectorNumElements();
312 APInt DemandedElts
= APInt::getAllOnesValue(NumElts
);
313 return SimplifyDemandedVectorElts(Op
, DemandedElts
);
316 bool SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
317 const APInt
&DemandedElts
);
318 bool SimplifyDemandedVectorElts(SDValue Op
, const APInt
&DemandedElts
,
319 bool AssumeSingleUse
= false);
321 bool CombineToPreIndexedLoadStore(SDNode
*N
);
322 bool CombineToPostIndexedLoadStore(SDNode
*N
);
323 SDValue
SplitIndexingFromLoad(LoadSDNode
*LD
);
324 bool SliceUpLoad(SDNode
*N
);
326 // Scalars have size 0 to distinguish from singleton vectors.
327 SDValue
ForwardStoreValueToDirectLoad(LoadSDNode
*LD
);
328 bool getTruncatedStoreValue(StoreSDNode
*ST
, SDValue
&Val
);
329 bool extendLoadedValueToExtension(LoadSDNode
*LD
, SDValue
&Val
);
331 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
334 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
335 /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
336 /// \param EltNo index of the vector element to load.
337 /// \param OriginalLoad load that EVE came from to be replaced.
338 /// \returns EVE on success SDValue() on failure.
339 SDValue
scalarizeExtractedVectorLoad(SDNode
*EVE
, EVT InVecVT
,
341 LoadSDNode
*OriginalLoad
);
342 void ReplaceLoadWithPromotedLoad(SDNode
*Load
, SDNode
*ExtLoad
);
343 SDValue
PromoteOperand(SDValue Op
, EVT PVT
, bool &Replace
);
344 SDValue
SExtPromoteOperand(SDValue Op
, EVT PVT
);
345 SDValue
ZExtPromoteOperand(SDValue Op
, EVT PVT
);
346 SDValue
PromoteIntBinOp(SDValue Op
);
347 SDValue
PromoteIntShiftOp(SDValue Op
);
348 SDValue
PromoteExtend(SDValue Op
);
349 bool PromoteLoad(SDValue Op
);
351 /// Call the node-specific routine that knows how to fold each
352 /// particular type of node. If that doesn't do anything, try the
353 /// target-specific DAG combines.
354 SDValue
combine(SDNode
*N
);
356 // Visitation implementation - Implement dag node combining for different
357 // node types. The semantics are as follows:
359 // SDValue.getNode() == 0 - No change was made
360 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
361 // otherwise - N should be replaced by the returned Operand.
363 SDValue
visitTokenFactor(SDNode
*N
);
364 SDValue
visitMERGE_VALUES(SDNode
*N
);
365 SDValue
visitADD(SDNode
*N
);
366 SDValue
visitADDLike(SDNode
*N
);
367 SDValue
visitADDLikeCommutative(SDValue N0
, SDValue N1
, SDNode
*LocReference
);
368 SDValue
visitSUB(SDNode
*N
);
369 SDValue
visitADDSAT(SDNode
*N
);
370 SDValue
visitSUBSAT(SDNode
*N
);
371 SDValue
visitADDC(SDNode
*N
);
372 SDValue
visitADDO(SDNode
*N
);
373 SDValue
visitUADDOLike(SDValue N0
, SDValue N1
, SDNode
*N
);
374 SDValue
visitSUBC(SDNode
*N
);
375 SDValue
visitSUBO(SDNode
*N
);
376 SDValue
visitADDE(SDNode
*N
);
377 SDValue
visitADDCARRY(SDNode
*N
);
378 SDValue
visitADDCARRYLike(SDValue N0
, SDValue N1
, SDValue CarryIn
, SDNode
*N
);
379 SDValue
visitSUBE(SDNode
*N
);
380 SDValue
visitSUBCARRY(SDNode
*N
);
381 SDValue
visitMUL(SDNode
*N
);
382 SDValue
visitMULFIX(SDNode
*N
);
383 SDValue
useDivRem(SDNode
*N
);
384 SDValue
visitSDIV(SDNode
*N
);
385 SDValue
visitSDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
);
386 SDValue
visitUDIV(SDNode
*N
);
387 SDValue
visitUDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
);
388 SDValue
visitREM(SDNode
*N
);
389 SDValue
visitMULHU(SDNode
*N
);
390 SDValue
visitMULHS(SDNode
*N
);
391 SDValue
visitSMUL_LOHI(SDNode
*N
);
392 SDValue
visitUMUL_LOHI(SDNode
*N
);
393 SDValue
visitMULO(SDNode
*N
);
394 SDValue
visitIMINMAX(SDNode
*N
);
395 SDValue
visitAND(SDNode
*N
);
396 SDValue
visitANDLike(SDValue N0
, SDValue N1
, SDNode
*N
);
397 SDValue
visitOR(SDNode
*N
);
398 SDValue
visitORLike(SDValue N0
, SDValue N1
, SDNode
*N
);
399 SDValue
visitXOR(SDNode
*N
);
400 SDValue
SimplifyVBinOp(SDNode
*N
);
401 SDValue
visitSHL(SDNode
*N
);
402 SDValue
visitSRA(SDNode
*N
);
403 SDValue
visitSRL(SDNode
*N
);
404 SDValue
visitFunnelShift(SDNode
*N
);
405 SDValue
visitRotate(SDNode
*N
);
406 SDValue
visitABS(SDNode
*N
);
407 SDValue
visitBSWAP(SDNode
*N
);
408 SDValue
visitBITREVERSE(SDNode
*N
);
409 SDValue
visitCTLZ(SDNode
*N
);
410 SDValue
visitCTLZ_ZERO_UNDEF(SDNode
*N
);
411 SDValue
visitCTTZ(SDNode
*N
);
412 SDValue
visitCTTZ_ZERO_UNDEF(SDNode
*N
);
413 SDValue
visitCTPOP(SDNode
*N
);
414 SDValue
visitSELECT(SDNode
*N
);
415 SDValue
visitVSELECT(SDNode
*N
);
416 SDValue
visitSELECT_CC(SDNode
*N
);
417 SDValue
visitSETCC(SDNode
*N
);
418 SDValue
visitSETCCCARRY(SDNode
*N
);
419 SDValue
visitSIGN_EXTEND(SDNode
*N
);
420 SDValue
visitZERO_EXTEND(SDNode
*N
);
421 SDValue
visitANY_EXTEND(SDNode
*N
);
422 SDValue
visitAssertExt(SDNode
*N
);
423 SDValue
visitSIGN_EXTEND_INREG(SDNode
*N
);
424 SDValue
visitSIGN_EXTEND_VECTOR_INREG(SDNode
*N
);
425 SDValue
visitZERO_EXTEND_VECTOR_INREG(SDNode
*N
);
426 SDValue
visitTRUNCATE(SDNode
*N
);
427 SDValue
visitBITCAST(SDNode
*N
);
428 SDValue
visitBUILD_PAIR(SDNode
*N
);
429 SDValue
visitFADD(SDNode
*N
);
430 SDValue
visitFSUB(SDNode
*N
);
431 SDValue
visitFMUL(SDNode
*N
);
432 SDValue
visitFMA(SDNode
*N
);
433 SDValue
visitFDIV(SDNode
*N
);
434 SDValue
visitFREM(SDNode
*N
);
435 SDValue
visitFSQRT(SDNode
*N
);
436 SDValue
visitFCOPYSIGN(SDNode
*N
);
437 SDValue
visitFPOW(SDNode
*N
);
438 SDValue
visitSINT_TO_FP(SDNode
*N
);
439 SDValue
visitUINT_TO_FP(SDNode
*N
);
440 SDValue
visitFP_TO_SINT(SDNode
*N
);
441 SDValue
visitFP_TO_UINT(SDNode
*N
);
442 SDValue
visitFP_ROUND(SDNode
*N
);
443 SDValue
visitFP_ROUND_INREG(SDNode
*N
);
444 SDValue
visitFP_EXTEND(SDNode
*N
);
445 SDValue
visitFNEG(SDNode
*N
);
446 SDValue
visitFABS(SDNode
*N
);
447 SDValue
visitFCEIL(SDNode
*N
);
448 SDValue
visitFTRUNC(SDNode
*N
);
449 SDValue
visitFFLOOR(SDNode
*N
);
450 SDValue
visitFMINNUM(SDNode
*N
);
451 SDValue
visitFMAXNUM(SDNode
*N
);
452 SDValue
visitFMINIMUM(SDNode
*N
);
453 SDValue
visitFMAXIMUM(SDNode
*N
);
454 SDValue
visitBRCOND(SDNode
*N
);
455 SDValue
visitBR_CC(SDNode
*N
);
456 SDValue
visitLOAD(SDNode
*N
);
458 SDValue
replaceStoreChain(StoreSDNode
*ST
, SDValue BetterChain
);
459 SDValue
replaceStoreOfFPConstant(StoreSDNode
*ST
);
461 SDValue
visitSTORE(SDNode
*N
);
462 SDValue
visitLIFETIME_END(SDNode
*N
);
463 SDValue
visitINSERT_VECTOR_ELT(SDNode
*N
);
464 SDValue
visitEXTRACT_VECTOR_ELT(SDNode
*N
);
465 SDValue
visitBUILD_VECTOR(SDNode
*N
);
466 SDValue
visitCONCAT_VECTORS(SDNode
*N
);
467 SDValue
visitEXTRACT_SUBVECTOR(SDNode
*N
);
468 SDValue
visitVECTOR_SHUFFLE(SDNode
*N
);
469 SDValue
visitSCALAR_TO_VECTOR(SDNode
*N
);
470 SDValue
visitINSERT_SUBVECTOR(SDNode
*N
);
471 SDValue
visitMLOAD(SDNode
*N
);
472 SDValue
visitMSTORE(SDNode
*N
);
473 SDValue
visitMGATHER(SDNode
*N
);
474 SDValue
visitMSCATTER(SDNode
*N
);
475 SDValue
visitFP_TO_FP16(SDNode
*N
);
476 SDValue
visitFP16_TO_FP(SDNode
*N
);
477 SDValue
visitVECREDUCE(SDNode
*N
);
479 SDValue
visitFADDForFMACombine(SDNode
*N
);
480 SDValue
visitFSUBForFMACombine(SDNode
*N
);
481 SDValue
visitFMULForFMADistributiveCombine(SDNode
*N
);
483 SDValue
XformToShuffleWithZero(SDNode
*N
);
484 bool reassociationCanBreakAddressingModePattern(unsigned Opc
,
485 const SDLoc
&DL
, SDValue N0
,
487 SDValue
reassociateOpsCommutative(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
489 SDValue
reassociateOps(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
490 SDValue N1
, SDNodeFlags Flags
);
492 SDValue
visitShiftByConstant(SDNode
*N
);
494 SDValue
foldSelectOfConstants(SDNode
*N
);
495 SDValue
foldVSelectOfConstants(SDNode
*N
);
496 SDValue
foldBinOpIntoSelect(SDNode
*BO
);
497 bool SimplifySelectOps(SDNode
*SELECT
, SDValue LHS
, SDValue RHS
);
498 SDValue
hoistLogicOpWithSameOpcodeHands(SDNode
*N
);
499 SDValue
SimplifySelect(const SDLoc
&DL
, SDValue N0
, SDValue N1
, SDValue N2
);
500 SDValue
SimplifySelectCC(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
501 SDValue N2
, SDValue N3
, ISD::CondCode CC
,
502 bool NotExtCompare
= false);
503 SDValue
convertSelectOfFPConstantsToLoadOffset(
504 const SDLoc
&DL
, SDValue N0
, SDValue N1
, SDValue N2
, SDValue N3
,
506 SDValue
foldSelectCCToShiftAnd(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
507 SDValue N2
, SDValue N3
, ISD::CondCode CC
);
508 SDValue
foldLogicOfSetCCs(bool IsAnd
, SDValue N0
, SDValue N1
,
510 SDValue
unfoldMaskedMerge(SDNode
*N
);
511 SDValue
unfoldExtremeBitClearingToShifts(SDNode
*N
);
512 SDValue
SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
,
513 const SDLoc
&DL
, bool foldBooleans
);
514 SDValue
rebuildSetCC(SDValue N
);
516 bool isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
518 bool isOneUseSetCC(SDValue N
) const;
519 bool isCheaperToUseNegatedFPOps(SDValue X
, SDValue Y
);
521 SDValue
SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
523 SDValue
CombineConsecutiveLoads(SDNode
*N
, EVT VT
);
524 SDValue
CombineExtLoad(SDNode
*N
);
525 SDValue
CombineZExtLogicopShiftLoad(SDNode
*N
);
526 SDValue
combineRepeatedFPDivisors(SDNode
*N
);
527 SDValue
combineInsertEltToShuffle(SDNode
*N
, unsigned InsIndex
);
528 SDValue
ConstantFoldBITCASTofBUILD_VECTOR(SDNode
*, EVT
);
529 SDValue
BuildSDIV(SDNode
*N
);
530 SDValue
BuildSDIVPow2(SDNode
*N
);
531 SDValue
BuildUDIV(SDNode
*N
);
532 SDValue
BuildLogBase2(SDValue V
, const SDLoc
&DL
);
533 SDValue
BuildReciprocalEstimate(SDValue Op
, SDNodeFlags Flags
);
534 SDValue
buildRsqrtEstimate(SDValue Op
, SDNodeFlags Flags
);
535 SDValue
buildSqrtEstimate(SDValue Op
, SDNodeFlags Flags
);
536 SDValue
buildSqrtEstimateImpl(SDValue Op
, SDNodeFlags Flags
, bool Recip
);
537 SDValue
buildSqrtNROneConst(SDValue Arg
, SDValue Est
, unsigned Iterations
,
538 SDNodeFlags Flags
, bool Reciprocal
);
539 SDValue
buildSqrtNRTwoConst(SDValue Arg
, SDValue Est
, unsigned Iterations
,
540 SDNodeFlags Flags
, bool Reciprocal
);
541 SDValue
MatchBSwapHWordLow(SDNode
*N
, SDValue N0
, SDValue N1
,
542 bool DemandHighBits
= true);
543 SDValue
MatchBSwapHWord(SDNode
*N
, SDValue N0
, SDValue N1
);
544 SDNode
*MatchRotatePosNeg(SDValue Shifted
, SDValue Pos
, SDValue Neg
,
545 SDValue InnerPos
, SDValue InnerNeg
,
546 unsigned PosOpcode
, unsigned NegOpcode
,
548 SDNode
*MatchRotate(SDValue LHS
, SDValue RHS
, const SDLoc
&DL
);
549 SDValue
MatchLoadCombine(SDNode
*N
);
550 SDValue
MatchStoreCombine(StoreSDNode
*N
);
551 SDValue
ReduceLoadWidth(SDNode
*N
);
552 SDValue
ReduceLoadOpStoreWidth(SDNode
*N
);
553 SDValue
splitMergedValStore(StoreSDNode
*ST
);
554 SDValue
TransformFPLoadStorePair(SDNode
*N
);
555 SDValue
convertBuildVecZextToZext(SDNode
*N
);
556 SDValue
reduceBuildVecExtToExtBuildVec(SDNode
*N
);
557 SDValue
reduceBuildVecToShuffle(SDNode
*N
);
558 SDValue
createBuildVecShuffle(const SDLoc
&DL
, SDNode
*N
,
559 ArrayRef
<int> VectorMask
, SDValue VecIn1
,
560 SDValue VecIn2
, unsigned LeftIdx
,
562 SDValue
matchVSelectOpSizesWithSetCC(SDNode
*Cast
);
564 /// Walk up chain skipping non-aliasing memory nodes,
565 /// looking for aliasing nodes and adding them to the Aliases vector.
566 void GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
567 SmallVectorImpl
<SDValue
> &Aliases
);
569 /// Return true if there is any possibility that the two addresses overlap.
570 bool isAlias(SDNode
*Op0
, SDNode
*Op1
) const;
572 /// Walk up chain skipping non-aliasing memory nodes, looking for a better
573 /// chain (aliasing node.)
574 SDValue
FindBetterChain(SDNode
*N
, SDValue Chain
);
576 /// Try to replace a store and any possibly adjacent stores on
577 /// consecutive chains with better chains. Return true only if St is
580 /// Notice that other chains may still be replaced even if the function
582 bool findBetterNeighborChains(StoreSDNode
*St
);
584 // Helper for findBetterNeighborChains. Walk up store chain add additional
585 // chained stores that do not overlap and can be parallelized.
586 bool parallelizeChainedStores(StoreSDNode
*St
);
588 /// Holds a pointer to an LSBaseSDNode as well as information on where it
589 /// is located in a sequence of memory operations connected by a chain.
591 // Ptr to the mem node.
592 LSBaseSDNode
*MemNode
;
594 // Offset from the base ptr.
595 int64_t OffsetFromBase
;
597 MemOpLink(LSBaseSDNode
*N
, int64_t Offset
)
598 : MemNode(N
), OffsetFromBase(Offset
) {}
601 /// This is a helper function for visitMUL to check the profitability
602 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
603 /// MulNode is the original multiply, AddNode is (add x, c1),
604 /// and ConstNode is c2.
605 bool isMulAddWithConstProfitable(SDNode
*MulNode
,
609 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns
610 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns
611 /// the type of the loaded value to be extended.
612 bool isAndLoadExtLoad(ConstantSDNode
*AndC
, LoadSDNode
*LoadN
,
613 EVT LoadResultTy
, EVT
&ExtVT
);
615 /// Helper function to calculate whether the given Load/Store can have its
616 /// width reduced to ExtVT.
617 bool isLegalNarrowLdSt(LSBaseSDNode
*LDSTN
, ISD::LoadExtType ExtType
,
618 EVT
&MemVT
, unsigned ShAmt
= 0);
620 /// Used by BackwardsPropagateMask to find suitable loads.
621 bool SearchForAndLoads(SDNode
*N
, SmallVectorImpl
<LoadSDNode
*> &Loads
,
622 SmallPtrSetImpl
<SDNode
*> &NodesWithConsts
,
623 ConstantSDNode
*Mask
, SDNode
*&NodeToMask
);
624 /// Attempt to propagate a given AND node back to load leaves so that they
625 /// can be combined into narrow loads.
626 bool BackwardsPropagateMask(SDNode
*N
, SelectionDAG
&DAG
);
628 /// Helper function for MergeConsecutiveStores which merges the
629 /// component store chains.
630 SDValue
getMergeStoreChains(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
633 /// This is a helper function for MergeConsecutiveStores. When the
634 /// source elements of the consecutive stores are all constants or
635 /// all extracted vector elements, try to merge them into one
636 /// larger store introducing bitcasts if necessary. \return True
637 /// if a merged store was created.
638 bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
639 EVT MemVT
, unsigned NumStores
,
640 bool IsConstantSrc
, bool UseVector
,
643 /// This is a helper function for MergeConsecutiveStores. Stores
644 /// that potentially may be merged with St are placed in
645 /// StoreNodes. RootNode is a chain predecessor to all store
647 void getStoreMergeCandidates(StoreSDNode
*St
,
648 SmallVectorImpl
<MemOpLink
> &StoreNodes
,
651 /// Helper function for MergeConsecutiveStores. Checks if
652 /// candidate stores have indirect dependency through their
653 /// operands. RootNode is the predecessor to all stores calculated
654 /// by getStoreMergeCandidates and is used to prune the dependency check.
655 /// \return True if safe to merge.
656 bool checkMergeStoreCandidatesForDependencies(
657 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumStores
,
660 /// Merge consecutive store operations into a wide store.
661 /// This optimization uses wide integers or vectors when possible.
662 /// \return number of stores that were merged into a merged store (the
663 /// affected nodes are stored as a prefix in \p StoreNodes).
664 bool MergeConsecutiveStores(StoreSDNode
*St
);
666 /// Try to transform a truncation where C is a constant:
667 /// (trunc (and X, C)) -> (and (trunc X), (trunc C))
669 /// \p N needs to be a truncation and its first operand an AND. Other
670 /// requirements are checked by the function (e.g. that trunc is
671 /// single-use) and if missed an empty SDValue is returned.
672 SDValue
distributeTruncateThroughAnd(SDNode
*N
);
674 /// Helper function to determine whether the target supports operation
675 /// given by \p Opcode for type \p VT, that is, whether the operation
676 /// is legal or custom before legalizing operations, and whether is
677 /// legal (but not custom) after legalization.
678 bool hasOperation(unsigned Opcode
, EVT VT
) {
680 return TLI
.isOperationLegal(Opcode
, VT
);
681 return TLI
.isOperationLegalOrCustom(Opcode
, VT
);
685 /// Runs the dag combiner on all nodes in the work list
686 void Run(CombineLevel AtLevel
);
688 SelectionDAG
&getDAG() const { return DAG
; }
690 /// Returns a type large enough to hold any valid shift amount - before type
691 /// legalization these can be huge.
692 EVT
getShiftAmountTy(EVT LHSTy
) {
693 assert(LHSTy
.isInteger() && "Shift amount is not an integer type!");
694 return TLI
.getShiftAmountTy(LHSTy
, DAG
.getDataLayout(), LegalTypes
);
697 /// This method returns true if we are running before type legalization or
698 /// if the specified VT is legal.
699 bool isTypeLegal(const EVT
&VT
) {
700 if (!LegalTypes
) return true;
701 return TLI
.isTypeLegal(VT
);
704 /// Convenience wrapper around TargetLowering::getSetCCResultType
705 EVT
getSetCCResultType(EVT VT
) const {
706 return TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
709 void ExtendSetCCUses(const SmallVectorImpl
<SDNode
*> &SetCCs
,
710 SDValue OrigLoad
, SDValue ExtLoad
,
711 ISD::NodeType ExtType
);
714 /// This class is a DAGUpdateListener that removes any deleted
715 /// nodes from the worklist.
716 class WorklistRemover
: public SelectionDAG::DAGUpdateListener
{
720 explicit WorklistRemover(DAGCombiner
&dc
)
721 : SelectionDAG::DAGUpdateListener(dc
.getDAG()), DC(dc
) {}
723 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
724 DC
.removeFromWorklist(N
);
728 class WorklistInserter
: public SelectionDAG::DAGUpdateListener
{
732 explicit WorklistInserter(DAGCombiner
&dc
)
733 : SelectionDAG::DAGUpdateListener(dc
.getDAG()), DC(dc
) {}
735 // FIXME: Ideally we could add N to the worklist, but this causes exponential
736 // compile time costs in large DAGs, e.g. Halide.
737 void NodeInserted(SDNode
*N
) override
{ DC
.ConsiderForPruning(N
); }
740 } // end anonymous namespace
742 //===----------------------------------------------------------------------===//
743 // TargetLowering::DAGCombinerInfo implementation
744 //===----------------------------------------------------------------------===//
746 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode
*N
) {
747 ((DAGCombiner
*)DC
)->AddToWorklist(N
);
750 SDValue
TargetLowering::DAGCombinerInfo::
751 CombineTo(SDNode
*N
, ArrayRef
<SDValue
> To
, bool AddTo
) {
752 return ((DAGCombiner
*)DC
)->CombineTo(N
, &To
[0], To
.size(), AddTo
);
755 SDValue
TargetLowering::DAGCombinerInfo::
756 CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
) {
757 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res
, AddTo
);
760 SDValue
TargetLowering::DAGCombinerInfo::
761 CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
, bool AddTo
) {
762 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res0
, Res1
, AddTo
);
765 void TargetLowering::DAGCombinerInfo::
766 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
767 return ((DAGCombiner
*)DC
)->CommitTargetLoweringOpt(TLO
);
770 //===----------------------------------------------------------------------===//
772 //===----------------------------------------------------------------------===//
774 void DAGCombiner::deleteAndRecombine(SDNode
*N
) {
775 removeFromWorklist(N
);
777 // If the operands of this node are only used by the node, they will now be
778 // dead. Make sure to re-visit them and recursively delete dead nodes.
779 for (const SDValue
&Op
: N
->ops())
780 // For an operand generating multiple values, one of the values may
781 // become dead allowing further simplification (e.g. split index
782 // arithmetic from an indexed load).
783 if (Op
->hasOneUse() || Op
->getNumValues() > 1)
784 AddToWorklist(Op
.getNode());
789 /// Return 1 if we can compute the negated form of the specified expression for
790 /// the same cost as the expression itself, or 2 if we can compute the negated
791 /// form more cheaply than the expression itself.
792 static char isNegatibleForFree(SDValue Op
, bool LegalOperations
,
793 const TargetLowering
&TLI
,
794 const TargetOptions
*Options
,
796 unsigned Depth
= 0) {
797 // fneg is removable even if it has multiple uses.
798 if (Op
.getOpcode() == ISD::FNEG
)
801 // Don't allow anything with multiple uses unless we know it is free.
802 EVT VT
= Op
.getValueType();
803 const SDNodeFlags Flags
= Op
->getFlags();
804 if (!Op
.hasOneUse() &&
805 !(Op
.getOpcode() == ISD::FP_EXTEND
&&
806 TLI
.isFPExtFree(VT
, Op
.getOperand(0).getValueType())))
809 // Don't recurse exponentially.
813 switch (Op
.getOpcode()) {
814 default: return false;
815 case ISD::ConstantFP
: {
816 if (!LegalOperations
)
819 // Don't invert constant FP values after legalization unless the target says
820 // the negated constant is legal.
821 return TLI
.isOperationLegal(ISD::ConstantFP
, VT
) ||
822 TLI
.isFPImmLegal(neg(cast
<ConstantFPSDNode
>(Op
)->getValueAPF()), VT
,
825 case ISD::BUILD_VECTOR
: {
826 // Only permit BUILD_VECTOR of constants.
827 if (llvm::any_of(Op
->op_values(), [&](SDValue N
) {
828 return !N
.isUndef() && !isa
<ConstantFPSDNode
>(N
);
831 if (!LegalOperations
)
833 if (TLI
.isOperationLegal(ISD::ConstantFP
, VT
) &&
834 TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
))
836 return llvm::all_of(Op
->op_values(), [&](SDValue N
) {
837 return N
.isUndef() ||
838 TLI
.isFPImmLegal(neg(cast
<ConstantFPSDNode
>(N
)->getValueAPF()), VT
,
843 if (!Options
->NoSignedZerosFPMath
&& !Flags
.hasNoSignedZeros())
846 // After operation legalization, it might not be legal to create new FSUBs.
847 if (LegalOperations
&& !TLI
.isOperationLegalOrCustom(ISD::FSUB
, VT
))
850 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
851 if (char V
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
, TLI
,
852 Options
, ForCodeSize
, Depth
+ 1))
854 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
855 return isNegatibleForFree(Op
.getOperand(1), LegalOperations
, TLI
, Options
,
856 ForCodeSize
, Depth
+ 1);
858 // We can't turn -(A-B) into B-A when we honor signed zeros.
859 if (!Options
->NoSignedZerosFPMath
&& !Flags
.hasNoSignedZeros())
862 // fold (fneg (fsub A, B)) -> (fsub B, A)
867 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
868 if (char V
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
, TLI
,
869 Options
, ForCodeSize
, Depth
+ 1))
872 // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
873 if (auto *C
= isConstOrConstSplatFP(Op
.getOperand(1)))
874 if (C
->isExactlyValue(2.0) && Op
.getOpcode() == ISD::FMUL
)
877 return isNegatibleForFree(Op
.getOperand(1), LegalOperations
, TLI
, Options
,
878 ForCodeSize
, Depth
+ 1);
882 if (!Options
->NoSignedZerosFPMath
&& !Flags
.hasNoSignedZeros())
885 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
886 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
887 char V2
= isNegatibleForFree(Op
.getOperand(2), LegalOperations
, TLI
,
888 Options
, ForCodeSize
, Depth
+ 1);
892 // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
893 char V0
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
, TLI
,
894 Options
, ForCodeSize
, Depth
+ 1);
895 char V1
= isNegatibleForFree(Op
.getOperand(1), LegalOperations
, TLI
,
896 Options
, ForCodeSize
, Depth
+ 1);
897 char V01
= std::max(V0
, V1
);
898 return V01
? std::max(V01
, V2
) : 0;
904 return isNegatibleForFree(Op
.getOperand(0), LegalOperations
, TLI
, Options
,
905 ForCodeSize
, Depth
+ 1);
909 /// If isNegatibleForFree returns true, return the newly negated expression.
910 static SDValue
GetNegatedExpression(SDValue Op
, SelectionDAG
&DAG
,
911 bool LegalOperations
, bool ForCodeSize
,
912 unsigned Depth
= 0) {
913 // fneg is removable even if it has multiple uses.
914 if (Op
.getOpcode() == ISD::FNEG
)
915 return Op
.getOperand(0);
917 assert(Depth
<= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
918 const TargetOptions
&Options
= DAG
.getTarget().Options
;
919 const SDNodeFlags Flags
= Op
->getFlags();
921 switch (Op
.getOpcode()) {
922 default: llvm_unreachable("Unknown code");
923 case ISD::ConstantFP
: {
924 APFloat V
= cast
<ConstantFPSDNode
>(Op
)->getValueAPF();
926 return DAG
.getConstantFP(V
, SDLoc(Op
), Op
.getValueType());
928 case ISD::BUILD_VECTOR
: {
929 SmallVector
<SDValue
, 4> Ops
;
930 for (SDValue C
: Op
->op_values()) {
935 APFloat V
= cast
<ConstantFPSDNode
>(C
)->getValueAPF();
937 Ops
.push_back(DAG
.getConstantFP(V
, SDLoc(Op
), C
.getValueType()));
939 return DAG
.getBuildVector(Op
.getValueType(), SDLoc(Op
), Ops
);
942 assert((Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros()) &&
943 "Expected NSZ fp-flag");
945 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
946 if (isNegatibleForFree(Op
.getOperand(0), LegalOperations
,
947 DAG
.getTargetLoweringInfo(), &Options
, ForCodeSize
,
949 return DAG
.getNode(ISD::FSUB
, SDLoc(Op
), Op
.getValueType(),
950 GetNegatedExpression(Op
.getOperand(0), DAG
,
951 LegalOperations
, ForCodeSize
,
953 Op
.getOperand(1), Flags
);
954 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
955 return DAG
.getNode(ISD::FSUB
, SDLoc(Op
), Op
.getValueType(),
956 GetNegatedExpression(Op
.getOperand(1), DAG
,
957 LegalOperations
, ForCodeSize
,
959 Op
.getOperand(0), Flags
);
961 // fold (fneg (fsub 0, B)) -> B
962 if (ConstantFPSDNode
*N0CFP
=
963 isConstOrConstSplatFP(Op
.getOperand(0), /*AllowUndefs*/ true))
965 return Op
.getOperand(1);
967 // fold (fneg (fsub A, B)) -> (fsub B, A)
968 return DAG
.getNode(ISD::FSUB
, SDLoc(Op
), Op
.getValueType(),
969 Op
.getOperand(1), Op
.getOperand(0), Flags
);
973 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
974 if (isNegatibleForFree(Op
.getOperand(0), LegalOperations
,
975 DAG
.getTargetLoweringInfo(), &Options
, ForCodeSize
,
977 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(),
978 GetNegatedExpression(Op
.getOperand(0), DAG
,
979 LegalOperations
, ForCodeSize
,
981 Op
.getOperand(1), Flags
);
983 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
984 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(),
986 GetNegatedExpression(Op
.getOperand(1), DAG
,
987 LegalOperations
, ForCodeSize
,
992 assert((Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros()) &&
993 "Expected NSZ fp-flag");
995 SDValue Neg2
= GetNegatedExpression(Op
.getOperand(2), DAG
, LegalOperations
,
996 ForCodeSize
, Depth
+ 1);
998 char V0
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
,
999 DAG
.getTargetLoweringInfo(), &Options
,
1000 ForCodeSize
, Depth
+ 1);
1001 char V1
= isNegatibleForFree(Op
.getOperand(1), LegalOperations
,
1002 DAG
.getTargetLoweringInfo(), &Options
,
1003 ForCodeSize
, Depth
+ 1);
1005 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
1006 SDValue Neg0
= GetNegatedExpression(
1007 Op
.getOperand(0), DAG
, LegalOperations
, ForCodeSize
, Depth
+ 1);
1008 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(), Neg0
,
1009 Op
.getOperand(1), Neg2
, Flags
);
1012 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
1013 SDValue Neg1
= GetNegatedExpression(Op
.getOperand(1), DAG
, LegalOperations
,
1014 ForCodeSize
, Depth
+ 1);
1015 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(),
1016 Op
.getOperand(0), Neg1
, Neg2
, Flags
);
1019 case ISD::FP_EXTEND
:
1021 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(),
1022 GetNegatedExpression(Op
.getOperand(0), DAG
,
1023 LegalOperations
, ForCodeSize
,
1026 return DAG
.getNode(ISD::FP_ROUND
, SDLoc(Op
), Op
.getValueType(),
1027 GetNegatedExpression(Op
.getOperand(0), DAG
,
1028 LegalOperations
, ForCodeSize
,
1034 // APInts must be the same size for most operations, this helper
1035 // function zero extends the shorter of the pair so that they match.
1036 // We provide an Offset so that we can create bitwidths that won't overflow.
1037 static void zeroExtendToMatch(APInt
&LHS
, APInt
&RHS
, unsigned Offset
= 0) {
1038 unsigned Bits
= Offset
+ std::max(LHS
.getBitWidth(), RHS
.getBitWidth());
1039 LHS
= LHS
.zextOrSelf(Bits
);
1040 RHS
= RHS
.zextOrSelf(Bits
);
1043 // Return true if this node is a setcc, or is a select_cc
1044 // that selects between the target values used for true and false, making it
1045 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
1046 // the appropriate nodes based on the type of node we are checking. This
1047 // simplifies life a bit for the callers.
1048 bool DAGCombiner::isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
1049 SDValue
&CC
) const {
1050 if (N
.getOpcode() == ISD::SETCC
) {
1051 LHS
= N
.getOperand(0);
1052 RHS
= N
.getOperand(1);
1053 CC
= N
.getOperand(2);
1057 if (N
.getOpcode() != ISD::SELECT_CC
||
1058 !TLI
.isConstTrueVal(N
.getOperand(2).getNode()) ||
1059 !TLI
.isConstFalseVal(N
.getOperand(3).getNode()))
1062 if (TLI
.getBooleanContents(N
.getValueType()) ==
1063 TargetLowering::UndefinedBooleanContent
)
1066 LHS
= N
.getOperand(0);
1067 RHS
= N
.getOperand(1);
1068 CC
= N
.getOperand(4);
1072 /// Return true if this is a SetCC-equivalent operation with only one use.
1073 /// If this is true, it allows the users to invert the operation for free when
1074 /// it is profitable to do so.
1075 bool DAGCombiner::isOneUseSetCC(SDValue N
) const {
1077 if (isSetCCEquivalent(N
, N0
, N1
, N2
) && N
.getNode()->hasOneUse())
1082 // Returns the SDNode if it is a constant float BuildVector
1083 // or constant float.
1084 static SDNode
*isConstantFPBuildVectorOrConstantFP(SDValue N
) {
1085 if (isa
<ConstantFPSDNode
>(N
))
1087 if (ISD::isBuildVectorOfConstantFPSDNodes(N
.getNode()))
1092 // Determines if it is a constant integer or a build vector of constant
1093 // integers (and undefs).
1094 // Do not permit build vector implicit truncation.
1095 static bool isConstantOrConstantVector(SDValue N
, bool NoOpaques
= false) {
1096 if (ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(N
))
1097 return !(Const
->isOpaque() && NoOpaques
);
1098 if (N
.getOpcode() != ISD::BUILD_VECTOR
)
1100 unsigned BitWidth
= N
.getScalarValueSizeInBits();
1101 for (const SDValue
&Op
: N
->op_values()) {
1104 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(Op
);
1105 if (!Const
|| Const
->getAPIntValue().getBitWidth() != BitWidth
||
1106 (Const
->isOpaque() && NoOpaques
))
1112 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
1114 static bool isAnyConstantBuildVector(SDValue V
, bool NoOpaques
= false) {
1115 if (V
.getOpcode() != ISD::BUILD_VECTOR
)
1117 return isConstantOrConstantVector(V
, NoOpaques
) ||
1118 ISD::isBuildVectorOfConstantFPSDNodes(V
.getNode());
1121 bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc
,
1125 // Currently this only tries to ensure we don't undo the GEP splits done by
1126 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this,
1127 // we check if the following transformation would be problematic:
1128 // (load/store (add, (add, x, offset1), offset2)) ->
1129 // (load/store (add, x, offset1+offset2)).
1131 if (Opc
!= ISD::ADD
|| N0
.getOpcode() != ISD::ADD
)
1137 auto *C1
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
1138 auto *C2
= dyn_cast
<ConstantSDNode
>(N1
);
1142 const APInt
&C1APIntVal
= C1
->getAPIntValue();
1143 const APInt
&C2APIntVal
= C2
->getAPIntValue();
1144 if (C1APIntVal
.getBitWidth() > 64 || C2APIntVal
.getBitWidth() > 64)
1147 const APInt CombinedValueIntVal
= C1APIntVal
+ C2APIntVal
;
1148 if (CombinedValueIntVal
.getBitWidth() > 64)
1150 const int64_t CombinedValue
= CombinedValueIntVal
.getSExtValue();
1152 for (SDNode
*Node
: N0
->uses()) {
1153 auto LoadStore
= dyn_cast
<MemSDNode
>(Node
);
1155 // Is x[offset2] already not a legal addressing mode? If so then
1156 // reassociating the constants breaks nothing (we test offset2 because
1157 // that's the one we hope to fold into the load or store).
1158 TargetLoweringBase::AddrMode AM
;
1159 AM
.HasBaseReg
= true;
1160 AM
.BaseOffs
= C2APIntVal
.getSExtValue();
1161 EVT VT
= LoadStore
->getMemoryVT();
1162 unsigned AS
= LoadStore
->getAddressSpace();
1163 Type
*AccessTy
= VT
.getTypeForEVT(*DAG
.getContext());
1164 if (!TLI
.isLegalAddressingMode(DAG
.getDataLayout(), AM
, AccessTy
, AS
))
1167 // Would x[offset1+offset2] still be a legal addressing mode?
1168 AM
.BaseOffs
= CombinedValue
;
1169 if (!TLI
.isLegalAddressingMode(DAG
.getDataLayout(), AM
, AccessTy
, AS
))
1177 // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression
1178 // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc.
1179 SDValue
DAGCombiner::reassociateOpsCommutative(unsigned Opc
, const SDLoc
&DL
,
1180 SDValue N0
, SDValue N1
) {
1181 EVT VT
= N0
.getValueType();
1183 if (N0
.getOpcode() != Opc
)
1186 // Don't reassociate reductions.
1187 if (N0
->getFlags().hasVectorReduction())
1190 if (SDNode
*C1
= DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1))) {
1191 if (SDNode
*C2
= DAG
.isConstantIntBuildVectorOrConstantInt(N1
)) {
1192 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2))
1193 if (SDValue OpNode
= DAG
.FoldConstantArithmetic(Opc
, DL
, VT
, C1
, C2
))
1194 return DAG
.getNode(Opc
, DL
, VT
, N0
.getOperand(0), OpNode
);
1197 if (N0
.hasOneUse()) {
1198 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
1199 // iff (op x, c1) has one use
1200 SDValue OpNode
= DAG
.getNode(Opc
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
1201 if (!OpNode
.getNode())
1203 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N0
.getOperand(1));
1209 // Try to reassociate commutative binops.
1210 SDValue
DAGCombiner::reassociateOps(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
1211 SDValue N1
, SDNodeFlags Flags
) {
1212 assert(TLI
.isCommutativeBinOp(Opc
) && "Operation not commutative.");
1213 // Don't reassociate reductions.
1214 if (Flags
.hasVectorReduction())
1217 // Floating-point reassociation is not allowed without loose FP math.
1218 if (N0
.getValueType().isFloatingPoint() ||
1219 N1
.getValueType().isFloatingPoint())
1220 if (!Flags
.hasAllowReassociation() || !Flags
.hasNoSignedZeros())
1223 if (SDValue Combined
= reassociateOpsCommutative(Opc
, DL
, N0
, N1
))
1225 if (SDValue Combined
= reassociateOpsCommutative(Opc
, DL
, N1
, N0
))
1230 SDValue
DAGCombiner::CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
1232 assert(N
->getNumValues() == NumTo
&& "Broken CombineTo call!");
1234 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N
->dump(&DAG
); dbgs() << "\nWith: ";
1235 To
[0].getNode()->dump(&DAG
);
1236 dbgs() << " and " << NumTo
- 1 << " other values\n");
1237 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
)
1238 assert((!To
[i
].getNode() ||
1239 N
->getValueType(i
) == To
[i
].getValueType()) &&
1240 "Cannot combine value to value of different type!");
1242 WorklistRemover
DeadNodes(*this);
1243 DAG
.ReplaceAllUsesWith(N
, To
);
1245 // Push the new nodes and any users onto the worklist
1246 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
) {
1247 if (To
[i
].getNode()) {
1248 AddToWorklist(To
[i
].getNode());
1249 AddUsersToWorklist(To
[i
].getNode());
1254 // Finally, if the node is now dead, remove it from the graph. The node
1255 // may not be dead if the replacement process recursively simplified to
1256 // something else needing this node.
1258 deleteAndRecombine(N
);
1259 return SDValue(N
, 0);
1263 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
1264 // Replace all uses. If any nodes become isomorphic to other nodes and
1265 // are deleted, make sure to remove them from our worklist.
1266 WorklistRemover
DeadNodes(*this);
1267 DAG
.ReplaceAllUsesOfValueWith(TLO
.Old
, TLO
.New
);
1269 // Push the new node and any (possibly new) users onto the worklist.
1270 AddToWorklist(TLO
.New
.getNode());
1271 AddUsersToWorklist(TLO
.New
.getNode());
1273 // Finally, if the node is now dead, remove it from the graph. The node
1274 // may not be dead if the replacement process recursively simplified to
1275 // something else needing this node.
1276 if (TLO
.Old
.getNode()->use_empty())
1277 deleteAndRecombine(TLO
.Old
.getNode());
1280 /// Check the specified integer node value to see if it can be simplified or if
1281 /// things it uses can be simplified by bit propagation. If so, return true.
1282 bool DAGCombiner::SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
1283 const APInt
&DemandedElts
) {
1284 TargetLowering::TargetLoweringOpt
TLO(DAG
, LegalTypes
, LegalOperations
);
1286 if (!TLI
.SimplifyDemandedBits(Op
, DemandedBits
, DemandedElts
, Known
, TLO
))
1289 // Revisit the node.
1290 AddToWorklist(Op
.getNode());
1292 // Replace the old value with the new one.
1294 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO
.Old
.getNode()->dump(&DAG
);
1295 dbgs() << "\nWith: "; TLO
.New
.getNode()->dump(&DAG
);
1298 CommitTargetLoweringOpt(TLO
);
1302 /// Check the specified vector node value to see if it can be simplified or
1303 /// if things it uses can be simplified as it only uses some of the elements.
1304 /// If so, return true.
1305 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op
,
1306 const APInt
&DemandedElts
,
1307 bool AssumeSingleUse
) {
1308 TargetLowering::TargetLoweringOpt
TLO(DAG
, LegalTypes
, LegalOperations
);
1309 APInt KnownUndef
, KnownZero
;
1310 if (!TLI
.SimplifyDemandedVectorElts(Op
, DemandedElts
, KnownUndef
, KnownZero
,
1311 TLO
, 0, AssumeSingleUse
))
1314 // Revisit the node.
1315 AddToWorklist(Op
.getNode());
1317 // Replace the old value with the new one.
1319 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO
.Old
.getNode()->dump(&DAG
);
1320 dbgs() << "\nWith: "; TLO
.New
.getNode()->dump(&DAG
);
1323 CommitTargetLoweringOpt(TLO
);
1327 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode
*Load
, SDNode
*ExtLoad
) {
1329 EVT VT
= Load
->getValueType(0);
1330 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, SDValue(ExtLoad
, 0));
1332 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load
->dump(&DAG
); dbgs() << "\nWith: ";
1333 Trunc
.getNode()->dump(&DAG
); dbgs() << '\n');
1334 WorklistRemover
DeadNodes(*this);
1335 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 0), Trunc
);
1336 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 1), SDValue(ExtLoad
, 1));
1337 deleteAndRecombine(Load
);
1338 AddToWorklist(Trunc
.getNode());
1341 SDValue
DAGCombiner::PromoteOperand(SDValue Op
, EVT PVT
, bool &Replace
) {
1344 if (ISD::isUNINDEXEDLoad(Op
.getNode())) {
1345 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
1346 EVT MemVT
= LD
->getMemoryVT();
1347 ISD::LoadExtType ExtType
= ISD::isNON_EXTLoad(LD
) ? ISD::EXTLOAD
1348 : LD
->getExtensionType();
1350 return DAG
.getExtLoad(ExtType
, DL
, PVT
,
1351 LD
->getChain(), LD
->getBasePtr(),
1352 MemVT
, LD
->getMemOperand());
1355 unsigned Opc
= Op
.getOpcode();
1358 case ISD::AssertSext
:
1359 if (SDValue Op0
= SExtPromoteOperand(Op
.getOperand(0), PVT
))
1360 return DAG
.getNode(ISD::AssertSext
, DL
, PVT
, Op0
, Op
.getOperand(1));
1362 case ISD::AssertZext
:
1363 if (SDValue Op0
= ZExtPromoteOperand(Op
.getOperand(0), PVT
))
1364 return DAG
.getNode(ISD::AssertZext
, DL
, PVT
, Op0
, Op
.getOperand(1));
1366 case ISD::Constant
: {
1368 Op
.getValueType().isByteSized() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
1369 return DAG
.getNode(ExtOpc
, DL
, PVT
, Op
);
1373 if (!TLI
.isOperationLegal(ISD::ANY_EXTEND
, PVT
))
1375 return DAG
.getNode(ISD::ANY_EXTEND
, DL
, PVT
, Op
);
1378 SDValue
DAGCombiner::SExtPromoteOperand(SDValue Op
, EVT PVT
) {
1379 if (!TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
, PVT
))
1381 EVT OldVT
= Op
.getValueType();
1383 bool Replace
= false;
1384 SDValue NewOp
= PromoteOperand(Op
, PVT
, Replace
);
1385 if (!NewOp
.getNode())
1387 AddToWorklist(NewOp
.getNode());
1390 ReplaceLoadWithPromotedLoad(Op
.getNode(), NewOp
.getNode());
1391 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, NewOp
.getValueType(), NewOp
,
1392 DAG
.getValueType(OldVT
));
1395 SDValue
DAGCombiner::ZExtPromoteOperand(SDValue Op
, EVT PVT
) {
1396 EVT OldVT
= Op
.getValueType();
1398 bool Replace
= false;
1399 SDValue NewOp
= PromoteOperand(Op
, PVT
, Replace
);
1400 if (!NewOp
.getNode())
1402 AddToWorklist(NewOp
.getNode());
1405 ReplaceLoadWithPromotedLoad(Op
.getNode(), NewOp
.getNode());
1406 return DAG
.getZeroExtendInReg(NewOp
, DL
, OldVT
);
1409 /// Promote the specified integer binary operation if the target indicates it is
1410 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1411 /// i32 since i16 instructions are longer.
1412 SDValue
DAGCombiner::PromoteIntBinOp(SDValue Op
) {
1413 if (!LegalOperations
)
1416 EVT VT
= Op
.getValueType();
1417 if (VT
.isVector() || !VT
.isInteger())
1420 // If operation type is 'undesirable', e.g. i16 on x86, consider
1422 unsigned Opc
= Op
.getOpcode();
1423 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1427 // Consult target whether it is a good idea to promote this operation and
1428 // what's the right type to promote it to.
1429 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1430 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1432 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1434 bool Replace0
= false;
1435 SDValue N0
= Op
.getOperand(0);
1436 SDValue NN0
= PromoteOperand(N0
, PVT
, Replace0
);
1438 bool Replace1
= false;
1439 SDValue N1
= Op
.getOperand(1);
1440 SDValue NN1
= PromoteOperand(N1
, PVT
, Replace1
);
1444 DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, DAG
.getNode(Opc
, DL
, PVT
, NN0
, NN1
));
1446 // We are always replacing N0/N1's use in N and only need
1447 // additional replacements if there are additional uses.
1448 Replace0
&= !N0
->hasOneUse();
1449 Replace1
&= (N0
!= N1
) && !N1
->hasOneUse();
1451 // Combine Op here so it is preserved past replacements.
1452 CombineTo(Op
.getNode(), RV
);
1454 // If operands have a use ordering, make sure we deal with
1455 // predecessor first.
1456 if (Replace0
&& Replace1
&& N0
.getNode()->isPredecessorOf(N1
.getNode())) {
1458 std::swap(NN0
, NN1
);
1462 AddToWorklist(NN0
.getNode());
1463 ReplaceLoadWithPromotedLoad(N0
.getNode(), NN0
.getNode());
1466 AddToWorklist(NN1
.getNode());
1467 ReplaceLoadWithPromotedLoad(N1
.getNode(), NN1
.getNode());
1474 /// Promote the specified integer shift operation if the target indicates it is
1475 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1476 /// i32 since i16 instructions are longer.
1477 SDValue
DAGCombiner::PromoteIntShiftOp(SDValue Op
) {
1478 if (!LegalOperations
)
1481 EVT VT
= Op
.getValueType();
1482 if (VT
.isVector() || !VT
.isInteger())
1485 // If operation type is 'undesirable', e.g. i16 on x86, consider
1487 unsigned Opc
= Op
.getOpcode();
1488 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1492 // Consult target whether it is a good idea to promote this operation and
1493 // what's the right type to promote it to.
1494 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1495 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1497 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1499 bool Replace
= false;
1500 SDValue N0
= Op
.getOperand(0);
1501 SDValue N1
= Op
.getOperand(1);
1502 if (Opc
== ISD::SRA
)
1503 N0
= SExtPromoteOperand(N0
, PVT
);
1504 else if (Opc
== ISD::SRL
)
1505 N0
= ZExtPromoteOperand(N0
, PVT
);
1507 N0
= PromoteOperand(N0
, PVT
, Replace
);
1514 DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, DAG
.getNode(Opc
, DL
, PVT
, N0
, N1
));
1517 ReplaceLoadWithPromotedLoad(Op
.getOperand(0).getNode(), N0
.getNode());
1519 // Deal with Op being deleted.
1520 if (Op
&& Op
.getOpcode() != ISD::DELETED_NODE
)
1526 SDValue
DAGCombiner::PromoteExtend(SDValue Op
) {
1527 if (!LegalOperations
)
1530 EVT VT
= Op
.getValueType();
1531 if (VT
.isVector() || !VT
.isInteger())
1534 // If operation type is 'undesirable', e.g. i16 on x86, consider
1536 unsigned Opc
= Op
.getOpcode();
1537 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1541 // Consult target whether it is a good idea to promote this operation and
1542 // what's the right type to promote it to.
1543 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1544 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1545 // fold (aext (aext x)) -> (aext x)
1546 // fold (aext (zext x)) -> (zext x)
1547 // fold (aext (sext x)) -> (sext x)
1548 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1549 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), VT
, Op
.getOperand(0));
1554 bool DAGCombiner::PromoteLoad(SDValue Op
) {
1555 if (!LegalOperations
)
1558 if (!ISD::isUNINDEXEDLoad(Op
.getNode()))
1561 EVT VT
= Op
.getValueType();
1562 if (VT
.isVector() || !VT
.isInteger())
1565 // If operation type is 'undesirable', e.g. i16 on x86, consider
1567 unsigned Opc
= Op
.getOpcode();
1568 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1572 // Consult target whether it is a good idea to promote this operation and
1573 // what's the right type to promote it to.
1574 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1575 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1578 SDNode
*N
= Op
.getNode();
1579 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1580 EVT MemVT
= LD
->getMemoryVT();
1581 ISD::LoadExtType ExtType
= ISD::isNON_EXTLoad(LD
) ? ISD::EXTLOAD
1582 : LD
->getExtensionType();
1583 SDValue NewLD
= DAG
.getExtLoad(ExtType
, DL
, PVT
,
1584 LD
->getChain(), LD
->getBasePtr(),
1585 MemVT
, LD
->getMemOperand());
1586 SDValue Result
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, NewLD
);
1588 LLVM_DEBUG(dbgs() << "\nPromoting "; N
->dump(&DAG
); dbgs() << "\nTo: ";
1589 Result
.getNode()->dump(&DAG
); dbgs() << '\n');
1590 WorklistRemover
DeadNodes(*this);
1591 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
);
1592 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), NewLD
.getValue(1));
1593 deleteAndRecombine(N
);
1594 AddToWorklist(Result
.getNode());
1600 /// Recursively delete a node which has no uses and any operands for
1601 /// which it is the only use.
1603 /// Note that this both deletes the nodes and removes them from the worklist.
1604 /// It also adds any nodes who have had a user deleted to the worklist as they
1605 /// may now have only one use and subject to other combines.
1606 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode
*N
) {
1607 if (!N
->use_empty())
1610 SmallSetVector
<SDNode
*, 16> Nodes
;
1613 N
= Nodes
.pop_back_val();
1617 if (N
->use_empty()) {
1618 for (const SDValue
&ChildN
: N
->op_values())
1619 Nodes
.insert(ChildN
.getNode());
1621 removeFromWorklist(N
);
1626 } while (!Nodes
.empty());
1630 //===----------------------------------------------------------------------===//
1631 // Main DAG Combiner implementation
1632 //===----------------------------------------------------------------------===//
1634 void DAGCombiner::Run(CombineLevel AtLevel
) {
1635 // set the instance variables, so that the various visit routines may use it.
1637 LegalOperations
= Level
>= AfterLegalizeVectorOps
;
1638 LegalTypes
= Level
>= AfterLegalizeTypes
;
1640 WorklistInserter
AddNodes(*this);
1642 // Add all the dag nodes to the worklist.
1643 for (SDNode
&Node
: DAG
.allnodes())
1644 AddToWorklist(&Node
);
1646 // Create a dummy node (which is not added to allnodes), that adds a reference
1647 // to the root node, preventing it from being deleted, and tracking any
1648 // changes of the root.
1649 HandleSDNode
Dummy(DAG
.getRoot());
1651 // While we have a valid worklist entry node, try to combine it.
1652 while (SDNode
*N
= getNextWorklistEntry()) {
1653 // If N has no uses, it is dead. Make sure to revisit all N's operands once
1654 // N is deleted from the DAG, since they too may now be dead or may have a
1655 // reduced number of uses, allowing other xforms.
1656 if (recursivelyDeleteUnusedNodes(N
))
1659 WorklistRemover
DeadNodes(*this);
1661 // If this combine is running after legalizing the DAG, re-legalize any
1662 // nodes pulled off the worklist.
1663 if (Level
== AfterLegalizeDAG
) {
1664 SmallSetVector
<SDNode
*, 16> UpdatedNodes
;
1665 bool NIsValid
= DAG
.LegalizeOp(N
, UpdatedNodes
);
1667 for (SDNode
*LN
: UpdatedNodes
) {
1668 AddUsersToWorklist(LN
);
1675 LLVM_DEBUG(dbgs() << "\nCombining: "; N
->dump(&DAG
));
1677 // Add any operands of the new node which have not yet been combined to the
1678 // worklist as well. Because the worklist uniques things already, this
1679 // won't repeatedly process the same operand.
1680 CombinedNodes
.insert(N
);
1681 for (const SDValue
&ChildN
: N
->op_values())
1682 if (!CombinedNodes
.count(ChildN
.getNode()))
1683 AddToWorklist(ChildN
.getNode());
1685 SDValue RV
= combine(N
);
1692 // If we get back the same node we passed in, rather than a new node or
1693 // zero, we know that the node must have defined multiple values and
1694 // CombineTo was used. Since CombineTo takes care of the worklist
1695 // mechanics for us, we have no work to do in this case.
1696 if (RV
.getNode() == N
)
1699 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
1700 RV
.getOpcode() != ISD::DELETED_NODE
&&
1701 "Node was deleted but visit returned new node!");
1703 LLVM_DEBUG(dbgs() << " ... into: "; RV
.getNode()->dump(&DAG
));
1705 if (N
->getNumValues() == RV
.getNode()->getNumValues())
1706 DAG
.ReplaceAllUsesWith(N
, RV
.getNode());
1708 assert(N
->getValueType(0) == RV
.getValueType() &&
1709 N
->getNumValues() == 1 && "Type mismatch");
1710 DAG
.ReplaceAllUsesWith(N
, &RV
);
1713 // Push the new node and any users onto the worklist
1714 AddToWorklist(RV
.getNode());
1715 AddUsersToWorklist(RV
.getNode());
1717 // Finally, if the node is now dead, remove it from the graph. The node
1718 // may not be dead if the replacement process recursively simplified to
1719 // something else needing this node. This will also take care of adding any
1720 // operands which have lost a user to the worklist.
1721 recursivelyDeleteUnusedNodes(N
);
1724 // If the root changed (e.g. it was a dead load, update the root).
1725 DAG
.setRoot(Dummy
.getValue());
1726 DAG
.RemoveDeadNodes();
1729 SDValue
DAGCombiner::visit(SDNode
*N
) {
1730 switch (N
->getOpcode()) {
1732 case ISD::TokenFactor
: return visitTokenFactor(N
);
1733 case ISD::MERGE_VALUES
: return visitMERGE_VALUES(N
);
1734 case ISD::ADD
: return visitADD(N
);
1735 case ISD::SUB
: return visitSUB(N
);
1737 case ISD::UADDSAT
: return visitADDSAT(N
);
1739 case ISD::USUBSAT
: return visitSUBSAT(N
);
1740 case ISD::ADDC
: return visitADDC(N
);
1742 case ISD::UADDO
: return visitADDO(N
);
1743 case ISD::SUBC
: return visitSUBC(N
);
1745 case ISD::USUBO
: return visitSUBO(N
);
1746 case ISD::ADDE
: return visitADDE(N
);
1747 case ISD::ADDCARRY
: return visitADDCARRY(N
);
1748 case ISD::SUBE
: return visitSUBE(N
);
1749 case ISD::SUBCARRY
: return visitSUBCARRY(N
);
1751 case ISD::SMULFIXSAT
:
1752 case ISD::UMULFIX
: return visitMULFIX(N
);
1753 case ISD::MUL
: return visitMUL(N
);
1754 case ISD::SDIV
: return visitSDIV(N
);
1755 case ISD::UDIV
: return visitUDIV(N
);
1757 case ISD::UREM
: return visitREM(N
);
1758 case ISD::MULHU
: return visitMULHU(N
);
1759 case ISD::MULHS
: return visitMULHS(N
);
1760 case ISD::SMUL_LOHI
: return visitSMUL_LOHI(N
);
1761 case ISD::UMUL_LOHI
: return visitUMUL_LOHI(N
);
1763 case ISD::UMULO
: return visitMULO(N
);
1767 case ISD::UMAX
: return visitIMINMAX(N
);
1768 case ISD::AND
: return visitAND(N
);
1769 case ISD::OR
: return visitOR(N
);
1770 case ISD::XOR
: return visitXOR(N
);
1771 case ISD::SHL
: return visitSHL(N
);
1772 case ISD::SRA
: return visitSRA(N
);
1773 case ISD::SRL
: return visitSRL(N
);
1775 case ISD::ROTL
: return visitRotate(N
);
1777 case ISD::FSHR
: return visitFunnelShift(N
);
1778 case ISD::ABS
: return visitABS(N
);
1779 case ISD::BSWAP
: return visitBSWAP(N
);
1780 case ISD::BITREVERSE
: return visitBITREVERSE(N
);
1781 case ISD::CTLZ
: return visitCTLZ(N
);
1782 case ISD::CTLZ_ZERO_UNDEF
: return visitCTLZ_ZERO_UNDEF(N
);
1783 case ISD::CTTZ
: return visitCTTZ(N
);
1784 case ISD::CTTZ_ZERO_UNDEF
: return visitCTTZ_ZERO_UNDEF(N
);
1785 case ISD::CTPOP
: return visitCTPOP(N
);
1786 case ISD::SELECT
: return visitSELECT(N
);
1787 case ISD::VSELECT
: return visitVSELECT(N
);
1788 case ISD::SELECT_CC
: return visitSELECT_CC(N
);
1789 case ISD::SETCC
: return visitSETCC(N
);
1790 case ISD::SETCCCARRY
: return visitSETCCCARRY(N
);
1791 case ISD::SIGN_EXTEND
: return visitSIGN_EXTEND(N
);
1792 case ISD::ZERO_EXTEND
: return visitZERO_EXTEND(N
);
1793 case ISD::ANY_EXTEND
: return visitANY_EXTEND(N
);
1794 case ISD::AssertSext
:
1795 case ISD::AssertZext
: return visitAssertExt(N
);
1796 case ISD::SIGN_EXTEND_INREG
: return visitSIGN_EXTEND_INREG(N
);
1797 case ISD::SIGN_EXTEND_VECTOR_INREG
: return visitSIGN_EXTEND_VECTOR_INREG(N
);
1798 case ISD::ZERO_EXTEND_VECTOR_INREG
: return visitZERO_EXTEND_VECTOR_INREG(N
);
1799 case ISD::TRUNCATE
: return visitTRUNCATE(N
);
1800 case ISD::BITCAST
: return visitBITCAST(N
);
1801 case ISD::BUILD_PAIR
: return visitBUILD_PAIR(N
);
1802 case ISD::FADD
: return visitFADD(N
);
1803 case ISD::FSUB
: return visitFSUB(N
);
1804 case ISD::FMUL
: return visitFMUL(N
);
1805 case ISD::FMA
: return visitFMA(N
);
1806 case ISD::FDIV
: return visitFDIV(N
);
1807 case ISD::FREM
: return visitFREM(N
);
1808 case ISD::FSQRT
: return visitFSQRT(N
);
1809 case ISD::FCOPYSIGN
: return visitFCOPYSIGN(N
);
1810 case ISD::FPOW
: return visitFPOW(N
);
1811 case ISD::SINT_TO_FP
: return visitSINT_TO_FP(N
);
1812 case ISD::UINT_TO_FP
: return visitUINT_TO_FP(N
);
1813 case ISD::FP_TO_SINT
: return visitFP_TO_SINT(N
);
1814 case ISD::FP_TO_UINT
: return visitFP_TO_UINT(N
);
1815 case ISD::FP_ROUND
: return visitFP_ROUND(N
);
1816 case ISD::FP_ROUND_INREG
: return visitFP_ROUND_INREG(N
);
1817 case ISD::FP_EXTEND
: return visitFP_EXTEND(N
);
1818 case ISD::FNEG
: return visitFNEG(N
);
1819 case ISD::FABS
: return visitFABS(N
);
1820 case ISD::FFLOOR
: return visitFFLOOR(N
);
1821 case ISD::FMINNUM
: return visitFMINNUM(N
);
1822 case ISD::FMAXNUM
: return visitFMAXNUM(N
);
1823 case ISD::FMINIMUM
: return visitFMINIMUM(N
);
1824 case ISD::FMAXIMUM
: return visitFMAXIMUM(N
);
1825 case ISD::FCEIL
: return visitFCEIL(N
);
1826 case ISD::FTRUNC
: return visitFTRUNC(N
);
1827 case ISD::BRCOND
: return visitBRCOND(N
);
1828 case ISD::BR_CC
: return visitBR_CC(N
);
1829 case ISD::LOAD
: return visitLOAD(N
);
1830 case ISD::STORE
: return visitSTORE(N
);
1831 case ISD::INSERT_VECTOR_ELT
: return visitINSERT_VECTOR_ELT(N
);
1832 case ISD::EXTRACT_VECTOR_ELT
: return visitEXTRACT_VECTOR_ELT(N
);
1833 case ISD::BUILD_VECTOR
: return visitBUILD_VECTOR(N
);
1834 case ISD::CONCAT_VECTORS
: return visitCONCAT_VECTORS(N
);
1835 case ISD::EXTRACT_SUBVECTOR
: return visitEXTRACT_SUBVECTOR(N
);
1836 case ISD::VECTOR_SHUFFLE
: return visitVECTOR_SHUFFLE(N
);
1837 case ISD::SCALAR_TO_VECTOR
: return visitSCALAR_TO_VECTOR(N
);
1838 case ISD::INSERT_SUBVECTOR
: return visitINSERT_SUBVECTOR(N
);
1839 case ISD::MGATHER
: return visitMGATHER(N
);
1840 case ISD::MLOAD
: return visitMLOAD(N
);
1841 case ISD::MSCATTER
: return visitMSCATTER(N
);
1842 case ISD::MSTORE
: return visitMSTORE(N
);
1843 case ISD::LIFETIME_END
: return visitLIFETIME_END(N
);
1844 case ISD::FP_TO_FP16
: return visitFP_TO_FP16(N
);
1845 case ISD::FP16_TO_FP
: return visitFP16_TO_FP(N
);
1846 case ISD::VECREDUCE_FADD
:
1847 case ISD::VECREDUCE_FMUL
:
1848 case ISD::VECREDUCE_ADD
:
1849 case ISD::VECREDUCE_MUL
:
1850 case ISD::VECREDUCE_AND
:
1851 case ISD::VECREDUCE_OR
:
1852 case ISD::VECREDUCE_XOR
:
1853 case ISD::VECREDUCE_SMAX
:
1854 case ISD::VECREDUCE_SMIN
:
1855 case ISD::VECREDUCE_UMAX
:
1856 case ISD::VECREDUCE_UMIN
:
1857 case ISD::VECREDUCE_FMAX
:
1858 case ISD::VECREDUCE_FMIN
: return visitVECREDUCE(N
);
1863 SDValue
DAGCombiner::combine(SDNode
*N
) {
1864 SDValue RV
= visit(N
);
1866 // If nothing happened, try a target-specific DAG combine.
1867 if (!RV
.getNode()) {
1868 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
1869 "Node was deleted but visit returned NULL!");
1871 if (N
->getOpcode() >= ISD::BUILTIN_OP_END
||
1872 TLI
.hasTargetDAGCombine((ISD::NodeType
)N
->getOpcode())) {
1874 // Expose the DAG combiner to the target combiner impls.
1875 TargetLowering::DAGCombinerInfo
1876 DagCombineInfo(DAG
, Level
, false, this);
1878 RV
= TLI
.PerformDAGCombine(N
, DagCombineInfo
);
1882 // If nothing happened still, try promoting the operation.
1883 if (!RV
.getNode()) {
1884 switch (N
->getOpcode()) {
1892 RV
= PromoteIntBinOp(SDValue(N
, 0));
1897 RV
= PromoteIntShiftOp(SDValue(N
, 0));
1899 case ISD::SIGN_EXTEND
:
1900 case ISD::ZERO_EXTEND
:
1901 case ISD::ANY_EXTEND
:
1902 RV
= PromoteExtend(SDValue(N
, 0));
1905 if (PromoteLoad(SDValue(N
, 0)))
1911 // If N is a commutative binary node, try to eliminate it if the commuted
1912 // version is already present in the DAG.
1913 if (!RV
.getNode() && TLI
.isCommutativeBinOp(N
->getOpcode()) &&
1914 N
->getNumValues() == 1) {
1915 SDValue N0
= N
->getOperand(0);
1916 SDValue N1
= N
->getOperand(1);
1918 // Constant operands are canonicalized to RHS.
1919 if (N0
!= N1
&& (isa
<ConstantSDNode
>(N0
) || !isa
<ConstantSDNode
>(N1
))) {
1920 SDValue Ops
[] = {N1
, N0
};
1921 SDNode
*CSENode
= DAG
.getNodeIfExists(N
->getOpcode(), N
->getVTList(), Ops
,
1924 return SDValue(CSENode
, 0);
1931 /// Given a node, return its input chain if it has one, otherwise return a null
1933 static SDValue
getInputChainForNode(SDNode
*N
) {
1934 if (unsigned NumOps
= N
->getNumOperands()) {
1935 if (N
->getOperand(0).getValueType() == MVT::Other
)
1936 return N
->getOperand(0);
1937 if (N
->getOperand(NumOps
-1).getValueType() == MVT::Other
)
1938 return N
->getOperand(NumOps
-1);
1939 for (unsigned i
= 1; i
< NumOps
-1; ++i
)
1940 if (N
->getOperand(i
).getValueType() == MVT::Other
)
1941 return N
->getOperand(i
);
1946 SDValue
DAGCombiner::visitTokenFactor(SDNode
*N
) {
1947 // If N has two operands, where one has an input chain equal to the other,
1948 // the 'other' chain is redundant.
1949 if (N
->getNumOperands() == 2) {
1950 if (getInputChainForNode(N
->getOperand(0).getNode()) == N
->getOperand(1))
1951 return N
->getOperand(0);
1952 if (getInputChainForNode(N
->getOperand(1).getNode()) == N
->getOperand(0))
1953 return N
->getOperand(1);
1956 // Don't simplify token factors if optnone.
1957 if (OptLevel
== CodeGenOpt::None
)
1960 // If the sole user is a token factor, we should make sure we have a
1961 // chance to merge them together. This prevents TF chains from inhibiting
1963 if (N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::TokenFactor
)
1964 AddToWorklist(*(N
->use_begin()));
1966 SmallVector
<SDNode
*, 8> TFs
; // List of token factors to visit.
1967 SmallVector
<SDValue
, 8> Ops
; // Ops for replacing token factor.
1968 SmallPtrSet
<SDNode
*, 16> SeenOps
;
1969 bool Changed
= false; // If we should replace this token factor.
1971 // Start out with this token factor.
1974 // Iterate through token factors. The TFs grows when new token factors are
1976 for (unsigned i
= 0; i
< TFs
.size(); ++i
) {
1977 // Limit number of nodes to inline, to avoid quadratic compile times.
1978 // We have to add the outstanding Token Factors to Ops, otherwise we might
1979 // drop Ops from the resulting Token Factors.
1980 if (Ops
.size() > TokenFactorInlineLimit
) {
1981 for (unsigned j
= i
; j
< TFs
.size(); j
++)
1982 Ops
.emplace_back(TFs
[j
], 0);
1983 // Drop unprocessed Token Factors from TFs, so we do not add them to the
1984 // combiner worklist later.
1989 SDNode
*TF
= TFs
[i
];
1990 // Check each of the operands.
1991 for (const SDValue
&Op
: TF
->op_values()) {
1992 switch (Op
.getOpcode()) {
1993 case ISD::EntryToken
:
1994 // Entry tokens don't need to be added to the list. They are
1999 case ISD::TokenFactor
:
2000 if (Op
.hasOneUse() && !is_contained(TFs
, Op
.getNode())) {
2001 // Queue up for processing.
2002 TFs
.push_back(Op
.getNode());
2009 // Only add if it isn't already in the list.
2010 if (SeenOps
.insert(Op
.getNode()).second
)
2019 // Re-visit inlined Token Factors, to clean them up in case they have been
2020 // removed. Skip the first Token Factor, as this is the current node.
2021 for (unsigned i
= 1, e
= TFs
.size(); i
< e
; i
++)
2022 AddToWorklist(TFs
[i
]);
2024 // Remove Nodes that are chained to another node in the list. Do so
2025 // by walking up chains breath-first stopping when we've seen
2026 // another operand. In general we must climb to the EntryNode, but we can exit
2027 // early if we find all remaining work is associated with just one operand as
2028 // no further pruning is possible.
2030 // List of nodes to search through and original Ops from which they originate.
2031 SmallVector
<std::pair
<SDNode
*, unsigned>, 8> Worklist
;
2032 SmallVector
<unsigned, 8> OpWorkCount
; // Count of work for each Op.
2033 SmallPtrSet
<SDNode
*, 16> SeenChains
;
2034 bool DidPruneOps
= false;
2036 unsigned NumLeftToConsider
= 0;
2037 for (const SDValue
&Op
: Ops
) {
2038 Worklist
.push_back(std::make_pair(Op
.getNode(), NumLeftToConsider
++));
2039 OpWorkCount
.push_back(1);
2042 auto AddToWorklist
= [&](unsigned CurIdx
, SDNode
*Op
, unsigned OpNumber
) {
2043 // If this is an Op, we can remove the op from the list. Remark any
2044 // search associated with it as from the current OpNumber.
2045 if (SeenOps
.count(Op
) != 0) {
2048 unsigned OrigOpNumber
= 0;
2049 while (OrigOpNumber
< Ops
.size() && Ops
[OrigOpNumber
].getNode() != Op
)
2051 assert((OrigOpNumber
!= Ops
.size()) &&
2052 "expected to find TokenFactor Operand");
2053 // Re-mark worklist from OrigOpNumber to OpNumber
2054 for (unsigned i
= CurIdx
+ 1; i
< Worklist
.size(); ++i
) {
2055 if (Worklist
[i
].second
== OrigOpNumber
) {
2056 Worklist
[i
].second
= OpNumber
;
2059 OpWorkCount
[OpNumber
] += OpWorkCount
[OrigOpNumber
];
2060 OpWorkCount
[OrigOpNumber
] = 0;
2061 NumLeftToConsider
--;
2063 // Add if it's a new chain
2064 if (SeenChains
.insert(Op
).second
) {
2065 OpWorkCount
[OpNumber
]++;
2066 Worklist
.push_back(std::make_pair(Op
, OpNumber
));
2070 for (unsigned i
= 0; i
< Worklist
.size() && i
< 1024; ++i
) {
2071 // We need at least be consider at least 2 Ops to prune.
2072 if (NumLeftToConsider
<= 1)
2074 auto CurNode
= Worklist
[i
].first
;
2075 auto CurOpNumber
= Worklist
[i
].second
;
2076 assert((OpWorkCount
[CurOpNumber
] > 0) &&
2077 "Node should not appear in worklist");
2078 switch (CurNode
->getOpcode()) {
2079 case ISD::EntryToken
:
2080 // Hitting EntryToken is the only way for the search to terminate without
2082 // another operand's search. Prevent us from marking this operand
2084 NumLeftToConsider
++;
2086 case ISD::TokenFactor
:
2087 for (const SDValue
&Op
: CurNode
->op_values())
2088 AddToWorklist(i
, Op
.getNode(), CurOpNumber
);
2090 case ISD::LIFETIME_START
:
2091 case ISD::LIFETIME_END
:
2092 case ISD::CopyFromReg
:
2093 case ISD::CopyToReg
:
2094 AddToWorklist(i
, CurNode
->getOperand(0).getNode(), CurOpNumber
);
2097 if (auto *MemNode
= dyn_cast
<MemSDNode
>(CurNode
))
2098 AddToWorklist(i
, MemNode
->getChain().getNode(), CurOpNumber
);
2101 OpWorkCount
[CurOpNumber
]--;
2102 if (OpWorkCount
[CurOpNumber
] == 0)
2103 NumLeftToConsider
--;
2106 // If we've changed things around then replace token factor.
2110 // The entry token is the only possible outcome.
2111 Result
= DAG
.getEntryNode();
2114 SmallVector
<SDValue
, 8> PrunedOps
;
2116 for (const SDValue
&Op
: Ops
) {
2117 if (SeenChains
.count(Op
.getNode()) == 0)
2118 PrunedOps
.push_back(Op
);
2120 Result
= DAG
.getTokenFactor(SDLoc(N
), PrunedOps
);
2122 Result
= DAG
.getTokenFactor(SDLoc(N
), Ops
);
2130 /// MERGE_VALUES can always be eliminated.
2131 SDValue
DAGCombiner::visitMERGE_VALUES(SDNode
*N
) {
2132 WorklistRemover
DeadNodes(*this);
2133 // Replacing results may cause a different MERGE_VALUES to suddenly
2134 // be CSE'd with N, and carry its uses with it. Iterate until no
2135 // uses remain, to ensure that the node can be safely deleted.
2136 // First add the users of this node to the work list so that they
2137 // can be tried again once they have new operands.
2138 AddUsersToWorklist(N
);
2140 // Do as a single replacement to avoid rewalking use lists.
2141 SmallVector
<SDValue
, 8> Ops
;
2142 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
2143 Ops
.push_back(N
->getOperand(i
));
2144 DAG
.ReplaceAllUsesWith(N
, Ops
.data());
2145 } while (!N
->use_empty());
2146 deleteAndRecombine(N
);
2147 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
2150 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
2151 /// ConstantSDNode pointer else nullptr.
2152 static ConstantSDNode
*getAsNonOpaqueConstant(SDValue N
) {
2153 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(N
);
2154 return Const
!= nullptr && !Const
->isOpaque() ? Const
: nullptr;
2157 SDValue
DAGCombiner::foldBinOpIntoSelect(SDNode
*BO
) {
2158 assert(TLI
.isBinOp(BO
->getOpcode()) && BO
->getNumValues() == 1 &&
2159 "Unexpected binary operator");
2161 // Don't do this unless the old select is going away. We want to eliminate the
2162 // binary operator, not replace a binop with a select.
2163 // TODO: Handle ISD::SELECT_CC.
2164 unsigned SelOpNo
= 0;
2165 SDValue Sel
= BO
->getOperand(0);
2166 if (Sel
.getOpcode() != ISD::SELECT
|| !Sel
.hasOneUse()) {
2168 Sel
= BO
->getOperand(1);
2171 if (Sel
.getOpcode() != ISD::SELECT
|| !Sel
.hasOneUse())
2174 SDValue CT
= Sel
.getOperand(1);
2175 if (!isConstantOrConstantVector(CT
, true) &&
2176 !isConstantFPBuildVectorOrConstantFP(CT
))
2179 SDValue CF
= Sel
.getOperand(2);
2180 if (!isConstantOrConstantVector(CF
, true) &&
2181 !isConstantFPBuildVectorOrConstantFP(CF
))
2184 // Bail out if any constants are opaque because we can't constant fold those.
2185 // The exception is "and" and "or" with either 0 or -1 in which case we can
2186 // propagate non constant operands into select. I.e.:
2187 // and (select Cond, 0, -1), X --> select Cond, 0, X
2188 // or X, (select Cond, -1, 0) --> select Cond, -1, X
2189 auto BinOpcode
= BO
->getOpcode();
2190 bool CanFoldNonConst
=
2191 (BinOpcode
== ISD::AND
|| BinOpcode
== ISD::OR
) &&
2192 (isNullOrNullSplat(CT
) || isAllOnesOrAllOnesSplat(CT
)) &&
2193 (isNullOrNullSplat(CF
) || isAllOnesOrAllOnesSplat(CF
));
2195 SDValue CBO
= BO
->getOperand(SelOpNo
^ 1);
2196 if (!CanFoldNonConst
&&
2197 !isConstantOrConstantVector(CBO
, true) &&
2198 !isConstantFPBuildVectorOrConstantFP(CBO
))
2201 EVT VT
= Sel
.getValueType();
2203 // In case of shift value and shift amount may have different VT. For instance
2204 // on x86 shift amount is i8 regardles of LHS type. Bail out if we have
2205 // swapped operands and value types do not match. NB: x86 is fine if operands
2206 // are not swapped with shift amount VT being not bigger than shifted value.
2207 // TODO: that is possible to check for a shift operation, correct VTs and
2208 // still perform optimization on x86 if needed.
2209 if (SelOpNo
&& VT
!= CBO
.getValueType())
2212 // We have a select-of-constants followed by a binary operator with a
2213 // constant. Eliminate the binop by pulling the constant math into the select.
2214 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
2216 SDValue NewCT
= SelOpNo
? DAG
.getNode(BinOpcode
, DL
, VT
, CBO
, CT
)
2217 : DAG
.getNode(BinOpcode
, DL
, VT
, CT
, CBO
);
2218 if (!CanFoldNonConst
&& !NewCT
.isUndef() &&
2219 !isConstantOrConstantVector(NewCT
, true) &&
2220 !isConstantFPBuildVectorOrConstantFP(NewCT
))
2223 SDValue NewCF
= SelOpNo
? DAG
.getNode(BinOpcode
, DL
, VT
, CBO
, CF
)
2224 : DAG
.getNode(BinOpcode
, DL
, VT
, CF
, CBO
);
2225 if (!CanFoldNonConst
&& !NewCF
.isUndef() &&
2226 !isConstantOrConstantVector(NewCF
, true) &&
2227 !isConstantFPBuildVectorOrConstantFP(NewCF
))
2230 SDValue SelectOp
= DAG
.getSelect(DL
, VT
, Sel
.getOperand(0), NewCT
, NewCF
);
2231 SelectOp
->setFlags(BO
->getFlags());
2235 static SDValue
foldAddSubBoolOfMaskedVal(SDNode
*N
, SelectionDAG
&DAG
) {
2236 assert((N
->getOpcode() == ISD::ADD
|| N
->getOpcode() == ISD::SUB
) &&
2237 "Expecting add or sub");
2239 // Match a constant operand and a zext operand for the math instruction:
2242 bool IsAdd
= N
->getOpcode() == ISD::ADD
;
2243 SDValue C
= IsAdd
? N
->getOperand(1) : N
->getOperand(0);
2244 SDValue Z
= IsAdd
? N
->getOperand(0) : N
->getOperand(1);
2245 auto *CN
= dyn_cast
<ConstantSDNode
>(C
);
2246 if (!CN
|| Z
.getOpcode() != ISD::ZERO_EXTEND
)
2249 // Match the zext operand as a setcc of a boolean.
2250 if (Z
.getOperand(0).getOpcode() != ISD::SETCC
||
2251 Z
.getOperand(0).getValueType() != MVT::i1
)
2254 // Match the compare as: setcc (X & 1), 0, eq.
2255 SDValue SetCC
= Z
.getOperand(0);
2256 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
->getOperand(2))->get();
2257 if (CC
!= ISD::SETEQ
|| !isNullConstant(SetCC
.getOperand(1)) ||
2258 SetCC
.getOperand(0).getOpcode() != ISD::AND
||
2259 !isOneConstant(SetCC
.getOperand(0).getOperand(1)))
2262 // We are adding/subtracting a constant and an inverted low bit. Turn that
2263 // into a subtract/add of the low bit with incremented/decremented constant:
2264 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
2265 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
2266 EVT VT
= C
.getValueType();
2268 SDValue LowBit
= DAG
.getZExtOrTrunc(SetCC
.getOperand(0), DL
, VT
);
2269 SDValue C1
= IsAdd
? DAG
.getConstant(CN
->getAPIntValue() + 1, DL
, VT
) :
2270 DAG
.getConstant(CN
->getAPIntValue() - 1, DL
, VT
);
2271 return DAG
.getNode(IsAdd
? ISD::SUB
: ISD::ADD
, DL
, VT
, C1
, LowBit
);
2274 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
2275 /// a shift and add with a different constant.
2276 static SDValue
foldAddSubOfSignBit(SDNode
*N
, SelectionDAG
&DAG
) {
2277 assert((N
->getOpcode() == ISD::ADD
|| N
->getOpcode() == ISD::SUB
) &&
2278 "Expecting add or sub");
2280 // We need a constant operand for the add/sub, and the other operand is a
2281 // logical shift right: add (srl), C or sub C, (srl).
2282 // TODO - support non-uniform vector amounts.
2283 bool IsAdd
= N
->getOpcode() == ISD::ADD
;
2284 SDValue ConstantOp
= IsAdd
? N
->getOperand(1) : N
->getOperand(0);
2285 SDValue ShiftOp
= IsAdd
? N
->getOperand(0) : N
->getOperand(1);
2286 ConstantSDNode
*C
= isConstOrConstSplat(ConstantOp
);
2287 if (!C
|| ShiftOp
.getOpcode() != ISD::SRL
)
2290 // The shift must be of a 'not' value.
2291 SDValue Not
= ShiftOp
.getOperand(0);
2292 if (!Not
.hasOneUse() || !isBitwiseNot(Not
))
2295 // The shift must be moving the sign bit to the least-significant-bit.
2296 EVT VT
= ShiftOp
.getValueType();
2297 SDValue ShAmt
= ShiftOp
.getOperand(1);
2298 ConstantSDNode
*ShAmtC
= isConstOrConstSplat(ShAmt
);
2299 if (!ShAmtC
|| ShAmtC
->getAPIntValue() != (VT
.getScalarSizeInBits() - 1))
2302 // Eliminate the 'not' by adjusting the shift and add/sub constant:
2303 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
2304 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
2306 auto ShOpcode
= IsAdd
? ISD::SRA
: ISD::SRL
;
2307 SDValue NewShift
= DAG
.getNode(ShOpcode
, DL
, VT
, Not
.getOperand(0), ShAmt
);
2308 APInt NewC
= IsAdd
? C
->getAPIntValue() + 1 : C
->getAPIntValue() - 1;
2309 return DAG
.getNode(ISD::ADD
, DL
, VT
, NewShift
, DAG
.getConstant(NewC
, DL
, VT
));
2312 /// Try to fold a node that behaves like an ADD (note that N isn't necessarily
2313 /// an ISD::ADD here, it could for example be an ISD::OR if we know that there
2314 /// are no common bits set in the operands).
2315 SDValue
DAGCombiner::visitADDLike(SDNode
*N
) {
2316 SDValue N0
= N
->getOperand(0);
2317 SDValue N1
= N
->getOperand(1);
2318 EVT VT
= N0
.getValueType();
2322 if (VT
.isVector()) {
2323 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
2326 // fold (add x, 0) -> x, vector edition
2327 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
2329 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
2333 // fold (add x, undef) -> undef
2340 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
)) {
2341 // canonicalize constant to RHS
2342 if (!DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2343 return DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, N0
);
2344 // fold (add c1, c2) -> c1+c2
2345 return DAG
.FoldConstantArithmetic(ISD::ADD
, DL
, VT
, N0
.getNode(),
2349 // fold (add x, 0) -> x
2350 if (isNullConstant(N1
))
2353 if (isConstantOrConstantVector(N1
, /* NoOpaque */ true)) {
2354 // fold ((A-c1)+c2) -> (A+(c2-c1))
2355 if (N0
.getOpcode() == ISD::SUB
&&
2356 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaque */ true)) {
2357 SDValue Sub
= DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, N1
.getNode(),
2358 N0
.getOperand(1).getNode());
2359 assert(Sub
&& "Constant folding failed");
2360 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), Sub
);
2363 // fold ((c1-A)+c2) -> (c1+c2)-A
2364 if (N0
.getOpcode() == ISD::SUB
&&
2365 isConstantOrConstantVector(N0
.getOperand(0), /* NoOpaque */ true)) {
2366 SDValue Add
= DAG
.FoldConstantArithmetic(ISD::ADD
, DL
, VT
, N1
.getNode(),
2367 N0
.getOperand(0).getNode());
2368 assert(Add
&& "Constant folding failed");
2369 return DAG
.getNode(ISD::SUB
, DL
, VT
, Add
, N0
.getOperand(1));
2372 // add (sext i1 X), 1 -> zext (not i1 X)
2373 // We don't transform this pattern:
2374 // add (zext i1 X), -1 -> sext (not i1 X)
2375 // because most (?) targets generate better code for the zext form.
2376 if (N0
.getOpcode() == ISD::SIGN_EXTEND
&& N0
.hasOneUse() &&
2377 isOneOrOneSplat(N1
)) {
2378 SDValue X
= N0
.getOperand(0);
2379 if ((!LegalOperations
||
2380 (TLI
.isOperationLegal(ISD::XOR
, X
.getValueType()) &&
2381 TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
))) &&
2382 X
.getScalarValueSizeInBits() == 1) {
2383 SDValue Not
= DAG
.getNOT(DL
, X
, X
.getValueType());
2384 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Not
);
2388 // Undo the add -> or combine to merge constant offsets from a frame index.
2389 if (N0
.getOpcode() == ISD::OR
&&
2390 isa
<FrameIndexSDNode
>(N0
.getOperand(0)) &&
2391 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
2392 DAG
.haveNoCommonBitsSet(N0
.getOperand(0), N0
.getOperand(1))) {
2393 SDValue Add0
= DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, N0
.getOperand(1));
2394 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), Add0
);
2398 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
2402 if (!reassociationCanBreakAddressingModePattern(ISD::ADD
, DL
, N0
, N1
)) {
2403 if (SDValue RADD
= reassociateOps(ISD::ADD
, DL
, N0
, N1
, N
->getFlags()))
2406 // fold ((0-A) + B) -> B-A
2407 if (N0
.getOpcode() == ISD::SUB
&& isNullOrNullSplat(N0
.getOperand(0)))
2408 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, N0
.getOperand(1));
2410 // fold (A + (0-B)) -> A-B
2411 if (N1
.getOpcode() == ISD::SUB
&& isNullOrNullSplat(N1
.getOperand(0)))
2412 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
.getOperand(1));
2414 // fold (A+(B-A)) -> B
2415 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(1))
2416 return N1
.getOperand(0);
2418 // fold ((B-A)+A) -> B
2419 if (N0
.getOpcode() == ISD::SUB
&& N1
== N0
.getOperand(1))
2420 return N0
.getOperand(0);
2422 // fold ((A-B)+(C-A)) -> (C-B)
2423 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
&&
2424 N0
.getOperand(0) == N1
.getOperand(1))
2425 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2428 // fold ((A-B)+(B-C)) -> (A-C)
2429 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
&&
2430 N0
.getOperand(1) == N1
.getOperand(0))
2431 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0),
2434 // fold (A+(B-(A+C))) to (B-C)
2435 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
2436 N0
== N1
.getOperand(1).getOperand(0))
2437 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2438 N1
.getOperand(1).getOperand(1));
2440 // fold (A+(B-(C+A))) to (B-C)
2441 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
2442 N0
== N1
.getOperand(1).getOperand(1))
2443 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2444 N1
.getOperand(1).getOperand(0));
2446 // fold (A+((B-A)+or-C)) to (B+or-C)
2447 if ((N1
.getOpcode() == ISD::SUB
|| N1
.getOpcode() == ISD::ADD
) &&
2448 N1
.getOperand(0).getOpcode() == ISD::SUB
&&
2449 N0
== N1
.getOperand(0).getOperand(1))
2450 return DAG
.getNode(N1
.getOpcode(), DL
, VT
, N1
.getOperand(0).getOperand(0),
2453 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
2454 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
) {
2455 SDValue N00
= N0
.getOperand(0);
2456 SDValue N01
= N0
.getOperand(1);
2457 SDValue N10
= N1
.getOperand(0);
2458 SDValue N11
= N1
.getOperand(1);
2460 if (isConstantOrConstantVector(N00
) || isConstantOrConstantVector(N10
))
2461 return DAG
.getNode(ISD::SUB
, DL
, VT
,
2462 DAG
.getNode(ISD::ADD
, SDLoc(N0
), VT
, N00
, N10
),
2463 DAG
.getNode(ISD::ADD
, SDLoc(N1
), VT
, N01
, N11
));
2466 // fold (add (umax X, C), -C) --> (usubsat X, C)
2467 if (N0
.getOpcode() == ISD::UMAX
&& hasOperation(ISD::USUBSAT
, VT
)) {
2468 auto MatchUSUBSAT
= [](ConstantSDNode
*Max
, ConstantSDNode
*Op
) {
2469 return (!Max
&& !Op
) ||
2470 (Max
&& Op
&& Max
->getAPIntValue() == (-Op
->getAPIntValue()));
2472 if (ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchUSUBSAT
,
2473 /*AllowUndefs*/ true))
2474 return DAG
.getNode(ISD::USUBSAT
, DL
, VT
, N0
.getOperand(0),
2478 if (SimplifyDemandedBits(SDValue(N
, 0)))
2479 return SDValue(N
, 0);
2481 if (isOneOrOneSplat(N1
)) {
2482 // fold (add (xor a, -1), 1) -> (sub 0, a)
2483 if (isBitwiseNot(N0
))
2484 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
),
2487 // fold (add (add (xor a, -1), b), 1) -> (sub b, a)
2488 if (N0
.getOpcode() == ISD::ADD
||
2489 N0
.getOpcode() == ISD::UADDO
||
2490 N0
.getOpcode() == ISD::SADDO
) {
2493 if (isBitwiseNot(N0
.getOperand(0))) {
2494 A
= N0
.getOperand(1);
2495 Xor
= N0
.getOperand(0);
2496 } else if (isBitwiseNot(N0
.getOperand(1))) {
2497 A
= N0
.getOperand(0);
2498 Xor
= N0
.getOperand(1);
2502 return DAG
.getNode(ISD::SUB
, DL
, VT
, A
, Xor
.getOperand(0));
2506 // add (add x, y), 1
2507 // And if the target does not like this form then turn into:
2508 // sub y, (xor x, -1)
2509 if (!TLI
.preferIncOfAddToSubOfNot(VT
) && N0
.hasOneUse() &&
2510 N0
.getOpcode() == ISD::ADD
) {
2511 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(0),
2512 DAG
.getAllOnesConstant(DL
, VT
));
2513 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(1), Not
);
2517 // (x - y) + -1 -> add (xor y, -1), x
2518 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
2519 isAllOnesOrAllOnesSplat(N1
)) {
2520 SDValue Xor
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(1), N1
);
2521 return DAG
.getNode(ISD::ADD
, DL
, VT
, Xor
, N0
.getOperand(0));
2524 if (SDValue Combined
= visitADDLikeCommutative(N0
, N1
, N
))
2527 if (SDValue Combined
= visitADDLikeCommutative(N1
, N0
, N
))
2533 SDValue
DAGCombiner::visitADD(SDNode
*N
) {
2534 SDValue N0
= N
->getOperand(0);
2535 SDValue N1
= N
->getOperand(1);
2536 EVT VT
= N0
.getValueType();
2539 if (SDValue Combined
= visitADDLike(N
))
2542 if (SDValue V
= foldAddSubBoolOfMaskedVal(N
, DAG
))
2545 if (SDValue V
= foldAddSubOfSignBit(N
, DAG
))
2548 // fold (a+b) -> (a|b) iff a and b share no bits.
2549 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::OR
, VT
)) &&
2550 DAG
.haveNoCommonBitsSet(N0
, N1
))
2551 return DAG
.getNode(ISD::OR
, DL
, VT
, N0
, N1
);
2556 SDValue
DAGCombiner::visitADDSAT(SDNode
*N
) {
2557 unsigned Opcode
= N
->getOpcode();
2558 SDValue N0
= N
->getOperand(0);
2559 SDValue N1
= N
->getOperand(1);
2560 EVT VT
= N0
.getValueType();
2564 if (VT
.isVector()) {
2565 // TODO SimplifyVBinOp
2567 // fold (add_sat x, 0) -> x, vector edition
2568 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
2570 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
2574 // fold (add_sat x, undef) -> -1
2575 if (N0
.isUndef() || N1
.isUndef())
2576 return DAG
.getAllOnesConstant(DL
, VT
);
2578 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
)) {
2579 // canonicalize constant to RHS
2580 if (!DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2581 return DAG
.getNode(Opcode
, DL
, VT
, N1
, N0
);
2582 // fold (add_sat c1, c2) -> c3
2583 return DAG
.FoldConstantArithmetic(Opcode
, DL
, VT
, N0
.getNode(),
2587 // fold (add_sat x, 0) -> x
2588 if (isNullConstant(N1
))
2591 // If it cannot overflow, transform into an add.
2592 if (Opcode
== ISD::UADDSAT
)
2593 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2594 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
);
2599 static SDValue
getAsCarry(const TargetLowering
&TLI
, SDValue V
) {
2600 bool Masked
= false;
2602 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
2604 if (V
.getOpcode() == ISD::TRUNCATE
|| V
.getOpcode() == ISD::ZERO_EXTEND
) {
2605 V
= V
.getOperand(0);
2609 if (V
.getOpcode() == ISD::AND
&& isOneConstant(V
.getOperand(1))) {
2611 V
= V
.getOperand(0);
2618 // If this is not a carry, return.
2619 if (V
.getResNo() != 1)
2622 if (V
.getOpcode() != ISD::ADDCARRY
&& V
.getOpcode() != ISD::SUBCARRY
&&
2623 V
.getOpcode() != ISD::UADDO
&& V
.getOpcode() != ISD::USUBO
)
2626 EVT VT
= V
.getNode()->getValueType(0);
2627 if (!TLI
.isOperationLegalOrCustom(V
.getOpcode(), VT
))
2630 // If the result is masked, then no matter what kind of bool it is we can
2631 // return. If it isn't, then we need to make sure the bool type is either 0 or
2632 // 1 and not other values.
2634 TLI
.getBooleanContents(V
.getValueType()) ==
2635 TargetLoweringBase::ZeroOrOneBooleanContent
)
2641 /// Given the operands of an add/sub operation, see if the 2nd operand is a
2642 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert
2643 /// the opcode and bypass the mask operation.
2644 static SDValue
foldAddSubMasked1(bool IsAdd
, SDValue N0
, SDValue N1
,
2645 SelectionDAG
&DAG
, const SDLoc
&DL
) {
2646 if (N1
.getOpcode() != ISD::AND
|| !isOneOrOneSplat(N1
->getOperand(1)))
2649 EVT VT
= N0
.getValueType();
2650 if (DAG
.ComputeNumSignBits(N1
.getOperand(0)) != VT
.getScalarSizeInBits())
2653 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X
2654 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X
2655 return DAG
.getNode(IsAdd
? ISD::SUB
: ISD::ADD
, DL
, VT
, N0
, N1
.getOperand(0));
2658 /// Helper for doing combines based on N0 and N1 being added to each other.
2659 SDValue
DAGCombiner::visitADDLikeCommutative(SDValue N0
, SDValue N1
,
2660 SDNode
*LocReference
) {
2661 EVT VT
= N0
.getValueType();
2662 SDLoc
DL(LocReference
);
2664 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
2665 if (N1
.getOpcode() == ISD::SHL
&& N1
.getOperand(0).getOpcode() == ISD::SUB
&&
2666 isNullOrNullSplat(N1
.getOperand(0).getOperand(0)))
2667 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
,
2668 DAG
.getNode(ISD::SHL
, DL
, VT
,
2669 N1
.getOperand(0).getOperand(1),
2672 if (SDValue V
= foldAddSubMasked1(true, N0
, N1
, DAG
, DL
))
2676 // add (add x, 1), y
2677 // And if the target does not like this form then turn into:
2678 // sub y, (xor x, -1)
2679 if (!TLI
.preferIncOfAddToSubOfNot(VT
) && N0
.hasOneUse() &&
2680 N0
.getOpcode() == ISD::ADD
&& isOneOrOneSplat(N0
.getOperand(1))) {
2681 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(0),
2682 DAG
.getAllOnesConstant(DL
, VT
));
2683 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, Not
);
2686 // Hoist one-use subtraction by non-opaque constant:
2687 // (x - C) + y -> (x + y) - C
2688 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
2689 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
2690 isConstantOrConstantVector(N0
.getOperand(1), /*NoOpaques=*/true)) {
2691 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), N1
);
2692 return DAG
.getNode(ISD::SUB
, DL
, VT
, Add
, N0
.getOperand(1));
2694 // Hoist one-use subtraction from non-opaque constant:
2695 // (C - x) + y -> (y - x) + C
2696 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
2697 isConstantOrConstantVector(N0
.getOperand(0), /*NoOpaques=*/true)) {
2698 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, N0
.getOperand(1));
2699 return DAG
.getNode(ISD::ADD
, DL
, VT
, Sub
, N0
.getOperand(0));
2702 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1'
2703 // rather than 'add 0/-1' (the zext should get folded).
2704 // add (sext i1 Y), X --> sub X, (zext i1 Y)
2705 if (N0
.getOpcode() == ISD::SIGN_EXTEND
&&
2706 N0
.getOperand(0).getScalarValueSizeInBits() == 1 &&
2707 TLI
.getBooleanContents(VT
) == TargetLowering::ZeroOrOneBooleanContent
) {
2708 SDValue ZExt
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
.getOperand(0));
2709 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, ZExt
);
2712 // add X, (sextinreg Y i1) -> sub X, (and Y 1)
2713 if (N1
.getOpcode() == ISD::SIGN_EXTEND_INREG
) {
2714 VTSDNode
*TN
= cast
<VTSDNode
>(N1
.getOperand(1));
2715 if (TN
->getVT() == MVT::i1
) {
2716 SDValue ZExt
= DAG
.getNode(ISD::AND
, DL
, VT
, N1
.getOperand(0),
2717 DAG
.getConstant(1, DL
, VT
));
2718 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, ZExt
);
2722 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2723 if (N1
.getOpcode() == ISD::ADDCARRY
&& isNullConstant(N1
.getOperand(1)) &&
2725 return DAG
.getNode(ISD::ADDCARRY
, DL
, N1
->getVTList(),
2726 N0
, N1
.getOperand(0), N1
.getOperand(2));
2728 // (add X, Carry) -> (addcarry X, 0, Carry)
2729 if (TLI
.isOperationLegalOrCustom(ISD::ADDCARRY
, VT
))
2730 if (SDValue Carry
= getAsCarry(TLI
, N1
))
2731 return DAG
.getNode(ISD::ADDCARRY
, DL
,
2732 DAG
.getVTList(VT
, Carry
.getValueType()), N0
,
2733 DAG
.getConstant(0, DL
, VT
), Carry
);
2738 SDValue
DAGCombiner::visitADDC(SDNode
*N
) {
2739 SDValue N0
= N
->getOperand(0);
2740 SDValue N1
= N
->getOperand(1);
2741 EVT VT
= N0
.getValueType();
2744 // If the flag result is dead, turn this into an ADD.
2745 if (!N
->hasAnyUseOfValue(1))
2746 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2747 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
2749 // canonicalize constant to RHS.
2750 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2751 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2753 return DAG
.getNode(ISD::ADDC
, DL
, N
->getVTList(), N1
, N0
);
2755 // fold (addc x, 0) -> x + no carry out
2756 if (isNullConstant(N1
))
2757 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
,
2760 // If it cannot overflow, transform into an add.
2761 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2762 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2763 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
2768 static SDValue
flipBoolean(SDValue V
, const SDLoc
&DL
,
2769 SelectionDAG
&DAG
, const TargetLowering
&TLI
) {
2770 EVT VT
= V
.getValueType();
2773 switch (TLI
.getBooleanContents(VT
)) {
2774 case TargetLowering::ZeroOrOneBooleanContent
:
2775 case TargetLowering::UndefinedBooleanContent
:
2776 Cst
= DAG
.getConstant(1, DL
, VT
);
2778 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
2779 Cst
= DAG
.getAllOnesConstant(DL
, VT
);
2783 return DAG
.getNode(ISD::XOR
, DL
, VT
, V
, Cst
);
2787 * Flips a boolean if it is cheaper to compute. If the Force parameters is set,
2788 * then the flip also occurs if computing the inverse is the same cost.
2789 * This function returns an empty SDValue in case it cannot flip the boolean
2790 * without increasing the cost of the computation. If you want to flip a boolean
2791 * no matter what, use flipBoolean.
2793 static SDValue
extractBooleanFlip(SDValue V
, SelectionDAG
&DAG
,
2794 const TargetLowering
&TLI
,
2796 if (Force
&& isa
<ConstantSDNode
>(V
))
2797 return flipBoolean(V
, SDLoc(V
), DAG
, TLI
);
2799 if (V
.getOpcode() != ISD::XOR
)
2802 ConstantSDNode
*Const
= isConstOrConstSplat(V
.getOperand(1), false);
2806 EVT VT
= V
.getValueType();
2808 bool IsFlip
= false;
2809 switch(TLI
.getBooleanContents(VT
)) {
2810 case TargetLowering::ZeroOrOneBooleanContent
:
2811 IsFlip
= Const
->isOne();
2813 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
2814 IsFlip
= Const
->isAllOnesValue();
2816 case TargetLowering::UndefinedBooleanContent
:
2817 IsFlip
= (Const
->getAPIntValue() & 0x01) == 1;
2822 return V
.getOperand(0);
2824 return flipBoolean(V
, SDLoc(V
), DAG
, TLI
);
2828 SDValue
DAGCombiner::visitADDO(SDNode
*N
) {
2829 SDValue N0
= N
->getOperand(0);
2830 SDValue N1
= N
->getOperand(1);
2831 EVT VT
= N0
.getValueType();
2832 bool IsSigned
= (ISD::SADDO
== N
->getOpcode());
2834 EVT CarryVT
= N
->getValueType(1);
2837 // If the flag result is dead, turn this into an ADD.
2838 if (!N
->hasAnyUseOfValue(1))
2839 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2840 DAG
.getUNDEF(CarryVT
));
2842 // canonicalize constant to RHS.
2843 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
2844 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2845 return DAG
.getNode(N
->getOpcode(), DL
, N
->getVTList(), N1
, N0
);
2847 // fold (addo x, 0) -> x + no carry out
2848 if (isNullOrNullSplat(N1
))
2849 return CombineTo(N
, N0
, DAG
.getConstant(0, DL
, CarryVT
));
2852 // If it cannot overflow, transform into an add.
2853 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2854 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2855 DAG
.getConstant(0, DL
, CarryVT
));
2857 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
2858 if (isBitwiseNot(N0
) && isOneOrOneSplat(N1
)) {
2859 SDValue Sub
= DAG
.getNode(ISD::USUBO
, DL
, N
->getVTList(),
2860 DAG
.getConstant(0, DL
, VT
), N0
.getOperand(0));
2861 return CombineTo(N
, Sub
,
2862 flipBoolean(Sub
.getValue(1), DL
, DAG
, TLI
));
2865 if (SDValue Combined
= visitUADDOLike(N0
, N1
, N
))
2868 if (SDValue Combined
= visitUADDOLike(N1
, N0
, N
))
2875 SDValue
DAGCombiner::visitUADDOLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
2876 EVT VT
= N0
.getValueType();
2880 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2881 // If Y + 1 cannot overflow.
2882 if (N1
.getOpcode() == ISD::ADDCARRY
&& isNullConstant(N1
.getOperand(1))) {
2883 SDValue Y
= N1
.getOperand(0);
2884 SDValue One
= DAG
.getConstant(1, SDLoc(N
), Y
.getValueType());
2885 if (DAG
.computeOverflowKind(Y
, One
) == SelectionDAG::OFK_Never
)
2886 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(), N0
, Y
,
2890 // (uaddo X, Carry) -> (addcarry X, 0, Carry)
2891 if (TLI
.isOperationLegalOrCustom(ISD::ADDCARRY
, VT
))
2892 if (SDValue Carry
= getAsCarry(TLI
, N1
))
2893 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(), N0
,
2894 DAG
.getConstant(0, SDLoc(N
), VT
), Carry
);
2899 SDValue
DAGCombiner::visitADDE(SDNode
*N
) {
2900 SDValue N0
= N
->getOperand(0);
2901 SDValue N1
= N
->getOperand(1);
2902 SDValue CarryIn
= N
->getOperand(2);
2904 // canonicalize constant to RHS
2905 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2906 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2908 return DAG
.getNode(ISD::ADDE
, SDLoc(N
), N
->getVTList(),
2911 // fold (adde x, y, false) -> (addc x, y)
2912 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
2913 return DAG
.getNode(ISD::ADDC
, SDLoc(N
), N
->getVTList(), N0
, N1
);
2918 SDValue
DAGCombiner::visitADDCARRY(SDNode
*N
) {
2919 SDValue N0
= N
->getOperand(0);
2920 SDValue N1
= N
->getOperand(1);
2921 SDValue CarryIn
= N
->getOperand(2);
2924 // canonicalize constant to RHS
2925 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2926 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2928 return DAG
.getNode(ISD::ADDCARRY
, DL
, N
->getVTList(), N1
, N0
, CarryIn
);
2930 // fold (addcarry x, y, false) -> (uaddo x, y)
2931 if (isNullConstant(CarryIn
)) {
2932 if (!LegalOperations
||
2933 TLI
.isOperationLegalOrCustom(ISD::UADDO
, N
->getValueType(0)))
2934 return DAG
.getNode(ISD::UADDO
, DL
, N
->getVTList(), N0
, N1
);
2937 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
2938 if (isNullConstant(N0
) && isNullConstant(N1
)) {
2939 EVT VT
= N0
.getValueType();
2940 EVT CarryVT
= CarryIn
.getValueType();
2941 SDValue CarryExt
= DAG
.getBoolExtOrTrunc(CarryIn
, DL
, VT
, CarryVT
);
2942 AddToWorklist(CarryExt
.getNode());
2943 return CombineTo(N
, DAG
.getNode(ISD::AND
, DL
, VT
, CarryExt
,
2944 DAG
.getConstant(1, DL
, VT
)),
2945 DAG
.getConstant(0, DL
, CarryVT
));
2948 if (SDValue Combined
= visitADDCARRYLike(N0
, N1
, CarryIn
, N
))
2951 if (SDValue Combined
= visitADDCARRYLike(N1
, N0
, CarryIn
, N
))
2958 * If we are facing some sort of diamond carry propapagtion pattern try to
2959 * break it up to generate something like:
2960 * (addcarry X, 0, (addcarry A, B, Z):Carry)
2962 * The end result is usually an increase in operation required, but because the
2963 * carry is now linearized, other tranforms can kick in and optimize the DAG.
2965 * Patterns typically look something like
2970 * | (addcarry *, 0, Z)
2974 * (addcarry X, *, *)
2976 * But numerous variation exist. Our goal is to identify A, B, X and Z and
2977 * produce a combine with a single path for carry propagation.
2979 static SDValue
combineADDCARRYDiamond(DAGCombiner
&Combiner
, SelectionDAG
&DAG
,
2980 SDValue X
, SDValue Carry0
, SDValue Carry1
,
2982 if (Carry1
.getResNo() != 1 || Carry0
.getResNo() != 1)
2984 if (Carry1
.getOpcode() != ISD::UADDO
)
2990 * First look for a suitable Z. It will present itself in the form of
2991 * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true
2993 if (Carry0
.getOpcode() == ISD::ADDCARRY
&&
2994 isNullConstant(Carry0
.getOperand(1))) {
2995 Z
= Carry0
.getOperand(2);
2996 } else if (Carry0
.getOpcode() == ISD::UADDO
&&
2997 isOneConstant(Carry0
.getOperand(1))) {
2998 EVT VT
= Combiner
.getSetCCResultType(Carry0
.getValueType());
2999 Z
= DAG
.getConstant(1, SDLoc(Carry0
.getOperand(1)), VT
);
3001 // We couldn't find a suitable Z.
3006 auto cancelDiamond
= [&](SDValue A
,SDValue B
) {
3008 SDValue NewY
= DAG
.getNode(ISD::ADDCARRY
, DL
, Carry0
->getVTList(), A
, B
, Z
);
3009 Combiner
.AddToWorklist(NewY
.getNode());
3010 return DAG
.getNode(ISD::ADDCARRY
, DL
, N
->getVTList(), X
,
3011 DAG
.getConstant(0, DL
, X
.getValueType()),
3020 * (addcarry *, 0, Z)
3022 if (Carry0
.getOperand(0) == Carry1
.getValue(0)) {
3023 return cancelDiamond(Carry1
.getOperand(0), Carry1
.getOperand(1));
3027 * (addcarry A, 0, Z)
3033 if (Carry1
.getOperand(0) == Carry0
.getValue(0)) {
3034 return cancelDiamond(Carry0
.getOperand(0), Carry1
.getOperand(1));
3037 if (Carry1
.getOperand(1) == Carry0
.getValue(0)) {
3038 return cancelDiamond(Carry1
.getOperand(0), Carry0
.getOperand(0));
3044 SDValue
DAGCombiner::visitADDCARRYLike(SDValue N0
, SDValue N1
, SDValue CarryIn
,
3046 // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry.
3047 if (isBitwiseNot(N0
))
3048 if (SDValue NotC
= extractBooleanFlip(CarryIn
, DAG
, TLI
, true)) {
3050 SDValue Sub
= DAG
.getNode(ISD::SUBCARRY
, DL
, N
->getVTList(), N1
,
3051 N0
.getOperand(0), NotC
);
3052 return CombineTo(N
, Sub
,
3053 flipBoolean(Sub
.getValue(1), DL
, DAG
, TLI
));
3056 // Iff the flag result is dead:
3057 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry)
3058 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo
3059 // or the dependency between the instructions.
3060 if ((N0
.getOpcode() == ISD::ADD
||
3061 (N0
.getOpcode() == ISD::UADDO
&& N0
.getResNo() == 0 &&
3062 N0
.getValue(1) != CarryIn
)) &&
3063 isNullConstant(N1
) && !N
->hasAnyUseOfValue(1))
3064 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(),
3065 N0
.getOperand(0), N0
.getOperand(1), CarryIn
);
3068 * When one of the addcarry argument is itself a carry, we may be facing
3069 * a diamond carry propagation. In which case we try to transform the DAG
3070 * to ensure linear carry propagation if that is possible.
3072 if (auto Y
= getAsCarry(TLI
, N1
)) {
3073 // Because both are carries, Y and Z can be swapped.
3074 if (auto R
= combineADDCARRYDiamond(*this, DAG
, N0
, Y
, CarryIn
, N
))
3076 if (auto R
= combineADDCARRYDiamond(*this, DAG
, N0
, CarryIn
, Y
, N
))
3083 // Since it may not be valid to emit a fold to zero for vector initializers
3084 // check if we can before folding.
3085 static SDValue
tryFoldToZero(const SDLoc
&DL
, const TargetLowering
&TLI
, EVT VT
,
3086 SelectionDAG
&DAG
, bool LegalOperations
) {
3088 return DAG
.getConstant(0, DL
, VT
);
3089 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
))
3090 return DAG
.getConstant(0, DL
, VT
);
3094 SDValue
DAGCombiner::visitSUB(SDNode
*N
) {
3095 SDValue N0
= N
->getOperand(0);
3096 SDValue N1
= N
->getOperand(1);
3097 EVT VT
= N0
.getValueType();
3101 if (VT
.isVector()) {
3102 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
3105 // fold (sub x, 0) -> x, vector edition
3106 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
3110 // fold (sub x, x) -> 0
3111 // FIXME: Refactor this and xor and other similar operations together.
3113 return tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
3114 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
3115 DAG
.isConstantIntBuildVectorOrConstantInt(N1
)) {
3116 // fold (sub c1, c2) -> c1-c2
3117 return DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, N0
.getNode(),
3121 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3124 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
3126 // fold (sub x, c) -> (add x, -c)
3128 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
,
3129 DAG
.getConstant(-N1C
->getAPIntValue(), DL
, VT
));
3132 if (isNullOrNullSplat(N0
)) {
3133 unsigned BitWidth
= VT
.getScalarSizeInBits();
3134 // Right-shifting everything out but the sign bit followed by negation is
3135 // the same as flipping arithmetic/logical shift type without the negation:
3136 // -(X >>u 31) -> (X >>s 31)
3137 // -(X >>s 31) -> (X >>u 31)
3138 if (N1
->getOpcode() == ISD::SRA
|| N1
->getOpcode() == ISD::SRL
) {
3139 ConstantSDNode
*ShiftAmt
= isConstOrConstSplat(N1
.getOperand(1));
3140 if (ShiftAmt
&& ShiftAmt
->getAPIntValue() == (BitWidth
- 1)) {
3141 auto NewSh
= N1
->getOpcode() == ISD::SRA
? ISD::SRL
: ISD::SRA
;
3142 if (!LegalOperations
|| TLI
.isOperationLegal(NewSh
, VT
))
3143 return DAG
.getNode(NewSh
, DL
, VT
, N1
.getOperand(0), N1
.getOperand(1));
3147 // 0 - X --> 0 if the sub is NUW.
3148 if (N
->getFlags().hasNoUnsignedWrap())
3151 if (DAG
.MaskedValueIsZero(N1
, ~APInt::getSignMask(BitWidth
))) {
3152 // N1 is either 0 or the minimum signed value. If the sub is NSW, then
3153 // N1 must be 0 because negating the minimum signed value is undefined.
3154 if (N
->getFlags().hasNoSignedWrap())
3157 // 0 - X --> X if X is 0 or the minimum signed value.
3162 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
3163 if (isAllOnesOrAllOnesSplat(N0
))
3164 return DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
);
3166 // fold (A - (0-B)) -> A+B
3167 if (N1
.getOpcode() == ISD::SUB
&& isNullOrNullSplat(N1
.getOperand(0)))
3168 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
.getOperand(1));
3170 // fold A-(A-B) -> B
3171 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(0))
3172 return N1
.getOperand(1);
3174 // fold (A+B)-A -> B
3175 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(0) == N1
)
3176 return N0
.getOperand(1);
3178 // fold (A+B)-B -> A
3179 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1) == N1
)
3180 return N0
.getOperand(0);
3182 // fold (A+C1)-C2 -> A+(C1-C2)
3183 if (N0
.getOpcode() == ISD::ADD
&&
3184 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3185 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaques */ true)) {
3186 SDValue NewC
= DAG
.FoldConstantArithmetic(
3187 ISD::SUB
, DL
, VT
, N0
.getOperand(1).getNode(), N1
.getNode());
3188 assert(NewC
&& "Constant folding failed");
3189 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), NewC
);
3192 // fold C2-(A+C1) -> (C2-C1)-A
3193 if (N1
.getOpcode() == ISD::ADD
) {
3194 SDValue N11
= N1
.getOperand(1);
3195 if (isConstantOrConstantVector(N0
, /* NoOpaques */ true) &&
3196 isConstantOrConstantVector(N11
, /* NoOpaques */ true)) {
3197 SDValue NewC
= DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, N0
.getNode(),
3199 assert(NewC
&& "Constant folding failed");
3200 return DAG
.getNode(ISD::SUB
, DL
, VT
, NewC
, N1
.getOperand(0));
3204 // fold (A-C1)-C2 -> A-(C1+C2)
3205 if (N0
.getOpcode() == ISD::SUB
&&
3206 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3207 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaques */ true)) {
3208 SDValue NewC
= DAG
.FoldConstantArithmetic(
3209 ISD::ADD
, DL
, VT
, N0
.getOperand(1).getNode(), N1
.getNode());
3210 assert(NewC
&& "Constant folding failed");
3211 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), NewC
);
3214 // fold (c1-A)-c2 -> (c1-c2)-A
3215 if (N0
.getOpcode() == ISD::SUB
&&
3216 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3217 isConstantOrConstantVector(N0
.getOperand(0), /* NoOpaques */ true)) {
3218 SDValue NewC
= DAG
.FoldConstantArithmetic(
3219 ISD::SUB
, DL
, VT
, N0
.getOperand(0).getNode(), N1
.getNode());
3220 assert(NewC
&& "Constant folding failed");
3221 return DAG
.getNode(ISD::SUB
, DL
, VT
, NewC
, N0
.getOperand(1));
3224 // fold ((A+(B+or-C))-B) -> A+or-C
3225 if (N0
.getOpcode() == ISD::ADD
&&
3226 (N0
.getOperand(1).getOpcode() == ISD::SUB
||
3227 N0
.getOperand(1).getOpcode() == ISD::ADD
) &&
3228 N0
.getOperand(1).getOperand(0) == N1
)
3229 return DAG
.getNode(N0
.getOperand(1).getOpcode(), DL
, VT
, N0
.getOperand(0),
3230 N0
.getOperand(1).getOperand(1));
3232 // fold ((A+(C+B))-B) -> A+C
3233 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1).getOpcode() == ISD::ADD
&&
3234 N0
.getOperand(1).getOperand(1) == N1
)
3235 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0),
3236 N0
.getOperand(1).getOperand(0));
3238 // fold ((A-(B-C))-C) -> A-B
3239 if (N0
.getOpcode() == ISD::SUB
&& N0
.getOperand(1).getOpcode() == ISD::SUB
&&
3240 N0
.getOperand(1).getOperand(1) == N1
)
3241 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0),
3242 N0
.getOperand(1).getOperand(0));
3244 // fold (A-(B-C)) -> A+(C-B)
3245 if (N1
.getOpcode() == ISD::SUB
&& N1
.hasOneUse())
3246 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
,
3247 DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(1),
3250 // fold (X - (-Y * Z)) -> (X + (Y * Z))
3251 if (N1
.getOpcode() == ISD::MUL
&& N1
.hasOneUse()) {
3252 if (N1
.getOperand(0).getOpcode() == ISD::SUB
&&
3253 isNullOrNullSplat(N1
.getOperand(0).getOperand(0))) {
3254 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
,
3255 N1
.getOperand(0).getOperand(1),
3257 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Mul
);
3259 if (N1
.getOperand(1).getOpcode() == ISD::SUB
&&
3260 isNullOrNullSplat(N1
.getOperand(1).getOperand(0))) {
3261 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
,
3263 N1
.getOperand(1).getOperand(1));
3264 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Mul
);
3268 // If either operand of a sub is undef, the result is undef
3274 if (SDValue V
= foldAddSubBoolOfMaskedVal(N
, DAG
))
3277 if (SDValue V
= foldAddSubOfSignBit(N
, DAG
))
3280 if (SDValue V
= foldAddSubMasked1(false, N0
, N1
, DAG
, SDLoc(N
)))
3283 // (x - y) - 1 -> add (xor y, -1), x
3284 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&& isOneOrOneSplat(N1
)) {
3285 SDValue Xor
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(1),
3286 DAG
.getAllOnesConstant(DL
, VT
));
3287 return DAG
.getNode(ISD::ADD
, DL
, VT
, Xor
, N0
.getOperand(0));
3291 // sub y, (xor x, -1)
3292 // And if the target does not like this form then turn into:
3293 // add (add x, y), 1
3294 if (TLI
.preferIncOfAddToSubOfNot(VT
) && N1
.hasOneUse() && isBitwiseNot(N1
)) {
3295 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
.getOperand(0));
3296 return DAG
.getNode(ISD::ADD
, DL
, VT
, Add
, DAG
.getConstant(1, DL
, VT
));
3299 // Hoist one-use addition by non-opaque constant:
3300 // (x + C) - y -> (x - y) + C
3301 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::ADD
&&
3302 isConstantOrConstantVector(N0
.getOperand(1), /*NoOpaques=*/true)) {
3303 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), N1
);
3304 return DAG
.getNode(ISD::ADD
, DL
, VT
, Sub
, N0
.getOperand(1));
3306 // y - (x + C) -> (y - x) - C
3307 if (N1
.hasOneUse() && N1
.getOpcode() == ISD::ADD
&&
3308 isConstantOrConstantVector(N1
.getOperand(1), /*NoOpaques=*/true)) {
3309 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
.getOperand(0));
3310 return DAG
.getNode(ISD::SUB
, DL
, VT
, Sub
, N1
.getOperand(1));
3312 // (x - C) - y -> (x - y) - C
3313 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
3314 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
3315 isConstantOrConstantVector(N0
.getOperand(1), /*NoOpaques=*/true)) {
3316 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), N1
);
3317 return DAG
.getNode(ISD::SUB
, DL
, VT
, Sub
, N0
.getOperand(1));
3319 // (C - x) - y -> C - (x + y)
3320 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
3321 isConstantOrConstantVector(N0
.getOperand(0), /*NoOpaques=*/true)) {
3322 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(1), N1
);
3323 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), Add
);
3326 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1'
3327 // rather than 'sub 0/1' (the sext should get folded).
3328 // sub X, (zext i1 Y) --> add X, (sext i1 Y)
3329 if (N1
.getOpcode() == ISD::ZERO_EXTEND
&&
3330 N1
.getOperand(0).getScalarValueSizeInBits() == 1 &&
3331 TLI
.getBooleanContents(VT
) ==
3332 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
3333 SDValue SExt
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, N1
.getOperand(0));
3334 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, SExt
);
3337 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X)
3338 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
)) {
3339 if (N0
.getOpcode() == ISD::XOR
&& N1
.getOpcode() == ISD::SRA
) {
3340 SDValue X0
= N0
.getOperand(0), X1
= N0
.getOperand(1);
3341 SDValue S0
= N1
.getOperand(0);
3342 if ((X0
== S0
&& X1
== N1
) || (X0
== N1
&& X1
== S0
)) {
3343 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
3344 if (ConstantSDNode
*C
= isConstOrConstSplat(N1
.getOperand(1)))
3345 if (C
->getAPIntValue() == (OpSizeInBits
- 1))
3346 return DAG
.getNode(ISD::ABS
, SDLoc(N
), VT
, S0
);
3351 // If the relocation model supports it, consider symbol offsets.
3352 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N0
))
3353 if (!LegalOperations
&& TLI
.isOffsetFoldingLegal(GA
)) {
3354 // fold (sub Sym, c) -> Sym-c
3355 if (N1C
&& GA
->getOpcode() == ISD::GlobalAddress
)
3356 return DAG
.getGlobalAddress(GA
->getGlobal(), SDLoc(N1C
), VT
,
3358 (uint64_t)N1C
->getSExtValue());
3359 // fold (sub Sym+c1, Sym+c2) -> c1-c2
3360 if (GlobalAddressSDNode
*GB
= dyn_cast
<GlobalAddressSDNode
>(N1
))
3361 if (GA
->getGlobal() == GB
->getGlobal())
3362 return DAG
.getConstant((uint64_t)GA
->getOffset() - GB
->getOffset(),
3366 // sub X, (sextinreg Y i1) -> add X, (and Y 1)
3367 if (N1
.getOpcode() == ISD::SIGN_EXTEND_INREG
) {
3368 VTSDNode
*TN
= cast
<VTSDNode
>(N1
.getOperand(1));
3369 if (TN
->getVT() == MVT::i1
) {
3370 SDValue ZExt
= DAG
.getNode(ISD::AND
, DL
, VT
, N1
.getOperand(0),
3371 DAG
.getConstant(1, DL
, VT
));
3372 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, ZExt
);
3376 // Prefer an add for more folding potential and possibly better codegen:
3377 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
3378 if (!LegalOperations
&& N1
.getOpcode() == ISD::SRL
&& N1
.hasOneUse()) {
3379 SDValue ShAmt
= N1
.getOperand(1);
3380 ConstantSDNode
*ShAmtC
= isConstOrConstSplat(ShAmt
);
3382 ShAmtC
->getAPIntValue() == (N1
.getScalarValueSizeInBits() - 1)) {
3383 SDValue SRA
= DAG
.getNode(ISD::SRA
, DL
, VT
, N1
.getOperand(0), ShAmt
);
3384 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, SRA
);
3391 SDValue
DAGCombiner::visitSUBSAT(SDNode
*N
) {
3392 SDValue N0
= N
->getOperand(0);
3393 SDValue N1
= N
->getOperand(1);
3394 EVT VT
= N0
.getValueType();
3398 if (VT
.isVector()) {
3399 // TODO SimplifyVBinOp
3401 // fold (sub_sat x, 0) -> x, vector edition
3402 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
3406 // fold (sub_sat x, undef) -> 0
3407 if (N0
.isUndef() || N1
.isUndef())
3408 return DAG
.getConstant(0, DL
, VT
);
3410 // fold (sub_sat x, x) -> 0
3412 return DAG
.getConstant(0, DL
, VT
);
3414 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
3415 DAG
.isConstantIntBuildVectorOrConstantInt(N1
)) {
3416 // fold (sub_sat c1, c2) -> c3
3417 return DAG
.FoldConstantArithmetic(N
->getOpcode(), DL
, VT
, N0
.getNode(),
3421 // fold (sub_sat x, 0) -> x
3422 if (isNullConstant(N1
))
3428 SDValue
DAGCombiner::visitSUBC(SDNode
*N
) {
3429 SDValue N0
= N
->getOperand(0);
3430 SDValue N1
= N
->getOperand(1);
3431 EVT VT
= N0
.getValueType();
3434 // If the flag result is dead, turn this into an SUB.
3435 if (!N
->hasAnyUseOfValue(1))
3436 return CombineTo(N
, DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
),
3437 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3439 // fold (subc x, x) -> 0 + no borrow
3441 return CombineTo(N
, DAG
.getConstant(0, DL
, VT
),
3442 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3444 // fold (subc x, 0) -> x + no borrow
3445 if (isNullConstant(N1
))
3446 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3448 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3449 if (isAllOnesConstant(N0
))
3450 return CombineTo(N
, DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
),
3451 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3456 SDValue
DAGCombiner::visitSUBO(SDNode
*N
) {
3457 SDValue N0
= N
->getOperand(0);
3458 SDValue N1
= N
->getOperand(1);
3459 EVT VT
= N0
.getValueType();
3460 bool IsSigned
= (ISD::SSUBO
== N
->getOpcode());
3462 EVT CarryVT
= N
->getValueType(1);
3465 // If the flag result is dead, turn this into an SUB.
3466 if (!N
->hasAnyUseOfValue(1))
3467 return CombineTo(N
, DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
),
3468 DAG
.getUNDEF(CarryVT
));
3470 // fold (subo x, x) -> 0 + no borrow
3472 return CombineTo(N
, DAG
.getConstant(0, DL
, VT
),
3473 DAG
.getConstant(0, DL
, CarryVT
));
3475 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
3477 // fold (subox, c) -> (addo x, -c)
3478 if (IsSigned
&& N1C
&& !N1C
->getAPIntValue().isMinSignedValue()) {
3479 return DAG
.getNode(ISD::SADDO
, DL
, N
->getVTList(), N0
,
3480 DAG
.getConstant(-N1C
->getAPIntValue(), DL
, VT
));
3483 // fold (subo x, 0) -> x + no borrow
3484 if (isNullOrNullSplat(N1
))
3485 return CombineTo(N
, N0
, DAG
.getConstant(0, DL
, CarryVT
));
3487 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3488 if (!IsSigned
&& isAllOnesOrAllOnesSplat(N0
))
3489 return CombineTo(N
, DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
),
3490 DAG
.getConstant(0, DL
, CarryVT
));
3495 SDValue
DAGCombiner::visitSUBE(SDNode
*N
) {
3496 SDValue N0
= N
->getOperand(0);
3497 SDValue N1
= N
->getOperand(1);
3498 SDValue CarryIn
= N
->getOperand(2);
3500 // fold (sube x, y, false) -> (subc x, y)
3501 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
3502 return DAG
.getNode(ISD::SUBC
, SDLoc(N
), N
->getVTList(), N0
, N1
);
3507 SDValue
DAGCombiner::visitSUBCARRY(SDNode
*N
) {
3508 SDValue N0
= N
->getOperand(0);
3509 SDValue N1
= N
->getOperand(1);
3510 SDValue CarryIn
= N
->getOperand(2);
3512 // fold (subcarry x, y, false) -> (usubo x, y)
3513 if (isNullConstant(CarryIn
)) {
3514 if (!LegalOperations
||
3515 TLI
.isOperationLegalOrCustom(ISD::USUBO
, N
->getValueType(0)))
3516 return DAG
.getNode(ISD::USUBO
, SDLoc(N
), N
->getVTList(), N0
, N1
);
3522 // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT and UMULFIX here.
3523 SDValue
DAGCombiner::visitMULFIX(SDNode
*N
) {
3524 SDValue N0
= N
->getOperand(0);
3525 SDValue N1
= N
->getOperand(1);
3526 SDValue Scale
= N
->getOperand(2);
3527 EVT VT
= N0
.getValueType();
3529 // fold (mulfix x, undef, scale) -> 0
3530 if (N0
.isUndef() || N1
.isUndef())
3531 return DAG
.getConstant(0, SDLoc(N
), VT
);
3533 // Canonicalize constant to RHS (vector doesn't have to splat)
3534 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
3535 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
3536 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N1
, N0
, Scale
);
3538 // fold (mulfix x, 0, scale) -> 0
3539 if (isNullConstant(N1
))
3540 return DAG
.getConstant(0, SDLoc(N
), VT
);
3545 SDValue
DAGCombiner::visitMUL(SDNode
*N
) {
3546 SDValue N0
= N
->getOperand(0);
3547 SDValue N1
= N
->getOperand(1);
3548 EVT VT
= N0
.getValueType();
3550 // fold (mul x, undef) -> 0
3551 if (N0
.isUndef() || N1
.isUndef())
3552 return DAG
.getConstant(0, SDLoc(N
), VT
);
3554 bool N0IsConst
= false;
3555 bool N1IsConst
= false;
3556 bool N1IsOpaqueConst
= false;
3557 bool N0IsOpaqueConst
= false;
3558 APInt ConstValue0
, ConstValue1
;
3560 if (VT
.isVector()) {
3561 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
3564 N0IsConst
= ISD::isConstantSplatVector(N0
.getNode(), ConstValue0
);
3565 N1IsConst
= ISD::isConstantSplatVector(N1
.getNode(), ConstValue1
);
3566 assert((!N0IsConst
||
3567 ConstValue0
.getBitWidth() == VT
.getScalarSizeInBits()) &&
3568 "Splat APInt should be element width");
3569 assert((!N1IsConst
||
3570 ConstValue1
.getBitWidth() == VT
.getScalarSizeInBits()) &&
3571 "Splat APInt should be element width");
3573 N0IsConst
= isa
<ConstantSDNode
>(N0
);
3575 ConstValue0
= cast
<ConstantSDNode
>(N0
)->getAPIntValue();
3576 N0IsOpaqueConst
= cast
<ConstantSDNode
>(N0
)->isOpaque();
3578 N1IsConst
= isa
<ConstantSDNode
>(N1
);
3580 ConstValue1
= cast
<ConstantSDNode
>(N1
)->getAPIntValue();
3581 N1IsOpaqueConst
= cast
<ConstantSDNode
>(N1
)->isOpaque();
3585 // fold (mul c1, c2) -> c1*c2
3586 if (N0IsConst
&& N1IsConst
&& !N0IsOpaqueConst
&& !N1IsOpaqueConst
)
3587 return DAG
.FoldConstantArithmetic(ISD::MUL
, SDLoc(N
), VT
,
3588 N0
.getNode(), N1
.getNode());
3590 // canonicalize constant to RHS (vector doesn't have to splat)
3591 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
3592 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
3593 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N1
, N0
);
3594 // fold (mul x, 0) -> 0
3595 if (N1IsConst
&& ConstValue1
.isNullValue())
3597 // fold (mul x, 1) -> x
3598 if (N1IsConst
&& ConstValue1
.isOneValue())
3601 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3604 // fold (mul x, -1) -> 0-x
3605 if (N1IsConst
&& ConstValue1
.isAllOnesValue()) {
3607 return DAG
.getNode(ISD::SUB
, DL
, VT
,
3608 DAG
.getConstant(0, DL
, VT
), N0
);
3610 // fold (mul x, (1 << c)) -> x << c
3611 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
3612 DAG
.isKnownToBeAPowerOfTwo(N1
) &&
3613 (!VT
.isVector() || Level
<= AfterLegalizeVectorOps
)) {
3615 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
3616 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
3617 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ShiftVT
);
3618 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
, Trunc
);
3620 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
3621 if (N1IsConst
&& !N1IsOpaqueConst
&& (-ConstValue1
).isPowerOf2()) {
3622 unsigned Log2Val
= (-ConstValue1
).logBase2();
3624 // FIXME: If the input is something that is easily negated (e.g. a
3625 // single-use add), we should put the negate there.
3626 return DAG
.getNode(ISD::SUB
, DL
, VT
,
3627 DAG
.getConstant(0, DL
, VT
),
3628 DAG
.getNode(ISD::SHL
, DL
, VT
, N0
,
3629 DAG
.getConstant(Log2Val
, DL
,
3630 getShiftAmountTy(N0
.getValueType()))));
3633 // Try to transform multiply-by-(power-of-2 +/- 1) into shift and add/sub.
3634 // mul x, (2^N + 1) --> add (shl x, N), x
3635 // mul x, (2^N - 1) --> sub (shl x, N), x
3636 // Examples: x * 33 --> (x << 5) + x
3637 // x * 15 --> (x << 4) - x
3638 // x * -33 --> -((x << 5) + x)
3639 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
3640 if (N1IsConst
&& TLI
.decomposeMulByConstant(*DAG
.getContext(), VT
, N1
)) {
3641 // TODO: We could handle more general decomposition of any constant by
3642 // having the target set a limit on number of ops and making a
3643 // callback to determine that sequence (similar to sqrt expansion).
3644 unsigned MathOp
= ISD::DELETED_NODE
;
3645 APInt MulC
= ConstValue1
.abs();
3646 if ((MulC
- 1).isPowerOf2())
3648 else if ((MulC
+ 1).isPowerOf2())
3651 if (MathOp
!= ISD::DELETED_NODE
) {
3653 MathOp
== ISD::ADD
? (MulC
- 1).logBase2() : (MulC
+ 1).logBase2();
3654 assert(ShAmt
< VT
.getScalarSizeInBits() &&
3655 "multiply-by-constant generated out of bounds shift");
3658 DAG
.getNode(ISD::SHL
, DL
, VT
, N0
, DAG
.getConstant(ShAmt
, DL
, VT
));
3659 SDValue R
= DAG
.getNode(MathOp
, DL
, VT
, Shl
, N0
);
3660 if (ConstValue1
.isNegative())
3661 R
= DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), R
);
3666 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
3667 if (N0
.getOpcode() == ISD::SHL
&&
3668 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3669 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaques */ true)) {
3670 SDValue C3
= DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N1
, N0
.getOperand(1));
3671 if (isConstantOrConstantVector(C3
))
3672 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N0
.getOperand(0), C3
);
3675 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
3678 SDValue
Sh(nullptr, 0), Y(nullptr, 0);
3680 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
3681 if (N0
.getOpcode() == ISD::SHL
&&
3682 isConstantOrConstantVector(N0
.getOperand(1)) &&
3683 N0
.getNode()->hasOneUse()) {
3685 } else if (N1
.getOpcode() == ISD::SHL
&&
3686 isConstantOrConstantVector(N1
.getOperand(1)) &&
3687 N1
.getNode()->hasOneUse()) {
3692 SDValue Mul
= DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, Sh
.getOperand(0), Y
);
3693 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, Mul
, Sh
.getOperand(1));
3697 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
3698 if (DAG
.isConstantIntBuildVectorOrConstantInt(N1
) &&
3699 N0
.getOpcode() == ISD::ADD
&&
3700 DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1)) &&
3701 isMulAddWithConstProfitable(N
, N0
, N1
))
3702 return DAG
.getNode(ISD::ADD
, SDLoc(N
), VT
,
3703 DAG
.getNode(ISD::MUL
, SDLoc(N0
), VT
,
3704 N0
.getOperand(0), N1
),
3705 DAG
.getNode(ISD::MUL
, SDLoc(N1
), VT
,
3706 N0
.getOperand(1), N1
));
3709 if (SDValue RMUL
= reassociateOps(ISD::MUL
, SDLoc(N
), N0
, N1
, N
->getFlags()))
3715 /// Return true if divmod libcall is available.
3716 static bool isDivRemLibcallAvailable(SDNode
*Node
, bool isSigned
,
3717 const TargetLowering
&TLI
) {
3719 EVT NodeType
= Node
->getValueType(0);
3720 if (!NodeType
.isSimple())
3722 switch (NodeType
.getSimpleVT().SimpleTy
) {
3723 default: return false; // No libcall for vector types.
3724 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
3725 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
3726 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
3727 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
3728 case MVT::i128
: LC
= isSigned
? RTLIB::SDIVREM_I128
:RTLIB::UDIVREM_I128
; break;
3731 return TLI
.getLibcallName(LC
) != nullptr;
3734 /// Issue divrem if both quotient and remainder are needed.
3735 SDValue
DAGCombiner::useDivRem(SDNode
*Node
) {
3736 if (Node
->use_empty())
3737 return SDValue(); // This is a dead node, leave it alone.
3739 unsigned Opcode
= Node
->getOpcode();
3740 bool isSigned
= (Opcode
== ISD::SDIV
) || (Opcode
== ISD::SREM
);
3741 unsigned DivRemOpc
= isSigned
? ISD::SDIVREM
: ISD::UDIVREM
;
3743 // DivMod lib calls can still work on non-legal types if using lib-calls.
3744 EVT VT
= Node
->getValueType(0);
3745 if (VT
.isVector() || !VT
.isInteger())
3748 if (!TLI
.isTypeLegal(VT
) && !TLI
.isOperationCustom(DivRemOpc
, VT
))
3751 // If DIVREM is going to get expanded into a libcall,
3752 // but there is no libcall available, then don't combine.
3753 if (!TLI
.isOperationLegalOrCustom(DivRemOpc
, VT
) &&
3754 !isDivRemLibcallAvailable(Node
, isSigned
, TLI
))
3757 // If div is legal, it's better to do the normal expansion
3758 unsigned OtherOpcode
= 0;
3759 if ((Opcode
== ISD::SDIV
) || (Opcode
== ISD::UDIV
)) {
3760 OtherOpcode
= isSigned
? ISD::SREM
: ISD::UREM
;
3761 if (TLI
.isOperationLegalOrCustom(Opcode
, VT
))
3764 OtherOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
3765 if (TLI
.isOperationLegalOrCustom(OtherOpcode
, VT
))
3769 SDValue Op0
= Node
->getOperand(0);
3770 SDValue Op1
= Node
->getOperand(1);
3772 for (SDNode::use_iterator UI
= Op0
.getNode()->use_begin(),
3773 UE
= Op0
.getNode()->use_end(); UI
!= UE
; ++UI
) {
3775 if (User
== Node
|| User
->getOpcode() == ISD::DELETED_NODE
||
3778 // Convert the other matching node(s), too;
3779 // otherwise, the DIVREM may get target-legalized into something
3780 // target-specific that we won't be able to recognize.
3781 unsigned UserOpc
= User
->getOpcode();
3782 if ((UserOpc
== Opcode
|| UserOpc
== OtherOpcode
|| UserOpc
== DivRemOpc
) &&
3783 User
->getOperand(0) == Op0
&&
3784 User
->getOperand(1) == Op1
) {
3786 if (UserOpc
== OtherOpcode
) {
3787 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3788 combined
= DAG
.getNode(DivRemOpc
, SDLoc(Node
), VTs
, Op0
, Op1
);
3789 } else if (UserOpc
== DivRemOpc
) {
3790 combined
= SDValue(User
, 0);
3792 assert(UserOpc
== Opcode
);
3796 if (UserOpc
== ISD::SDIV
|| UserOpc
== ISD::UDIV
)
3797 CombineTo(User
, combined
);
3798 else if (UserOpc
== ISD::SREM
|| UserOpc
== ISD::UREM
)
3799 CombineTo(User
, combined
.getValue(1));
3805 static SDValue
simplifyDivRem(SDNode
*N
, SelectionDAG
&DAG
) {
3806 SDValue N0
= N
->getOperand(0);
3807 SDValue N1
= N
->getOperand(1);
3808 EVT VT
= N
->getValueType(0);
3811 unsigned Opc
= N
->getOpcode();
3812 bool IsDiv
= (ISD::SDIV
== Opc
) || (ISD::UDIV
== Opc
);
3813 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
3815 // X / undef -> undef
3816 // X % undef -> undef
3819 // NOTE: This includes vectors where any divisor element is zero/undef.
3820 if (DAG
.isUndef(Opc
, {N0
, N1
}))
3821 return DAG
.getUNDEF(VT
);
3826 return DAG
.getConstant(0, DL
, VT
);
3830 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
3831 if (N0C
&& N0C
->isNullValue())
3837 return DAG
.getConstant(IsDiv
? 1 : 0, DL
, VT
);
3841 // If this is a boolean op (single-bit element type), we can't have
3842 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
3843 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume
3845 if ((N1C
&& N1C
->isOne()) || (VT
.getScalarType() == MVT::i1
))
3846 return IsDiv
? N0
: DAG
.getConstant(0, DL
, VT
);
3851 SDValue
DAGCombiner::visitSDIV(SDNode
*N
) {
3852 SDValue N0
= N
->getOperand(0);
3853 SDValue N1
= N
->getOperand(1);
3854 EVT VT
= N
->getValueType(0);
3855 EVT CCVT
= getSetCCResultType(VT
);
3859 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
3864 // fold (sdiv c1, c2) -> c1/c2
3865 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
3866 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
3867 if (N0C
&& N1C
&& !N0C
->isOpaque() && !N1C
->isOpaque())
3868 return DAG
.FoldConstantArithmetic(ISD::SDIV
, DL
, VT
, N0C
, N1C
);
3869 // fold (sdiv X, -1) -> 0-X
3870 if (N1C
&& N1C
->isAllOnesValue())
3871 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), N0
);
3872 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
3873 if (N1C
&& N1C
->getAPIntValue().isMinSignedValue())
3874 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
3875 DAG
.getConstant(1, DL
, VT
),
3876 DAG
.getConstant(0, DL
, VT
));
3878 if (SDValue V
= simplifyDivRem(N
, DAG
))
3881 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3884 // If we know the sign bits of both operands are zero, strength reduce to a
3885 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
3886 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
3887 return DAG
.getNode(ISD::UDIV
, DL
, N1
.getValueType(), N0
, N1
);
3889 if (SDValue V
= visitSDIVLike(N0
, N1
, N
)) {
3890 // If the corresponding remainder node exists, update its users with
3891 // (Dividend - (Quotient * Divisor).
3892 if (SDNode
*RemNode
= DAG
.getNodeIfExists(ISD::SREM
, N
->getVTList(),
3894 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
, V
, N1
);
3895 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, Mul
);
3896 AddToWorklist(Mul
.getNode());
3897 AddToWorklist(Sub
.getNode());
3898 CombineTo(RemNode
, Sub
);
3903 // sdiv, srem -> sdivrem
3904 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
3905 // true. Otherwise, we break the simplification logic in visitREM().
3906 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
3907 if (!N1C
|| TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
3908 if (SDValue DivRem
= useDivRem(N
))
3914 SDValue
DAGCombiner::visitSDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
3916 EVT VT
= N
->getValueType(0);
3917 EVT CCVT
= getSetCCResultType(VT
);
3918 unsigned BitWidth
= VT
.getScalarSizeInBits();
3920 // Helper for determining whether a value is a power-2 constant scalar or a
3921 // vector of such elements.
3922 auto IsPowerOfTwo
= [](ConstantSDNode
*C
) {
3923 if (C
->isNullValue() || C
->isOpaque())
3925 if (C
->getAPIntValue().isPowerOf2())
3927 if ((-C
->getAPIntValue()).isPowerOf2())
3932 // fold (sdiv X, pow2) -> simple ops after legalize
3933 // FIXME: We check for the exact bit here because the generic lowering gives
3934 // better results in that case. The target-specific lowering should learn how
3935 // to handle exact sdivs efficiently.
3936 if (!N
->getFlags().hasExact() && ISD::matchUnaryPredicate(N1
, IsPowerOfTwo
)) {
3937 // Target-specific implementation of sdiv x, pow2.
3938 if (SDValue Res
= BuildSDIVPow2(N
))
3941 // Create constants that are functions of the shift amount value.
3942 EVT ShiftAmtTy
= getShiftAmountTy(N0
.getValueType());
3943 SDValue Bits
= DAG
.getConstant(BitWidth
, DL
, ShiftAmtTy
);
3944 SDValue C1
= DAG
.getNode(ISD::CTTZ
, DL
, VT
, N1
);
3945 C1
= DAG
.getZExtOrTrunc(C1
, DL
, ShiftAmtTy
);
3946 SDValue Inexact
= DAG
.getNode(ISD::SUB
, DL
, ShiftAmtTy
, Bits
, C1
);
3947 if (!isConstantOrConstantVector(Inexact
))
3950 // Splat the sign bit into the register
3951 SDValue Sign
= DAG
.getNode(ISD::SRA
, DL
, VT
, N0
,
3952 DAG
.getConstant(BitWidth
- 1, DL
, ShiftAmtTy
));
3953 AddToWorklist(Sign
.getNode());
3955 // Add (N0 < 0) ? abs2 - 1 : 0;
3956 SDValue Srl
= DAG
.getNode(ISD::SRL
, DL
, VT
, Sign
, Inexact
);
3957 AddToWorklist(Srl
.getNode());
3958 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Srl
);
3959 AddToWorklist(Add
.getNode());
3960 SDValue Sra
= DAG
.getNode(ISD::SRA
, DL
, VT
, Add
, C1
);
3961 AddToWorklist(Sra
.getNode());
3963 // Special case: (sdiv X, 1) -> X
3964 // Special Case: (sdiv X, -1) -> 0-X
3965 SDValue One
= DAG
.getConstant(1, DL
, VT
);
3966 SDValue AllOnes
= DAG
.getAllOnesConstant(DL
, VT
);
3967 SDValue IsOne
= DAG
.getSetCC(DL
, CCVT
, N1
, One
, ISD::SETEQ
);
3968 SDValue IsAllOnes
= DAG
.getSetCC(DL
, CCVT
, N1
, AllOnes
, ISD::SETEQ
);
3969 SDValue IsOneOrAllOnes
= DAG
.getNode(ISD::OR
, DL
, CCVT
, IsOne
, IsAllOnes
);
3970 Sra
= DAG
.getSelect(DL
, VT
, IsOneOrAllOnes
, N0
, Sra
);
3972 // If dividing by a positive value, we're done. Otherwise, the result must
3974 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
3975 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, Zero
, Sra
);
3977 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
3978 SDValue IsNeg
= DAG
.getSetCC(DL
, CCVT
, N1
, Zero
, ISD::SETLT
);
3979 SDValue Res
= DAG
.getSelect(DL
, VT
, IsNeg
, Sub
, Sra
);
3983 // If integer divide is expensive and we satisfy the requirements, emit an
3984 // alternate sequence. Targets may check function attributes for size/speed
3986 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
3987 if (isConstantOrConstantVector(N1
) &&
3988 !TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
3989 if (SDValue Op
= BuildSDIV(N
))
3995 SDValue
DAGCombiner::visitUDIV(SDNode
*N
) {
3996 SDValue N0
= N
->getOperand(0);
3997 SDValue N1
= N
->getOperand(1);
3998 EVT VT
= N
->getValueType(0);
3999 EVT CCVT
= getSetCCResultType(VT
);
4003 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
4008 // fold (udiv c1, c2) -> c1/c2
4009 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
4010 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4012 if (SDValue Folded
= DAG
.FoldConstantArithmetic(ISD::UDIV
, DL
, VT
,
4015 // fold (udiv X, -1) -> select(X == -1, 1, 0)
4016 if (N1C
&& N1C
->getAPIntValue().isAllOnesValue())
4017 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
4018 DAG
.getConstant(1, DL
, VT
),
4019 DAG
.getConstant(0, DL
, VT
));
4021 if (SDValue V
= simplifyDivRem(N
, DAG
))
4024 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
4027 if (SDValue V
= visitUDIVLike(N0
, N1
, N
)) {
4028 // If the corresponding remainder node exists, update its users with
4029 // (Dividend - (Quotient * Divisor).
4030 if (SDNode
*RemNode
= DAG
.getNodeIfExists(ISD::UREM
, N
->getVTList(),
4032 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
, V
, N1
);
4033 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, Mul
);
4034 AddToWorklist(Mul
.getNode());
4035 AddToWorklist(Sub
.getNode());
4036 CombineTo(RemNode
, Sub
);
4041 // sdiv, srem -> sdivrem
4042 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
4043 // true. Otherwise, we break the simplification logic in visitREM().
4044 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4045 if (!N1C
|| TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
4046 if (SDValue DivRem
= useDivRem(N
))
4052 SDValue
DAGCombiner::visitUDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
4054 EVT VT
= N
->getValueType(0);
4056 // fold (udiv x, (1 << c)) -> x >>u c
4057 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
4058 DAG
.isKnownToBeAPowerOfTwo(N1
)) {
4059 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
4060 AddToWorklist(LogBase2
.getNode());
4062 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
4063 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ShiftVT
);
4064 AddToWorklist(Trunc
.getNode());
4065 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Trunc
);
4068 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
4069 if (N1
.getOpcode() == ISD::SHL
) {
4070 SDValue N10
= N1
.getOperand(0);
4071 if (isConstantOrConstantVector(N10
, /*NoOpaques*/ true) &&
4072 DAG
.isKnownToBeAPowerOfTwo(N10
)) {
4073 SDValue LogBase2
= BuildLogBase2(N10
, DL
);
4074 AddToWorklist(LogBase2
.getNode());
4076 EVT ADDVT
= N1
.getOperand(1).getValueType();
4077 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ADDVT
);
4078 AddToWorklist(Trunc
.getNode());
4079 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, ADDVT
, N1
.getOperand(1), Trunc
);
4080 AddToWorklist(Add
.getNode());
4081 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Add
);
4085 // fold (udiv x, c) -> alternate
4086 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4087 if (isConstantOrConstantVector(N1
) &&
4088 !TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
4089 if (SDValue Op
= BuildUDIV(N
))
4095 // handles ISD::SREM and ISD::UREM
4096 SDValue
DAGCombiner::visitREM(SDNode
*N
) {
4097 unsigned Opcode
= N
->getOpcode();
4098 SDValue N0
= N
->getOperand(0);
4099 SDValue N1
= N
->getOperand(1);
4100 EVT VT
= N
->getValueType(0);
4101 EVT CCVT
= getSetCCResultType(VT
);
4103 bool isSigned
= (Opcode
== ISD::SREM
);
4106 // fold (rem c1, c2) -> c1%c2
4107 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
4108 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4110 if (SDValue Folded
= DAG
.FoldConstantArithmetic(Opcode
, DL
, VT
, N0C
, N1C
))
4112 // fold (urem X, -1) -> select(X == -1, 0, x)
4113 if (!isSigned
&& N1C
&& N1C
->getAPIntValue().isAllOnesValue())
4114 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
4115 DAG
.getConstant(0, DL
, VT
), N0
);
4117 if (SDValue V
= simplifyDivRem(N
, DAG
))
4120 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
4124 // If we know the sign bits of both operands are zero, strength reduce to a
4125 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
4126 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
4127 return DAG
.getNode(ISD::UREM
, DL
, VT
, N0
, N1
);
4129 SDValue NegOne
= DAG
.getAllOnesConstant(DL
, VT
);
4130 if (DAG
.isKnownToBeAPowerOfTwo(N1
)) {
4131 // fold (urem x, pow2) -> (and x, pow2-1)
4132 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, NegOne
);
4133 AddToWorklist(Add
.getNode());
4134 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, Add
);
4136 if (N1
.getOpcode() == ISD::SHL
&&
4137 DAG
.isKnownToBeAPowerOfTwo(N1
.getOperand(0))) {
4138 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
4139 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, NegOne
);
4140 AddToWorklist(Add
.getNode());
4141 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, Add
);
4145 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4147 // If X/C can be simplified by the division-by-constant logic, lower
4148 // X%C to the equivalent of X-X/C*C.
4149 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
4150 // speculative DIV must not cause a DIVREM conversion. We guard against this
4151 // by skipping the simplification if isIntDivCheap(). When div is not cheap,
4152 // combine will not return a DIVREM. Regardless, checking cheapness here
4153 // makes sense since the simplification results in fatter code.
4154 if (DAG
.isKnownNeverZero(N1
) && !TLI
.isIntDivCheap(VT
, Attr
)) {
4155 SDValue OptimizedDiv
=
4156 isSigned
? visitSDIVLike(N0
, N1
, N
) : visitUDIVLike(N0
, N1
, N
);
4157 if (OptimizedDiv
.getNode()) {
4158 // If the equivalent Div node also exists, update its users.
4159 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
4160 if (SDNode
*DivNode
= DAG
.getNodeIfExists(DivOpcode
, N
->getVTList(),
4162 CombineTo(DivNode
, OptimizedDiv
);
4163 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
, OptimizedDiv
, N1
);
4164 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, Mul
);
4165 AddToWorklist(OptimizedDiv
.getNode());
4166 AddToWorklist(Mul
.getNode());
4171 // sdiv, srem -> sdivrem
4172 if (SDValue DivRem
= useDivRem(N
))
4173 return DivRem
.getValue(1);
4178 SDValue
DAGCombiner::visitMULHS(SDNode
*N
) {
4179 SDValue N0
= N
->getOperand(0);
4180 SDValue N1
= N
->getOperand(1);
4181 EVT VT
= N
->getValueType(0);
4184 if (VT
.isVector()) {
4185 // fold (mulhs x, 0) -> 0
4186 // do not return N0/N1, because undef node may exist.
4187 if (ISD::isBuildVectorAllZeros(N0
.getNode()) ||
4188 ISD::isBuildVectorAllZeros(N1
.getNode()))
4189 return DAG
.getConstant(0, DL
, VT
);
4192 // fold (mulhs x, 0) -> 0
4193 if (isNullConstant(N1
))
4195 // fold (mulhs x, 1) -> (sra x, size(x)-1)
4196 if (isOneConstant(N1
))
4197 return DAG
.getNode(ISD::SRA
, DL
, N0
.getValueType(), N0
,
4198 DAG
.getConstant(N0
.getScalarValueSizeInBits() - 1, DL
,
4199 getShiftAmountTy(N0
.getValueType())));
4201 // fold (mulhs x, undef) -> 0
4202 if (N0
.isUndef() || N1
.isUndef())
4203 return DAG
.getConstant(0, DL
, VT
);
4205 // If the type twice as wide is legal, transform the mulhs to a wider multiply
4207 if (VT
.isSimple() && !VT
.isVector()) {
4208 MVT Simple
= VT
.getSimpleVT();
4209 unsigned SimpleSize
= Simple
.getSizeInBits();
4210 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4211 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4212 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N0
);
4213 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N1
);
4214 N1
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, N0
, N1
);
4215 N1
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, N1
,
4216 DAG
.getConstant(SimpleSize
, DL
,
4217 getShiftAmountTy(N1
.getValueType())));
4218 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N1
);
4225 SDValue
DAGCombiner::visitMULHU(SDNode
*N
) {
4226 SDValue N0
= N
->getOperand(0);
4227 SDValue N1
= N
->getOperand(1);
4228 EVT VT
= N
->getValueType(0);
4231 if (VT
.isVector()) {
4232 // fold (mulhu x, 0) -> 0
4233 // do not return N0/N1, because undef node may exist.
4234 if (ISD::isBuildVectorAllZeros(N0
.getNode()) ||
4235 ISD::isBuildVectorAllZeros(N1
.getNode()))
4236 return DAG
.getConstant(0, DL
, VT
);
4239 // fold (mulhu x, 0) -> 0
4240 if (isNullConstant(N1
))
4242 // fold (mulhu x, 1) -> 0
4243 if (isOneConstant(N1
))
4244 return DAG
.getConstant(0, DL
, N0
.getValueType());
4245 // fold (mulhu x, undef) -> 0
4246 if (N0
.isUndef() || N1
.isUndef())
4247 return DAG
.getConstant(0, DL
, VT
);
4249 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
4250 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
4251 DAG
.isKnownToBeAPowerOfTwo(N1
) && hasOperation(ISD::SRL
, VT
)) {
4252 unsigned NumEltBits
= VT
.getScalarSizeInBits();
4253 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
4254 SDValue SRLAmt
= DAG
.getNode(
4255 ISD::SUB
, DL
, VT
, DAG
.getConstant(NumEltBits
, DL
, VT
), LogBase2
);
4256 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
4257 SDValue Trunc
= DAG
.getZExtOrTrunc(SRLAmt
, DL
, ShiftVT
);
4258 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Trunc
);
4261 // If the type twice as wide is legal, transform the mulhu to a wider multiply
4263 if (VT
.isSimple() && !VT
.isVector()) {
4264 MVT Simple
= VT
.getSimpleVT();
4265 unsigned SimpleSize
= Simple
.getSizeInBits();
4266 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4267 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4268 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N0
);
4269 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N1
);
4270 N1
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, N0
, N1
);
4271 N1
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, N1
,
4272 DAG
.getConstant(SimpleSize
, DL
,
4273 getShiftAmountTy(N1
.getValueType())));
4274 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N1
);
4281 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp
4282 /// give the opcodes for the two computations that are being performed. Return
4283 /// true if a simplification was made.
4284 SDValue
DAGCombiner::SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
4286 // If the high half is not needed, just compute the low half.
4287 bool HiExists
= N
->hasAnyUseOfValue(1);
4288 if (!HiExists
&& (!LegalOperations
||
4289 TLI
.isOperationLegalOrCustom(LoOp
, N
->getValueType(0)))) {
4290 SDValue Res
= DAG
.getNode(LoOp
, SDLoc(N
), N
->getValueType(0), N
->ops());
4291 return CombineTo(N
, Res
, Res
);
4294 // If the low half is not needed, just compute the high half.
4295 bool LoExists
= N
->hasAnyUseOfValue(0);
4296 if (!LoExists
&& (!LegalOperations
||
4297 TLI
.isOperationLegalOrCustom(HiOp
, N
->getValueType(1)))) {
4298 SDValue Res
= DAG
.getNode(HiOp
, SDLoc(N
), N
->getValueType(1), N
->ops());
4299 return CombineTo(N
, Res
, Res
);
4302 // If both halves are used, return as it is.
4303 if (LoExists
&& HiExists
)
4306 // If the two computed results can be simplified separately, separate them.
4308 SDValue Lo
= DAG
.getNode(LoOp
, SDLoc(N
), N
->getValueType(0), N
->ops());
4309 AddToWorklist(Lo
.getNode());
4310 SDValue LoOpt
= combine(Lo
.getNode());
4311 if (LoOpt
.getNode() && LoOpt
.getNode() != Lo
.getNode() &&
4312 (!LegalOperations
||
4313 TLI
.isOperationLegalOrCustom(LoOpt
.getOpcode(), LoOpt
.getValueType())))
4314 return CombineTo(N
, LoOpt
, LoOpt
);
4318 SDValue Hi
= DAG
.getNode(HiOp
, SDLoc(N
), N
->getValueType(1), N
->ops());
4319 AddToWorklist(Hi
.getNode());
4320 SDValue HiOpt
= combine(Hi
.getNode());
4321 if (HiOpt
.getNode() && HiOpt
!= Hi
&&
4322 (!LegalOperations
||
4323 TLI
.isOperationLegalOrCustom(HiOpt
.getOpcode(), HiOpt
.getValueType())))
4324 return CombineTo(N
, HiOpt
, HiOpt
);
4330 SDValue
DAGCombiner::visitSMUL_LOHI(SDNode
*N
) {
4331 if (SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHS
))
4334 EVT VT
= N
->getValueType(0);
4337 // If the type is twice as wide is legal, transform the mulhu to a wider
4338 // multiply plus a shift.
4339 if (VT
.isSimple() && !VT
.isVector()) {
4340 MVT Simple
= VT
.getSimpleVT();
4341 unsigned SimpleSize
= Simple
.getSizeInBits();
4342 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4343 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4344 SDValue Lo
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N
->getOperand(0));
4345 SDValue Hi
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N
->getOperand(1));
4346 Lo
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, Lo
, Hi
);
4347 // Compute the high part as N1.
4348 Hi
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, Lo
,
4349 DAG
.getConstant(SimpleSize
, DL
,
4350 getShiftAmountTy(Lo
.getValueType())));
4351 Hi
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Hi
);
4352 // Compute the low part as N0.
4353 Lo
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Lo
);
4354 return CombineTo(N
, Lo
, Hi
);
4361 SDValue
DAGCombiner::visitUMUL_LOHI(SDNode
*N
) {
4362 if (SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHU
))
4365 EVT VT
= N
->getValueType(0);
4368 // (umul_lohi N0, 0) -> (0, 0)
4369 if (isNullConstant(N
->getOperand(1))) {
4370 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
4371 return CombineTo(N
, Zero
, Zero
);
4374 // (umul_lohi N0, 1) -> (N0, 0)
4375 if (isOneConstant(N
->getOperand(1))) {
4376 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
4377 return CombineTo(N
, N
->getOperand(0), Zero
);
4380 // If the type is twice as wide is legal, transform the mulhu to a wider
4381 // multiply plus a shift.
4382 if (VT
.isSimple() && !VT
.isVector()) {
4383 MVT Simple
= VT
.getSimpleVT();
4384 unsigned SimpleSize
= Simple
.getSizeInBits();
4385 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4386 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4387 SDValue Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N
->getOperand(0));
4388 SDValue Hi
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N
->getOperand(1));
4389 Lo
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, Lo
, Hi
);
4390 // Compute the high part as N1.
4391 Hi
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, Lo
,
4392 DAG
.getConstant(SimpleSize
, DL
,
4393 getShiftAmountTy(Lo
.getValueType())));
4394 Hi
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Hi
);
4395 // Compute the low part as N0.
4396 Lo
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Lo
);
4397 return CombineTo(N
, Lo
, Hi
);
4404 SDValue
DAGCombiner::visitMULO(SDNode
*N
) {
4405 bool IsSigned
= (ISD::SMULO
== N
->getOpcode());
4407 // (mulo x, 2) -> (addo x, x)
4408 if (ConstantSDNode
*C2
= isConstOrConstSplat(N
->getOperand(1)))
4409 if (C2
->getAPIntValue() == 2)
4410 return DAG
.getNode(IsSigned
? ISD::SADDO
: ISD::UADDO
, SDLoc(N
),
4411 N
->getVTList(), N
->getOperand(0), N
->getOperand(0));
4416 SDValue
DAGCombiner::visitIMINMAX(SDNode
*N
) {
4417 SDValue N0
= N
->getOperand(0);
4418 SDValue N1
= N
->getOperand(1);
4419 EVT VT
= N0
.getValueType();
4423 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
4426 // fold operation with constant operands.
4427 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
4428 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
4430 return DAG
.FoldConstantArithmetic(N
->getOpcode(), SDLoc(N
), VT
, N0C
, N1C
);
4432 // canonicalize constant to RHS
4433 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
4434 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
4435 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N1
, N0
);
4437 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
4438 // Only do this if the current op isn't legal and the flipped is.
4439 unsigned Opcode
= N
->getOpcode();
4440 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4441 if (!TLI
.isOperationLegal(Opcode
, VT
) &&
4442 (N0
.isUndef() || DAG
.SignBitIsZero(N0
)) &&
4443 (N1
.isUndef() || DAG
.SignBitIsZero(N1
))) {
4446 case ISD::SMIN
: AltOpcode
= ISD::UMIN
; break;
4447 case ISD::SMAX
: AltOpcode
= ISD::UMAX
; break;
4448 case ISD::UMIN
: AltOpcode
= ISD::SMIN
; break;
4449 case ISD::UMAX
: AltOpcode
= ISD::SMAX
; break;
4450 default: llvm_unreachable("Unknown MINMAX opcode");
4452 if (TLI
.isOperationLegal(AltOpcode
, VT
))
4453 return DAG
.getNode(AltOpcode
, SDLoc(N
), VT
, N0
, N1
);
4459 /// If this is a bitwise logic instruction and both operands have the same
4460 /// opcode, try to sink the other opcode after the logic instruction.
4461 SDValue
DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode
*N
) {
4462 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
4463 EVT VT
= N0
.getValueType();
4464 unsigned LogicOpcode
= N
->getOpcode();
4465 unsigned HandOpcode
= N0
.getOpcode();
4466 assert((LogicOpcode
== ISD::AND
|| LogicOpcode
== ISD::OR
||
4467 LogicOpcode
== ISD::XOR
) && "Expected logic opcode");
4468 assert(HandOpcode
== N1
.getOpcode() && "Bad input!");
4470 // Bail early if none of these transforms apply.
4471 if (N0
.getNumOperands() == 0)
4474 // FIXME: We should check number of uses of the operands to not increase
4475 // the instruction count for all transforms.
4477 // Handle size-changing casts.
4478 SDValue X
= N0
.getOperand(0);
4479 SDValue Y
= N1
.getOperand(0);
4480 EVT XVT
= X
.getValueType();
4482 if (HandOpcode
== ISD::ANY_EXTEND
|| HandOpcode
== ISD::ZERO_EXTEND
||
4483 HandOpcode
== ISD::SIGN_EXTEND
) {
4484 // If both operands have other uses, this transform would create extra
4485 // instructions without eliminating anything.
4486 if (!N0
.hasOneUse() && !N1
.hasOneUse())
4488 // We need matching integer source types.
4489 if (XVT
!= Y
.getValueType())
4491 // Don't create an illegal op during or after legalization. Don't ever
4492 // create an unsupported vector op.
4493 if ((VT
.isVector() || LegalOperations
) &&
4494 !TLI
.isOperationLegalOrCustom(LogicOpcode
, XVT
))
4496 // Avoid infinite looping with PromoteIntBinOp.
4497 // TODO: Should we apply desirable/legal constraints to all opcodes?
4498 if (HandOpcode
== ISD::ANY_EXTEND
&& LegalTypes
&&
4499 !TLI
.isTypeDesirableForOp(LogicOpcode
, XVT
))
4501 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
4502 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4503 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4506 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
4507 if (HandOpcode
== ISD::TRUNCATE
) {
4508 // If both operands have other uses, this transform would create extra
4509 // instructions without eliminating anything.
4510 if (!N0
.hasOneUse() && !N1
.hasOneUse())
4512 // We need matching source types.
4513 if (XVT
!= Y
.getValueType())
4515 // Don't create an illegal op during or after legalization.
4516 if (LegalOperations
&& !TLI
.isOperationLegal(LogicOpcode
, XVT
))
4518 // Be extra careful sinking truncate. If it's free, there's no benefit in
4519 // widening a binop. Also, don't create a logic op on an illegal type.
4520 if (TLI
.isZExtFree(VT
, XVT
) && TLI
.isTruncateFree(XVT
, VT
))
4522 if (!TLI
.isTypeLegal(XVT
))
4524 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4525 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4528 // For binops SHL/SRL/SRA/AND:
4529 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
4530 if ((HandOpcode
== ISD::SHL
|| HandOpcode
== ISD::SRL
||
4531 HandOpcode
== ISD::SRA
|| HandOpcode
== ISD::AND
) &&
4532 N0
.getOperand(1) == N1
.getOperand(1)) {
4533 // If either operand has other uses, this transform is not an improvement.
4534 if (!N0
.hasOneUse() || !N1
.hasOneUse())
4536 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4537 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
, N0
.getOperand(1));
4540 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
4541 if (HandOpcode
== ISD::BSWAP
) {
4542 // If either operand has other uses, this transform is not an improvement.
4543 if (!N0
.hasOneUse() || !N1
.hasOneUse())
4545 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4546 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4549 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
4550 // Only perform this optimization up until type legalization, before
4551 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
4552 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
4553 // we don't want to undo this promotion.
4554 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
4556 if ((HandOpcode
== ISD::BITCAST
|| HandOpcode
== ISD::SCALAR_TO_VECTOR
) &&
4557 Level
<= AfterLegalizeTypes
) {
4558 // Input types must be integer and the same.
4559 if (XVT
.isInteger() && XVT
== Y
.getValueType()) {
4560 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4561 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4565 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
4566 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
4567 // If both shuffles use the same mask, and both shuffle within a single
4568 // vector, then it is worthwhile to move the swizzle after the operation.
4569 // The type-legalizer generates this pattern when loading illegal
4570 // vector types from memory. In many cases this allows additional shuffle
4572 // There are other cases where moving the shuffle after the xor/and/or
4573 // is profitable even if shuffles don't perform a swizzle.
4574 // If both shuffles use the same mask, and both shuffles have the same first
4575 // or second operand, then it might still be profitable to move the shuffle
4576 // after the xor/and/or operation.
4577 if (HandOpcode
== ISD::VECTOR_SHUFFLE
&& Level
< AfterLegalizeDAG
) {
4578 auto *SVN0
= cast
<ShuffleVectorSDNode
>(N0
);
4579 auto *SVN1
= cast
<ShuffleVectorSDNode
>(N1
);
4580 assert(X
.getValueType() == Y
.getValueType() &&
4581 "Inputs to shuffles are not the same type");
4583 // Check that both shuffles use the same mask. The masks are known to be of
4584 // the same length because the result vector type is the same.
4585 // Check also that shuffles have only one use to avoid introducing extra
4587 if (!SVN0
->hasOneUse() || !SVN1
->hasOneUse() ||
4588 !SVN0
->getMask().equals(SVN1
->getMask()))
4591 // Don't try to fold this node if it requires introducing a
4592 // build vector of all zeros that might be illegal at this stage.
4593 SDValue ShOp
= N0
.getOperand(1);
4594 if (LogicOpcode
== ISD::XOR
&& !ShOp
.isUndef())
4595 ShOp
= tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
4597 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
4598 if (N0
.getOperand(1) == N1
.getOperand(1) && ShOp
.getNode()) {
4599 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, VT
,
4600 N0
.getOperand(0), N1
.getOperand(0));
4601 return DAG
.getVectorShuffle(VT
, DL
, Logic
, ShOp
, SVN0
->getMask());
4604 // Don't try to fold this node if it requires introducing a
4605 // build vector of all zeros that might be illegal at this stage.
4606 ShOp
= N0
.getOperand(0);
4607 if (LogicOpcode
== ISD::XOR
&& !ShOp
.isUndef())
4608 ShOp
= tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
4610 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
4611 if (N0
.getOperand(0) == N1
.getOperand(0) && ShOp
.getNode()) {
4612 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, VT
, N0
.getOperand(1),
4614 return DAG
.getVectorShuffle(VT
, DL
, ShOp
, Logic
, SVN0
->getMask());
4621 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
4622 SDValue
DAGCombiner::foldLogicOfSetCCs(bool IsAnd
, SDValue N0
, SDValue N1
,
4624 SDValue LL
, LR
, RL
, RR
, N0CC
, N1CC
;
4625 if (!isSetCCEquivalent(N0
, LL
, LR
, N0CC
) ||
4626 !isSetCCEquivalent(N1
, RL
, RR
, N1CC
))
4629 assert(N0
.getValueType() == N1
.getValueType() &&
4630 "Unexpected operand types for bitwise logic op");
4631 assert(LL
.getValueType() == LR
.getValueType() &&
4632 RL
.getValueType() == RR
.getValueType() &&
4633 "Unexpected operand types for setcc");
4635 // If we're here post-legalization or the logic op type is not i1, the logic
4636 // op type must match a setcc result type. Also, all folds require new
4637 // operations on the left and right operands, so those types must match.
4638 EVT VT
= N0
.getValueType();
4639 EVT OpVT
= LL
.getValueType();
4640 if (LegalOperations
|| VT
.getScalarType() != MVT::i1
)
4641 if (VT
!= getSetCCResultType(OpVT
))
4643 if (OpVT
!= RL
.getValueType())
4646 ISD::CondCode CC0
= cast
<CondCodeSDNode
>(N0CC
)->get();
4647 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(N1CC
)->get();
4648 bool IsInteger
= OpVT
.isInteger();
4649 if (LR
== RR
&& CC0
== CC1
&& IsInteger
) {
4650 bool IsZero
= isNullOrNullSplat(LR
);
4651 bool IsNeg1
= isAllOnesOrAllOnesSplat(LR
);
4654 bool AndEqZero
= IsAnd
&& CC1
== ISD::SETEQ
&& IsZero
;
4655 // All sign bits clear?
4656 bool AndGtNeg1
= IsAnd
&& CC1
== ISD::SETGT
&& IsNeg1
;
4658 bool OrNeZero
= !IsAnd
&& CC1
== ISD::SETNE
&& IsZero
;
4659 // Any sign bits set?
4660 bool OrLtZero
= !IsAnd
&& CC1
== ISD::SETLT
&& IsZero
;
4662 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
4663 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
4664 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
4665 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
4666 if (AndEqZero
|| AndGtNeg1
|| OrNeZero
|| OrLtZero
) {
4667 SDValue Or
= DAG
.getNode(ISD::OR
, SDLoc(N0
), OpVT
, LL
, RL
);
4668 AddToWorklist(Or
.getNode());
4669 return DAG
.getSetCC(DL
, VT
, Or
, LR
, CC1
);
4673 bool AndEqNeg1
= IsAnd
&& CC1
== ISD::SETEQ
&& IsNeg1
;
4674 // All sign bits set?
4675 bool AndLtZero
= IsAnd
&& CC1
== ISD::SETLT
&& IsZero
;
4677 bool OrNeNeg1
= !IsAnd
&& CC1
== ISD::SETNE
&& IsNeg1
;
4678 // Any sign bits clear?
4679 bool OrGtNeg1
= !IsAnd
&& CC1
== ISD::SETGT
&& IsNeg1
;
4681 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
4682 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
4683 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
4684 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
4685 if (AndEqNeg1
|| AndLtZero
|| OrNeNeg1
|| OrGtNeg1
) {
4686 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(N0
), OpVT
, LL
, RL
);
4687 AddToWorklist(And
.getNode());
4688 return DAG
.getSetCC(DL
, VT
, And
, LR
, CC1
);
4692 // TODO: What is the 'or' equivalent of this fold?
4693 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
4694 if (IsAnd
&& LL
== RL
&& CC0
== CC1
&& OpVT
.getScalarSizeInBits() > 1 &&
4695 IsInteger
&& CC0
== ISD::SETNE
&&
4696 ((isNullConstant(LR
) && isAllOnesConstant(RR
)) ||
4697 (isAllOnesConstant(LR
) && isNullConstant(RR
)))) {
4698 SDValue One
= DAG
.getConstant(1, DL
, OpVT
);
4699 SDValue Two
= DAG
.getConstant(2, DL
, OpVT
);
4700 SDValue Add
= DAG
.getNode(ISD::ADD
, SDLoc(N0
), OpVT
, LL
, One
);
4701 AddToWorklist(Add
.getNode());
4702 return DAG
.getSetCC(DL
, VT
, Add
, Two
, ISD::SETUGE
);
4705 // Try more general transforms if the predicates match and the only user of
4706 // the compares is the 'and' or 'or'.
4707 if (IsInteger
&& TLI
.convertSetCCLogicToBitwiseLogic(OpVT
) && CC0
== CC1
&&
4708 N0
.hasOneUse() && N1
.hasOneUse()) {
4709 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
4710 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
4711 if ((IsAnd
&& CC1
== ISD::SETEQ
) || (!IsAnd
&& CC1
== ISD::SETNE
)) {
4712 SDValue XorL
= DAG
.getNode(ISD::XOR
, SDLoc(N0
), OpVT
, LL
, LR
);
4713 SDValue XorR
= DAG
.getNode(ISD::XOR
, SDLoc(N1
), OpVT
, RL
, RR
);
4714 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, OpVT
, XorL
, XorR
);
4715 SDValue Zero
= DAG
.getConstant(0, DL
, OpVT
);
4716 return DAG
.getSetCC(DL
, VT
, Or
, Zero
, CC1
);
4719 // Turn compare of constants whose difference is 1 bit into add+and+setcc.
4720 // TODO - support non-uniform vector amounts.
4721 if ((IsAnd
&& CC1
== ISD::SETNE
) || (!IsAnd
&& CC1
== ISD::SETEQ
)) {
4722 // Match a shared variable operand and 2 non-opaque constant operands.
4723 ConstantSDNode
*C0
= isConstOrConstSplat(LR
);
4724 ConstantSDNode
*C1
= isConstOrConstSplat(RR
);
4725 if (LL
== RL
&& C0
&& C1
&& !C0
->isOpaque() && !C1
->isOpaque()) {
4726 // Canonicalize larger constant as C0.
4727 if (C1
->getAPIntValue().ugt(C0
->getAPIntValue()))
4730 // The difference of the constants must be a single bit.
4731 const APInt
&C0Val
= C0
->getAPIntValue();
4732 const APInt
&C1Val
= C1
->getAPIntValue();
4733 if ((C0Val
- C1Val
).isPowerOf2()) {
4734 // and/or (setcc X, C0, ne), (setcc X, C1, ne/eq) -->
4735 // setcc ((add X, -C1), ~(C0 - C1)), 0, ne/eq
4736 SDValue OffsetC
= DAG
.getConstant(-C1Val
, DL
, OpVT
);
4737 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, OpVT
, LL
, OffsetC
);
4738 SDValue MaskC
= DAG
.getConstant(~(C0Val
- C1Val
), DL
, OpVT
);
4739 SDValue And
= DAG
.getNode(ISD::AND
, DL
, OpVT
, Add
, MaskC
);
4740 SDValue Zero
= DAG
.getConstant(0, DL
, OpVT
);
4741 return DAG
.getSetCC(DL
, VT
, And
, Zero
, CC0
);
4747 // Canonicalize equivalent operands to LL == RL.
4748 if (LL
== RR
&& LR
== RL
) {
4749 CC1
= ISD::getSetCCSwappedOperands(CC1
);
4753 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
4754 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
4755 if (LL
== RL
&& LR
== RR
) {
4756 ISD::CondCode NewCC
= IsAnd
? ISD::getSetCCAndOperation(CC0
, CC1
, IsInteger
)
4757 : ISD::getSetCCOrOperation(CC0
, CC1
, IsInteger
);
4758 if (NewCC
!= ISD::SETCC_INVALID
&&
4759 (!LegalOperations
||
4760 (TLI
.isCondCodeLegal(NewCC
, LL
.getSimpleValueType()) &&
4761 TLI
.isOperationLegal(ISD::SETCC
, OpVT
))))
4762 return DAG
.getSetCC(DL
, VT
, LL
, LR
, NewCC
);
4768 /// This contains all DAGCombine rules which reduce two values combined by
4769 /// an And operation to a single value. This makes them reusable in the context
4770 /// of visitSELECT(). Rules involving constants are not included as
4771 /// visitSELECT() already handles those cases.
4772 SDValue
DAGCombiner::visitANDLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
4773 EVT VT
= N1
.getValueType();
4776 // fold (and x, undef) -> 0
4777 if (N0
.isUndef() || N1
.isUndef())
4778 return DAG
.getConstant(0, DL
, VT
);
4780 if (SDValue V
= foldLogicOfSetCCs(true, N0
, N1
, DL
))
4783 if (N0
.getOpcode() == ISD::ADD
&& N1
.getOpcode() == ISD::SRL
&&
4784 VT
.getSizeInBits() <= 64) {
4785 if (ConstantSDNode
*ADDI
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
4786 if (ConstantSDNode
*SRLI
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1))) {
4787 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
4788 // immediate for an add, but it is legal if its top c2 bits are set,
4789 // transform the ADD so the immediate doesn't need to be materialized
4791 APInt ADDC
= ADDI
->getAPIntValue();
4792 APInt SRLC
= SRLI
->getAPIntValue();
4793 if (ADDC
.getMinSignedBits() <= 64 &&
4794 SRLC
.ult(VT
.getSizeInBits()) &&
4795 !TLI
.isLegalAddImmediate(ADDC
.getSExtValue())) {
4796 APInt Mask
= APInt::getHighBitsSet(VT
.getSizeInBits(),
4797 SRLC
.getZExtValue());
4798 if (DAG
.MaskedValueIsZero(N0
.getOperand(1), Mask
)) {
4800 if (TLI
.isLegalAddImmediate(ADDC
.getSExtValue())) {
4803 DAG
.getNode(ISD::ADD
, DL0
, VT
,
4804 N0
.getOperand(0), DAG
.getConstant(ADDC
, DL
, VT
));
4805 CombineTo(N0
.getNode(), NewAdd
);
4806 // Return N so it doesn't get rechecked!
4807 return SDValue(N
, 0);
4815 // Reduce bit extract of low half of an integer to the narrower type.
4816 // (and (srl i64:x, K), KMask) ->
4817 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
4818 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse()) {
4819 if (ConstantSDNode
*CAnd
= dyn_cast
<ConstantSDNode
>(N1
)) {
4820 if (ConstantSDNode
*CShift
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
4821 unsigned Size
= VT
.getSizeInBits();
4822 const APInt
&AndMask
= CAnd
->getAPIntValue();
4823 unsigned ShiftBits
= CShift
->getZExtValue();
4825 // Bail out, this node will probably disappear anyway.
4829 unsigned MaskBits
= AndMask
.countTrailingOnes();
4830 EVT HalfVT
= EVT::getIntegerVT(*DAG
.getContext(), Size
/ 2);
4832 if (AndMask
.isMask() &&
4833 // Required bits must not span the two halves of the integer and
4834 // must fit in the half size type.
4835 (ShiftBits
+ MaskBits
<= Size
/ 2) &&
4836 TLI
.isNarrowingProfitable(VT
, HalfVT
) &&
4837 TLI
.isTypeDesirableForOp(ISD::AND
, HalfVT
) &&
4838 TLI
.isTypeDesirableForOp(ISD::SRL
, HalfVT
) &&
4839 TLI
.isTruncateFree(VT
, HalfVT
) &&
4840 TLI
.isZExtFree(HalfVT
, VT
)) {
4841 // The isNarrowingProfitable is to avoid regressions on PPC and
4842 // AArch64 which match a few 64-bit bit insert / bit extract patterns
4843 // on downstream users of this. Those patterns could probably be
4844 // extended to handle extensions mixed in.
4847 assert(MaskBits
<= Size
);
4849 // Extracting the highest bit of the low half.
4850 EVT ShiftVT
= TLI
.getShiftAmountTy(HalfVT
, DAG
.getDataLayout());
4851 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, HalfVT
,
4854 SDValue NewMask
= DAG
.getConstant(AndMask
.trunc(Size
/ 2), SL
, HalfVT
);
4855 SDValue ShiftK
= DAG
.getConstant(ShiftBits
, SL
, ShiftVT
);
4856 SDValue Shift
= DAG
.getNode(ISD::SRL
, SL
, HalfVT
, Trunc
, ShiftK
);
4857 SDValue And
= DAG
.getNode(ISD::AND
, SL
, HalfVT
, Shift
, NewMask
);
4858 return DAG
.getNode(ISD::ZERO_EXTEND
, SL
, VT
, And
);
4867 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode
*AndC
, LoadSDNode
*LoadN
,
4868 EVT LoadResultTy
, EVT
&ExtVT
) {
4869 if (!AndC
->getAPIntValue().isMask())
4872 unsigned ActiveBits
= AndC
->getAPIntValue().countTrailingOnes();
4874 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
4875 EVT LoadedVT
= LoadN
->getMemoryVT();
4877 if (ExtVT
== LoadedVT
&&
4878 (!LegalOperations
||
4879 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultTy
, ExtVT
))) {
4880 // ZEXTLOAD will match without needing to change the size of the value being
4885 // Do not change the width of a volatile load.
4886 if (LoadN
->isVolatile())
4889 // Do not generate loads of non-round integer types since these can
4890 // be expensive (and would be wrong if the type is not byte sized).
4891 if (!LoadedVT
.bitsGT(ExtVT
) || !ExtVT
.isRound())
4894 if (LegalOperations
&&
4895 !TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultTy
, ExtVT
))
4898 if (!TLI
.shouldReduceLoadWidth(LoadN
, ISD::ZEXTLOAD
, ExtVT
))
4904 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode
*LDST
,
4905 ISD::LoadExtType ExtType
, EVT
&MemVT
,
4909 // Only allow byte offsets.
4913 // Do not generate loads of non-round integer types since these can
4914 // be expensive (and would be wrong if the type is not byte sized).
4915 if (!MemVT
.isRound())
4918 // Don't change the width of a volatile load.
4919 if (LDST
->isVolatile())
4922 // Verify that we are actually reducing a load width here.
4923 if (LDST
->getMemoryVT().getSizeInBits() < MemVT
.getSizeInBits())
4926 // Ensure that this isn't going to produce an unsupported unaligned access.
4928 !TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), MemVT
,
4929 LDST
->getAddressSpace(), ShAmt
/ 8,
4930 LDST
->getMemOperand()->getFlags()))
4933 // It's not possible to generate a constant of extended or untyped type.
4934 EVT PtrType
= LDST
->getBasePtr().getValueType();
4935 if (PtrType
== MVT::Untyped
|| PtrType
.isExtended())
4938 if (isa
<LoadSDNode
>(LDST
)) {
4939 LoadSDNode
*Load
= cast
<LoadSDNode
>(LDST
);
4940 // Don't transform one with multiple uses, this would require adding a new
4942 if (!SDValue(Load
, 0).hasOneUse())
4945 if (LegalOperations
&&
4946 !TLI
.isLoadExtLegal(ExtType
, Load
->getValueType(0), MemVT
))
4949 // For the transform to be legal, the load must produce only two values
4950 // (the value loaded and the chain). Don't transform a pre-increment
4951 // load, for example, which produces an extra value. Otherwise the
4952 // transformation is not equivalent, and the downstream logic to replace
4953 // uses gets things wrong.
4954 if (Load
->getNumValues() > 2)
4957 // If the load that we're shrinking is an extload and we're not just
4958 // discarding the extension we can't simply shrink the load. Bail.
4959 // TODO: It would be possible to merge the extensions in some cases.
4960 if (Load
->getExtensionType() != ISD::NON_EXTLOAD
&&
4961 Load
->getMemoryVT().getSizeInBits() < MemVT
.getSizeInBits() + ShAmt
)
4964 if (!TLI
.shouldReduceLoadWidth(Load
, ExtType
, MemVT
))
4967 assert(isa
<StoreSDNode
>(LDST
) && "It is not a Load nor a Store SDNode");
4968 StoreSDNode
*Store
= cast
<StoreSDNode
>(LDST
);
4969 // Can't write outside the original store
4970 if (Store
->getMemoryVT().getSizeInBits() < MemVT
.getSizeInBits() + ShAmt
)
4973 if (LegalOperations
&&
4974 !TLI
.isTruncStoreLegal(Store
->getValue().getValueType(), MemVT
))
4980 bool DAGCombiner::SearchForAndLoads(SDNode
*N
,
4981 SmallVectorImpl
<LoadSDNode
*> &Loads
,
4982 SmallPtrSetImpl
<SDNode
*> &NodesWithConsts
,
4983 ConstantSDNode
*Mask
,
4984 SDNode
*&NodeToMask
) {
4985 // Recursively search for the operands, looking for loads which can be
4987 for (SDValue Op
: N
->op_values()) {
4988 if (Op
.getValueType().isVector())
4991 // Some constants may need fixing up later if they are too large.
4992 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4993 if ((N
->getOpcode() == ISD::OR
|| N
->getOpcode() == ISD::XOR
) &&
4994 (Mask
->getAPIntValue() & C
->getAPIntValue()) != C
->getAPIntValue())
4995 NodesWithConsts
.insert(N
);
4999 if (!Op
.hasOneUse())
5002 switch(Op
.getOpcode()) {
5004 auto *Load
= cast
<LoadSDNode
>(Op
);
5006 if (isAndLoadExtLoad(Mask
, Load
, Load
->getValueType(0), ExtVT
) &&
5007 isLegalNarrowLdSt(Load
, ISD::ZEXTLOAD
, ExtVT
)) {
5009 // ZEXTLOAD is already small enough.
5010 if (Load
->getExtensionType() == ISD::ZEXTLOAD
&&
5011 ExtVT
.bitsGE(Load
->getMemoryVT()))
5014 // Use LE to convert equal sized loads to zext.
5015 if (ExtVT
.bitsLE(Load
->getMemoryVT()))
5016 Loads
.push_back(Load
);
5022 case ISD::ZERO_EXTEND
:
5023 case ISD::AssertZext
: {
5024 unsigned ActiveBits
= Mask
->getAPIntValue().countTrailingOnes();
5025 EVT ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
5026 EVT VT
= Op
.getOpcode() == ISD::AssertZext
?
5027 cast
<VTSDNode
>(Op
.getOperand(1))->getVT() :
5028 Op
.getOperand(0).getValueType();
5030 // We can accept extending nodes if the mask is wider or an equal
5031 // width to the original type.
5032 if (ExtVT
.bitsGE(VT
))
5039 if (!SearchForAndLoads(Op
.getNode(), Loads
, NodesWithConsts
, Mask
,
5045 // Allow one node which will masked along with any loads found.
5049 // Also ensure that the node to be masked only produces one data result.
5050 NodeToMask
= Op
.getNode();
5051 if (NodeToMask
->getNumValues() > 1) {
5052 bool HasValue
= false;
5053 for (unsigned i
= 0, e
= NodeToMask
->getNumValues(); i
< e
; ++i
) {
5054 MVT VT
= SDValue(NodeToMask
, i
).getSimpleValueType();
5055 if (VT
!= MVT::Glue
&& VT
!= MVT::Other
) {
5057 NodeToMask
= nullptr;
5063 assert(HasValue
&& "Node to be masked has no data result?");
5069 bool DAGCombiner::BackwardsPropagateMask(SDNode
*N
, SelectionDAG
&DAG
) {
5070 auto *Mask
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
5074 if (!Mask
->getAPIntValue().isMask())
5077 // No need to do anything if the and directly uses a load.
5078 if (isa
<LoadSDNode
>(N
->getOperand(0)))
5081 SmallVector
<LoadSDNode
*, 8> Loads
;
5082 SmallPtrSet
<SDNode
*, 2> NodesWithConsts
;
5083 SDNode
*FixupNode
= nullptr;
5084 if (SearchForAndLoads(N
, Loads
, NodesWithConsts
, Mask
, FixupNode
)) {
5085 if (Loads
.size() == 0)
5088 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N
->dump());
5089 SDValue MaskOp
= N
->getOperand(1);
5091 // If it exists, fixup the single node we allow in the tree that needs
5094 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode
->dump());
5095 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(FixupNode
),
5096 FixupNode
->getValueType(0),
5097 SDValue(FixupNode
, 0), MaskOp
);
5098 DAG
.ReplaceAllUsesOfValueWith(SDValue(FixupNode
, 0), And
);
5099 if (And
.getOpcode() == ISD ::AND
)
5100 DAG
.UpdateNodeOperands(And
.getNode(), SDValue(FixupNode
, 0), MaskOp
);
5103 // Narrow any constants that need it.
5104 for (auto *LogicN
: NodesWithConsts
) {
5105 SDValue Op0
= LogicN
->getOperand(0);
5106 SDValue Op1
= LogicN
->getOperand(1);
5108 if (isa
<ConstantSDNode
>(Op0
))
5109 std::swap(Op0
, Op1
);
5111 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(Op1
), Op1
.getValueType(),
5114 DAG
.UpdateNodeOperands(LogicN
, Op0
, And
);
5117 // Create narrow loads.
5118 for (auto *Load
: Loads
) {
5119 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load
->dump());
5120 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(Load
), Load
->getValueType(0),
5121 SDValue(Load
, 0), MaskOp
);
5122 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 0), And
);
5123 if (And
.getOpcode() == ISD ::AND
)
5125 DAG
.UpdateNodeOperands(And
.getNode(), SDValue(Load
, 0), MaskOp
), 0);
5126 SDValue NewLoad
= ReduceLoadWidth(And
.getNode());
5128 "Shouldn't be masking the load if it can't be narrowed");
5129 CombineTo(Load
, NewLoad
, NewLoad
.getValue(1));
5131 DAG
.ReplaceAllUsesWith(N
, N
->getOperand(0).getNode());
5138 // x & (-1 'logical shift' y)
5140 // (x 'opposite logical shift' y) 'logical shift' y
5141 // if it is better for performance.
5142 SDValue
DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode
*N
) {
5143 assert(N
->getOpcode() == ISD::AND
);
5145 SDValue N0
= N
->getOperand(0);
5146 SDValue N1
= N
->getOperand(1);
5148 // Do we actually prefer shifts over mask?
5149 if (!TLI
.shouldFoldMaskToVariableShiftPair(N0
))
5152 // Try to match (-1 '[outer] logical shift' y)
5153 unsigned OuterShift
;
5154 unsigned InnerShift
; // The opposite direction to the OuterShift.
5155 SDValue Y
; // Shift amount.
5156 auto matchMask
= [&OuterShift
, &InnerShift
, &Y
](SDValue M
) -> bool {
5159 OuterShift
= M
->getOpcode();
5160 if (OuterShift
== ISD::SHL
)
5161 InnerShift
= ISD::SRL
;
5162 else if (OuterShift
== ISD::SRL
)
5163 InnerShift
= ISD::SHL
;
5166 if (!isAllOnesConstant(M
->getOperand(0)))
5168 Y
= M
->getOperand(1);
5175 else if (matchMask(N0
))
5181 EVT VT
= N
->getValueType(0);
5183 // tmp = x 'opposite logical shift' y
5184 SDValue T0
= DAG
.getNode(InnerShift
, DL
, VT
, X
, Y
);
5185 // ret = tmp 'logical shift' y
5186 SDValue T1
= DAG
.getNode(OuterShift
, DL
, VT
, T0
, Y
);
5191 /// Try to replace shift/logic that tests if a bit is clear with mask + setcc.
5192 /// For a target with a bit test, this is expected to become test + set and save
5193 /// at least 1 instruction.
5194 static SDValue
combineShiftAnd1ToBitTest(SDNode
*And
, SelectionDAG
&DAG
) {
5195 assert(And
->getOpcode() == ISD::AND
&& "Expected an 'and' op");
5197 // This is probably not worthwhile without a supported type.
5198 EVT VT
= And
->getValueType(0);
5199 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5200 if (!TLI
.isTypeLegal(VT
))
5203 // Look through an optional extension and find a 'not'.
5204 // TODO: Should we favor test+set even without the 'not' op?
5205 SDValue Not
= And
->getOperand(0), And1
= And
->getOperand(1);
5206 if (Not
.getOpcode() == ISD::ANY_EXTEND
)
5207 Not
= Not
.getOperand(0);
5208 if (!isBitwiseNot(Not
) || !Not
.hasOneUse() || !isOneConstant(And1
))
5211 // Look though an optional truncation. The source operand may not be the same
5212 // type as the original 'and', but that is ok because we are masking off
5213 // everything but the low bit.
5214 SDValue Srl
= Not
.getOperand(0);
5215 if (Srl
.getOpcode() == ISD::TRUNCATE
)
5216 Srl
= Srl
.getOperand(0);
5218 // Match a shift-right by constant.
5219 if (Srl
.getOpcode() != ISD::SRL
|| !Srl
.hasOneUse() ||
5220 !isa
<ConstantSDNode
>(Srl
.getOperand(1)))
5223 // We might have looked through casts that make this transform invalid.
5224 // TODO: If the source type is wider than the result type, do the mask and
5225 // compare in the source type.
5226 const APInt
&ShiftAmt
= Srl
.getConstantOperandAPInt(1);
5227 unsigned VTBitWidth
= VT
.getSizeInBits();
5228 if (ShiftAmt
.uge(VTBitWidth
))
5231 // Turn this into a bit-test pattern using mask op + setcc:
5232 // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0
5234 SDValue X
= DAG
.getZExtOrTrunc(Srl
.getOperand(0), DL
, VT
);
5235 EVT CCVT
= TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
5236 SDValue Mask
= DAG
.getConstant(
5237 APInt::getOneBitSet(VTBitWidth
, ShiftAmt
.getZExtValue()), DL
, VT
);
5238 SDValue NewAnd
= DAG
.getNode(ISD::AND
, DL
, VT
, X
, Mask
);
5239 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
5240 SDValue Setcc
= DAG
.getSetCC(DL
, CCVT
, NewAnd
, Zero
, ISD::SETEQ
);
5241 return DAG
.getZExtOrTrunc(Setcc
, DL
, VT
);
5244 SDValue
DAGCombiner::visitAND(SDNode
*N
) {
5245 SDValue N0
= N
->getOperand(0);
5246 SDValue N1
= N
->getOperand(1);
5247 EVT VT
= N1
.getValueType();
5254 if (VT
.isVector()) {
5255 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
5258 // fold (and x, 0) -> 0, vector edition
5259 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
5260 // do not return N0, because undef node may exist in N0
5261 return DAG
.getConstant(APInt::getNullValue(N0
.getScalarValueSizeInBits()),
5262 SDLoc(N
), N0
.getValueType());
5263 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
5264 // do not return N1, because undef node may exist in N1
5265 return DAG
.getConstant(APInt::getNullValue(N1
.getScalarValueSizeInBits()),
5266 SDLoc(N
), N1
.getValueType());
5268 // fold (and x, -1) -> x, vector edition
5269 if (ISD::isBuildVectorAllOnes(N0
.getNode()))
5271 if (ISD::isBuildVectorAllOnes(N1
.getNode()))
5275 // fold (and c1, c2) -> c1&c2
5276 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
5277 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
5278 if (N0C
&& N1C
&& !N1C
->isOpaque())
5279 return DAG
.FoldConstantArithmetic(ISD::AND
, SDLoc(N
), VT
, N0C
, N1C
);
5280 // canonicalize constant to RHS
5281 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
5282 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
5283 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, N1
, N0
);
5284 // fold (and x, -1) -> x
5285 if (isAllOnesConstant(N1
))
5287 // if (and x, c) is known to be zero, return 0
5288 unsigned BitWidth
= VT
.getScalarSizeInBits();
5289 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
5290 APInt::getAllOnesValue(BitWidth
)))
5291 return DAG
.getConstant(0, SDLoc(N
), VT
);
5293 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
5297 if (SDValue RAND
= reassociateOps(ISD::AND
, SDLoc(N
), N0
, N1
, N
->getFlags()))
5300 // Try to convert a constant mask AND into a shuffle clear mask.
5302 if (SDValue Shuffle
= XformToShuffleWithZero(N
))
5305 // fold (and (or x, C), D) -> D if (C & D) == D
5306 auto MatchSubset
= [](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
5307 return RHS
->getAPIntValue().isSubsetOf(LHS
->getAPIntValue());
5309 if (N0
.getOpcode() == ISD::OR
&&
5310 ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchSubset
))
5312 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
5313 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
5314 SDValue N0Op0
= N0
.getOperand(0);
5315 APInt Mask
= ~N1C
->getAPIntValue();
5316 Mask
= Mask
.trunc(N0Op0
.getScalarValueSizeInBits());
5317 if (DAG
.MaskedValueIsZero(N0Op0
, Mask
)) {
5318 SDValue Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
),
5319 N0
.getValueType(), N0Op0
);
5321 // Replace uses of the AND with uses of the Zero extend node.
5324 // We actually want to replace all uses of the any_extend with the
5325 // zero_extend, to avoid duplicating things. This will later cause this
5326 // AND to be folded.
5327 CombineTo(N0
.getNode(), Zext
);
5328 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5332 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
5333 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
5334 // already be zero by virtue of the width of the base type of the load.
5336 // the 'X' node here can either be nothing or an extract_vector_elt to catch
5338 if ((N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
5339 N0
.getValueSizeInBits() == N0
.getOperand(0).getScalarValueSizeInBits() &&
5340 N0
.getOperand(0).getOpcode() == ISD::LOAD
&&
5341 N0
.getOperand(0).getResNo() == 0) ||
5342 (N0
.getOpcode() == ISD::LOAD
&& N0
.getResNo() == 0)) {
5343 LoadSDNode
*Load
= cast
<LoadSDNode
>( (N0
.getOpcode() == ISD::LOAD
) ?
5344 N0
: N0
.getOperand(0) );
5346 // Get the constant (if applicable) the zero'th operand is being ANDed with.
5347 // This can be a pure constant or a vector splat, in which case we treat the
5348 // vector as a scalar and use the splat value.
5349 APInt Constant
= APInt::getNullValue(1);
5350 if (const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
5351 Constant
= C
->getAPIntValue();
5352 } else if (BuildVectorSDNode
*Vector
= dyn_cast
<BuildVectorSDNode
>(N1
)) {
5353 APInt SplatValue
, SplatUndef
;
5354 unsigned SplatBitSize
;
5356 bool IsSplat
= Vector
->isConstantSplat(SplatValue
, SplatUndef
,
5357 SplatBitSize
, HasAnyUndefs
);
5359 // Undef bits can contribute to a possible optimisation if set, so
5361 SplatValue
|= SplatUndef
;
5363 // The splat value may be something like "0x00FFFFFF", which means 0 for
5364 // the first vector value and FF for the rest, repeating. We need a mask
5365 // that will apply equally to all members of the vector, so AND all the
5366 // lanes of the constant together.
5367 unsigned EltBitWidth
= Vector
->getValueType(0).getScalarSizeInBits();
5369 // If the splat value has been compressed to a bitlength lower
5370 // than the size of the vector lane, we need to re-expand it to
5372 if (EltBitWidth
> SplatBitSize
)
5373 for (SplatValue
= SplatValue
.zextOrTrunc(EltBitWidth
);
5374 SplatBitSize
< EltBitWidth
; SplatBitSize
= SplatBitSize
* 2)
5375 SplatValue
|= SplatValue
.shl(SplatBitSize
);
5377 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
5378 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
5379 if ((SplatBitSize
% EltBitWidth
) == 0) {
5380 Constant
= APInt::getAllOnesValue(EltBitWidth
);
5381 for (unsigned i
= 0, n
= (SplatBitSize
/ EltBitWidth
); i
< n
; ++i
)
5382 Constant
&= SplatValue
.extractBits(EltBitWidth
, i
* EltBitWidth
);
5387 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
5388 // actually legal and isn't going to get expanded, else this is a false
5390 bool CanZextLoadProfitably
= TLI
.isLoadExtLegal(ISD::ZEXTLOAD
,
5391 Load
->getValueType(0),
5392 Load
->getMemoryVT());
5394 // Resize the constant to the same size as the original memory access before
5395 // extension. If it is still the AllOnesValue then this AND is completely
5397 Constant
= Constant
.zextOrTrunc(Load
->getMemoryVT().getScalarSizeInBits());
5400 switch (Load
->getExtensionType()) {
5401 default: B
= false; break;
5402 case ISD::EXTLOAD
: B
= CanZextLoadProfitably
; break;
5404 case ISD::NON_EXTLOAD
: B
= true; break;
5407 if (B
&& Constant
.isAllOnesValue()) {
5408 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
5409 // preserve semantics once we get rid of the AND.
5410 SDValue
NewLoad(Load
, 0);
5412 // Fold the AND away. NewLoad may get replaced immediately.
5413 CombineTo(N
, (N0
.getNode() == Load
) ? NewLoad
: N0
);
5415 if (Load
->getExtensionType() == ISD::EXTLOAD
) {
5416 NewLoad
= DAG
.getLoad(Load
->getAddressingMode(), ISD::ZEXTLOAD
,
5417 Load
->getValueType(0), SDLoc(Load
),
5418 Load
->getChain(), Load
->getBasePtr(),
5419 Load
->getOffset(), Load
->getMemoryVT(),
5420 Load
->getMemOperand());
5421 // Replace uses of the EXTLOAD with the new ZEXTLOAD.
5422 if (Load
->getNumValues() == 3) {
5423 // PRE/POST_INC loads have 3 values.
5424 SDValue To
[] = { NewLoad
.getValue(0), NewLoad
.getValue(1),
5425 NewLoad
.getValue(2) };
5426 CombineTo(Load
, To
, 3, true);
5428 CombineTo(Load
, NewLoad
.getValue(0), NewLoad
.getValue(1));
5432 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5436 // fold (and (load x), 255) -> (zextload x, i8)
5437 // fold (and (extload x, i16), 255) -> (zextload x, i8)
5438 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
5439 if (!VT
.isVector() && N1C
&& (N0
.getOpcode() == ISD::LOAD
||
5440 (N0
.getOpcode() == ISD::ANY_EXTEND
&&
5441 N0
.getOperand(0).getOpcode() == ISD::LOAD
))) {
5442 if (SDValue Res
= ReduceLoadWidth(N
)) {
5443 LoadSDNode
*LN0
= N0
->getOpcode() == ISD::ANY_EXTEND
5444 ? cast
<LoadSDNode
>(N0
.getOperand(0)) : cast
<LoadSDNode
>(N0
);
5446 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 0), Res
);
5447 return SDValue(N
, 0);
5451 if (Level
>= AfterLegalizeTypes
) {
5452 // Attempt to propagate the AND back up to the leaves which, if they're
5453 // loads, can be combined to narrow loads and the AND node can be removed.
5454 // Perform after legalization so that extend nodes will already be
5455 // combined into the loads.
5456 if (BackwardsPropagateMask(N
, DAG
)) {
5457 return SDValue(N
, 0);
5461 if (SDValue Combined
= visitANDLike(N0
, N1
, N
))
5464 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
5465 if (N0
.getOpcode() == N1
.getOpcode())
5466 if (SDValue V
= hoistLogicOpWithSameOpcodeHands(N
))
5469 // Masking the negated extension of a boolean is just the zero-extended
5471 // and (sub 0, zext(bool X)), 1 --> zext(bool X)
5472 // and (sub 0, sext(bool X)), 1 --> zext(bool X)
5474 // Note: the SimplifyDemandedBits fold below can make an information-losing
5475 // transform, and then we have no way to find this better fold.
5476 if (N1C
&& N1C
->isOne() && N0
.getOpcode() == ISD::SUB
) {
5477 if (isNullOrNullSplat(N0
.getOperand(0))) {
5478 SDValue SubRHS
= N0
.getOperand(1);
5479 if (SubRHS
.getOpcode() == ISD::ZERO_EXTEND
&&
5480 SubRHS
.getOperand(0).getScalarValueSizeInBits() == 1)
5482 if (SubRHS
.getOpcode() == ISD::SIGN_EXTEND
&&
5483 SubRHS
.getOperand(0).getScalarValueSizeInBits() == 1)
5484 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), VT
, SubRHS
.getOperand(0));
5488 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
5489 // fold (and (sra)) -> (and (srl)) when possible.
5490 if (SimplifyDemandedBits(SDValue(N
, 0)))
5491 return SDValue(N
, 0);
5493 // fold (zext_inreg (extload x)) -> (zextload x)
5494 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
5495 if (ISD::isUNINDEXEDLoad(N0
.getNode()) &&
5496 (ISD::isEXTLoad(N0
.getNode()) ||
5497 (ISD::isSEXTLoad(N0
.getNode()) && N0
.hasOneUse()))) {
5498 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
5499 EVT MemVT
= LN0
->getMemoryVT();
5500 // If we zero all the possible extended bits, then we can turn this into
5501 // a zextload if we are running before legalize or the operation is legal.
5502 unsigned ExtBitSize
= N1
.getScalarValueSizeInBits();
5503 unsigned MemBitSize
= MemVT
.getScalarSizeInBits();
5504 APInt ExtBits
= APInt::getHighBitsSet(ExtBitSize
, ExtBitSize
- MemBitSize
);
5505 if (DAG
.MaskedValueIsZero(N1
, ExtBits
) &&
5506 ((!LegalOperations
&& !LN0
->isVolatile()) ||
5507 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
))) {
5509 DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(N0
), VT
, LN0
->getChain(),
5510 LN0
->getBasePtr(), MemVT
, LN0
->getMemOperand());
5512 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
5513 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5517 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
5518 if (N1C
&& N1C
->getAPIntValue() == 0xffff && N0
.getOpcode() == ISD::OR
) {
5519 if (SDValue BSwap
= MatchBSwapHWordLow(N0
.getNode(), N0
.getOperand(0),
5520 N0
.getOperand(1), false))
5524 if (SDValue Shifts
= unfoldExtremeBitClearingToShifts(N
))
5527 if (TLI
.hasBitTest(N0
, N1
))
5528 if (SDValue V
= combineShiftAnd1ToBitTest(N
, DAG
))
5534 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
5535 SDValue
DAGCombiner::MatchBSwapHWordLow(SDNode
*N
, SDValue N0
, SDValue N1
,
5536 bool DemandHighBits
) {
5537 if (!LegalOperations
)
5540 EVT VT
= N
->getValueType(0);
5541 if (VT
!= MVT::i64
&& VT
!= MVT::i32
&& VT
!= MVT::i16
)
5543 if (!TLI
.isOperationLegalOrCustom(ISD::BSWAP
, VT
))
5546 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
5547 bool LookPassAnd0
= false;
5548 bool LookPassAnd1
= false;
5549 if (N0
.getOpcode() == ISD::AND
&& N0
.getOperand(0).getOpcode() == ISD::SRL
)
5551 if (N1
.getOpcode() == ISD::AND
&& N1
.getOperand(0).getOpcode() == ISD::SHL
)
5553 if (N0
.getOpcode() == ISD::AND
) {
5554 if (!N0
.getNode()->hasOneUse())
5556 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
5557 // Also handle 0xffff since the LHS is guaranteed to have zeros there.
5558 // This is needed for X86.
5559 if (!N01C
|| (N01C
->getZExtValue() != 0xFF00 &&
5560 N01C
->getZExtValue() != 0xFFFF))
5562 N0
= N0
.getOperand(0);
5563 LookPassAnd0
= true;
5566 if (N1
.getOpcode() == ISD::AND
) {
5567 if (!N1
.getNode()->hasOneUse())
5569 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
5570 if (!N11C
|| N11C
->getZExtValue() != 0xFF)
5572 N1
= N1
.getOperand(0);
5573 LookPassAnd1
= true;
5576 if (N0
.getOpcode() == ISD::SRL
&& N1
.getOpcode() == ISD::SHL
)
5578 if (N0
.getOpcode() != ISD::SHL
|| N1
.getOpcode() != ISD::SRL
)
5580 if (!N0
.getNode()->hasOneUse() || !N1
.getNode()->hasOneUse())
5583 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
5584 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
5587 if (N01C
->getZExtValue() != 8 || N11C
->getZExtValue() != 8)
5590 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
5591 SDValue N00
= N0
->getOperand(0);
5592 if (!LookPassAnd0
&& N00
.getOpcode() == ISD::AND
) {
5593 if (!N00
.getNode()->hasOneUse())
5595 ConstantSDNode
*N001C
= dyn_cast
<ConstantSDNode
>(N00
.getOperand(1));
5596 if (!N001C
|| N001C
->getZExtValue() != 0xFF)
5598 N00
= N00
.getOperand(0);
5599 LookPassAnd0
= true;
5602 SDValue N10
= N1
->getOperand(0);
5603 if (!LookPassAnd1
&& N10
.getOpcode() == ISD::AND
) {
5604 if (!N10
.getNode()->hasOneUse())
5606 ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N10
.getOperand(1));
5607 // Also allow 0xFFFF since the bits will be shifted out. This is needed
5609 if (!N101C
|| (N101C
->getZExtValue() != 0xFF00 &&
5610 N101C
->getZExtValue() != 0xFFFF))
5612 N10
= N10
.getOperand(0);
5613 LookPassAnd1
= true;
5619 // Make sure everything beyond the low halfword gets set to zero since the SRL
5620 // 16 will clear the top bits.
5621 unsigned OpSizeInBits
= VT
.getSizeInBits();
5622 if (DemandHighBits
&& OpSizeInBits
> 16) {
5623 // If the left-shift isn't masked out then the only way this is a bswap is
5624 // if all bits beyond the low 8 are 0. In that case the entire pattern
5625 // reduces to a left shift anyway: leave it for other parts of the combiner.
5629 // However, if the right shift isn't masked out then it might be because
5630 // it's not needed. See if we can spot that too.
5631 if (!LookPassAnd1
&&
5632 !DAG
.MaskedValueIsZero(
5633 N10
, APInt::getHighBitsSet(OpSizeInBits
, OpSizeInBits
- 16)))
5637 SDValue Res
= DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, N00
);
5638 if (OpSizeInBits
> 16) {
5640 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, Res
,
5641 DAG
.getConstant(OpSizeInBits
- 16, DL
,
5642 getShiftAmountTy(VT
)));
5647 /// Return true if the specified node is an element that makes up a 32-bit
5648 /// packed halfword byteswap.
5649 /// ((x & 0x000000ff) << 8) |
5650 /// ((x & 0x0000ff00) >> 8) |
5651 /// ((x & 0x00ff0000) << 8) |
5652 /// ((x & 0xff000000) >> 8)
5653 static bool isBSwapHWordElement(SDValue N
, MutableArrayRef
<SDNode
*> Parts
) {
5654 if (!N
.getNode()->hasOneUse())
5657 unsigned Opc
= N
.getOpcode();
5658 if (Opc
!= ISD::AND
&& Opc
!= ISD::SHL
&& Opc
!= ISD::SRL
)
5661 SDValue N0
= N
.getOperand(0);
5662 unsigned Opc0
= N0
.getOpcode();
5663 if (Opc0
!= ISD::AND
&& Opc0
!= ISD::SHL
&& Opc0
!= ISD::SRL
)
5666 ConstantSDNode
*N1C
= nullptr;
5667 // SHL or SRL: look upstream for AND mask operand
5668 if (Opc
== ISD::AND
)
5669 N1C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
5670 else if (Opc0
== ISD::AND
)
5671 N1C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
5675 unsigned MaskByteOffset
;
5676 switch (N1C
->getZExtValue()) {
5679 case 0xFF: MaskByteOffset
= 0; break;
5680 case 0xFF00: MaskByteOffset
= 1; break;
5682 // In case demanded bits didn't clear the bits that will be shifted out.
5683 // This is needed for X86.
5684 if (Opc
== ISD::SRL
|| (Opc
== ISD::AND
&& Opc0
== ISD::SHL
)) {
5689 case 0xFF0000: MaskByteOffset
= 2; break;
5690 case 0xFF000000: MaskByteOffset
= 3; break;
5693 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
5694 if (Opc
== ISD::AND
) {
5695 if (MaskByteOffset
== 0 || MaskByteOffset
== 2) {
5697 // (x >> 8) & 0xff0000
5698 if (Opc0
!= ISD::SRL
)
5700 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
5701 if (!C
|| C
->getZExtValue() != 8)
5704 // (x << 8) & 0xff00
5705 // (x << 8) & 0xff000000
5706 if (Opc0
!= ISD::SHL
)
5708 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
5709 if (!C
|| C
->getZExtValue() != 8)
5712 } else if (Opc
== ISD::SHL
) {
5714 // (x & 0xff0000) << 8
5715 if (MaskByteOffset
!= 0 && MaskByteOffset
!= 2)
5717 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
5718 if (!C
|| C
->getZExtValue() != 8)
5720 } else { // Opc == ISD::SRL
5721 // (x & 0xff00) >> 8
5722 // (x & 0xff000000) >> 8
5723 if (MaskByteOffset
!= 1 && MaskByteOffset
!= 3)
5725 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
5726 if (!C
|| C
->getZExtValue() != 8)
5730 if (Parts
[MaskByteOffset
])
5733 Parts
[MaskByteOffset
] = N0
.getOperand(0).getNode();
5737 /// Match a 32-bit packed halfword bswap. That is
5738 /// ((x & 0x000000ff) << 8) |
5739 /// ((x & 0x0000ff00) >> 8) |
5740 /// ((x & 0x00ff0000) << 8) |
5741 /// ((x & 0xff000000) >> 8)
5742 /// => (rotl (bswap x), 16)
5743 SDValue
DAGCombiner::MatchBSwapHWord(SDNode
*N
, SDValue N0
, SDValue N1
) {
5744 if (!LegalOperations
)
5747 EVT VT
= N
->getValueType(0);
5750 if (!TLI
.isOperationLegalOrCustom(ISD::BSWAP
, VT
))
5754 // (or (or (and), (and)), (or (and), (and)))
5755 // (or (or (or (and), (and)), (and)), (and))
5756 if (N0
.getOpcode() != ISD::OR
)
5758 SDValue N00
= N0
.getOperand(0);
5759 SDValue N01
= N0
.getOperand(1);
5760 SDNode
*Parts
[4] = {};
5762 if (N1
.getOpcode() == ISD::OR
&&
5763 N00
.getNumOperands() == 2 && N01
.getNumOperands() == 2) {
5764 // (or (or (and), (and)), (or (and), (and)))
5765 if (!isBSwapHWordElement(N00
, Parts
))
5768 if (!isBSwapHWordElement(N01
, Parts
))
5770 SDValue N10
= N1
.getOperand(0);
5771 if (!isBSwapHWordElement(N10
, Parts
))
5773 SDValue N11
= N1
.getOperand(1);
5774 if (!isBSwapHWordElement(N11
, Parts
))
5777 // (or (or (or (and), (and)), (and)), (and))
5778 if (!isBSwapHWordElement(N1
, Parts
))
5780 if (!isBSwapHWordElement(N01
, Parts
))
5782 if (N00
.getOpcode() != ISD::OR
)
5784 SDValue N000
= N00
.getOperand(0);
5785 if (!isBSwapHWordElement(N000
, Parts
))
5787 SDValue N001
= N00
.getOperand(1);
5788 if (!isBSwapHWordElement(N001
, Parts
))
5792 // Make sure the parts are all coming from the same node.
5793 if (Parts
[0] != Parts
[1] || Parts
[0] != Parts
[2] || Parts
[0] != Parts
[3])
5797 SDValue BSwap
= DAG
.getNode(ISD::BSWAP
, DL
, VT
,
5798 SDValue(Parts
[0], 0));
5800 // Result of the bswap should be rotated by 16. If it's not legal, then
5801 // do (x << 16) | (x >> 16).
5802 SDValue ShAmt
= DAG
.getConstant(16, DL
, getShiftAmountTy(VT
));
5803 if (TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
))
5804 return DAG
.getNode(ISD::ROTL
, DL
, VT
, BSwap
, ShAmt
);
5805 if (TLI
.isOperationLegalOrCustom(ISD::ROTR
, VT
))
5806 return DAG
.getNode(ISD::ROTR
, DL
, VT
, BSwap
, ShAmt
);
5807 return DAG
.getNode(ISD::OR
, DL
, VT
,
5808 DAG
.getNode(ISD::SHL
, DL
, VT
, BSwap
, ShAmt
),
5809 DAG
.getNode(ISD::SRL
, DL
, VT
, BSwap
, ShAmt
));
5812 /// This contains all DAGCombine rules which reduce two values combined by
5813 /// an Or operation to a single value \see visitANDLike().
5814 SDValue
DAGCombiner::visitORLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
5815 EVT VT
= N1
.getValueType();
5818 // fold (or x, undef) -> -1
5819 if (!LegalOperations
&& (N0
.isUndef() || N1
.isUndef()))
5820 return DAG
.getAllOnesConstant(DL
, VT
);
5822 if (SDValue V
= foldLogicOfSetCCs(false, N0
, N1
, DL
))
5825 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
5826 if (N0
.getOpcode() == ISD::AND
&& N1
.getOpcode() == ISD::AND
&&
5827 // Don't increase # computations.
5828 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
5829 // We can only do this xform if we know that bits from X that are set in C2
5830 // but not in C1 are already zero. Likewise for Y.
5831 if (const ConstantSDNode
*N0O1C
=
5832 getAsNonOpaqueConstant(N0
.getOperand(1))) {
5833 if (const ConstantSDNode
*N1O1C
=
5834 getAsNonOpaqueConstant(N1
.getOperand(1))) {
5835 // We can only do this xform if we know that bits from X that are set in
5836 // C2 but not in C1 are already zero. Likewise for Y.
5837 const APInt
&LHSMask
= N0O1C
->getAPIntValue();
5838 const APInt
&RHSMask
= N1O1C
->getAPIntValue();
5840 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), RHSMask
&~LHSMask
) &&
5841 DAG
.MaskedValueIsZero(N1
.getOperand(0), LHSMask
&~RHSMask
)) {
5842 SDValue X
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
,
5843 N0
.getOperand(0), N1
.getOperand(0));
5844 return DAG
.getNode(ISD::AND
, DL
, VT
, X
,
5845 DAG
.getConstant(LHSMask
| RHSMask
, DL
, VT
));
5851 // (or (and X, M), (and X, N)) -> (and X, (or M, N))
5852 if (N0
.getOpcode() == ISD::AND
&&
5853 N1
.getOpcode() == ISD::AND
&&
5854 N0
.getOperand(0) == N1
.getOperand(0) &&
5855 // Don't increase # computations.
5856 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
5857 SDValue X
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
,
5858 N0
.getOperand(1), N1
.getOperand(1));
5859 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), X
);
5865 /// OR combines for which the commuted variant will be tried as well.
5866 static SDValue
visitORCommutative(
5867 SelectionDAG
&DAG
, SDValue N0
, SDValue N1
, SDNode
*N
) {
5868 EVT VT
= N0
.getValueType();
5869 if (N0
.getOpcode() == ISD::AND
) {
5870 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y)
5871 if (isBitwiseNot(N0
.getOperand(1)) && N0
.getOperand(1).getOperand(0) == N1
)
5872 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
5874 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y)
5875 if (isBitwiseNot(N0
.getOperand(0)) && N0
.getOperand(0).getOperand(0) == N1
)
5876 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, N0
.getOperand(1), N1
);
5882 SDValue
DAGCombiner::visitOR(SDNode
*N
) {
5883 SDValue N0
= N
->getOperand(0);
5884 SDValue N1
= N
->getOperand(1);
5885 EVT VT
= N1
.getValueType();
5892 if (VT
.isVector()) {
5893 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
5896 // fold (or x, 0) -> x, vector edition
5897 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
5899 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
5902 // fold (or x, -1) -> -1, vector edition
5903 if (ISD::isBuildVectorAllOnes(N0
.getNode()))
5904 // do not return N0, because undef node may exist in N0
5905 return DAG
.getAllOnesConstant(SDLoc(N
), N0
.getValueType());
5906 if (ISD::isBuildVectorAllOnes(N1
.getNode()))
5907 // do not return N1, because undef node may exist in N1
5908 return DAG
.getAllOnesConstant(SDLoc(N
), N1
.getValueType());
5910 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
5911 // Do this only if the resulting shuffle is legal.
5912 if (isa
<ShuffleVectorSDNode
>(N0
) &&
5913 isa
<ShuffleVectorSDNode
>(N1
) &&
5914 // Avoid folding a node with illegal type.
5915 TLI
.isTypeLegal(VT
)) {
5916 bool ZeroN00
= ISD::isBuildVectorAllZeros(N0
.getOperand(0).getNode());
5917 bool ZeroN01
= ISD::isBuildVectorAllZeros(N0
.getOperand(1).getNode());
5918 bool ZeroN10
= ISD::isBuildVectorAllZeros(N1
.getOperand(0).getNode());
5919 bool ZeroN11
= ISD::isBuildVectorAllZeros(N1
.getOperand(1).getNode());
5920 // Ensure both shuffles have a zero input.
5921 if ((ZeroN00
!= ZeroN01
) && (ZeroN10
!= ZeroN11
)) {
5922 assert((!ZeroN00
|| !ZeroN01
) && "Both inputs zero!");
5923 assert((!ZeroN10
|| !ZeroN11
) && "Both inputs zero!");
5924 const ShuffleVectorSDNode
*SV0
= cast
<ShuffleVectorSDNode
>(N0
);
5925 const ShuffleVectorSDNode
*SV1
= cast
<ShuffleVectorSDNode
>(N1
);
5926 bool CanFold
= true;
5927 int NumElts
= VT
.getVectorNumElements();
5928 SmallVector
<int, 4> Mask(NumElts
);
5930 for (int i
= 0; i
!= NumElts
; ++i
) {
5931 int M0
= SV0
->getMaskElt(i
);
5932 int M1
= SV1
->getMaskElt(i
);
5934 // Determine if either index is pointing to a zero vector.
5935 bool M0Zero
= M0
< 0 || (ZeroN00
== (M0
< NumElts
));
5936 bool M1Zero
= M1
< 0 || (ZeroN10
== (M1
< NumElts
));
5938 // If one element is zero and the otherside is undef, keep undef.
5939 // This also handles the case that both are undef.
5940 if ((M0Zero
&& M1
< 0) || (M1Zero
&& M0
< 0)) {
5945 // Make sure only one of the elements is zero.
5946 if (M0Zero
== M1Zero
) {
5951 assert((M0
>= 0 || M1
>= 0) && "Undef index!");
5953 // We have a zero and non-zero element. If the non-zero came from
5954 // SV0 make the index a LHS index. If it came from SV1, make it
5955 // a RHS index. We need to mod by NumElts because we don't care
5956 // which operand it came from in the original shuffles.
5957 Mask
[i
] = M1Zero
? M0
% NumElts
: (M1
% NumElts
) + NumElts
;
5961 SDValue NewLHS
= ZeroN00
? N0
.getOperand(1) : N0
.getOperand(0);
5962 SDValue NewRHS
= ZeroN10
? N1
.getOperand(1) : N1
.getOperand(0);
5964 SDValue LegalShuffle
=
5965 TLI
.buildLegalVectorShuffle(VT
, SDLoc(N
), NewLHS
, NewRHS
,
5968 return LegalShuffle
;
5974 // fold (or c1, c2) -> c1|c2
5975 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
5976 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
5977 if (N0C
&& N1C
&& !N1C
->isOpaque())
5978 return DAG
.FoldConstantArithmetic(ISD::OR
, SDLoc(N
), VT
, N0C
, N1C
);
5979 // canonicalize constant to RHS
5980 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
5981 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
5982 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, N1
, N0
);
5983 // fold (or x, 0) -> x
5984 if (isNullConstant(N1
))
5986 // fold (or x, -1) -> -1
5987 if (isAllOnesConstant(N1
))
5990 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
5993 // fold (or x, c) -> c iff (x & ~c) == 0
5994 if (N1C
&& DAG
.MaskedValueIsZero(N0
, ~N1C
->getAPIntValue()))
5997 if (SDValue Combined
= visitORLike(N0
, N1
, N
))
6000 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
6001 if (SDValue BSwap
= MatchBSwapHWord(N
, N0
, N1
))
6003 if (SDValue BSwap
= MatchBSwapHWordLow(N
, N0
, N1
))
6007 if (SDValue ROR
= reassociateOps(ISD::OR
, SDLoc(N
), N0
, N1
, N
->getFlags()))
6010 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
6011 // iff (c1 & c2) != 0 or c1/c2 are undef.
6012 auto MatchIntersect
= [](ConstantSDNode
*C1
, ConstantSDNode
*C2
) {
6013 return !C1
|| !C2
|| C1
->getAPIntValue().intersects(C2
->getAPIntValue());
6015 if (N0
.getOpcode() == ISD::AND
&& N0
.getNode()->hasOneUse() &&
6016 ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchIntersect
, true)) {
6017 if (SDValue COR
= DAG
.FoldConstantArithmetic(
6018 ISD::OR
, SDLoc(N1
), VT
, N1
.getNode(), N0
.getOperand(1).getNode())) {
6019 SDValue IOR
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
6020 AddToWorklist(IOR
.getNode());
6021 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, COR
, IOR
);
6025 if (SDValue Combined
= visitORCommutative(DAG
, N0
, N1
, N
))
6027 if (SDValue Combined
= visitORCommutative(DAG
, N1
, N0
, N
))
6030 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
6031 if (N0
.getOpcode() == N1
.getOpcode())
6032 if (SDValue V
= hoistLogicOpWithSameOpcodeHands(N
))
6035 // See if this is some rotate idiom.
6036 if (SDNode
*Rot
= MatchRotate(N0
, N1
, SDLoc(N
)))
6037 return SDValue(Rot
, 0);
6039 if (SDValue Load
= MatchLoadCombine(N
))
6042 // Simplify the operands using demanded-bits information.
6043 if (SimplifyDemandedBits(SDValue(N
, 0)))
6044 return SDValue(N
, 0);
6046 // If OR can be rewritten into ADD, try combines based on ADD.
6047 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::ADD
, VT
)) &&
6048 DAG
.haveNoCommonBitsSet(N0
, N1
))
6049 if (SDValue Combined
= visitADDLike(N
))
6055 static SDValue
stripConstantMask(SelectionDAG
&DAG
, SDValue Op
, SDValue
&Mask
) {
6056 if (Op
.getOpcode() == ISD::AND
&&
6057 DAG
.isConstantIntBuildVectorOrConstantInt(Op
.getOperand(1))) {
6058 Mask
= Op
.getOperand(1);
6059 return Op
.getOperand(0);
6064 /// Match "(X shl/srl V1) & V2" where V2 may not be present.
6065 static bool matchRotateHalf(SelectionDAG
&DAG
, SDValue Op
, SDValue
&Shift
,
6067 Op
= stripConstantMask(DAG
, Op
, Mask
);
6068 if (Op
.getOpcode() == ISD::SRL
|| Op
.getOpcode() == ISD::SHL
) {
6075 /// Helper function for visitOR to extract the needed side of a rotate idiom
6076 /// from a shl/srl/mul/udiv. This is meant to handle cases where
6077 /// InstCombine merged some outside op with one of the shifts from
6078 /// the rotate pattern.
6079 /// \returns An empty \c SDValue if the needed shift couldn't be extracted.
6080 /// Otherwise, returns an expansion of \p ExtractFrom based on the following
6083 /// (or (add v v) (shrl v bitwidth-1)):
6084 /// expands (add v v) -> (shl v 1)
6086 /// (or (mul v c0) (shrl (mul v c1) c2)):
6087 /// expands (mul v c0) -> (shl (mul v c1) c3)
6089 /// (or (udiv v c0) (shl (udiv v c1) c2)):
6090 /// expands (udiv v c0) -> (shrl (udiv v c1) c3)
6092 /// (or (shl v c0) (shrl (shl v c1) c2)):
6093 /// expands (shl v c0) -> (shl (shl v c1) c3)
6095 /// (or (shrl v c0) (shl (shrl v c1) c2)):
6096 /// expands (shrl v c0) -> (shrl (shrl v c1) c3)
6098 /// Such that in all cases, c3+c2==bitwidth(op v c1).
6099 static SDValue
extractShiftForRotate(SelectionDAG
&DAG
, SDValue OppShift
,
6100 SDValue ExtractFrom
, SDValue
&Mask
,
6102 assert(OppShift
&& ExtractFrom
&& "Empty SDValue");
6104 (OppShift
.getOpcode() == ISD::SHL
|| OppShift
.getOpcode() == ISD::SRL
) &&
6105 "Existing shift must be valid as a rotate half");
6107 ExtractFrom
= stripConstantMask(DAG
, ExtractFrom
, Mask
);
6109 // Value and Type of the shift.
6110 SDValue OppShiftLHS
= OppShift
.getOperand(0);
6111 EVT ShiftedVT
= OppShiftLHS
.getValueType();
6113 // Amount of the existing shift.
6114 ConstantSDNode
*OppShiftCst
= isConstOrConstSplat(OppShift
.getOperand(1));
6116 // (add v v) -> (shl v 1)
6117 if (OppShift
.getOpcode() == ISD::SRL
&& OppShiftCst
&&
6118 ExtractFrom
.getOpcode() == ISD::ADD
&&
6119 ExtractFrom
.getOperand(0) == ExtractFrom
.getOperand(1) &&
6120 ExtractFrom
.getOperand(0) == OppShiftLHS
&&
6121 OppShiftCst
->getAPIntValue() == ShiftedVT
.getScalarSizeInBits() - 1)
6122 return DAG
.getNode(ISD::SHL
, DL
, ShiftedVT
, OppShiftLHS
,
6123 DAG
.getShiftAmountConstant(1, ShiftedVT
, DL
));
6126 // (or (op0 v c0) (shiftl/r (op0 v c1) c2))
6128 // Find opcode of the needed shift to be extracted from (op0 v c0).
6129 unsigned Opcode
= ISD::DELETED_NODE
;
6130 bool IsMulOrDiv
= false;
6131 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
6132 // opcode or its arithmetic (mul or udiv) variant.
6133 auto SelectOpcode
= [&](unsigned NeededShift
, unsigned MulOrDivVariant
) {
6134 IsMulOrDiv
= ExtractFrom
.getOpcode() == MulOrDivVariant
;
6135 if (!IsMulOrDiv
&& ExtractFrom
.getOpcode() != NeededShift
)
6137 Opcode
= NeededShift
;
6140 // op0 must be either the needed shift opcode or the mul/udiv equivalent
6141 // that the needed shift can be extracted from.
6142 if ((OppShift
.getOpcode() != ISD::SRL
|| !SelectOpcode(ISD::SHL
, ISD::MUL
)) &&
6143 (OppShift
.getOpcode() != ISD::SHL
|| !SelectOpcode(ISD::SRL
, ISD::UDIV
)))
6146 // op0 must be the same opcode on both sides, have the same LHS argument,
6147 // and produce the same value type.
6148 if (OppShiftLHS
.getOpcode() != ExtractFrom
.getOpcode() ||
6149 OppShiftLHS
.getOperand(0) != ExtractFrom
.getOperand(0) ||
6150 ShiftedVT
!= ExtractFrom
.getValueType())
6153 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
6154 ConstantSDNode
*OppLHSCst
= isConstOrConstSplat(OppShiftLHS
.getOperand(1));
6155 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
6156 ConstantSDNode
*ExtractFromCst
=
6157 isConstOrConstSplat(ExtractFrom
.getOperand(1));
6158 // TODO: We should be able to handle non-uniform constant vectors for these values
6159 // Check that we have constant values.
6160 if (!OppShiftCst
|| !OppShiftCst
->getAPIntValue() ||
6161 !OppLHSCst
|| !OppLHSCst
->getAPIntValue() ||
6162 !ExtractFromCst
|| !ExtractFromCst
->getAPIntValue())
6165 // Compute the shift amount we need to extract to complete the rotate.
6166 const unsigned VTWidth
= ShiftedVT
.getScalarSizeInBits();
6167 if (OppShiftCst
->getAPIntValue().ugt(VTWidth
))
6169 APInt NeededShiftAmt
= VTWidth
- OppShiftCst
->getAPIntValue();
6170 // Normalize the bitwidth of the two mul/udiv/shift constant operands.
6171 APInt ExtractFromAmt
= ExtractFromCst
->getAPIntValue();
6172 APInt OppLHSAmt
= OppLHSCst
->getAPIntValue();
6173 zeroExtendToMatch(ExtractFromAmt
, OppLHSAmt
);
6175 // Now try extract the needed shift from the ExtractFrom op and see if the
6176 // result matches up with the existing shift's LHS op.
6178 // Op to extract from is a mul or udiv by a constant.
6180 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
6181 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
6182 const APInt ExtractDiv
= APInt::getOneBitSet(ExtractFromAmt
.getBitWidth(),
6183 NeededShiftAmt
.getZExtValue());
6186 APInt::udivrem(ExtractFromAmt
, ExtractDiv
, ResultAmt
, Rem
);
6187 if (Rem
!= 0 || ResultAmt
!= OppLHSAmt
)
6190 // Op to extract from is a shift by a constant.
6192 // c2 - (bitwidth(op0 v c0) - c1) == c0
6193 if (OppLHSAmt
!= ExtractFromAmt
- NeededShiftAmt
.zextOrTrunc(
6194 ExtractFromAmt
.getBitWidth()))
6198 // Return the expanded shift op that should allow a rotate to be formed.
6199 EVT ShiftVT
= OppShift
.getOperand(1).getValueType();
6200 EVT ResVT
= ExtractFrom
.getValueType();
6201 SDValue NewShiftNode
= DAG
.getConstant(NeededShiftAmt
, DL
, ShiftVT
);
6202 return DAG
.getNode(Opcode
, DL
, ResVT
, OppShiftLHS
, NewShiftNode
);
6205 // Return true if we can prove that, whenever Neg and Pos are both in the
6206 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
6207 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
6209 // (or (shift1 X, Neg), (shift2 X, Pos))
6211 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
6212 // in direction shift1 by Neg. The range [0, EltSize) means that we only need
6213 // to consider shift amounts with defined behavior.
6214 static bool matchRotateSub(SDValue Pos
, SDValue Neg
, unsigned EltSize
,
6215 SelectionDAG
&DAG
) {
6216 // If EltSize is a power of 2 then:
6218 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
6219 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
6221 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
6222 // for the stronger condition:
6224 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
6226 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
6227 // we can just replace Neg with Neg' for the rest of the function.
6229 // In other cases we check for the even stronger condition:
6231 // Neg == EltSize - Pos [B]
6233 // for all Neg and Pos. Note that the (or ...) then invokes undefined
6234 // behavior if Pos == 0 (and consequently Neg == EltSize).
6236 // We could actually use [A] whenever EltSize is a power of 2, but the
6237 // only extra cases that it would match are those uninteresting ones
6238 // where Neg and Pos are never in range at the same time. E.g. for
6239 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
6240 // as well as (sub 32, Pos), but:
6242 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
6244 // always invokes undefined behavior for 32-bit X.
6246 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
6247 unsigned MaskLoBits
= 0;
6248 if (Neg
.getOpcode() == ISD::AND
&& isPowerOf2_64(EltSize
)) {
6249 if (ConstantSDNode
*NegC
= isConstOrConstSplat(Neg
.getOperand(1))) {
6250 KnownBits Known
= DAG
.computeKnownBits(Neg
.getOperand(0));
6251 unsigned Bits
= Log2_64(EltSize
);
6252 if (NegC
->getAPIntValue().getActiveBits() <= Bits
&&
6253 ((NegC
->getAPIntValue() | Known
.Zero
).countTrailingOnes() >= Bits
)) {
6254 Neg
= Neg
.getOperand(0);
6260 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
6261 if (Neg
.getOpcode() != ISD::SUB
)
6263 ConstantSDNode
*NegC
= isConstOrConstSplat(Neg
.getOperand(0));
6266 SDValue NegOp1
= Neg
.getOperand(1);
6268 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
6269 // Pos'. The truncation is redundant for the purpose of the equality.
6270 if (MaskLoBits
&& Pos
.getOpcode() == ISD::AND
) {
6271 if (ConstantSDNode
*PosC
= isConstOrConstSplat(Pos
.getOperand(1))) {
6272 KnownBits Known
= DAG
.computeKnownBits(Pos
.getOperand(0));
6273 if (PosC
->getAPIntValue().getActiveBits() <= MaskLoBits
&&
6274 ((PosC
->getAPIntValue() | Known
.Zero
).countTrailingOnes() >=
6276 Pos
= Pos
.getOperand(0);
6280 // The condition we need is now:
6282 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
6284 // If NegOp1 == Pos then we need:
6286 // EltSize & Mask == NegC & Mask
6288 // (because "x & Mask" is a truncation and distributes through subtraction).
6291 Width
= NegC
->getAPIntValue();
6293 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
6294 // Then the condition we want to prove becomes:
6296 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
6298 // which, again because "x & Mask" is a truncation, becomes:
6300 // NegC & Mask == (EltSize - PosC) & Mask
6301 // EltSize & Mask == (NegC + PosC) & Mask
6302 else if (Pos
.getOpcode() == ISD::ADD
&& Pos
.getOperand(0) == NegOp1
) {
6303 if (ConstantSDNode
*PosC
= isConstOrConstSplat(Pos
.getOperand(1)))
6304 Width
= PosC
->getAPIntValue() + NegC
->getAPIntValue();
6310 // Now we just need to check that EltSize & Mask == Width & Mask.
6312 // EltSize & Mask is 0 since Mask is EltSize - 1.
6313 return Width
.getLoBits(MaskLoBits
) == 0;
6314 return Width
== EltSize
;
6317 // A subroutine of MatchRotate used once we have found an OR of two opposite
6318 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
6319 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
6320 // former being preferred if supported. InnerPos and InnerNeg are Pos and
6321 // Neg with outer conversions stripped away.
6322 SDNode
*DAGCombiner::MatchRotatePosNeg(SDValue Shifted
, SDValue Pos
,
6323 SDValue Neg
, SDValue InnerPos
,
6324 SDValue InnerNeg
, unsigned PosOpcode
,
6325 unsigned NegOpcode
, const SDLoc
&DL
) {
6326 // fold (or (shl x, (*ext y)),
6327 // (srl x, (*ext (sub 32, y)))) ->
6328 // (rotl x, y) or (rotr x, (sub 32, y))
6330 // fold (or (shl x, (*ext (sub 32, y))),
6331 // (srl x, (*ext y))) ->
6332 // (rotr x, y) or (rotl x, (sub 32, y))
6333 EVT VT
= Shifted
.getValueType();
6334 if (matchRotateSub(InnerPos
, InnerNeg
, VT
.getScalarSizeInBits(), DAG
)) {
6335 bool HasPos
= TLI
.isOperationLegalOrCustom(PosOpcode
, VT
);
6336 return DAG
.getNode(HasPos
? PosOpcode
: NegOpcode
, DL
, VT
, Shifted
,
6337 HasPos
? Pos
: Neg
).getNode();
6343 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
6344 // idioms for rotate, and if the target supports rotation instructions, generate
6346 SDNode
*DAGCombiner::MatchRotate(SDValue LHS
, SDValue RHS
, const SDLoc
&DL
) {
6347 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
6348 EVT VT
= LHS
.getValueType();
6349 if (!TLI
.isTypeLegal(VT
)) return nullptr;
6351 // The target must have at least one rotate flavor.
6352 bool HasROTL
= hasOperation(ISD::ROTL
, VT
);
6353 bool HasROTR
= hasOperation(ISD::ROTR
, VT
);
6354 if (!HasROTL
&& !HasROTR
) return nullptr;
6356 // Check for truncated rotate.
6357 if (LHS
.getOpcode() == ISD::TRUNCATE
&& RHS
.getOpcode() == ISD::TRUNCATE
&&
6358 LHS
.getOperand(0).getValueType() == RHS
.getOperand(0).getValueType()) {
6359 assert(LHS
.getValueType() == RHS
.getValueType());
6360 if (SDNode
*Rot
= MatchRotate(LHS
.getOperand(0), RHS
.getOperand(0), DL
)) {
6361 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(LHS
), LHS
.getValueType(),
6362 SDValue(Rot
, 0)).getNode();
6366 // Match "(X shl/srl V1) & V2" where V2 may not be present.
6367 SDValue LHSShift
; // The shift.
6368 SDValue LHSMask
; // AND value if any.
6369 matchRotateHalf(DAG
, LHS
, LHSShift
, LHSMask
);
6371 SDValue RHSShift
; // The shift.
6372 SDValue RHSMask
; // AND value if any.
6373 matchRotateHalf(DAG
, RHS
, RHSShift
, RHSMask
);
6375 // If neither side matched a rotate half, bail
6376 if (!LHSShift
&& !RHSShift
)
6379 // InstCombine may have combined a constant shl, srl, mul, or udiv with one
6380 // side of the rotate, so try to handle that here. In all cases we need to
6381 // pass the matched shift from the opposite side to compute the opcode and
6382 // needed shift amount to extract. We still want to do this if both sides
6383 // matched a rotate half because one half may be a potential overshift that
6384 // can be broken down (ie if InstCombine merged two shl or srl ops into a
6387 // Have LHS side of the rotate, try to extract the needed shift from the RHS.
6389 if (SDValue NewRHSShift
=
6390 extractShiftForRotate(DAG
, LHSShift
, RHS
, RHSMask
, DL
))
6391 RHSShift
= NewRHSShift
;
6392 // Have RHS side of the rotate, try to extract the needed shift from the LHS.
6394 if (SDValue NewLHSShift
=
6395 extractShiftForRotate(DAG
, RHSShift
, LHS
, LHSMask
, DL
))
6396 LHSShift
= NewLHSShift
;
6398 // If a side is still missing, nothing else we can do.
6399 if (!RHSShift
|| !LHSShift
)
6402 // At this point we've matched or extracted a shift op on each side.
6404 if (LHSShift
.getOperand(0) != RHSShift
.getOperand(0))
6405 return nullptr; // Not shifting the same value.
6407 if (LHSShift
.getOpcode() == RHSShift
.getOpcode())
6408 return nullptr; // Shifts must disagree.
6410 // Canonicalize shl to left side in a shl/srl pair.
6411 if (RHSShift
.getOpcode() == ISD::SHL
) {
6412 std::swap(LHS
, RHS
);
6413 std::swap(LHSShift
, RHSShift
);
6414 std::swap(LHSMask
, RHSMask
);
6417 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
6418 SDValue LHSShiftArg
= LHSShift
.getOperand(0);
6419 SDValue LHSShiftAmt
= LHSShift
.getOperand(1);
6420 SDValue RHSShiftArg
= RHSShift
.getOperand(0);
6421 SDValue RHSShiftAmt
= RHSShift
.getOperand(1);
6423 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
6424 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
6425 auto MatchRotateSum
= [EltSizeInBits
](ConstantSDNode
*LHS
,
6426 ConstantSDNode
*RHS
) {
6427 return (LHS
->getAPIntValue() + RHS
->getAPIntValue()) == EltSizeInBits
;
6429 if (ISD::matchBinaryPredicate(LHSShiftAmt
, RHSShiftAmt
, MatchRotateSum
)) {
6430 SDValue Rot
= DAG
.getNode(HasROTL
? ISD::ROTL
: ISD::ROTR
, DL
, VT
,
6431 LHSShiftArg
, HasROTL
? LHSShiftAmt
: RHSShiftAmt
);
6433 // If there is an AND of either shifted operand, apply it to the result.
6434 if (LHSMask
.getNode() || RHSMask
.getNode()) {
6435 SDValue AllOnes
= DAG
.getAllOnesConstant(DL
, VT
);
6436 SDValue Mask
= AllOnes
;
6438 if (LHSMask
.getNode()) {
6439 SDValue RHSBits
= DAG
.getNode(ISD::SRL
, DL
, VT
, AllOnes
, RHSShiftAmt
);
6440 Mask
= DAG
.getNode(ISD::AND
, DL
, VT
, Mask
,
6441 DAG
.getNode(ISD::OR
, DL
, VT
, LHSMask
, RHSBits
));
6443 if (RHSMask
.getNode()) {
6444 SDValue LHSBits
= DAG
.getNode(ISD::SHL
, DL
, VT
, AllOnes
, LHSShiftAmt
);
6445 Mask
= DAG
.getNode(ISD::AND
, DL
, VT
, Mask
,
6446 DAG
.getNode(ISD::OR
, DL
, VT
, RHSMask
, LHSBits
));
6449 Rot
= DAG
.getNode(ISD::AND
, DL
, VT
, Rot
, Mask
);
6452 return Rot
.getNode();
6455 // If there is a mask here, and we have a variable shift, we can't be sure
6456 // that we're masking out the right stuff.
6457 if (LHSMask
.getNode() || RHSMask
.getNode())
6460 // If the shift amount is sign/zext/any-extended just peel it off.
6461 SDValue LExtOp0
= LHSShiftAmt
;
6462 SDValue RExtOp0
= RHSShiftAmt
;
6463 if ((LHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
||
6464 LHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
||
6465 LHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
||
6466 LHSShiftAmt
.getOpcode() == ISD::TRUNCATE
) &&
6467 (RHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
||
6468 RHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
||
6469 RHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
||
6470 RHSShiftAmt
.getOpcode() == ISD::TRUNCATE
)) {
6471 LExtOp0
= LHSShiftAmt
.getOperand(0);
6472 RExtOp0
= RHSShiftAmt
.getOperand(0);
6475 SDNode
*TryL
= MatchRotatePosNeg(LHSShiftArg
, LHSShiftAmt
, RHSShiftAmt
,
6476 LExtOp0
, RExtOp0
, ISD::ROTL
, ISD::ROTR
, DL
);
6480 SDNode
*TryR
= MatchRotatePosNeg(RHSShiftArg
, RHSShiftAmt
, LHSShiftAmt
,
6481 RExtOp0
, LExtOp0
, ISD::ROTR
, ISD::ROTL
, DL
);
6490 /// Represents known origin of an individual byte in load combine pattern. The
6491 /// value of the byte is either constant zero or comes from memory.
6492 struct ByteProvider
{
6493 // For constant zero providers Load is set to nullptr. For memory providers
6494 // Load represents the node which loads the byte from memory.
6495 // ByteOffset is the offset of the byte in the value produced by the load.
6496 LoadSDNode
*Load
= nullptr;
6497 unsigned ByteOffset
= 0;
6499 ByteProvider() = default;
6501 static ByteProvider
getMemory(LoadSDNode
*Load
, unsigned ByteOffset
) {
6502 return ByteProvider(Load
, ByteOffset
);
6505 static ByteProvider
getConstantZero() { return ByteProvider(nullptr, 0); }
6507 bool isConstantZero() const { return !Load
; }
6508 bool isMemory() const { return Load
; }
6510 bool operator==(const ByteProvider
&Other
) const {
6511 return Other
.Load
== Load
&& Other
.ByteOffset
== ByteOffset
;
6515 ByteProvider(LoadSDNode
*Load
, unsigned ByteOffset
)
6516 : Load(Load
), ByteOffset(ByteOffset
) {}
6519 } // end anonymous namespace
6521 /// Recursively traverses the expression calculating the origin of the requested
6522 /// byte of the given value. Returns None if the provider can't be calculated.
6524 /// For all the values except the root of the expression verifies that the value
6525 /// has exactly one use and if it's not true return None. This way if the origin
6526 /// of the byte is returned it's guaranteed that the values which contribute to
6527 /// the byte are not used outside of this expression.
6529 /// Because the parts of the expression are not allowed to have more than one
6530 /// use this function iterates over trees, not DAGs. So it never visits the same
6531 /// node more than once.
6532 static const Optional
<ByteProvider
>
6533 calculateByteProvider(SDValue Op
, unsigned Index
, unsigned Depth
,
6534 bool Root
= false) {
6535 // Typical i64 by i8 pattern requires recursion up to 8 calls depth
6539 if (!Root
&& !Op
.hasOneUse())
6542 assert(Op
.getValueType().isScalarInteger() && "can't handle other types");
6543 unsigned BitWidth
= Op
.getValueSizeInBits();
6544 if (BitWidth
% 8 != 0)
6546 unsigned ByteWidth
= BitWidth
/ 8;
6547 assert(Index
< ByteWidth
&& "invalid index requested");
6550 switch (Op
.getOpcode()) {
6552 auto LHS
= calculateByteProvider(Op
->getOperand(0), Index
, Depth
+ 1);
6555 auto RHS
= calculateByteProvider(Op
->getOperand(1), Index
, Depth
+ 1);
6559 if (LHS
->isConstantZero())
6561 if (RHS
->isConstantZero())
6566 auto ShiftOp
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
6570 uint64_t BitShift
= ShiftOp
->getZExtValue();
6571 if (BitShift
% 8 != 0)
6573 uint64_t ByteShift
= BitShift
/ 8;
6575 return Index
< ByteShift
6576 ? ByteProvider::getConstantZero()
6577 : calculateByteProvider(Op
->getOperand(0), Index
- ByteShift
,
6580 case ISD::ANY_EXTEND
:
6581 case ISD::SIGN_EXTEND
:
6582 case ISD::ZERO_EXTEND
: {
6583 SDValue NarrowOp
= Op
->getOperand(0);
6584 unsigned NarrowBitWidth
= NarrowOp
.getScalarValueSizeInBits();
6585 if (NarrowBitWidth
% 8 != 0)
6587 uint64_t NarrowByteWidth
= NarrowBitWidth
/ 8;
6589 if (Index
>= NarrowByteWidth
)
6590 return Op
.getOpcode() == ISD::ZERO_EXTEND
6591 ? Optional
<ByteProvider
>(ByteProvider::getConstantZero())
6593 return calculateByteProvider(NarrowOp
, Index
, Depth
+ 1);
6596 return calculateByteProvider(Op
->getOperand(0), ByteWidth
- Index
- 1,
6599 auto L
= cast
<LoadSDNode
>(Op
.getNode());
6600 if (L
->isVolatile() || L
->isIndexed())
6603 unsigned NarrowBitWidth
= L
->getMemoryVT().getSizeInBits();
6604 if (NarrowBitWidth
% 8 != 0)
6606 uint64_t NarrowByteWidth
= NarrowBitWidth
/ 8;
6608 if (Index
>= NarrowByteWidth
)
6609 return L
->getExtensionType() == ISD::ZEXTLOAD
6610 ? Optional
<ByteProvider
>(ByteProvider::getConstantZero())
6612 return ByteProvider::getMemory(L
, Index
);
6619 static unsigned LittleEndianByteAt(unsigned BW
, unsigned i
) {
6623 static unsigned BigEndianByteAt(unsigned BW
, unsigned i
) {
6627 // Check if the bytes offsets we are looking at match with either big or
6628 // little endian value loaded. Return true for big endian, false for little
6629 // endian, and None if match failed.
6630 static Optional
<bool> isBigEndian(const SmallVector
<int64_t, 4> &ByteOffsets
,
6631 int64_t FirstOffset
) {
6632 // The endian can be decided only when it is 2 bytes at least.
6633 unsigned Width
= ByteOffsets
.size();
6637 bool BigEndian
= true, LittleEndian
= true;
6638 for (unsigned i
= 0; i
< Width
; i
++) {
6639 int64_t CurrentByteOffset
= ByteOffsets
[i
] - FirstOffset
;
6640 LittleEndian
&= CurrentByteOffset
== LittleEndianByteAt(Width
, i
);
6641 BigEndian
&= CurrentByteOffset
== BigEndianByteAt(Width
, i
);
6642 if (!BigEndian
&& !LittleEndian
)
6646 assert((BigEndian
!= LittleEndian
) && "It should be either big endian or"
6651 static SDValue
stripTruncAndExt(SDValue Value
) {
6652 switch (Value
.getOpcode()) {
6654 case ISD::ZERO_EXTEND
:
6655 case ISD::SIGN_EXTEND
:
6656 case ISD::ANY_EXTEND
:
6657 return stripTruncAndExt(Value
.getOperand(0));
6662 /// Match a pattern where a wide type scalar value is stored by several narrow
6663 /// stores. Fold it into a single store or a BSWAP and a store if the targets
6666 /// Assuming little endian target:
6669 /// p[0] = (val >> 0) & 0xFF;
6670 /// p[1] = (val >> 8) & 0xFF;
6671 /// p[2] = (val >> 16) & 0xFF;
6672 /// p[3] = (val >> 24) & 0xFF;
6674 /// *((i32)p) = val;
6678 /// p[0] = (val >> 24) & 0xFF;
6679 /// p[1] = (val >> 16) & 0xFF;
6680 /// p[2] = (val >> 8) & 0xFF;
6681 /// p[3] = (val >> 0) & 0xFF;
6683 /// *((i32)p) = BSWAP(val);
6684 SDValue
DAGCombiner::MatchStoreCombine(StoreSDNode
*N
) {
6685 // Collect all the stores in the chain.
6687 SmallVector
<StoreSDNode
*, 8> Stores
;
6688 for (StoreSDNode
*Store
= N
; Store
; Store
= dyn_cast
<StoreSDNode
>(Chain
)) {
6689 if (Store
->getMemoryVT() != MVT::i8
||
6690 Store
->isVolatile() || Store
->isIndexed())
6692 Stores
.push_back(Store
);
6693 Chain
= Store
->getChain();
6695 // Handle the simple type only.
6696 unsigned Width
= Stores
.size();
6697 EVT VT
= EVT::getIntegerVT(
6698 *DAG
.getContext(), Width
* N
->getMemoryVT().getSizeInBits());
6699 if (VT
!= MVT::i16
&& VT
!= MVT::i32
&& VT
!= MVT::i64
)
6702 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
6703 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::STORE
, VT
))
6706 // Check if all the bytes of the combined value we are looking at are stored
6707 // to the same base address. Collect bytes offsets from Base address into
6709 SDValue CombinedValue
;
6710 SmallVector
<int64_t, 4> ByteOffsets(Width
, INT64_MAX
);
6711 int64_t FirstOffset
= INT64_MAX
;
6712 StoreSDNode
*FirstStore
= nullptr;
6713 Optional
<BaseIndexOffset
> Base
;
6714 for (auto Store
: Stores
) {
6715 // All the stores store different byte of the CombinedValue. A truncate is
6716 // required to get that byte value.
6717 SDValue Trunc
= Store
->getValue();
6718 if (Trunc
.getOpcode() != ISD::TRUNCATE
)
6720 // A shift operation is required to get the right byte offset, except the
6723 SDValue Value
= Trunc
.getOperand(0);
6724 if (Value
.getOpcode() == ISD::SRL
||
6725 Value
.getOpcode() == ISD::SRA
) {
6726 ConstantSDNode
*ShiftOffset
=
6727 dyn_cast
<ConstantSDNode
>(Value
.getOperand(1));
6728 // Trying to match the following pattern. The shift offset must be
6729 // a constant and a multiple of 8. It is the byte offset in "y".
6731 // x = srl y, offset
6734 if (!ShiftOffset
|| (ShiftOffset
->getSExtValue() % 8))
6737 Offset
= ShiftOffset
->getSExtValue()/8;
6738 Value
= Value
.getOperand(0);
6741 // Stores must share the same combined value with different offsets.
6743 CombinedValue
= Value
;
6744 else if (stripTruncAndExt(CombinedValue
) != stripTruncAndExt(Value
))
6747 // The trunc and all the extend operation should be stripped to get the
6748 // real value we are stored.
6749 else if (CombinedValue
.getValueType() != VT
) {
6750 if (Value
.getValueType() == VT
||
6751 Value
.getValueSizeInBits() > CombinedValue
.getValueSizeInBits())
6752 CombinedValue
= Value
;
6753 // Give up if the combined value type is smaller than the store size.
6754 if (CombinedValue
.getValueSizeInBits() < VT
.getSizeInBits())
6758 // Stores must share the same base address
6759 BaseIndexOffset Ptr
= BaseIndexOffset::match(Store
, DAG
);
6760 int64_t ByteOffsetFromBase
= 0;
6763 else if (!Base
->equalBaseIndex(Ptr
, DAG
, ByteOffsetFromBase
))
6766 // Remember the first byte store
6767 if (ByteOffsetFromBase
< FirstOffset
) {
6769 FirstOffset
= ByteOffsetFromBase
;
6771 // Map the offset in the store and the offset in the combined value, and
6772 // early return if it has been set before.
6773 if (Offset
< 0 || Offset
>= Width
|| ByteOffsets
[Offset
] != INT64_MAX
)
6775 ByteOffsets
[Offset
] = ByteOffsetFromBase
;
6778 assert(FirstOffset
!= INT64_MAX
&& "First byte offset must be set");
6779 assert(FirstStore
&& "First store must be set");
6781 // Check if the bytes of the combined value we are looking at match with
6782 // either big or little endian value store.
6783 Optional
<bool> IsBigEndian
= isBigEndian(ByteOffsets
, FirstOffset
);
6784 if (!IsBigEndian
.hasValue())
6787 // The node we are looking at matches with the pattern, check if we can
6788 // replace it with a single bswap if needed and store.
6790 // If the store needs byte swap check if the target supports it
6791 bool NeedsBswap
= DAG
.getDataLayout().isBigEndian() != *IsBigEndian
;
6793 // Before legalize we can introduce illegal bswaps which will be later
6794 // converted to an explicit bswap sequence. This way we end up with a single
6795 // store and byte shuffling instead of several stores and byte shuffling.
6796 if (NeedsBswap
&& LegalOperations
&& !TLI
.isOperationLegal(ISD::BSWAP
, VT
))
6799 // Check that a store of the wide type is both allowed and fast on the target
6802 TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), VT
,
6803 *FirstStore
->getMemOperand(), &Fast
);
6804 if (!Allowed
|| !Fast
)
6807 if (VT
!= CombinedValue
.getValueType()) {
6808 assert(CombinedValue
.getValueType().getSizeInBits() > VT
.getSizeInBits() &&
6809 "Get unexpected store value to combine");
6810 CombinedValue
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
,
6815 CombinedValue
= DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, CombinedValue
);
6818 DAG
.getStore(Chain
, SDLoc(N
), CombinedValue
, FirstStore
->getBasePtr(),
6819 FirstStore
->getPointerInfo(), FirstStore
->getAlignment());
6821 // Rely on other DAG combine rules to remove the other individual stores.
6822 DAG
.ReplaceAllUsesWith(N
, NewStore
.getNode());
6826 /// Match a pattern where a wide type scalar value is loaded by several narrow
6827 /// loads and combined by shifts and ors. Fold it into a single load or a load
6828 /// and a BSWAP if the targets supports it.
6830 /// Assuming little endian target:
6832 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
6834 /// i32 val = *((i32)a)
6837 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
6839 /// i32 val = BSWAP(*((i32)a))
6841 /// TODO: This rule matches complex patterns with OR node roots and doesn't
6842 /// interact well with the worklist mechanism. When a part of the pattern is
6843 /// updated (e.g. one of the loads) its direct users are put into the worklist,
6844 /// but the root node of the pattern which triggers the load combine is not
6845 /// necessarily a direct user of the changed node. For example, once the address
6846 /// of t28 load is reassociated load combine won't be triggered:
6847 /// t25: i32 = add t4, Constant:i32<2>
6848 /// t26: i64 = sign_extend t25
6849 /// t27: i64 = add t2, t26
6850 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
6851 /// t29: i32 = zero_extend t28
6852 /// t32: i32 = shl t29, Constant:i8<8>
6853 /// t33: i32 = or t23, t32
6854 /// As a possible fix visitLoad can check if the load can be a part of a load
6855 /// combine pattern and add corresponding OR roots to the worklist.
6856 SDValue
DAGCombiner::MatchLoadCombine(SDNode
*N
) {
6857 assert(N
->getOpcode() == ISD::OR
&&
6858 "Can only match load combining against OR nodes");
6860 // Handles simple types only
6861 EVT VT
= N
->getValueType(0);
6862 if (VT
!= MVT::i16
&& VT
!= MVT::i32
&& VT
!= MVT::i64
)
6864 unsigned ByteWidth
= VT
.getSizeInBits() / 8;
6866 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
6867 // Before legalize we can introduce too wide illegal loads which will be later
6868 // split into legal sized loads. This enables us to combine i64 load by i8
6869 // patterns to a couple of i32 loads on 32 bit targets.
6870 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::LOAD
, VT
))
6873 bool IsBigEndianTarget
= DAG
.getDataLayout().isBigEndian();
6874 auto MemoryByteOffset
= [&] (ByteProvider P
) {
6875 assert(P
.isMemory() && "Must be a memory byte provider");
6876 unsigned LoadBitWidth
= P
.Load
->getMemoryVT().getSizeInBits();
6877 assert(LoadBitWidth
% 8 == 0 &&
6878 "can only analyze providers for individual bytes not bit");
6879 unsigned LoadByteWidth
= LoadBitWidth
/ 8;
6880 return IsBigEndianTarget
6881 ? BigEndianByteAt(LoadByteWidth
, P
.ByteOffset
)
6882 : LittleEndianByteAt(LoadByteWidth
, P
.ByteOffset
);
6885 Optional
<BaseIndexOffset
> Base
;
6888 SmallPtrSet
<LoadSDNode
*, 8> Loads
;
6889 Optional
<ByteProvider
> FirstByteProvider
;
6890 int64_t FirstOffset
= INT64_MAX
;
6892 // Check if all the bytes of the OR we are looking at are loaded from the same
6893 // base address. Collect bytes offsets from Base address in ByteOffsets.
6894 SmallVector
<int64_t, 4> ByteOffsets(ByteWidth
);
6895 for (unsigned i
= 0; i
< ByteWidth
; i
++) {
6896 auto P
= calculateByteProvider(SDValue(N
, 0), i
, 0, /*Root=*/true);
6897 if (!P
|| !P
->isMemory()) // All the bytes must be loaded from memory
6900 LoadSDNode
*L
= P
->Load
;
6901 assert(L
->hasNUsesOfValue(1, 0) && !L
->isVolatile() && !L
->isIndexed() &&
6902 "Must be enforced by calculateByteProvider");
6903 assert(L
->getOffset().isUndef() && "Unindexed load must have undef offset");
6905 // All loads must share the same chain
6906 SDValue LChain
= L
->getChain();
6909 else if (Chain
!= LChain
)
6912 // Loads must share the same base address
6913 BaseIndexOffset Ptr
= BaseIndexOffset::match(L
, DAG
);
6914 int64_t ByteOffsetFromBase
= 0;
6917 else if (!Base
->equalBaseIndex(Ptr
, DAG
, ByteOffsetFromBase
))
6920 // Calculate the offset of the current byte from the base address
6921 ByteOffsetFromBase
+= MemoryByteOffset(*P
);
6922 ByteOffsets
[i
] = ByteOffsetFromBase
;
6924 // Remember the first byte load
6925 if (ByteOffsetFromBase
< FirstOffset
) {
6926 FirstByteProvider
= P
;
6927 FirstOffset
= ByteOffsetFromBase
;
6932 assert(!Loads
.empty() && "All the bytes of the value must be loaded from "
6933 "memory, so there must be at least one load which produces the value");
6934 assert(Base
&& "Base address of the accessed memory location must be set");
6935 assert(FirstOffset
!= INT64_MAX
&& "First byte offset must be set");
6937 // Check if the bytes of the OR we are looking at match with either big or
6938 // little endian value load
6939 Optional
<bool> IsBigEndian
= isBigEndian(ByteOffsets
, FirstOffset
);
6940 if (!IsBigEndian
.hasValue())
6943 assert(FirstByteProvider
&& "must be set");
6945 // Ensure that the first byte is loaded from zero offset of the first load.
6946 // So the combined value can be loaded from the first load address.
6947 if (MemoryByteOffset(*FirstByteProvider
) != 0)
6949 LoadSDNode
*FirstLoad
= FirstByteProvider
->Load
;
6951 // The node we are looking at matches with the pattern, check if we can
6952 // replace it with a single load and bswap if needed.
6954 // If the load needs byte swap check if the target supports it
6955 bool NeedsBswap
= IsBigEndianTarget
!= *IsBigEndian
;
6957 // Before legalize we can introduce illegal bswaps which will be later
6958 // converted to an explicit bswap sequence. This way we end up with a single
6959 // load and byte shuffling instead of several loads and byte shuffling.
6960 if (NeedsBswap
&& LegalOperations
&& !TLI
.isOperationLegal(ISD::BSWAP
, VT
))
6963 // Check that a load of the wide type is both allowed and fast on the target
6965 bool Allowed
= TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(),
6966 VT
, *FirstLoad
->getMemOperand(), &Fast
);
6967 if (!Allowed
|| !Fast
)
6971 DAG
.getLoad(VT
, SDLoc(N
), Chain
, FirstLoad
->getBasePtr(),
6972 FirstLoad
->getPointerInfo(), FirstLoad
->getAlignment());
6974 // Transfer chain users from old loads to the new load.
6975 for (LoadSDNode
*L
: Loads
)
6976 DAG
.ReplaceAllUsesOfValueWith(SDValue(L
, 1), SDValue(NewLoad
.getNode(), 1));
6978 return NeedsBswap
? DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, NewLoad
) : NewLoad
;
6981 // If the target has andn, bsl, or a similar bit-select instruction,
6982 // we want to unfold masked merge, with canonical pattern of:
6984 // ((x ^ y) & m) ^ y
6987 // (x & m) | (y & ~m)
6988 // If y is a constant, and the 'andn' does not work with immediates,
6989 // we unfold into a different pattern:
6990 // ~(~x & m) & (m | y)
6991 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
6992 // the very least that breaks andnpd / andnps patterns, and because those
6993 // patterns are simplified in IR and shouldn't be created in the DAG
6994 SDValue
DAGCombiner::unfoldMaskedMerge(SDNode
*N
) {
6995 assert(N
->getOpcode() == ISD::XOR
);
6997 // Don't touch 'not' (i.e. where y = -1).
6998 if (isAllOnesOrAllOnesSplat(N
->getOperand(1)))
7001 EVT VT
= N
->getValueType(0);
7003 // There are 3 commutable operators in the pattern,
7004 // so we have to deal with 8 possible variants of the basic pattern.
7006 auto matchAndXor
= [&X
, &Y
, &M
](SDValue And
, unsigned XorIdx
, SDValue Other
) {
7007 if (And
.getOpcode() != ISD::AND
|| !And
.hasOneUse())
7009 SDValue Xor
= And
.getOperand(XorIdx
);
7010 if (Xor
.getOpcode() != ISD::XOR
|| !Xor
.hasOneUse())
7012 SDValue Xor0
= Xor
.getOperand(0);
7013 SDValue Xor1
= Xor
.getOperand(1);
7014 // Don't touch 'not' (i.e. where y = -1).
7015 if (isAllOnesOrAllOnesSplat(Xor1
))
7018 std::swap(Xor0
, Xor1
);
7023 M
= And
.getOperand(XorIdx
? 0 : 1);
7027 SDValue N0
= N
->getOperand(0);
7028 SDValue N1
= N
->getOperand(1);
7029 if (!matchAndXor(N0
, 0, N1
) && !matchAndXor(N0
, 1, N1
) &&
7030 !matchAndXor(N1
, 0, N0
) && !matchAndXor(N1
, 1, N0
))
7033 // Don't do anything if the mask is constant. This should not be reachable.
7034 // InstCombine should have already unfolded this pattern, and DAGCombiner
7035 // probably shouldn't produce it, too.
7036 if (isa
<ConstantSDNode
>(M
.getNode()))
7039 // We can transform if the target has AndNot
7040 if (!TLI
.hasAndNot(M
))
7045 // If Y is a constant, check that 'andn' works with immediates.
7046 if (!TLI
.hasAndNot(Y
)) {
7047 assert(TLI
.hasAndNot(X
) && "Only mask is a variable? Unreachable.");
7048 // If not, we need to do a bit more work to make sure andn is still used.
7049 SDValue NotX
= DAG
.getNOT(DL
, X
, VT
);
7050 SDValue LHS
= DAG
.getNode(ISD::AND
, DL
, VT
, NotX
, M
);
7051 SDValue NotLHS
= DAG
.getNOT(DL
, LHS
, VT
);
7052 SDValue RHS
= DAG
.getNode(ISD::OR
, DL
, VT
, M
, Y
);
7053 return DAG
.getNode(ISD::AND
, DL
, VT
, NotLHS
, RHS
);
7056 SDValue LHS
= DAG
.getNode(ISD::AND
, DL
, VT
, X
, M
);
7057 SDValue NotM
= DAG
.getNOT(DL
, M
, VT
);
7058 SDValue RHS
= DAG
.getNode(ISD::AND
, DL
, VT
, Y
, NotM
);
7060 return DAG
.getNode(ISD::OR
, DL
, VT
, LHS
, RHS
);
7063 SDValue
DAGCombiner::visitXOR(SDNode
*N
) {
7064 SDValue N0
= N
->getOperand(0);
7065 SDValue N1
= N
->getOperand(1);
7066 EVT VT
= N0
.getValueType();
7069 if (VT
.isVector()) {
7070 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
7073 // fold (xor x, 0) -> x, vector edition
7074 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
7076 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
7080 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
7082 if (N0
.isUndef() && N1
.isUndef())
7083 return DAG
.getConstant(0, DL
, VT
);
7084 // fold (xor x, undef) -> undef
7089 // fold (xor c1, c2) -> c1^c2
7090 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
7091 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
7093 return DAG
.FoldConstantArithmetic(ISD::XOR
, DL
, VT
, N0C
, N1C
);
7094 // canonicalize constant to RHS
7095 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
7096 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
7097 return DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
);
7098 // fold (xor x, 0) -> x
7099 if (isNullConstant(N1
))
7102 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
7106 if (SDValue RXOR
= reassociateOps(ISD::XOR
, DL
, N0
, N1
, N
->getFlags()))
7109 // fold !(x cc y) -> (x !cc y)
7110 unsigned N0Opcode
= N0
.getOpcode();
7111 SDValue LHS
, RHS
, CC
;
7112 if (TLI
.isConstTrueVal(N1
.getNode()) && isSetCCEquivalent(N0
, LHS
, RHS
, CC
)) {
7113 ISD::CondCode NotCC
= ISD::getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
7114 LHS
.getValueType().isInteger());
7115 if (!LegalOperations
||
7116 TLI
.isCondCodeLegal(NotCC
, LHS
.getSimpleValueType())) {
7119 llvm_unreachable("Unhandled SetCC Equivalent!");
7121 return DAG
.getSetCC(SDLoc(N0
), VT
, LHS
, RHS
, NotCC
);
7122 case ISD::SELECT_CC
:
7123 return DAG
.getSelectCC(SDLoc(N0
), LHS
, RHS
, N0
.getOperand(2),
7124 N0
.getOperand(3), NotCC
);
7129 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
7130 if (isOneConstant(N1
) && N0Opcode
== ISD::ZERO_EXTEND
&& N0
.hasOneUse() &&
7131 isSetCCEquivalent(N0
.getOperand(0), LHS
, RHS
, CC
)){
7132 SDValue V
= N0
.getOperand(0);
7134 V
= DAG
.getNode(ISD::XOR
, DL0
, V
.getValueType(), V
,
7135 DAG
.getConstant(1, DL0
, V
.getValueType()));
7136 AddToWorklist(V
.getNode());
7137 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, V
);
7140 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
7141 if (isOneConstant(N1
) && VT
== MVT::i1
&& N0
.hasOneUse() &&
7142 (N0Opcode
== ISD::OR
|| N0Opcode
== ISD::AND
)) {
7143 SDValue N00
= N0
.getOperand(0), N01
= N0
.getOperand(1);
7144 if (isOneUseSetCC(N01
) || isOneUseSetCC(N00
)) {
7145 unsigned NewOpcode
= N0Opcode
== ISD::AND
? ISD::OR
: ISD::AND
;
7146 N00
= DAG
.getNode(ISD::XOR
, SDLoc(N00
), VT
, N00
, N1
); // N00 = ~N00
7147 N01
= DAG
.getNode(ISD::XOR
, SDLoc(N01
), VT
, N01
, N1
); // N01 = ~N01
7148 AddToWorklist(N00
.getNode()); AddToWorklist(N01
.getNode());
7149 return DAG
.getNode(NewOpcode
, DL
, VT
, N00
, N01
);
7152 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
7153 if (isAllOnesConstant(N1
) && N0
.hasOneUse() &&
7154 (N0Opcode
== ISD::OR
|| N0Opcode
== ISD::AND
)) {
7155 SDValue N00
= N0
.getOperand(0), N01
= N0
.getOperand(1);
7156 if (isa
<ConstantSDNode
>(N01
) || isa
<ConstantSDNode
>(N00
)) {
7157 unsigned NewOpcode
= N0Opcode
== ISD::AND
? ISD::OR
: ISD::AND
;
7158 N00
= DAG
.getNode(ISD::XOR
, SDLoc(N00
), VT
, N00
, N1
); // N00 = ~N00
7159 N01
= DAG
.getNode(ISD::XOR
, SDLoc(N01
), VT
, N01
, N1
); // N01 = ~N01
7160 AddToWorklist(N00
.getNode()); AddToWorklist(N01
.getNode());
7161 return DAG
.getNode(NewOpcode
, DL
, VT
, N00
, N01
);
7165 // fold (not (neg x)) -> (add X, -1)
7166 // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if
7167 // Y is a constant or the subtract has a single use.
7168 if (isAllOnesConstant(N1
) && N0
.getOpcode() == ISD::SUB
&&
7169 isNullConstant(N0
.getOperand(0))) {
7170 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(1),
7171 DAG
.getAllOnesConstant(DL
, VT
));
7174 // fold (xor (and x, y), y) -> (and (not x), y)
7175 if (N0Opcode
== ISD::AND
&& N0
.hasOneUse() && N0
->getOperand(1) == N1
) {
7176 SDValue X
= N0
.getOperand(0);
7177 SDValue NotX
= DAG
.getNOT(SDLoc(X
), X
, VT
);
7178 AddToWorklist(NotX
.getNode());
7179 return DAG
.getNode(ISD::AND
, DL
, VT
, NotX
, N1
);
7182 if ((N0Opcode
== ISD::SRL
|| N0Opcode
== ISD::SHL
) && N0
.hasOneUse()) {
7183 ConstantSDNode
*XorC
= isConstOrConstSplat(N1
);
7184 ConstantSDNode
*ShiftC
= isConstOrConstSplat(N0
.getOperand(1));
7185 unsigned BitWidth
= VT
.getScalarSizeInBits();
7186 if (XorC
&& ShiftC
) {
7187 // Don't crash on an oversized shift. We can not guarantee that a bogus
7188 // shift has been simplified to undef.
7189 uint64_t ShiftAmt
= ShiftC
->getLimitedValue();
7190 if (ShiftAmt
< BitWidth
) {
7191 APInt Ones
= APInt::getAllOnesValue(BitWidth
);
7192 Ones
= N0Opcode
== ISD::SHL
? Ones
.shl(ShiftAmt
) : Ones
.lshr(ShiftAmt
);
7193 if (XorC
->getAPIntValue() == Ones
) {
7194 // If the xor constant is a shifted -1, do a 'not' before the shift:
7195 // xor (X << ShiftC), XorC --> (not X) << ShiftC
7196 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
7197 SDValue Not
= DAG
.getNOT(DL
, N0
.getOperand(0), VT
);
7198 return DAG
.getNode(N0Opcode
, DL
, VT
, Not
, N0
.getOperand(1));
7204 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
7205 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
)) {
7206 SDValue A
= N0Opcode
== ISD::ADD
? N0
: N1
;
7207 SDValue S
= N0Opcode
== ISD::SRA
? N0
: N1
;
7208 if (A
.getOpcode() == ISD::ADD
&& S
.getOpcode() == ISD::SRA
) {
7209 SDValue A0
= A
.getOperand(0), A1
= A
.getOperand(1);
7210 SDValue S0
= S
.getOperand(0);
7211 if ((A0
== S
&& A1
== S0
) || (A1
== S
&& A0
== S0
)) {
7212 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
7213 if (ConstantSDNode
*C
= isConstOrConstSplat(S
.getOperand(1)))
7214 if (C
->getAPIntValue() == (OpSizeInBits
- 1))
7215 return DAG
.getNode(ISD::ABS
, DL
, VT
, S0
);
7220 // fold (xor x, x) -> 0
7222 return tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
7224 // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
7225 // Here is a concrete example of this equivalence:
7227 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000
7228 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
7232 // i16 ~1 == 0b1111111111111110
7233 // i16 rol(~1, 14) == 0b1011111111111111
7235 // Some additional tips to help conceptualize this transform:
7236 // - Try to see the operation as placing a single zero in a value of all ones.
7237 // - There exists no value for x which would allow the result to contain zero.
7238 // - Values of x larger than the bitwidth are undefined and do not require a
7239 // consistent result.
7240 // - Pushing the zero left requires shifting one bits in from the right.
7241 // A rotate left of ~1 is a nice way of achieving the desired result.
7242 if (TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
) && N0Opcode
== ISD::SHL
&&
7243 isAllOnesConstant(N1
) && isOneConstant(N0
.getOperand(0))) {
7244 return DAG
.getNode(ISD::ROTL
, DL
, VT
, DAG
.getConstant(~1, DL
, VT
),
7248 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
7249 if (N0Opcode
== N1
.getOpcode())
7250 if (SDValue V
= hoistLogicOpWithSameOpcodeHands(N
))
7253 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
7254 if (SDValue MM
= unfoldMaskedMerge(N
))
7257 // Simplify the expression using non-local knowledge.
7258 if (SimplifyDemandedBits(SDValue(N
, 0)))
7259 return SDValue(N
, 0);
7264 /// If we have a shift-by-constant of a bitwise logic op that itself has a
7265 /// shift-by-constant operand with identical opcode, we may be able to convert
7266 /// that into 2 independent shifts followed by the logic op. This is a
7267 /// throughput improvement.
7268 static SDValue
combineShiftOfShiftedLogic(SDNode
*Shift
, SelectionDAG
&DAG
) {
7269 // Match a one-use bitwise logic op.
7270 SDValue LogicOp
= Shift
->getOperand(0);
7271 if (!LogicOp
.hasOneUse())
7274 unsigned LogicOpcode
= LogicOp
.getOpcode();
7275 if (LogicOpcode
!= ISD::AND
&& LogicOpcode
!= ISD::OR
&&
7276 LogicOpcode
!= ISD::XOR
)
7279 // Find a matching one-use shift by constant.
7280 unsigned ShiftOpcode
= Shift
->getOpcode();
7281 SDValue C1
= Shift
->getOperand(1);
7282 ConstantSDNode
*C1Node
= isConstOrConstSplat(C1
);
7283 assert(C1Node
&& "Expected a shift with constant operand");
7284 const APInt
&C1Val
= C1Node
->getAPIntValue();
7285 auto matchFirstShift
= [&](SDValue V
, SDValue
&ShiftOp
,
7286 const APInt
*&ShiftAmtVal
) {
7287 if (V
.getOpcode() != ShiftOpcode
|| !V
.hasOneUse())
7290 ConstantSDNode
*ShiftCNode
= isConstOrConstSplat(V
.getOperand(1));
7294 // Capture the shifted operand and shift amount value.
7295 ShiftOp
= V
.getOperand(0);
7296 ShiftAmtVal
= &ShiftCNode
->getAPIntValue();
7298 // Shift amount types do not have to match their operand type, so check that
7299 // the constants are the same width.
7300 if (ShiftAmtVal
->getBitWidth() != C1Val
.getBitWidth())
7303 // The fold is not valid if the sum of the shift values exceeds bitwidth.
7304 if ((*ShiftAmtVal
+ C1Val
).uge(V
.getScalarValueSizeInBits()))
7310 // Logic ops are commutative, so check each operand for a match.
7313 if (matchFirstShift(LogicOp
.getOperand(0), X
, C0Val
))
7314 Y
= LogicOp
.getOperand(1);
7315 else if (matchFirstShift(LogicOp
.getOperand(1), X
, C0Val
))
7316 Y
= LogicOp
.getOperand(0);
7320 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
7322 EVT VT
= Shift
->getValueType(0);
7323 EVT ShiftAmtVT
= Shift
->getOperand(1).getValueType();
7324 SDValue ShiftSumC
= DAG
.getConstant(*C0Val
+ C1Val
, DL
, ShiftAmtVT
);
7325 SDValue NewShift1
= DAG
.getNode(ShiftOpcode
, DL
, VT
, X
, ShiftSumC
);
7326 SDValue NewShift2
= DAG
.getNode(ShiftOpcode
, DL
, VT
, Y
, C1
);
7327 return DAG
.getNode(LogicOpcode
, DL
, VT
, NewShift1
, NewShift2
);
7330 /// Handle transforms common to the three shifts, when the shift amount is a
7332 /// We are looking for: (shift being one of shl/sra/srl)
7333 /// shift (binop X, C0), C1
7334 /// And want to transform into:
7335 /// binop (shift X, C1), (shift C0, C1)
7336 SDValue
DAGCombiner::visitShiftByConstant(SDNode
*N
) {
7337 assert(isConstOrConstSplat(N
->getOperand(1)) && "Expected constant operand");
7339 // Do not turn a 'not' into a regular xor.
7340 if (isBitwiseNot(N
->getOperand(0)))
7343 // The inner binop must be one-use, since we want to replace it.
7344 SDValue LHS
= N
->getOperand(0);
7345 if (!LHS
.hasOneUse() || !TLI
.isDesirableToCommuteWithShift(N
, Level
))
7348 // TODO: This is limited to early combining because it may reveal regressions
7349 // otherwise. But since we just checked a target hook to see if this is
7350 // desirable, that should have filtered out cases where this interferes
7351 // with some other pattern matching.
7353 if (SDValue R
= combineShiftOfShiftedLogic(N
, DAG
))
7356 // We want to pull some binops through shifts, so that we have (and (shift))
7357 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
7358 // thing happens with address calculations, so it's important to canonicalize
7360 switch (LHS
.getOpcode()) {
7368 if (N
->getOpcode() != ISD::SHL
)
7369 return SDValue(); // only shl(add) not sr[al](add).
7373 // We require the RHS of the binop to be a constant and not opaque as well.
7374 ConstantSDNode
*BinOpCst
= getAsNonOpaqueConstant(LHS
.getOperand(1));
7378 // FIXME: disable this unless the input to the binop is a shift by a constant
7379 // or is copy/select. Enable this in other cases when figure out it's exactly
7381 SDValue BinOpLHSVal
= LHS
.getOperand(0);
7382 bool IsShiftByConstant
= (BinOpLHSVal
.getOpcode() == ISD::SHL
||
7383 BinOpLHSVal
.getOpcode() == ISD::SRA
||
7384 BinOpLHSVal
.getOpcode() == ISD::SRL
) &&
7385 isa
<ConstantSDNode
>(BinOpLHSVal
.getOperand(1));
7386 bool IsCopyOrSelect
= BinOpLHSVal
.getOpcode() == ISD::CopyFromReg
||
7387 BinOpLHSVal
.getOpcode() == ISD::SELECT
;
7389 if (!IsShiftByConstant
&& !IsCopyOrSelect
)
7392 if (IsCopyOrSelect
&& N
->hasOneUse())
7395 // Fold the constants, shifting the binop RHS by the shift amount.
7397 EVT VT
= N
->getValueType(0);
7398 SDValue NewRHS
= DAG
.getNode(N
->getOpcode(), DL
, VT
, LHS
.getOperand(1),
7400 assert(isa
<ConstantSDNode
>(NewRHS
) && "Folding was not successful!");
7402 SDValue NewShift
= DAG
.getNode(N
->getOpcode(), DL
, VT
, LHS
.getOperand(0),
7404 return DAG
.getNode(LHS
.getOpcode(), DL
, VT
, NewShift
, NewRHS
);
7407 SDValue
DAGCombiner::distributeTruncateThroughAnd(SDNode
*N
) {
7408 assert(N
->getOpcode() == ISD::TRUNCATE
);
7409 assert(N
->getOperand(0).getOpcode() == ISD::AND
);
7411 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
7412 EVT TruncVT
= N
->getValueType(0);
7413 if (N
->hasOneUse() && N
->getOperand(0).hasOneUse() &&
7414 TLI
.isTypeDesirableForOp(ISD::AND
, TruncVT
)) {
7415 SDValue N01
= N
->getOperand(0).getOperand(1);
7416 if (isConstantOrConstantVector(N01
, /* NoOpaques */ true)) {
7418 SDValue N00
= N
->getOperand(0).getOperand(0);
7419 SDValue Trunc00
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
, N00
);
7420 SDValue Trunc01
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
, N01
);
7421 AddToWorklist(Trunc00
.getNode());
7422 AddToWorklist(Trunc01
.getNode());
7423 return DAG
.getNode(ISD::AND
, DL
, TruncVT
, Trunc00
, Trunc01
);
7430 SDValue
DAGCombiner::visitRotate(SDNode
*N
) {
7432 SDValue N0
= N
->getOperand(0);
7433 SDValue N1
= N
->getOperand(1);
7434 EVT VT
= N
->getValueType(0);
7435 unsigned Bitsize
= VT
.getScalarSizeInBits();
7437 // fold (rot x, 0) -> x
7438 if (isNullOrNullSplat(N1
))
7441 // fold (rot x, c) -> x iff (c % BitSize) == 0
7442 if (isPowerOf2_32(Bitsize
) && Bitsize
> 1) {
7443 APInt
ModuloMask(N1
.getScalarValueSizeInBits(), Bitsize
- 1);
7444 if (DAG
.MaskedValueIsZero(N1
, ModuloMask
))
7448 // fold (rot x, c) -> (rot x, c % BitSize)
7449 // TODO - support non-uniform vector amounts.
7450 if (ConstantSDNode
*Cst
= isConstOrConstSplat(N1
)) {
7451 if (Cst
->getAPIntValue().uge(Bitsize
)) {
7452 uint64_t RotAmt
= Cst
->getAPIntValue().urem(Bitsize
);
7453 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
,
7454 DAG
.getConstant(RotAmt
, dl
, N1
.getValueType()));
7458 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
7459 if (N1
.getOpcode() == ISD::TRUNCATE
&&
7460 N1
.getOperand(0).getOpcode() == ISD::AND
) {
7461 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
7462 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
, NewOp1
);
7465 unsigned NextOp
= N0
.getOpcode();
7466 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize)
7467 if (NextOp
== ISD::ROTL
|| NextOp
== ISD::ROTR
) {
7468 SDNode
*C1
= DAG
.isConstantIntBuildVectorOrConstantInt(N1
);
7469 SDNode
*C2
= DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1));
7470 if (C1
&& C2
&& C1
->getValueType(0) == C2
->getValueType(0)) {
7471 EVT ShiftVT
= C1
->getValueType(0);
7472 bool SameSide
= (N
->getOpcode() == NextOp
);
7473 unsigned CombineOp
= SameSide
? ISD::ADD
: ISD::SUB
;
7474 if (SDValue CombinedShift
=
7475 DAG
.FoldConstantArithmetic(CombineOp
, dl
, ShiftVT
, C1
, C2
)) {
7476 SDValue BitsizeC
= DAG
.getConstant(Bitsize
, dl
, ShiftVT
);
7477 SDValue CombinedShiftNorm
= DAG
.FoldConstantArithmetic(
7478 ISD::SREM
, dl
, ShiftVT
, CombinedShift
.getNode(),
7479 BitsizeC
.getNode());
7480 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
->getOperand(0),
7488 SDValue
DAGCombiner::visitSHL(SDNode
*N
) {
7489 SDValue N0
= N
->getOperand(0);
7490 SDValue N1
= N
->getOperand(1);
7491 if (SDValue V
= DAG
.simplifyShift(N0
, N1
))
7494 EVT VT
= N0
.getValueType();
7495 EVT ShiftVT
= N1
.getValueType();
7496 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
7499 if (VT
.isVector()) {
7500 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
7503 BuildVectorSDNode
*N1CV
= dyn_cast
<BuildVectorSDNode
>(N1
);
7504 // If setcc produces all-one true value then:
7505 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
7506 if (N1CV
&& N1CV
->isConstant()) {
7507 if (N0
.getOpcode() == ISD::AND
) {
7508 SDValue N00
= N0
->getOperand(0);
7509 SDValue N01
= N0
->getOperand(1);
7510 BuildVectorSDNode
*N01CV
= dyn_cast
<BuildVectorSDNode
>(N01
);
7512 if (N01CV
&& N01CV
->isConstant() && N00
.getOpcode() == ISD::SETCC
&&
7513 TLI
.getBooleanContents(N00
.getOperand(0).getValueType()) ==
7514 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
7515 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::SHL
, SDLoc(N
), VT
,
7517 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, N00
, C
);
7523 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
7525 // fold (shl c1, c2) -> c1<<c2
7526 // TODO - support non-uniform vector shift amounts.
7527 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
7528 if (N0C
&& N1C
&& !N1C
->isOpaque())
7529 return DAG
.FoldConstantArithmetic(ISD::SHL
, SDLoc(N
), VT
, N0C
, N1C
);
7531 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
7534 // if (shl x, c) is known to be zero, return 0
7535 if (DAG
.MaskedValueIsZero(SDValue(N
, 0),
7536 APInt::getAllOnesValue(OpSizeInBits
)))
7537 return DAG
.getConstant(0, SDLoc(N
), VT
);
7539 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
7540 if (N1
.getOpcode() == ISD::TRUNCATE
&&
7541 N1
.getOperand(0).getOpcode() == ISD::AND
) {
7542 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
7543 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N0
, NewOp1
);
7546 // TODO - support non-uniform vector shift amounts.
7547 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
7548 return SDValue(N
, 0);
7550 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
7551 if (N0
.getOpcode() == ISD::SHL
) {
7552 auto MatchOutOfRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
7553 ConstantSDNode
*RHS
) {
7554 APInt c1
= LHS
->getAPIntValue();
7555 APInt c2
= RHS
->getAPIntValue();
7556 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7557 return (c1
+ c2
).uge(OpSizeInBits
);
7559 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchOutOfRange
))
7560 return DAG
.getConstant(0, SDLoc(N
), VT
);
7562 auto MatchInRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
7563 ConstantSDNode
*RHS
) {
7564 APInt c1
= LHS
->getAPIntValue();
7565 APInt c2
= RHS
->getAPIntValue();
7566 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7567 return (c1
+ c2
).ult(OpSizeInBits
);
7569 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchInRange
)) {
7571 SDValue Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, N1
, N0
.getOperand(1));
7572 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0), Sum
);
7576 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2))
7577 // For this to be valid, the second form must not preserve any of the bits
7578 // that are shifted out by the inner shift in the first form. This means
7579 // the outer shift size must be >= the number of bits added by the ext.
7580 // As a corollary, we don't care what kind of ext it is.
7581 if ((N0
.getOpcode() == ISD::ZERO_EXTEND
||
7582 N0
.getOpcode() == ISD::ANY_EXTEND
||
7583 N0
.getOpcode() == ISD::SIGN_EXTEND
) &&
7584 N0
.getOperand(0).getOpcode() == ISD::SHL
) {
7585 SDValue N0Op0
= N0
.getOperand(0);
7586 SDValue InnerShiftAmt
= N0Op0
.getOperand(1);
7587 EVT InnerVT
= N0Op0
.getValueType();
7588 uint64_t InnerBitwidth
= InnerVT
.getScalarSizeInBits();
7590 auto MatchOutOfRange
= [OpSizeInBits
, InnerBitwidth
](ConstantSDNode
*LHS
,
7591 ConstantSDNode
*RHS
) {
7592 APInt c1
= LHS
->getAPIntValue();
7593 APInt c2
= RHS
->getAPIntValue();
7594 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7595 return c2
.uge(OpSizeInBits
- InnerBitwidth
) &&
7596 (c1
+ c2
).uge(OpSizeInBits
);
7598 if (ISD::matchBinaryPredicate(InnerShiftAmt
, N1
, MatchOutOfRange
,
7599 /*AllowUndefs*/ false,
7600 /*AllowTypeMismatch*/ true))
7601 return DAG
.getConstant(0, SDLoc(N
), VT
);
7603 auto MatchInRange
= [OpSizeInBits
, InnerBitwidth
](ConstantSDNode
*LHS
,
7604 ConstantSDNode
*RHS
) {
7605 APInt c1
= LHS
->getAPIntValue();
7606 APInt c2
= RHS
->getAPIntValue();
7607 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7608 return c2
.uge(OpSizeInBits
- InnerBitwidth
) &&
7609 (c1
+ c2
).ult(OpSizeInBits
);
7611 if (ISD::matchBinaryPredicate(InnerShiftAmt
, N1
, MatchInRange
,
7612 /*AllowUndefs*/ false,
7613 /*AllowTypeMismatch*/ true)) {
7615 SDValue Ext
= DAG
.getNode(N0
.getOpcode(), DL
, VT
, N0Op0
.getOperand(0));
7616 SDValue Sum
= DAG
.getZExtOrTrunc(InnerShiftAmt
, DL
, ShiftVT
);
7617 Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, Sum
, N1
);
7618 return DAG
.getNode(ISD::SHL
, DL
, VT
, Ext
, Sum
);
7622 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
7623 // Only fold this if the inner zext has no other uses to avoid increasing
7624 // the total number of instructions.
7625 if (N0
.getOpcode() == ISD::ZERO_EXTEND
&& N0
.hasOneUse() &&
7626 N0
.getOperand(0).getOpcode() == ISD::SRL
) {
7627 SDValue N0Op0
= N0
.getOperand(0);
7628 SDValue InnerShiftAmt
= N0Op0
.getOperand(1);
7630 auto MatchEqual
= [VT
](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
7631 APInt c1
= LHS
->getAPIntValue();
7632 APInt c2
= RHS
->getAPIntValue();
7633 zeroExtendToMatch(c1
, c2
);
7634 return c1
.ult(VT
.getScalarSizeInBits()) && (c1
== c2
);
7636 if (ISD::matchBinaryPredicate(InnerShiftAmt
, N1
, MatchEqual
,
7637 /*AllowUndefs*/ false,
7638 /*AllowTypeMismatch*/ true)) {
7640 EVT InnerShiftAmtVT
= N0Op0
.getOperand(1).getValueType();
7641 SDValue NewSHL
= DAG
.getZExtOrTrunc(N1
, DL
, InnerShiftAmtVT
);
7642 NewSHL
= DAG
.getNode(ISD::SHL
, DL
, N0Op0
.getValueType(), N0Op0
, NewSHL
);
7643 AddToWorklist(NewSHL
.getNode());
7644 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N0
), VT
, NewSHL
);
7648 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
7649 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2
7650 // TODO - support non-uniform vector shift amounts.
7651 if (N1C
&& (N0
.getOpcode() == ISD::SRL
|| N0
.getOpcode() == ISD::SRA
) &&
7652 N0
->getFlags().hasExact()) {
7653 if (ConstantSDNode
*N0C1
= isConstOrConstSplat(N0
.getOperand(1))) {
7654 uint64_t C1
= N0C1
->getZExtValue();
7655 uint64_t C2
= N1C
->getZExtValue();
7658 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0),
7659 DAG
.getConstant(C2
- C1
, DL
, ShiftVT
));
7660 return DAG
.getNode(N0
.getOpcode(), DL
, VT
, N0
.getOperand(0),
7661 DAG
.getConstant(C1
- C2
, DL
, ShiftVT
));
7665 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
7666 // (and (srl x, (sub c1, c2), MASK)
7667 // Only fold this if the inner shift has no other uses -- if it does, folding
7668 // this will increase the total number of instructions.
7669 // TODO - drop hasOneUse requirement if c1 == c2?
7670 // TODO - support non-uniform vector shift amounts.
7671 if (N1C
&& N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse() &&
7672 TLI
.shouldFoldConstantShiftPairToMask(N
, Level
)) {
7673 if (ConstantSDNode
*N0C1
= isConstOrConstSplat(N0
.getOperand(1))) {
7674 if (N0C1
->getAPIntValue().ult(OpSizeInBits
)) {
7675 uint64_t c1
= N0C1
->getZExtValue();
7676 uint64_t c2
= N1C
->getZExtValue();
7677 APInt Mask
= APInt::getHighBitsSet(OpSizeInBits
, OpSizeInBits
- c1
);
7682 Shift
= DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0),
7683 DAG
.getConstant(c2
- c1
, DL
, ShiftVT
));
7685 Mask
.lshrInPlace(c1
- c2
);
7687 Shift
= DAG
.getNode(ISD::SRL
, DL
, VT
, N0
.getOperand(0),
7688 DAG
.getConstant(c1
- c2
, DL
, ShiftVT
));
7691 return DAG
.getNode(ISD::AND
, DL
, VT
, Shift
,
7692 DAG
.getConstant(Mask
, DL
, VT
));
7697 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
7698 if (N0
.getOpcode() == ISD::SRA
&& N1
== N0
.getOperand(1) &&
7699 isConstantOrConstantVector(N1
, /* No Opaques */ true)) {
7701 SDValue AllBits
= DAG
.getAllOnesConstant(DL
, VT
);
7702 SDValue HiBitsMask
= DAG
.getNode(ISD::SHL
, DL
, VT
, AllBits
, N1
);
7703 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), HiBitsMask
);
7706 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
7707 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
7708 // Variant of version done on multiply, except mul by a power of 2 is turned
7710 if ((N0
.getOpcode() == ISD::ADD
|| N0
.getOpcode() == ISD::OR
) &&
7711 N0
.getNode()->hasOneUse() &&
7712 isConstantOrConstantVector(N1
, /* No Opaques */ true) &&
7713 isConstantOrConstantVector(N0
.getOperand(1), /* No Opaques */ true) &&
7714 TLI
.isDesirableToCommuteWithShift(N
, Level
)) {
7715 SDValue Shl0
= DAG
.getNode(ISD::SHL
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
7716 SDValue Shl1
= DAG
.getNode(ISD::SHL
, SDLoc(N1
), VT
, N0
.getOperand(1), N1
);
7717 AddToWorklist(Shl0
.getNode());
7718 AddToWorklist(Shl1
.getNode());
7719 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, Shl0
, Shl1
);
7722 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
7723 if (N0
.getOpcode() == ISD::MUL
&& N0
.getNode()->hasOneUse() &&
7724 isConstantOrConstantVector(N1
, /* No Opaques */ true) &&
7725 isConstantOrConstantVector(N0
.getOperand(1), /* No Opaques */ true)) {
7726 SDValue Shl
= DAG
.getNode(ISD::SHL
, SDLoc(N1
), VT
, N0
.getOperand(1), N1
);
7727 if (isConstantOrConstantVector(Shl
))
7728 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N0
.getOperand(0), Shl
);
7731 if (N1C
&& !N1C
->isOpaque())
7732 if (SDValue NewSHL
= visitShiftByConstant(N
))
7738 SDValue
DAGCombiner::visitSRA(SDNode
*N
) {
7739 SDValue N0
= N
->getOperand(0);
7740 SDValue N1
= N
->getOperand(1);
7741 if (SDValue V
= DAG
.simplifyShift(N0
, N1
))
7744 EVT VT
= N0
.getValueType();
7745 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
7747 // Arithmetic shifting an all-sign-bit value is a no-op.
7748 // fold (sra 0, x) -> 0
7749 // fold (sra -1, x) -> -1
7750 if (DAG
.ComputeNumSignBits(N0
) == OpSizeInBits
)
7755 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
7758 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
7760 // fold (sra c1, c2) -> (sra c1, c2)
7761 // TODO - support non-uniform vector shift amounts.
7762 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
7763 if (N0C
&& N1C
&& !N1C
->isOpaque())
7764 return DAG
.FoldConstantArithmetic(ISD::SRA
, SDLoc(N
), VT
, N0C
, N1C
);
7766 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
7769 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
7771 if (N1C
&& N0
.getOpcode() == ISD::SHL
&& N1
== N0
.getOperand(1)) {
7772 unsigned LowBits
= OpSizeInBits
- (unsigned)N1C
->getZExtValue();
7773 EVT ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), LowBits
);
7775 ExtVT
= EVT::getVectorVT(*DAG
.getContext(),
7776 ExtVT
, VT
.getVectorNumElements());
7777 if ((!LegalOperations
||
7778 TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
, ExtVT
)))
7779 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
,
7780 N0
.getOperand(0), DAG
.getValueType(ExtVT
));
7783 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
7784 // clamp (add c1, c2) to max shift.
7785 if (N0
.getOpcode() == ISD::SRA
) {
7787 EVT ShiftVT
= N1
.getValueType();
7788 EVT ShiftSVT
= ShiftVT
.getScalarType();
7789 SmallVector
<SDValue
, 16> ShiftValues
;
7791 auto SumOfShifts
= [&](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
7792 APInt c1
= LHS
->getAPIntValue();
7793 APInt c2
= RHS
->getAPIntValue();
7794 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7795 APInt Sum
= c1
+ c2
;
7797 Sum
.uge(OpSizeInBits
) ? (OpSizeInBits
- 1) : Sum
.getZExtValue();
7798 ShiftValues
.push_back(DAG
.getConstant(ShiftSum
, DL
, ShiftSVT
));
7801 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), SumOfShifts
)) {
7804 ShiftValue
= DAG
.getBuildVector(ShiftVT
, DL
, ShiftValues
);
7806 ShiftValue
= ShiftValues
[0];
7807 return DAG
.getNode(ISD::SRA
, DL
, VT
, N0
.getOperand(0), ShiftValue
);
7811 // fold (sra (shl X, m), (sub result_size, n))
7812 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
7813 // result_size - n != m.
7814 // If truncate is free for the target sext(shl) is likely to result in better
7816 if (N0
.getOpcode() == ISD::SHL
&& N1C
) {
7817 // Get the two constanst of the shifts, CN0 = m, CN = n.
7818 const ConstantSDNode
*N01C
= isConstOrConstSplat(N0
.getOperand(1));
7820 LLVMContext
&Ctx
= *DAG
.getContext();
7821 // Determine what the truncate's result bitsize and type would be.
7822 EVT TruncVT
= EVT::getIntegerVT(Ctx
, OpSizeInBits
- N1C
->getZExtValue());
7825 TruncVT
= EVT::getVectorVT(Ctx
, TruncVT
, VT
.getVectorNumElements());
7827 // Determine the residual right-shift amount.
7828 int ShiftAmt
= N1C
->getZExtValue() - N01C
->getZExtValue();
7830 // If the shift is not a no-op (in which case this should be just a sign
7831 // extend already), the truncated to type is legal, sign_extend is legal
7832 // on that type, and the truncate to that type is both legal and free,
7833 // perform the transform.
7834 if ((ShiftAmt
> 0) &&
7835 TLI
.isOperationLegalOrCustom(ISD::SIGN_EXTEND
, TruncVT
) &&
7836 TLI
.isOperationLegalOrCustom(ISD::TRUNCATE
, VT
) &&
7837 TLI
.isTruncateFree(VT
, TruncVT
)) {
7839 SDValue Amt
= DAG
.getConstant(ShiftAmt
, DL
,
7840 getShiftAmountTy(N0
.getOperand(0).getValueType()));
7841 SDValue Shift
= DAG
.getNode(ISD::SRL
, DL
, VT
,
7842 N0
.getOperand(0), Amt
);
7843 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
,
7845 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
,
7846 N
->getValueType(0), Trunc
);
7851 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper.
7852 // sra (add (shl X, N1C), AddC), N1C -->
7853 // sext (add (trunc X to (width - N1C)), AddC')
7854 if (!LegalTypes
&& N0
.getOpcode() == ISD::ADD
&& N0
.hasOneUse() && N1C
&&
7855 N0
.getOperand(0).getOpcode() == ISD::SHL
&&
7856 N0
.getOperand(0).getOperand(1) == N1
&& N0
.getOperand(0).hasOneUse()) {
7857 if (ConstantSDNode
*AddC
= isConstOrConstSplat(N0
.getOperand(1))) {
7858 SDValue Shl
= N0
.getOperand(0);
7859 // Determine what the truncate's type would be and ask the target if that
7860 // is a free operation.
7861 LLVMContext
&Ctx
= *DAG
.getContext();
7862 unsigned ShiftAmt
= N1C
->getZExtValue();
7863 EVT TruncVT
= EVT::getIntegerVT(Ctx
, OpSizeInBits
- ShiftAmt
);
7865 TruncVT
= EVT::getVectorVT(Ctx
, TruncVT
, VT
.getVectorNumElements());
7867 // TODO: The simple type check probably belongs in the default hook
7868 // implementation and/or target-specific overrides (because
7869 // non-simple types likely require masking when legalized), but that
7870 // restriction may conflict with other transforms.
7871 if (TruncVT
.isSimple() && TLI
.isTruncateFree(VT
, TruncVT
)) {
7873 SDValue Trunc
= DAG
.getZExtOrTrunc(Shl
.getOperand(0), DL
, TruncVT
);
7874 SDValue ShiftC
= DAG
.getConstant(AddC
->getAPIntValue().lshr(ShiftAmt
).
7875 trunc(TruncVT
.getScalarSizeInBits()), DL
, TruncVT
);
7876 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, TruncVT
, Trunc
, ShiftC
);
7877 return DAG
.getSExtOrTrunc(Add
, DL
, VT
);
7882 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
7883 if (N1
.getOpcode() == ISD::TRUNCATE
&&
7884 N1
.getOperand(0).getOpcode() == ISD::AND
) {
7885 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
7886 return DAG
.getNode(ISD::SRA
, SDLoc(N
), VT
, N0
, NewOp1
);
7889 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2))
7890 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
7891 // if c1 is equal to the number of bits the trunc removes
7892 // TODO - support non-uniform vector shift amounts.
7893 if (N0
.getOpcode() == ISD::TRUNCATE
&&
7894 (N0
.getOperand(0).getOpcode() == ISD::SRL
||
7895 N0
.getOperand(0).getOpcode() == ISD::SRA
) &&
7896 N0
.getOperand(0).hasOneUse() &&
7897 N0
.getOperand(0).getOperand(1).hasOneUse() && N1C
) {
7898 SDValue N0Op0
= N0
.getOperand(0);
7899 if (ConstantSDNode
*LargeShift
= isConstOrConstSplat(N0Op0
.getOperand(1))) {
7900 EVT LargeVT
= N0Op0
.getValueType();
7901 unsigned TruncBits
= LargeVT
.getScalarSizeInBits() - OpSizeInBits
;
7902 if (LargeShift
->getAPIntValue() == TruncBits
) {
7904 SDValue Amt
= DAG
.getConstant(N1C
->getZExtValue() + TruncBits
, DL
,
7905 getShiftAmountTy(LargeVT
));
7907 DAG
.getNode(ISD::SRA
, DL
, LargeVT
, N0Op0
.getOperand(0), Amt
);
7908 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, SRA
);
7913 // Simplify, based on bits shifted out of the LHS.
7914 // TODO - support non-uniform vector shift amounts.
7915 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
7916 return SDValue(N
, 0);
7918 // If the sign bit is known to be zero, switch this to a SRL.
7919 if (DAG
.SignBitIsZero(N0
))
7920 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
, N1
);
7922 if (N1C
&& !N1C
->isOpaque())
7923 if (SDValue NewSRA
= visitShiftByConstant(N
))
7929 SDValue
DAGCombiner::visitSRL(SDNode
*N
) {
7930 SDValue N0
= N
->getOperand(0);
7931 SDValue N1
= N
->getOperand(1);
7932 if (SDValue V
= DAG
.simplifyShift(N0
, N1
))
7935 EVT VT
= N0
.getValueType();
7936 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
7940 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
7943 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
7945 // fold (srl c1, c2) -> c1 >>u c2
7946 // TODO - support non-uniform vector shift amounts.
7947 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
7948 if (N0C
&& N1C
&& !N1C
->isOpaque())
7949 return DAG
.FoldConstantArithmetic(ISD::SRL
, SDLoc(N
), VT
, N0C
, N1C
);
7951 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
7954 // if (srl x, c) is known to be zero, return 0
7955 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
7956 APInt::getAllOnesValue(OpSizeInBits
)))
7957 return DAG
.getConstant(0, SDLoc(N
), VT
);
7959 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
7960 if (N0
.getOpcode() == ISD::SRL
) {
7961 auto MatchOutOfRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
7962 ConstantSDNode
*RHS
) {
7963 APInt c1
= LHS
->getAPIntValue();
7964 APInt c2
= RHS
->getAPIntValue();
7965 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7966 return (c1
+ c2
).uge(OpSizeInBits
);
7968 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchOutOfRange
))
7969 return DAG
.getConstant(0, SDLoc(N
), VT
);
7971 auto MatchInRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
7972 ConstantSDNode
*RHS
) {
7973 APInt c1
= LHS
->getAPIntValue();
7974 APInt c2
= RHS
->getAPIntValue();
7975 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7976 return (c1
+ c2
).ult(OpSizeInBits
);
7978 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchInRange
)) {
7980 EVT ShiftVT
= N1
.getValueType();
7981 SDValue Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, N1
, N0
.getOperand(1));
7982 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
.getOperand(0), Sum
);
7986 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
7987 // TODO - support non-uniform vector shift amounts.
7988 if (N1C
&& N0
.getOpcode() == ISD::TRUNCATE
&&
7989 N0
.getOperand(0).getOpcode() == ISD::SRL
) {
7990 if (auto N001C
= isConstOrConstSplat(N0
.getOperand(0).getOperand(1))) {
7991 uint64_t c1
= N001C
->getZExtValue();
7992 uint64_t c2
= N1C
->getZExtValue();
7993 EVT InnerShiftVT
= N0
.getOperand(0).getValueType();
7994 EVT ShiftCountVT
= N0
.getOperand(0).getOperand(1).getValueType();
7995 uint64_t InnerShiftSize
= InnerShiftVT
.getScalarSizeInBits();
7996 // This is only valid if the OpSizeInBits + c1 = size of inner shift.
7997 if (c1
+ OpSizeInBits
== InnerShiftSize
) {
7999 if (c1
+ c2
>= InnerShiftSize
)
8000 return DAG
.getConstant(0, DL
, VT
);
8001 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
,
8002 DAG
.getNode(ISD::SRL
, DL
, InnerShiftVT
,
8003 N0
.getOperand(0).getOperand(0),
8004 DAG
.getConstant(c1
+ c2
, DL
,
8010 // fold (srl (shl x, c), c) -> (and x, cst2)
8011 // TODO - (srl (shl x, c1), c2).
8012 if (N0
.getOpcode() == ISD::SHL
&& N0
.getOperand(1) == N1
&&
8013 isConstantOrConstantVector(N1
, /* NoOpaques */ true)) {
8016 DAG
.getNode(ISD::SRL
, DL
, VT
, DAG
.getAllOnesConstant(DL
, VT
), N1
);
8017 AddToWorklist(Mask
.getNode());
8018 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), Mask
);
8021 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
8022 // TODO - support non-uniform vector shift amounts.
8023 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
8024 // Shifting in all undef bits?
8025 EVT SmallVT
= N0
.getOperand(0).getValueType();
8026 unsigned BitSize
= SmallVT
.getScalarSizeInBits();
8027 if (N1C
->getAPIntValue().uge(BitSize
))
8028 return DAG
.getUNDEF(VT
);
8030 if (!LegalTypes
|| TLI
.isTypeDesirableForOp(ISD::SRL
, SmallVT
)) {
8031 uint64_t ShiftAmt
= N1C
->getZExtValue();
8033 SDValue SmallShift
= DAG
.getNode(ISD::SRL
, DL0
, SmallVT
,
8035 DAG
.getConstant(ShiftAmt
, DL0
,
8036 getShiftAmountTy(SmallVT
)));
8037 AddToWorklist(SmallShift
.getNode());
8038 APInt Mask
= APInt::getLowBitsSet(OpSizeInBits
, OpSizeInBits
- ShiftAmt
);
8040 return DAG
.getNode(ISD::AND
, DL
, VT
,
8041 DAG
.getNode(ISD::ANY_EXTEND
, DL
, VT
, SmallShift
),
8042 DAG
.getConstant(Mask
, DL
, VT
));
8046 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
8047 // bit, which is unmodified by sra.
8048 if (N1C
&& N1C
->getAPIntValue() == (OpSizeInBits
- 1)) {
8049 if (N0
.getOpcode() == ISD::SRA
)
8050 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
8053 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
8054 if (N1C
&& N0
.getOpcode() == ISD::CTLZ
&&
8055 N1C
->getAPIntValue() == Log2_32(OpSizeInBits
)) {
8056 KnownBits Known
= DAG
.computeKnownBits(N0
.getOperand(0));
8058 // If any of the input bits are KnownOne, then the input couldn't be all
8059 // zeros, thus the result of the srl will always be zero.
8060 if (Known
.One
.getBoolValue()) return DAG
.getConstant(0, SDLoc(N0
), VT
);
8062 // If all of the bits input the to ctlz node are known to be zero, then
8063 // the result of the ctlz is "32" and the result of the shift is one.
8064 APInt UnknownBits
= ~Known
.Zero
;
8065 if (UnknownBits
== 0) return DAG
.getConstant(1, SDLoc(N0
), VT
);
8067 // Otherwise, check to see if there is exactly one bit input to the ctlz.
8068 if (UnknownBits
.isPowerOf2()) {
8069 // Okay, we know that only that the single bit specified by UnknownBits
8070 // could be set on input to the CTLZ node. If this bit is set, the SRL
8071 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
8072 // to an SRL/XOR pair, which is likely to simplify more.
8073 unsigned ShAmt
= UnknownBits
.countTrailingZeros();
8074 SDValue Op
= N0
.getOperand(0);
8078 Op
= DAG
.getNode(ISD::SRL
, DL
, VT
, Op
,
8079 DAG
.getConstant(ShAmt
, DL
,
8080 getShiftAmountTy(Op
.getValueType())));
8081 AddToWorklist(Op
.getNode());
8085 return DAG
.getNode(ISD::XOR
, DL
, VT
,
8086 Op
, DAG
.getConstant(1, DL
, VT
));
8090 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
8091 if (N1
.getOpcode() == ISD::TRUNCATE
&&
8092 N1
.getOperand(0).getOpcode() == ISD::AND
) {
8093 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
8094 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
, NewOp1
);
8097 // fold operands of srl based on knowledge that the low bits are not
8099 // TODO - support non-uniform vector shift amounts.
8100 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
8101 return SDValue(N
, 0);
8103 if (N1C
&& !N1C
->isOpaque())
8104 if (SDValue NewSRL
= visitShiftByConstant(N
))
8107 // Attempt to convert a srl of a load into a narrower zero-extending load.
8108 if (SDValue NarrowLoad
= ReduceLoadWidth(N
))
8111 // Here is a common situation. We want to optimize:
8114 // %b = and i32 %a, 2
8115 // %c = srl i32 %b, 1
8116 // brcond i32 %c ...
8122 // %c = setcc eq %b, 0
8125 // However when after the source operand of SRL is optimized into AND, the SRL
8126 // itself may not be optimized further. Look for it and add the BRCOND into
8128 if (N
->hasOneUse()) {
8129 SDNode
*Use
= *N
->use_begin();
8130 if (Use
->getOpcode() == ISD::BRCOND
)
8132 else if (Use
->getOpcode() == ISD::TRUNCATE
&& Use
->hasOneUse()) {
8133 // Also look pass the truncate.
8134 Use
= *Use
->use_begin();
8135 if (Use
->getOpcode() == ISD::BRCOND
)
8143 SDValue
DAGCombiner::visitFunnelShift(SDNode
*N
) {
8144 EVT VT
= N
->getValueType(0);
8145 SDValue N0
= N
->getOperand(0);
8146 SDValue N1
= N
->getOperand(1);
8147 SDValue N2
= N
->getOperand(2);
8148 bool IsFSHL
= N
->getOpcode() == ISD::FSHL
;
8149 unsigned BitWidth
= VT
.getScalarSizeInBits();
8151 // fold (fshl N0, N1, 0) -> N0
8152 // fold (fshr N0, N1, 0) -> N1
8153 if (isPowerOf2_32(BitWidth
))
8154 if (DAG
.MaskedValueIsZero(
8155 N2
, APInt(N2
.getScalarValueSizeInBits(), BitWidth
- 1)))
8156 return IsFSHL
? N0
: N1
;
8158 auto IsUndefOrZero
= [](SDValue V
) {
8159 return V
.isUndef() || isNullOrNullSplat(V
, /*AllowUndefs*/ true);
8162 // TODO - support non-uniform vector shift amounts.
8163 if (ConstantSDNode
*Cst
= isConstOrConstSplat(N2
)) {
8164 EVT ShAmtTy
= N2
.getValueType();
8166 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
8167 if (Cst
->getAPIntValue().uge(BitWidth
)) {
8168 uint64_t RotAmt
= Cst
->getAPIntValue().urem(BitWidth
);
8169 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N0
, N1
,
8170 DAG
.getConstant(RotAmt
, SDLoc(N
), ShAmtTy
));
8173 unsigned ShAmt
= Cst
->getZExtValue();
8175 return IsFSHL
? N0
: N1
;
8177 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C)
8178 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C)
8179 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C)
8180 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C)
8181 if (IsUndefOrZero(N0
))
8182 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N1
,
8183 DAG
.getConstant(IsFSHL
? BitWidth
- ShAmt
: ShAmt
,
8184 SDLoc(N
), ShAmtTy
));
8185 if (IsUndefOrZero(N1
))
8186 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N0
,
8187 DAG
.getConstant(IsFSHL
? ShAmt
: BitWidth
- ShAmt
,
8188 SDLoc(N
), ShAmtTy
));
8191 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2)
8192 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2)
8193 // iff We know the shift amount is in range.
8194 // TODO: when is it worth doing SUB(BW, N2) as well?
8195 if (isPowerOf2_32(BitWidth
)) {
8196 APInt
ModuloBits(N2
.getScalarValueSizeInBits(), BitWidth
- 1);
8197 if (IsUndefOrZero(N0
) && !IsFSHL
&& DAG
.MaskedValueIsZero(N2
, ~ModuloBits
))
8198 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N1
, N2
);
8199 if (IsUndefOrZero(N1
) && IsFSHL
&& DAG
.MaskedValueIsZero(N2
, ~ModuloBits
))
8200 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N0
, N2
);
8203 // fold (fshl N0, N0, N2) -> (rotl N0, N2)
8204 // fold (fshr N0, N0, N2) -> (rotr N0, N2)
8205 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift
8206 // is legal as well we might be better off avoiding non-constant (BW - N2).
8207 unsigned RotOpc
= IsFSHL
? ISD::ROTL
: ISD::ROTR
;
8208 if (N0
== N1
&& hasOperation(RotOpc
, VT
))
8209 return DAG
.getNode(RotOpc
, SDLoc(N
), VT
, N0
, N2
);
8211 // Simplify, based on bits shifted out of N0/N1.
8212 if (SimplifyDemandedBits(SDValue(N
, 0)))
8213 return SDValue(N
, 0);
8218 SDValue
DAGCombiner::visitABS(SDNode
*N
) {
8219 SDValue N0
= N
->getOperand(0);
8220 EVT VT
= N
->getValueType(0);
8222 // fold (abs c1) -> c2
8223 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8224 return DAG
.getNode(ISD::ABS
, SDLoc(N
), VT
, N0
);
8225 // fold (abs (abs x)) -> (abs x)
8226 if (N0
.getOpcode() == ISD::ABS
)
8228 // fold (abs x) -> x iff not-negative
8229 if (DAG
.SignBitIsZero(N0
))
8234 SDValue
DAGCombiner::visitBSWAP(SDNode
*N
) {
8235 SDValue N0
= N
->getOperand(0);
8236 EVT VT
= N
->getValueType(0);
8238 // fold (bswap c1) -> c2
8239 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8240 return DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, N0
);
8241 // fold (bswap (bswap x)) -> x
8242 if (N0
.getOpcode() == ISD::BSWAP
)
8243 return N0
->getOperand(0);
8247 SDValue
DAGCombiner::visitBITREVERSE(SDNode
*N
) {
8248 SDValue N0
= N
->getOperand(0);
8249 EVT VT
= N
->getValueType(0);
8251 // fold (bitreverse c1) -> c2
8252 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8253 return DAG
.getNode(ISD::BITREVERSE
, SDLoc(N
), VT
, N0
);
8254 // fold (bitreverse (bitreverse x)) -> x
8255 if (N0
.getOpcode() == ISD::BITREVERSE
)
8256 return N0
.getOperand(0);
8260 SDValue
DAGCombiner::visitCTLZ(SDNode
*N
) {
8261 SDValue N0
= N
->getOperand(0);
8262 EVT VT
= N
->getValueType(0);
8264 // fold (ctlz c1) -> c2
8265 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8266 return DAG
.getNode(ISD::CTLZ
, SDLoc(N
), VT
, N0
);
8268 // If the value is known never to be zero, switch to the undef version.
8269 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTLZ_ZERO_UNDEF
, VT
)) {
8270 if (DAG
.isKnownNeverZero(N0
))
8271 return DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
8277 SDValue
DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode
*N
) {
8278 SDValue N0
= N
->getOperand(0);
8279 EVT VT
= N
->getValueType(0);
8281 // fold (ctlz_zero_undef c1) -> c2
8282 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8283 return DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
8287 SDValue
DAGCombiner::visitCTTZ(SDNode
*N
) {
8288 SDValue N0
= N
->getOperand(0);
8289 EVT VT
= N
->getValueType(0);
8291 // fold (cttz c1) -> c2
8292 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8293 return DAG
.getNode(ISD::CTTZ
, SDLoc(N
), VT
, N0
);
8295 // If the value is known never to be zero, switch to the undef version.
8296 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTTZ_ZERO_UNDEF
, VT
)) {
8297 if (DAG
.isKnownNeverZero(N0
))
8298 return DAG
.getNode(ISD::CTTZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
8304 SDValue
DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode
*N
) {
8305 SDValue N0
= N
->getOperand(0);
8306 EVT VT
= N
->getValueType(0);
8308 // fold (cttz_zero_undef c1) -> c2
8309 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8310 return DAG
.getNode(ISD::CTTZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
8314 SDValue
DAGCombiner::visitCTPOP(SDNode
*N
) {
8315 SDValue N0
= N
->getOperand(0);
8316 EVT VT
= N
->getValueType(0);
8318 // fold (ctpop c1) -> c2
8319 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8320 return DAG
.getNode(ISD::CTPOP
, SDLoc(N
), VT
, N0
);
8324 // FIXME: This should be checking for no signed zeros on individual operands, as
8326 static bool isLegalToCombineMinNumMaxNum(SelectionDAG
&DAG
, SDValue LHS
,
8328 const TargetLowering
&TLI
) {
8329 const TargetOptions
&Options
= DAG
.getTarget().Options
;
8330 EVT VT
= LHS
.getValueType();
8332 return Options
.NoSignedZerosFPMath
&& VT
.isFloatingPoint() &&
8333 TLI
.isProfitableToCombineMinNumMaxNum(VT
) &&
8334 DAG
.isKnownNeverNaN(LHS
) && DAG
.isKnownNeverNaN(RHS
);
8337 /// Generate Min/Max node
8338 static SDValue
combineMinNumMaxNum(const SDLoc
&DL
, EVT VT
, SDValue LHS
,
8339 SDValue RHS
, SDValue True
, SDValue False
,
8340 ISD::CondCode CC
, const TargetLowering
&TLI
,
8341 SelectionDAG
&DAG
) {
8342 if (!(LHS
== True
&& RHS
== False
) && !(LHS
== False
&& RHS
== True
))
8345 EVT TransformVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), VT
);
8353 // Since it's known never nan to get here already, either fminnum or
8354 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
8355 // expanded in terms of it.
8356 unsigned IEEEOpcode
= (LHS
== True
) ? ISD::FMINNUM_IEEE
: ISD::FMAXNUM_IEEE
;
8357 if (TLI
.isOperationLegalOrCustom(IEEEOpcode
, VT
))
8358 return DAG
.getNode(IEEEOpcode
, DL
, VT
, LHS
, RHS
);
8360 unsigned Opcode
= (LHS
== True
) ? ISD::FMINNUM
: ISD::FMAXNUM
;
8361 if (TLI
.isOperationLegalOrCustom(Opcode
, TransformVT
))
8362 return DAG
.getNode(Opcode
, DL
, VT
, LHS
, RHS
);
8371 unsigned IEEEOpcode
= (LHS
== True
) ? ISD::FMAXNUM_IEEE
: ISD::FMINNUM_IEEE
;
8372 if (TLI
.isOperationLegalOrCustom(IEEEOpcode
, VT
))
8373 return DAG
.getNode(IEEEOpcode
, DL
, VT
, LHS
, RHS
);
8375 unsigned Opcode
= (LHS
== True
) ? ISD::FMAXNUM
: ISD::FMINNUM
;
8376 if (TLI
.isOperationLegalOrCustom(Opcode
, TransformVT
))
8377 return DAG
.getNode(Opcode
, DL
, VT
, LHS
, RHS
);
8385 SDValue
DAGCombiner::foldSelectOfConstants(SDNode
*N
) {
8386 SDValue Cond
= N
->getOperand(0);
8387 SDValue N1
= N
->getOperand(1);
8388 SDValue N2
= N
->getOperand(2);
8389 EVT VT
= N
->getValueType(0);
8390 EVT CondVT
= Cond
.getValueType();
8393 if (!VT
.isInteger())
8396 auto *C1
= dyn_cast
<ConstantSDNode
>(N1
);
8397 auto *C2
= dyn_cast
<ConstantSDNode
>(N2
);
8401 // Only do this before legalization to avoid conflicting with target-specific
8402 // transforms in the other direction (create a select from a zext/sext). There
8403 // is also a target-independent combine here in DAGCombiner in the other
8404 // direction for (select Cond, -1, 0) when the condition is not i1.
8405 if (CondVT
== MVT::i1
&& !LegalOperations
) {
8406 if (C1
->isNullValue() && C2
->isOne()) {
8407 // select Cond, 0, 1 --> zext (!Cond)
8408 SDValue NotCond
= DAG
.getNOT(DL
, Cond
, MVT::i1
);
8410 NotCond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, NotCond
);
8413 if (C1
->isNullValue() && C2
->isAllOnesValue()) {
8414 // select Cond, 0, -1 --> sext (!Cond)
8415 SDValue NotCond
= DAG
.getNOT(DL
, Cond
, MVT::i1
);
8417 NotCond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, NotCond
);
8420 if (C1
->isOne() && C2
->isNullValue()) {
8421 // select Cond, 1, 0 --> zext (Cond)
8423 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Cond
);
8426 if (C1
->isAllOnesValue() && C2
->isNullValue()) {
8427 // select Cond, -1, 0 --> sext (Cond)
8429 Cond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Cond
);
8433 // For any constants that differ by 1, we can transform the select into an
8434 // extend and add. Use a target hook because some targets may prefer to
8435 // transform in the other direction.
8436 if (TLI
.convertSelectOfConstantsToMath(VT
)) {
8437 if (C1
->getAPIntValue() - 1 == C2
->getAPIntValue()) {
8438 // select Cond, C1, C1-1 --> add (zext Cond), C1-1
8440 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Cond
);
8441 return DAG
.getNode(ISD::ADD
, DL
, VT
, Cond
, N2
);
8443 if (C1
->getAPIntValue() + 1 == C2
->getAPIntValue()) {
8444 // select Cond, C1, C1+1 --> add (sext Cond), C1+1
8446 Cond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Cond
);
8447 return DAG
.getNode(ISD::ADD
, DL
, VT
, Cond
, N2
);
8454 // fold (select Cond, 0, 1) -> (xor Cond, 1)
8455 // We can't do this reliably if integer based booleans have different contents
8456 // to floating point based booleans. This is because we can't tell whether we
8457 // have an integer-based boolean or a floating-point-based boolean unless we
8458 // can find the SETCC that produced it and inspect its operands. This is
8459 // fairly easy if C is the SETCC node, but it can potentially be
8460 // undiscoverable (or not reasonably discoverable). For example, it could be
8461 // in another basic block or it could require searching a complicated
8463 if (CondVT
.isInteger() &&
8464 TLI
.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
8465 TargetLowering::ZeroOrOneBooleanContent
&&
8466 TLI
.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
8467 TargetLowering::ZeroOrOneBooleanContent
&&
8468 C1
->isNullValue() && C2
->isOne()) {
8470 DAG
.getNode(ISD::XOR
, DL
, CondVT
, Cond
, DAG
.getConstant(1, DL
, CondVT
));
8471 if (VT
.bitsEq(CondVT
))
8473 return DAG
.getZExtOrTrunc(NotCond
, DL
, VT
);
8479 SDValue
DAGCombiner::visitSELECT(SDNode
*N
) {
8480 SDValue N0
= N
->getOperand(0);
8481 SDValue N1
= N
->getOperand(1);
8482 SDValue N2
= N
->getOperand(2);
8483 EVT VT
= N
->getValueType(0);
8484 EVT VT0
= N0
.getValueType();
8486 SDNodeFlags Flags
= N
->getFlags();
8488 if (SDValue V
= DAG
.simplifySelect(N0
, N1
, N2
))
8491 // fold (select X, X, Y) -> (or X, Y)
8492 // fold (select X, 1, Y) -> (or C, Y)
8493 if (VT
== VT0
&& VT
== MVT::i1
&& (N0
== N1
|| isOneConstant(N1
)))
8494 return DAG
.getNode(ISD::OR
, DL
, VT
, N0
, N2
);
8496 if (SDValue V
= foldSelectOfConstants(N
))
8499 // fold (select C, 0, X) -> (and (not C), X)
8500 if (VT
== VT0
&& VT
== MVT::i1
&& isNullConstant(N1
)) {
8501 SDValue NOTNode
= DAG
.getNOT(SDLoc(N0
), N0
, VT
);
8502 AddToWorklist(NOTNode
.getNode());
8503 return DAG
.getNode(ISD::AND
, DL
, VT
, NOTNode
, N2
);
8505 // fold (select C, X, 1) -> (or (not C), X)
8506 if (VT
== VT0
&& VT
== MVT::i1
&& isOneConstant(N2
)) {
8507 SDValue NOTNode
= DAG
.getNOT(SDLoc(N0
), N0
, VT
);
8508 AddToWorklist(NOTNode
.getNode());
8509 return DAG
.getNode(ISD::OR
, DL
, VT
, NOTNode
, N1
);
8511 // fold (select X, Y, X) -> (and X, Y)
8512 // fold (select X, Y, 0) -> (and X, Y)
8513 if (VT
== VT0
&& VT
== MVT::i1
&& (N0
== N2
|| isNullConstant(N2
)))
8514 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, N1
);
8516 // If we can fold this based on the true/false value, do so.
8517 if (SimplifySelectOps(N
, N1
, N2
))
8518 return SDValue(N
, 0); // Don't revisit N.
8520 if (VT0
== MVT::i1
) {
8521 // The code in this block deals with the following 2 equivalences:
8522 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
8523 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
8524 // The target can specify its preferred form with the
8525 // shouldNormalizeToSelectSequence() callback. However we always transform
8526 // to the right anyway if we find the inner select exists in the DAG anyway
8527 // and we always transform to the left side if we know that we can further
8528 // optimize the combination of the conditions.
8529 bool normalizeToSequence
=
8530 TLI
.shouldNormalizeToSelectSequence(*DAG
.getContext(), VT
);
8531 // select (and Cond0, Cond1), X, Y
8532 // -> select Cond0, (select Cond1, X, Y), Y
8533 if (N0
->getOpcode() == ISD::AND
&& N0
->hasOneUse()) {
8534 SDValue Cond0
= N0
->getOperand(0);
8535 SDValue Cond1
= N0
->getOperand(1);
8536 SDValue InnerSelect
=
8537 DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond1
, N1
, N2
, Flags
);
8538 if (normalizeToSequence
|| !InnerSelect
.use_empty())
8539 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond0
,
8540 InnerSelect
, N2
, Flags
);
8541 // Cleanup on failure.
8542 if (InnerSelect
.use_empty())
8543 recursivelyDeleteUnusedNodes(InnerSelect
.getNode());
8545 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
8546 if (N0
->getOpcode() == ISD::OR
&& N0
->hasOneUse()) {
8547 SDValue Cond0
= N0
->getOperand(0);
8548 SDValue Cond1
= N0
->getOperand(1);
8549 SDValue InnerSelect
= DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(),
8550 Cond1
, N1
, N2
, Flags
);
8551 if (normalizeToSequence
|| !InnerSelect
.use_empty())
8552 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond0
, N1
,
8553 InnerSelect
, Flags
);
8554 // Cleanup on failure.
8555 if (InnerSelect
.use_empty())
8556 recursivelyDeleteUnusedNodes(InnerSelect
.getNode());
8559 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
8560 if (N1
->getOpcode() == ISD::SELECT
&& N1
->hasOneUse()) {
8561 SDValue N1_0
= N1
->getOperand(0);
8562 SDValue N1_1
= N1
->getOperand(1);
8563 SDValue N1_2
= N1
->getOperand(2);
8564 if (N1_2
== N2
&& N0
.getValueType() == N1_0
.getValueType()) {
8565 // Create the actual and node if we can generate good code for it.
8566 if (!normalizeToSequence
) {
8567 SDValue And
= DAG
.getNode(ISD::AND
, DL
, N0
.getValueType(), N0
, N1_0
);
8568 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), And
, N1_1
,
8571 // Otherwise see if we can optimize the "and" to a better pattern.
8572 if (SDValue Combined
= visitANDLike(N0
, N1_0
, N
)) {
8573 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Combined
, N1_1
,
8578 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
8579 if (N2
->getOpcode() == ISD::SELECT
&& N2
->hasOneUse()) {
8580 SDValue N2_0
= N2
->getOperand(0);
8581 SDValue N2_1
= N2
->getOperand(1);
8582 SDValue N2_2
= N2
->getOperand(2);
8583 if (N2_1
== N1
&& N0
.getValueType() == N2_0
.getValueType()) {
8584 // Create the actual or node if we can generate good code for it.
8585 if (!normalizeToSequence
) {
8586 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, N0
.getValueType(), N0
, N2_0
);
8587 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Or
, N1
,
8590 // Otherwise see if we can optimize to a better pattern.
8591 if (SDValue Combined
= visitORLike(N0
, N2_0
, N
))
8592 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Combined
, N1
,
8598 // select (not Cond), N1, N2 -> select Cond, N2, N1
8599 if (SDValue F
= extractBooleanFlip(N0
, DAG
, TLI
, false)) {
8600 SDValue SelectOp
= DAG
.getSelect(DL
, VT
, F
, N2
, N1
);
8601 SelectOp
->setFlags(Flags
);
8605 // Fold selects based on a setcc into other things, such as min/max/abs.
8606 if (N0
.getOpcode() == ISD::SETCC
) {
8607 SDValue Cond0
= N0
.getOperand(0), Cond1
= N0
.getOperand(1);
8608 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
8610 // select (fcmp lt x, y), x, y -> fminnum x, y
8611 // select (fcmp gt x, y), x, y -> fmaxnum x, y
8613 // This is OK if we don't care what happens if either operand is a NaN.
8614 if (N0
.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG
, N1
, N2
, TLI
))
8615 if (SDValue FMinMax
= combineMinNumMaxNum(DL
, VT
, Cond0
, Cond1
, N1
, N2
,
8619 // Use 'unsigned add with overflow' to optimize an unsigned saturating add.
8620 // This is conservatively limited to pre-legal-operations to give targets
8621 // a chance to reverse the transform if they want to do that. Also, it is
8622 // unlikely that the pattern would be formed late, so it's probably not
8623 // worth going through the other checks.
8624 if (!LegalOperations
&& TLI
.isOperationLegalOrCustom(ISD::UADDO
, VT
) &&
8625 CC
== ISD::SETUGT
&& N0
.hasOneUse() && isAllOnesConstant(N1
) &&
8626 N2
.getOpcode() == ISD::ADD
&& Cond0
== N2
.getOperand(0)) {
8627 auto *C
= dyn_cast
<ConstantSDNode
>(N2
.getOperand(1));
8628 auto *NotC
= dyn_cast
<ConstantSDNode
>(Cond1
);
8629 if (C
&& NotC
&& C
->getAPIntValue() == ~NotC
->getAPIntValue()) {
8630 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
8631 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0
8633 // The IR equivalent of this transform would have this form:
8635 // %c = icmp ugt %x, ~C
8636 // %r = select %c, -1, %a
8638 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
8639 // %u0 = extractvalue %u, 0
8640 // %u1 = extractvalue %u, 1
8641 // %r = select %u1, -1, %u0
8642 SDVTList VTs
= DAG
.getVTList(VT
, VT0
);
8643 SDValue UAO
= DAG
.getNode(ISD::UADDO
, DL
, VTs
, Cond0
, N2
.getOperand(1));
8644 return DAG
.getSelect(DL
, VT
, UAO
.getValue(1), N1
, UAO
.getValue(0));
8648 if (TLI
.isOperationLegal(ISD::SELECT_CC
, VT
) ||
8649 (!LegalOperations
&&
8650 TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, VT
))) {
8651 // Any flags available in a select/setcc fold will be on the setcc as they
8652 // migrated from fcmp
8653 Flags
= N0
.getNode()->getFlags();
8654 SDValue SelectNode
= DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, Cond0
, Cond1
, N1
,
8655 N2
, N0
.getOperand(2));
8656 SelectNode
->setFlags(Flags
);
8660 return SimplifySelect(DL
, N0
, N1
, N2
);
8666 // This function assumes all the vselect's arguments are CONCAT_VECTOR
8667 // nodes and that the condition is a BV of ConstantSDNodes (or undefs).
8668 static SDValue
ConvertSelectToConcatVector(SDNode
*N
, SelectionDAG
&DAG
) {
8670 SDValue Cond
= N
->getOperand(0);
8671 SDValue LHS
= N
->getOperand(1);
8672 SDValue RHS
= N
->getOperand(2);
8673 EVT VT
= N
->getValueType(0);
8674 int NumElems
= VT
.getVectorNumElements();
8675 assert(LHS
.getOpcode() == ISD::CONCAT_VECTORS
&&
8676 RHS
.getOpcode() == ISD::CONCAT_VECTORS
&&
8677 Cond
.getOpcode() == ISD::BUILD_VECTOR
);
8679 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
8680 // binary ones here.
8681 if (LHS
->getNumOperands() != 2 || RHS
->getNumOperands() != 2)
8684 // We're sure we have an even number of elements due to the
8685 // concat_vectors we have as arguments to vselect.
8686 // Skip BV elements until we find one that's not an UNDEF
8687 // After we find an UNDEF element, keep looping until we get to half the
8688 // length of the BV and see if all the non-undef nodes are the same.
8689 ConstantSDNode
*BottomHalf
= nullptr;
8690 for (int i
= 0; i
< NumElems
/ 2; ++i
) {
8691 if (Cond
->getOperand(i
)->isUndef())
8694 if (BottomHalf
== nullptr)
8695 BottomHalf
= cast
<ConstantSDNode
>(Cond
.getOperand(i
));
8696 else if (Cond
->getOperand(i
).getNode() != BottomHalf
)
8700 // Do the same for the second half of the BuildVector
8701 ConstantSDNode
*TopHalf
= nullptr;
8702 for (int i
= NumElems
/ 2; i
< NumElems
; ++i
) {
8703 if (Cond
->getOperand(i
)->isUndef())
8706 if (TopHalf
== nullptr)
8707 TopHalf
= cast
<ConstantSDNode
>(Cond
.getOperand(i
));
8708 else if (Cond
->getOperand(i
).getNode() != TopHalf
)
8712 assert(TopHalf
&& BottomHalf
&&
8713 "One half of the selector was all UNDEFs and the other was all the "
8714 "same value. This should have been addressed before this function.");
8716 ISD::CONCAT_VECTORS
, DL
, VT
,
8717 BottomHalf
->isNullValue() ? RHS
->getOperand(0) : LHS
->getOperand(0),
8718 TopHalf
->isNullValue() ? RHS
->getOperand(1) : LHS
->getOperand(1));
8721 SDValue
DAGCombiner::visitMSCATTER(SDNode
*N
) {
8722 MaskedScatterSDNode
*MSC
= cast
<MaskedScatterSDNode
>(N
);
8723 SDValue Mask
= MSC
->getMask();
8724 SDValue Chain
= MSC
->getChain();
8727 // Zap scatters with a zero mask.
8728 if (ISD::isBuildVectorAllZeros(Mask
.getNode()))
8734 SDValue
DAGCombiner::visitMSTORE(SDNode
*N
) {
8735 MaskedStoreSDNode
*MST
= cast
<MaskedStoreSDNode
>(N
);
8736 SDValue Mask
= MST
->getMask();
8737 SDValue Chain
= MST
->getChain();
8740 // Zap masked stores with a zero mask.
8741 if (ISD::isBuildVectorAllZeros(Mask
.getNode()))
8747 SDValue
DAGCombiner::visitMGATHER(SDNode
*N
) {
8748 MaskedGatherSDNode
*MGT
= cast
<MaskedGatherSDNode
>(N
);
8749 SDValue Mask
= MGT
->getMask();
8752 // Zap gathers with a zero mask.
8753 if (ISD::isBuildVectorAllZeros(Mask
.getNode()))
8754 return CombineTo(N
, MGT
->getPassThru(), MGT
->getChain());
8759 SDValue
DAGCombiner::visitMLOAD(SDNode
*N
) {
8760 MaskedLoadSDNode
*MLD
= cast
<MaskedLoadSDNode
>(N
);
8761 SDValue Mask
= MLD
->getMask();
8764 // Zap masked loads with a zero mask.
8765 if (ISD::isBuildVectorAllZeros(Mask
.getNode()))
8766 return CombineTo(N
, MLD
->getPassThru(), MLD
->getChain());
8771 /// A vector select of 2 constant vectors can be simplified to math/logic to
8772 /// avoid a variable select instruction and possibly avoid constant loads.
8773 SDValue
DAGCombiner::foldVSelectOfConstants(SDNode
*N
) {
8774 SDValue Cond
= N
->getOperand(0);
8775 SDValue N1
= N
->getOperand(1);
8776 SDValue N2
= N
->getOperand(2);
8777 EVT VT
= N
->getValueType(0);
8778 if (!Cond
.hasOneUse() || Cond
.getScalarValueSizeInBits() != 1 ||
8779 !TLI
.convertSelectOfConstantsToMath(VT
) ||
8780 !ISD::isBuildVectorOfConstantSDNodes(N1
.getNode()) ||
8781 !ISD::isBuildVectorOfConstantSDNodes(N2
.getNode()))
8784 // Check if we can use the condition value to increment/decrement a single
8785 // constant value. This simplifies a select to an add and removes a constant
8786 // load/materialization from the general case.
8787 bool AllAddOne
= true;
8788 bool AllSubOne
= true;
8789 unsigned Elts
= VT
.getVectorNumElements();
8790 for (unsigned i
= 0; i
!= Elts
; ++i
) {
8791 SDValue N1Elt
= N1
.getOperand(i
);
8792 SDValue N2Elt
= N2
.getOperand(i
);
8793 if (N1Elt
.isUndef() || N2Elt
.isUndef())
8796 const APInt
&C1
= cast
<ConstantSDNode
>(N1Elt
)->getAPIntValue();
8797 const APInt
&C2
= cast
<ConstantSDNode
>(N2Elt
)->getAPIntValue();
8804 // Further simplifications for the extra-special cases where the constants are
8805 // all 0 or all -1 should be implemented as folds of these patterns.
8807 if (AllAddOne
|| AllSubOne
) {
8808 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
8809 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
8810 auto ExtendOpcode
= AllAddOne
? ISD::ZERO_EXTEND
: ISD::SIGN_EXTEND
;
8811 SDValue ExtendedCond
= DAG
.getNode(ExtendOpcode
, DL
, VT
, Cond
);
8812 return DAG
.getNode(ISD::ADD
, DL
, VT
, ExtendedCond
, N2
);
8815 // The general case for select-of-constants:
8816 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
8817 // ...but that only makes sense if a vselect is slower than 2 logic ops, so
8818 // leave that to a machine-specific pass.
8822 SDValue
DAGCombiner::visitVSELECT(SDNode
*N
) {
8823 SDValue N0
= N
->getOperand(0);
8824 SDValue N1
= N
->getOperand(1);
8825 SDValue N2
= N
->getOperand(2);
8826 EVT VT
= N
->getValueType(0);
8829 if (SDValue V
= DAG
.simplifySelect(N0
, N1
, N2
))
8832 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1
8833 if (SDValue F
= extractBooleanFlip(N0
, DAG
, TLI
, false))
8834 return DAG
.getSelect(DL
, VT
, F
, N2
, N1
);
8836 // Canonicalize integer abs.
8837 // vselect (setg[te] X, 0), X, -X ->
8838 // vselect (setgt X, -1), X, -X ->
8839 // vselect (setl[te] X, 0), -X, X ->
8840 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
8841 if (N0
.getOpcode() == ISD::SETCC
) {
8842 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
8843 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
8845 bool RHSIsAllZeros
= ISD::isBuildVectorAllZeros(RHS
.getNode());
8847 if (((RHSIsAllZeros
&& (CC
== ISD::SETGT
|| CC
== ISD::SETGE
)) ||
8848 (ISD::isBuildVectorAllOnes(RHS
.getNode()) && CC
== ISD::SETGT
)) &&
8849 N1
== LHS
&& N2
.getOpcode() == ISD::SUB
&& N1
== N2
.getOperand(1))
8850 isAbs
= ISD::isBuildVectorAllZeros(N2
.getOperand(0).getNode());
8851 else if ((RHSIsAllZeros
&& (CC
== ISD::SETLT
|| CC
== ISD::SETLE
)) &&
8852 N2
== LHS
&& N1
.getOpcode() == ISD::SUB
&& N2
== N1
.getOperand(1))
8853 isAbs
= ISD::isBuildVectorAllZeros(N1
.getOperand(0).getNode());
8856 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
))
8857 return DAG
.getNode(ISD::ABS
, DL
, VT
, LHS
);
8859 SDValue Shift
= DAG
.getNode(ISD::SRA
, DL
, VT
, LHS
,
8860 DAG
.getConstant(VT
.getScalarSizeInBits() - 1,
8861 DL
, getShiftAmountTy(VT
)));
8862 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, LHS
, Shift
);
8863 AddToWorklist(Shift
.getNode());
8864 AddToWorklist(Add
.getNode());
8865 return DAG
.getNode(ISD::XOR
, DL
, VT
, Add
, Shift
);
8868 // vselect x, y (fcmp lt x, y) -> fminnum x, y
8869 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y
8871 // This is OK if we don't care about what happens if either operand is a
8874 if (N0
.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG
, LHS
, RHS
, TLI
)) {
8875 if (SDValue FMinMax
=
8876 combineMinNumMaxNum(DL
, VT
, LHS
, RHS
, N1
, N2
, CC
, TLI
, DAG
))
8880 // If this select has a condition (setcc) with narrower operands than the
8881 // select, try to widen the compare to match the select width.
8882 // TODO: This should be extended to handle any constant.
8883 // TODO: This could be extended to handle non-loading patterns, but that
8884 // requires thorough testing to avoid regressions.
8885 if (isNullOrNullSplat(RHS
)) {
8886 EVT NarrowVT
= LHS
.getValueType();
8887 EVT WideVT
= N1
.getValueType().changeVectorElementTypeToInteger();
8888 EVT SetCCVT
= getSetCCResultType(LHS
.getValueType());
8889 unsigned SetCCWidth
= SetCCVT
.getScalarSizeInBits();
8890 unsigned WideWidth
= WideVT
.getScalarSizeInBits();
8891 bool IsSigned
= isSignedIntSetCC(CC
);
8892 auto LoadExtOpcode
= IsSigned
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
8893 if (LHS
.getOpcode() == ISD::LOAD
&& LHS
.hasOneUse() &&
8894 SetCCWidth
!= 1 && SetCCWidth
< WideWidth
&&
8895 TLI
.isLoadExtLegalOrCustom(LoadExtOpcode
, WideVT
, NarrowVT
) &&
8896 TLI
.isOperationLegalOrCustom(ISD::SETCC
, WideVT
)) {
8897 // Both compare operands can be widened for free. The LHS can use an
8898 // extended load, and the RHS is a constant:
8899 // vselect (ext (setcc load(X), C)), N1, N2 -->
8900 // vselect (setcc extload(X), C'), N1, N2
8901 auto ExtOpcode
= IsSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
8902 SDValue WideLHS
= DAG
.getNode(ExtOpcode
, DL
, WideVT
, LHS
);
8903 SDValue WideRHS
= DAG
.getNode(ExtOpcode
, DL
, WideVT
, RHS
);
8904 EVT WideSetCCVT
= getSetCCResultType(WideVT
);
8905 SDValue WideSetCC
= DAG
.getSetCC(DL
, WideSetCCVT
, WideLHS
, WideRHS
, CC
);
8906 return DAG
.getSelect(DL
, N1
.getValueType(), WideSetCC
, N1
, N2
);
8911 if (SimplifySelectOps(N
, N1
, N2
))
8912 return SDValue(N
, 0); // Don't revisit N.
8914 // Fold (vselect (build_vector all_ones), N1, N2) -> N1
8915 if (ISD::isBuildVectorAllOnes(N0
.getNode()))
8917 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2
8918 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
8921 // The ConvertSelectToConcatVector function is assuming both the above
8922 // checks for (vselect (build_vector all{ones,zeros) ...) have been made
8924 if (N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
8925 N2
.getOpcode() == ISD::CONCAT_VECTORS
&&
8926 ISD::isBuildVectorOfConstantSDNodes(N0
.getNode())) {
8927 if (SDValue CV
= ConvertSelectToConcatVector(N
, DAG
))
8931 if (SDValue V
= foldVSelectOfConstants(N
))
8937 SDValue
DAGCombiner::visitSELECT_CC(SDNode
*N
) {
8938 SDValue N0
= N
->getOperand(0);
8939 SDValue N1
= N
->getOperand(1);
8940 SDValue N2
= N
->getOperand(2);
8941 SDValue N3
= N
->getOperand(3);
8942 SDValue N4
= N
->getOperand(4);
8943 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N4
)->get();
8945 // fold select_cc lhs, rhs, x, x, cc -> x
8949 // Determine if the condition we're dealing with is constant
8950 if (SDValue SCC
= SimplifySetCC(getSetCCResultType(N0
.getValueType()), N0
, N1
,
8951 CC
, SDLoc(N
), false)) {
8952 AddToWorklist(SCC
.getNode());
8954 if (ConstantSDNode
*SCCC
= dyn_cast
<ConstantSDNode
>(SCC
.getNode())) {
8955 if (!SCCC
->isNullValue())
8956 return N2
; // cond always true -> true val
8958 return N3
; // cond always false -> false val
8959 } else if (SCC
->isUndef()) {
8960 // When the condition is UNDEF, just return the first operand. This is
8961 // coherent the DAG creation, no setcc node is created in this case
8963 } else if (SCC
.getOpcode() == ISD::SETCC
) {
8964 // Fold to a simpler select_cc
8965 SDValue SelectOp
= DAG
.getNode(
8966 ISD::SELECT_CC
, SDLoc(N
), N2
.getValueType(), SCC
.getOperand(0),
8967 SCC
.getOperand(1), N2
, N3
, SCC
.getOperand(2));
8968 SelectOp
->setFlags(SCC
->getFlags());
8973 // If we can fold this based on the true/false value, do so.
8974 if (SimplifySelectOps(N
, N2
, N3
))
8975 return SDValue(N
, 0); // Don't revisit N.
8977 // fold select_cc into other things, such as min/max/abs
8978 return SimplifySelectCC(SDLoc(N
), N0
, N1
, N2
, N3
, CC
);
8981 SDValue
DAGCombiner::visitSETCC(SDNode
*N
) {
8982 // setcc is very commonly used as an argument to brcond. This pattern
8983 // also lend itself to numerous combines and, as a result, it is desired
8984 // we keep the argument to a brcond as a setcc as much as possible.
8986 N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::BRCOND
;
8988 SDValue Combined
= SimplifySetCC(
8989 N
->getValueType(0), N
->getOperand(0), N
->getOperand(1),
8990 cast
<CondCodeSDNode
>(N
->getOperand(2))->get(), SDLoc(N
), !PreferSetCC
);
8995 // If we prefer to have a setcc, and we don't, we'll try our best to
8996 // recreate one using rebuildSetCC.
8997 if (PreferSetCC
&& Combined
.getOpcode() != ISD::SETCC
) {
8998 SDValue NewSetCC
= rebuildSetCC(Combined
);
9000 // We don't have anything interesting to combine to.
9001 if (NewSetCC
.getNode() == N
)
9011 SDValue
DAGCombiner::visitSETCCCARRY(SDNode
*N
) {
9012 SDValue LHS
= N
->getOperand(0);
9013 SDValue RHS
= N
->getOperand(1);
9014 SDValue Carry
= N
->getOperand(2);
9015 SDValue Cond
= N
->getOperand(3);
9017 // If Carry is false, fold to a regular SETCC.
9018 if (isNullConstant(Carry
))
9019 return DAG
.getNode(ISD::SETCC
, SDLoc(N
), N
->getVTList(), LHS
, RHS
, Cond
);
9024 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
9025 /// a build_vector of constants.
9026 /// This function is called by the DAGCombiner when visiting sext/zext/aext
9027 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
9028 /// Vector extends are not folded if operations are legal; this is to
9029 /// avoid introducing illegal build_vector dag nodes.
9030 static SDValue
tryToFoldExtendOfConstant(SDNode
*N
, const TargetLowering
&TLI
,
9031 SelectionDAG
&DAG
, bool LegalTypes
) {
9032 unsigned Opcode
= N
->getOpcode();
9033 SDValue N0
= N
->getOperand(0);
9034 EVT VT
= N
->getValueType(0);
9037 assert((Opcode
== ISD::SIGN_EXTEND
|| Opcode
== ISD::ZERO_EXTEND
||
9038 Opcode
== ISD::ANY_EXTEND
|| Opcode
== ISD::SIGN_EXTEND_VECTOR_INREG
||
9039 Opcode
== ISD::ZERO_EXTEND_VECTOR_INREG
)
9040 && "Expected EXTEND dag node in input!");
9042 // fold (sext c1) -> c1
9043 // fold (zext c1) -> c1
9044 // fold (aext c1) -> c1
9045 if (isa
<ConstantSDNode
>(N0
))
9046 return DAG
.getNode(Opcode
, DL
, VT
, N0
);
9048 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
9049 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2)
9050 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
9051 if (N0
->getOpcode() == ISD::SELECT
) {
9052 SDValue Op1
= N0
->getOperand(1);
9053 SDValue Op2
= N0
->getOperand(2);
9054 if (isa
<ConstantSDNode
>(Op1
) && isa
<ConstantSDNode
>(Op2
) &&
9055 (Opcode
!= ISD::ZERO_EXTEND
|| !TLI
.isZExtFree(N0
.getValueType(), VT
))) {
9056 // For any_extend, choose sign extension of the constants to allow a
9057 // possible further transform to sign_extend_inreg.i.e.
9059 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0>
9060 // t2: i64 = any_extend t1
9062 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0>
9064 // t4: i64 = sign_extend_inreg t3
9065 unsigned FoldOpc
= Opcode
;
9066 if (FoldOpc
== ISD::ANY_EXTEND
)
9067 FoldOpc
= ISD::SIGN_EXTEND
;
9068 return DAG
.getSelect(DL
, VT
, N0
->getOperand(0),
9069 DAG
.getNode(FoldOpc
, DL
, VT
, Op1
),
9070 DAG
.getNode(FoldOpc
, DL
, VT
, Op2
));
9074 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
9075 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
9076 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
9077 EVT SVT
= VT
.getScalarType();
9078 if (!(VT
.isVector() && (!LegalTypes
|| TLI
.isTypeLegal(SVT
)) &&
9079 ISD::isBuildVectorOfConstantSDNodes(N0
.getNode())))
9082 // We can fold this node into a build_vector.
9083 unsigned VTBits
= SVT
.getSizeInBits();
9084 unsigned EVTBits
= N0
->getValueType(0).getScalarSizeInBits();
9085 SmallVector
<SDValue
, 8> Elts
;
9086 unsigned NumElts
= VT
.getVectorNumElements();
9088 // For zero-extensions, UNDEF elements still guarantee to have the upper
9089 // bits set to zero.
9091 Opcode
== ISD::ZERO_EXTEND
|| Opcode
== ISD::ZERO_EXTEND_VECTOR_INREG
;
9093 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
9094 SDValue Op
= N0
.getOperand(i
);
9096 Elts
.push_back(IsZext
? DAG
.getConstant(0, DL
, SVT
) : DAG
.getUNDEF(SVT
));
9101 // Get the constant value and if needed trunc it to the size of the type.
9102 // Nodes like build_vector might have constants wider than the scalar type.
9103 APInt C
= cast
<ConstantSDNode
>(Op
)->getAPIntValue().zextOrTrunc(EVTBits
);
9104 if (Opcode
== ISD::SIGN_EXTEND
|| Opcode
== ISD::SIGN_EXTEND_VECTOR_INREG
)
9105 Elts
.push_back(DAG
.getConstant(C
.sext(VTBits
), DL
, SVT
));
9107 Elts
.push_back(DAG
.getConstant(C
.zext(VTBits
), DL
, SVT
));
9110 return DAG
.getBuildVector(VT
, DL
, Elts
);
9113 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
9114 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
9115 // transformation. Returns true if extension are possible and the above
9116 // mentioned transformation is profitable.
9117 static bool ExtendUsesToFormExtLoad(EVT VT
, SDNode
*N
, SDValue N0
,
9119 SmallVectorImpl
<SDNode
*> &ExtendNodes
,
9120 const TargetLowering
&TLI
) {
9121 bool HasCopyToRegUses
= false;
9122 bool isTruncFree
= TLI
.isTruncateFree(VT
, N0
.getValueType());
9123 for (SDNode::use_iterator UI
= N0
.getNode()->use_begin(),
9124 UE
= N0
.getNode()->use_end();
9129 if (UI
.getUse().getResNo() != N0
.getResNo())
9131 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
9132 if (ExtOpc
!= ISD::ANY_EXTEND
&& User
->getOpcode() == ISD::SETCC
) {
9133 ISD::CondCode CC
= cast
<CondCodeSDNode
>(User
->getOperand(2))->get();
9134 if (ExtOpc
== ISD::ZERO_EXTEND
&& ISD::isSignedIntSetCC(CC
))
9135 // Sign bits will be lost after a zext.
9138 for (unsigned i
= 0; i
!= 2; ++i
) {
9139 SDValue UseOp
= User
->getOperand(i
);
9142 if (!isa
<ConstantSDNode
>(UseOp
))
9147 ExtendNodes
.push_back(User
);
9150 // If truncates aren't free and there are users we can't
9151 // extend, it isn't worthwhile.
9154 // Remember if this value is live-out.
9155 if (User
->getOpcode() == ISD::CopyToReg
)
9156 HasCopyToRegUses
= true;
9159 if (HasCopyToRegUses
) {
9160 bool BothLiveOut
= false;
9161 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
9163 SDUse
&Use
= UI
.getUse();
9164 if (Use
.getResNo() == 0 && Use
.getUser()->getOpcode() == ISD::CopyToReg
) {
9170 // Both unextended and extended values are live out. There had better be
9171 // a good reason for the transformation.
9172 return ExtendNodes
.size();
9177 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl
<SDNode
*> &SetCCs
,
9178 SDValue OrigLoad
, SDValue ExtLoad
,
9179 ISD::NodeType ExtType
) {
9180 // Extend SetCC uses if necessary.
9182 for (SDNode
*SetCC
: SetCCs
) {
9183 SmallVector
<SDValue
, 4> Ops
;
9185 for (unsigned j
= 0; j
!= 2; ++j
) {
9186 SDValue SOp
= SetCC
->getOperand(j
);
9187 if (SOp
== OrigLoad
)
9188 Ops
.push_back(ExtLoad
);
9190 Ops
.push_back(DAG
.getNode(ExtType
, DL
, ExtLoad
->getValueType(0), SOp
));
9193 Ops
.push_back(SetCC
->getOperand(2));
9194 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, DL
, SetCC
->getValueType(0), Ops
));
9198 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
9199 SDValue
DAGCombiner::CombineExtLoad(SDNode
*N
) {
9200 SDValue N0
= N
->getOperand(0);
9201 EVT DstVT
= N
->getValueType(0);
9202 EVT SrcVT
= N0
.getValueType();
9204 assert((N
->getOpcode() == ISD::SIGN_EXTEND
||
9205 N
->getOpcode() == ISD::ZERO_EXTEND
) &&
9206 "Unexpected node type (not an extend)!");
9208 // fold (sext (load x)) to multiple smaller sextloads; same for zext.
9209 // For example, on a target with legal v4i32, but illegal v8i32, turn:
9210 // (v8i32 (sext (v8i16 (load x))))
9212 // (v8i32 (concat_vectors (v4i32 (sextload x)),
9213 // (v4i32 (sextload (x + 16)))))
9214 // Where uses of the original load, i.e.:
9216 // are replaced with:
9218 // (v8i32 (concat_vectors (v4i32 (sextload x)),
9219 // (v4i32 (sextload (x + 16)))))))
9221 // This combine is only applicable to illegal, but splittable, vectors.
9222 // All legal types, and illegal non-vector types, are handled elsewhere.
9223 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
9225 if (N0
->getOpcode() != ISD::LOAD
)
9228 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9230 if (!ISD::isNON_EXTLoad(LN0
) || !ISD::isUNINDEXEDLoad(LN0
) ||
9231 !N0
.hasOneUse() || LN0
->isVolatile() || !DstVT
.isVector() ||
9232 !DstVT
.isPow2VectorType() || !TLI
.isVectorLoadExtDesirable(SDValue(N
, 0)))
9235 SmallVector
<SDNode
*, 4> SetCCs
;
9236 if (!ExtendUsesToFormExtLoad(DstVT
, N
, N0
, N
->getOpcode(), SetCCs
, TLI
))
9239 ISD::LoadExtType ExtType
=
9240 N
->getOpcode() == ISD::SIGN_EXTEND
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
9242 // Try to split the vector types to get down to legal types.
9243 EVT SplitSrcVT
= SrcVT
;
9244 EVT SplitDstVT
= DstVT
;
9245 while (!TLI
.isLoadExtLegalOrCustom(ExtType
, SplitDstVT
, SplitSrcVT
) &&
9246 SplitSrcVT
.getVectorNumElements() > 1) {
9247 SplitDstVT
= DAG
.GetSplitDestVTs(SplitDstVT
).first
;
9248 SplitSrcVT
= DAG
.GetSplitDestVTs(SplitSrcVT
).first
;
9251 if (!TLI
.isLoadExtLegalOrCustom(ExtType
, SplitDstVT
, SplitSrcVT
))
9255 const unsigned NumSplits
=
9256 DstVT
.getVectorNumElements() / SplitDstVT
.getVectorNumElements();
9257 const unsigned Stride
= SplitSrcVT
.getStoreSize();
9258 SmallVector
<SDValue
, 4> Loads
;
9259 SmallVector
<SDValue
, 4> Chains
;
9261 SDValue BasePtr
= LN0
->getBasePtr();
9262 for (unsigned Idx
= 0; Idx
< NumSplits
; Idx
++) {
9263 const unsigned Offset
= Idx
* Stride
;
9264 const unsigned Align
= MinAlign(LN0
->getAlignment(), Offset
);
9266 SDValue SplitLoad
= DAG
.getExtLoad(
9267 ExtType
, SDLoc(LN0
), SplitDstVT
, LN0
->getChain(), BasePtr
,
9268 LN0
->getPointerInfo().getWithOffset(Offset
), SplitSrcVT
, Align
,
9269 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
9271 BasePtr
= DAG
.getNode(ISD::ADD
, DL
, BasePtr
.getValueType(), BasePtr
,
9272 DAG
.getConstant(Stride
, DL
, BasePtr
.getValueType()));
9274 Loads
.push_back(SplitLoad
.getValue(0));
9275 Chains
.push_back(SplitLoad
.getValue(1));
9278 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
9279 SDValue NewValue
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, DstVT
, Loads
);
9282 AddToWorklist(NewChain
.getNode());
9284 CombineTo(N
, NewValue
);
9286 // Replace uses of the original load (before extension)
9287 // with a truncate of the concatenated sextloaded vectors.
9289 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), N0
.getValueType(), NewValue
);
9290 ExtendSetCCUses(SetCCs
, N0
, NewValue
, (ISD::NodeType
)N
->getOpcode());
9291 CombineTo(N0
.getNode(), Trunc
, NewChain
);
9292 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9295 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
9296 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
9297 SDValue
DAGCombiner::CombineZExtLogicopShiftLoad(SDNode
*N
) {
9298 assert(N
->getOpcode() == ISD::ZERO_EXTEND
);
9299 EVT VT
= N
->getValueType(0);
9300 EVT OrigVT
= N
->getOperand(0).getValueType();
9301 if (TLI
.isZExtFree(OrigVT
, VT
))
9305 SDValue N0
= N
->getOperand(0);
9306 if (!(N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
9307 N0
.getOpcode() == ISD::XOR
) ||
9308 N0
.getOperand(1).getOpcode() != ISD::Constant
||
9309 (LegalOperations
&& !TLI
.isOperationLegal(N0
.getOpcode(), VT
)))
9313 SDValue N1
= N0
->getOperand(0);
9314 if (!(N1
.getOpcode() == ISD::SHL
|| N1
.getOpcode() == ISD::SRL
) ||
9315 N1
.getOperand(1).getOpcode() != ISD::Constant
||
9316 (LegalOperations
&& !TLI
.isOperationLegal(N1
.getOpcode(), VT
)))
9320 if (!isa
<LoadSDNode
>(N1
.getOperand(0)))
9322 LoadSDNode
*Load
= cast
<LoadSDNode
>(N1
.getOperand(0));
9323 EVT MemVT
= Load
->getMemoryVT();
9324 if (!TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
) ||
9325 Load
->getExtensionType() == ISD::SEXTLOAD
|| Load
->isIndexed())
9329 // If the shift op is SHL, the logic op must be AND, otherwise the result
9331 if (N1
.getOpcode() == ISD::SHL
&& N0
.getOpcode() != ISD::AND
)
9334 if (!N0
.hasOneUse() || !N1
.hasOneUse())
9337 SmallVector
<SDNode
*, 4> SetCCs
;
9338 if (!ExtendUsesToFormExtLoad(VT
, N1
.getNode(), N1
.getOperand(0),
9339 ISD::ZERO_EXTEND
, SetCCs
, TLI
))
9342 // Actually do the transformation.
9343 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(Load
), VT
,
9344 Load
->getChain(), Load
->getBasePtr(),
9345 Load
->getMemoryVT(), Load
->getMemOperand());
9348 SDValue Shift
= DAG
.getNode(N1
.getOpcode(), DL1
, VT
, ExtLoad
,
9351 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
9352 Mask
= Mask
.zext(VT
.getSizeInBits());
9354 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL0
, VT
, Shift
,
9355 DAG
.getConstant(Mask
, DL0
, VT
));
9357 ExtendSetCCUses(SetCCs
, N1
.getOperand(0), ExtLoad
, ISD::ZERO_EXTEND
);
9359 if (SDValue(Load
, 0).hasOneUse()) {
9360 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 1), ExtLoad
.getValue(1));
9362 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(Load
),
9363 Load
->getValueType(0), ExtLoad
);
9364 CombineTo(Load
, Trunc
, ExtLoad
.getValue(1));
9367 // N0 is dead at this point.
9368 recursivelyDeleteUnusedNodes(N0
.getNode());
9370 return SDValue(N
,0); // Return N so it doesn't get rechecked!
9373 /// If we're narrowing or widening the result of a vector select and the final
9374 /// size is the same size as a setcc (compare) feeding the select, then try to
9375 /// apply the cast operation to the select's operands because matching vector
9376 /// sizes for a select condition and other operands should be more efficient.
9377 SDValue
DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode
*Cast
) {
9378 unsigned CastOpcode
= Cast
->getOpcode();
9379 assert((CastOpcode
== ISD::SIGN_EXTEND
|| CastOpcode
== ISD::ZERO_EXTEND
||
9380 CastOpcode
== ISD::TRUNCATE
|| CastOpcode
== ISD::FP_EXTEND
||
9381 CastOpcode
== ISD::FP_ROUND
) &&
9382 "Unexpected opcode for vector select narrowing/widening");
9384 // We only do this transform before legal ops because the pattern may be
9385 // obfuscated by target-specific operations after legalization. Do not create
9386 // an illegal select op, however, because that may be difficult to lower.
9387 EVT VT
= Cast
->getValueType(0);
9388 if (LegalOperations
|| !TLI
.isOperationLegalOrCustom(ISD::VSELECT
, VT
))
9391 SDValue VSel
= Cast
->getOperand(0);
9392 if (VSel
.getOpcode() != ISD::VSELECT
|| !VSel
.hasOneUse() ||
9393 VSel
.getOperand(0).getOpcode() != ISD::SETCC
)
9396 // Does the setcc have the same vector size as the casted select?
9397 SDValue SetCC
= VSel
.getOperand(0);
9398 EVT SetCCVT
= getSetCCResultType(SetCC
.getOperand(0).getValueType());
9399 if (SetCCVT
.getSizeInBits() != VT
.getSizeInBits())
9402 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
9403 SDValue A
= VSel
.getOperand(1);
9404 SDValue B
= VSel
.getOperand(2);
9405 SDValue CastA
, CastB
;
9407 if (CastOpcode
== ISD::FP_ROUND
) {
9408 // FP_ROUND (fptrunc) has an extra flag operand to pass along.
9409 CastA
= DAG
.getNode(CastOpcode
, DL
, VT
, A
, Cast
->getOperand(1));
9410 CastB
= DAG
.getNode(CastOpcode
, DL
, VT
, B
, Cast
->getOperand(1));
9412 CastA
= DAG
.getNode(CastOpcode
, DL
, VT
, A
);
9413 CastB
= DAG
.getNode(CastOpcode
, DL
, VT
, B
);
9415 return DAG
.getNode(ISD::VSELECT
, DL
, VT
, SetCC
, CastA
, CastB
);
9418 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
9419 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
9420 static SDValue
tryToFoldExtOfExtload(SelectionDAG
&DAG
, DAGCombiner
&Combiner
,
9421 const TargetLowering
&TLI
, EVT VT
,
9422 bool LegalOperations
, SDNode
*N
,
9423 SDValue N0
, ISD::LoadExtType ExtLoadType
) {
9424 SDNode
*N0Node
= N0
.getNode();
9425 bool isAExtLoad
= (ExtLoadType
== ISD::SEXTLOAD
) ? ISD::isSEXTLoad(N0Node
)
9426 : ISD::isZEXTLoad(N0Node
);
9427 if ((!isAExtLoad
&& !ISD::isEXTLoad(N0Node
)) ||
9428 !ISD::isUNINDEXEDLoad(N0Node
) || !N0
.hasOneUse())
9431 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9432 EVT MemVT
= LN0
->getMemoryVT();
9433 if ((LegalOperations
|| LN0
->isVolatile() || VT
.isVector()) &&
9434 !TLI
.isLoadExtLegal(ExtLoadType
, VT
, MemVT
))
9438 DAG
.getExtLoad(ExtLoadType
, SDLoc(LN0
), VT
, LN0
->getChain(),
9439 LN0
->getBasePtr(), MemVT
, LN0
->getMemOperand());
9440 Combiner
.CombineTo(N
, ExtLoad
);
9441 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
9442 if (LN0
->use_empty())
9443 Combiner
.recursivelyDeleteUnusedNodes(LN0
);
9444 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9447 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
9448 // Only generate vector extloads when 1) they're legal, and 2) they are
9449 // deemed desirable by the target.
9450 static SDValue
tryToFoldExtOfLoad(SelectionDAG
&DAG
, DAGCombiner
&Combiner
,
9451 const TargetLowering
&TLI
, EVT VT
,
9452 bool LegalOperations
, SDNode
*N
, SDValue N0
,
9453 ISD::LoadExtType ExtLoadType
,
9454 ISD::NodeType ExtOpc
) {
9455 if (!ISD::isNON_EXTLoad(N0
.getNode()) ||
9456 !ISD::isUNINDEXEDLoad(N0
.getNode()) ||
9457 ((LegalOperations
|| VT
.isVector() ||
9458 cast
<LoadSDNode
>(N0
)->isVolatile()) &&
9459 !TLI
.isLoadExtLegal(ExtLoadType
, VT
, N0
.getValueType())))
9462 bool DoXform
= true;
9463 SmallVector
<SDNode
*, 4> SetCCs
;
9464 if (!N0
.hasOneUse())
9465 DoXform
= ExtendUsesToFormExtLoad(VT
, N
, N0
, ExtOpc
, SetCCs
, TLI
);
9467 DoXform
&= TLI
.isVectorLoadExtDesirable(SDValue(N
, 0));
9471 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9472 SDValue ExtLoad
= DAG
.getExtLoad(ExtLoadType
, SDLoc(LN0
), VT
, LN0
->getChain(),
9473 LN0
->getBasePtr(), N0
.getValueType(),
9474 LN0
->getMemOperand());
9475 Combiner
.ExtendSetCCUses(SetCCs
, N0
, ExtLoad
, ExtOpc
);
9476 // If the load value is used only by N, replace it via CombineTo N.
9477 bool NoReplaceTrunc
= SDValue(LN0
, 0).hasOneUse();
9478 Combiner
.CombineTo(N
, ExtLoad
);
9479 if (NoReplaceTrunc
) {
9480 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
9481 Combiner
.recursivelyDeleteUnusedNodes(LN0
);
9484 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), N0
.getValueType(), ExtLoad
);
9485 Combiner
.CombineTo(LN0
, Trunc
, ExtLoad
.getValue(1));
9487 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9490 static SDValue
foldExtendedSignBitTest(SDNode
*N
, SelectionDAG
&DAG
,
9491 bool LegalOperations
) {
9492 assert((N
->getOpcode() == ISD::SIGN_EXTEND
||
9493 N
->getOpcode() == ISD::ZERO_EXTEND
) && "Expected sext or zext");
9495 SDValue SetCC
= N
->getOperand(0);
9496 if (LegalOperations
|| SetCC
.getOpcode() != ISD::SETCC
||
9497 !SetCC
.hasOneUse() || SetCC
.getValueType() != MVT::i1
)
9500 SDValue X
= SetCC
.getOperand(0);
9501 SDValue Ones
= SetCC
.getOperand(1);
9502 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
9503 EVT VT
= N
->getValueType(0);
9504 EVT XVT
= X
.getValueType();
9505 // setge X, C is canonicalized to setgt, so we do not need to match that
9506 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does
9507 // not require the 'not' op.
9508 if (CC
== ISD::SETGT
&& isAllOnesConstant(Ones
) && VT
== XVT
) {
9509 // Invert and smear/shift the sign bit:
9510 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
9511 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
9513 SDValue NotX
= DAG
.getNOT(DL
, X
, VT
);
9514 SDValue ShiftAmount
= DAG
.getConstant(VT
.getSizeInBits() - 1, DL
, VT
);
9515 auto ShiftOpcode
= N
->getOpcode() == ISD::SIGN_EXTEND
? ISD::SRA
: ISD::SRL
;
9516 return DAG
.getNode(ShiftOpcode
, DL
, VT
, NotX
, ShiftAmount
);
9521 SDValue
DAGCombiner::visitSIGN_EXTEND(SDNode
*N
) {
9522 SDValue N0
= N
->getOperand(0);
9523 EVT VT
= N
->getValueType(0);
9526 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
9529 // fold (sext (sext x)) -> (sext x)
9530 // fold (sext (aext x)) -> (sext x)
9531 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
9532 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, N0
.getOperand(0));
9534 if (N0
.getOpcode() == ISD::TRUNCATE
) {
9535 // fold (sext (truncate (load x))) -> (sext (smaller load x))
9536 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
9537 if (SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode())) {
9538 SDNode
*oye
= N0
.getOperand(0).getNode();
9539 if (NarrowLoad
.getNode() != N0
.getNode()) {
9540 CombineTo(N0
.getNode(), NarrowLoad
);
9541 // CombineTo deleted the truncate, if needed, but not what's under it.
9544 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9547 // See if the value being truncated is already sign extended. If so, just
9548 // eliminate the trunc/sext pair.
9549 SDValue Op
= N0
.getOperand(0);
9550 unsigned OpBits
= Op
.getScalarValueSizeInBits();
9551 unsigned MidBits
= N0
.getScalarValueSizeInBits();
9552 unsigned DestBits
= VT
.getScalarSizeInBits();
9553 unsigned NumSignBits
= DAG
.ComputeNumSignBits(Op
);
9555 if (OpBits
== DestBits
) {
9556 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
9557 // bits, it is already ready.
9558 if (NumSignBits
> DestBits
-MidBits
)
9560 } else if (OpBits
< DestBits
) {
9561 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
9562 // bits, just sext from i32.
9563 if (NumSignBits
> OpBits
-MidBits
)
9564 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Op
);
9566 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
9567 // bits, just truncate to i32.
9568 if (NumSignBits
> OpBits
-MidBits
)
9569 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
9572 // fold (sext (truncate x)) -> (sextinreg x).
9573 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
,
9574 N0
.getValueType())) {
9575 if (OpBits
< DestBits
)
9576 Op
= DAG
.getNode(ISD::ANY_EXTEND
, SDLoc(N0
), VT
, Op
);
9577 else if (OpBits
> DestBits
)
9578 Op
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), VT
, Op
);
9579 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Op
,
9580 DAG
.getValueType(N0
.getValueType()));
9584 // Try to simplify (sext (load x)).
9585 if (SDValue foldedExt
=
9586 tryToFoldExtOfLoad(DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
,
9587 ISD::SEXTLOAD
, ISD::SIGN_EXTEND
))
9590 // fold (sext (load x)) to multiple smaller sextloads.
9591 // Only on illegal but splittable vectors.
9592 if (SDValue ExtLoad
= CombineExtLoad(N
))
9595 // Try to simplify (sext (sextload x)).
9596 if (SDValue foldedExt
= tryToFoldExtOfExtload(
9597 DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
, ISD::SEXTLOAD
))
9600 // fold (sext (and/or/xor (load x), cst)) ->
9601 // (and/or/xor (sextload x), (sext cst))
9602 if ((N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
9603 N0
.getOpcode() == ISD::XOR
) &&
9604 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
9605 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
9606 (!LegalOperations
&& TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
9607 LoadSDNode
*LN00
= cast
<LoadSDNode
>(N0
.getOperand(0));
9608 EVT MemVT
= LN00
->getMemoryVT();
9609 if (TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, MemVT
) &&
9610 LN00
->getExtensionType() != ISD::ZEXTLOAD
&& LN00
->isUnindexed()) {
9611 SmallVector
<SDNode
*, 4> SetCCs
;
9612 bool DoXform
= ExtendUsesToFormExtLoad(VT
, N0
.getNode(), N0
.getOperand(0),
9613 ISD::SIGN_EXTEND
, SetCCs
, TLI
);
9615 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(LN00
), VT
,
9616 LN00
->getChain(), LN00
->getBasePtr(),
9617 LN00
->getMemoryVT(),
9618 LN00
->getMemOperand());
9619 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
9620 Mask
= Mask
.sext(VT
.getSizeInBits());
9621 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL
, VT
,
9622 ExtLoad
, DAG
.getConstant(Mask
, DL
, VT
));
9623 ExtendSetCCUses(SetCCs
, N0
.getOperand(0), ExtLoad
, ISD::SIGN_EXTEND
);
9624 bool NoReplaceTruncAnd
= !N0
.hasOneUse();
9625 bool NoReplaceTrunc
= SDValue(LN00
, 0).hasOneUse();
9627 // If N0 has multiple uses, change other uses as well.
9628 if (NoReplaceTruncAnd
) {
9630 DAG
.getNode(ISD::TRUNCATE
, DL
, N0
.getValueType(), And
);
9631 CombineTo(N0
.getNode(), TruncAnd
);
9633 if (NoReplaceTrunc
) {
9634 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN00
, 1), ExtLoad
.getValue(1));
9636 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LN00
),
9637 LN00
->getValueType(0), ExtLoad
);
9638 CombineTo(LN00
, Trunc
, ExtLoad
.getValue(1));
9640 return SDValue(N
,0); // Return N so it doesn't get rechecked!
9645 if (SDValue V
= foldExtendedSignBitTest(N
, DAG
, LegalOperations
))
9648 if (N0
.getOpcode() == ISD::SETCC
) {
9649 SDValue N00
= N0
.getOperand(0);
9650 SDValue N01
= N0
.getOperand(1);
9651 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
9652 EVT N00VT
= N0
.getOperand(0).getValueType();
9654 // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
9655 // Only do this before legalize for now.
9656 if (VT
.isVector() && !LegalOperations
&&
9657 TLI
.getBooleanContents(N00VT
) ==
9658 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
9659 // On some architectures (such as SSE/NEON/etc) the SETCC result type is
9660 // of the same size as the compared operands. Only optimize sext(setcc())
9661 // if this is the case.
9662 EVT SVT
= getSetCCResultType(N00VT
);
9664 // If we already have the desired type, don't change it.
9665 if (SVT
!= N0
.getValueType()) {
9666 // We know that the # elements of the results is the same as the
9667 // # elements of the compare (and the # elements of the compare result
9668 // for that matter). Check to see that they are the same size. If so,
9669 // we know that the element size of the sext'd result matches the
9670 // element size of the compare operands.
9671 if (VT
.getSizeInBits() == SVT
.getSizeInBits())
9672 return DAG
.getSetCC(DL
, VT
, N00
, N01
, CC
);
9674 // If the desired elements are smaller or larger than the source
9675 // elements, we can use a matching integer vector type and then
9676 // truncate/sign extend.
9677 EVT MatchingVecType
= N00VT
.changeVectorElementTypeToInteger();
9678 if (SVT
== MatchingVecType
) {
9679 SDValue VsetCC
= DAG
.getSetCC(DL
, MatchingVecType
, N00
, N01
, CC
);
9680 return DAG
.getSExtOrTrunc(VsetCC
, DL
, VT
);
9685 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
9686 // Here, T can be 1 or -1, depending on the type of the setcc and
9687 // getBooleanContents().
9688 unsigned SetCCWidth
= N0
.getScalarValueSizeInBits();
9690 // To determine the "true" side of the select, we need to know the high bit
9691 // of the value returned by the setcc if it evaluates to true.
9692 // If the type of the setcc is i1, then the true case of the select is just
9693 // sext(i1 1), that is, -1.
9694 // If the type of the setcc is larger (say, i8) then the value of the high
9695 // bit depends on getBooleanContents(), so ask TLI for a real "true" value
9696 // of the appropriate width.
9697 SDValue ExtTrueVal
= (SetCCWidth
== 1)
9698 ? DAG
.getAllOnesConstant(DL
, VT
)
9699 : DAG
.getBoolConstant(true, DL
, VT
, N00VT
);
9700 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
9702 SimplifySelectCC(DL
, N00
, N01
, ExtTrueVal
, Zero
, CC
, true))
9705 if (!VT
.isVector() && !TLI
.convertSelectOfConstantsToMath(VT
)) {
9706 EVT SetCCVT
= getSetCCResultType(N00VT
);
9707 // Don't do this transform for i1 because there's a select transform
9708 // that would reverse it.
9709 // TODO: We should not do this transform at all without a target hook
9710 // because a sext is likely cheaper than a select?
9711 if (SetCCVT
.getScalarSizeInBits() != 1 &&
9712 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SETCC
, N00VT
))) {
9713 SDValue SetCC
= DAG
.getSetCC(DL
, SetCCVT
, N00
, N01
, CC
);
9714 return DAG
.getSelect(DL
, VT
, SetCC
, ExtTrueVal
, Zero
);
9719 // fold (sext x) -> (zext x) if the sign bit is known zero.
9720 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
)) &&
9721 DAG
.SignBitIsZero(N0
))
9722 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
);
9724 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
9727 // Eliminate this sign extend by doing a negation in the destination type:
9728 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64)
9729 if (N0
.getOpcode() == ISD::SUB
&& N0
.hasOneUse() &&
9730 isNullOrNullSplat(N0
.getOperand(0)) &&
9731 N0
.getOperand(1).getOpcode() == ISD::ZERO_EXTEND
&&
9732 TLI
.isOperationLegalOrCustom(ISD::SUB
, VT
)) {
9733 SDValue Zext
= DAG
.getZExtOrTrunc(N0
.getOperand(1).getOperand(0), DL
, VT
);
9734 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), Zext
);
9736 // Eliminate this sign extend by doing a decrement in the destination type:
9737 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1)
9738 if (N0
.getOpcode() == ISD::ADD
&& N0
.hasOneUse() &&
9739 isAllOnesOrAllOnesSplat(N0
.getOperand(1)) &&
9740 N0
.getOperand(0).getOpcode() == ISD::ZERO_EXTEND
&&
9741 TLI
.isOperationLegalOrCustom(ISD::ADD
, VT
)) {
9742 SDValue Zext
= DAG
.getZExtOrTrunc(N0
.getOperand(0).getOperand(0), DL
, VT
);
9743 return DAG
.getNode(ISD::ADD
, DL
, VT
, Zext
, DAG
.getAllOnesConstant(DL
, VT
));
9749 // isTruncateOf - If N is a truncate of some other value, return true, record
9750 // the value being truncated in Op and which of Op's bits are zero/one in Known.
9751 // This function computes KnownBits to avoid a duplicated call to
9752 // computeKnownBits in the caller.
9753 static bool isTruncateOf(SelectionDAG
&DAG
, SDValue N
, SDValue
&Op
,
9755 if (N
->getOpcode() == ISD::TRUNCATE
) {
9756 Op
= N
->getOperand(0);
9757 Known
= DAG
.computeKnownBits(Op
);
9761 if (N
.getOpcode() != ISD::SETCC
||
9762 N
.getValueType().getScalarType() != MVT::i1
||
9763 cast
<CondCodeSDNode
>(N
.getOperand(2))->get() != ISD::SETNE
)
9766 SDValue Op0
= N
->getOperand(0);
9767 SDValue Op1
= N
->getOperand(1);
9768 assert(Op0
.getValueType() == Op1
.getValueType());
9770 if (isNullOrNullSplat(Op0
))
9772 else if (isNullOrNullSplat(Op1
))
9777 Known
= DAG
.computeKnownBits(Op
);
9779 return (Known
.Zero
| 1).isAllOnesValue();
9782 SDValue
DAGCombiner::visitZERO_EXTEND(SDNode
*N
) {
9783 SDValue N0
= N
->getOperand(0);
9784 EVT VT
= N
->getValueType(0);
9786 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
9789 // fold (zext (zext x)) -> (zext x)
9790 // fold (zext (aext x)) -> (zext x)
9791 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
9792 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), VT
,
9795 // fold (zext (truncate x)) -> (zext x) or
9796 // (zext (truncate x)) -> (truncate x)
9797 // This is valid when the truncated bits of x are already zero.
9800 if (isTruncateOf(DAG
, N0
, Op
, Known
)) {
9801 APInt TruncatedBits
=
9802 (Op
.getScalarValueSizeInBits() == N0
.getScalarValueSizeInBits()) ?
9803 APInt(Op
.getScalarValueSizeInBits(), 0) :
9804 APInt::getBitsSet(Op
.getScalarValueSizeInBits(),
9805 N0
.getScalarValueSizeInBits(),
9806 std::min(Op
.getScalarValueSizeInBits(),
9807 VT
.getScalarSizeInBits()));
9808 if (TruncatedBits
.isSubsetOf(Known
.Zero
))
9809 return DAG
.getZExtOrTrunc(Op
, SDLoc(N
), VT
);
9812 // fold (zext (truncate x)) -> (and x, mask)
9813 if (N0
.getOpcode() == ISD::TRUNCATE
) {
9814 // fold (zext (truncate (load x))) -> (zext (smaller load x))
9815 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
9816 if (SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode())) {
9817 SDNode
*oye
= N0
.getOperand(0).getNode();
9818 if (NarrowLoad
.getNode() != N0
.getNode()) {
9819 CombineTo(N0
.getNode(), NarrowLoad
);
9820 // CombineTo deleted the truncate, if needed, but not what's under it.
9823 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9826 EVT SrcVT
= N0
.getOperand(0).getValueType();
9827 EVT MinVT
= N0
.getValueType();
9829 // Try to mask before the extension to avoid having to generate a larger mask,
9830 // possibly over several sub-vectors.
9831 if (SrcVT
.bitsLT(VT
) && VT
.isVector()) {
9832 if (!LegalOperations
|| (TLI
.isOperationLegal(ISD::AND
, SrcVT
) &&
9833 TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
))) {
9834 SDValue Op
= N0
.getOperand(0);
9835 Op
= DAG
.getZeroExtendInReg(Op
, SDLoc(N
), MinVT
.getScalarType());
9836 AddToWorklist(Op
.getNode());
9837 SDValue ZExtOrTrunc
= DAG
.getZExtOrTrunc(Op
, SDLoc(N
), VT
);
9838 // Transfer the debug info; the new node is equivalent to N0.
9839 DAG
.transferDbgValues(N0
, ZExtOrTrunc
);
9844 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::AND
, VT
)) {
9845 SDValue Op
= DAG
.getAnyExtOrTrunc(N0
.getOperand(0), SDLoc(N
), VT
);
9846 AddToWorklist(Op
.getNode());
9847 SDValue And
= DAG
.getZeroExtendInReg(Op
, SDLoc(N
), MinVT
.getScalarType());
9848 // We may safely transfer the debug info describing the truncate node over
9849 // to the equivalent and operation.
9850 DAG
.transferDbgValues(N0
, And
);
9855 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
9856 // if either of the casts is not free.
9857 if (N0
.getOpcode() == ISD::AND
&&
9858 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
9859 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
9860 (!TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
9861 N0
.getValueType()) ||
9862 !TLI
.isZExtFree(N0
.getValueType(), VT
))) {
9863 SDValue X
= N0
.getOperand(0).getOperand(0);
9864 X
= DAG
.getAnyExtOrTrunc(X
, SDLoc(X
), VT
);
9865 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
9866 Mask
= Mask
.zext(VT
.getSizeInBits());
9868 return DAG
.getNode(ISD::AND
, DL
, VT
,
9869 X
, DAG
.getConstant(Mask
, DL
, VT
));
9872 // Try to simplify (zext (load x)).
9873 if (SDValue foldedExt
=
9874 tryToFoldExtOfLoad(DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
,
9875 ISD::ZEXTLOAD
, ISD::ZERO_EXTEND
))
9878 // fold (zext (load x)) to multiple smaller zextloads.
9879 // Only on illegal but splittable vectors.
9880 if (SDValue ExtLoad
= CombineExtLoad(N
))
9883 // fold (zext (and/or/xor (load x), cst)) ->
9884 // (and/or/xor (zextload x), (zext cst))
9885 // Unless (and (load x) cst) will match as a zextload already and has
9886 // additional users.
9887 if ((N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
9888 N0
.getOpcode() == ISD::XOR
) &&
9889 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
9890 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
9891 (!LegalOperations
&& TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
9892 LoadSDNode
*LN00
= cast
<LoadSDNode
>(N0
.getOperand(0));
9893 EVT MemVT
= LN00
->getMemoryVT();
9894 if (TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
) &&
9895 LN00
->getExtensionType() != ISD::SEXTLOAD
&& LN00
->isUnindexed()) {
9896 bool DoXform
= true;
9897 SmallVector
<SDNode
*, 4> SetCCs
;
9898 if (!N0
.hasOneUse()) {
9899 if (N0
.getOpcode() == ISD::AND
) {
9900 auto *AndC
= cast
<ConstantSDNode
>(N0
.getOperand(1));
9901 EVT LoadResultTy
= AndC
->getValueType(0);
9903 if (isAndLoadExtLoad(AndC
, LN00
, LoadResultTy
, ExtVT
))
9908 DoXform
= ExtendUsesToFormExtLoad(VT
, N0
.getNode(), N0
.getOperand(0),
9909 ISD::ZERO_EXTEND
, SetCCs
, TLI
);
9911 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(LN00
), VT
,
9912 LN00
->getChain(), LN00
->getBasePtr(),
9913 LN00
->getMemoryVT(),
9914 LN00
->getMemOperand());
9915 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
9916 Mask
= Mask
.zext(VT
.getSizeInBits());
9918 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL
, VT
,
9919 ExtLoad
, DAG
.getConstant(Mask
, DL
, VT
));
9920 ExtendSetCCUses(SetCCs
, N0
.getOperand(0), ExtLoad
, ISD::ZERO_EXTEND
);
9921 bool NoReplaceTruncAnd
= !N0
.hasOneUse();
9922 bool NoReplaceTrunc
= SDValue(LN00
, 0).hasOneUse();
9924 // If N0 has multiple uses, change other uses as well.
9925 if (NoReplaceTruncAnd
) {
9927 DAG
.getNode(ISD::TRUNCATE
, DL
, N0
.getValueType(), And
);
9928 CombineTo(N0
.getNode(), TruncAnd
);
9930 if (NoReplaceTrunc
) {
9931 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN00
, 1), ExtLoad
.getValue(1));
9933 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LN00
),
9934 LN00
->getValueType(0), ExtLoad
);
9935 CombineTo(LN00
, Trunc
, ExtLoad
.getValue(1));
9937 return SDValue(N
,0); // Return N so it doesn't get rechecked!
9942 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
9943 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
9944 if (SDValue ZExtLoad
= CombineZExtLogicopShiftLoad(N
))
9947 // Try to simplify (zext (zextload x)).
9948 if (SDValue foldedExt
= tryToFoldExtOfExtload(
9949 DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
, ISD::ZEXTLOAD
))
9952 if (SDValue V
= foldExtendedSignBitTest(N
, DAG
, LegalOperations
))
9955 if (N0
.getOpcode() == ISD::SETCC
) {
9956 // Only do this before legalize for now.
9957 if (!LegalOperations
&& VT
.isVector() &&
9958 N0
.getValueType().getVectorElementType() == MVT::i1
) {
9959 EVT N00VT
= N0
.getOperand(0).getValueType();
9960 if (getSetCCResultType(N00VT
) == N0
.getValueType())
9963 // We know that the # elements of the results is the same as the #
9964 // elements of the compare (and the # elements of the compare result for
9965 // that matter). Check to see that they are the same size. If so, we know
9966 // that the element size of the sext'd result matches the element size of
9967 // the compare operands.
9969 SDValue VecOnes
= DAG
.getConstant(1, DL
, VT
);
9970 if (VT
.getSizeInBits() == N00VT
.getSizeInBits()) {
9971 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
9972 SDValue VSetCC
= DAG
.getNode(ISD::SETCC
, DL
, VT
, N0
.getOperand(0),
9973 N0
.getOperand(1), N0
.getOperand(2));
9974 return DAG
.getNode(ISD::AND
, DL
, VT
, VSetCC
, VecOnes
);
9977 // If the desired elements are smaller or larger than the source
9978 // elements we can use a matching integer vector type and then
9979 // truncate/sign extend.
9980 EVT MatchingVectorType
= N00VT
.changeVectorElementTypeToInteger();
9982 DAG
.getNode(ISD::SETCC
, DL
, MatchingVectorType
, N0
.getOperand(0),
9983 N0
.getOperand(1), N0
.getOperand(2));
9984 return DAG
.getNode(ISD::AND
, DL
, VT
, DAG
.getSExtOrTrunc(VsetCC
, DL
, VT
),
9988 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
9990 if (SDValue SCC
= SimplifySelectCC(
9991 DL
, N0
.getOperand(0), N0
.getOperand(1), DAG
.getConstant(1, DL
, VT
),
9992 DAG
.getConstant(0, DL
, VT
),
9993 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true))
9997 // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
9998 if ((N0
.getOpcode() == ISD::SHL
|| N0
.getOpcode() == ISD::SRL
) &&
9999 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
10000 N0
.getOperand(0).getOpcode() == ISD::ZERO_EXTEND
&&
10002 SDValue ShAmt
= N0
.getOperand(1);
10003 if (N0
.getOpcode() == ISD::SHL
) {
10004 SDValue InnerZExt
= N0
.getOperand(0);
10005 // If the original shl may be shifting out bits, do not perform this
10007 unsigned KnownZeroBits
= InnerZExt
.getValueSizeInBits() -
10008 InnerZExt
.getOperand(0).getValueSizeInBits();
10009 if (cast
<ConstantSDNode
>(ShAmt
)->getAPIntValue().ugt(KnownZeroBits
))
10015 // Ensure that the shift amount is wide enough for the shifted value.
10016 if (VT
.getSizeInBits() >= 256)
10017 ShAmt
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, ShAmt
);
10019 return DAG
.getNode(N0
.getOpcode(), DL
, VT
,
10020 DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
.getOperand(0)),
10024 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
10030 SDValue
DAGCombiner::visitANY_EXTEND(SDNode
*N
) {
10031 SDValue N0
= N
->getOperand(0);
10032 EVT VT
= N
->getValueType(0);
10034 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
10037 // fold (aext (aext x)) -> (aext x)
10038 // fold (aext (zext x)) -> (zext x)
10039 // fold (aext (sext x)) -> (sext x)
10040 if (N0
.getOpcode() == ISD::ANY_EXTEND
||
10041 N0
.getOpcode() == ISD::ZERO_EXTEND
||
10042 N0
.getOpcode() == ISD::SIGN_EXTEND
)
10043 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, N0
.getOperand(0));
10045 // fold (aext (truncate (load x))) -> (aext (smaller load x))
10046 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
10047 if (N0
.getOpcode() == ISD::TRUNCATE
) {
10048 if (SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode())) {
10049 SDNode
*oye
= N0
.getOperand(0).getNode();
10050 if (NarrowLoad
.getNode() != N0
.getNode()) {
10051 CombineTo(N0
.getNode(), NarrowLoad
);
10052 // CombineTo deleted the truncate, if needed, but not what's under it.
10053 AddToWorklist(oye
);
10055 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
10059 // fold (aext (truncate x))
10060 if (N0
.getOpcode() == ISD::TRUNCATE
)
10061 return DAG
.getAnyExtOrTrunc(N0
.getOperand(0), SDLoc(N
), VT
);
10063 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
10064 // if the trunc is not free.
10065 if (N0
.getOpcode() == ISD::AND
&&
10066 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
10067 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
10068 !TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
10069 N0
.getValueType())) {
10071 SDValue X
= N0
.getOperand(0).getOperand(0);
10072 X
= DAG
.getAnyExtOrTrunc(X
, DL
, VT
);
10073 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
10074 Mask
= Mask
.zext(VT
.getSizeInBits());
10075 return DAG
.getNode(ISD::AND
, DL
, VT
,
10076 X
, DAG
.getConstant(Mask
, DL
, VT
));
10079 // fold (aext (load x)) -> (aext (truncate (extload x)))
10080 // None of the supported targets knows how to perform load and any_ext
10081 // on vectors in one instruction. We only perform this transformation on
10083 if (ISD::isNON_EXTLoad(N0
.getNode()) && !VT
.isVector() &&
10084 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
10085 TLI
.isLoadExtLegal(ISD::EXTLOAD
, VT
, N0
.getValueType())) {
10086 bool DoXform
= true;
10087 SmallVector
<SDNode
*, 4> SetCCs
;
10088 if (!N0
.hasOneUse())
10089 DoXform
= ExtendUsesToFormExtLoad(VT
, N
, N0
, ISD::ANY_EXTEND
, SetCCs
,
10092 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10093 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, SDLoc(N
), VT
,
10095 LN0
->getBasePtr(), N0
.getValueType(),
10096 LN0
->getMemOperand());
10097 ExtendSetCCUses(SetCCs
, N0
, ExtLoad
, ISD::ANY_EXTEND
);
10098 // If the load value is used only by N, replace it via CombineTo N.
10099 bool NoReplaceTrunc
= N0
.hasOneUse();
10100 CombineTo(N
, ExtLoad
);
10101 if (NoReplaceTrunc
) {
10102 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
10103 recursivelyDeleteUnusedNodes(LN0
);
10105 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
),
10106 N0
.getValueType(), ExtLoad
);
10107 CombineTo(LN0
, Trunc
, ExtLoad
.getValue(1));
10109 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
10113 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
10114 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
10115 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
10116 if (N0
.getOpcode() == ISD::LOAD
&& !ISD::isNON_EXTLoad(N0
.getNode()) &&
10117 ISD::isUNINDEXEDLoad(N0
.getNode()) && N0
.hasOneUse()) {
10118 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10119 ISD::LoadExtType ExtType
= LN0
->getExtensionType();
10120 EVT MemVT
= LN0
->getMemoryVT();
10121 if (!LegalOperations
|| TLI
.isLoadExtLegal(ExtType
, VT
, MemVT
)) {
10122 SDValue ExtLoad
= DAG
.getExtLoad(ExtType
, SDLoc(N
),
10123 VT
, LN0
->getChain(), LN0
->getBasePtr(),
10124 MemVT
, LN0
->getMemOperand());
10125 CombineTo(N
, ExtLoad
);
10126 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
10127 recursivelyDeleteUnusedNodes(LN0
);
10128 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
10132 if (N0
.getOpcode() == ISD::SETCC
) {
10134 // aext(setcc) -> vsetcc
10135 // aext(setcc) -> truncate(vsetcc)
10136 // aext(setcc) -> aext(vsetcc)
10137 // Only do this before legalize for now.
10138 if (VT
.isVector() && !LegalOperations
) {
10139 EVT N00VT
= N0
.getOperand(0).getValueType();
10140 if (getSetCCResultType(N00VT
) == N0
.getValueType())
10143 // We know that the # elements of the results is the same as the
10144 // # elements of the compare (and the # elements of the compare result
10145 // for that matter). Check to see that they are the same size. If so,
10146 // we know that the element size of the sext'd result matches the
10147 // element size of the compare operands.
10148 if (VT
.getSizeInBits() == N00VT
.getSizeInBits())
10149 return DAG
.getSetCC(SDLoc(N
), VT
, N0
.getOperand(0),
10151 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
10153 // If the desired elements are smaller or larger than the source
10154 // elements we can use a matching integer vector type and then
10155 // truncate/any extend
10156 EVT MatchingVectorType
= N00VT
.changeVectorElementTypeToInteger();
10158 DAG
.getSetCC(SDLoc(N
), MatchingVectorType
, N0
.getOperand(0),
10160 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
10161 return DAG
.getAnyExtOrTrunc(VsetCC
, SDLoc(N
), VT
);
10164 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
10166 if (SDValue SCC
= SimplifySelectCC(
10167 DL
, N0
.getOperand(0), N0
.getOperand(1), DAG
.getConstant(1, DL
, VT
),
10168 DAG
.getConstant(0, DL
, VT
),
10169 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true))
10176 SDValue
DAGCombiner::visitAssertExt(SDNode
*N
) {
10177 unsigned Opcode
= N
->getOpcode();
10178 SDValue N0
= N
->getOperand(0);
10179 SDValue N1
= N
->getOperand(1);
10180 EVT AssertVT
= cast
<VTSDNode
>(N1
)->getVT();
10182 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
10183 if (N0
.getOpcode() == Opcode
&&
10184 AssertVT
== cast
<VTSDNode
>(N0
.getOperand(1))->getVT())
10187 if (N0
.getOpcode() == ISD::TRUNCATE
&& N0
.hasOneUse() &&
10188 N0
.getOperand(0).getOpcode() == Opcode
) {
10189 // We have an assert, truncate, assert sandwich. Make one stronger assert
10190 // by asserting on the smallest asserted type to the larger source type.
10191 // This eliminates the later assert:
10192 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
10193 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
10194 SDValue BigA
= N0
.getOperand(0);
10195 EVT BigA_AssertVT
= cast
<VTSDNode
>(BigA
.getOperand(1))->getVT();
10196 assert(BigA_AssertVT
.bitsLE(N0
.getValueType()) &&
10197 "Asserting zero/sign-extended bits to a type larger than the "
10198 "truncated destination does not provide information");
10201 EVT MinAssertVT
= AssertVT
.bitsLT(BigA_AssertVT
) ? AssertVT
: BigA_AssertVT
;
10202 SDValue MinAssertVTVal
= DAG
.getValueType(MinAssertVT
);
10203 SDValue NewAssert
= DAG
.getNode(Opcode
, DL
, BigA
.getValueType(),
10204 BigA
.getOperand(0), MinAssertVTVal
);
10205 return DAG
.getNode(ISD::TRUNCATE
, DL
, N
->getValueType(0), NewAssert
);
10208 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller
10209 // than X. Just move the AssertZext in front of the truncate and drop the
10211 if (N0
.getOpcode() == ISD::TRUNCATE
&& N0
.hasOneUse() &&
10212 N0
.getOperand(0).getOpcode() == ISD::AssertSext
&&
10213 Opcode
== ISD::AssertZext
) {
10214 SDValue BigA
= N0
.getOperand(0);
10215 EVT BigA_AssertVT
= cast
<VTSDNode
>(BigA
.getOperand(1))->getVT();
10216 assert(BigA_AssertVT
.bitsLE(N0
.getValueType()) &&
10217 "Asserting zero/sign-extended bits to a type larger than the "
10218 "truncated destination does not provide information");
10220 if (AssertVT
.bitsLT(BigA_AssertVT
)) {
10222 SDValue NewAssert
= DAG
.getNode(Opcode
, DL
, BigA
.getValueType(),
10223 BigA
.getOperand(0), N1
);
10224 return DAG
.getNode(ISD::TRUNCATE
, DL
, N
->getValueType(0), NewAssert
);
10231 /// If the result of a wider load is shifted to right of N bits and then
10232 /// truncated to a narrower type and where N is a multiple of number of bits of
10233 /// the narrower type, transform it to a narrower load from address + N / num of
10234 /// bits of new type. Also narrow the load if the result is masked with an AND
10235 /// to effectively produce a smaller type. If the result is to be extended, also
10236 /// fold the extension to form a extending load.
10237 SDValue
DAGCombiner::ReduceLoadWidth(SDNode
*N
) {
10238 unsigned Opc
= N
->getOpcode();
10240 ISD::LoadExtType ExtType
= ISD::NON_EXTLOAD
;
10241 SDValue N0
= N
->getOperand(0);
10242 EVT VT
= N
->getValueType(0);
10245 // This transformation isn't valid for vector loads.
10249 unsigned ShAmt
= 0;
10250 bool HasShiftedOffset
= false;
10251 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
10253 if (Opc
== ISD::SIGN_EXTEND_INREG
) {
10254 ExtType
= ISD::SEXTLOAD
;
10255 ExtVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
10256 } else if (Opc
== ISD::SRL
) {
10257 // Another special-case: SRL is basically zero-extending a narrower value,
10258 // or it maybe shifting a higher subword, half or byte into the lowest
10260 ExtType
= ISD::ZEXTLOAD
;
10261 N0
= SDValue(N
, 0);
10263 auto *LN0
= dyn_cast
<LoadSDNode
>(N0
.getOperand(0));
10264 auto *N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
10268 uint64_t ShiftAmt
= N01
->getZExtValue();
10269 uint64_t MemoryWidth
= LN0
->getMemoryVT().getSizeInBits();
10270 if (LN0
->getExtensionType() != ISD::SEXTLOAD
&& MemoryWidth
> ShiftAmt
)
10271 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), MemoryWidth
- ShiftAmt
);
10273 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(),
10274 VT
.getSizeInBits() - ShiftAmt
);
10275 } else if (Opc
== ISD::AND
) {
10276 // An AND with a constant mask is the same as a truncate + zero-extend.
10277 auto AndC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
10281 const APInt
&Mask
= AndC
->getAPIntValue();
10282 unsigned ActiveBits
= 0;
10283 if (Mask
.isMask()) {
10284 ActiveBits
= Mask
.countTrailingOnes();
10285 } else if (Mask
.isShiftedMask()) {
10286 ShAmt
= Mask
.countTrailingZeros();
10287 APInt ShiftedMask
= Mask
.lshr(ShAmt
);
10288 ActiveBits
= ShiftedMask
.countTrailingOnes();
10289 HasShiftedOffset
= true;
10293 ExtType
= ISD::ZEXTLOAD
;
10294 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
10297 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse()) {
10299 if (auto *ConstShift
= dyn_cast
<ConstantSDNode
>(SRL
.getOperand(1))) {
10300 ShAmt
= ConstShift
->getZExtValue();
10301 unsigned EVTBits
= ExtVT
.getSizeInBits();
10302 // Is the shift amount a multiple of size of VT?
10303 if ((ShAmt
& (EVTBits
-1)) == 0) {
10304 N0
= N0
.getOperand(0);
10305 // Is the load width a multiple of size of VT?
10306 if ((N0
.getValueSizeInBits() & (EVTBits
-1)) != 0)
10310 // At this point, we must have a load or else we can't do the transform.
10311 if (!isa
<LoadSDNode
>(N0
)) return SDValue();
10313 auto *LN0
= cast
<LoadSDNode
>(N0
);
10315 // Because a SRL must be assumed to *need* to zero-extend the high bits
10316 // (as opposed to anyext the high bits), we can't combine the zextload
10317 // lowering of SRL and an sextload.
10318 if (LN0
->getExtensionType() == ISD::SEXTLOAD
)
10321 // If the shift amount is larger than the input type then we're not
10322 // accessing any of the loaded bytes. If the load was a zextload/extload
10323 // then the result of the shift+trunc is zero/undef (handled elsewhere).
10324 if (ShAmt
>= LN0
->getMemoryVT().getSizeInBits())
10327 // If the SRL is only used by a masking AND, we may be able to adjust
10328 // the ExtVT to make the AND redundant.
10329 SDNode
*Mask
= *(SRL
->use_begin());
10330 if (Mask
->getOpcode() == ISD::AND
&&
10331 isa
<ConstantSDNode
>(Mask
->getOperand(1))) {
10332 const APInt
&ShiftMask
=
10333 cast
<ConstantSDNode
>(Mask
->getOperand(1))->getAPIntValue();
10334 if (ShiftMask
.isMask()) {
10335 EVT MaskedVT
= EVT::getIntegerVT(*DAG
.getContext(),
10336 ShiftMask
.countTrailingOnes());
10337 // If the mask is smaller, recompute the type.
10338 if ((ExtVT
.getSizeInBits() > MaskedVT
.getSizeInBits()) &&
10339 TLI
.isLoadExtLegal(ExtType
, N0
.getValueType(), MaskedVT
))
10346 // If the load is shifted left (and the result isn't shifted back right),
10347 // we can fold the truncate through the shift.
10348 unsigned ShLeftAmt
= 0;
10349 if (ShAmt
== 0 && N0
.getOpcode() == ISD::SHL
&& N0
.hasOneUse() &&
10350 ExtVT
== VT
&& TLI
.isNarrowingProfitable(N0
.getValueType(), VT
)) {
10351 if (ConstantSDNode
*N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
10352 ShLeftAmt
= N01
->getZExtValue();
10353 N0
= N0
.getOperand(0);
10357 // If we haven't found a load, we can't narrow it.
10358 if (!isa
<LoadSDNode
>(N0
))
10361 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10362 if (!isLegalNarrowLdSt(LN0
, ExtType
, ExtVT
, ShAmt
))
10365 auto AdjustBigEndianShift
= [&](unsigned ShAmt
) {
10366 unsigned LVTStoreBits
= LN0
->getMemoryVT().getStoreSizeInBits();
10367 unsigned EVTStoreBits
= ExtVT
.getStoreSizeInBits();
10368 return LVTStoreBits
- EVTStoreBits
- ShAmt
;
10371 // For big endian targets, we need to adjust the offset to the pointer to
10372 // load the correct bytes.
10373 if (DAG
.getDataLayout().isBigEndian())
10374 ShAmt
= AdjustBigEndianShift(ShAmt
);
10376 EVT PtrType
= N0
.getOperand(1).getValueType();
10377 uint64_t PtrOff
= ShAmt
/ 8;
10378 unsigned NewAlign
= MinAlign(LN0
->getAlignment(), PtrOff
);
10380 // The original load itself didn't wrap, so an offset within it doesn't.
10382 Flags
.setNoUnsignedWrap(true);
10383 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, DL
,
10384 PtrType
, LN0
->getBasePtr(),
10385 DAG
.getConstant(PtrOff
, DL
, PtrType
),
10387 AddToWorklist(NewPtr
.getNode());
10390 if (ExtType
== ISD::NON_EXTLOAD
)
10391 Load
= DAG
.getLoad(VT
, DL
, LN0
->getChain(), NewPtr
,
10392 LN0
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
,
10393 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
10395 Load
= DAG
.getExtLoad(ExtType
, DL
, VT
, LN0
->getChain(), NewPtr
,
10396 LN0
->getPointerInfo().getWithOffset(PtrOff
), ExtVT
,
10397 NewAlign
, LN0
->getMemOperand()->getFlags(),
10400 // Replace the old load's chain with the new load's chain.
10401 WorklistRemover
DeadNodes(*this);
10402 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1));
10404 // Shift the result left, if we've swallowed a left shift.
10405 SDValue Result
= Load
;
10406 if (ShLeftAmt
!= 0) {
10407 EVT ShImmTy
= getShiftAmountTy(Result
.getValueType());
10408 if (!isUIntN(ShImmTy
.getSizeInBits(), ShLeftAmt
))
10410 // If the shift amount is as large as the result size (but, presumably,
10411 // no larger than the source) then the useful bits of the result are
10412 // zero; we can't simply return the shortened shift, because the result
10413 // of that operation is undefined.
10414 if (ShLeftAmt
>= VT
.getSizeInBits())
10415 Result
= DAG
.getConstant(0, DL
, VT
);
10417 Result
= DAG
.getNode(ISD::SHL
, DL
, VT
,
10418 Result
, DAG
.getConstant(ShLeftAmt
, DL
, ShImmTy
));
10421 if (HasShiftedOffset
) {
10422 // Recalculate the shift amount after it has been altered to calculate
10424 if (DAG
.getDataLayout().isBigEndian())
10425 ShAmt
= AdjustBigEndianShift(ShAmt
);
10427 // We're using a shifted mask, so the load now has an offset. This means
10428 // that data has been loaded into the lower bytes than it would have been
10429 // before, so we need to shl the loaded data into the correct position in the
10431 SDValue ShiftC
= DAG
.getConstant(ShAmt
, DL
, VT
);
10432 Result
= DAG
.getNode(ISD::SHL
, DL
, VT
, Result
, ShiftC
);
10433 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
);
10436 // Return the new loaded value.
10440 SDValue
DAGCombiner::visitSIGN_EXTEND_INREG(SDNode
*N
) {
10441 SDValue N0
= N
->getOperand(0);
10442 SDValue N1
= N
->getOperand(1);
10443 EVT VT
= N
->getValueType(0);
10444 EVT EVT
= cast
<VTSDNode
>(N1
)->getVT();
10445 unsigned VTBits
= VT
.getScalarSizeInBits();
10446 unsigned EVTBits
= EVT
.getScalarSizeInBits();
10449 return DAG
.getUNDEF(VT
);
10451 // fold (sext_in_reg c1) -> c1
10452 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
10453 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
, N0
, N1
);
10455 // If the input is already sign extended, just drop the extension.
10456 if (DAG
.ComputeNumSignBits(N0
) >= VTBits
-EVTBits
+1)
10459 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
10460 if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
10461 EVT
.bitsLT(cast
<VTSDNode
>(N0
.getOperand(1))->getVT()))
10462 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
,
10463 N0
.getOperand(0), N1
);
10465 // fold (sext_in_reg (sext x)) -> (sext x)
10466 // fold (sext_in_reg (aext x)) -> (sext x)
10467 // if x is small enough or if we know that x has more than 1 sign bit and the
10468 // sign_extend_inreg is extending from one of them.
10469 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
) {
10470 SDValue N00
= N0
.getOperand(0);
10471 unsigned N00Bits
= N00
.getScalarValueSizeInBits();
10472 if ((N00Bits
<= EVTBits
||
10473 (N00Bits
- DAG
.ComputeNumSignBits(N00
)) < EVTBits
) &&
10474 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND
, VT
)))
10475 return DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, N00
);
10478 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
10479 if ((N0
.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG
||
10480 N0
.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG
||
10481 N0
.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG
) &&
10482 N0
.getOperand(0).getScalarValueSizeInBits() == EVTBits
) {
10483 if (!LegalOperations
||
10484 TLI
.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG
, VT
))
10485 return DAG
.getNode(ISD::SIGN_EXTEND_VECTOR_INREG
, SDLoc(N
), VT
,
10489 // fold (sext_in_reg (zext x)) -> (sext x)
10490 // iff we are extending the source sign bit.
10491 if (N0
.getOpcode() == ISD::ZERO_EXTEND
) {
10492 SDValue N00
= N0
.getOperand(0);
10493 if (N00
.getScalarValueSizeInBits() == EVTBits
&&
10494 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND
, VT
)))
10495 return DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, N00
, N1
);
10498 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
10499 if (DAG
.MaskedValueIsZero(N0
, APInt::getOneBitSet(VTBits
, EVTBits
- 1)))
10500 return DAG
.getZeroExtendInReg(N0
, SDLoc(N
), EVT
.getScalarType());
10502 // fold operands of sext_in_reg based on knowledge that the top bits are not
10504 if (SimplifyDemandedBits(SDValue(N
, 0)))
10505 return SDValue(N
, 0);
10507 // fold (sext_in_reg (load x)) -> (smaller sextload x)
10508 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
10509 if (SDValue NarrowLoad
= ReduceLoadWidth(N
))
10512 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
10513 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
10514 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
10515 if (N0
.getOpcode() == ISD::SRL
) {
10516 if (auto *ShAmt
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
10517 if (ShAmt
->getAPIntValue().ule(VTBits
- EVTBits
)) {
10518 // We can turn this into an SRA iff the input to the SRL is already sign
10519 // extended enough.
10520 unsigned InSignBits
= DAG
.ComputeNumSignBits(N0
.getOperand(0));
10521 if (((VTBits
- EVTBits
) - ShAmt
->getZExtValue()) < InSignBits
)
10522 return DAG
.getNode(ISD::SRA
, SDLoc(N
), VT
, N0
.getOperand(0),
10527 // fold (sext_inreg (extload x)) -> (sextload x)
10528 // If sextload is not supported by target, we can only do the combine when
10529 // load has one use. Doing otherwise can block folding the extload with other
10530 // extends that the target does support.
10531 if (ISD::isEXTLoad(N0
.getNode()) &&
10532 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
10533 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
10534 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile() &&
10536 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, EVT
))) {
10537 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10538 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(N
), VT
,
10540 LN0
->getBasePtr(), EVT
,
10541 LN0
->getMemOperand());
10542 CombineTo(N
, ExtLoad
);
10543 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
10544 AddToWorklist(ExtLoad
.getNode());
10545 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
10547 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
10548 if (ISD::isZEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
10550 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
10551 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
10552 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, EVT
))) {
10553 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10554 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(N
), VT
,
10556 LN0
->getBasePtr(), EVT
,
10557 LN0
->getMemOperand());
10558 CombineTo(N
, ExtLoad
);
10559 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
10560 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
10563 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
10564 if (EVTBits
<= 16 && N0
.getOpcode() == ISD::OR
) {
10565 if (SDValue BSwap
= MatchBSwapHWordLow(N0
.getNode(), N0
.getOperand(0),
10566 N0
.getOperand(1), false))
10567 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
,
10574 SDValue
DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode
*N
) {
10575 SDValue N0
= N
->getOperand(0);
10576 EVT VT
= N
->getValueType(0);
10579 return DAG
.getUNDEF(VT
);
10581 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
10584 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
10585 return SDValue(N
, 0);
10590 SDValue
DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode
*N
) {
10591 SDValue N0
= N
->getOperand(0);
10592 EVT VT
= N
->getValueType(0);
10595 return DAG
.getUNDEF(VT
);
10597 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
10600 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
10601 return SDValue(N
, 0);
10606 SDValue
DAGCombiner::visitTRUNCATE(SDNode
*N
) {
10607 SDValue N0
= N
->getOperand(0);
10608 EVT VT
= N
->getValueType(0);
10609 EVT SrcVT
= N0
.getValueType();
10610 bool isLE
= DAG
.getDataLayout().isLittleEndian();
10616 // fold (truncate (truncate x)) -> (truncate x)
10617 if (N0
.getOpcode() == ISD::TRUNCATE
)
10618 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
.getOperand(0));
10620 // fold (truncate c1) -> c1
10621 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
)) {
10622 SDValue C
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
);
10623 if (C
.getNode() != N
)
10627 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
10628 if (N0
.getOpcode() == ISD::ZERO_EXTEND
||
10629 N0
.getOpcode() == ISD::SIGN_EXTEND
||
10630 N0
.getOpcode() == ISD::ANY_EXTEND
) {
10631 // if the source is smaller than the dest, we still need an extend.
10632 if (N0
.getOperand(0).getValueType().bitsLT(VT
))
10633 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, N0
.getOperand(0));
10634 // if the source is larger than the dest, than we just need the truncate.
10635 if (N0
.getOperand(0).getValueType().bitsGT(VT
))
10636 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
.getOperand(0));
10637 // if the source and dest are the same type, we can drop both the extend
10638 // and the truncate.
10639 return N0
.getOperand(0);
10642 // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
10643 if (N
->hasOneUse() && (N
->use_begin()->getOpcode() == ISD::ANY_EXTEND
))
10646 // Fold extract-and-trunc into a narrow extract. For example:
10647 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
10648 // i32 y = TRUNCATE(i64 x)
10650 // v16i8 b = BITCAST (v2i64 val)
10651 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
10653 // Note: We only run this optimization after type legalization (which often
10654 // creates this pattern) and before operation legalization after which
10655 // we need to be more careful about the vector instructions that we generate.
10656 if (N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
10657 LegalTypes
&& !LegalOperations
&& N0
->hasOneUse() && VT
!= MVT::i1
) {
10658 EVT VecTy
= N0
.getOperand(0).getValueType();
10659 EVT ExTy
= N0
.getValueType();
10660 EVT TrTy
= N
->getValueType(0);
10662 unsigned NumElem
= VecTy
.getVectorNumElements();
10663 unsigned SizeRatio
= ExTy
.getSizeInBits()/TrTy
.getSizeInBits();
10665 EVT NVT
= EVT::getVectorVT(*DAG
.getContext(), TrTy
, SizeRatio
* NumElem
);
10666 assert(NVT
.getSizeInBits() == VecTy
.getSizeInBits() && "Invalid Size");
10668 SDValue EltNo
= N0
->getOperand(1);
10669 if (isa
<ConstantSDNode
>(EltNo
) && isTypeLegal(NVT
)) {
10670 int Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
10671 EVT IndexTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
10672 int Index
= isLE
? (Elt
*SizeRatio
) : (Elt
*SizeRatio
+ (SizeRatio
-1));
10675 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, TrTy
,
10676 DAG
.getBitcast(NVT
, N0
.getOperand(0)),
10677 DAG
.getConstant(Index
, DL
, IndexTy
));
10681 // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
10682 if (N0
.getOpcode() == ISD::SELECT
&& N0
.hasOneUse()) {
10683 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::SELECT
, SrcVT
)) &&
10684 TLI
.isTruncateFree(SrcVT
, VT
)) {
10686 SDValue Cond
= N0
.getOperand(0);
10687 SDValue TruncOp0
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(1));
10688 SDValue TruncOp1
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(2));
10689 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
, Cond
, TruncOp0
, TruncOp1
);
10693 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
10694 if (N0
.getOpcode() == ISD::SHL
&& N0
.hasOneUse() &&
10695 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SHL
, VT
)) &&
10696 TLI
.isTypeDesirableForOp(ISD::SHL
, VT
)) {
10697 SDValue Amt
= N0
.getOperand(1);
10698 KnownBits Known
= DAG
.computeKnownBits(Amt
);
10699 unsigned Size
= VT
.getScalarSizeInBits();
10700 if (Known
.getBitWidth() - Known
.countMinLeadingZeros() <= Log2_32(Size
)) {
10702 EVT AmtVT
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
10704 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(0));
10705 if (AmtVT
!= Amt
.getValueType()) {
10706 Amt
= DAG
.getZExtOrTrunc(Amt
, SL
, AmtVT
);
10707 AddToWorklist(Amt
.getNode());
10709 return DAG
.getNode(ISD::SHL
, SL
, VT
, Trunc
, Amt
);
10713 // Attempt to pre-truncate BUILD_VECTOR sources.
10714 if (N0
.getOpcode() == ISD::BUILD_VECTOR
&& !LegalOperations
&&
10715 TLI
.isTruncateFree(SrcVT
.getScalarType(), VT
.getScalarType())) {
10717 EVT SVT
= VT
.getScalarType();
10718 SmallVector
<SDValue
, 8> TruncOps
;
10719 for (const SDValue
&Op
: N0
->op_values()) {
10720 SDValue TruncOp
= DAG
.getNode(ISD::TRUNCATE
, DL
, SVT
, Op
);
10721 TruncOps
.push_back(TruncOp
);
10723 return DAG
.getBuildVector(VT
, DL
, TruncOps
);
10726 // Fold a series of buildvector, bitcast, and truncate if possible.
10727 // For example fold
10728 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
10729 // (2xi32 (buildvector x, y)).
10730 if (Level
== AfterLegalizeVectorOps
&& VT
.isVector() &&
10731 N0
.getOpcode() == ISD::BITCAST
&& N0
.hasOneUse() &&
10732 N0
.getOperand(0).getOpcode() == ISD::BUILD_VECTOR
&&
10733 N0
.getOperand(0).hasOneUse()) {
10734 SDValue BuildVect
= N0
.getOperand(0);
10735 EVT BuildVectEltTy
= BuildVect
.getValueType().getVectorElementType();
10736 EVT TruncVecEltTy
= VT
.getVectorElementType();
10738 // Check that the element types match.
10739 if (BuildVectEltTy
== TruncVecEltTy
) {
10740 // Now we only need to compute the offset of the truncated elements.
10741 unsigned BuildVecNumElts
= BuildVect
.getNumOperands();
10742 unsigned TruncVecNumElts
= VT
.getVectorNumElements();
10743 unsigned TruncEltOffset
= BuildVecNumElts
/ TruncVecNumElts
;
10745 assert((BuildVecNumElts
% TruncVecNumElts
) == 0 &&
10746 "Invalid number of elements");
10748 SmallVector
<SDValue
, 8> Opnds
;
10749 for (unsigned i
= 0, e
= BuildVecNumElts
; i
!= e
; i
+= TruncEltOffset
)
10750 Opnds
.push_back(BuildVect
.getOperand(i
));
10752 return DAG
.getBuildVector(VT
, SDLoc(N
), Opnds
);
10756 // See if we can simplify the input to this truncate through knowledge that
10757 // only the low bits are being used.
10758 // For example "trunc (or (shl x, 8), y)" // -> trunc y
10759 // Currently we only perform this optimization on scalars because vectors
10760 // may have different active low bits.
10761 if (!VT
.isVector()) {
10763 APInt::getLowBitsSet(N0
.getValueSizeInBits(), VT
.getSizeInBits());
10764 if (SDValue Shorter
= DAG
.GetDemandedBits(N0
, Mask
))
10765 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, Shorter
);
10768 // fold (truncate (load x)) -> (smaller load x)
10769 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
10770 if (!LegalTypes
|| TLI
.isTypeDesirableForOp(N0
.getOpcode(), VT
)) {
10771 if (SDValue Reduced
= ReduceLoadWidth(N
))
10774 // Handle the case where the load remains an extending load even
10775 // after truncation.
10776 if (N0
.hasOneUse() && ISD::isUNINDEXEDLoad(N0
.getNode())) {
10777 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10778 if (!LN0
->isVolatile() &&
10779 LN0
->getMemoryVT().getStoreSizeInBits() < VT
.getSizeInBits()) {
10780 SDValue NewLoad
= DAG
.getExtLoad(LN0
->getExtensionType(), SDLoc(LN0
),
10781 VT
, LN0
->getChain(), LN0
->getBasePtr(),
10782 LN0
->getMemoryVT(),
10783 LN0
->getMemOperand());
10784 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), NewLoad
.getValue(1));
10790 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
10791 // where ... are all 'undef'.
10792 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&& !LegalTypes
) {
10793 SmallVector
<EVT
, 8> VTs
;
10796 unsigned NumDefs
= 0;
10798 for (unsigned i
= 0, e
= N0
.getNumOperands(); i
!= e
; ++i
) {
10799 SDValue X
= N0
.getOperand(i
);
10800 if (!X
.isUndef()) {
10805 // Stop if more than one members are non-undef.
10808 VTs
.push_back(EVT::getVectorVT(*DAG
.getContext(),
10809 VT
.getVectorElementType(),
10810 X
.getValueType().getVectorNumElements()));
10814 return DAG
.getUNDEF(VT
);
10816 if (NumDefs
== 1) {
10817 assert(V
.getNode() && "The single defined operand is empty!");
10818 SmallVector
<SDValue
, 8> Opnds
;
10819 for (unsigned i
= 0, e
= VTs
.size(); i
!= e
; ++i
) {
10821 Opnds
.push_back(DAG
.getUNDEF(VTs
[i
]));
10824 SDValue NV
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(V
), VTs
[i
], V
);
10825 AddToWorklist(NV
.getNode());
10826 Opnds
.push_back(NV
);
10828 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Opnds
);
10832 // Fold truncate of a bitcast of a vector to an extract of the low vector
10835 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
10836 if (N0
.getOpcode() == ISD::BITCAST
&& !VT
.isVector()) {
10837 SDValue VecSrc
= N0
.getOperand(0);
10838 EVT SrcVT
= VecSrc
.getValueType();
10839 if (SrcVT
.isVector() && SrcVT
.getScalarType() == VT
&&
10840 (!LegalOperations
||
10841 TLI
.isOperationLegal(ISD::EXTRACT_VECTOR_ELT
, SrcVT
))) {
10844 EVT IdxVT
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
10845 unsigned Idx
= isLE
? 0 : SrcVT
.getVectorNumElements() - 1;
10846 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, VT
,
10847 VecSrc
, DAG
.getConstant(Idx
, SL
, IdxVT
));
10851 // Simplify the operands using demanded-bits information.
10852 if (!VT
.isVector() &&
10853 SimplifyDemandedBits(SDValue(N
, 0)))
10854 return SDValue(N
, 0);
10856 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
10857 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry)
10858 // When the adde's carry is not used.
10859 if ((N0
.getOpcode() == ISD::ADDE
|| N0
.getOpcode() == ISD::ADDCARRY
) &&
10860 N0
.hasOneUse() && !N0
.getNode()->hasAnyUseOfValue(1) &&
10861 // We only do for addcarry before legalize operation
10862 ((!LegalOperations
&& N0
.getOpcode() == ISD::ADDCARRY
) ||
10863 TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
10865 auto X
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(0));
10866 auto Y
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(1));
10867 auto VTs
= DAG
.getVTList(VT
, N0
->getValueType(1));
10868 return DAG
.getNode(N0
.getOpcode(), SL
, VTs
, X
, Y
, N0
.getOperand(2));
10871 // fold (truncate (extract_subvector(ext x))) ->
10872 // (extract_subvector x)
10873 // TODO: This can be generalized to cover cases where the truncate and extract
10874 // do not fully cancel each other out.
10875 if (!LegalTypes
&& N0
.getOpcode() == ISD::EXTRACT_SUBVECTOR
) {
10876 SDValue N00
= N0
.getOperand(0);
10877 if (N00
.getOpcode() == ISD::SIGN_EXTEND
||
10878 N00
.getOpcode() == ISD::ZERO_EXTEND
||
10879 N00
.getOpcode() == ISD::ANY_EXTEND
) {
10880 if (N00
.getOperand(0)->getValueType(0).getVectorElementType() ==
10881 VT
.getVectorElementType())
10882 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N0
->getOperand(0)), VT
,
10883 N00
.getOperand(0), N0
.getOperand(1));
10887 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
10890 // Narrow a suitable binary operation with a non-opaque constant operand by
10891 // moving it ahead of the truncate. This is limited to pre-legalization
10892 // because targets may prefer a wider type during later combines and invert
10894 switch (N0
.getOpcode()) {
10901 if (!LegalOperations
&& N0
.hasOneUse() &&
10902 (isConstantOrConstantVector(N0
.getOperand(0), true) ||
10903 isConstantOrConstantVector(N0
.getOperand(1), true))) {
10904 // TODO: We already restricted this to pre-legalization, but for vectors
10905 // we are extra cautious to not create an unsupported operation.
10906 // Target-specific changes are likely needed to avoid regressions here.
10907 if (VT
.isScalarInteger() || TLI
.isOperationLegal(N0
.getOpcode(), VT
)) {
10909 SDValue NarrowL
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N0
.getOperand(0));
10910 SDValue NarrowR
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N0
.getOperand(1));
10911 return DAG
.getNode(N0
.getOpcode(), DL
, VT
, NarrowL
, NarrowR
);
10919 static SDNode
*getBuildPairElt(SDNode
*N
, unsigned i
) {
10920 SDValue Elt
= N
->getOperand(i
);
10921 if (Elt
.getOpcode() != ISD::MERGE_VALUES
)
10922 return Elt
.getNode();
10923 return Elt
.getOperand(Elt
.getResNo()).getNode();
10926 /// build_pair (load, load) -> load
10927 /// if load locations are consecutive.
10928 SDValue
DAGCombiner::CombineConsecutiveLoads(SDNode
*N
, EVT VT
) {
10929 assert(N
->getOpcode() == ISD::BUILD_PAIR
);
10931 LoadSDNode
*LD1
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 0));
10932 LoadSDNode
*LD2
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 1));
10934 // A BUILD_PAIR is always having the least significant part in elt 0 and the
10935 // most significant part in elt 1. So when combining into one large load, we
10936 // need to consider the endianness.
10937 if (DAG
.getDataLayout().isBigEndian())
10938 std::swap(LD1
, LD2
);
10940 if (!LD1
|| !LD2
|| !ISD::isNON_EXTLoad(LD1
) || !LD1
->hasOneUse() ||
10941 LD1
->getAddressSpace() != LD2
->getAddressSpace())
10943 EVT LD1VT
= LD1
->getValueType(0);
10944 unsigned LD1Bytes
= LD1VT
.getStoreSize();
10945 if (ISD::isNON_EXTLoad(LD2
) && LD2
->hasOneUse() &&
10946 DAG
.areNonVolatileConsecutiveLoads(LD2
, LD1
, LD1Bytes
, 1)) {
10947 unsigned Align
= LD1
->getAlignment();
10948 unsigned NewAlign
= DAG
.getDataLayout().getABITypeAlignment(
10949 VT
.getTypeForEVT(*DAG
.getContext()));
10951 if (NewAlign
<= Align
&&
10952 (!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
)))
10953 return DAG
.getLoad(VT
, SDLoc(N
), LD1
->getChain(), LD1
->getBasePtr(),
10954 LD1
->getPointerInfo(), Align
);
10960 static unsigned getPPCf128HiElementSelector(const SelectionDAG
&DAG
) {
10961 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
10962 // and Lo parts; on big-endian machines it doesn't.
10963 return DAG
.getDataLayout().isBigEndian() ? 1 : 0;
10966 static SDValue
foldBitcastedFPLogic(SDNode
*N
, SelectionDAG
&DAG
,
10967 const TargetLowering
&TLI
) {
10968 // If this is not a bitcast to an FP type or if the target doesn't have
10969 // IEEE754-compliant FP logic, we're done.
10970 EVT VT
= N
->getValueType(0);
10971 if (!VT
.isFloatingPoint() || !TLI
.hasBitPreservingFPLogic(VT
))
10974 // TODO: Handle cases where the integer constant is a different scalar
10975 // bitwidth to the FP.
10976 SDValue N0
= N
->getOperand(0);
10977 EVT SourceVT
= N0
.getValueType();
10978 if (VT
.getScalarSizeInBits() != SourceVT
.getScalarSizeInBits())
10983 switch (N0
.getOpcode()) {
10985 FPOpcode
= ISD::FABS
;
10986 SignMask
= ~APInt::getSignMask(SourceVT
.getScalarSizeInBits());
10989 FPOpcode
= ISD::FNEG
;
10990 SignMask
= APInt::getSignMask(SourceVT
.getScalarSizeInBits());
10993 FPOpcode
= ISD::FABS
;
10994 SignMask
= APInt::getSignMask(SourceVT
.getScalarSizeInBits());
11000 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
11001 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
11002 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
11004 SDValue LogicOp0
= N0
.getOperand(0);
11005 ConstantSDNode
*LogicOp1
= isConstOrConstSplat(N0
.getOperand(1), true);
11006 if (LogicOp1
&& LogicOp1
->getAPIntValue() == SignMask
&&
11007 LogicOp0
.getOpcode() == ISD::BITCAST
&&
11008 LogicOp0
.getOperand(0).getValueType() == VT
) {
11009 SDValue FPOp
= DAG
.getNode(FPOpcode
, SDLoc(N
), VT
, LogicOp0
.getOperand(0));
11010 NumFPLogicOpsConv
++;
11011 if (N0
.getOpcode() == ISD::OR
)
11012 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
, FPOp
);
11019 SDValue
DAGCombiner::visitBITCAST(SDNode
*N
) {
11020 SDValue N0
= N
->getOperand(0);
11021 EVT VT
= N
->getValueType(0);
11024 return DAG
.getUNDEF(VT
);
11026 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
11027 // Only do this before legalize types, unless both types are integer and the
11028 // scalar type is legal. Only do this before legalize ops, since the target
11029 // maybe depending on the bitcast.
11030 // First check to see if this is all constant.
11031 // TODO: Support FP bitcasts after legalize types.
11032 if (VT
.isVector() &&
11034 (!LegalOperations
&& VT
.isInteger() && N0
.getValueType().isInteger() &&
11035 TLI
.isTypeLegal(VT
.getVectorElementType()))) &&
11036 N0
.getOpcode() == ISD::BUILD_VECTOR
&& N0
.getNode()->hasOneUse() &&
11037 cast
<BuildVectorSDNode
>(N0
)->isConstant())
11038 return ConstantFoldBITCASTofBUILD_VECTOR(N0
.getNode(),
11039 VT
.getVectorElementType());
11041 // If the input is a constant, let getNode fold it.
11042 if (isa
<ConstantSDNode
>(N0
) || isa
<ConstantFPSDNode
>(N0
)) {
11043 // If we can't allow illegal operations, we need to check that this is just
11044 // a fp -> int or int -> conversion and that the resulting operation will
11046 if (!LegalOperations
||
11047 (isa
<ConstantSDNode
>(N0
) && VT
.isFloatingPoint() && !VT
.isVector() &&
11048 TLI
.isOperationLegal(ISD::ConstantFP
, VT
)) ||
11049 (isa
<ConstantFPSDNode
>(N0
) && VT
.isInteger() && !VT
.isVector() &&
11050 TLI
.isOperationLegal(ISD::Constant
, VT
))) {
11051 SDValue C
= DAG
.getBitcast(VT
, N0
);
11052 if (C
.getNode() != N
)
11057 // (conv (conv x, t1), t2) -> (conv x, t2)
11058 if (N0
.getOpcode() == ISD::BITCAST
)
11059 return DAG
.getBitcast(VT
, N0
.getOperand(0));
11061 // fold (conv (load x)) -> (load (conv*)x)
11062 // If the resultant load doesn't need a higher alignment than the original!
11063 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
11064 // Do not remove the cast if the types differ in endian layout.
11065 TLI
.hasBigEndianPartOrdering(N0
.getValueType(), DAG
.getDataLayout()) ==
11066 TLI
.hasBigEndianPartOrdering(VT
, DAG
.getDataLayout()) &&
11067 // If the load is volatile, we only want to change the load type if the
11068 // resulting load is legal. Otherwise we might increase the number of
11069 // memory accesses. We don't care if the original type was legal or not
11070 // as we assume software couldn't rely on the number of accesses of an
11072 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
11073 TLI
.isOperationLegal(ISD::LOAD
, VT
))) {
11074 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
11076 if (TLI
.isLoadBitCastBeneficial(N0
.getValueType(), VT
, DAG
,
11077 *LN0
->getMemOperand())) {
11079 DAG
.getLoad(VT
, SDLoc(N
), LN0
->getChain(), LN0
->getBasePtr(),
11080 LN0
->getPointerInfo(), LN0
->getAlignment(),
11081 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
11082 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1));
11087 if (SDValue V
= foldBitcastedFPLogic(N
, DAG
, TLI
))
11090 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
11091 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
11094 // fold (bitcast (fneg x)) ->
11095 // flipbit = signbit
11096 // (xor (bitcast x) (build_pair flipbit, flipbit))
11098 // fold (bitcast (fabs x)) ->
11099 // flipbit = (and (extract_element (bitcast x), 0), signbit)
11100 // (xor (bitcast x) (build_pair flipbit, flipbit))
11101 // This often reduces constant pool loads.
11102 if (((N0
.getOpcode() == ISD::FNEG
&& !TLI
.isFNegFree(N0
.getValueType())) ||
11103 (N0
.getOpcode() == ISD::FABS
&& !TLI
.isFAbsFree(N0
.getValueType()))) &&
11104 N0
.getNode()->hasOneUse() && VT
.isInteger() &&
11105 !VT
.isVector() && !N0
.getValueType().isVector()) {
11106 SDValue NewConv
= DAG
.getBitcast(VT
, N0
.getOperand(0));
11107 AddToWorklist(NewConv
.getNode());
11110 if (N0
.getValueType() == MVT::ppcf128
&& !LegalTypes
) {
11111 assert(VT
.getSizeInBits() == 128);
11112 SDValue SignBit
= DAG
.getConstant(
11113 APInt::getSignMask(VT
.getSizeInBits() / 2), SDLoc(N0
), MVT::i64
);
11115 if (N0
.getOpcode() == ISD::FNEG
) {
11117 AddToWorklist(FlipBit
.getNode());
11119 assert(N0
.getOpcode() == ISD::FABS
);
11121 DAG
.getNode(ISD::EXTRACT_ELEMENT
, SDLoc(NewConv
), MVT::i64
, NewConv
,
11122 DAG
.getIntPtrConstant(getPPCf128HiElementSelector(DAG
),
11124 AddToWorklist(Hi
.getNode());
11125 FlipBit
= DAG
.getNode(ISD::AND
, SDLoc(N0
), MVT::i64
, Hi
, SignBit
);
11126 AddToWorklist(FlipBit
.getNode());
11129 DAG
.getNode(ISD::BUILD_PAIR
, SDLoc(N0
), VT
, FlipBit
, FlipBit
);
11130 AddToWorklist(FlipBits
.getNode());
11131 return DAG
.getNode(ISD::XOR
, DL
, VT
, NewConv
, FlipBits
);
11133 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits());
11134 if (N0
.getOpcode() == ISD::FNEG
)
11135 return DAG
.getNode(ISD::XOR
, DL
, VT
,
11136 NewConv
, DAG
.getConstant(SignBit
, DL
, VT
));
11137 assert(N0
.getOpcode() == ISD::FABS
);
11138 return DAG
.getNode(ISD::AND
, DL
, VT
,
11139 NewConv
, DAG
.getConstant(~SignBit
, DL
, VT
));
11142 // fold (bitconvert (fcopysign cst, x)) ->
11143 // (or (and (bitconvert x), sign), (and cst, (not sign)))
11144 // Note that we don't handle (copysign x, cst) because this can always be
11145 // folded to an fneg or fabs.
11148 // fold (bitcast (fcopysign cst, x)) ->
11149 // flipbit = (and (extract_element
11150 // (xor (bitcast cst), (bitcast x)), 0),
11152 // (xor (bitcast cst) (build_pair flipbit, flipbit))
11153 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse() &&
11154 isa
<ConstantFPSDNode
>(N0
.getOperand(0)) &&
11155 VT
.isInteger() && !VT
.isVector()) {
11156 unsigned OrigXWidth
= N0
.getOperand(1).getValueSizeInBits();
11157 EVT IntXVT
= EVT::getIntegerVT(*DAG
.getContext(), OrigXWidth
);
11158 if (isTypeLegal(IntXVT
)) {
11159 SDValue X
= DAG
.getBitcast(IntXVT
, N0
.getOperand(1));
11160 AddToWorklist(X
.getNode());
11162 // If X has a different width than the result/lhs, sext it or truncate it.
11163 unsigned VTWidth
= VT
.getSizeInBits();
11164 if (OrigXWidth
< VTWidth
) {
11165 X
= DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, X
);
11166 AddToWorklist(X
.getNode());
11167 } else if (OrigXWidth
> VTWidth
) {
11168 // To get the sign bit in the right place, we have to shift it right
11169 // before truncating.
11171 X
= DAG
.getNode(ISD::SRL
, DL
,
11172 X
.getValueType(), X
,
11173 DAG
.getConstant(OrigXWidth
-VTWidth
, DL
,
11174 X
.getValueType()));
11175 AddToWorklist(X
.getNode());
11176 X
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(X
), VT
, X
);
11177 AddToWorklist(X
.getNode());
11180 if (N0
.getValueType() == MVT::ppcf128
&& !LegalTypes
) {
11181 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits() / 2);
11182 SDValue Cst
= DAG
.getBitcast(VT
, N0
.getOperand(0));
11183 AddToWorklist(Cst
.getNode());
11184 SDValue X
= DAG
.getBitcast(VT
, N0
.getOperand(1));
11185 AddToWorklist(X
.getNode());
11186 SDValue XorResult
= DAG
.getNode(ISD::XOR
, SDLoc(N0
), VT
, Cst
, X
);
11187 AddToWorklist(XorResult
.getNode());
11188 SDValue XorResult64
= DAG
.getNode(
11189 ISD::EXTRACT_ELEMENT
, SDLoc(XorResult
), MVT::i64
, XorResult
,
11190 DAG
.getIntPtrConstant(getPPCf128HiElementSelector(DAG
),
11191 SDLoc(XorResult
)));
11192 AddToWorklist(XorResult64
.getNode());
11194 DAG
.getNode(ISD::AND
, SDLoc(XorResult64
), MVT::i64
, XorResult64
,
11195 DAG
.getConstant(SignBit
, SDLoc(XorResult64
), MVT::i64
));
11196 AddToWorklist(FlipBit
.getNode());
11198 DAG
.getNode(ISD::BUILD_PAIR
, SDLoc(N0
), VT
, FlipBit
, FlipBit
);
11199 AddToWorklist(FlipBits
.getNode());
11200 return DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, Cst
, FlipBits
);
11202 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits());
11203 X
= DAG
.getNode(ISD::AND
, SDLoc(X
), VT
,
11204 X
, DAG
.getConstant(SignBit
, SDLoc(X
), VT
));
11205 AddToWorklist(X
.getNode());
11207 SDValue Cst
= DAG
.getBitcast(VT
, N0
.getOperand(0));
11208 Cst
= DAG
.getNode(ISD::AND
, SDLoc(Cst
), VT
,
11209 Cst
, DAG
.getConstant(~SignBit
, SDLoc(Cst
), VT
));
11210 AddToWorklist(Cst
.getNode());
11212 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, X
, Cst
);
11216 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
11217 if (N0
.getOpcode() == ISD::BUILD_PAIR
)
11218 if (SDValue CombineLD
= CombineConsecutiveLoads(N0
.getNode(), VT
))
11221 // Remove double bitcasts from shuffles - this is often a legacy of
11222 // XformToShuffleWithZero being used to combine bitmaskings (of
11223 // float vectors bitcast to integer vectors) into shuffles.
11224 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
11225 if (Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
) && VT
.isVector() &&
11226 N0
->getOpcode() == ISD::VECTOR_SHUFFLE
&& N0
.hasOneUse() &&
11227 VT
.getVectorNumElements() >= N0
.getValueType().getVectorNumElements() &&
11228 !(VT
.getVectorNumElements() % N0
.getValueType().getVectorNumElements())) {
11229 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N0
);
11231 // If operands are a bitcast, peek through if it casts the original VT.
11232 // If operands are a constant, just bitcast back to original VT.
11233 auto PeekThroughBitcast
= [&](SDValue Op
) {
11234 if (Op
.getOpcode() == ISD::BITCAST
&&
11235 Op
.getOperand(0).getValueType() == VT
)
11236 return SDValue(Op
.getOperand(0));
11237 if (Op
.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op
.getNode()) ||
11238 ISD::isBuildVectorOfConstantFPSDNodes(Op
.getNode()))
11239 return DAG
.getBitcast(VT
, Op
);
11243 // FIXME: If either input vector is bitcast, try to convert the shuffle to
11244 // the result type of this bitcast. This would eliminate at least one
11245 // bitcast. See the transform in InstCombine.
11246 SDValue SV0
= PeekThroughBitcast(N0
->getOperand(0));
11247 SDValue SV1
= PeekThroughBitcast(N0
->getOperand(1));
11252 VT
.getVectorNumElements() / N0
.getValueType().getVectorNumElements();
11253 SmallVector
<int, 8> NewMask
;
11254 for (int M
: SVN
->getMask())
11255 for (int i
= 0; i
!= MaskScale
; ++i
)
11256 NewMask
.push_back(M
< 0 ? -1 : M
* MaskScale
+ i
);
11258 SDValue LegalShuffle
=
11259 TLI
.buildLegalVectorShuffle(VT
, SDLoc(N
), SV0
, SV1
, NewMask
, DAG
);
11261 return LegalShuffle
;
11267 SDValue
DAGCombiner::visitBUILD_PAIR(SDNode
*N
) {
11268 EVT VT
= N
->getValueType(0);
11269 return CombineConsecutiveLoads(N
, VT
);
11272 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef
11273 /// operands. DstEltVT indicates the destination element value type.
11274 SDValue
DAGCombiner::
11275 ConstantFoldBITCASTofBUILD_VECTOR(SDNode
*BV
, EVT DstEltVT
) {
11276 EVT SrcEltVT
= BV
->getValueType(0).getVectorElementType();
11278 // If this is already the right type, we're done.
11279 if (SrcEltVT
== DstEltVT
) return SDValue(BV
, 0);
11281 unsigned SrcBitSize
= SrcEltVT
.getSizeInBits();
11282 unsigned DstBitSize
= DstEltVT
.getSizeInBits();
11284 // If this is a conversion of N elements of one type to N elements of another
11285 // type, convert each element. This handles FP<->INT cases.
11286 if (SrcBitSize
== DstBitSize
) {
11287 SmallVector
<SDValue
, 8> Ops
;
11288 for (SDValue Op
: BV
->op_values()) {
11289 // If the vector element type is not legal, the BUILD_VECTOR operands
11290 // are promoted and implicitly truncated. Make that explicit here.
11291 if (Op
.getValueType() != SrcEltVT
)
11292 Op
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(BV
), SrcEltVT
, Op
);
11293 Ops
.push_back(DAG
.getBitcast(DstEltVT
, Op
));
11294 AddToWorklist(Ops
.back().getNode());
11296 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
,
11297 BV
->getValueType(0).getVectorNumElements());
11298 return DAG
.getBuildVector(VT
, SDLoc(BV
), Ops
);
11301 // Otherwise, we're growing or shrinking the elements. To avoid having to
11302 // handle annoying details of growing/shrinking FP values, we convert them to
11304 if (SrcEltVT
.isFloatingPoint()) {
11305 // Convert the input float vector to a int vector where the elements are the
11307 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), SrcEltVT
.getSizeInBits());
11308 BV
= ConstantFoldBITCASTofBUILD_VECTOR(BV
, IntVT
).getNode();
11312 // Now we know the input is an integer vector. If the output is a FP type,
11313 // convert to integer first, then to FP of the right size.
11314 if (DstEltVT
.isFloatingPoint()) {
11315 EVT TmpVT
= EVT::getIntegerVT(*DAG
.getContext(), DstEltVT
.getSizeInBits());
11316 SDNode
*Tmp
= ConstantFoldBITCASTofBUILD_VECTOR(BV
, TmpVT
).getNode();
11318 // Next, convert to FP elements of the same size.
11319 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp
, DstEltVT
);
11324 // Okay, we know the src/dst types are both integers of differing types.
11325 // Handling growing first.
11326 assert(SrcEltVT
.isInteger() && DstEltVT
.isInteger());
11327 if (SrcBitSize
< DstBitSize
) {
11328 unsigned NumInputsPerOutput
= DstBitSize
/SrcBitSize
;
11330 SmallVector
<SDValue
, 8> Ops
;
11331 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
;
11332 i
+= NumInputsPerOutput
) {
11333 bool isLE
= DAG
.getDataLayout().isLittleEndian();
11334 APInt NewBits
= APInt(DstBitSize
, 0);
11335 bool EltIsUndef
= true;
11336 for (unsigned j
= 0; j
!= NumInputsPerOutput
; ++j
) {
11337 // Shift the previously computed bits over.
11338 NewBits
<<= SrcBitSize
;
11339 SDValue Op
= BV
->getOperand(i
+ (isLE
? (NumInputsPerOutput
-j
-1) : j
));
11340 if (Op
.isUndef()) continue;
11341 EltIsUndef
= false;
11343 NewBits
|= cast
<ConstantSDNode
>(Op
)->getAPIntValue().
11344 zextOrTrunc(SrcBitSize
).zext(DstBitSize
);
11348 Ops
.push_back(DAG
.getUNDEF(DstEltVT
));
11350 Ops
.push_back(DAG
.getConstant(NewBits
, DL
, DstEltVT
));
11353 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
, Ops
.size());
11354 return DAG
.getBuildVector(VT
, DL
, Ops
);
11357 // Finally, this must be the case where we are shrinking elements: each input
11358 // turns into multiple outputs.
11359 unsigned NumOutputsPerInput
= SrcBitSize
/DstBitSize
;
11360 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
,
11361 NumOutputsPerInput
*BV
->getNumOperands());
11362 SmallVector
<SDValue
, 8> Ops
;
11364 for (const SDValue
&Op
: BV
->op_values()) {
11365 if (Op
.isUndef()) {
11366 Ops
.append(NumOutputsPerInput
, DAG
.getUNDEF(DstEltVT
));
11370 APInt OpVal
= cast
<ConstantSDNode
>(Op
)->
11371 getAPIntValue().zextOrTrunc(SrcBitSize
);
11373 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
) {
11374 APInt ThisVal
= OpVal
.trunc(DstBitSize
);
11375 Ops
.push_back(DAG
.getConstant(ThisVal
, DL
, DstEltVT
));
11376 OpVal
.lshrInPlace(DstBitSize
);
11379 // For big endian targets, swap the order of the pieces of each element.
11380 if (DAG
.getDataLayout().isBigEndian())
11381 std::reverse(Ops
.end()-NumOutputsPerInput
, Ops
.end());
11384 return DAG
.getBuildVector(VT
, DL
, Ops
);
11387 static bool isContractable(SDNode
*N
) {
11388 SDNodeFlags F
= N
->getFlags();
11389 return F
.hasAllowContract() || F
.hasAllowReassociation();
11392 /// Try to perform FMA combining on a given FADD node.
11393 SDValue
DAGCombiner::visitFADDForFMACombine(SDNode
*N
) {
11394 SDValue N0
= N
->getOperand(0);
11395 SDValue N1
= N
->getOperand(1);
11396 EVT VT
= N
->getValueType(0);
11399 const TargetOptions
&Options
= DAG
.getTarget().Options
;
11401 // Floating-point multiply-add with intermediate rounding.
11402 bool HasFMAD
= (LegalOperations
&& TLI
.isOperationLegal(ISD::FMAD
, VT
));
11404 // Floating-point multiply-add without intermediate rounding.
11406 TLI
.isFMAFasterThanFMulAndFAdd(VT
) &&
11407 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
11409 // No valid opcode, do not combine.
11410 if (!HasFMAD
&& !HasFMA
)
11413 SDNodeFlags Flags
= N
->getFlags();
11414 bool CanFuse
= Options
.UnsafeFPMath
|| isContractable(N
);
11415 bool AllowFusionGlobally
= (Options
.AllowFPOpFusion
== FPOpFusion::Fast
||
11416 CanFuse
|| HasFMAD
);
11417 // If the addition is not contractable, do not combine.
11418 if (!AllowFusionGlobally
&& !isContractable(N
))
11421 const SelectionDAGTargetInfo
*STI
= DAG
.getSubtarget().getSelectionDAGInfo();
11422 if (STI
&& STI
->generateFMAsInMachineCombiner(OptLevel
))
11425 // Always prefer FMAD to FMA for precision.
11426 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
11427 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
11429 // Is the node an FMUL and contractable either due to global flags or
11431 auto isContractableFMUL
= [AllowFusionGlobally
](SDValue N
) {
11432 if (N
.getOpcode() != ISD::FMUL
)
11434 return AllowFusionGlobally
|| isContractable(N
.getNode());
11436 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
11437 // prefer to fold the multiply with fewer uses.
11438 if (Aggressive
&& isContractableFMUL(N0
) && isContractableFMUL(N1
)) {
11439 if (N0
.getNode()->use_size() > N1
.getNode()->use_size())
11443 // fold (fadd (fmul x, y), z) -> (fma x, y, z)
11444 if (isContractableFMUL(N0
) && (Aggressive
|| N0
->hasOneUse())) {
11445 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11446 N0
.getOperand(0), N0
.getOperand(1), N1
, Flags
);
11449 // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
11450 // Note: Commutes FADD operands.
11451 if (isContractableFMUL(N1
) && (Aggressive
|| N1
->hasOneUse())) {
11452 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11453 N1
.getOperand(0), N1
.getOperand(1), N0
, Flags
);
11456 // Look through FP_EXTEND nodes to do more combining.
11458 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
11459 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
11460 SDValue N00
= N0
.getOperand(0);
11461 if (isContractableFMUL(N00
) &&
11462 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
11463 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11464 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11465 N00
.getOperand(0)),
11466 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11467 N00
.getOperand(1)), N1
, Flags
);
11471 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
11472 // Note: Commutes FADD operands.
11473 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
11474 SDValue N10
= N1
.getOperand(0);
11475 if (isContractableFMUL(N10
) &&
11476 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N10
.getValueType())) {
11477 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11478 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11479 N10
.getOperand(0)),
11480 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11481 N10
.getOperand(1)), N0
, Flags
);
11485 // More folding opportunities when target permits.
11487 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z))
11489 N0
.getOpcode() == PreferredFusedOpcode
&&
11490 N0
.getOperand(2).getOpcode() == ISD::FMUL
&&
11491 N0
->hasOneUse() && N0
.getOperand(2)->hasOneUse()) {
11492 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11493 N0
.getOperand(0), N0
.getOperand(1),
11494 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11495 N0
.getOperand(2).getOperand(0),
11496 N0
.getOperand(2).getOperand(1),
11497 N1
, Flags
), Flags
);
11500 // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x))
11502 N1
->getOpcode() == PreferredFusedOpcode
&&
11503 N1
.getOperand(2).getOpcode() == ISD::FMUL
&&
11504 N1
->hasOneUse() && N1
.getOperand(2)->hasOneUse()) {
11505 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11506 N1
.getOperand(0), N1
.getOperand(1),
11507 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11508 N1
.getOperand(2).getOperand(0),
11509 N1
.getOperand(2).getOperand(1),
11510 N0
, Flags
), Flags
);
11514 // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
11515 // -> (fma x, y, (fma (fpext u), (fpext v), z))
11516 auto FoldFAddFMAFPExtFMul
= [&] (
11517 SDValue X
, SDValue Y
, SDValue U
, SDValue V
, SDValue Z
,
11518 SDNodeFlags Flags
) {
11519 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
, Y
,
11520 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11521 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, U
),
11522 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, V
),
11525 if (N0
.getOpcode() == PreferredFusedOpcode
) {
11526 SDValue N02
= N0
.getOperand(2);
11527 if (N02
.getOpcode() == ISD::FP_EXTEND
) {
11528 SDValue N020
= N02
.getOperand(0);
11529 if (isContractableFMUL(N020
) &&
11530 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N020
.getValueType())) {
11531 return FoldFAddFMAFPExtFMul(N0
.getOperand(0), N0
.getOperand(1),
11532 N020
.getOperand(0), N020
.getOperand(1),
11538 // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
11539 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
11540 // FIXME: This turns two single-precision and one double-precision
11541 // operation into two double-precision operations, which might not be
11542 // interesting for all targets, especially GPUs.
11543 auto FoldFAddFPExtFMAFMul
= [&] (
11544 SDValue X
, SDValue Y
, SDValue U
, SDValue V
, SDValue Z
,
11545 SDNodeFlags Flags
) {
11546 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11547 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, X
),
11548 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, Y
),
11549 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11550 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, U
),
11551 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, V
),
11554 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
11555 SDValue N00
= N0
.getOperand(0);
11556 if (N00
.getOpcode() == PreferredFusedOpcode
) {
11557 SDValue N002
= N00
.getOperand(2);
11558 if (isContractableFMUL(N002
) &&
11559 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
11560 return FoldFAddFPExtFMAFMul(N00
.getOperand(0), N00
.getOperand(1),
11561 N002
.getOperand(0), N002
.getOperand(1),
11567 // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
11568 // -> (fma y, z, (fma (fpext u), (fpext v), x))
11569 if (N1
.getOpcode() == PreferredFusedOpcode
) {
11570 SDValue N12
= N1
.getOperand(2);
11571 if (N12
.getOpcode() == ISD::FP_EXTEND
) {
11572 SDValue N120
= N12
.getOperand(0);
11573 if (isContractableFMUL(N120
) &&
11574 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N120
.getValueType())) {
11575 return FoldFAddFMAFPExtFMul(N1
.getOperand(0), N1
.getOperand(1),
11576 N120
.getOperand(0), N120
.getOperand(1),
11582 // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
11583 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
11584 // FIXME: This turns two single-precision and one double-precision
11585 // operation into two double-precision operations, which might not be
11586 // interesting for all targets, especially GPUs.
11587 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
11588 SDValue N10
= N1
.getOperand(0);
11589 if (N10
.getOpcode() == PreferredFusedOpcode
) {
11590 SDValue N102
= N10
.getOperand(2);
11591 if (isContractableFMUL(N102
) &&
11592 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N10
.getValueType())) {
11593 return FoldFAddFPExtFMAFMul(N10
.getOperand(0), N10
.getOperand(1),
11594 N102
.getOperand(0), N102
.getOperand(1),
11604 /// Try to perform FMA combining on a given FSUB node.
11605 SDValue
DAGCombiner::visitFSUBForFMACombine(SDNode
*N
) {
11606 SDValue N0
= N
->getOperand(0);
11607 SDValue N1
= N
->getOperand(1);
11608 EVT VT
= N
->getValueType(0);
11611 const TargetOptions
&Options
= DAG
.getTarget().Options
;
11612 // Floating-point multiply-add with intermediate rounding.
11613 bool HasFMAD
= (LegalOperations
&& TLI
.isOperationLegal(ISD::FMAD
, VT
));
11615 // Floating-point multiply-add without intermediate rounding.
11617 TLI
.isFMAFasterThanFMulAndFAdd(VT
) &&
11618 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
11620 // No valid opcode, do not combine.
11621 if (!HasFMAD
&& !HasFMA
)
11624 const SDNodeFlags Flags
= N
->getFlags();
11625 bool CanFuse
= Options
.UnsafeFPMath
|| isContractable(N
);
11626 bool AllowFusionGlobally
= (Options
.AllowFPOpFusion
== FPOpFusion::Fast
||
11627 CanFuse
|| HasFMAD
);
11629 // If the subtraction is not contractable, do not combine.
11630 if (!AllowFusionGlobally
&& !isContractable(N
))
11633 const SelectionDAGTargetInfo
*STI
= DAG
.getSubtarget().getSelectionDAGInfo();
11634 if (STI
&& STI
->generateFMAsInMachineCombiner(OptLevel
))
11637 // Always prefer FMAD to FMA for precision.
11638 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
11639 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
11641 // Is the node an FMUL and contractable either due to global flags or
11643 auto isContractableFMUL
= [AllowFusionGlobally
](SDValue N
) {
11644 if (N
.getOpcode() != ISD::FMUL
)
11646 return AllowFusionGlobally
|| isContractable(N
.getNode());
11649 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
11650 if (isContractableFMUL(N0
) && (Aggressive
|| N0
->hasOneUse())) {
11651 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11652 N0
.getOperand(0), N0
.getOperand(1),
11653 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
), Flags
);
11656 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
11657 // Note: Commutes FSUB operands.
11658 if (isContractableFMUL(N1
) && (Aggressive
|| N1
->hasOneUse())) {
11659 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11660 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11662 N1
.getOperand(1), N0
, Flags
);
11665 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
11666 if (N0
.getOpcode() == ISD::FNEG
&& isContractableFMUL(N0
.getOperand(0)) &&
11667 (Aggressive
|| (N0
->hasOneUse() && N0
.getOperand(0).hasOneUse()))) {
11668 SDValue N00
= N0
.getOperand(0).getOperand(0);
11669 SDValue N01
= N0
.getOperand(0).getOperand(1);
11670 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11671 DAG
.getNode(ISD::FNEG
, SL
, VT
, N00
), N01
,
11672 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
), Flags
);
11675 // Look through FP_EXTEND nodes to do more combining.
11677 // fold (fsub (fpext (fmul x, y)), z)
11678 // -> (fma (fpext x), (fpext y), (fneg z))
11679 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
11680 SDValue N00
= N0
.getOperand(0);
11681 if (isContractableFMUL(N00
) &&
11682 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
11683 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11684 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11685 N00
.getOperand(0)),
11686 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11687 N00
.getOperand(1)),
11688 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
), Flags
);
11692 // fold (fsub x, (fpext (fmul y, z)))
11693 // -> (fma (fneg (fpext y)), (fpext z), x)
11694 // Note: Commutes FSUB operands.
11695 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
11696 SDValue N10
= N1
.getOperand(0);
11697 if (isContractableFMUL(N10
) &&
11698 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N10
.getValueType())) {
11699 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11700 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11701 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11702 N10
.getOperand(0))),
11703 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11704 N10
.getOperand(1)),
11709 // fold (fsub (fpext (fneg (fmul, x, y))), z)
11710 // -> (fneg (fma (fpext x), (fpext y), z))
11711 // Note: This could be removed with appropriate canonicalization of the
11712 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
11713 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
11714 // from implementing the canonicalization in visitFSUB.
11715 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
11716 SDValue N00
= N0
.getOperand(0);
11717 if (N00
.getOpcode() == ISD::FNEG
) {
11718 SDValue N000
= N00
.getOperand(0);
11719 if (isContractableFMUL(N000
) &&
11720 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
11721 return DAG
.getNode(ISD::FNEG
, SL
, VT
,
11722 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11723 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11724 N000
.getOperand(0)),
11725 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11726 N000
.getOperand(1)),
11732 // fold (fsub (fneg (fpext (fmul, x, y))), z)
11733 // -> (fneg (fma (fpext x)), (fpext y), z)
11734 // Note: This could be removed with appropriate canonicalization of the
11735 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
11736 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
11737 // from implementing the canonicalization in visitFSUB.
11738 if (N0
.getOpcode() == ISD::FNEG
) {
11739 SDValue N00
= N0
.getOperand(0);
11740 if (N00
.getOpcode() == ISD::FP_EXTEND
) {
11741 SDValue N000
= N00
.getOperand(0);
11742 if (isContractableFMUL(N000
) &&
11743 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N000
.getValueType())) {
11744 return DAG
.getNode(ISD::FNEG
, SL
, VT
,
11745 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11746 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11747 N000
.getOperand(0)),
11748 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11749 N000
.getOperand(1)),
11755 // More folding opportunities when target permits.
11757 // fold (fsub (fma x, y, (fmul u, v)), z)
11758 // -> (fma x, y (fma u, v, (fneg z)))
11759 if (CanFuse
&& N0
.getOpcode() == PreferredFusedOpcode
&&
11760 isContractableFMUL(N0
.getOperand(2)) && N0
->hasOneUse() &&
11761 N0
.getOperand(2)->hasOneUse()) {
11762 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11763 N0
.getOperand(0), N0
.getOperand(1),
11764 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11765 N0
.getOperand(2).getOperand(0),
11766 N0
.getOperand(2).getOperand(1),
11767 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11768 N1
), Flags
), Flags
);
11771 // fold (fsub x, (fma y, z, (fmul u, v)))
11772 // -> (fma (fneg y), z, (fma (fneg u), v, x))
11773 if (CanFuse
&& N1
.getOpcode() == PreferredFusedOpcode
&&
11774 isContractableFMUL(N1
.getOperand(2))) {
11775 SDValue N20
= N1
.getOperand(2).getOperand(0);
11776 SDValue N21
= N1
.getOperand(2).getOperand(1);
11777 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11778 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11781 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11782 DAG
.getNode(ISD::FNEG
, SL
, VT
, N20
),
11783 N21
, N0
, Flags
), Flags
);
11787 // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
11788 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
11789 if (N0
.getOpcode() == PreferredFusedOpcode
) {
11790 SDValue N02
= N0
.getOperand(2);
11791 if (N02
.getOpcode() == ISD::FP_EXTEND
) {
11792 SDValue N020
= N02
.getOperand(0);
11793 if (isContractableFMUL(N020
) &&
11794 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N020
.getValueType())) {
11795 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11796 N0
.getOperand(0), N0
.getOperand(1),
11797 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11798 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11799 N020
.getOperand(0)),
11800 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11801 N020
.getOperand(1)),
11802 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11803 N1
), Flags
), Flags
);
11808 // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
11809 // -> (fma (fpext x), (fpext y),
11810 // (fma (fpext u), (fpext v), (fneg z)))
11811 // FIXME: This turns two single-precision and one double-precision
11812 // operation into two double-precision operations, which might not be
11813 // interesting for all targets, especially GPUs.
11814 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
11815 SDValue N00
= N0
.getOperand(0);
11816 if (N00
.getOpcode() == PreferredFusedOpcode
) {
11817 SDValue N002
= N00
.getOperand(2);
11818 if (isContractableFMUL(N002
) &&
11819 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
11820 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11821 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11822 N00
.getOperand(0)),
11823 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11824 N00
.getOperand(1)),
11825 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11826 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11827 N002
.getOperand(0)),
11828 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11829 N002
.getOperand(1)),
11830 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11831 N1
), Flags
), Flags
);
11836 // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
11837 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
11838 if (N1
.getOpcode() == PreferredFusedOpcode
&&
11839 N1
.getOperand(2).getOpcode() == ISD::FP_EXTEND
) {
11840 SDValue N120
= N1
.getOperand(2).getOperand(0);
11841 if (isContractableFMUL(N120
) &&
11842 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N120
.getValueType())) {
11843 SDValue N1200
= N120
.getOperand(0);
11844 SDValue N1201
= N120
.getOperand(1);
11845 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11846 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
.getOperand(0)),
11848 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11849 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11850 DAG
.getNode(ISD::FP_EXTEND
, SL
,
11852 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11854 N0
, Flags
), Flags
);
11858 // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
11859 // -> (fma (fneg (fpext y)), (fpext z),
11860 // (fma (fneg (fpext u)), (fpext v), x))
11861 // FIXME: This turns two single-precision and one double-precision
11862 // operation into two double-precision operations, which might not be
11863 // interesting for all targets, especially GPUs.
11864 if (N1
.getOpcode() == ISD::FP_EXTEND
&&
11865 N1
.getOperand(0).getOpcode() == PreferredFusedOpcode
) {
11866 SDValue CvtSrc
= N1
.getOperand(0);
11867 SDValue N100
= CvtSrc
.getOperand(0);
11868 SDValue N101
= CvtSrc
.getOperand(1);
11869 SDValue N102
= CvtSrc
.getOperand(2);
11870 if (isContractableFMUL(N102
) &&
11871 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, CvtSrc
.getValueType())) {
11872 SDValue N1020
= N102
.getOperand(0);
11873 SDValue N1021
= N102
.getOperand(1);
11874 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11875 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11876 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11878 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N101
),
11879 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11880 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11881 DAG
.getNode(ISD::FP_EXTEND
, SL
,
11883 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11885 N0
, Flags
), Flags
);
11893 /// Try to perform FMA combining on a given FMUL node based on the distributive
11894 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
11895 /// subtraction instead of addition).
11896 SDValue
DAGCombiner::visitFMULForFMADistributiveCombine(SDNode
*N
) {
11897 SDValue N0
= N
->getOperand(0);
11898 SDValue N1
= N
->getOperand(1);
11899 EVT VT
= N
->getValueType(0);
11901 const SDNodeFlags Flags
= N
->getFlags();
11903 assert(N
->getOpcode() == ISD::FMUL
&& "Expected FMUL Operation");
11905 const TargetOptions
&Options
= DAG
.getTarget().Options
;
11907 // The transforms below are incorrect when x == 0 and y == inf, because the
11908 // intermediate multiplication produces a nan.
11909 if (!Options
.NoInfsFPMath
)
11912 // Floating-point multiply-add without intermediate rounding.
11914 (Options
.AllowFPOpFusion
== FPOpFusion::Fast
|| Options
.UnsafeFPMath
) &&
11915 TLI
.isFMAFasterThanFMulAndFAdd(VT
) &&
11916 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
11918 // Floating-point multiply-add with intermediate rounding. This can result
11919 // in a less precise result due to the changed rounding order.
11920 bool HasFMAD
= Options
.UnsafeFPMath
&&
11921 (LegalOperations
&& TLI
.isOperationLegal(ISD::FMAD
, VT
));
11923 // No valid opcode, do not combine.
11924 if (!HasFMAD
&& !HasFMA
)
11927 // Always prefer FMAD to FMA for precision.
11928 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
11929 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
11931 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
11932 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
11933 auto FuseFADD
= [&](SDValue X
, SDValue Y
, const SDNodeFlags Flags
) {
11934 if (X
.getOpcode() == ISD::FADD
&& (Aggressive
|| X
->hasOneUse())) {
11935 if (auto *C
= isConstOrConstSplatFP(X
.getOperand(1), true)) {
11936 if (C
->isExactlyValue(+1.0))
11937 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
11939 if (C
->isExactlyValue(-1.0))
11940 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
11941 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
), Flags
);
11947 if (SDValue FMA
= FuseFADD(N0
, N1
, Flags
))
11949 if (SDValue FMA
= FuseFADD(N1
, N0
, Flags
))
11952 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
11953 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
11954 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
11955 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
11956 auto FuseFSUB
= [&](SDValue X
, SDValue Y
, const SDNodeFlags Flags
) {
11957 if (X
.getOpcode() == ISD::FSUB
&& (Aggressive
|| X
->hasOneUse())) {
11958 if (auto *C0
= isConstOrConstSplatFP(X
.getOperand(0), true)) {
11959 if (C0
->isExactlyValue(+1.0))
11960 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11961 DAG
.getNode(ISD::FNEG
, SL
, VT
, X
.getOperand(1)), Y
,
11963 if (C0
->isExactlyValue(-1.0))
11964 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11965 DAG
.getNode(ISD::FNEG
, SL
, VT
, X
.getOperand(1)), Y
,
11966 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
), Flags
);
11968 if (auto *C1
= isConstOrConstSplatFP(X
.getOperand(1), true)) {
11969 if (C1
->isExactlyValue(+1.0))
11970 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
11971 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
), Flags
);
11972 if (C1
->isExactlyValue(-1.0))
11973 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
11980 if (SDValue FMA
= FuseFSUB(N0
, N1
, Flags
))
11982 if (SDValue FMA
= FuseFSUB(N1
, N0
, Flags
))
11988 SDValue
DAGCombiner::visitFADD(SDNode
*N
) {
11989 SDValue N0
= N
->getOperand(0);
11990 SDValue N1
= N
->getOperand(1);
11991 bool N0CFP
= isConstantFPBuildVectorOrConstantFP(N0
);
11992 bool N1CFP
= isConstantFPBuildVectorOrConstantFP(N1
);
11993 EVT VT
= N
->getValueType(0);
11995 const TargetOptions
&Options
= DAG
.getTarget().Options
;
11996 const SDNodeFlags Flags
= N
->getFlags();
12000 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
12003 // fold (fadd c1, c2) -> c1 + c2
12004 if (N0CFP
&& N1CFP
)
12005 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N1
, Flags
);
12007 // canonicalize constant to RHS
12008 if (N0CFP
&& !N1CFP
)
12009 return DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, N0
, Flags
);
12011 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
12012 ConstantFPSDNode
*N1C
= isConstOrConstSplatFP(N1
, true);
12013 if (N1C
&& N1C
->isZero())
12014 if (N1C
->isNegative() || Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros())
12017 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
12020 // fold (fadd A, (fneg B)) -> (fsub A, B)
12021 if ((!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FSUB
, VT
)) &&
12022 isNegatibleForFree(N1
, LegalOperations
, TLI
, &Options
, ForCodeSize
) == 2)
12023 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N0
,
12024 GetNegatedExpression(N1
, DAG
, LegalOperations
,
12025 ForCodeSize
), Flags
);
12027 // fold (fadd (fneg A), B) -> (fsub B, A)
12028 if ((!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FSUB
, VT
)) &&
12029 isNegatibleForFree(N0
, LegalOperations
, TLI
, &Options
, ForCodeSize
) == 2)
12030 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N1
,
12031 GetNegatedExpression(N0
, DAG
, LegalOperations
,
12032 ForCodeSize
), Flags
);
12034 auto isFMulNegTwo
= [](SDValue FMul
) {
12035 if (!FMul
.hasOneUse() || FMul
.getOpcode() != ISD::FMUL
)
12037 auto *C
= isConstOrConstSplatFP(FMul
.getOperand(1), true);
12038 return C
&& C
->isExactlyValue(-2.0);
12041 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
12042 if (isFMulNegTwo(N0
)) {
12043 SDValue B
= N0
.getOperand(0);
12044 SDValue Add
= DAG
.getNode(ISD::FADD
, DL
, VT
, B
, B
, Flags
);
12045 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N1
, Add
, Flags
);
12047 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
12048 if (isFMulNegTwo(N1
)) {
12049 SDValue B
= N1
.getOperand(0);
12050 SDValue Add
= DAG
.getNode(ISD::FADD
, DL
, VT
, B
, B
, Flags
);
12051 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N0
, Add
, Flags
);
12054 // No FP constant should be created after legalization as Instruction
12055 // Selection pass has a hard time dealing with FP constants.
12056 bool AllowNewConst
= (Level
< AfterLegalizeDAG
);
12058 // If nnan is enabled, fold lots of things.
12059 if ((Options
.NoNaNsFPMath
|| Flags
.hasNoNaNs()) && AllowNewConst
) {
12060 // If allowed, fold (fadd (fneg x), x) -> 0.0
12061 if (N0
.getOpcode() == ISD::FNEG
&& N0
.getOperand(0) == N1
)
12062 return DAG
.getConstantFP(0.0, DL
, VT
);
12064 // If allowed, fold (fadd x, (fneg x)) -> 0.0
12065 if (N1
.getOpcode() == ISD::FNEG
&& N1
.getOperand(0) == N0
)
12066 return DAG
.getConstantFP(0.0, DL
, VT
);
12069 // If 'unsafe math' or reassoc and nsz, fold lots of things.
12070 // TODO: break out portions of the transformations below for which Unsafe is
12071 // considered and which do not require both nsz and reassoc
12072 if (((Options
.UnsafeFPMath
&& Options
.NoSignedZerosFPMath
) ||
12073 (Flags
.hasAllowReassociation() && Flags
.hasNoSignedZeros())) &&
12075 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2
12076 if (N1CFP
&& N0
.getOpcode() == ISD::FADD
&&
12077 isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1))) {
12078 SDValue NewC
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1), N1
, Flags
);
12079 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(0), NewC
, Flags
);
12082 // We can fold chains of FADD's of the same value into multiplications.
12083 // This transform is not safe in general because we are reducing the number
12084 // of rounding steps.
12085 if (TLI
.isOperationLegalOrCustom(ISD::FMUL
, VT
) && !N0CFP
&& !N1CFP
) {
12086 if (N0
.getOpcode() == ISD::FMUL
) {
12087 bool CFP00
= isConstantFPBuildVectorOrConstantFP(N0
.getOperand(0));
12088 bool CFP01
= isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1));
12090 // (fadd (fmul x, c), x) -> (fmul x, c+1)
12091 if (CFP01
&& !CFP00
&& N0
.getOperand(0) == N1
) {
12092 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1),
12093 DAG
.getConstantFP(1.0, DL
, VT
), Flags
);
12094 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, NewCFP
, Flags
);
12097 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
12098 if (CFP01
&& !CFP00
&& N1
.getOpcode() == ISD::FADD
&&
12099 N1
.getOperand(0) == N1
.getOperand(1) &&
12100 N0
.getOperand(0) == N1
.getOperand(0)) {
12101 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1),
12102 DAG
.getConstantFP(2.0, DL
, VT
), Flags
);
12103 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0), NewCFP
, Flags
);
12107 if (N1
.getOpcode() == ISD::FMUL
) {
12108 bool CFP10
= isConstantFPBuildVectorOrConstantFP(N1
.getOperand(0));
12109 bool CFP11
= isConstantFPBuildVectorOrConstantFP(N1
.getOperand(1));
12111 // (fadd x, (fmul x, c)) -> (fmul x, c+1)
12112 if (CFP11
&& !CFP10
&& N1
.getOperand(0) == N0
) {
12113 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N1
.getOperand(1),
12114 DAG
.getConstantFP(1.0, DL
, VT
), Flags
);
12115 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, NewCFP
, Flags
);
12118 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
12119 if (CFP11
&& !CFP10
&& N0
.getOpcode() == ISD::FADD
&&
12120 N0
.getOperand(0) == N0
.getOperand(1) &&
12121 N1
.getOperand(0) == N0
.getOperand(0)) {
12122 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N1
.getOperand(1),
12123 DAG
.getConstantFP(2.0, DL
, VT
), Flags
);
12124 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
.getOperand(0), NewCFP
, Flags
);
12128 if (N0
.getOpcode() == ISD::FADD
) {
12129 bool CFP00
= isConstantFPBuildVectorOrConstantFP(N0
.getOperand(0));
12130 // (fadd (fadd x, x), x) -> (fmul x, 3.0)
12131 if (!CFP00
&& N0
.getOperand(0) == N0
.getOperand(1) &&
12132 (N0
.getOperand(0) == N1
)) {
12133 return DAG
.getNode(ISD::FMUL
, DL
, VT
,
12134 N1
, DAG
.getConstantFP(3.0, DL
, VT
), Flags
);
12138 if (N1
.getOpcode() == ISD::FADD
) {
12139 bool CFP10
= isConstantFPBuildVectorOrConstantFP(N1
.getOperand(0));
12140 // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
12141 if (!CFP10
&& N1
.getOperand(0) == N1
.getOperand(1) &&
12142 N1
.getOperand(0) == N0
) {
12143 return DAG
.getNode(ISD::FMUL
, DL
, VT
,
12144 N0
, DAG
.getConstantFP(3.0, DL
, VT
), Flags
);
12148 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
12149 if (N0
.getOpcode() == ISD::FADD
&& N1
.getOpcode() == ISD::FADD
&&
12150 N0
.getOperand(0) == N0
.getOperand(1) &&
12151 N1
.getOperand(0) == N1
.getOperand(1) &&
12152 N0
.getOperand(0) == N1
.getOperand(0)) {
12153 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0),
12154 DAG
.getConstantFP(4.0, DL
, VT
), Flags
);
12157 } // enable-unsafe-fp-math
12159 // FADD -> FMA combines:
12160 if (SDValue Fused
= visitFADDForFMACombine(N
)) {
12161 AddToWorklist(Fused
.getNode());
12167 SDValue
DAGCombiner::visitFSUB(SDNode
*N
) {
12168 SDValue N0
= N
->getOperand(0);
12169 SDValue N1
= N
->getOperand(1);
12170 ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
, true);
12171 ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
, true);
12172 EVT VT
= N
->getValueType(0);
12174 const TargetOptions
&Options
= DAG
.getTarget().Options
;
12175 const SDNodeFlags Flags
= N
->getFlags();
12179 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
12182 // fold (fsub c1, c2) -> c1-c2
12183 if (N0CFP
&& N1CFP
)
12184 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N0
, N1
, Flags
);
12186 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
12189 // (fsub A, 0) -> A
12190 if (N1CFP
&& N1CFP
->isZero()) {
12191 if (!N1CFP
->isNegative() || Options
.NoSignedZerosFPMath
||
12192 Flags
.hasNoSignedZeros()) {
12198 // (fsub x, x) -> 0.0
12199 if (Options
.NoNaNsFPMath
|| Flags
.hasNoNaNs())
12200 return DAG
.getConstantFP(0.0f
, DL
, VT
);
12203 // (fsub -0.0, N1) -> -N1
12204 // NOTE: It is safe to transform an FSUB(-0.0,X) into an FNEG(X), since the
12205 // FSUB does not specify the sign bit of a NaN. Also note that for
12206 // the same reason, the inverse transform is not safe, unless fast math
12207 // flags are in play.
12208 if (N0CFP
&& N0CFP
->isZero()) {
12209 if (N0CFP
->isNegative() ||
12210 (Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros())) {
12211 if (isNegatibleForFree(N1
, LegalOperations
, TLI
, &Options
, ForCodeSize
))
12212 return GetNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
);
12213 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
12214 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
, Flags
);
12218 if (((Options
.UnsafeFPMath
&& Options
.NoSignedZerosFPMath
) ||
12219 (Flags
.hasAllowReassociation() && Flags
.hasNoSignedZeros()))
12220 && N1
.getOpcode() == ISD::FADD
) {
12221 // X - (X + Y) -> -Y
12222 if (N0
== N1
->getOperand(0))
12223 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
->getOperand(1), Flags
);
12224 // X - (Y + X) -> -Y
12225 if (N0
== N1
->getOperand(1))
12226 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
->getOperand(0), Flags
);
12229 // fold (fsub A, (fneg B)) -> (fadd A, B)
12230 if (isNegatibleForFree(N1
, LegalOperations
, TLI
, &Options
, ForCodeSize
))
12231 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
,
12232 GetNegatedExpression(N1
, DAG
, LegalOperations
,
12233 ForCodeSize
), Flags
);
12235 // FSUB -> FMA combines:
12236 if (SDValue Fused
= visitFSUBForFMACombine(N
)) {
12237 AddToWorklist(Fused
.getNode());
12244 /// Return true if both inputs are at least as cheap in negated form and at
12245 /// least one input is strictly cheaper in negated form.
12246 bool DAGCombiner::isCheaperToUseNegatedFPOps(SDValue X
, SDValue Y
) {
12247 const TargetOptions
&Options
= DAG
.getTarget().Options
;
12248 if (char LHSNeg
= isNegatibleForFree(X
, LegalOperations
, TLI
, &Options
,
12250 if (char RHSNeg
= isNegatibleForFree(Y
, LegalOperations
, TLI
, &Options
,
12252 // Both negated operands are at least as cheap as their counterparts.
12253 // Check to see if at least one is cheaper negated.
12254 if (LHSNeg
== 2 || RHSNeg
== 2)
12260 SDValue
DAGCombiner::visitFMUL(SDNode
*N
) {
12261 SDValue N0
= N
->getOperand(0);
12262 SDValue N1
= N
->getOperand(1);
12263 ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
, true);
12264 ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
, true);
12265 EVT VT
= N
->getValueType(0);
12267 const TargetOptions
&Options
= DAG
.getTarget().Options
;
12268 const SDNodeFlags Flags
= N
->getFlags();
12271 if (VT
.isVector()) {
12272 // This just handles C1 * C2 for vectors. Other vector folds are below.
12273 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
12277 // fold (fmul c1, c2) -> c1*c2
12278 if (N0CFP
&& N1CFP
)
12279 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, N1
, Flags
);
12281 // canonicalize constant to RHS
12282 if (isConstantFPBuildVectorOrConstantFP(N0
) &&
12283 !isConstantFPBuildVectorOrConstantFP(N1
))
12284 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, N0
, Flags
);
12286 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
12289 if ((Options
.NoNaNsFPMath
&& Options
.NoSignedZerosFPMath
) ||
12290 (Flags
.hasNoNaNs() && Flags
.hasNoSignedZeros())) {
12291 // fold (fmul A, 0) -> 0
12292 if (N1CFP
&& N1CFP
->isZero())
12296 if (Options
.UnsafeFPMath
|| Flags
.hasAllowReassociation()) {
12297 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2
12298 if (isConstantFPBuildVectorOrConstantFP(N1
) &&
12299 N0
.getOpcode() == ISD::FMUL
) {
12300 SDValue N00
= N0
.getOperand(0);
12301 SDValue N01
= N0
.getOperand(1);
12302 // Avoid an infinite loop by making sure that N00 is not a constant
12303 // (the inner multiply has not been constant folded yet).
12304 if (isConstantFPBuildVectorOrConstantFP(N01
) &&
12305 !isConstantFPBuildVectorOrConstantFP(N00
)) {
12306 SDValue MulConsts
= DAG
.getNode(ISD::FMUL
, DL
, VT
, N01
, N1
, Flags
);
12307 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N00
, MulConsts
, Flags
);
12311 // Match a special-case: we convert X * 2.0 into fadd.
12312 // fmul (fadd X, X), C -> fmul X, 2.0 * C
12313 if (N0
.getOpcode() == ISD::FADD
&& N0
.hasOneUse() &&
12314 N0
.getOperand(0) == N0
.getOperand(1)) {
12315 const SDValue Two
= DAG
.getConstantFP(2.0, DL
, VT
);
12316 SDValue MulConsts
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Two
, N1
, Flags
);
12317 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0), MulConsts
, Flags
);
12321 // fold (fmul X, 2.0) -> (fadd X, X)
12322 if (N1CFP
&& N1CFP
->isExactlyValue(+2.0))
12323 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N0
, Flags
);
12325 // fold (fmul X, -1.0) -> (fneg X)
12326 if (N1CFP
&& N1CFP
->isExactlyValue(-1.0))
12327 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
12328 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N0
);
12330 // -N0 * -N1 --> N0 * N1
12331 if (isCheaperToUseNegatedFPOps(N0
, N1
)) {
12332 SDValue NegN0
= GetNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
);
12333 SDValue NegN1
= GetNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
);
12334 return DAG
.getNode(ISD::FMUL
, DL
, VT
, NegN0
, NegN1
, Flags
);
12337 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
12338 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
12339 if (Flags
.hasNoNaNs() && Flags
.hasNoSignedZeros() &&
12340 (N0
.getOpcode() == ISD::SELECT
|| N1
.getOpcode() == ISD::SELECT
) &&
12341 TLI
.isOperationLegal(ISD::FABS
, VT
)) {
12342 SDValue Select
= N0
, X
= N1
;
12343 if (Select
.getOpcode() != ISD::SELECT
)
12344 std::swap(Select
, X
);
12346 SDValue Cond
= Select
.getOperand(0);
12347 auto TrueOpnd
= dyn_cast
<ConstantFPSDNode
>(Select
.getOperand(1));
12348 auto FalseOpnd
= dyn_cast
<ConstantFPSDNode
>(Select
.getOperand(2));
12350 if (TrueOpnd
&& FalseOpnd
&&
12351 Cond
.getOpcode() == ISD::SETCC
&& Cond
.getOperand(0) == X
&&
12352 isa
<ConstantFPSDNode
>(Cond
.getOperand(1)) &&
12353 cast
<ConstantFPSDNode
>(Cond
.getOperand(1))->isExactlyValue(0.0)) {
12354 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
12363 std::swap(TrueOpnd
, FalseOpnd
);
12371 if (TrueOpnd
->isExactlyValue(-1.0) && FalseOpnd
->isExactlyValue(1.0) &&
12372 TLI
.isOperationLegal(ISD::FNEG
, VT
))
12373 return DAG
.getNode(ISD::FNEG
, DL
, VT
,
12374 DAG
.getNode(ISD::FABS
, DL
, VT
, X
));
12375 if (TrueOpnd
->isExactlyValue(1.0) && FalseOpnd
->isExactlyValue(-1.0))
12376 return DAG
.getNode(ISD::FABS
, DL
, VT
, X
);
12383 // FMUL -> FMA combines:
12384 if (SDValue Fused
= visitFMULForFMADistributiveCombine(N
)) {
12385 AddToWorklist(Fused
.getNode());
12392 SDValue
DAGCombiner::visitFMA(SDNode
*N
) {
12393 SDValue N0
= N
->getOperand(0);
12394 SDValue N1
= N
->getOperand(1);
12395 SDValue N2
= N
->getOperand(2);
12396 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
12397 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
12398 EVT VT
= N
->getValueType(0);
12400 const TargetOptions
&Options
= DAG
.getTarget().Options
;
12402 // FMA nodes have flags that propagate to the created nodes.
12403 const SDNodeFlags Flags
= N
->getFlags();
12404 bool UnsafeFPMath
= Options
.UnsafeFPMath
|| isContractable(N
);
12406 // Constant fold FMA.
12407 if (isa
<ConstantFPSDNode
>(N0
) &&
12408 isa
<ConstantFPSDNode
>(N1
) &&
12409 isa
<ConstantFPSDNode
>(N2
)) {
12410 return DAG
.getNode(ISD::FMA
, DL
, VT
, N0
, N1
, N2
);
12413 // (-N0 * -N1) + N2 --> (N0 * N1) + N2
12414 if (isCheaperToUseNegatedFPOps(N0
, N1
)) {
12415 SDValue NegN0
= GetNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
);
12416 SDValue NegN1
= GetNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
);
12417 return DAG
.getNode(ISD::FMA
, DL
, VT
, NegN0
, NegN1
, N2
, Flags
);
12420 if (UnsafeFPMath
) {
12421 if (N0CFP
&& N0CFP
->isZero())
12423 if (N1CFP
&& N1CFP
->isZero())
12426 // TODO: The FMA node should have flags that propagate to these nodes.
12427 if (N0CFP
&& N0CFP
->isExactlyValue(1.0))
12428 return DAG
.getNode(ISD::FADD
, SDLoc(N
), VT
, N1
, N2
);
12429 if (N1CFP
&& N1CFP
->isExactlyValue(1.0))
12430 return DAG
.getNode(ISD::FADD
, SDLoc(N
), VT
, N0
, N2
);
12432 // Canonicalize (fma c, x, y) -> (fma x, c, y)
12433 if (isConstantFPBuildVectorOrConstantFP(N0
) &&
12434 !isConstantFPBuildVectorOrConstantFP(N1
))
12435 return DAG
.getNode(ISD::FMA
, SDLoc(N
), VT
, N1
, N0
, N2
);
12437 if (UnsafeFPMath
) {
12438 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
12439 if (N2
.getOpcode() == ISD::FMUL
&& N0
== N2
.getOperand(0) &&
12440 isConstantFPBuildVectorOrConstantFP(N1
) &&
12441 isConstantFPBuildVectorOrConstantFP(N2
.getOperand(1))) {
12442 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
12443 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, N2
.getOperand(1),
12447 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
12448 if (N0
.getOpcode() == ISD::FMUL
&&
12449 isConstantFPBuildVectorOrConstantFP(N1
) &&
12450 isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1))) {
12451 return DAG
.getNode(ISD::FMA
, DL
, VT
,
12453 DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, N0
.getOperand(1),
12459 // (fma x, 1, y) -> (fadd x, y)
12460 // (fma x, -1, y) -> (fadd (fneg x), y)
12462 if (N1CFP
->isExactlyValue(1.0))
12463 // TODO: The FMA node should have flags that propagate to this node.
12464 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N2
);
12466 if (N1CFP
->isExactlyValue(-1.0) &&
12467 (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))) {
12468 SDValue RHSNeg
= DAG
.getNode(ISD::FNEG
, DL
, VT
, N0
);
12469 AddToWorklist(RHSNeg
.getNode());
12470 // TODO: The FMA node should have flags that propagate to this node.
12471 return DAG
.getNode(ISD::FADD
, DL
, VT
, N2
, RHSNeg
);
12474 // fma (fneg x), K, y -> fma x -K, y
12475 if (N0
.getOpcode() == ISD::FNEG
&&
12476 (TLI
.isOperationLegal(ISD::ConstantFP
, VT
) ||
12477 (N1
.hasOneUse() && !TLI
.isFPImmLegal(N1CFP
->getValueAPF(), VT
,
12479 return DAG
.getNode(ISD::FMA
, DL
, VT
, N0
.getOperand(0),
12480 DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
, Flags
), N2
);
12484 if (UnsafeFPMath
) {
12485 // (fma x, c, x) -> (fmul x, (c+1))
12486 if (N1CFP
&& N0
== N2
) {
12487 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
12488 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
,
12489 DAG
.getConstantFP(1.0, DL
, VT
), Flags
),
12493 // (fma x, c, (fneg x)) -> (fmul x, (c-1))
12494 if (N1CFP
&& N2
.getOpcode() == ISD::FNEG
&& N2
.getOperand(0) == N0
) {
12495 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
12496 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
,
12497 DAG
.getConstantFP(-1.0, DL
, VT
), Flags
),
12505 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12507 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
12508 // Notice that this is not always beneficial. One reason is different targets
12509 // may have different costs for FDIV and FMUL, so sometimes the cost of two
12510 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
12511 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
12512 SDValue
DAGCombiner::combineRepeatedFPDivisors(SDNode
*N
) {
12513 // TODO: Limit this transform based on optsize/minsize - it always creates at
12514 // least 1 extra instruction. But the perf win may be substantial enough
12515 // that only minsize should restrict this.
12516 bool UnsafeMath
= DAG
.getTarget().Options
.UnsafeFPMath
;
12517 const SDNodeFlags Flags
= N
->getFlags();
12518 if (!UnsafeMath
&& !Flags
.hasAllowReciprocal())
12521 // Skip if current node is a reciprocal/fneg-reciprocal.
12522 SDValue N0
= N
->getOperand(0);
12523 ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
, /* AllowUndefs */ true);
12524 if (N0CFP
&& (N0CFP
->isExactlyValue(1.0) || N0CFP
->isExactlyValue(-1.0)))
12527 // Exit early if the target does not want this transform or if there can't
12528 // possibly be enough uses of the divisor to make the transform worthwhile.
12529 SDValue N1
= N
->getOperand(1);
12530 unsigned MinUses
= TLI
.combineRepeatedFPDivisors();
12532 // For splat vectors, scale the number of uses by the splat factor. If we can
12533 // convert the division into a scalar op, that will likely be much faster.
12534 unsigned NumElts
= 1;
12535 EVT VT
= N
->getValueType(0);
12536 if (VT
.isVector() && DAG
.isSplatValue(N1
))
12537 NumElts
= VT
.getVectorNumElements();
12539 if (!MinUses
|| (N1
->use_size() * NumElts
) < MinUses
)
12542 // Find all FDIV users of the same divisor.
12543 // Use a set because duplicates may be present in the user list.
12544 SetVector
<SDNode
*> Users
;
12545 for (auto *U
: N1
->uses()) {
12546 if (U
->getOpcode() == ISD::FDIV
&& U
->getOperand(1) == N1
) {
12547 // This division is eligible for optimization only if global unsafe math
12548 // is enabled or if this division allows reciprocal formation.
12549 if (UnsafeMath
|| U
->getFlags().hasAllowReciprocal())
12554 // Now that we have the actual number of divisor uses, make sure it meets
12555 // the minimum threshold specified by the target.
12556 if ((Users
.size() * NumElts
) < MinUses
)
12560 SDValue FPOne
= DAG
.getConstantFP(1.0, DL
, VT
);
12561 SDValue Reciprocal
= DAG
.getNode(ISD::FDIV
, DL
, VT
, FPOne
, N1
, Flags
);
12563 // Dividend / Divisor -> Dividend * Reciprocal
12564 for (auto *U
: Users
) {
12565 SDValue Dividend
= U
->getOperand(0);
12566 if (Dividend
!= FPOne
) {
12567 SDValue NewNode
= DAG
.getNode(ISD::FMUL
, SDLoc(U
), VT
, Dividend
,
12568 Reciprocal
, Flags
);
12569 CombineTo(U
, NewNode
);
12570 } else if (U
!= Reciprocal
.getNode()) {
12571 // In the absence of fast-math-flags, this user node is always the
12572 // same node as Reciprocal, but with FMF they may be different nodes.
12573 CombineTo(U
, Reciprocal
);
12576 return SDValue(N
, 0); // N was replaced.
12579 SDValue
DAGCombiner::visitFDIV(SDNode
*N
) {
12580 SDValue N0
= N
->getOperand(0);
12581 SDValue N1
= N
->getOperand(1);
12582 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
12583 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
12584 EVT VT
= N
->getValueType(0);
12586 const TargetOptions
&Options
= DAG
.getTarget().Options
;
12587 SDNodeFlags Flags
= N
->getFlags();
12591 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
12594 // fold (fdiv c1, c2) -> c1/c2
12595 if (N0CFP
&& N1CFP
)
12596 return DAG
.getNode(ISD::FDIV
, SDLoc(N
), VT
, N0
, N1
, Flags
);
12598 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
12601 if (SDValue V
= combineRepeatedFPDivisors(N
))
12604 if (Options
.UnsafeFPMath
|| Flags
.hasAllowReciprocal()) {
12605 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
12607 // Compute the reciprocal 1.0 / c2.
12608 const APFloat
&N1APF
= N1CFP
->getValueAPF();
12609 APFloat
Recip(N1APF
.getSemantics(), 1); // 1.0
12610 APFloat::opStatus st
= Recip
.divide(N1APF
, APFloat::rmNearestTiesToEven
);
12611 // Only do the transform if the reciprocal is a legal fp immediate that
12612 // isn't too nasty (eg NaN, denormal, ...).
12613 if ((st
== APFloat::opOK
|| st
== APFloat::opInexact
) && // Not too nasty
12614 (!LegalOperations
||
12615 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
12616 // backend)... we should handle this gracefully after Legalize.
12617 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
12618 TLI
.isOperationLegal(ISD::ConstantFP
, VT
) ||
12619 TLI
.isFPImmLegal(Recip
, VT
, ForCodeSize
)))
12620 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
12621 DAG
.getConstantFP(Recip
, DL
, VT
), Flags
);
12624 // If this FDIV is part of a reciprocal square root, it may be folded
12625 // into a target-specific square root estimate instruction.
12626 if (N1
.getOpcode() == ISD::FSQRT
) {
12627 if (SDValue RV
= buildRsqrtEstimate(N1
.getOperand(0), Flags
))
12628 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
, Flags
);
12629 } else if (N1
.getOpcode() == ISD::FP_EXTEND
&&
12630 N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
12631 if (SDValue RV
= buildRsqrtEstimate(N1
.getOperand(0).getOperand(0),
12633 RV
= DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N1
), VT
, RV
);
12634 AddToWorklist(RV
.getNode());
12635 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
, Flags
);
12637 } else if (N1
.getOpcode() == ISD::FP_ROUND
&&
12638 N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
12639 if (SDValue RV
= buildRsqrtEstimate(N1
.getOperand(0).getOperand(0),
12641 RV
= DAG
.getNode(ISD::FP_ROUND
, SDLoc(N1
), VT
, RV
, N1
.getOperand(1));
12642 AddToWorklist(RV
.getNode());
12643 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
, Flags
);
12645 } else if (N1
.getOpcode() == ISD::FMUL
) {
12646 // Look through an FMUL. Even though this won't remove the FDIV directly,
12647 // it's still worthwhile to get rid of the FSQRT if possible.
12650 if (N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
12651 SqrtOp
= N1
.getOperand(0);
12652 OtherOp
= N1
.getOperand(1);
12653 } else if (N1
.getOperand(1).getOpcode() == ISD::FSQRT
) {
12654 SqrtOp
= N1
.getOperand(1);
12655 OtherOp
= N1
.getOperand(0);
12657 if (SqrtOp
.getNode()) {
12658 // We found a FSQRT, so try to make this fold:
12659 // x / (y * sqrt(z)) -> x * (rsqrt(z) / y)
12660 if (SDValue RV
= buildRsqrtEstimate(SqrtOp
.getOperand(0), Flags
)) {
12661 RV
= DAG
.getNode(ISD::FDIV
, SDLoc(N1
), VT
, RV
, OtherOp
, Flags
);
12662 AddToWorklist(RV
.getNode());
12663 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
, Flags
);
12668 // Fold into a reciprocal estimate and multiply instead of a real divide.
12669 if (SDValue RV
= BuildReciprocalEstimate(N1
, Flags
)) {
12670 AddToWorklist(RV
.getNode());
12671 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
, Flags
);
12675 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
12676 if (char LHSNeg
= isNegatibleForFree(N0
, LegalOperations
, TLI
, &Options
,
12678 if (char RHSNeg
= isNegatibleForFree(N1
, LegalOperations
, TLI
, &Options
,
12680 // Both can be negated for free, check to see if at least one is cheaper
12682 if (LHSNeg
== 2 || RHSNeg
== 2)
12683 return DAG
.getNode(ISD::FDIV
, SDLoc(N
), VT
,
12684 GetNegatedExpression(N0
, DAG
, LegalOperations
,
12686 GetNegatedExpression(N1
, DAG
, LegalOperations
,
12695 SDValue
DAGCombiner::visitFREM(SDNode
*N
) {
12696 SDValue N0
= N
->getOperand(0);
12697 SDValue N1
= N
->getOperand(1);
12698 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
12699 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
12700 EVT VT
= N
->getValueType(0);
12702 // fold (frem c1, c2) -> fmod(c1,c2)
12703 if (N0CFP
&& N1CFP
)
12704 return DAG
.getNode(ISD::FREM
, SDLoc(N
), VT
, N0
, N1
, N
->getFlags());
12706 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
12712 SDValue
DAGCombiner::visitFSQRT(SDNode
*N
) {
12713 SDNodeFlags Flags
= N
->getFlags();
12714 if (!DAG
.getTarget().Options
.UnsafeFPMath
&&
12715 !Flags
.hasApproximateFuncs())
12718 SDValue N0
= N
->getOperand(0);
12719 if (TLI
.isFsqrtCheap(N0
, DAG
))
12722 // FSQRT nodes have flags that propagate to the created nodes.
12723 return buildSqrtEstimate(N0
, Flags
);
12726 /// copysign(x, fp_extend(y)) -> copysign(x, y)
12727 /// copysign(x, fp_round(y)) -> copysign(x, y)
12728 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode
*N
) {
12729 SDValue N1
= N
->getOperand(1);
12730 if ((N1
.getOpcode() == ISD::FP_EXTEND
||
12731 N1
.getOpcode() == ISD::FP_ROUND
)) {
12732 // Do not optimize out type conversion of f128 type yet.
12733 // For some targets like x86_64, configuration is changed to keep one f128
12734 // value in one SSE register, but instruction selection cannot handle
12735 // FCOPYSIGN on SSE registers yet.
12736 EVT N1VT
= N1
->getValueType(0);
12737 EVT N1Op0VT
= N1
->getOperand(0).getValueType();
12738 return (N1VT
== N1Op0VT
|| N1Op0VT
!= MVT::f128
);
12743 SDValue
DAGCombiner::visitFCOPYSIGN(SDNode
*N
) {
12744 SDValue N0
= N
->getOperand(0);
12745 SDValue N1
= N
->getOperand(1);
12746 bool N0CFP
= isConstantFPBuildVectorOrConstantFP(N0
);
12747 bool N1CFP
= isConstantFPBuildVectorOrConstantFP(N1
);
12748 EVT VT
= N
->getValueType(0);
12750 if (N0CFP
&& N1CFP
) // Constant fold
12751 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
);
12753 if (ConstantFPSDNode
*N1C
= isConstOrConstSplatFP(N
->getOperand(1))) {
12754 const APFloat
&V
= N1C
->getValueAPF();
12755 // copysign(x, c1) -> fabs(x) iff ispos(c1)
12756 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
12757 if (!V
.isNegative()) {
12758 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FABS
, VT
))
12759 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
12761 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
12762 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
,
12763 DAG
.getNode(ISD::FABS
, SDLoc(N0
), VT
, N0
));
12767 // copysign(fabs(x), y) -> copysign(x, y)
12768 // copysign(fneg(x), y) -> copysign(x, y)
12769 // copysign(copysign(x,z), y) -> copysign(x, y)
12770 if (N0
.getOpcode() == ISD::FABS
|| N0
.getOpcode() == ISD::FNEG
||
12771 N0
.getOpcode() == ISD::FCOPYSIGN
)
12772 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
12774 // copysign(x, abs(y)) -> abs(x)
12775 if (N1
.getOpcode() == ISD::FABS
)
12776 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
12778 // copysign(x, copysign(y,z)) -> copysign(x, z)
12779 if (N1
.getOpcode() == ISD::FCOPYSIGN
)
12780 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
.getOperand(1));
12782 // copysign(x, fp_extend(y)) -> copysign(x, y)
12783 // copysign(x, fp_round(y)) -> copysign(x, y)
12784 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N
))
12785 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
.getOperand(0));
12790 SDValue
DAGCombiner::visitFPOW(SDNode
*N
) {
12791 ConstantFPSDNode
*ExponentC
= isConstOrConstSplatFP(N
->getOperand(1));
12795 // Try to convert x ** (1/3) into cube root.
12796 // TODO: Handle the various flavors of long double.
12797 // TODO: Since we're approximating, we don't need an exact 1/3 exponent.
12798 // Some range near 1/3 should be fine.
12799 EVT VT
= N
->getValueType(0);
12800 if ((VT
== MVT::f32
&& ExponentC
->getValueAPF().isExactlyValue(1.0f
/3.0f
)) ||
12801 (VT
== MVT::f64
&& ExponentC
->getValueAPF().isExactlyValue(1.0/3.0))) {
12802 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
12803 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
12804 // pow(-val, 1/3) = nan; cbrt(-val) = -num.
12805 // For regular numbers, rounding may cause the results to differ.
12806 // Therefore, we require { nsz ninf nnan afn } for this transform.
12807 // TODO: We could select out the special cases if we don't have nsz/ninf.
12808 SDNodeFlags Flags
= N
->getFlags();
12809 if (!Flags
.hasNoSignedZeros() || !Flags
.hasNoInfs() || !Flags
.hasNoNaNs() ||
12810 !Flags
.hasApproximateFuncs())
12813 // Do not create a cbrt() libcall if the target does not have it, and do not
12814 // turn a pow that has lowering support into a cbrt() libcall.
12815 if (!DAG
.getLibInfo().has(LibFunc_cbrt
) ||
12816 (!DAG
.getTargetLoweringInfo().isOperationExpand(ISD::FPOW
, VT
) &&
12817 DAG
.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT
, VT
)))
12820 return DAG
.getNode(ISD::FCBRT
, SDLoc(N
), VT
, N
->getOperand(0), Flags
);
12823 // Try to convert x ** (1/4) and x ** (3/4) into square roots.
12824 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
12825 // TODO: This could be extended (using a target hook) to handle smaller
12826 // power-of-2 fractional exponents.
12827 bool ExponentIs025
= ExponentC
->getValueAPF().isExactlyValue(0.25);
12828 bool ExponentIs075
= ExponentC
->getValueAPF().isExactlyValue(0.75);
12829 if (ExponentIs025
|| ExponentIs075
) {
12830 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
12831 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN.
12832 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0.
12833 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN.
12834 // For regular numbers, rounding may cause the results to differ.
12835 // Therefore, we require { nsz ninf afn } for this transform.
12836 // TODO: We could select out the special cases if we don't have nsz/ninf.
12837 SDNodeFlags Flags
= N
->getFlags();
12839 // We only need no signed zeros for the 0.25 case.
12840 if ((!Flags
.hasNoSignedZeros() && ExponentIs025
) || !Flags
.hasNoInfs() ||
12841 !Flags
.hasApproximateFuncs())
12844 // Don't double the number of libcalls. We are trying to inline fast code.
12845 if (!DAG
.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT
, VT
))
12848 // Assume that libcalls are the smallest code.
12849 // TODO: This restriction should probably be lifted for vectors.
12850 if (DAG
.getMachineFunction().getFunction().hasOptSize())
12853 // pow(X, 0.25) --> sqrt(sqrt(X))
12855 SDValue Sqrt
= DAG
.getNode(ISD::FSQRT
, DL
, VT
, N
->getOperand(0), Flags
);
12856 SDValue SqrtSqrt
= DAG
.getNode(ISD::FSQRT
, DL
, VT
, Sqrt
, Flags
);
12859 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X))
12860 return DAG
.getNode(ISD::FMUL
, DL
, VT
, Sqrt
, SqrtSqrt
, Flags
);
12866 static SDValue
foldFPToIntToFP(SDNode
*N
, SelectionDAG
&DAG
,
12867 const TargetLowering
&TLI
) {
12868 // This optimization is guarded by a function attribute because it may produce
12869 // unexpected results. Ie, programs may be relying on the platform-specific
12870 // undefined behavior when the float-to-int conversion overflows.
12871 const Function
&F
= DAG
.getMachineFunction().getFunction();
12872 Attribute StrictOverflow
= F
.getFnAttribute("strict-float-cast-overflow");
12873 if (StrictOverflow
.getValueAsString().equals("false"))
12876 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be
12877 // replacing casts with a libcall. We also must be allowed to ignore -0.0
12878 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
12879 // conversions would return +0.0.
12880 // FIXME: We should be able to use node-level FMF here.
12881 // TODO: If strict math, should we use FABS (+ range check for signed cast)?
12882 EVT VT
= N
->getValueType(0);
12883 if (!TLI
.isOperationLegal(ISD::FTRUNC
, VT
) ||
12884 !DAG
.getTarget().Options
.NoSignedZerosFPMath
)
12887 // fptosi/fptoui round towards zero, so converting from FP to integer and
12888 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
12889 SDValue N0
= N
->getOperand(0);
12890 if (N
->getOpcode() == ISD::SINT_TO_FP
&& N0
.getOpcode() == ISD::FP_TO_SINT
&&
12891 N0
.getOperand(0).getValueType() == VT
)
12892 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
.getOperand(0));
12894 if (N
->getOpcode() == ISD::UINT_TO_FP
&& N0
.getOpcode() == ISD::FP_TO_UINT
&&
12895 N0
.getOperand(0).getValueType() == VT
)
12896 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
.getOperand(0));
12901 SDValue
DAGCombiner::visitSINT_TO_FP(SDNode
*N
) {
12902 SDValue N0
= N
->getOperand(0);
12903 EVT VT
= N
->getValueType(0);
12904 EVT OpVT
= N0
.getValueType();
12906 // [us]itofp(undef) = 0, because the result value is bounded.
12908 return DAG
.getConstantFP(0.0, SDLoc(N
), VT
);
12910 // fold (sint_to_fp c1) -> c1fp
12911 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
12912 // ...but only if the target supports immediate floating-point values
12913 (!LegalOperations
||
12914 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
)))
12915 return DAG
.getNode(ISD::SINT_TO_FP
, SDLoc(N
), VT
, N0
);
12917 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
12918 // but UINT_TO_FP is legal on this target, try to convert.
12919 if (!hasOperation(ISD::SINT_TO_FP
, OpVT
) &&
12920 hasOperation(ISD::UINT_TO_FP
, OpVT
)) {
12921 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
12922 if (DAG
.SignBitIsZero(N0
))
12923 return DAG
.getNode(ISD::UINT_TO_FP
, SDLoc(N
), VT
, N0
);
12926 // The next optimizations are desirable only if SELECT_CC can be lowered.
12927 if (TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, VT
) || !LegalOperations
) {
12928 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
12929 if (N0
.getOpcode() == ISD::SETCC
&& N0
.getValueType() == MVT::i1
&&
12931 (!LegalOperations
||
12932 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
12935 { N0
.getOperand(0), N0
.getOperand(1),
12936 DAG
.getConstantFP(-1.0, DL
, VT
), DAG
.getConstantFP(0.0, DL
, VT
),
12937 N0
.getOperand(2) };
12938 return DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, Ops
);
12941 // fold (sint_to_fp (zext (setcc x, y, cc))) ->
12942 // (select_cc x, y, 1.0, 0.0,, cc)
12943 if (N0
.getOpcode() == ISD::ZERO_EXTEND
&&
12944 N0
.getOperand(0).getOpcode() == ISD::SETCC
&&!VT
.isVector() &&
12945 (!LegalOperations
||
12946 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
12949 { N0
.getOperand(0).getOperand(0), N0
.getOperand(0).getOperand(1),
12950 DAG
.getConstantFP(1.0, DL
, VT
), DAG
.getConstantFP(0.0, DL
, VT
),
12951 N0
.getOperand(0).getOperand(2) };
12952 return DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, Ops
);
12956 if (SDValue FTrunc
= foldFPToIntToFP(N
, DAG
, TLI
))
12962 SDValue
DAGCombiner::visitUINT_TO_FP(SDNode
*N
) {
12963 SDValue N0
= N
->getOperand(0);
12964 EVT VT
= N
->getValueType(0);
12965 EVT OpVT
= N0
.getValueType();
12967 // [us]itofp(undef) = 0, because the result value is bounded.
12969 return DAG
.getConstantFP(0.0, SDLoc(N
), VT
);
12971 // fold (uint_to_fp c1) -> c1fp
12972 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
12973 // ...but only if the target supports immediate floating-point values
12974 (!LegalOperations
||
12975 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
)))
12976 return DAG
.getNode(ISD::UINT_TO_FP
, SDLoc(N
), VT
, N0
);
12978 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
12979 // but SINT_TO_FP is legal on this target, try to convert.
12980 if (!hasOperation(ISD::UINT_TO_FP
, OpVT
) &&
12981 hasOperation(ISD::SINT_TO_FP
, OpVT
)) {
12982 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
12983 if (DAG
.SignBitIsZero(N0
))
12984 return DAG
.getNode(ISD::SINT_TO_FP
, SDLoc(N
), VT
, N0
);
12987 // The next optimizations are desirable only if SELECT_CC can be lowered.
12988 if (TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, VT
) || !LegalOperations
) {
12989 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
12990 if (N0
.getOpcode() == ISD::SETCC
&& !VT
.isVector() &&
12991 (!LegalOperations
||
12992 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
12995 { N0
.getOperand(0), N0
.getOperand(1),
12996 DAG
.getConstantFP(1.0, DL
, VT
), DAG
.getConstantFP(0.0, DL
, VT
),
12997 N0
.getOperand(2) };
12998 return DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, Ops
);
13002 if (SDValue FTrunc
= foldFPToIntToFP(N
, DAG
, TLI
))
13008 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
13009 static SDValue
FoldIntToFPToInt(SDNode
*N
, SelectionDAG
&DAG
) {
13010 SDValue N0
= N
->getOperand(0);
13011 EVT VT
= N
->getValueType(0);
13013 if (N0
.getOpcode() != ISD::UINT_TO_FP
&& N0
.getOpcode() != ISD::SINT_TO_FP
)
13016 SDValue Src
= N0
.getOperand(0);
13017 EVT SrcVT
= Src
.getValueType();
13018 bool IsInputSigned
= N0
.getOpcode() == ISD::SINT_TO_FP
;
13019 bool IsOutputSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
13021 // We can safely assume the conversion won't overflow the output range,
13022 // because (for example) (uint8_t)18293.f is undefined behavior.
13024 // Since we can assume the conversion won't overflow, our decision as to
13025 // whether the input will fit in the float should depend on the minimum
13026 // of the input range and output range.
13028 // This means this is also safe for a signed input and unsigned output, since
13029 // a negative input would lead to undefined behavior.
13030 unsigned InputSize
= (int)SrcVT
.getScalarSizeInBits() - IsInputSigned
;
13031 unsigned OutputSize
= (int)VT
.getScalarSizeInBits() - IsOutputSigned
;
13032 unsigned ActualSize
= std::min(InputSize
, OutputSize
);
13033 const fltSemantics
&sem
= DAG
.EVTToAPFloatSemantics(N0
.getValueType());
13035 // We can only fold away the float conversion if the input range can be
13036 // represented exactly in the float range.
13037 if (APFloat::semanticsPrecision(sem
) >= ActualSize
) {
13038 if (VT
.getScalarSizeInBits() > SrcVT
.getScalarSizeInBits()) {
13039 unsigned ExtOp
= IsInputSigned
&& IsOutputSigned
? ISD::SIGN_EXTEND
13040 : ISD::ZERO_EXTEND
;
13041 return DAG
.getNode(ExtOp
, SDLoc(N
), VT
, Src
);
13043 if (VT
.getScalarSizeInBits() < SrcVT
.getScalarSizeInBits())
13044 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, Src
);
13045 return DAG
.getBitcast(VT
, Src
);
13050 SDValue
DAGCombiner::visitFP_TO_SINT(SDNode
*N
) {
13051 SDValue N0
= N
->getOperand(0);
13052 EVT VT
= N
->getValueType(0);
13054 // fold (fp_to_sint undef) -> undef
13056 return DAG
.getUNDEF(VT
);
13058 // fold (fp_to_sint c1fp) -> c1
13059 if (isConstantFPBuildVectorOrConstantFP(N0
))
13060 return DAG
.getNode(ISD::FP_TO_SINT
, SDLoc(N
), VT
, N0
);
13062 return FoldIntToFPToInt(N
, DAG
);
13065 SDValue
DAGCombiner::visitFP_TO_UINT(SDNode
*N
) {
13066 SDValue N0
= N
->getOperand(0);
13067 EVT VT
= N
->getValueType(0);
13069 // fold (fp_to_uint undef) -> undef
13071 return DAG
.getUNDEF(VT
);
13073 // fold (fp_to_uint c1fp) -> c1
13074 if (isConstantFPBuildVectorOrConstantFP(N0
))
13075 return DAG
.getNode(ISD::FP_TO_UINT
, SDLoc(N
), VT
, N0
);
13077 return FoldIntToFPToInt(N
, DAG
);
13080 SDValue
DAGCombiner::visitFP_ROUND(SDNode
*N
) {
13081 SDValue N0
= N
->getOperand(0);
13082 SDValue N1
= N
->getOperand(1);
13083 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
13084 EVT VT
= N
->getValueType(0);
13086 // fold (fp_round c1fp) -> c1fp
13088 return DAG
.getNode(ISD::FP_ROUND
, SDLoc(N
), VT
, N0
, N1
);
13090 // fold (fp_round (fp_extend x)) -> x
13091 if (N0
.getOpcode() == ISD::FP_EXTEND
&& VT
== N0
.getOperand(0).getValueType())
13092 return N0
.getOperand(0);
13094 // fold (fp_round (fp_round x)) -> (fp_round x)
13095 if (N0
.getOpcode() == ISD::FP_ROUND
) {
13096 const bool NIsTrunc
= N
->getConstantOperandVal(1) == 1;
13097 const bool N0IsTrunc
= N0
.getConstantOperandVal(1) == 1;
13099 // Skip this folding if it results in an fp_round from f80 to f16.
13101 // f80 to f16 always generates an expensive (and as yet, unimplemented)
13102 // libcall to __truncxfhf2 instead of selecting native f16 conversion
13103 // instructions from f32 or f64. Moreover, the first (value-preserving)
13104 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
13106 if (N0
.getOperand(0).getValueType() == MVT::f80
&& VT
== MVT::f16
)
13109 // If the first fp_round isn't a value preserving truncation, it might
13110 // introduce a tie in the second fp_round, that wouldn't occur in the
13111 // single-step fp_round we want to fold to.
13112 // In other words, double rounding isn't the same as rounding.
13113 // Also, this is a value preserving truncation iff both fp_round's are.
13114 if (DAG
.getTarget().Options
.UnsafeFPMath
|| N0IsTrunc
) {
13116 return DAG
.getNode(ISD::FP_ROUND
, DL
, VT
, N0
.getOperand(0),
13117 DAG
.getIntPtrConstant(NIsTrunc
&& N0IsTrunc
, DL
));
13121 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
13122 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse()) {
13123 SDValue Tmp
= DAG
.getNode(ISD::FP_ROUND
, SDLoc(N0
), VT
,
13124 N0
.getOperand(0), N1
);
13125 AddToWorklist(Tmp
.getNode());
13126 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
,
13127 Tmp
, N0
.getOperand(1));
13130 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
13136 SDValue
DAGCombiner::visitFP_ROUND_INREG(SDNode
*N
) {
13137 SDValue N0
= N
->getOperand(0);
13138 EVT VT
= N
->getValueType(0);
13139 EVT EVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
13140 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
13142 // fold (fp_round_inreg c1fp) -> c1fp
13143 if (N0CFP
&& isTypeLegal(EVT
)) {
13145 SDValue Round
= DAG
.getConstantFP(*N0CFP
->getConstantFPValue(), DL
, EVT
);
13146 return DAG
.getNode(ISD::FP_EXTEND
, DL
, VT
, Round
);
13152 SDValue
DAGCombiner::visitFP_EXTEND(SDNode
*N
) {
13153 SDValue N0
= N
->getOperand(0);
13154 EVT VT
= N
->getValueType(0);
13156 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
13157 if (N
->hasOneUse() &&
13158 N
->use_begin()->getOpcode() == ISD::FP_ROUND
)
13161 // fold (fp_extend c1fp) -> c1fp
13162 if (isConstantFPBuildVectorOrConstantFP(N0
))
13163 return DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N
), VT
, N0
);
13165 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
13166 if (N0
.getOpcode() == ISD::FP16_TO_FP
&&
13167 TLI
.getOperationAction(ISD::FP16_TO_FP
, VT
) == TargetLowering::Legal
)
13168 return DAG
.getNode(ISD::FP16_TO_FP
, SDLoc(N
), VT
, N0
.getOperand(0));
13170 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
13172 if (N0
.getOpcode() == ISD::FP_ROUND
13173 && N0
.getConstantOperandVal(1) == 1) {
13174 SDValue In
= N0
.getOperand(0);
13175 if (In
.getValueType() == VT
) return In
;
13176 if (VT
.bitsLT(In
.getValueType()))
13177 return DAG
.getNode(ISD::FP_ROUND
, SDLoc(N
), VT
,
13178 In
, N0
.getOperand(1));
13179 return DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N
), VT
, In
);
13182 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
13183 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
13184 TLI
.isLoadExtLegal(ISD::EXTLOAD
, VT
, N0
.getValueType())) {
13185 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
13186 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, SDLoc(N
), VT
,
13188 LN0
->getBasePtr(), N0
.getValueType(),
13189 LN0
->getMemOperand());
13190 CombineTo(N
, ExtLoad
);
13191 CombineTo(N0
.getNode(),
13192 DAG
.getNode(ISD::FP_ROUND
, SDLoc(N0
),
13193 N0
.getValueType(), ExtLoad
,
13194 DAG
.getIntPtrConstant(1, SDLoc(N0
))),
13195 ExtLoad
.getValue(1));
13196 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
13199 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
13205 SDValue
DAGCombiner::visitFCEIL(SDNode
*N
) {
13206 SDValue N0
= N
->getOperand(0);
13207 EVT VT
= N
->getValueType(0);
13209 // fold (fceil c1) -> fceil(c1)
13210 if (isConstantFPBuildVectorOrConstantFP(N0
))
13211 return DAG
.getNode(ISD::FCEIL
, SDLoc(N
), VT
, N0
);
13216 SDValue
DAGCombiner::visitFTRUNC(SDNode
*N
) {
13217 SDValue N0
= N
->getOperand(0);
13218 EVT VT
= N
->getValueType(0);
13220 // fold (ftrunc c1) -> ftrunc(c1)
13221 if (isConstantFPBuildVectorOrConstantFP(N0
))
13222 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
);
13224 // fold ftrunc (known rounded int x) -> x
13225 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
13226 // likely to be generated to extract integer from a rounded floating value.
13227 switch (N0
.getOpcode()) {
13231 case ISD::FNEARBYINT
:
13240 SDValue
DAGCombiner::visitFFLOOR(SDNode
*N
) {
13241 SDValue N0
= N
->getOperand(0);
13242 EVT VT
= N
->getValueType(0);
13244 // fold (ffloor c1) -> ffloor(c1)
13245 if (isConstantFPBuildVectorOrConstantFP(N0
))
13246 return DAG
.getNode(ISD::FFLOOR
, SDLoc(N
), VT
, N0
);
13251 // FIXME: FNEG and FABS have a lot in common; refactor.
13252 SDValue
DAGCombiner::visitFNEG(SDNode
*N
) {
13253 SDValue N0
= N
->getOperand(0);
13254 EVT VT
= N
->getValueType(0);
13256 // Constant fold FNEG.
13257 if (isConstantFPBuildVectorOrConstantFP(N0
))
13258 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
, N0
);
13260 if (isNegatibleForFree(N0
, LegalOperations
, DAG
.getTargetLoweringInfo(),
13261 &DAG
.getTarget().Options
, ForCodeSize
))
13262 return GetNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
);
13264 // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading
13265 // constant pool values.
13266 if (!TLI
.isFNegFree(VT
) &&
13267 N0
.getOpcode() == ISD::BITCAST
&&
13268 N0
.getNode()->hasOneUse()) {
13269 SDValue Int
= N0
.getOperand(0);
13270 EVT IntVT
= Int
.getValueType();
13271 if (IntVT
.isInteger() && !IntVT
.isVector()) {
13273 if (N0
.getValueType().isVector()) {
13274 // For a vector, get a mask such as 0x80... per scalar element
13276 SignMask
= APInt::getSignMask(N0
.getScalarValueSizeInBits());
13277 SignMask
= APInt::getSplat(IntVT
.getSizeInBits(), SignMask
);
13279 // For a scalar, just generate 0x80...
13280 SignMask
= APInt::getSignMask(IntVT
.getSizeInBits());
13283 Int
= DAG
.getNode(ISD::XOR
, DL0
, IntVT
, Int
,
13284 DAG
.getConstant(SignMask
, DL0
, IntVT
));
13285 AddToWorklist(Int
.getNode());
13286 return DAG
.getBitcast(VT
, Int
);
13290 // (fneg (fmul c, x)) -> (fmul -c, x)
13291 if (N0
.getOpcode() == ISD::FMUL
&&
13292 (N0
.getNode()->hasOneUse() || !TLI
.isFNegFree(VT
))) {
13293 ConstantFPSDNode
*CFP1
= dyn_cast
<ConstantFPSDNode
>(N0
.getOperand(1));
13295 APFloat CVal
= CFP1
->getValueAPF();
13297 if (Level
>= AfterLegalizeDAG
&&
13298 (TLI
.isFPImmLegal(CVal
, VT
, ForCodeSize
) ||
13299 TLI
.isOperationLegal(ISD::ConstantFP
, VT
)))
13300 return DAG
.getNode(
13301 ISD::FMUL
, SDLoc(N
), VT
, N0
.getOperand(0),
13302 DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
, N0
.getOperand(1)),
13310 static SDValue
visitFMinMax(SelectionDAG
&DAG
, SDNode
*N
,
13311 APFloat (*Op
)(const APFloat
&, const APFloat
&)) {
13312 SDValue N0
= N
->getOperand(0);
13313 SDValue N1
= N
->getOperand(1);
13314 EVT VT
= N
->getValueType(0);
13315 const ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
);
13316 const ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
);
13318 if (N0CFP
&& N1CFP
) {
13319 const APFloat
&C0
= N0CFP
->getValueAPF();
13320 const APFloat
&C1
= N1CFP
->getValueAPF();
13321 return DAG
.getConstantFP(Op(C0
, C1
), SDLoc(N
), VT
);
13324 // Canonicalize to constant on RHS.
13325 if (isConstantFPBuildVectorOrConstantFP(N0
) &&
13326 !isConstantFPBuildVectorOrConstantFP(N1
))
13327 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N1
, N0
);
13332 SDValue
DAGCombiner::visitFMINNUM(SDNode
*N
) {
13333 return visitFMinMax(DAG
, N
, minnum
);
13336 SDValue
DAGCombiner::visitFMAXNUM(SDNode
*N
) {
13337 return visitFMinMax(DAG
, N
, maxnum
);
13340 SDValue
DAGCombiner::visitFMINIMUM(SDNode
*N
) {
13341 return visitFMinMax(DAG
, N
, minimum
);
13344 SDValue
DAGCombiner::visitFMAXIMUM(SDNode
*N
) {
13345 return visitFMinMax(DAG
, N
, maximum
);
13348 SDValue
DAGCombiner::visitFABS(SDNode
*N
) {
13349 SDValue N0
= N
->getOperand(0);
13350 EVT VT
= N
->getValueType(0);
13352 // fold (fabs c1) -> fabs(c1)
13353 if (isConstantFPBuildVectorOrConstantFP(N0
))
13354 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
13356 // fold (fabs (fabs x)) -> (fabs x)
13357 if (N0
.getOpcode() == ISD::FABS
)
13358 return N
->getOperand(0);
13360 // fold (fabs (fneg x)) -> (fabs x)
13361 // fold (fabs (fcopysign x, y)) -> (fabs x)
13362 if (N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FCOPYSIGN
)
13363 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
.getOperand(0));
13365 // fabs(bitcast(x)) -> bitcast(x & ~sign) to avoid constant pool loads.
13366 if (!TLI
.isFAbsFree(VT
) && N0
.getOpcode() == ISD::BITCAST
&& N0
.hasOneUse()) {
13367 SDValue Int
= N0
.getOperand(0);
13368 EVT IntVT
= Int
.getValueType();
13369 if (IntVT
.isInteger() && !IntVT
.isVector()) {
13371 if (N0
.getValueType().isVector()) {
13372 // For a vector, get a mask such as 0x7f... per scalar element
13374 SignMask
= ~APInt::getSignMask(N0
.getScalarValueSizeInBits());
13375 SignMask
= APInt::getSplat(IntVT
.getSizeInBits(), SignMask
);
13377 // For a scalar, just generate 0x7f...
13378 SignMask
= ~APInt::getSignMask(IntVT
.getSizeInBits());
13381 Int
= DAG
.getNode(ISD::AND
, DL
, IntVT
, Int
,
13382 DAG
.getConstant(SignMask
, DL
, IntVT
));
13383 AddToWorklist(Int
.getNode());
13384 return DAG
.getBitcast(N
->getValueType(0), Int
);
13391 SDValue
DAGCombiner::visitBRCOND(SDNode
*N
) {
13392 SDValue Chain
= N
->getOperand(0);
13393 SDValue N1
= N
->getOperand(1);
13394 SDValue N2
= N
->getOperand(2);
13396 // If N is a constant we could fold this into a fallthrough or unconditional
13397 // branch. However that doesn't happen very often in normal code, because
13398 // Instcombine/SimplifyCFG should have handled the available opportunities.
13399 // If we did this folding here, it would be necessary to update the
13400 // MachineBasicBlock CFG, which is awkward.
13402 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
13404 if (N1
.getOpcode() == ISD::SETCC
&&
13405 TLI
.isOperationLegalOrCustom(ISD::BR_CC
,
13406 N1
.getOperand(0).getValueType())) {
13407 return DAG
.getNode(ISD::BR_CC
, SDLoc(N
), MVT::Other
,
13408 Chain
, N1
.getOperand(2),
13409 N1
.getOperand(0), N1
.getOperand(1), N2
);
13412 if (N1
.hasOneUse()) {
13413 if (SDValue NewN1
= rebuildSetCC(N1
))
13414 return DAG
.getNode(ISD::BRCOND
, SDLoc(N
), MVT::Other
, Chain
, NewN1
, N2
);
13420 SDValue
DAGCombiner::rebuildSetCC(SDValue N
) {
13421 if (N
.getOpcode() == ISD::SRL
||
13422 (N
.getOpcode() == ISD::TRUNCATE
&&
13423 (N
.getOperand(0).hasOneUse() &&
13424 N
.getOperand(0).getOpcode() == ISD::SRL
))) {
13425 // Look pass the truncate.
13426 if (N
.getOpcode() == ISD::TRUNCATE
)
13427 N
= N
.getOperand(0);
13429 // Match this pattern so that we can generate simpler code:
13432 // %b = and i32 %a, 2
13433 // %c = srl i32 %b, 1
13434 // brcond i32 %c ...
13439 // %b = and i32 %a, 2
13440 // %c = setcc eq %b, 0
13443 // This applies only when the AND constant value has one bit set and the
13444 // SRL constant is equal to the log2 of the AND constant. The back-end is
13445 // smart enough to convert the result into a TEST/JMP sequence.
13446 SDValue Op0
= N
.getOperand(0);
13447 SDValue Op1
= N
.getOperand(1);
13449 if (Op0
.getOpcode() == ISD::AND
&& Op1
.getOpcode() == ISD::Constant
) {
13450 SDValue AndOp1
= Op0
.getOperand(1);
13452 if (AndOp1
.getOpcode() == ISD::Constant
) {
13453 const APInt
&AndConst
= cast
<ConstantSDNode
>(AndOp1
)->getAPIntValue();
13455 if (AndConst
.isPowerOf2() &&
13456 cast
<ConstantSDNode
>(Op1
)->getAPIntValue() == AndConst
.logBase2()) {
13458 return DAG
.getSetCC(DL
, getSetCCResultType(Op0
.getValueType()),
13459 Op0
, DAG
.getConstant(0, DL
, Op0
.getValueType()),
13466 // Transform br(xor(x, y)) -> br(x != y)
13467 // Transform br(xor(xor(x,y), 1)) -> br (x == y)
13468 if (N
.getOpcode() == ISD::XOR
) {
13469 // Because we may call this on a speculatively constructed
13470 // SimplifiedSetCC Node, we need to simplify this node first.
13471 // Ideally this should be folded into SimplifySetCC and not
13472 // here. For now, grab a handle to N so we don't lose it from
13473 // replacements interal to the visit.
13474 HandleSDNode
XORHandle(N
);
13475 while (N
.getOpcode() == ISD::XOR
) {
13476 SDValue Tmp
= visitXOR(N
.getNode());
13477 // No simplification done.
13478 if (!Tmp
.getNode())
13480 // Returning N is form in-visit replacement that may invalidated
13481 // N. Grab value from Handle.
13482 if (Tmp
.getNode() == N
.getNode())
13483 N
= XORHandle
.getValue();
13484 else // Node simplified. Try simplifying again.
13488 if (N
.getOpcode() != ISD::XOR
)
13491 SDNode
*TheXor
= N
.getNode();
13493 SDValue Op0
= TheXor
->getOperand(0);
13494 SDValue Op1
= TheXor
->getOperand(1);
13496 if (Op0
.getOpcode() != ISD::SETCC
&& Op1
.getOpcode() != ISD::SETCC
) {
13497 bool Equal
= false;
13498 if (isOneConstant(Op0
) && Op0
.hasOneUse() &&
13499 Op0
.getOpcode() == ISD::XOR
) {
13500 TheXor
= Op0
.getNode();
13504 EVT SetCCVT
= N
.getValueType();
13506 SetCCVT
= getSetCCResultType(SetCCVT
);
13507 // Replace the uses of XOR with SETCC
13508 return DAG
.getSetCC(SDLoc(TheXor
), SetCCVT
, Op0
, Op1
,
13509 Equal
? ISD::SETEQ
: ISD::SETNE
);
13516 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
13518 SDValue
DAGCombiner::visitBR_CC(SDNode
*N
) {
13519 CondCodeSDNode
*CC
= cast
<CondCodeSDNode
>(N
->getOperand(1));
13520 SDValue CondLHS
= N
->getOperand(2), CondRHS
= N
->getOperand(3);
13522 // If N is a constant we could fold this into a fallthrough or unconditional
13523 // branch. However that doesn't happen very often in normal code, because
13524 // Instcombine/SimplifyCFG should have handled the available opportunities.
13525 // If we did this folding here, it would be necessary to update the
13526 // MachineBasicBlock CFG, which is awkward.
13528 // Use SimplifySetCC to simplify SETCC's.
13529 SDValue Simp
= SimplifySetCC(getSetCCResultType(CondLHS
.getValueType()),
13530 CondLHS
, CondRHS
, CC
->get(), SDLoc(N
),
13532 if (Simp
.getNode()) AddToWorklist(Simp
.getNode());
13534 // fold to a simpler setcc
13535 if (Simp
.getNode() && Simp
.getOpcode() == ISD::SETCC
)
13536 return DAG
.getNode(ISD::BR_CC
, SDLoc(N
), MVT::Other
,
13537 N
->getOperand(0), Simp
.getOperand(2),
13538 Simp
.getOperand(0), Simp
.getOperand(1),
13544 /// Return true if 'Use' is a load or a store that uses N as its base pointer
13545 /// and that N may be folded in the load / store addressing mode.
13546 static bool canFoldInAddressingMode(SDNode
*N
, SDNode
*Use
,
13548 const TargetLowering
&TLI
) {
13552 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Use
)) {
13553 if (LD
->isIndexed() || LD
->getBasePtr().getNode() != N
)
13555 VT
= LD
->getMemoryVT();
13556 AS
= LD
->getAddressSpace();
13557 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(Use
)) {
13558 if (ST
->isIndexed() || ST
->getBasePtr().getNode() != N
)
13560 VT
= ST
->getMemoryVT();
13561 AS
= ST
->getAddressSpace();
13565 TargetLowering::AddrMode AM
;
13566 if (N
->getOpcode() == ISD::ADD
) {
13567 AM
.HasBaseReg
= true;
13568 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
13571 AM
.BaseOffs
= Offset
->getSExtValue();
13575 } else if (N
->getOpcode() == ISD::SUB
) {
13576 AM
.HasBaseReg
= true;
13577 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
13580 AM
.BaseOffs
= -Offset
->getSExtValue();
13587 return TLI
.isLegalAddressingMode(DAG
.getDataLayout(), AM
,
13588 VT
.getTypeForEVT(*DAG
.getContext()), AS
);
13591 /// Try turning a load/store into a pre-indexed load/store when the base
13592 /// pointer is an add or subtract and it has other uses besides the load/store.
13593 /// After the transformation, the new indexed load/store has effectively folded
13594 /// the add/subtract in and all of its other uses are redirected to the
13595 /// new load/store.
13596 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode
*N
) {
13597 if (Level
< AfterLegalizeDAG
)
13600 bool isLoad
= true;
13603 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
13604 if (LD
->isIndexed())
13606 VT
= LD
->getMemoryVT();
13607 if (!TLI
.isIndexedLoadLegal(ISD::PRE_INC
, VT
) &&
13608 !TLI
.isIndexedLoadLegal(ISD::PRE_DEC
, VT
))
13610 Ptr
= LD
->getBasePtr();
13611 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
13612 if (ST
->isIndexed())
13614 VT
= ST
->getMemoryVT();
13615 if (!TLI
.isIndexedStoreLegal(ISD::PRE_INC
, VT
) &&
13616 !TLI
.isIndexedStoreLegal(ISD::PRE_DEC
, VT
))
13618 Ptr
= ST
->getBasePtr();
13624 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
13625 // out. There is no reason to make this a preinc/predec.
13626 if ((Ptr
.getOpcode() != ISD::ADD
&& Ptr
.getOpcode() != ISD::SUB
) ||
13627 Ptr
.getNode()->hasOneUse())
13630 // Ask the target to do addressing mode selection.
13633 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
13634 if (!TLI
.getPreIndexedAddressParts(N
, BasePtr
, Offset
, AM
, DAG
))
13637 // Backends without true r+i pre-indexed forms may need to pass a
13638 // constant base with a variable offset so that constant coercion
13639 // will work with the patterns in canonical form.
13640 bool Swapped
= false;
13641 if (isa
<ConstantSDNode
>(BasePtr
)) {
13642 std::swap(BasePtr
, Offset
);
13646 // Don't create a indexed load / store with zero offset.
13647 if (isNullConstant(Offset
))
13650 // Try turning it into a pre-indexed load / store except when:
13651 // 1) The new base ptr is a frame index.
13652 // 2) If N is a store and the new base ptr is either the same as or is a
13653 // predecessor of the value being stored.
13654 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
13655 // that would create a cycle.
13656 // 4) All uses are load / store ops that use it as old base ptr.
13658 // Check #1. Preinc'ing a frame index would require copying the stack pointer
13659 // (plus the implicit offset) to a register to preinc anyway.
13660 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
13665 SDValue Val
= cast
<StoreSDNode
>(N
)->getValue();
13667 // Would require a copy.
13668 if (Val
== BasePtr
)
13671 // Would create a cycle.
13672 if (Val
== Ptr
|| Ptr
->isPredecessorOf(Val
.getNode()))
13676 // Caches for hasPredecessorHelper.
13677 SmallPtrSet
<const SDNode
*, 32> Visited
;
13678 SmallVector
<const SDNode
*, 16> Worklist
;
13679 Worklist
.push_back(N
);
13681 // If the offset is a constant, there may be other adds of constants that
13682 // can be folded with this one. We should do this to avoid having to keep
13683 // a copy of the original base pointer.
13684 SmallVector
<SDNode
*, 16> OtherUses
;
13685 if (isa
<ConstantSDNode
>(Offset
))
13686 for (SDNode::use_iterator UI
= BasePtr
.getNode()->use_begin(),
13687 UE
= BasePtr
.getNode()->use_end();
13689 SDUse
&Use
= UI
.getUse();
13690 // Skip the use that is Ptr and uses of other results from BasePtr's
13691 // node (important for nodes that return multiple results).
13692 if (Use
.getUser() == Ptr
.getNode() || Use
!= BasePtr
)
13695 if (SDNode::hasPredecessorHelper(Use
.getUser(), Visited
, Worklist
))
13698 if (Use
.getUser()->getOpcode() != ISD::ADD
&&
13699 Use
.getUser()->getOpcode() != ISD::SUB
) {
13704 SDValue Op1
= Use
.getUser()->getOperand((UI
.getOperandNo() + 1) & 1);
13705 if (!isa
<ConstantSDNode
>(Op1
)) {
13710 // FIXME: In some cases, we can be smarter about this.
13711 if (Op1
.getValueType() != Offset
.getValueType()) {
13716 OtherUses
.push_back(Use
.getUser());
13720 std::swap(BasePtr
, Offset
);
13722 // Now check for #3 and #4.
13723 bool RealUse
= false;
13725 for (SDNode
*Use
: Ptr
.getNode()->uses()) {
13728 if (SDNode::hasPredecessorHelper(Use
, Visited
, Worklist
))
13731 // If Ptr may be folded in addressing mode of other use, then it's
13732 // not profitable to do this transformation.
13733 if (!canFoldInAddressingMode(Ptr
.getNode(), Use
, DAG
, TLI
))
13742 Result
= DAG
.getIndexedLoad(SDValue(N
,0), SDLoc(N
),
13743 BasePtr
, Offset
, AM
);
13745 Result
= DAG
.getIndexedStore(SDValue(N
,0), SDLoc(N
),
13746 BasePtr
, Offset
, AM
);
13749 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N
->dump(&DAG
); dbgs() << "\nWith: ";
13750 Result
.getNode()->dump(&DAG
); dbgs() << '\n');
13751 WorklistRemover
DeadNodes(*this);
13753 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0));
13754 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2));
13756 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1));
13759 // Finally, since the node is now dead, remove it from the graph.
13760 deleteAndRecombine(N
);
13763 std::swap(BasePtr
, Offset
);
13765 // Replace other uses of BasePtr that can be updated to use Ptr
13766 for (unsigned i
= 0, e
= OtherUses
.size(); i
!= e
; ++i
) {
13767 unsigned OffsetIdx
= 1;
13768 if (OtherUses
[i
]->getOperand(OffsetIdx
).getNode() == BasePtr
.getNode())
13770 assert(OtherUses
[i
]->getOperand(!OffsetIdx
).getNode() ==
13771 BasePtr
.getNode() && "Expected BasePtr operand");
13773 // We need to replace ptr0 in the following expression:
13774 // x0 * offset0 + y0 * ptr0 = t0
13776 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
13778 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
13779 // indexed load/store and the expression that needs to be re-written.
13781 // Therefore, we have:
13782 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
13784 ConstantSDNode
*CN
=
13785 cast
<ConstantSDNode
>(OtherUses
[i
]->getOperand(OffsetIdx
));
13786 int X0
, X1
, Y0
, Y1
;
13787 const APInt
&Offset0
= CN
->getAPIntValue();
13788 APInt Offset1
= cast
<ConstantSDNode
>(Offset
)->getAPIntValue();
13790 X0
= (OtherUses
[i
]->getOpcode() == ISD::SUB
&& OffsetIdx
== 1) ? -1 : 1;
13791 Y0
= (OtherUses
[i
]->getOpcode() == ISD::SUB
&& OffsetIdx
== 0) ? -1 : 1;
13792 X1
= (AM
== ISD::PRE_DEC
&& !Swapped
) ? -1 : 1;
13793 Y1
= (AM
== ISD::PRE_DEC
&& Swapped
) ? -1 : 1;
13795 unsigned Opcode
= (Y0
* Y1
< 0) ? ISD::SUB
: ISD::ADD
;
13797 APInt CNV
= Offset0
;
13798 if (X0
< 0) CNV
= -CNV
;
13799 if (X1
* Y0
* Y1
< 0) CNV
= CNV
+ Offset1
;
13800 else CNV
= CNV
- Offset1
;
13802 SDLoc
DL(OtherUses
[i
]);
13804 // We can now generate the new expression.
13805 SDValue NewOp1
= DAG
.getConstant(CNV
, DL
, CN
->getValueType(0));
13806 SDValue NewOp2
= Result
.getValue(isLoad
? 1 : 0);
13808 SDValue NewUse
= DAG
.getNode(Opcode
,
13810 OtherUses
[i
]->getValueType(0), NewOp1
, NewOp2
);
13811 DAG
.ReplaceAllUsesOfValueWith(SDValue(OtherUses
[i
], 0), NewUse
);
13812 deleteAndRecombine(OtherUses
[i
]);
13815 // Replace the uses of Ptr with uses of the updated base value.
13816 DAG
.ReplaceAllUsesOfValueWith(Ptr
, Result
.getValue(isLoad
? 1 : 0));
13817 deleteAndRecombine(Ptr
.getNode());
13818 AddToWorklist(Result
.getNode());
13823 /// Try to combine a load/store with a add/sub of the base pointer node into a
13824 /// post-indexed load/store. The transformation folded the add/subtract into the
13825 /// new indexed load/store effectively and all of its uses are redirected to the
13826 /// new load/store.
13827 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode
*N
) {
13828 if (Level
< AfterLegalizeDAG
)
13831 bool isLoad
= true;
13834 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
13835 if (LD
->isIndexed())
13837 VT
= LD
->getMemoryVT();
13838 if (!TLI
.isIndexedLoadLegal(ISD::POST_INC
, VT
) &&
13839 !TLI
.isIndexedLoadLegal(ISD::POST_DEC
, VT
))
13841 Ptr
= LD
->getBasePtr();
13842 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
13843 if (ST
->isIndexed())
13845 VT
= ST
->getMemoryVT();
13846 if (!TLI
.isIndexedStoreLegal(ISD::POST_INC
, VT
) &&
13847 !TLI
.isIndexedStoreLegal(ISD::POST_DEC
, VT
))
13849 Ptr
= ST
->getBasePtr();
13855 if (Ptr
.getNode()->hasOneUse())
13858 for (SDNode
*Op
: Ptr
.getNode()->uses()) {
13860 (Op
->getOpcode() != ISD::ADD
&& Op
->getOpcode() != ISD::SUB
))
13865 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
13866 if (TLI
.getPostIndexedAddressParts(N
, Op
, BasePtr
, Offset
, AM
, DAG
)) {
13867 // Don't create a indexed load / store with zero offset.
13868 if (isNullConstant(Offset
))
13871 // Try turning it into a post-indexed load / store except when
13872 // 1) All uses are load / store ops that use it as base ptr (and
13873 // it may be folded as addressing mmode).
13874 // 2) Op must be independent of N, i.e. Op is neither a predecessor
13875 // nor a successor of N. Otherwise, if Op is folded that would
13878 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
13882 bool TryNext
= false;
13883 for (SDNode
*Use
: BasePtr
.getNode()->uses()) {
13884 if (Use
== Ptr
.getNode())
13887 // If all the uses are load / store addresses, then don't do the
13889 if (Use
->getOpcode() == ISD::ADD
|| Use
->getOpcode() == ISD::SUB
){
13890 bool RealUse
= false;
13891 for (SDNode
*UseUse
: Use
->uses()) {
13892 if (!canFoldInAddressingMode(Use
, UseUse
, DAG
, TLI
))
13907 SmallPtrSet
<const SDNode
*, 32> Visited
;
13908 SmallVector
<const SDNode
*, 8> Worklist
;
13909 // Ptr is predecessor to both N and Op.
13910 Visited
.insert(Ptr
.getNode());
13911 Worklist
.push_back(N
);
13912 Worklist
.push_back(Op
);
13913 if (!SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) &&
13914 !SDNode::hasPredecessorHelper(Op
, Visited
, Worklist
)) {
13915 SDValue Result
= isLoad
13916 ? DAG
.getIndexedLoad(SDValue(N
,0), SDLoc(N
),
13917 BasePtr
, Offset
, AM
)
13918 : DAG
.getIndexedStore(SDValue(N
,0), SDLoc(N
),
13919 BasePtr
, Offset
, AM
);
13920 ++PostIndexedNodes
;
13922 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N
->dump(&DAG
);
13923 dbgs() << "\nWith: "; Result
.getNode()->dump(&DAG
);
13925 WorklistRemover
DeadNodes(*this);
13927 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0));
13928 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2));
13930 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1));
13933 // Finally, since the node is now dead, remove it from the graph.
13934 deleteAndRecombine(N
);
13936 // Replace the uses of Use with uses of the updated base value.
13937 DAG
.ReplaceAllUsesOfValueWith(SDValue(Op
, 0),
13938 Result
.getValue(isLoad
? 1 : 0));
13939 deleteAndRecombine(Op
);
13948 /// Return the base-pointer arithmetic from an indexed \p LD.
13949 SDValue
DAGCombiner::SplitIndexingFromLoad(LoadSDNode
*LD
) {
13950 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
13951 assert(AM
!= ISD::UNINDEXED
);
13952 SDValue BP
= LD
->getOperand(1);
13953 SDValue Inc
= LD
->getOperand(2);
13955 // Some backends use TargetConstants for load offsets, but don't expect
13956 // TargetConstants in general ADD nodes. We can convert these constants into
13957 // regular Constants (if the constant is not opaque).
13958 assert((Inc
.getOpcode() != ISD::TargetConstant
||
13959 !cast
<ConstantSDNode
>(Inc
)->isOpaque()) &&
13960 "Cannot split out indexing using opaque target constants");
13961 if (Inc
.getOpcode() == ISD::TargetConstant
) {
13962 ConstantSDNode
*ConstInc
= cast
<ConstantSDNode
>(Inc
);
13963 Inc
= DAG
.getConstant(*ConstInc
->getConstantIntValue(), SDLoc(Inc
),
13964 ConstInc
->getValueType(0));
13968 (AM
== ISD::PRE_INC
|| AM
== ISD::POST_INC
? ISD::ADD
: ISD::SUB
);
13969 return DAG
.getNode(Opc
, SDLoc(LD
), BP
.getSimpleValueType(), BP
, Inc
);
13972 static inline int numVectorEltsOrZero(EVT T
) {
13973 return T
.isVector() ? T
.getVectorNumElements() : 0;
13976 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode
*ST
, SDValue
&Val
) {
13977 Val
= ST
->getValue();
13978 EVT STType
= Val
.getValueType();
13979 EVT STMemType
= ST
->getMemoryVT();
13980 if (STType
== STMemType
)
13982 if (isTypeLegal(STMemType
))
13983 return false; // fail.
13984 if (STType
.isFloatingPoint() && STMemType
.isFloatingPoint() &&
13985 TLI
.isOperationLegal(ISD::FTRUNC
, STMemType
)) {
13986 Val
= DAG
.getNode(ISD::FTRUNC
, SDLoc(ST
), STMemType
, Val
);
13989 if (numVectorEltsOrZero(STType
) == numVectorEltsOrZero(STMemType
) &&
13990 STType
.isInteger() && STMemType
.isInteger()) {
13991 Val
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(ST
), STMemType
, Val
);
13994 if (STType
.getSizeInBits() == STMemType
.getSizeInBits()) {
13995 Val
= DAG
.getBitcast(STMemType
, Val
);
13998 return false; // fail.
14001 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode
*LD
, SDValue
&Val
) {
14002 EVT LDMemType
= LD
->getMemoryVT();
14003 EVT LDType
= LD
->getValueType(0);
14004 assert(Val
.getValueType() == LDMemType
&&
14005 "Attempting to extend value of non-matching type");
14006 if (LDType
== LDMemType
)
14008 if (LDMemType
.isInteger() && LDType
.isInteger()) {
14009 switch (LD
->getExtensionType()) {
14010 case ISD::NON_EXTLOAD
:
14011 Val
= DAG
.getBitcast(LDType
, Val
);
14014 Val
= DAG
.getNode(ISD::ANY_EXTEND
, SDLoc(LD
), LDType
, Val
);
14016 case ISD::SEXTLOAD
:
14017 Val
= DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(LD
), LDType
, Val
);
14019 case ISD::ZEXTLOAD
:
14020 Val
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(LD
), LDType
, Val
);
14027 SDValue
DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode
*LD
) {
14028 if (OptLevel
== CodeGenOpt::None
|| LD
->isVolatile())
14030 SDValue Chain
= LD
->getOperand(0);
14031 StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(Chain
.getNode());
14032 if (!ST
|| ST
->isVolatile())
14035 EVT LDType
= LD
->getValueType(0);
14036 EVT LDMemType
= LD
->getMemoryVT();
14037 EVT STMemType
= ST
->getMemoryVT();
14038 EVT STType
= ST
->getValue().getValueType();
14040 BaseIndexOffset BasePtrLD
= BaseIndexOffset::match(LD
, DAG
);
14041 BaseIndexOffset BasePtrST
= BaseIndexOffset::match(ST
, DAG
);
14043 if (!BasePtrST
.equalBaseIndex(BasePtrLD
, DAG
, Offset
))
14046 // Normalize for Endianness. After this Offset=0 will denote that the least
14047 // significant bit in the loaded value maps to the least significant bit in
14048 // the stored value). With Offset=n (for n > 0) the loaded value starts at the
14049 // n:th least significant byte of the stored value.
14050 if (DAG
.getDataLayout().isBigEndian())
14051 Offset
= (STMemType
.getStoreSizeInBits() -
14052 LDMemType
.getStoreSizeInBits()) / 8 - Offset
;
14054 // Check that the stored value cover all bits that are loaded.
14057 (Offset
* 8 + LDMemType
.getSizeInBits() <= STMemType
.getSizeInBits());
14059 auto ReplaceLd
= [&](LoadSDNode
*LD
, SDValue Val
, SDValue Chain
) -> SDValue
{
14060 if (LD
->isIndexed()) {
14061 bool IsSub
= (LD
->getAddressingMode() == ISD::PRE_DEC
||
14062 LD
->getAddressingMode() == ISD::POST_DEC
);
14063 unsigned Opc
= IsSub
? ISD::SUB
: ISD::ADD
;
14064 SDValue Idx
= DAG
.getNode(Opc
, SDLoc(LD
), LD
->getOperand(1).getValueType(),
14065 LD
->getOperand(1), LD
->getOperand(2));
14066 SDValue Ops
[] = {Val
, Idx
, Chain
};
14067 return CombineTo(LD
, Ops
, 3);
14069 return CombineTo(LD
, Val
, Chain
);
14075 // Memory as copy space (potentially masked).
14076 if (Offset
== 0 && LDType
== STType
&& STMemType
== LDMemType
) {
14077 // Simple case: Direct non-truncating forwarding
14078 if (LDType
.getSizeInBits() == LDMemType
.getSizeInBits())
14079 return ReplaceLd(LD
, ST
->getValue(), Chain
);
14080 // Can we model the truncate and extension with an and mask?
14081 if (STType
.isInteger() && LDMemType
.isInteger() && !STType
.isVector() &&
14082 !LDMemType
.isVector() && LD
->getExtensionType() != ISD::SEXTLOAD
) {
14083 // Mask to size of LDMemType
14085 DAG
.getConstant(APInt::getLowBitsSet(STType
.getSizeInBits(),
14086 STMemType
.getSizeInBits()),
14087 SDLoc(ST
), STType
);
14088 auto Val
= DAG
.getNode(ISD::AND
, SDLoc(LD
), LDType
, ST
->getValue(), Mask
);
14089 return ReplaceLd(LD
, Val
, Chain
);
14093 // TODO: Deal with nonzero offset.
14094 if (LD
->getBasePtr().isUndef() || Offset
!= 0)
14096 // Model necessary truncations / extenstions.
14098 // Truncate Value To Stored Memory Size.
14100 if (!getTruncatedStoreValue(ST
, Val
))
14102 if (!isTypeLegal(LDMemType
))
14104 if (STMemType
!= LDMemType
) {
14105 // TODO: Support vectors? This requires extract_subvector/bitcast.
14106 if (!STMemType
.isVector() && !LDMemType
.isVector() &&
14107 STMemType
.isInteger() && LDMemType
.isInteger())
14108 Val
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LD
), LDMemType
, Val
);
14112 if (!extendLoadedValueToExtension(LD
, Val
))
14114 return ReplaceLd(LD
, Val
, Chain
);
14117 // On failure, cleanup dead nodes we may have created.
14118 if (Val
->use_empty())
14119 deleteAndRecombine(Val
.getNode());
14123 SDValue
DAGCombiner::visitLOAD(SDNode
*N
) {
14124 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
14125 SDValue Chain
= LD
->getChain();
14126 SDValue Ptr
= LD
->getBasePtr();
14128 // If load is not volatile and there are no uses of the loaded value (and
14129 // the updated indexed value in case of indexed loads), change uses of the
14130 // chain value into uses of the chain input (i.e. delete the dead load).
14131 if (!LD
->isVolatile()) {
14132 if (N
->getValueType(1) == MVT::Other
) {
14133 // Unindexed loads.
14134 if (!N
->hasAnyUseOfValue(0)) {
14135 // It's not safe to use the two value CombineTo variant here. e.g.
14136 // v1, chain2 = load chain1, loc
14137 // v2, chain3 = load chain2, loc
14139 // Now we replace use of chain2 with chain1. This makes the second load
14140 // isomorphic to the one we are deleting, and thus makes this load live.
14141 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N
->dump(&DAG
);
14142 dbgs() << "\nWith chain: "; Chain
.getNode()->dump(&DAG
);
14144 WorklistRemover
DeadNodes(*this);
14145 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
);
14146 AddUsersToWorklist(Chain
.getNode());
14147 if (N
->use_empty())
14148 deleteAndRecombine(N
);
14150 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
14154 assert(N
->getValueType(2) == MVT::Other
&& "Malformed indexed loads?");
14156 // If this load has an opaque TargetConstant offset, then we cannot split
14157 // the indexing into an add/sub directly (that TargetConstant may not be
14158 // valid for a different type of node, and we cannot convert an opaque
14159 // target constant into a regular constant).
14160 bool HasOTCInc
= LD
->getOperand(2).getOpcode() == ISD::TargetConstant
&&
14161 cast
<ConstantSDNode
>(LD
->getOperand(2))->isOpaque();
14163 if (!N
->hasAnyUseOfValue(0) &&
14164 ((MaySplitLoadIndex
&& !HasOTCInc
) || !N
->hasAnyUseOfValue(1))) {
14165 SDValue Undef
= DAG
.getUNDEF(N
->getValueType(0));
14167 if (N
->hasAnyUseOfValue(1) && MaySplitLoadIndex
&& !HasOTCInc
) {
14168 Index
= SplitIndexingFromLoad(LD
);
14169 // Try to fold the base pointer arithmetic into subsequent loads and
14171 AddUsersToWorklist(N
);
14173 Index
= DAG
.getUNDEF(N
->getValueType(1));
14174 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N
->dump(&DAG
);
14175 dbgs() << "\nWith: "; Undef
.getNode()->dump(&DAG
);
14176 dbgs() << " and 2 other values\n");
14177 WorklistRemover
DeadNodes(*this);
14178 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Undef
);
14179 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Index
);
14180 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 2), Chain
);
14181 deleteAndRecombine(N
);
14182 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
14187 // If this load is directly stored, replace the load value with the stored
14189 if (auto V
= ForwardStoreValueToDirectLoad(LD
))
14192 // Try to infer better alignment information than the load already has.
14193 if (OptLevel
!= CodeGenOpt::None
&& LD
->isUnindexed()) {
14194 if (unsigned Align
= DAG
.InferPtrAlignment(Ptr
)) {
14195 if (Align
> LD
->getAlignment() && LD
->getSrcValueOffset() % Align
== 0) {
14196 SDValue NewLoad
= DAG
.getExtLoad(
14197 LD
->getExtensionType(), SDLoc(N
), LD
->getValueType(0), Chain
, Ptr
,
14198 LD
->getPointerInfo(), LD
->getMemoryVT(), Align
,
14199 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
14200 // NewLoad will always be N as we are only refining the alignment
14201 assert(NewLoad
.getNode() == N
);
14207 if (LD
->isUnindexed()) {
14208 // Walk up chain skipping non-aliasing memory nodes.
14209 SDValue BetterChain
= FindBetterChain(LD
, Chain
);
14211 // If there is a better chain.
14212 if (Chain
!= BetterChain
) {
14215 // Replace the chain to void dependency.
14216 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
) {
14217 ReplLoad
= DAG
.getLoad(N
->getValueType(0), SDLoc(LD
),
14218 BetterChain
, Ptr
, LD
->getMemOperand());
14220 ReplLoad
= DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
),
14221 LD
->getValueType(0),
14222 BetterChain
, Ptr
, LD
->getMemoryVT(),
14223 LD
->getMemOperand());
14226 // Create token factor to keep old chain connected.
14227 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, SDLoc(N
),
14228 MVT::Other
, Chain
, ReplLoad
.getValue(1));
14230 // Replace uses with load result and token factor
14231 return CombineTo(N
, ReplLoad
.getValue(0), Token
);
14235 // Try transforming N to an indexed load.
14236 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
14237 return SDValue(N
, 0);
14239 // Try to slice up N to more direct loads if the slices are mapped to
14240 // different register banks or pairing can take place.
14241 if (SliceUpLoad(N
))
14242 return SDValue(N
, 0);
14249 /// Helper structure used to slice a load in smaller loads.
14250 /// Basically a slice is obtained from the following sequence:
14251 /// Origin = load Ty1, Base
14252 /// Shift = srl Ty1 Origin, CstTy Amount
14253 /// Inst = trunc Shift to Ty2
14255 /// Then, it will be rewritten into:
14256 /// Slice = load SliceTy, Base + SliceOffset
14257 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
14259 /// SliceTy is deduced from the number of bits that are actually used to
14261 struct LoadedSlice
{
14262 /// Helper structure used to compute the cost of a slice.
14264 /// Are we optimizing for code size.
14265 bool ForCodeSize
= false;
14268 unsigned Loads
= 0;
14269 unsigned Truncates
= 0;
14270 unsigned CrossRegisterBanksCopies
= 0;
14271 unsigned ZExts
= 0;
14272 unsigned Shift
= 0;
14274 explicit Cost(bool ForCodeSize
) : ForCodeSize(ForCodeSize
) {}
14276 /// Get the cost of one isolated slice.
14277 Cost(const LoadedSlice
&LS
, bool ForCodeSize
)
14278 : ForCodeSize(ForCodeSize
), Loads(1) {
14279 EVT TruncType
= LS
.Inst
->getValueType(0);
14280 EVT LoadedType
= LS
.getLoadedType();
14281 if (TruncType
!= LoadedType
&&
14282 !LS
.DAG
->getTargetLoweringInfo().isZExtFree(LoadedType
, TruncType
))
14286 /// Account for slicing gain in the current cost.
14287 /// Slicing provide a few gains like removing a shift or a
14288 /// truncate. This method allows to grow the cost of the original
14289 /// load with the gain from this slice.
14290 void addSliceGain(const LoadedSlice
&LS
) {
14291 // Each slice saves a truncate.
14292 const TargetLowering
&TLI
= LS
.DAG
->getTargetLoweringInfo();
14293 if (!TLI
.isTruncateFree(LS
.Inst
->getOperand(0).getValueType(),
14294 LS
.Inst
->getValueType(0)))
14296 // If there is a shift amount, this slice gets rid of it.
14299 // If this slice can merge a cross register bank copy, account for it.
14300 if (LS
.canMergeExpensiveCrossRegisterBankCopy())
14301 ++CrossRegisterBanksCopies
;
14304 Cost
&operator+=(const Cost
&RHS
) {
14305 Loads
+= RHS
.Loads
;
14306 Truncates
+= RHS
.Truncates
;
14307 CrossRegisterBanksCopies
+= RHS
.CrossRegisterBanksCopies
;
14308 ZExts
+= RHS
.ZExts
;
14309 Shift
+= RHS
.Shift
;
14313 bool operator==(const Cost
&RHS
) const {
14314 return Loads
== RHS
.Loads
&& Truncates
== RHS
.Truncates
&&
14315 CrossRegisterBanksCopies
== RHS
.CrossRegisterBanksCopies
&&
14316 ZExts
== RHS
.ZExts
&& Shift
== RHS
.Shift
;
14319 bool operator!=(const Cost
&RHS
) const { return !(*this == RHS
); }
14321 bool operator<(const Cost
&RHS
) const {
14322 // Assume cross register banks copies are as expensive as loads.
14323 // FIXME: Do we want some more target hooks?
14324 unsigned ExpensiveOpsLHS
= Loads
+ CrossRegisterBanksCopies
;
14325 unsigned ExpensiveOpsRHS
= RHS
.Loads
+ RHS
.CrossRegisterBanksCopies
;
14326 // Unless we are optimizing for code size, consider the
14327 // expensive operation first.
14328 if (!ForCodeSize
&& ExpensiveOpsLHS
!= ExpensiveOpsRHS
)
14329 return ExpensiveOpsLHS
< ExpensiveOpsRHS
;
14330 return (Truncates
+ ZExts
+ Shift
+ ExpensiveOpsLHS
) <
14331 (RHS
.Truncates
+ RHS
.ZExts
+ RHS
.Shift
+ ExpensiveOpsRHS
);
14334 bool operator>(const Cost
&RHS
) const { return RHS
< *this; }
14336 bool operator<=(const Cost
&RHS
) const { return !(RHS
< *this); }
14338 bool operator>=(const Cost
&RHS
) const { return !(*this < RHS
); }
14341 // The last instruction that represent the slice. This should be a
14342 // truncate instruction.
14345 // The original load instruction.
14346 LoadSDNode
*Origin
;
14348 // The right shift amount in bits from the original load.
14351 // The DAG from which Origin came from.
14352 // This is used to get some contextual information about legal types, etc.
14355 LoadedSlice(SDNode
*Inst
= nullptr, LoadSDNode
*Origin
= nullptr,
14356 unsigned Shift
= 0, SelectionDAG
*DAG
= nullptr)
14357 : Inst(Inst
), Origin(Origin
), Shift(Shift
), DAG(DAG
) {}
14359 /// Get the bits used in a chunk of bits \p BitWidth large.
14360 /// \return Result is \p BitWidth and has used bits set to 1 and
14361 /// not used bits set to 0.
14362 APInt
getUsedBits() const {
14363 // Reproduce the trunc(lshr) sequence:
14364 // - Start from the truncated value.
14365 // - Zero extend to the desired bit width.
14367 assert(Origin
&& "No original load to compare against.");
14368 unsigned BitWidth
= Origin
->getValueSizeInBits(0);
14369 assert(Inst
&& "This slice is not bound to an instruction");
14370 assert(Inst
->getValueSizeInBits(0) <= BitWidth
&&
14371 "Extracted slice is bigger than the whole type!");
14372 APInt
UsedBits(Inst
->getValueSizeInBits(0), 0);
14373 UsedBits
.setAllBits();
14374 UsedBits
= UsedBits
.zext(BitWidth
);
14375 UsedBits
<<= Shift
;
14379 /// Get the size of the slice to be loaded in bytes.
14380 unsigned getLoadedSize() const {
14381 unsigned SliceSize
= getUsedBits().countPopulation();
14382 assert(!(SliceSize
& 0x7) && "Size is not a multiple of a byte.");
14383 return SliceSize
/ 8;
14386 /// Get the type that will be loaded for this slice.
14387 /// Note: This may not be the final type for the slice.
14388 EVT
getLoadedType() const {
14389 assert(DAG
&& "Missing context");
14390 LLVMContext
&Ctxt
= *DAG
->getContext();
14391 return EVT::getIntegerVT(Ctxt
, getLoadedSize() * 8);
14394 /// Get the alignment of the load used for this slice.
14395 unsigned getAlignment() const {
14396 unsigned Alignment
= Origin
->getAlignment();
14397 uint64_t Offset
= getOffsetFromBase();
14399 Alignment
= MinAlign(Alignment
, Alignment
+ Offset
);
14403 /// Check if this slice can be rewritten with legal operations.
14404 bool isLegal() const {
14405 // An invalid slice is not legal.
14406 if (!Origin
|| !Inst
|| !DAG
)
14409 // Offsets are for indexed load only, we do not handle that.
14410 if (!Origin
->getOffset().isUndef())
14413 const TargetLowering
&TLI
= DAG
->getTargetLoweringInfo();
14415 // Check that the type is legal.
14416 EVT SliceType
= getLoadedType();
14417 if (!TLI
.isTypeLegal(SliceType
))
14420 // Check that the load is legal for this type.
14421 if (!TLI
.isOperationLegal(ISD::LOAD
, SliceType
))
14424 // Check that the offset can be computed.
14425 // 1. Check its type.
14426 EVT PtrType
= Origin
->getBasePtr().getValueType();
14427 if (PtrType
== MVT::Untyped
|| PtrType
.isExtended())
14430 // 2. Check that it fits in the immediate.
14431 if (!TLI
.isLegalAddImmediate(getOffsetFromBase()))
14434 // 3. Check that the computation is legal.
14435 if (!TLI
.isOperationLegal(ISD::ADD
, PtrType
))
14438 // Check that the zext is legal if it needs one.
14439 EVT TruncateType
= Inst
->getValueType(0);
14440 if (TruncateType
!= SliceType
&&
14441 !TLI
.isOperationLegal(ISD::ZERO_EXTEND
, TruncateType
))
14447 /// Get the offset in bytes of this slice in the original chunk of
14449 /// \pre DAG != nullptr.
14450 uint64_t getOffsetFromBase() const {
14451 assert(DAG
&& "Missing context.");
14452 bool IsBigEndian
= DAG
->getDataLayout().isBigEndian();
14453 assert(!(Shift
& 0x7) && "Shifts not aligned on Bytes are not supported.");
14454 uint64_t Offset
= Shift
/ 8;
14455 unsigned TySizeInBytes
= Origin
->getValueSizeInBits(0) / 8;
14456 assert(!(Origin
->getValueSizeInBits(0) & 0x7) &&
14457 "The size of the original loaded type is not a multiple of a"
14459 // If Offset is bigger than TySizeInBytes, it means we are loading all
14460 // zeros. This should have been optimized before in the process.
14461 assert(TySizeInBytes
> Offset
&&
14462 "Invalid shift amount for given loaded size");
14464 Offset
= TySizeInBytes
- Offset
- getLoadedSize();
14468 /// Generate the sequence of instructions to load the slice
14469 /// represented by this object and redirect the uses of this slice to
14470 /// this new sequence of instructions.
14471 /// \pre this->Inst && this->Origin are valid Instructions and this
14472 /// object passed the legal check: LoadedSlice::isLegal returned true.
14473 /// \return The last instruction of the sequence used to load the slice.
14474 SDValue
loadSlice() const {
14475 assert(Inst
&& Origin
&& "Unable to replace a non-existing slice.");
14476 const SDValue
&OldBaseAddr
= Origin
->getBasePtr();
14477 SDValue BaseAddr
= OldBaseAddr
;
14478 // Get the offset in that chunk of bytes w.r.t. the endianness.
14479 int64_t Offset
= static_cast<int64_t>(getOffsetFromBase());
14480 assert(Offset
>= 0 && "Offset too big to fit in int64_t!");
14482 // BaseAddr = BaseAddr + Offset.
14483 EVT ArithType
= BaseAddr
.getValueType();
14485 BaseAddr
= DAG
->getNode(ISD::ADD
, DL
, ArithType
, BaseAddr
,
14486 DAG
->getConstant(Offset
, DL
, ArithType
));
14489 // Create the type of the loaded slice according to its size.
14490 EVT SliceType
= getLoadedType();
14492 // Create the load for the slice.
14494 DAG
->getLoad(SliceType
, SDLoc(Origin
), Origin
->getChain(), BaseAddr
,
14495 Origin
->getPointerInfo().getWithOffset(Offset
),
14496 getAlignment(), Origin
->getMemOperand()->getFlags());
14497 // If the final type is not the same as the loaded type, this means that
14498 // we have to pad with zero. Create a zero extend for that.
14499 EVT FinalType
= Inst
->getValueType(0);
14500 if (SliceType
!= FinalType
)
14502 DAG
->getNode(ISD::ZERO_EXTEND
, SDLoc(LastInst
), FinalType
, LastInst
);
14506 /// Check if this slice can be merged with an expensive cross register
14507 /// bank copy. E.g.,
14509 /// f = bitcast i32 i to float
14510 bool canMergeExpensiveCrossRegisterBankCopy() const {
14511 if (!Inst
|| !Inst
->hasOneUse())
14513 SDNode
*Use
= *Inst
->use_begin();
14514 if (Use
->getOpcode() != ISD::BITCAST
)
14516 assert(DAG
&& "Missing context");
14517 const TargetLowering
&TLI
= DAG
->getTargetLoweringInfo();
14518 EVT ResVT
= Use
->getValueType(0);
14519 const TargetRegisterClass
*ResRC
=
14520 TLI
.getRegClassFor(ResVT
.getSimpleVT(), Use
->isDivergent());
14521 const TargetRegisterClass
*ArgRC
=
14522 TLI
.getRegClassFor(Use
->getOperand(0).getValueType().getSimpleVT(),
14523 Use
->getOperand(0)->isDivergent());
14524 if (ArgRC
== ResRC
|| !TLI
.isOperationLegal(ISD::LOAD
, ResVT
))
14527 // At this point, we know that we perform a cross-register-bank copy.
14528 // Check if it is expensive.
14529 const TargetRegisterInfo
*TRI
= DAG
->getSubtarget().getRegisterInfo();
14530 // Assume bitcasts are cheap, unless both register classes do not
14531 // explicitly share a common sub class.
14532 if (!TRI
|| TRI
->getCommonSubClass(ArgRC
, ResRC
))
14535 // Check if it will be merged with the load.
14536 // 1. Check the alignment constraint.
14537 unsigned RequiredAlignment
= DAG
->getDataLayout().getABITypeAlignment(
14538 ResVT
.getTypeForEVT(*DAG
->getContext()));
14540 if (RequiredAlignment
> getAlignment())
14543 // 2. Check that the load is a legal operation for that type.
14544 if (!TLI
.isOperationLegal(ISD::LOAD
, ResVT
))
14547 // 3. Check that we do not have a zext in the way.
14548 if (Inst
->getValueType(0) != getLoadedType())
14555 } // end anonymous namespace
14557 /// Check that all bits set in \p UsedBits form a dense region, i.e.,
14558 /// \p UsedBits looks like 0..0 1..1 0..0.
14559 static bool areUsedBitsDense(const APInt
&UsedBits
) {
14560 // If all the bits are one, this is dense!
14561 if (UsedBits
.isAllOnesValue())
14564 // Get rid of the unused bits on the right.
14565 APInt NarrowedUsedBits
= UsedBits
.lshr(UsedBits
.countTrailingZeros());
14566 // Get rid of the unused bits on the left.
14567 if (NarrowedUsedBits
.countLeadingZeros())
14568 NarrowedUsedBits
= NarrowedUsedBits
.trunc(NarrowedUsedBits
.getActiveBits());
14569 // Check that the chunk of bits is completely used.
14570 return NarrowedUsedBits
.isAllOnesValue();
14573 /// Check whether or not \p First and \p Second are next to each other
14574 /// in memory. This means that there is no hole between the bits loaded
14575 /// by \p First and the bits loaded by \p Second.
14576 static bool areSlicesNextToEachOther(const LoadedSlice
&First
,
14577 const LoadedSlice
&Second
) {
14578 assert(First
.Origin
== Second
.Origin
&& First
.Origin
&&
14579 "Unable to match different memory origins.");
14580 APInt UsedBits
= First
.getUsedBits();
14581 assert((UsedBits
& Second
.getUsedBits()) == 0 &&
14582 "Slices are not supposed to overlap.");
14583 UsedBits
|= Second
.getUsedBits();
14584 return areUsedBitsDense(UsedBits
);
14587 /// Adjust the \p GlobalLSCost according to the target
14588 /// paring capabilities and the layout of the slices.
14589 /// \pre \p GlobalLSCost should account for at least as many loads as
14590 /// there is in the slices in \p LoadedSlices.
14591 static void adjustCostForPairing(SmallVectorImpl
<LoadedSlice
> &LoadedSlices
,
14592 LoadedSlice::Cost
&GlobalLSCost
) {
14593 unsigned NumberOfSlices
= LoadedSlices
.size();
14594 // If there is less than 2 elements, no pairing is possible.
14595 if (NumberOfSlices
< 2)
14598 // Sort the slices so that elements that are likely to be next to each
14599 // other in memory are next to each other in the list.
14600 llvm::sort(LoadedSlices
, [](const LoadedSlice
&LHS
, const LoadedSlice
&RHS
) {
14601 assert(LHS
.Origin
== RHS
.Origin
&& "Different bases not implemented.");
14602 return LHS
.getOffsetFromBase() < RHS
.getOffsetFromBase();
14604 const TargetLowering
&TLI
= LoadedSlices
[0].DAG
->getTargetLoweringInfo();
14605 // First (resp. Second) is the first (resp. Second) potentially candidate
14606 // to be placed in a paired load.
14607 const LoadedSlice
*First
= nullptr;
14608 const LoadedSlice
*Second
= nullptr;
14609 for (unsigned CurrSlice
= 0; CurrSlice
< NumberOfSlices
; ++CurrSlice
,
14610 // Set the beginning of the pair.
14612 Second
= &LoadedSlices
[CurrSlice
];
14614 // If First is NULL, it means we start a new pair.
14615 // Get to the next slice.
14619 EVT LoadedType
= First
->getLoadedType();
14621 // If the types of the slices are different, we cannot pair them.
14622 if (LoadedType
!= Second
->getLoadedType())
14625 // Check if the target supplies paired loads for this type.
14626 unsigned RequiredAlignment
= 0;
14627 if (!TLI
.hasPairedLoad(LoadedType
, RequiredAlignment
)) {
14628 // move to the next pair, this type is hopeless.
14632 // Check if we meet the alignment requirement.
14633 if (RequiredAlignment
> First
->getAlignment())
14636 // Check that both loads are next to each other in memory.
14637 if (!areSlicesNextToEachOther(*First
, *Second
))
14640 assert(GlobalLSCost
.Loads
> 0 && "We save more loads than we created!");
14641 --GlobalLSCost
.Loads
;
14642 // Move to the next pair.
14647 /// Check the profitability of all involved LoadedSlice.
14648 /// Currently, it is considered profitable if there is exactly two
14649 /// involved slices (1) which are (2) next to each other in memory, and
14650 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
14652 /// Note: The order of the elements in \p LoadedSlices may be modified, but not
14653 /// the elements themselves.
14655 /// FIXME: When the cost model will be mature enough, we can relax
14656 /// constraints (1) and (2).
14657 static bool isSlicingProfitable(SmallVectorImpl
<LoadedSlice
> &LoadedSlices
,
14658 const APInt
&UsedBits
, bool ForCodeSize
) {
14659 unsigned NumberOfSlices
= LoadedSlices
.size();
14660 if (StressLoadSlicing
)
14661 return NumberOfSlices
> 1;
14664 if (NumberOfSlices
!= 2)
14668 if (!areUsedBitsDense(UsedBits
))
14672 LoadedSlice::Cost
OrigCost(ForCodeSize
), GlobalSlicingCost(ForCodeSize
);
14673 // The original code has one big load.
14674 OrigCost
.Loads
= 1;
14675 for (unsigned CurrSlice
= 0; CurrSlice
< NumberOfSlices
; ++CurrSlice
) {
14676 const LoadedSlice
&LS
= LoadedSlices
[CurrSlice
];
14677 // Accumulate the cost of all the slices.
14678 LoadedSlice::Cost
SliceCost(LS
, ForCodeSize
);
14679 GlobalSlicingCost
+= SliceCost
;
14681 // Account as cost in the original configuration the gain obtained
14682 // with the current slices.
14683 OrigCost
.addSliceGain(LS
);
14686 // If the target supports paired load, adjust the cost accordingly.
14687 adjustCostForPairing(LoadedSlices
, GlobalSlicingCost
);
14688 return OrigCost
> GlobalSlicingCost
;
14691 /// If the given load, \p LI, is used only by trunc or trunc(lshr)
14692 /// operations, split it in the various pieces being extracted.
14694 /// This sort of thing is introduced by SROA.
14695 /// This slicing takes care not to insert overlapping loads.
14696 /// \pre LI is a simple load (i.e., not an atomic or volatile load).
14697 bool DAGCombiner::SliceUpLoad(SDNode
*N
) {
14698 if (Level
< AfterLegalizeDAG
)
14701 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
14702 if (LD
->isVolatile() || !ISD::isNormalLoad(LD
) ||
14703 !LD
->getValueType(0).isInteger())
14706 // Keep track of already used bits to detect overlapping values.
14707 // In that case, we will just abort the transformation.
14708 APInt
UsedBits(LD
->getValueSizeInBits(0), 0);
14710 SmallVector
<LoadedSlice
, 4> LoadedSlices
;
14712 // Check if this load is used as several smaller chunks of bits.
14713 // Basically, look for uses in trunc or trunc(lshr) and record a new chain
14714 // of computation for each trunc.
14715 for (SDNode::use_iterator UI
= LD
->use_begin(), UIEnd
= LD
->use_end();
14716 UI
!= UIEnd
; ++UI
) {
14717 // Skip the uses of the chain.
14718 if (UI
.getUse().getResNo() != 0)
14721 SDNode
*User
= *UI
;
14722 unsigned Shift
= 0;
14724 // Check if this is a trunc(lshr).
14725 if (User
->getOpcode() == ISD::SRL
&& User
->hasOneUse() &&
14726 isa
<ConstantSDNode
>(User
->getOperand(1))) {
14727 Shift
= User
->getConstantOperandVal(1);
14728 User
= *User
->use_begin();
14731 // At this point, User is a Truncate, iff we encountered, trunc or
14733 if (User
->getOpcode() != ISD::TRUNCATE
)
14736 // The width of the type must be a power of 2 and greater than 8-bits.
14737 // Otherwise the load cannot be represented in LLVM IR.
14738 // Moreover, if we shifted with a non-8-bits multiple, the slice
14739 // will be across several bytes. We do not support that.
14740 unsigned Width
= User
->getValueSizeInBits(0);
14741 if (Width
< 8 || !isPowerOf2_32(Width
) || (Shift
& 0x7))
14744 // Build the slice for this chain of computations.
14745 LoadedSlice
LS(User
, LD
, Shift
, &DAG
);
14746 APInt CurrentUsedBits
= LS
.getUsedBits();
14748 // Check if this slice overlaps with another.
14749 if ((CurrentUsedBits
& UsedBits
) != 0)
14751 // Update the bits used globally.
14752 UsedBits
|= CurrentUsedBits
;
14754 // Check if the new slice would be legal.
14758 // Record the slice.
14759 LoadedSlices
.push_back(LS
);
14762 // Abort slicing if it does not seem to be profitable.
14763 if (!isSlicingProfitable(LoadedSlices
, UsedBits
, ForCodeSize
))
14768 // Rewrite each chain to use an independent load.
14769 // By construction, each chain can be represented by a unique load.
14771 // Prepare the argument for the new token factor for all the slices.
14772 SmallVector
<SDValue
, 8> ArgChains
;
14773 for (SmallVectorImpl
<LoadedSlice
>::const_iterator
14774 LSIt
= LoadedSlices
.begin(),
14775 LSItEnd
= LoadedSlices
.end();
14776 LSIt
!= LSItEnd
; ++LSIt
) {
14777 SDValue SliceInst
= LSIt
->loadSlice();
14778 CombineTo(LSIt
->Inst
, SliceInst
, true);
14779 if (SliceInst
.getOpcode() != ISD::LOAD
)
14780 SliceInst
= SliceInst
.getOperand(0);
14781 assert(SliceInst
->getOpcode() == ISD::LOAD
&&
14782 "It takes more than a zext to get to the loaded slice!!");
14783 ArgChains
.push_back(SliceInst
.getValue(1));
14786 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, SDLoc(LD
), MVT::Other
,
14788 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
);
14789 AddToWorklist(Chain
.getNode());
14793 /// Check to see if V is (and load (ptr), imm), where the load is having
14794 /// specific bytes cleared out. If so, return the byte size being masked out
14795 /// and the shift amount.
14796 static std::pair
<unsigned, unsigned>
14797 CheckForMaskedLoad(SDValue V
, SDValue Ptr
, SDValue Chain
) {
14798 std::pair
<unsigned, unsigned> Result(0, 0);
14800 // Check for the structure we're looking for.
14801 if (V
->getOpcode() != ISD::AND
||
14802 !isa
<ConstantSDNode
>(V
->getOperand(1)) ||
14803 !ISD::isNormalLoad(V
->getOperand(0).getNode()))
14806 // Check the chain and pointer.
14807 LoadSDNode
*LD
= cast
<LoadSDNode
>(V
->getOperand(0));
14808 if (LD
->getBasePtr() != Ptr
) return Result
; // Not from same pointer.
14810 // This only handles simple types.
14811 if (V
.getValueType() != MVT::i16
&&
14812 V
.getValueType() != MVT::i32
&&
14813 V
.getValueType() != MVT::i64
)
14816 // Check the constant mask. Invert it so that the bits being masked out are
14817 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
14818 // follow the sign bit for uniformity.
14819 uint64_t NotMask
= ~cast
<ConstantSDNode
>(V
->getOperand(1))->getSExtValue();
14820 unsigned NotMaskLZ
= countLeadingZeros(NotMask
);
14821 if (NotMaskLZ
& 7) return Result
; // Must be multiple of a byte.
14822 unsigned NotMaskTZ
= countTrailingZeros(NotMask
);
14823 if (NotMaskTZ
& 7) return Result
; // Must be multiple of a byte.
14824 if (NotMaskLZ
== 64) return Result
; // All zero mask.
14826 // See if we have a continuous run of bits. If so, we have 0*1+0*
14827 if (countTrailingOnes(NotMask
>> NotMaskTZ
) + NotMaskTZ
+ NotMaskLZ
!= 64)
14830 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
14831 if (V
.getValueType() != MVT::i64
&& NotMaskLZ
)
14832 NotMaskLZ
-= 64-V
.getValueSizeInBits();
14834 unsigned MaskedBytes
= (V
.getValueSizeInBits()-NotMaskLZ
-NotMaskTZ
)/8;
14835 switch (MaskedBytes
) {
14839 default: return Result
; // All one mask, or 5-byte mask.
14842 // Verify that the first bit starts at a multiple of mask so that the access
14843 // is aligned the same as the access width.
14844 if (NotMaskTZ
&& NotMaskTZ
/8 % MaskedBytes
) return Result
;
14846 // For narrowing to be valid, it must be the case that the load the
14847 // immediately preceding memory operation before the store.
14848 if (LD
== Chain
.getNode())
14850 else if (Chain
->getOpcode() == ISD::TokenFactor
&&
14851 SDValue(LD
, 1).hasOneUse()) {
14852 // LD has only 1 chain use so they are no indirect dependencies.
14853 if (!LD
->isOperandOf(Chain
.getNode()))
14856 return Result
; // Fail.
14858 Result
.first
= MaskedBytes
;
14859 Result
.second
= NotMaskTZ
/8;
14863 /// Check to see if IVal is something that provides a value as specified by
14864 /// MaskInfo. If so, replace the specified store with a narrower store of
14865 /// truncated IVal.
14867 ShrinkLoadReplaceStoreWithStore(const std::pair
<unsigned, unsigned> &MaskInfo
,
14868 SDValue IVal
, StoreSDNode
*St
,
14870 unsigned NumBytes
= MaskInfo
.first
;
14871 unsigned ByteShift
= MaskInfo
.second
;
14872 SelectionDAG
&DAG
= DC
->getDAG();
14874 // Check to see if IVal is all zeros in the part being masked in by the 'or'
14875 // that uses this. If not, this is not a replacement.
14876 APInt Mask
= ~APInt::getBitsSet(IVal
.getValueSizeInBits(),
14877 ByteShift
*8, (ByteShift
+NumBytes
)*8);
14878 if (!DAG
.MaskedValueIsZero(IVal
, Mask
)) return SDValue();
14880 // Check that it is legal on the target to do this. It is legal if the new
14881 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
14882 // legalization (and the target doesn't explicitly think this is a bad idea).
14883 MVT VT
= MVT::getIntegerVT(NumBytes
* 8);
14884 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
14885 if (!DC
->isTypeLegal(VT
))
14887 if (St
->getMemOperand() &&
14888 !TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), VT
,
14889 *St
->getMemOperand()))
14892 // Okay, we can do this! Replace the 'St' store with a store of IVal that is
14893 // shifted by ByteShift and truncated down to NumBytes.
14896 IVal
= DAG
.getNode(ISD::SRL
, DL
, IVal
.getValueType(), IVal
,
14897 DAG
.getConstant(ByteShift
*8, DL
,
14898 DC
->getShiftAmountTy(IVal
.getValueType())));
14901 // Figure out the offset for the store and the alignment of the access.
14903 unsigned NewAlign
= St
->getAlignment();
14905 if (DAG
.getDataLayout().isLittleEndian())
14906 StOffset
= ByteShift
;
14908 StOffset
= IVal
.getValueType().getStoreSize() - ByteShift
- NumBytes
;
14910 SDValue Ptr
= St
->getBasePtr();
14913 Ptr
= DAG
.getNode(ISD::ADD
, DL
, Ptr
.getValueType(),
14914 Ptr
, DAG
.getConstant(StOffset
, DL
, Ptr
.getValueType()));
14915 NewAlign
= MinAlign(NewAlign
, StOffset
);
14918 // Truncate down to the new size.
14919 IVal
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(IVal
), VT
, IVal
);
14923 .getStore(St
->getChain(), SDLoc(St
), IVal
, Ptr
,
14924 St
->getPointerInfo().getWithOffset(StOffset
), NewAlign
);
14927 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and
14928 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
14929 /// narrowing the load and store if it would end up being a win for performance
14931 SDValue
DAGCombiner::ReduceLoadOpStoreWidth(SDNode
*N
) {
14932 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
14933 if (ST
->isVolatile())
14936 SDValue Chain
= ST
->getChain();
14937 SDValue Value
= ST
->getValue();
14938 SDValue Ptr
= ST
->getBasePtr();
14939 EVT VT
= Value
.getValueType();
14941 if (ST
->isTruncatingStore() || VT
.isVector() || !Value
.hasOneUse())
14944 unsigned Opc
= Value
.getOpcode();
14946 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
14947 // is a byte mask indicating a consecutive number of bytes, check to see if
14948 // Y is known to provide just those bytes. If so, we try to replace the
14949 // load + replace + store sequence with a single (narrower) store, which makes
14951 if (Opc
== ISD::OR
) {
14952 std::pair
<unsigned, unsigned> MaskedLoad
;
14953 MaskedLoad
= CheckForMaskedLoad(Value
.getOperand(0), Ptr
, Chain
);
14954 if (MaskedLoad
.first
)
14955 if (SDValue NewST
= ShrinkLoadReplaceStoreWithStore(MaskedLoad
,
14956 Value
.getOperand(1), ST
,this))
14959 // Or is commutative, so try swapping X and Y.
14960 MaskedLoad
= CheckForMaskedLoad(Value
.getOperand(1), Ptr
, Chain
);
14961 if (MaskedLoad
.first
)
14962 if (SDValue NewST
= ShrinkLoadReplaceStoreWithStore(MaskedLoad
,
14963 Value
.getOperand(0), ST
,this))
14967 if ((Opc
!= ISD::OR
&& Opc
!= ISD::XOR
&& Opc
!= ISD::AND
) ||
14968 Value
.getOperand(1).getOpcode() != ISD::Constant
)
14971 SDValue N0
= Value
.getOperand(0);
14972 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
14973 Chain
== SDValue(N0
.getNode(), 1)) {
14974 LoadSDNode
*LD
= cast
<LoadSDNode
>(N0
);
14975 if (LD
->getBasePtr() != Ptr
||
14976 LD
->getPointerInfo().getAddrSpace() !=
14977 ST
->getPointerInfo().getAddrSpace())
14980 // Find the type to narrow it the load / op / store to.
14981 SDValue N1
= Value
.getOperand(1);
14982 unsigned BitWidth
= N1
.getValueSizeInBits();
14983 APInt Imm
= cast
<ConstantSDNode
>(N1
)->getAPIntValue();
14984 if (Opc
== ISD::AND
)
14985 Imm
^= APInt::getAllOnesValue(BitWidth
);
14986 if (Imm
== 0 || Imm
.isAllOnesValue())
14988 unsigned ShAmt
= Imm
.countTrailingZeros();
14989 unsigned MSB
= BitWidth
- Imm
.countLeadingZeros() - 1;
14990 unsigned NewBW
= NextPowerOf2(MSB
- ShAmt
);
14991 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
14992 // The narrowing should be profitable, the load/store operation should be
14993 // legal (or custom) and the store size should be equal to the NewVT width.
14994 while (NewBW
< BitWidth
&&
14995 (NewVT
.getStoreSizeInBits() != NewBW
||
14996 !TLI
.isOperationLegalOrCustom(Opc
, NewVT
) ||
14997 !TLI
.isNarrowingProfitable(VT
, NewVT
))) {
14998 NewBW
= NextPowerOf2(NewBW
);
14999 NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
15001 if (NewBW
>= BitWidth
)
15004 // If the lsb changed does not start at the type bitwidth boundary,
15005 // start at the previous one.
15007 ShAmt
= (((ShAmt
+ NewBW
- 1) / NewBW
) * NewBW
) - NewBW
;
15008 APInt Mask
= APInt::getBitsSet(BitWidth
, ShAmt
,
15009 std::min(BitWidth
, ShAmt
+ NewBW
));
15010 if ((Imm
& Mask
) == Imm
) {
15011 APInt NewImm
= (Imm
& Mask
).lshr(ShAmt
).trunc(NewBW
);
15012 if (Opc
== ISD::AND
)
15013 NewImm
^= APInt::getAllOnesValue(NewBW
);
15014 uint64_t PtrOff
= ShAmt
/ 8;
15015 // For big endian targets, we need to adjust the offset to the pointer to
15016 // load the correct bytes.
15017 if (DAG
.getDataLayout().isBigEndian())
15018 PtrOff
= (BitWidth
+ 7 - NewBW
) / 8 - PtrOff
;
15020 unsigned NewAlign
= MinAlign(LD
->getAlignment(), PtrOff
);
15021 Type
*NewVTTy
= NewVT
.getTypeForEVT(*DAG
.getContext());
15022 if (NewAlign
< DAG
.getDataLayout().getABITypeAlignment(NewVTTy
))
15025 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, SDLoc(LD
),
15026 Ptr
.getValueType(), Ptr
,
15027 DAG
.getConstant(PtrOff
, SDLoc(LD
),
15028 Ptr
.getValueType()));
15030 DAG
.getLoad(NewVT
, SDLoc(N0
), LD
->getChain(), NewPtr
,
15031 LD
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
,
15032 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
15033 SDValue NewVal
= DAG
.getNode(Opc
, SDLoc(Value
), NewVT
, NewLD
,
15034 DAG
.getConstant(NewImm
, SDLoc(Value
),
15037 DAG
.getStore(Chain
, SDLoc(N
), NewVal
, NewPtr
,
15038 ST
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
);
15040 AddToWorklist(NewPtr
.getNode());
15041 AddToWorklist(NewLD
.getNode());
15042 AddToWorklist(NewVal
.getNode());
15043 WorklistRemover
DeadNodes(*this);
15044 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), NewLD
.getValue(1));
15053 /// For a given floating point load / store pair, if the load value isn't used
15054 /// by any other operations, then consider transforming the pair to integer
15055 /// load / store operations if the target deems the transformation profitable.
15056 SDValue
DAGCombiner::TransformFPLoadStorePair(SDNode
*N
) {
15057 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
15058 SDValue Value
= ST
->getValue();
15059 if (ISD::isNormalStore(ST
) && ISD::isNormalLoad(Value
.getNode()) &&
15060 Value
.hasOneUse()) {
15061 LoadSDNode
*LD
= cast
<LoadSDNode
>(Value
);
15062 EVT VT
= LD
->getMemoryVT();
15063 if (!VT
.isFloatingPoint() ||
15064 VT
!= ST
->getMemoryVT() ||
15065 LD
->isNonTemporal() ||
15066 ST
->isNonTemporal() ||
15067 LD
->getPointerInfo().getAddrSpace() != 0 ||
15068 ST
->getPointerInfo().getAddrSpace() != 0)
15071 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), VT
.getSizeInBits());
15072 if (!TLI
.isOperationLegal(ISD::LOAD
, IntVT
) ||
15073 !TLI
.isOperationLegal(ISD::STORE
, IntVT
) ||
15074 !TLI
.isDesirableToTransformToIntegerOp(ISD::LOAD
, VT
) ||
15075 !TLI
.isDesirableToTransformToIntegerOp(ISD::STORE
, VT
))
15078 unsigned LDAlign
= LD
->getAlignment();
15079 unsigned STAlign
= ST
->getAlignment();
15080 Type
*IntVTTy
= IntVT
.getTypeForEVT(*DAG
.getContext());
15081 unsigned ABIAlign
= DAG
.getDataLayout().getABITypeAlignment(IntVTTy
);
15082 if (LDAlign
< ABIAlign
|| STAlign
< ABIAlign
)
15086 DAG
.getLoad(IntVT
, SDLoc(Value
), LD
->getChain(), LD
->getBasePtr(),
15087 LD
->getPointerInfo(), LDAlign
);
15090 DAG
.getStore(ST
->getChain(), SDLoc(N
), NewLD
, ST
->getBasePtr(),
15091 ST
->getPointerInfo(), STAlign
);
15093 AddToWorklist(NewLD
.getNode());
15094 AddToWorklist(NewST
.getNode());
15095 WorklistRemover
DeadNodes(*this);
15096 DAG
.ReplaceAllUsesOfValueWith(Value
.getValue(1), NewLD
.getValue(1));
15104 // This is a helper function for visitMUL to check the profitability
15105 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
15106 // MulNode is the original multiply, AddNode is (add x, c1),
15107 // and ConstNode is c2.
15109 // If the (add x, c1) has multiple uses, we could increase
15110 // the number of adds if we make this transformation.
15111 // It would only be worth doing this if we can remove a
15112 // multiply in the process. Check for that here.
15116 // We're checking for cases where we have common "c3 * A" expressions.
15117 bool DAGCombiner::isMulAddWithConstProfitable(SDNode
*MulNode
,
15119 SDValue
&ConstNode
) {
15122 // If the add only has one use, this would be OK to do.
15123 if (AddNode
.getNode()->hasOneUse())
15126 // Walk all the users of the constant with which we're multiplying.
15127 for (SDNode
*Use
: ConstNode
->uses()) {
15128 if (Use
== MulNode
) // This use is the one we're on right now. Skip it.
15131 if (Use
->getOpcode() == ISD::MUL
) { // We have another multiply use.
15133 SDNode
*MulVar
= AddNode
.getOperand(0).getNode();
15135 // OtherOp is what we're multiplying against the constant.
15136 if (Use
->getOperand(0) == ConstNode
)
15137 OtherOp
= Use
->getOperand(1).getNode();
15139 OtherOp
= Use
->getOperand(0).getNode();
15141 // Check to see if multiply is with the same operand of our "add".
15143 // ConstNode = CONST
15144 // Use = ConstNode * A <-- visiting Use. OtherOp is A.
15146 // AddNode = (A + c1) <-- MulVar is A.
15147 // = AddNode * ConstNode <-- current visiting instruction.
15149 // If we make this transformation, we will have a common
15150 // multiply (ConstNode * A) that we can save.
15151 if (OtherOp
== MulVar
)
15154 // Now check to see if a future expansion will give us a common
15157 // ConstNode = CONST
15158 // AddNode = (A + c1)
15159 // ... = AddNode * ConstNode <-- current visiting instruction.
15161 // OtherOp = (A + c2)
15162 // Use = OtherOp * ConstNode <-- visiting Use.
15164 // If we make this transformation, we will have a common
15165 // multiply (CONST * A) after we also do the same transformation
15166 // to the "t2" instruction.
15167 if (OtherOp
->getOpcode() == ISD::ADD
&&
15168 DAG
.isConstantIntBuildVectorOrConstantInt(OtherOp
->getOperand(1)) &&
15169 OtherOp
->getOperand(0).getNode() == MulVar
)
15174 // Didn't find a case where this would be profitable.
15178 SDValue
DAGCombiner::getMergeStoreChains(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
15179 unsigned NumStores
) {
15180 SmallVector
<SDValue
, 8> Chains
;
15181 SmallPtrSet
<const SDNode
*, 8> Visited
;
15182 SDLoc
StoreDL(StoreNodes
[0].MemNode
);
15184 for (unsigned i
= 0; i
< NumStores
; ++i
) {
15185 Visited
.insert(StoreNodes
[i
].MemNode
);
15188 // don't include nodes that are children or repeated nodes.
15189 for (unsigned i
= 0; i
< NumStores
; ++i
) {
15190 if (Visited
.insert(StoreNodes
[i
].MemNode
->getChain().getNode()).second
)
15191 Chains
.push_back(StoreNodes
[i
].MemNode
->getChain());
15194 assert(Chains
.size() > 0 && "Chain should have generated a chain");
15195 return DAG
.getTokenFactor(StoreDL
, Chains
);
15198 bool DAGCombiner::MergeStoresOfConstantsOrVecElts(
15199 SmallVectorImpl
<MemOpLink
> &StoreNodes
, EVT MemVT
, unsigned NumStores
,
15200 bool IsConstantSrc
, bool UseVector
, bool UseTrunc
) {
15201 // Make sure we have something to merge.
15205 // The latest Node in the DAG.
15206 SDLoc
DL(StoreNodes
[0].MemNode
);
15208 int64_t ElementSizeBits
= MemVT
.getStoreSizeInBits();
15209 unsigned SizeInBits
= NumStores
* ElementSizeBits
;
15210 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
15214 unsigned Elts
= NumStores
* NumMemElts
;
15215 // Get the type for the merged vector store.
15216 StoreTy
= EVT::getVectorVT(*DAG
.getContext(), MemVT
.getScalarType(), Elts
);
15218 StoreTy
= EVT::getIntegerVT(*DAG
.getContext(), SizeInBits
);
15222 if (IsConstantSrc
) {
15223 SmallVector
<SDValue
, 8> BuildVector
;
15224 for (unsigned I
= 0; I
!= NumStores
; ++I
) {
15225 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[I
].MemNode
);
15226 SDValue Val
= St
->getValue();
15227 // If constant is of the wrong type, convert it now.
15228 if (MemVT
!= Val
.getValueType()) {
15229 Val
= peekThroughBitcasts(Val
);
15230 // Deal with constants of wrong size.
15231 if (ElementSizeBits
!= Val
.getValueSizeInBits()) {
15233 EVT::getIntegerVT(*DAG
.getContext(), MemVT
.getSizeInBits());
15234 if (isa
<ConstantFPSDNode
>(Val
)) {
15235 // Not clear how to truncate FP values.
15237 } else if (auto *C
= dyn_cast
<ConstantSDNode
>(Val
))
15238 Val
= DAG
.getConstant(C
->getAPIntValue()
15239 .zextOrTrunc(Val
.getValueSizeInBits())
15240 .zextOrTrunc(ElementSizeBits
),
15241 SDLoc(C
), IntMemVT
);
15243 // Make sure correctly size type is the correct type.
15244 Val
= DAG
.getBitcast(MemVT
, Val
);
15246 BuildVector
.push_back(Val
);
15248 StoredVal
= DAG
.getNode(MemVT
.isVector() ? ISD::CONCAT_VECTORS
15249 : ISD::BUILD_VECTOR
,
15250 DL
, StoreTy
, BuildVector
);
15252 SmallVector
<SDValue
, 8> Ops
;
15253 for (unsigned i
= 0; i
< NumStores
; ++i
) {
15254 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
15255 SDValue Val
= peekThroughBitcasts(St
->getValue());
15256 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
15257 // type MemVT. If the underlying value is not the correct
15258 // type, but it is an extraction of an appropriate vector we
15259 // can recast Val to be of the correct type. This may require
15260 // converting between EXTRACT_VECTOR_ELT and
15261 // EXTRACT_SUBVECTOR.
15262 if ((MemVT
!= Val
.getValueType()) &&
15263 (Val
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
||
15264 Val
.getOpcode() == ISD::EXTRACT_SUBVECTOR
)) {
15265 EVT MemVTScalarTy
= MemVT
.getScalarType();
15266 // We may need to add a bitcast here to get types to line up.
15267 if (MemVTScalarTy
!= Val
.getValueType().getScalarType()) {
15268 Val
= DAG
.getBitcast(MemVT
, Val
);
15270 unsigned OpC
= MemVT
.isVector() ? ISD::EXTRACT_SUBVECTOR
15271 : ISD::EXTRACT_VECTOR_ELT
;
15272 SDValue Vec
= Val
.getOperand(0);
15273 SDValue Idx
= Val
.getOperand(1);
15274 Val
= DAG
.getNode(OpC
, SDLoc(Val
), MemVT
, Vec
, Idx
);
15277 Ops
.push_back(Val
);
15280 // Build the extracted vector elements back into a vector.
15281 StoredVal
= DAG
.getNode(MemVT
.isVector() ? ISD::CONCAT_VECTORS
15282 : ISD::BUILD_VECTOR
,
15286 // We should always use a vector store when merging extracted vector
15287 // elements, so this path implies a store of constants.
15288 assert(IsConstantSrc
&& "Merged vector elements should use vector store");
15290 APInt
StoreInt(SizeInBits
, 0);
15292 // Construct a single integer constant which is made of the smaller
15293 // constant inputs.
15294 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
15295 for (unsigned i
= 0; i
< NumStores
; ++i
) {
15296 unsigned Idx
= IsLE
? (NumStores
- 1 - i
) : i
;
15297 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[Idx
].MemNode
);
15299 SDValue Val
= St
->getValue();
15300 Val
= peekThroughBitcasts(Val
);
15301 StoreInt
<<= ElementSizeBits
;
15302 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Val
)) {
15303 StoreInt
|= C
->getAPIntValue()
15304 .zextOrTrunc(ElementSizeBits
)
15305 .zextOrTrunc(SizeInBits
);
15306 } else if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Val
)) {
15307 StoreInt
|= C
->getValueAPF()
15309 .zextOrTrunc(ElementSizeBits
)
15310 .zextOrTrunc(SizeInBits
);
15311 // If fp truncation is necessary give up for now.
15312 if (MemVT
.getSizeInBits() != ElementSizeBits
)
15315 llvm_unreachable("Invalid constant element type");
15319 // Create the new Load and Store operations.
15320 StoredVal
= DAG
.getConstant(StoreInt
, DL
, StoreTy
);
15323 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
15324 SDValue NewChain
= getMergeStoreChains(StoreNodes
, NumStores
);
15326 // make sure we use trunc store if it's necessary to be legal.
15329 NewStore
= DAG
.getStore(NewChain
, DL
, StoredVal
, FirstInChain
->getBasePtr(),
15330 FirstInChain
->getPointerInfo(),
15331 FirstInChain
->getAlignment());
15332 } else { // Must be realized as a trunc store
15333 EVT LegalizedStoredValTy
=
15334 TLI
.getTypeToTransformTo(*DAG
.getContext(), StoredVal
.getValueType());
15335 unsigned LegalizedStoreSize
= LegalizedStoredValTy
.getSizeInBits();
15336 ConstantSDNode
*C
= cast
<ConstantSDNode
>(StoredVal
);
15337 SDValue ExtendedStoreVal
=
15338 DAG
.getConstant(C
->getAPIntValue().zextOrTrunc(LegalizedStoreSize
), DL
,
15339 LegalizedStoredValTy
);
15340 NewStore
= DAG
.getTruncStore(
15341 NewChain
, DL
, ExtendedStoreVal
, FirstInChain
->getBasePtr(),
15342 FirstInChain
->getPointerInfo(), StoredVal
.getValueType() /*TVT*/,
15343 FirstInChain
->getAlignment(),
15344 FirstInChain
->getMemOperand()->getFlags());
15347 // Replace all merged stores with the new store.
15348 for (unsigned i
= 0; i
< NumStores
; ++i
)
15349 CombineTo(StoreNodes
[i
].MemNode
, NewStore
);
15351 AddToWorklist(NewChain
.getNode());
15355 void DAGCombiner::getStoreMergeCandidates(
15356 StoreSDNode
*St
, SmallVectorImpl
<MemOpLink
> &StoreNodes
,
15357 SDNode
*&RootNode
) {
15358 // This holds the base pointer, index, and the offset in bytes from the base
15360 BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
15361 EVT MemVT
= St
->getMemoryVT();
15363 SDValue Val
= peekThroughBitcasts(St
->getValue());
15364 // We must have a base and an offset.
15365 if (!BasePtr
.getBase().getNode())
15368 // Do not handle stores to undef base pointers.
15369 if (BasePtr
.getBase().isUndef())
15372 bool IsConstantSrc
= isa
<ConstantSDNode
>(Val
) || isa
<ConstantFPSDNode
>(Val
);
15373 bool IsExtractVecSrc
= (Val
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
||
15374 Val
.getOpcode() == ISD::EXTRACT_SUBVECTOR
);
15375 bool IsLoadSrc
= isa
<LoadSDNode
>(Val
);
15376 BaseIndexOffset LBasePtr
;
15377 // Match on loadbaseptr if relevant.
15380 auto *Ld
= cast
<LoadSDNode
>(Val
);
15381 LBasePtr
= BaseIndexOffset::match(Ld
, DAG
);
15382 LoadVT
= Ld
->getMemoryVT();
15383 // Load and store should be the same type.
15384 if (MemVT
!= LoadVT
)
15386 // Loads must only have one use.
15387 if (!Ld
->hasNUsesOfValue(1, 0))
15389 // The memory operands must not be volatile/indexed.
15390 if (Ld
->isVolatile() || Ld
->isIndexed())
15393 auto CandidateMatch
= [&](StoreSDNode
*Other
, BaseIndexOffset
&Ptr
,
15394 int64_t &Offset
) -> bool {
15395 // The memory operands must not be volatile/indexed.
15396 if (Other
->isVolatile() || Other
->isIndexed())
15398 // Don't mix temporal stores with non-temporal stores.
15399 if (St
->isNonTemporal() != Other
->isNonTemporal())
15401 SDValue OtherBC
= peekThroughBitcasts(Other
->getValue());
15402 // Allow merging constants of different types as integers.
15403 bool NoTypeMatch
= (MemVT
.isInteger()) ? !MemVT
.bitsEq(Other
->getMemoryVT())
15404 : Other
->getMemoryVT() != MemVT
;
15408 // The Load's Base Ptr must also match
15409 if (LoadSDNode
*OtherLd
= dyn_cast
<LoadSDNode
>(OtherBC
)) {
15410 BaseIndexOffset LPtr
= BaseIndexOffset::match(OtherLd
, DAG
);
15411 if (LoadVT
!= OtherLd
->getMemoryVT())
15413 // Loads must only have one use.
15414 if (!OtherLd
->hasNUsesOfValue(1, 0))
15416 // The memory operands must not be volatile/indexed.
15417 if (OtherLd
->isVolatile() || OtherLd
->isIndexed())
15419 // Don't mix temporal loads with non-temporal loads.
15420 if (cast
<LoadSDNode
>(Val
)->isNonTemporal() != OtherLd
->isNonTemporal())
15422 if (!(LBasePtr
.equalBaseIndex(LPtr
, DAG
)))
15427 if (IsConstantSrc
) {
15430 if (!(isa
<ConstantSDNode
>(OtherBC
) || isa
<ConstantFPSDNode
>(OtherBC
)))
15433 if (IsExtractVecSrc
) {
15434 // Do not merge truncated stores here.
15435 if (Other
->isTruncatingStore())
15437 if (!MemVT
.bitsEq(OtherBC
.getValueType()))
15439 if (OtherBC
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
&&
15440 OtherBC
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
15443 Ptr
= BaseIndexOffset::match(Other
, DAG
);
15444 return (BasePtr
.equalBaseIndex(Ptr
, DAG
, Offset
));
15447 // Check if the pair of StoreNode and the RootNode already bail out many
15448 // times which is over the limit in dependence check.
15449 auto OverLimitInDependenceCheck
= [&](SDNode
*StoreNode
,
15450 SDNode
*RootNode
) -> bool {
15451 auto RootCount
= StoreRootCountMap
.find(StoreNode
);
15452 if (RootCount
!= StoreRootCountMap
.end() &&
15453 RootCount
->second
.first
== RootNode
&&
15454 RootCount
->second
.second
> StoreMergeDependenceLimit
)
15459 // We looking for a root node which is an ancestor to all mergable
15460 // stores. We search up through a load, to our root and then down
15461 // through all children. For instance we will find Store{1,2,3} if
15462 // St is Store1, Store2. or Store3 where the root is not a load
15463 // which always true for nonvolatile ops. TODO: Expand
15464 // the search to find all valid candidates through multiple layers of loads.
15467 // |-------|-------|
15468 // Load Load Store3
15472 // FIXME: We should be able to climb and
15473 // descend TokenFactors to find candidates as well.
15475 RootNode
= St
->getChain().getNode();
15477 unsigned NumNodesExplored
= 0;
15478 if (LoadSDNode
*Ldn
= dyn_cast
<LoadSDNode
>(RootNode
)) {
15479 RootNode
= Ldn
->getChain().getNode();
15480 for (auto I
= RootNode
->use_begin(), E
= RootNode
->use_end();
15481 I
!= E
&& NumNodesExplored
< 1024; ++I
, ++NumNodesExplored
)
15482 if (I
.getOperandNo() == 0 && isa
<LoadSDNode
>(*I
)) // walk down chain
15483 for (auto I2
= (*I
)->use_begin(), E2
= (*I
)->use_end(); I2
!= E2
; ++I2
)
15484 if (I2
.getOperandNo() == 0)
15485 if (StoreSDNode
*OtherST
= dyn_cast
<StoreSDNode
>(*I2
)) {
15486 BaseIndexOffset Ptr
;
15488 if (CandidateMatch(OtherST
, Ptr
, PtrDiff
) &&
15489 !OverLimitInDependenceCheck(OtherST
, RootNode
))
15490 StoreNodes
.push_back(MemOpLink(OtherST
, PtrDiff
));
15493 for (auto I
= RootNode
->use_begin(), E
= RootNode
->use_end();
15494 I
!= E
&& NumNodesExplored
< 1024; ++I
, ++NumNodesExplored
)
15495 if (I
.getOperandNo() == 0)
15496 if (StoreSDNode
*OtherST
= dyn_cast
<StoreSDNode
>(*I
)) {
15497 BaseIndexOffset Ptr
;
15499 if (CandidateMatch(OtherST
, Ptr
, PtrDiff
) &&
15500 !OverLimitInDependenceCheck(OtherST
, RootNode
))
15501 StoreNodes
.push_back(MemOpLink(OtherST
, PtrDiff
));
15505 // We need to check that merging these stores does not cause a loop in
15506 // the DAG. Any store candidate may depend on another candidate
15507 // indirectly through its operand (we already consider dependencies
15508 // through the chain). Check in parallel by searching up from
15509 // non-chain operands of candidates.
15510 bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
15511 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumStores
,
15512 SDNode
*RootNode
) {
15513 // FIXME: We should be able to truncate a full search of
15514 // predecessors by doing a BFS and keeping tabs the originating
15515 // stores from which worklist nodes come from in a similar way to
15516 // TokenFactor simplfication.
15518 SmallPtrSet
<const SDNode
*, 32> Visited
;
15519 SmallVector
<const SDNode
*, 8> Worklist
;
15521 // RootNode is a predecessor to all candidates so we need not search
15522 // past it. Add RootNode (peeking through TokenFactors). Do not count
15523 // these towards size check.
15525 Worklist
.push_back(RootNode
);
15526 while (!Worklist
.empty()) {
15527 auto N
= Worklist
.pop_back_val();
15528 if (!Visited
.insert(N
).second
)
15529 continue; // Already present in Visited.
15530 if (N
->getOpcode() == ISD::TokenFactor
) {
15531 for (SDValue Op
: N
->ops())
15532 Worklist
.push_back(Op
.getNode());
15536 // Don't count pruning nodes towards max.
15537 unsigned int Max
= 1024 + Visited
.size();
15538 // Search Ops of store candidates.
15539 for (unsigned i
= 0; i
< NumStores
; ++i
) {
15540 SDNode
*N
= StoreNodes
[i
].MemNode
;
15541 // Of the 4 Store Operands:
15542 // * Chain (Op 0) -> We have already considered these
15543 // in candidate selection and can be
15545 // * Value (Op 1) -> Cycles may happen (e.g. through load chains)
15546 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant,
15547 // but aren't necessarily fromt the same base node, so
15548 // cycles possible (e.g. via indexed store).
15549 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for
15550 // non-indexed stores). Not constant on all targets (e.g. ARM)
15551 // and so can participate in a cycle.
15552 for (unsigned j
= 1; j
< N
->getNumOperands(); ++j
)
15553 Worklist
.push_back(N
->getOperand(j
).getNode());
15555 // Search through DAG. We can stop early if we find a store node.
15556 for (unsigned i
= 0; i
< NumStores
; ++i
)
15557 if (SDNode::hasPredecessorHelper(StoreNodes
[i
].MemNode
, Visited
, Worklist
,
15559 // If the searching bail out, record the StoreNode and RootNode in the
15560 // StoreRootCountMap. If we have seen the pair many times over a limit,
15561 // we won't add the StoreNode into StoreNodes set again.
15562 if (Visited
.size() >= Max
) {
15563 auto &RootCount
= StoreRootCountMap
[StoreNodes
[i
].MemNode
];
15564 if (RootCount
.first
== RootNode
)
15565 RootCount
.second
++;
15567 RootCount
= {RootNode
, 1};
15574 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode
*St
) {
15575 if (OptLevel
== CodeGenOpt::None
|| !EnableStoreMerging
)
15578 EVT MemVT
= St
->getMemoryVT();
15579 int64_t ElementSizeBytes
= MemVT
.getStoreSize();
15580 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
15582 if (MemVT
.getSizeInBits() * 2 > MaximumLegalStoreInBits
)
15585 bool NoVectors
= DAG
.getMachineFunction().getFunction().hasFnAttribute(
15586 Attribute::NoImplicitFloat
);
15588 // This function cannot currently deal with non-byte-sized memory sizes.
15589 if (ElementSizeBytes
* 8 != MemVT
.getSizeInBits())
15592 if (!MemVT
.isSimple())
15595 // Perform an early exit check. Do not bother looking at stored values that
15596 // are not constants, loads, or extracted vector elements.
15597 SDValue StoredVal
= peekThroughBitcasts(St
->getValue());
15598 bool IsLoadSrc
= isa
<LoadSDNode
>(StoredVal
);
15599 bool IsConstantSrc
= isa
<ConstantSDNode
>(StoredVal
) ||
15600 isa
<ConstantFPSDNode
>(StoredVal
);
15601 bool IsExtractVecSrc
= (StoredVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
||
15602 StoredVal
.getOpcode() == ISD::EXTRACT_SUBVECTOR
);
15603 bool IsNonTemporalStore
= St
->isNonTemporal();
15604 bool IsNonTemporalLoad
=
15605 IsLoadSrc
&& cast
<LoadSDNode
>(StoredVal
)->isNonTemporal();
15607 if (!IsConstantSrc
&& !IsLoadSrc
&& !IsExtractVecSrc
)
15610 SmallVector
<MemOpLink
, 8> StoreNodes
;
15612 // Find potential store merge candidates by searching through chain sub-DAG
15613 getStoreMergeCandidates(St
, StoreNodes
, RootNode
);
15615 // Check if there is anything to merge.
15616 if (StoreNodes
.size() < 2)
15619 // Sort the memory operands according to their distance from the
15621 llvm::sort(StoreNodes
, [](MemOpLink LHS
, MemOpLink RHS
) {
15622 return LHS
.OffsetFromBase
< RHS
.OffsetFromBase
;
15625 // Store Merge attempts to merge the lowest stores. This generally
15626 // works out as if successful, as the remaining stores are checked
15627 // after the first collection of stores is merged. However, in the
15628 // case that a non-mergeable store is found first, e.g., {p[-2],
15629 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
15630 // mergeable cases. To prevent this, we prune such stores from the
15631 // front of StoreNodes here.
15634 while (StoreNodes
.size() > 1) {
15635 size_t StartIdx
= 0;
15636 while ((StartIdx
+ 1 < StoreNodes
.size()) &&
15637 StoreNodes
[StartIdx
].OffsetFromBase
+ ElementSizeBytes
!=
15638 StoreNodes
[StartIdx
+ 1].OffsetFromBase
)
15641 // Bail if we don't have enough candidates to merge.
15642 if (StartIdx
+ 1 >= StoreNodes
.size())
15646 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + StartIdx
);
15648 // Scan the memory operations on the chain and find the first
15649 // non-consecutive store memory address.
15650 unsigned NumConsecutiveStores
= 1;
15651 int64_t StartAddress
= StoreNodes
[0].OffsetFromBase
;
15652 // Check that the addresses are consecutive starting from the second
15653 // element in the list of stores.
15654 for (unsigned i
= 1, e
= StoreNodes
.size(); i
< e
; ++i
) {
15655 int64_t CurrAddress
= StoreNodes
[i
].OffsetFromBase
;
15656 if (CurrAddress
- StartAddress
!= (ElementSizeBytes
* i
))
15658 NumConsecutiveStores
= i
+ 1;
15661 if (NumConsecutiveStores
< 2) {
15662 StoreNodes
.erase(StoreNodes
.begin(),
15663 StoreNodes
.begin() + NumConsecutiveStores
);
15667 // The node with the lowest store address.
15668 LLVMContext
&Context
= *DAG
.getContext();
15669 const DataLayout
&DL
= DAG
.getDataLayout();
15671 // Store the constants into memory as one consecutive store.
15672 if (IsConstantSrc
) {
15673 while (NumConsecutiveStores
>= 2) {
15674 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
15675 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
15676 unsigned FirstStoreAlign
= FirstInChain
->getAlignment();
15677 unsigned LastLegalType
= 1;
15678 unsigned LastLegalVectorType
= 1;
15679 bool LastIntegerTrunc
= false;
15680 bool NonZero
= false;
15681 unsigned FirstZeroAfterNonZero
= NumConsecutiveStores
;
15682 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
15683 StoreSDNode
*ST
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
15684 SDValue StoredVal
= ST
->getValue();
15685 bool IsElementZero
= false;
15686 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(StoredVal
))
15687 IsElementZero
= C
->isNullValue();
15688 else if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(StoredVal
))
15689 IsElementZero
= C
->getConstantFPValue()->isNullValue();
15690 if (IsElementZero
) {
15691 if (NonZero
&& FirstZeroAfterNonZero
== NumConsecutiveStores
)
15692 FirstZeroAfterNonZero
= i
;
15694 NonZero
|= !IsElementZero
;
15696 // Find a legal type for the constant store.
15697 unsigned SizeInBits
= (i
+ 1) * ElementSizeBytes
* 8;
15698 EVT StoreTy
= EVT::getIntegerVT(Context
, SizeInBits
);
15699 bool IsFast
= false;
15701 // Break early when size is too large to be legal.
15702 if (StoreTy
.getSizeInBits() > MaximumLegalStoreInBits
)
15705 if (TLI
.isTypeLegal(StoreTy
) &&
15706 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
, DAG
) &&
15707 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15708 *FirstInChain
->getMemOperand(), &IsFast
) &&
15710 LastIntegerTrunc
= false;
15711 LastLegalType
= i
+ 1;
15712 // Or check whether a truncstore is legal.
15713 } else if (TLI
.getTypeAction(Context
, StoreTy
) ==
15714 TargetLowering::TypePromoteInteger
) {
15715 EVT LegalizedStoredValTy
=
15716 TLI
.getTypeToTransformTo(Context
, StoredVal
.getValueType());
15717 if (TLI
.isTruncStoreLegal(LegalizedStoredValTy
, StoreTy
) &&
15718 TLI
.canMergeStoresTo(FirstStoreAS
, LegalizedStoredValTy
, DAG
) &&
15719 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15720 *FirstInChain
->getMemOperand(),
15723 LastIntegerTrunc
= true;
15724 LastLegalType
= i
+ 1;
15728 // We only use vectors if the constant is known to be zero or the
15729 // target allows it and the function is not marked with the
15730 // noimplicitfloat attribute.
15732 TLI
.storeOfVectorConstantIsCheap(MemVT
, i
+ 1, FirstStoreAS
)) &&
15734 // Find a legal type for the vector store.
15735 unsigned Elts
= (i
+ 1) * NumMemElts
;
15736 EVT Ty
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
15737 if (TLI
.isTypeLegal(Ty
) && TLI
.isTypeLegal(MemVT
) &&
15738 TLI
.canMergeStoresTo(FirstStoreAS
, Ty
, DAG
) &&
15739 TLI
.allowsMemoryAccess(
15740 Context
, DL
, Ty
, *FirstInChain
->getMemOperand(), &IsFast
) &&
15742 LastLegalVectorType
= i
+ 1;
15746 bool UseVector
= (LastLegalVectorType
> LastLegalType
) && !NoVectors
;
15747 unsigned NumElem
= (UseVector
) ? LastLegalVectorType
: LastLegalType
;
15749 // Check if we found a legal integer type that creates a meaningful
15752 // We know that candidate stores are in order and of correct
15753 // shape. While there is no mergeable sequence from the
15754 // beginning one may start later in the sequence. The only
15755 // reason a merge of size N could have failed where another of
15756 // the same size would not have, is if the alignment has
15757 // improved or we've dropped a non-zero value. Drop as many
15758 // candidates as we can here.
15759 unsigned NumSkip
= 1;
15761 (NumSkip
< NumConsecutiveStores
) &&
15762 (NumSkip
< FirstZeroAfterNonZero
) &&
15763 (StoreNodes
[NumSkip
].MemNode
->getAlignment() <= FirstStoreAlign
))
15766 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
15767 NumConsecutiveStores
-= NumSkip
;
15771 // Check that we can merge these candidates without causing a cycle.
15772 if (!checkMergeStoreCandidatesForDependencies(StoreNodes
, NumElem
,
15774 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
15775 NumConsecutiveStores
-= NumElem
;
15779 RV
|= MergeStoresOfConstantsOrVecElts(StoreNodes
, MemVT
, NumElem
, true,
15780 UseVector
, LastIntegerTrunc
);
15782 // Remove merged stores for next iteration.
15783 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
15784 NumConsecutiveStores
-= NumElem
;
15789 // When extracting multiple vector elements, try to store them
15790 // in one vector store rather than a sequence of scalar stores.
15791 if (IsExtractVecSrc
) {
15792 // Loop on Consecutive Stores on success.
15793 while (NumConsecutiveStores
>= 2) {
15794 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
15795 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
15796 unsigned FirstStoreAlign
= FirstInChain
->getAlignment();
15797 unsigned NumStoresToMerge
= 1;
15798 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
15799 // Find a legal type for the vector store.
15800 unsigned Elts
= (i
+ 1) * NumMemElts
;
15802 EVT::getVectorVT(*DAG
.getContext(), MemVT
.getScalarType(), Elts
);
15805 // Break early when size is too large to be legal.
15806 if (Ty
.getSizeInBits() > MaximumLegalStoreInBits
)
15809 if (TLI
.isTypeLegal(Ty
) &&
15810 TLI
.canMergeStoresTo(FirstStoreAS
, Ty
, DAG
) &&
15811 TLI
.allowsMemoryAccess(Context
, DL
, Ty
,
15812 *FirstInChain
->getMemOperand(), &IsFast
) &&
15814 NumStoresToMerge
= i
+ 1;
15817 // Check if we found a legal integer type creating a meaningful
15819 if (NumStoresToMerge
< 2) {
15820 // We know that candidate stores are in order and of correct
15821 // shape. While there is no mergeable sequence from the
15822 // beginning one may start later in the sequence. The only
15823 // reason a merge of size N could have failed where another of
15824 // the same size would not have, is if the alignment has
15825 // improved. Drop as many candidates as we can here.
15826 unsigned NumSkip
= 1;
15828 (NumSkip
< NumConsecutiveStores
) &&
15829 (StoreNodes
[NumSkip
].MemNode
->getAlignment() <= FirstStoreAlign
))
15832 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
15833 NumConsecutiveStores
-= NumSkip
;
15837 // Check that we can merge these candidates without causing a cycle.
15838 if (!checkMergeStoreCandidatesForDependencies(
15839 StoreNodes
, NumStoresToMerge
, RootNode
)) {
15840 StoreNodes
.erase(StoreNodes
.begin(),
15841 StoreNodes
.begin() + NumStoresToMerge
);
15842 NumConsecutiveStores
-= NumStoresToMerge
;
15846 RV
|= MergeStoresOfConstantsOrVecElts(
15847 StoreNodes
, MemVT
, NumStoresToMerge
, false, true, false);
15849 StoreNodes
.erase(StoreNodes
.begin(),
15850 StoreNodes
.begin() + NumStoresToMerge
);
15851 NumConsecutiveStores
-= NumStoresToMerge
;
15856 // Below we handle the case of multiple consecutive stores that
15857 // come from multiple consecutive loads. We merge them into a single
15858 // wide load and a single wide store.
15860 // Look for load nodes which are used by the stored values.
15861 SmallVector
<MemOpLink
, 8> LoadNodes
;
15863 // Find acceptable loads. Loads need to have the same chain (token factor),
15864 // must not be zext, volatile, indexed, and they must be consecutive.
15865 BaseIndexOffset LdBasePtr
;
15867 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
15868 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
15869 SDValue Val
= peekThroughBitcasts(St
->getValue());
15870 LoadSDNode
*Ld
= cast
<LoadSDNode
>(Val
);
15872 BaseIndexOffset LdPtr
= BaseIndexOffset::match(Ld
, DAG
);
15873 // If this is not the first ptr that we check.
15874 int64_t LdOffset
= 0;
15875 if (LdBasePtr
.getBase().getNode()) {
15876 // The base ptr must be the same.
15877 if (!LdBasePtr
.equalBaseIndex(LdPtr
, DAG
, LdOffset
))
15880 // Check that all other base pointers are the same as this one.
15884 // We found a potential memory operand to merge.
15885 LoadNodes
.push_back(MemOpLink(Ld
, LdOffset
));
15888 while (NumConsecutiveStores
>= 2 && LoadNodes
.size() >= 2) {
15889 // If we have load/store pair instructions and we only have two values,
15890 // don't bother merging.
15891 unsigned RequiredAlignment
;
15892 if (LoadNodes
.size() == 2 &&
15893 TLI
.hasPairedLoad(MemVT
, RequiredAlignment
) &&
15894 StoreNodes
[0].MemNode
->getAlignment() >= RequiredAlignment
) {
15895 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + 2);
15896 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + 2);
15899 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
15900 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
15901 unsigned FirstStoreAlign
= FirstInChain
->getAlignment();
15902 LoadSDNode
*FirstLoad
= cast
<LoadSDNode
>(LoadNodes
[0].MemNode
);
15903 unsigned FirstLoadAlign
= FirstLoad
->getAlignment();
15905 // Scan the memory operations on the chain and find the first
15906 // non-consecutive load memory address. These variables hold the index in
15907 // the store node array.
15909 unsigned LastConsecutiveLoad
= 1;
15911 // This variable refers to the size and not index in the array.
15912 unsigned LastLegalVectorType
= 1;
15913 unsigned LastLegalIntegerType
= 1;
15914 bool isDereferenceable
= true;
15915 bool DoIntegerTruncate
= false;
15916 StartAddress
= LoadNodes
[0].OffsetFromBase
;
15917 SDValue FirstChain
= FirstLoad
->getChain();
15918 for (unsigned i
= 1; i
< LoadNodes
.size(); ++i
) {
15919 // All loads must share the same chain.
15920 if (LoadNodes
[i
].MemNode
->getChain() != FirstChain
)
15923 int64_t CurrAddress
= LoadNodes
[i
].OffsetFromBase
;
15924 if (CurrAddress
- StartAddress
!= (ElementSizeBytes
* i
))
15926 LastConsecutiveLoad
= i
;
15928 if (isDereferenceable
&& !LoadNodes
[i
].MemNode
->isDereferenceable())
15929 isDereferenceable
= false;
15931 // Find a legal type for the vector store.
15932 unsigned Elts
= (i
+ 1) * NumMemElts
;
15933 EVT StoreTy
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
15935 // Break early when size is too large to be legal.
15936 if (StoreTy
.getSizeInBits() > MaximumLegalStoreInBits
)
15939 bool IsFastSt
, IsFastLd
;
15940 if (TLI
.isTypeLegal(StoreTy
) &&
15941 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
, DAG
) &&
15942 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15943 *FirstInChain
->getMemOperand(), &IsFastSt
) &&
15945 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15946 *FirstLoad
->getMemOperand(), &IsFastLd
) &&
15948 LastLegalVectorType
= i
+ 1;
15951 // Find a legal type for the integer store.
15952 unsigned SizeInBits
= (i
+ 1) * ElementSizeBytes
* 8;
15953 StoreTy
= EVT::getIntegerVT(Context
, SizeInBits
);
15954 if (TLI
.isTypeLegal(StoreTy
) &&
15955 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
, DAG
) &&
15956 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15957 *FirstInChain
->getMemOperand(), &IsFastSt
) &&
15959 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15960 *FirstLoad
->getMemOperand(), &IsFastLd
) &&
15962 LastLegalIntegerType
= i
+ 1;
15963 DoIntegerTruncate
= false;
15964 // Or check whether a truncstore and extload is legal.
15965 } else if (TLI
.getTypeAction(Context
, StoreTy
) ==
15966 TargetLowering::TypePromoteInteger
) {
15967 EVT LegalizedStoredValTy
= TLI
.getTypeToTransformTo(Context
, StoreTy
);
15968 if (TLI
.isTruncStoreLegal(LegalizedStoredValTy
, StoreTy
) &&
15969 TLI
.canMergeStoresTo(FirstStoreAS
, LegalizedStoredValTy
, DAG
) &&
15970 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LegalizedStoredValTy
,
15972 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, LegalizedStoredValTy
,
15974 TLI
.isLoadExtLegal(ISD::EXTLOAD
, LegalizedStoredValTy
, StoreTy
) &&
15975 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15976 *FirstInChain
->getMemOperand(),
15979 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15980 *FirstLoad
->getMemOperand(), &IsFastLd
) &&
15982 LastLegalIntegerType
= i
+ 1;
15983 DoIntegerTruncate
= true;
15988 // Only use vector types if the vector type is larger than the integer
15989 // type. If they are the same, use integers.
15991 LastLegalVectorType
> LastLegalIntegerType
&& !NoVectors
;
15992 unsigned LastLegalType
=
15993 std::max(LastLegalVectorType
, LastLegalIntegerType
);
15995 // We add +1 here because the LastXXX variables refer to location while
15996 // the NumElem refers to array/index size.
15998 std::min(NumConsecutiveStores
, LastConsecutiveLoad
+ 1);
15999 NumElem
= std::min(LastLegalType
, NumElem
);
16002 // We know that candidate stores are in order and of correct
16003 // shape. While there is no mergeable sequence from the
16004 // beginning one may start later in the sequence. The only
16005 // reason a merge of size N could have failed where another of
16006 // the same size would not have is if the alignment or either
16007 // the load or store has improved. Drop as many candidates as we
16009 unsigned NumSkip
= 1;
16010 while ((NumSkip
< LoadNodes
.size()) &&
16011 (LoadNodes
[NumSkip
].MemNode
->getAlignment() <= FirstLoadAlign
) &&
16012 (StoreNodes
[NumSkip
].MemNode
->getAlignment() <= FirstStoreAlign
))
16014 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
16015 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumSkip
);
16016 NumConsecutiveStores
-= NumSkip
;
16020 // Check that we can merge these candidates without causing a cycle.
16021 if (!checkMergeStoreCandidatesForDependencies(StoreNodes
, NumElem
,
16023 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
16024 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumElem
);
16025 NumConsecutiveStores
-= NumElem
;
16029 // Find if it is better to use vectors or integers to load and store
16033 // Find a legal type for the vector store.
16034 unsigned Elts
= NumElem
* NumMemElts
;
16035 JointMemOpVT
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
16037 unsigned SizeInBits
= NumElem
* ElementSizeBytes
* 8;
16038 JointMemOpVT
= EVT::getIntegerVT(Context
, SizeInBits
);
16041 SDLoc
LoadDL(LoadNodes
[0].MemNode
);
16042 SDLoc
StoreDL(StoreNodes
[0].MemNode
);
16044 // The merged loads are required to have the same incoming chain, so
16045 // using the first's chain is acceptable.
16047 SDValue NewStoreChain
= getMergeStoreChains(StoreNodes
, NumElem
);
16048 AddToWorklist(NewStoreChain
.getNode());
16050 MachineMemOperand::Flags LdMMOFlags
=
16051 isDereferenceable
? MachineMemOperand::MODereferenceable
16052 : MachineMemOperand::MONone
;
16053 if (IsNonTemporalLoad
)
16054 LdMMOFlags
|= MachineMemOperand::MONonTemporal
;
16056 MachineMemOperand::Flags StMMOFlags
=
16057 IsNonTemporalStore
? MachineMemOperand::MONonTemporal
16058 : MachineMemOperand::MONone
;
16060 SDValue NewLoad
, NewStore
;
16061 if (UseVectorTy
|| !DoIntegerTruncate
) {
16063 DAG
.getLoad(JointMemOpVT
, LoadDL
, FirstLoad
->getChain(),
16064 FirstLoad
->getBasePtr(), FirstLoad
->getPointerInfo(),
16065 FirstLoadAlign
, LdMMOFlags
);
16066 NewStore
= DAG
.getStore(
16067 NewStoreChain
, StoreDL
, NewLoad
, FirstInChain
->getBasePtr(),
16068 FirstInChain
->getPointerInfo(), FirstStoreAlign
, StMMOFlags
);
16069 } else { // This must be the truncstore/extload case
16071 TLI
.getTypeToTransformTo(*DAG
.getContext(), JointMemOpVT
);
16072 NewLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, LoadDL
, ExtendedTy
,
16073 FirstLoad
->getChain(), FirstLoad
->getBasePtr(),
16074 FirstLoad
->getPointerInfo(), JointMemOpVT
,
16075 FirstLoadAlign
, LdMMOFlags
);
16076 NewStore
= DAG
.getTruncStore(NewStoreChain
, StoreDL
, NewLoad
,
16077 FirstInChain
->getBasePtr(),
16078 FirstInChain
->getPointerInfo(),
16079 JointMemOpVT
, FirstInChain
->getAlignment(),
16080 FirstInChain
->getMemOperand()->getFlags());
16083 // Transfer chain users from old loads to the new load.
16084 for (unsigned i
= 0; i
< NumElem
; ++i
) {
16085 LoadSDNode
*Ld
= cast
<LoadSDNode
>(LoadNodes
[i
].MemNode
);
16086 DAG
.ReplaceAllUsesOfValueWith(SDValue(Ld
, 1),
16087 SDValue(NewLoad
.getNode(), 1));
16090 // Replace the all stores with the new store. Recursively remove
16091 // corresponding value if its no longer used.
16092 for (unsigned i
= 0; i
< NumElem
; ++i
) {
16093 SDValue Val
= StoreNodes
[i
].MemNode
->getOperand(1);
16094 CombineTo(StoreNodes
[i
].MemNode
, NewStore
);
16095 if (Val
.getNode()->use_empty())
16096 recursivelyDeleteUnusedNodes(Val
.getNode());
16100 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
16101 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumElem
);
16102 NumConsecutiveStores
-= NumElem
;
16108 SDValue
DAGCombiner::replaceStoreChain(StoreSDNode
*ST
, SDValue BetterChain
) {
16112 // Replace the chain to avoid dependency.
16113 if (ST
->isTruncatingStore()) {
16114 ReplStore
= DAG
.getTruncStore(BetterChain
, SL
, ST
->getValue(),
16115 ST
->getBasePtr(), ST
->getMemoryVT(),
16116 ST
->getMemOperand());
16118 ReplStore
= DAG
.getStore(BetterChain
, SL
, ST
->getValue(), ST
->getBasePtr(),
16119 ST
->getMemOperand());
16122 // Create token to keep both nodes around.
16123 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, SL
,
16124 MVT::Other
, ST
->getChain(), ReplStore
);
16126 // Make sure the new and old chains are cleaned up.
16127 AddToWorklist(Token
.getNode());
16129 // Don't add users to work list.
16130 return CombineTo(ST
, Token
, false);
16133 SDValue
DAGCombiner::replaceStoreOfFPConstant(StoreSDNode
*ST
) {
16134 SDValue Value
= ST
->getValue();
16135 if (Value
.getOpcode() == ISD::TargetConstantFP
)
16140 SDValue Chain
= ST
->getChain();
16141 SDValue Ptr
= ST
->getBasePtr();
16143 const ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Value
);
16145 // NOTE: If the original store is volatile, this transform must not increase
16146 // the number of stores. For example, on x86-32 an f64 can be stored in one
16147 // processor operation but an i64 (which is not legal) requires two. So the
16148 // transform should not be done in this case.
16151 switch (CFP
->getSimpleValueType(0).SimpleTy
) {
16153 llvm_unreachable("Unknown FP type");
16154 case MVT::f16
: // We don't do this for these yet.
16160 if ((isTypeLegal(MVT::i32
) && !LegalOperations
&& !ST
->isVolatile()) ||
16161 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
16163 Tmp
= DAG
.getConstant((uint32_t)CFP
->getValueAPF().
16164 bitcastToAPInt().getZExtValue(), SDLoc(CFP
),
16166 return DAG
.getStore(Chain
, DL
, Tmp
, Ptr
, ST
->getMemOperand());
16171 if ((TLI
.isTypeLegal(MVT::i64
) && !LegalOperations
&&
16172 !ST
->isVolatile()) ||
16173 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i64
)) {
16175 Tmp
= DAG
.getConstant(CFP
->getValueAPF().bitcastToAPInt().
16176 getZExtValue(), SDLoc(CFP
), MVT::i64
);
16177 return DAG
.getStore(Chain
, DL
, Tmp
,
16178 Ptr
, ST
->getMemOperand());
16181 if (!ST
->isVolatile() &&
16182 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
16183 // Many FP stores are not made apparent until after legalize, e.g. for
16184 // argument passing. Since this is so common, custom legalize the
16185 // 64-bit integer store into two 32-bit stores.
16186 uint64_t Val
= CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
16187 SDValue Lo
= DAG
.getConstant(Val
& 0xFFFFFFFF, SDLoc(CFP
), MVT::i32
);
16188 SDValue Hi
= DAG
.getConstant(Val
>> 32, SDLoc(CFP
), MVT::i32
);
16189 if (DAG
.getDataLayout().isBigEndian())
16192 unsigned Alignment
= ST
->getAlignment();
16193 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
16194 AAMDNodes AAInfo
= ST
->getAAInfo();
16196 SDValue St0
= DAG
.getStore(Chain
, DL
, Lo
, Ptr
, ST
->getPointerInfo(),
16197 ST
->getAlignment(), MMOFlags
, AAInfo
);
16198 Ptr
= DAG
.getNode(ISD::ADD
, DL
, Ptr
.getValueType(), Ptr
,
16199 DAG
.getConstant(4, DL
, Ptr
.getValueType()));
16200 Alignment
= MinAlign(Alignment
, 4U);
16201 SDValue St1
= DAG
.getStore(Chain
, DL
, Hi
, Ptr
,
16202 ST
->getPointerInfo().getWithOffset(4),
16203 Alignment
, MMOFlags
, AAInfo
);
16204 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
,
16212 SDValue
DAGCombiner::visitSTORE(SDNode
*N
) {
16213 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
16214 SDValue Chain
= ST
->getChain();
16215 SDValue Value
= ST
->getValue();
16216 SDValue Ptr
= ST
->getBasePtr();
16218 // If this is a store of a bit convert, store the input value if the
16219 // resultant store does not need a higher alignment than the original.
16220 if (Value
.getOpcode() == ISD::BITCAST
&& !ST
->isTruncatingStore() &&
16221 ST
->isUnindexed()) {
16222 EVT SVT
= Value
.getOperand(0).getValueType();
16223 // If the store is volatile, we only want to change the store type if the
16224 // resulting store is legal. Otherwise we might increase the number of
16225 // memory accesses. We don't care if the original type was legal or not
16226 // as we assume software couldn't rely on the number of accesses of an
16228 if (((!LegalOperations
&& !ST
->isVolatile()) ||
16229 TLI
.isOperationLegal(ISD::STORE
, SVT
)) &&
16230 TLI
.isStoreBitCastBeneficial(Value
.getValueType(), SVT
,
16231 DAG
, *ST
->getMemOperand())) {
16232 return DAG
.getStore(Chain
, SDLoc(N
), Value
.getOperand(0), Ptr
,
16233 ST
->getPointerInfo(), ST
->getAlignment(),
16234 ST
->getMemOperand()->getFlags(), ST
->getAAInfo());
16238 // Turn 'store undef, Ptr' -> nothing.
16239 if (Value
.isUndef() && ST
->isUnindexed())
16242 // Try to infer better alignment information than the store already has.
16243 if (OptLevel
!= CodeGenOpt::None
&& ST
->isUnindexed()) {
16244 if (unsigned Align
= DAG
.InferPtrAlignment(Ptr
)) {
16245 if (Align
> ST
->getAlignment() && ST
->getSrcValueOffset() % Align
== 0) {
16247 DAG
.getTruncStore(Chain
, SDLoc(N
), Value
, Ptr
, ST
->getPointerInfo(),
16248 ST
->getMemoryVT(), Align
,
16249 ST
->getMemOperand()->getFlags(), ST
->getAAInfo());
16250 // NewStore will always be N as we are only refining the alignment
16251 assert(NewStore
.getNode() == N
);
16257 // Try transforming a pair floating point load / store ops to integer
16258 // load / store ops.
16259 if (SDValue NewST
= TransformFPLoadStorePair(N
))
16262 // Try transforming several stores into STORE (BSWAP).
16263 if (SDValue Store
= MatchStoreCombine(ST
))
16266 if (ST
->isUnindexed()) {
16267 // Walk up chain skipping non-aliasing memory nodes, on this store and any
16268 // adjacent stores.
16269 if (findBetterNeighborChains(ST
)) {
16270 // replaceStoreChain uses CombineTo, which handled all of the worklist
16271 // manipulation. Return the original node to not do anything else.
16272 return SDValue(ST
, 0);
16274 Chain
= ST
->getChain();
16277 // FIXME: is there such a thing as a truncating indexed store?
16278 if (ST
->isTruncatingStore() && ST
->isUnindexed() &&
16279 Value
.getValueType().isInteger() &&
16280 (!isa
<ConstantSDNode
>(Value
) ||
16281 !cast
<ConstantSDNode
>(Value
)->isOpaque())) {
16282 APInt TruncDemandedBits
=
16283 APInt::getLowBitsSet(Value
.getScalarValueSizeInBits(),
16284 ST
->getMemoryVT().getScalarSizeInBits());
16286 // See if we can simplify the input to this truncstore with knowledge that
16287 // only the low bits are being used. For example:
16288 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
16289 AddToWorklist(Value
.getNode());
16290 if (SDValue Shorter
= DAG
.GetDemandedBits(Value
, TruncDemandedBits
))
16291 return DAG
.getTruncStore(Chain
, SDLoc(N
), Shorter
, Ptr
, ST
->getMemoryVT(),
16292 ST
->getMemOperand());
16294 // Otherwise, see if we can simplify the operation with
16295 // SimplifyDemandedBits, which only works if the value has a single use.
16296 if (SimplifyDemandedBits(Value
, TruncDemandedBits
)) {
16297 // Re-visit the store if anything changed and the store hasn't been merged
16298 // with another node (N is deleted) SimplifyDemandedBits will add Value's
16299 // node back to the worklist if necessary, but we also need to re-visit
16300 // the Store node itself.
16301 if (N
->getOpcode() != ISD::DELETED_NODE
)
16303 return SDValue(N
, 0);
16307 // If this is a load followed by a store to the same location, then the store
16309 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Value
)) {
16310 if (Ld
->getBasePtr() == Ptr
&& ST
->getMemoryVT() == Ld
->getMemoryVT() &&
16311 ST
->isUnindexed() && !ST
->isVolatile() &&
16312 // There can't be any side effects between the load and store, such as
16313 // a call or store.
16314 Chain
.reachesChainWithoutSideEffects(SDValue(Ld
, 1))) {
16315 // The store is dead, remove it.
16320 if (StoreSDNode
*ST1
= dyn_cast
<StoreSDNode
>(Chain
)) {
16321 if (ST
->isUnindexed() && !ST
->isVolatile() && ST1
->isUnindexed() &&
16322 !ST1
->isVolatile()) {
16323 if (ST1
->getBasePtr() == Ptr
&& ST1
->getValue() == Value
&&
16324 ST
->getMemoryVT() == ST1
->getMemoryVT()) {
16325 // If this is a store followed by a store with the same value to the
16326 // same location, then the store is dead/noop.
16330 if (OptLevel
!= CodeGenOpt::None
&& ST1
->hasOneUse() &&
16331 !ST1
->getBasePtr().isUndef()) {
16332 const BaseIndexOffset STBase
= BaseIndexOffset::match(ST
, DAG
);
16333 const BaseIndexOffset ChainBase
= BaseIndexOffset::match(ST1
, DAG
);
16334 unsigned STBitSize
= ST
->getMemoryVT().getSizeInBits();
16335 unsigned ChainBitSize
= ST1
->getMemoryVT().getSizeInBits();
16336 // If this is a store who's preceding store to a subset of the current
16337 // location and no one other node is chained to that store we can
16338 // effectively drop the store. Do not remove stores to undef as they may
16339 // be used as data sinks.
16340 if (STBase
.contains(DAG
, STBitSize
, ChainBase
, ChainBitSize
)) {
16341 CombineTo(ST1
, ST1
->getChain());
16345 // If ST stores to a subset of preceding store's write set, we may be
16346 // able to fold ST's value into the preceding stored value. As we know
16347 // the other uses of ST1's chain are unconcerned with ST, this folding
16348 // will not affect those nodes.
16350 if (ChainBase
.contains(DAG
, ChainBitSize
, STBase
, STBitSize
,
16352 SDValue ChainValue
= ST1
->getValue();
16353 if (auto *C1
= dyn_cast
<ConstantSDNode
>(ChainValue
)) {
16354 if (auto *C
= dyn_cast
<ConstantSDNode
>(Value
)) {
16355 APInt Val
= C1
->getAPIntValue();
16356 APInt InsertVal
= C
->getAPIntValue().zextOrTrunc(STBitSize
);
16357 // FIXME: Handle Big-endian mode.
16358 if (!DAG
.getDataLayout().isBigEndian()) {
16359 Val
.insertBits(InsertVal
, BitOffset
);
16361 DAG
.getConstant(Val
, SDLoc(C
), ChainValue
.getValueType(),
16362 C1
->isTargetOpcode(), C1
->isOpaque());
16363 SDNode
*NewST1
= DAG
.UpdateNodeOperands(
16364 ST1
, ST1
->getChain(), NewSDVal
, ST1
->getOperand(2),
16365 ST1
->getOperand(3));
16366 return CombineTo(ST
, SDValue(NewST1
, 0));
16370 } // End ST subset of ST1 case.
16375 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
16376 // truncating store. We can do this even if this is already a truncstore.
16377 if ((Value
.getOpcode() == ISD::FP_ROUND
|| Value
.getOpcode() == ISD::TRUNCATE
)
16378 && Value
.getNode()->hasOneUse() && ST
->isUnindexed() &&
16379 TLI
.isTruncStoreLegal(Value
.getOperand(0).getValueType(),
16380 ST
->getMemoryVT())) {
16381 return DAG
.getTruncStore(Chain
, SDLoc(N
), Value
.getOperand(0),
16382 Ptr
, ST
->getMemoryVT(), ST
->getMemOperand());
16385 // Always perform this optimization before types are legal. If the target
16386 // prefers, also try this after legalization to catch stores that were created
16387 // by intrinsics or other nodes.
16388 if (!LegalTypes
|| (TLI
.mergeStoresAfterLegalization(ST
->getMemoryVT()))) {
16390 // There can be multiple store sequences on the same chain.
16391 // Keep trying to merge store sequences until we are unable to do so
16392 // or until we merge the last store on the chain.
16393 bool Changed
= MergeConsecutiveStores(ST
);
16394 if (!Changed
) break;
16395 // Return N as merge only uses CombineTo and no worklist clean
16396 // up is necessary.
16397 if (N
->getOpcode() == ISD::DELETED_NODE
|| !isa
<StoreSDNode
>(N
))
16398 return SDValue(N
, 0);
16402 // Try transforming N to an indexed store.
16403 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
16404 return SDValue(N
, 0);
16406 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
16408 // Make sure to do this only after attempting to merge stores in order to
16409 // avoid changing the types of some subset of stores due to visit order,
16410 // preventing their merging.
16411 if (isa
<ConstantFPSDNode
>(ST
->getValue())) {
16412 if (SDValue NewSt
= replaceStoreOfFPConstant(ST
))
16416 if (SDValue NewSt
= splitMergedValStore(ST
))
16419 return ReduceLoadOpStoreWidth(N
);
16422 SDValue
DAGCombiner::visitLIFETIME_END(SDNode
*N
) {
16423 const auto *LifetimeEnd
= cast
<LifetimeSDNode
>(N
);
16424 if (!LifetimeEnd
->hasOffset())
16427 const BaseIndexOffset
LifetimeEndBase(N
->getOperand(1), SDValue(),
16428 LifetimeEnd
->getOffset(), false);
16430 // We walk up the chains to find stores.
16431 SmallVector
<SDValue
, 8> Chains
= {N
->getOperand(0)};
16432 while (!Chains
.empty()) {
16433 SDValue Chain
= Chains
.back();
16435 if (!Chain
.hasOneUse())
16437 switch (Chain
.getOpcode()) {
16438 case ISD::TokenFactor
:
16439 for (unsigned Nops
= Chain
.getNumOperands(); Nops
;)
16440 Chains
.push_back(Chain
.getOperand(--Nops
));
16442 case ISD::LIFETIME_START
:
16443 case ISD::LIFETIME_END
:
16444 // We can forward past any lifetime start/end that can be proven not to
16446 if (!isAlias(Chain
.getNode(), N
))
16447 Chains
.push_back(Chain
.getOperand(0));
16450 StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(Chain
);
16451 if (ST
->isVolatile() || ST
->isIndexed())
16453 const BaseIndexOffset StoreBase
= BaseIndexOffset::match(ST
, DAG
);
16454 // If we store purely within object bounds just before its lifetime ends,
16455 // we can remove the store.
16456 if (LifetimeEndBase
.contains(DAG
, LifetimeEnd
->getSize() * 8, StoreBase
,
16457 ST
->getMemoryVT().getStoreSizeInBits())) {
16458 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase
.dump();
16459 dbgs() << "\nwithin LIFETIME_END of : ";
16460 LifetimeEndBase
.dump(); dbgs() << "\n");
16461 CombineTo(ST
, ST
->getChain());
16462 return SDValue(N
, 0);
16470 /// For the instruction sequence of store below, F and I values
16471 /// are bundled together as an i64 value before being stored into memory.
16472 /// Sometimes it is more efficent to generate separate stores for F and I,
16473 /// which can remove the bitwise instructions or sink them to colder places.
16475 /// (store (or (zext (bitcast F to i32) to i64),
16476 /// (shl (zext I to i64), 32)), addr) -->
16477 /// (store F, addr) and (store I, addr+4)
16479 /// Similarly, splitting for other merged store can also be beneficial, like:
16480 /// For pair of {i32, i32}, i64 store --> two i32 stores.
16481 /// For pair of {i32, i16}, i64 store --> two i32 stores.
16482 /// For pair of {i16, i16}, i32 store --> two i16 stores.
16483 /// For pair of {i16, i8}, i32 store --> two i16 stores.
16484 /// For pair of {i8, i8}, i16 store --> two i8 stores.
16486 /// We allow each target to determine specifically which kind of splitting is
16489 /// The store patterns are commonly seen from the simple code snippet below
16490 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
16491 /// void goo(const std::pair<int, float> &);
16494 /// goo(std::make_pair(tmp, ftmp));
16498 SDValue
DAGCombiner::splitMergedValStore(StoreSDNode
*ST
) {
16499 if (OptLevel
== CodeGenOpt::None
)
16502 SDValue Val
= ST
->getValue();
16505 // Match OR operand.
16506 if (!Val
.getValueType().isScalarInteger() || Val
.getOpcode() != ISD::OR
)
16509 // Match SHL operand and get Lower and Higher parts of Val.
16510 SDValue Op1
= Val
.getOperand(0);
16511 SDValue Op2
= Val
.getOperand(1);
16513 if (Op1
.getOpcode() != ISD::SHL
) {
16514 std::swap(Op1
, Op2
);
16515 if (Op1
.getOpcode() != ISD::SHL
)
16519 Hi
= Op1
.getOperand(0);
16520 if (!Op1
.hasOneUse())
16523 // Match shift amount to HalfValBitSize.
16524 unsigned HalfValBitSize
= Val
.getValueSizeInBits() / 2;
16525 ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(Op1
.getOperand(1));
16526 if (!ShAmt
|| ShAmt
->getAPIntValue() != HalfValBitSize
)
16529 // Lo and Hi are zero-extended from int with size less equal than 32
16531 if (Lo
.getOpcode() != ISD::ZERO_EXTEND
|| !Lo
.hasOneUse() ||
16532 !Lo
.getOperand(0).getValueType().isScalarInteger() ||
16533 Lo
.getOperand(0).getValueSizeInBits() > HalfValBitSize
||
16534 Hi
.getOpcode() != ISD::ZERO_EXTEND
|| !Hi
.hasOneUse() ||
16535 !Hi
.getOperand(0).getValueType().isScalarInteger() ||
16536 Hi
.getOperand(0).getValueSizeInBits() > HalfValBitSize
)
16539 // Use the EVT of low and high parts before bitcast as the input
16540 // of target query.
16541 EVT LowTy
= (Lo
.getOperand(0).getOpcode() == ISD::BITCAST
)
16542 ? Lo
.getOperand(0).getValueType()
16543 : Lo
.getValueType();
16544 EVT HighTy
= (Hi
.getOperand(0).getOpcode() == ISD::BITCAST
)
16545 ? Hi
.getOperand(0).getValueType()
16546 : Hi
.getValueType();
16547 if (!TLI
.isMultiStoresCheaperThanBitsMerge(LowTy
, HighTy
))
16550 // Start to split store.
16551 unsigned Alignment
= ST
->getAlignment();
16552 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
16553 AAMDNodes AAInfo
= ST
->getAAInfo();
16555 // Change the sizes of Lo and Hi's value types to HalfValBitSize.
16556 EVT VT
= EVT::getIntegerVT(*DAG
.getContext(), HalfValBitSize
);
16557 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Lo
.getOperand(0));
16558 Hi
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Hi
.getOperand(0));
16560 SDValue Chain
= ST
->getChain();
16561 SDValue Ptr
= ST
->getBasePtr();
16562 // Lower value store.
16563 SDValue St0
= DAG
.getStore(Chain
, DL
, Lo
, Ptr
, ST
->getPointerInfo(),
16564 ST
->getAlignment(), MMOFlags
, AAInfo
);
16566 DAG
.getNode(ISD::ADD
, DL
, Ptr
.getValueType(), Ptr
,
16567 DAG
.getConstant(HalfValBitSize
/ 8, DL
, Ptr
.getValueType()));
16568 // Higher value store.
16570 DAG
.getStore(St0
, DL
, Hi
, Ptr
,
16571 ST
->getPointerInfo().getWithOffset(HalfValBitSize
/ 8),
16572 Alignment
/ 2, MMOFlags
, AAInfo
);
16576 /// Convert a disguised subvector insertion into a shuffle:
16577 SDValue
DAGCombiner::combineInsertEltToShuffle(SDNode
*N
, unsigned InsIndex
) {
16578 SDValue InsertVal
= N
->getOperand(1);
16579 SDValue Vec
= N
->getOperand(0);
16581 // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N), InsIndex)
16582 // --> (vector_shuffle X, Y)
16583 if (Vec
.getOpcode() == ISD::VECTOR_SHUFFLE
&& Vec
.hasOneUse() &&
16584 InsertVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
16585 isa
<ConstantSDNode
>(InsertVal
.getOperand(1))) {
16586 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Vec
.getNode());
16587 ArrayRef
<int> Mask
= SVN
->getMask();
16589 SDValue X
= Vec
.getOperand(0);
16590 SDValue Y
= Vec
.getOperand(1);
16592 // Vec's operand 0 is using indices from 0 to N-1 and
16593 // operand 1 from N to 2N - 1, where N is the number of
16594 // elements in the vectors.
16596 if (InsertVal
.getOperand(0) == X
) {
16598 } else if (InsertVal
.getOperand(0) == Y
) {
16599 XOffset
= X
.getValueType().getVectorNumElements();
16602 if (XOffset
!= -1) {
16603 SmallVector
<int, 16> NewMask(Mask
.begin(), Mask
.end());
16605 auto *ExtrIndex
= cast
<ConstantSDNode
>(InsertVal
.getOperand(1));
16606 NewMask
[InsIndex
] = XOffset
+ ExtrIndex
->getZExtValue();
16607 assert(NewMask
[InsIndex
] <
16608 (int)(2 * Vec
.getValueType().getVectorNumElements()) &&
16609 NewMask
[InsIndex
] >= 0 && "NewMask[InsIndex] is out of bound");
16611 SDValue LegalShuffle
=
16612 TLI
.buildLegalVectorShuffle(Vec
.getValueType(), SDLoc(N
), X
,
16615 return LegalShuffle
;
16619 // insert_vector_elt V, (bitcast X from vector type), IdxC -->
16620 // bitcast(shuffle (bitcast V), (extended X), Mask)
16621 // Note: We do not use an insert_subvector node because that requires a
16622 // legal subvector type.
16623 if (InsertVal
.getOpcode() != ISD::BITCAST
|| !InsertVal
.hasOneUse() ||
16624 !InsertVal
.getOperand(0).getValueType().isVector())
16627 SDValue SubVec
= InsertVal
.getOperand(0);
16628 SDValue DestVec
= N
->getOperand(0);
16629 EVT SubVecVT
= SubVec
.getValueType();
16630 EVT VT
= DestVec
.getValueType();
16631 unsigned NumSrcElts
= SubVecVT
.getVectorNumElements();
16632 unsigned ExtendRatio
= VT
.getSizeInBits() / SubVecVT
.getSizeInBits();
16633 unsigned NumMaskVals
= ExtendRatio
* NumSrcElts
;
16635 // Step 1: Create a shuffle mask that implements this insert operation. The
16636 // vector that we are inserting into will be operand 0 of the shuffle, so
16637 // those elements are just 'i'. The inserted subvector is in the first
16638 // positions of operand 1 of the shuffle. Example:
16639 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
16640 SmallVector
<int, 16> Mask(NumMaskVals
);
16641 for (unsigned i
= 0; i
!= NumMaskVals
; ++i
) {
16642 if (i
/ NumSrcElts
== InsIndex
)
16643 Mask
[i
] = (i
% NumSrcElts
) + NumMaskVals
;
16648 // Bail out if the target can not handle the shuffle we want to create.
16649 EVT SubVecEltVT
= SubVecVT
.getVectorElementType();
16650 EVT ShufVT
= EVT::getVectorVT(*DAG
.getContext(), SubVecEltVT
, NumMaskVals
);
16651 if (!TLI
.isShuffleMaskLegal(Mask
, ShufVT
))
16654 // Step 2: Create a wide vector from the inserted source vector by appending
16655 // undefined elements. This is the same size as our destination vector.
16657 SmallVector
<SDValue
, 8> ConcatOps(ExtendRatio
, DAG
.getUNDEF(SubVecVT
));
16658 ConcatOps
[0] = SubVec
;
16659 SDValue PaddedSubV
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, ShufVT
, ConcatOps
);
16661 // Step 3: Shuffle in the padded subvector.
16662 SDValue DestVecBC
= DAG
.getBitcast(ShufVT
, DestVec
);
16663 SDValue Shuf
= DAG
.getVectorShuffle(ShufVT
, DL
, DestVecBC
, PaddedSubV
, Mask
);
16664 AddToWorklist(PaddedSubV
.getNode());
16665 AddToWorklist(DestVecBC
.getNode());
16666 AddToWorklist(Shuf
.getNode());
16667 return DAG
.getBitcast(VT
, Shuf
);
16670 SDValue
DAGCombiner::visitINSERT_VECTOR_ELT(SDNode
*N
) {
16671 SDValue InVec
= N
->getOperand(0);
16672 SDValue InVal
= N
->getOperand(1);
16673 SDValue EltNo
= N
->getOperand(2);
16676 // If the inserted element is an UNDEF, just use the input vector.
16677 if (InVal
.isUndef())
16680 EVT VT
= InVec
.getValueType();
16681 unsigned NumElts
= VT
.getVectorNumElements();
16683 // Remove redundant insertions:
16684 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
16685 if (InVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
16686 InVec
== InVal
.getOperand(0) && EltNo
== InVal
.getOperand(1))
16689 auto *IndexC
= dyn_cast
<ConstantSDNode
>(EltNo
);
16691 // If this is variable insert to undef vector, it might be better to splat:
16692 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
16693 if (InVec
.isUndef() && TLI
.shouldSplatInsEltVarIndex(VT
)) {
16694 SmallVector
<SDValue
, 8> Ops(NumElts
, InVal
);
16695 return DAG
.getBuildVector(VT
, DL
, Ops
);
16700 // We must know which element is being inserted for folds below here.
16701 unsigned Elt
= IndexC
->getZExtValue();
16702 if (SDValue Shuf
= combineInsertEltToShuffle(N
, Elt
))
16705 // Canonicalize insert_vector_elt dag nodes.
16707 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
16708 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
16710 // Do this only if the child insert_vector node has one use; also
16711 // do this only if indices are both constants and Idx1 < Idx0.
16712 if (InVec
.getOpcode() == ISD::INSERT_VECTOR_ELT
&& InVec
.hasOneUse()
16713 && isa
<ConstantSDNode
>(InVec
.getOperand(2))) {
16714 unsigned OtherElt
= InVec
.getConstantOperandVal(2);
16715 if (Elt
< OtherElt
) {
16717 SDValue NewOp
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, DL
, VT
,
16718 InVec
.getOperand(0), InVal
, EltNo
);
16719 AddToWorklist(NewOp
.getNode());
16720 return DAG
.getNode(ISD::INSERT_VECTOR_ELT
, SDLoc(InVec
.getNode()),
16721 VT
, NewOp
, InVec
.getOperand(1), InVec
.getOperand(2));
16725 // If we can't generate a legal BUILD_VECTOR, exit
16726 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
))
16729 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
16730 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
16731 // vector elements.
16732 SmallVector
<SDValue
, 8> Ops
;
16733 // Do not combine these two vectors if the output vector will not replace
16734 // the input vector.
16735 if (InVec
.getOpcode() == ISD::BUILD_VECTOR
&& InVec
.hasOneUse()) {
16736 Ops
.append(InVec
.getNode()->op_begin(),
16737 InVec
.getNode()->op_end());
16738 } else if (InVec
.isUndef()) {
16739 Ops
.append(NumElts
, DAG
.getUNDEF(InVal
.getValueType()));
16743 assert(Ops
.size() == NumElts
&& "Unexpected vector size");
16745 // Insert the element
16746 if (Elt
< Ops
.size()) {
16747 // All the operands of BUILD_VECTOR must have the same type;
16748 // we enforce that here.
16749 EVT OpVT
= Ops
[0].getValueType();
16750 Ops
[Elt
] = OpVT
.isInteger() ? DAG
.getAnyExtOrTrunc(InVal
, DL
, OpVT
) : InVal
;
16753 // Return the new vector
16754 return DAG
.getBuildVector(VT
, DL
, Ops
);
16757 SDValue
DAGCombiner::scalarizeExtractedVectorLoad(SDNode
*EVE
, EVT InVecVT
,
16759 LoadSDNode
*OriginalLoad
) {
16760 assert(!OriginalLoad
->isVolatile());
16762 EVT ResultVT
= EVE
->getValueType(0);
16763 EVT VecEltVT
= InVecVT
.getVectorElementType();
16764 unsigned Align
= OriginalLoad
->getAlignment();
16765 unsigned NewAlign
= DAG
.getDataLayout().getABITypeAlignment(
16766 VecEltVT
.getTypeForEVT(*DAG
.getContext()));
16768 if (NewAlign
> Align
|| !TLI
.isOperationLegalOrCustom(ISD::LOAD
, VecEltVT
))
16771 ISD::LoadExtType ExtTy
= ResultVT
.bitsGT(VecEltVT
) ?
16772 ISD::NON_EXTLOAD
: ISD::EXTLOAD
;
16773 if (!TLI
.shouldReduceLoadWidth(OriginalLoad
, ExtTy
, VecEltVT
))
16778 SDValue NewPtr
= OriginalLoad
->getBasePtr();
16780 EVT PtrType
= NewPtr
.getValueType();
16781 MachinePointerInfo MPI
;
16783 if (auto *ConstEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
)) {
16784 int Elt
= ConstEltNo
->getZExtValue();
16785 unsigned PtrOff
= VecEltVT
.getSizeInBits() * Elt
/ 8;
16786 Offset
= DAG
.getConstant(PtrOff
, DL
, PtrType
);
16787 MPI
= OriginalLoad
->getPointerInfo().getWithOffset(PtrOff
);
16789 Offset
= DAG
.getZExtOrTrunc(EltNo
, DL
, PtrType
);
16790 Offset
= DAG
.getNode(
16791 ISD::MUL
, DL
, PtrType
, Offset
,
16792 DAG
.getConstant(VecEltVT
.getStoreSize(), DL
, PtrType
));
16793 // Discard the pointer info except the address space because the memory
16794 // operand can't represent this new access since the offset is variable.
16795 MPI
= MachinePointerInfo(OriginalLoad
->getPointerInfo().getAddrSpace());
16797 NewPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrType
, NewPtr
, Offset
);
16799 // The replacement we need to do here is a little tricky: we need to
16800 // replace an extractelement of a load with a load.
16801 // Use ReplaceAllUsesOfValuesWith to do the replacement.
16802 // Note that this replacement assumes that the extractvalue is the only
16803 // use of the load; that's okay because we don't want to perform this
16804 // transformation in other cases anyway.
16807 if (ResultVT
.bitsGT(VecEltVT
)) {
16808 // If the result type of vextract is wider than the load, then issue an
16809 // extending load instead.
16810 ISD::LoadExtType ExtType
= TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, ResultVT
,
16814 Load
= DAG
.getExtLoad(ExtType
, SDLoc(EVE
), ResultVT
,
16815 OriginalLoad
->getChain(), NewPtr
, MPI
, VecEltVT
,
16816 Align
, OriginalLoad
->getMemOperand()->getFlags(),
16817 OriginalLoad
->getAAInfo());
16818 Chain
= Load
.getValue(1);
16820 Load
= DAG
.getLoad(VecEltVT
, SDLoc(EVE
), OriginalLoad
->getChain(), NewPtr
,
16821 MPI
, Align
, OriginalLoad
->getMemOperand()->getFlags(),
16822 OriginalLoad
->getAAInfo());
16823 Chain
= Load
.getValue(1);
16824 if (ResultVT
.bitsLT(VecEltVT
))
16825 Load
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(EVE
), ResultVT
, Load
);
16827 Load
= DAG
.getBitcast(ResultVT
, Load
);
16829 WorklistRemover
DeadNodes(*this);
16830 SDValue From
[] = { SDValue(EVE
, 0), SDValue(OriginalLoad
, 1) };
16831 SDValue To
[] = { Load
, Chain
};
16832 DAG
.ReplaceAllUsesOfValuesWith(From
, To
, 2);
16833 // Since we're explicitly calling ReplaceAllUses, add the new node to the
16834 // worklist explicitly as well.
16835 AddToWorklist(Load
.getNode());
16836 AddUsersToWorklist(Load
.getNode()); // Add users too
16837 // Make sure to revisit this node to clean it up; it will usually be dead.
16838 AddToWorklist(EVE
);
16840 return SDValue(EVE
, 0);
16843 /// Transform a vector binary operation into a scalar binary operation by moving
16844 /// the math/logic after an extract element of a vector.
16845 static SDValue
scalarizeExtractedBinop(SDNode
*ExtElt
, SelectionDAG
&DAG
,
16846 bool LegalOperations
) {
16847 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
16848 SDValue Vec
= ExtElt
->getOperand(0);
16849 SDValue Index
= ExtElt
->getOperand(1);
16850 auto *IndexC
= dyn_cast
<ConstantSDNode
>(Index
);
16851 if (!IndexC
|| !TLI
.isBinOp(Vec
.getOpcode()) || !Vec
.hasOneUse() ||
16852 Vec
.getNode()->getNumValues() != 1)
16855 // Targets may want to avoid this to prevent an expensive register transfer.
16856 if (!TLI
.shouldScalarizeBinop(Vec
))
16859 // Extracting an element of a vector constant is constant-folded, so this
16860 // transform is just replacing a vector op with a scalar op while moving the
16862 SDValue Op0
= Vec
.getOperand(0);
16863 SDValue Op1
= Vec
.getOperand(1);
16864 if (isAnyConstantBuildVector(Op0
, true) ||
16865 isAnyConstantBuildVector(Op1
, true)) {
16866 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C'
16867 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC)
16869 EVT VT
= ExtElt
->getValueType(0);
16870 SDValue Ext0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, Op0
, Index
);
16871 SDValue Ext1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, Op1
, Index
);
16872 return DAG
.getNode(Vec
.getOpcode(), DL
, VT
, Ext0
, Ext1
);
16878 SDValue
DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode
*N
) {
16879 SDValue VecOp
= N
->getOperand(0);
16880 SDValue Index
= N
->getOperand(1);
16881 EVT ScalarVT
= N
->getValueType(0);
16882 EVT VecVT
= VecOp
.getValueType();
16883 if (VecOp
.isUndef())
16884 return DAG
.getUNDEF(ScalarVT
);
16886 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
16888 // This only really matters if the index is non-constant since other combines
16889 // on the constant elements already work.
16891 if (VecOp
.getOpcode() == ISD::INSERT_VECTOR_ELT
&&
16892 Index
== VecOp
.getOperand(2)) {
16893 SDValue Elt
= VecOp
.getOperand(1);
16894 return VecVT
.isInteger() ? DAG
.getAnyExtOrTrunc(Elt
, DL
, ScalarVT
) : Elt
;
16897 // (vextract (scalar_to_vector val, 0) -> val
16898 if (VecOp
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
16899 // Check if the result type doesn't match the inserted element type. A
16900 // SCALAR_TO_VECTOR may truncate the inserted element and the
16901 // EXTRACT_VECTOR_ELT may widen the extracted vector.
16902 SDValue InOp
= VecOp
.getOperand(0);
16903 if (InOp
.getValueType() != ScalarVT
) {
16904 assert(InOp
.getValueType().isInteger() && ScalarVT
.isInteger());
16905 return DAG
.getSExtOrTrunc(InOp
, DL
, ScalarVT
);
16910 // extract_vector_elt of out-of-bounds element -> UNDEF
16911 auto *IndexC
= dyn_cast
<ConstantSDNode
>(Index
);
16912 unsigned NumElts
= VecVT
.getVectorNumElements();
16913 if (IndexC
&& IndexC
->getAPIntValue().uge(NumElts
))
16914 return DAG
.getUNDEF(ScalarVT
);
16916 // extract_vector_elt (build_vector x, y), 1 -> y
16917 if (IndexC
&& VecOp
.getOpcode() == ISD::BUILD_VECTOR
&&
16918 TLI
.isTypeLegal(VecVT
) &&
16919 (VecOp
.hasOneUse() || TLI
.aggressivelyPreferBuildVectorSources(VecVT
))) {
16920 SDValue Elt
= VecOp
.getOperand(IndexC
->getZExtValue());
16921 EVT InEltVT
= Elt
.getValueType();
16923 // Sometimes build_vector's scalar input types do not match result type.
16924 if (ScalarVT
== InEltVT
)
16927 // TODO: It may be useful to truncate if free if the build_vector implicitly
16931 // TODO: These transforms should not require the 'hasOneUse' restriction, but
16932 // there are regressions on multiple targets without it. We can end up with a
16933 // mess of scalar and vector code if we reduce only part of the DAG to scalar.
16934 if (IndexC
&& VecOp
.getOpcode() == ISD::BITCAST
&& VecVT
.isInteger() &&
16935 VecOp
.hasOneUse()) {
16936 // The vector index of the LSBs of the source depend on the endian-ness.
16937 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
16938 unsigned ExtractIndex
= IndexC
->getZExtValue();
16939 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
16940 unsigned BCTruncElt
= IsLE
? 0 : NumElts
- 1;
16941 SDValue BCSrc
= VecOp
.getOperand(0);
16942 if (ExtractIndex
== BCTruncElt
&& BCSrc
.getValueType().isScalarInteger())
16943 return DAG
.getNode(ISD::TRUNCATE
, DL
, ScalarVT
, BCSrc
);
16945 if (LegalTypes
&& BCSrc
.getValueType().isInteger() &&
16946 BCSrc
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
16947 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt -->
16948 // trunc i64 X to i32
16949 SDValue X
= BCSrc
.getOperand(0);
16950 assert(X
.getValueType().isScalarInteger() && ScalarVT
.isScalarInteger() &&
16951 "Extract element and scalar to vector can't change element type "
16952 "from FP to integer.");
16953 unsigned XBitWidth
= X
.getValueSizeInBits();
16954 unsigned VecEltBitWidth
= VecVT
.getScalarSizeInBits();
16955 BCTruncElt
= IsLE
? 0 : XBitWidth
/ VecEltBitWidth
- 1;
16957 // An extract element return value type can be wider than its vector
16958 // operand element type. In that case, the high bits are undefined, so
16959 // it's possible that we may need to extend rather than truncate.
16960 if (ExtractIndex
== BCTruncElt
&& XBitWidth
> VecEltBitWidth
) {
16961 assert(XBitWidth
% VecEltBitWidth
== 0 &&
16962 "Scalar bitwidth must be a multiple of vector element bitwidth");
16963 return DAG
.getAnyExtOrTrunc(X
, DL
, ScalarVT
);
16968 if (SDValue BO
= scalarizeExtractedBinop(N
, DAG
, LegalOperations
))
16971 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
16972 // We only perform this optimization before the op legalization phase because
16973 // we may introduce new vector instructions which are not backed by TD
16974 // patterns. For example on AVX, extracting elements from a wide vector
16975 // without using extract_subvector. However, if we can find an underlying
16976 // scalar value, then we can always use that.
16977 if (IndexC
&& VecOp
.getOpcode() == ISD::VECTOR_SHUFFLE
) {
16978 auto *Shuf
= cast
<ShuffleVectorSDNode
>(VecOp
);
16979 // Find the new index to extract from.
16980 int OrigElt
= Shuf
->getMaskElt(IndexC
->getZExtValue());
16982 // Extracting an undef index is undef.
16984 return DAG
.getUNDEF(ScalarVT
);
16986 // Select the right vector half to extract from.
16988 if (OrigElt
< (int)NumElts
) {
16989 SVInVec
= VecOp
.getOperand(0);
16991 SVInVec
= VecOp
.getOperand(1);
16992 OrigElt
-= NumElts
;
16995 if (SVInVec
.getOpcode() == ISD::BUILD_VECTOR
) {
16996 SDValue InOp
= SVInVec
.getOperand(OrigElt
);
16997 if (InOp
.getValueType() != ScalarVT
) {
16998 assert(InOp
.getValueType().isInteger() && ScalarVT
.isInteger());
16999 InOp
= DAG
.getSExtOrTrunc(InOp
, DL
, ScalarVT
);
17005 // FIXME: We should handle recursing on other vector shuffles and
17006 // scalar_to_vector here as well.
17008 if (!LegalOperations
||
17009 // FIXME: Should really be just isOperationLegalOrCustom.
17010 TLI
.isOperationLegal(ISD::EXTRACT_VECTOR_ELT
, VecVT
) ||
17011 TLI
.isOperationExpand(ISD::VECTOR_SHUFFLE
, VecVT
)) {
17012 EVT IndexTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
17013 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, ScalarVT
, SVInVec
,
17014 DAG
.getConstant(OrigElt
, DL
, IndexTy
));
17018 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can
17019 // simplify it based on the (valid) extraction indices.
17020 if (llvm::all_of(VecOp
->uses(), [&](SDNode
*Use
) {
17021 return Use
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
17022 Use
->getOperand(0) == VecOp
&&
17023 isa
<ConstantSDNode
>(Use
->getOperand(1));
17025 APInt DemandedElts
= APInt::getNullValue(NumElts
);
17026 for (SDNode
*Use
: VecOp
->uses()) {
17027 auto *CstElt
= cast
<ConstantSDNode
>(Use
->getOperand(1));
17028 if (CstElt
->getAPIntValue().ult(NumElts
))
17029 DemandedElts
.setBit(CstElt
->getZExtValue());
17031 if (SimplifyDemandedVectorElts(VecOp
, DemandedElts
, true)) {
17032 // We simplified the vector operand of this extract element. If this
17033 // extract is not dead, visit it again so it is folded properly.
17034 if (N
->getOpcode() != ISD::DELETED_NODE
)
17036 return SDValue(N
, 0);
17040 // Everything under here is trying to match an extract of a loaded value.
17041 // If the result of load has to be truncated, then it's not necessarily
17043 bool BCNumEltsChanged
= false;
17044 EVT ExtVT
= VecVT
.getVectorElementType();
17046 if (ScalarVT
.bitsLT(LVT
) && !TLI
.isTruncateFree(LVT
, ScalarVT
))
17049 if (VecOp
.getOpcode() == ISD::BITCAST
) {
17050 // Don't duplicate a load with other uses.
17051 if (!VecOp
.hasOneUse())
17054 EVT BCVT
= VecOp
.getOperand(0).getValueType();
17055 if (!BCVT
.isVector() || ExtVT
.bitsGT(BCVT
.getVectorElementType()))
17057 if (NumElts
!= BCVT
.getVectorNumElements())
17058 BCNumEltsChanged
= true;
17059 VecOp
= VecOp
.getOperand(0);
17060 ExtVT
= BCVT
.getVectorElementType();
17063 // extract (vector load $addr), i --> load $addr + i * size
17064 if (!LegalOperations
&& !IndexC
&& VecOp
.hasOneUse() &&
17065 ISD::isNormalLoad(VecOp
.getNode()) &&
17066 !Index
->hasPredecessor(VecOp
.getNode())) {
17067 auto *VecLoad
= dyn_cast
<LoadSDNode
>(VecOp
);
17068 if (VecLoad
&& !VecLoad
->isVolatile())
17069 return scalarizeExtractedVectorLoad(N
, VecVT
, Index
, VecLoad
);
17072 // Perform only after legalization to ensure build_vector / vector_shuffle
17073 // optimizations have already been done.
17074 if (!LegalOperations
|| !IndexC
)
17077 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
17078 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
17079 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
17080 int Elt
= IndexC
->getZExtValue();
17081 LoadSDNode
*LN0
= nullptr;
17082 if (ISD::isNormalLoad(VecOp
.getNode())) {
17083 LN0
= cast
<LoadSDNode
>(VecOp
);
17084 } else if (VecOp
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
17085 VecOp
.getOperand(0).getValueType() == ExtVT
&&
17086 ISD::isNormalLoad(VecOp
.getOperand(0).getNode())) {
17087 // Don't duplicate a load with other uses.
17088 if (!VecOp
.hasOneUse())
17091 LN0
= cast
<LoadSDNode
>(VecOp
.getOperand(0));
17093 if (auto *Shuf
= dyn_cast
<ShuffleVectorSDNode
>(VecOp
)) {
17094 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
17096 // (load $addr+1*size)
17098 // Don't duplicate a load with other uses.
17099 if (!VecOp
.hasOneUse())
17102 // If the bit convert changed the number of elements, it is unsafe
17103 // to examine the mask.
17104 if (BCNumEltsChanged
)
17107 // Select the input vector, guarding against out of range extract vector.
17108 int Idx
= (Elt
> (int)NumElts
) ? -1 : Shuf
->getMaskElt(Elt
);
17109 VecOp
= (Idx
< (int)NumElts
) ? VecOp
.getOperand(0) : VecOp
.getOperand(1);
17111 if (VecOp
.getOpcode() == ISD::BITCAST
) {
17112 // Don't duplicate a load with other uses.
17113 if (!VecOp
.hasOneUse())
17116 VecOp
= VecOp
.getOperand(0);
17118 if (ISD::isNormalLoad(VecOp
.getNode())) {
17119 LN0
= cast
<LoadSDNode
>(VecOp
);
17120 Elt
= (Idx
< (int)NumElts
) ? Idx
: Idx
- (int)NumElts
;
17121 Index
= DAG
.getConstant(Elt
, DL
, Index
.getValueType());
17125 // Make sure we found a non-volatile load and the extractelement is
17127 if (!LN0
|| !LN0
->hasNUsesOfValue(1,0) || LN0
->isVolatile())
17130 // If Idx was -1 above, Elt is going to be -1, so just return undef.
17132 return DAG
.getUNDEF(LVT
);
17134 return scalarizeExtractedVectorLoad(N
, VecVT
, Index
, LN0
);
17137 // Simplify (build_vec (ext )) to (bitcast (build_vec ))
17138 SDValue
DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode
*N
) {
17139 // We perform this optimization post type-legalization because
17140 // the type-legalizer often scalarizes integer-promoted vectors.
17141 // Performing this optimization before may create bit-casts which
17142 // will be type-legalized to complex code sequences.
17143 // We perform this optimization only before the operation legalizer because we
17144 // may introduce illegal operations.
17145 if (Level
!= AfterLegalizeVectorOps
&& Level
!= AfterLegalizeTypes
)
17148 unsigned NumInScalars
= N
->getNumOperands();
17150 EVT VT
= N
->getValueType(0);
17152 // Check to see if this is a BUILD_VECTOR of a bunch of values
17153 // which come from any_extend or zero_extend nodes. If so, we can create
17154 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
17155 // optimizations. We do not handle sign-extend because we can't fill the sign
17157 EVT SourceType
= MVT::Other
;
17158 bool AllAnyExt
= true;
17160 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
17161 SDValue In
= N
->getOperand(i
);
17162 // Ignore undef inputs.
17163 if (In
.isUndef()) continue;
17165 bool AnyExt
= In
.getOpcode() == ISD::ANY_EXTEND
;
17166 bool ZeroExt
= In
.getOpcode() == ISD::ZERO_EXTEND
;
17168 // Abort if the element is not an extension.
17169 if (!ZeroExt
&& !AnyExt
) {
17170 SourceType
= MVT::Other
;
17174 // The input is a ZeroExt or AnyExt. Check the original type.
17175 EVT InTy
= In
.getOperand(0).getValueType();
17177 // Check that all of the widened source types are the same.
17178 if (SourceType
== MVT::Other
)
17181 else if (InTy
!= SourceType
) {
17182 // Multiple income types. Abort.
17183 SourceType
= MVT::Other
;
17187 // Check if all of the extends are ANY_EXTENDs.
17188 AllAnyExt
&= AnyExt
;
17191 // In order to have valid types, all of the inputs must be extended from the
17192 // same source type and all of the inputs must be any or zero extend.
17193 // Scalar sizes must be a power of two.
17194 EVT OutScalarTy
= VT
.getScalarType();
17195 bool ValidTypes
= SourceType
!= MVT::Other
&&
17196 isPowerOf2_32(OutScalarTy
.getSizeInBits()) &&
17197 isPowerOf2_32(SourceType
.getSizeInBits());
17199 // Create a new simpler BUILD_VECTOR sequence which other optimizations can
17200 // turn into a single shuffle instruction.
17204 bool isLE
= DAG
.getDataLayout().isLittleEndian();
17205 unsigned ElemRatio
= OutScalarTy
.getSizeInBits()/SourceType
.getSizeInBits();
17206 assert(ElemRatio
> 1 && "Invalid element size ratio");
17207 SDValue Filler
= AllAnyExt
? DAG
.getUNDEF(SourceType
):
17208 DAG
.getConstant(0, DL
, SourceType
);
17210 unsigned NewBVElems
= ElemRatio
* VT
.getVectorNumElements();
17211 SmallVector
<SDValue
, 8> Ops(NewBVElems
, Filler
);
17213 // Populate the new build_vector
17214 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
17215 SDValue Cast
= N
->getOperand(i
);
17216 assert((Cast
.getOpcode() == ISD::ANY_EXTEND
||
17217 Cast
.getOpcode() == ISD::ZERO_EXTEND
||
17218 Cast
.isUndef()) && "Invalid cast opcode");
17220 if (Cast
.isUndef())
17221 In
= DAG
.getUNDEF(SourceType
);
17223 In
= Cast
->getOperand(0);
17224 unsigned Index
= isLE
? (i
* ElemRatio
) :
17225 (i
* ElemRatio
+ (ElemRatio
- 1));
17227 assert(Index
< Ops
.size() && "Invalid index");
17231 // The type of the new BUILD_VECTOR node.
17232 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), SourceType
, NewBVElems
);
17233 assert(VecVT
.getSizeInBits() == VT
.getSizeInBits() &&
17234 "Invalid vector size");
17235 // Check if the new vector type is legal.
17236 if (!isTypeLegal(VecVT
) ||
17237 (!TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VecVT
) &&
17238 TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
)))
17241 // Make the new BUILD_VECTOR.
17242 SDValue BV
= DAG
.getBuildVector(VecVT
, DL
, Ops
);
17244 // The new BUILD_VECTOR node has the potential to be further optimized.
17245 AddToWorklist(BV
.getNode());
17246 // Bitcast to the desired type.
17247 return DAG
.getBitcast(VT
, BV
);
17250 SDValue
DAGCombiner::createBuildVecShuffle(const SDLoc
&DL
, SDNode
*N
,
17251 ArrayRef
<int> VectorMask
,
17252 SDValue VecIn1
, SDValue VecIn2
,
17253 unsigned LeftIdx
, bool DidSplitVec
) {
17254 MVT IdxTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
17255 SDValue ZeroIdx
= DAG
.getConstant(0, DL
, IdxTy
);
17257 EVT VT
= N
->getValueType(0);
17258 EVT InVT1
= VecIn1
.getValueType();
17259 EVT InVT2
= VecIn2
.getNode() ? VecIn2
.getValueType() : InVT1
;
17261 unsigned NumElems
= VT
.getVectorNumElements();
17262 unsigned ShuffleNumElems
= NumElems
;
17264 // If we artificially split a vector in two already, then the offsets in the
17265 // operands will all be based off of VecIn1, even those in VecIn2.
17266 unsigned Vec2Offset
= DidSplitVec
? 0 : InVT1
.getVectorNumElements();
17268 // We can't generate a shuffle node with mismatched input and output types.
17269 // Try to make the types match the type of the output.
17270 if (InVT1
!= VT
|| InVT2
!= VT
) {
17271 if ((VT
.getSizeInBits() % InVT1
.getSizeInBits() == 0) && InVT1
== InVT2
) {
17272 // If the output vector length is a multiple of both input lengths,
17273 // we can concatenate them and pad the rest with undefs.
17274 unsigned NumConcats
= VT
.getSizeInBits() / InVT1
.getSizeInBits();
17275 assert(NumConcats
>= 2 && "Concat needs at least two inputs!");
17276 SmallVector
<SDValue
, 2> ConcatOps(NumConcats
, DAG
.getUNDEF(InVT1
));
17277 ConcatOps
[0] = VecIn1
;
17278 ConcatOps
[1] = VecIn2
? VecIn2
: DAG
.getUNDEF(InVT1
);
17279 VecIn1
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
);
17280 VecIn2
= SDValue();
17281 } else if (InVT1
.getSizeInBits() == VT
.getSizeInBits() * 2) {
17282 if (!TLI
.isExtractSubvectorCheap(VT
, InVT1
, NumElems
))
17285 if (!VecIn2
.getNode()) {
17286 // If we only have one input vector, and it's twice the size of the
17287 // output, split it in two.
17288 VecIn2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, VecIn1
,
17289 DAG
.getConstant(NumElems
, DL
, IdxTy
));
17290 VecIn1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, VecIn1
, ZeroIdx
);
17291 // Since we now have shorter input vectors, adjust the offset of the
17292 // second vector's start.
17293 Vec2Offset
= NumElems
;
17294 } else if (InVT2
.getSizeInBits() <= InVT1
.getSizeInBits()) {
17295 // VecIn1 is wider than the output, and we have another, possibly
17296 // smaller input. Pad the smaller input with undefs, shuffle at the
17297 // input vector width, and extract the output.
17298 // The shuffle type is different than VT, so check legality again.
17299 if (LegalOperations
&&
17300 !TLI
.isOperationLegal(ISD::VECTOR_SHUFFLE
, InVT1
))
17303 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to
17304 // lower it back into a BUILD_VECTOR. So if the inserted type is
17305 // illegal, don't even try.
17306 if (InVT1
!= InVT2
) {
17307 if (!TLI
.isTypeLegal(InVT2
))
17309 VecIn2
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, InVT1
,
17310 DAG
.getUNDEF(InVT1
), VecIn2
, ZeroIdx
);
17312 ShuffleNumElems
= NumElems
* 2;
17314 // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider
17315 // than VecIn1. We can't handle this for now - this case will disappear
17316 // when we start sorting the vectors by type.
17319 } else if (InVT2
.getSizeInBits() * 2 == VT
.getSizeInBits() &&
17320 InVT1
.getSizeInBits() == VT
.getSizeInBits()) {
17321 SmallVector
<SDValue
, 2> ConcatOps(2, DAG
.getUNDEF(InVT2
));
17322 ConcatOps
[0] = VecIn2
;
17323 VecIn2
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
);
17325 // TODO: Support cases where the length mismatch isn't exactly by a
17327 // TODO: Move this check upwards, so that if we have bad type
17328 // mismatches, we don't create any DAG nodes.
17333 // Initialize mask to undef.
17334 SmallVector
<int, 8> Mask(ShuffleNumElems
, -1);
17336 // Only need to run up to the number of elements actually used, not the
17337 // total number of elements in the shuffle - if we are shuffling a wider
17338 // vector, the high lanes should be set to undef.
17339 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
17340 if (VectorMask
[i
] <= 0)
17343 unsigned ExtIndex
= N
->getOperand(i
).getConstantOperandVal(1);
17344 if (VectorMask
[i
] == (int)LeftIdx
) {
17345 Mask
[i
] = ExtIndex
;
17346 } else if (VectorMask
[i
] == (int)LeftIdx
+ 1) {
17347 Mask
[i
] = Vec2Offset
+ ExtIndex
;
17351 // The type the input vectors may have changed above.
17352 InVT1
= VecIn1
.getValueType();
17354 // If we already have a VecIn2, it should have the same type as VecIn1.
17355 // If we don't, get an undef/zero vector of the appropriate type.
17356 VecIn2
= VecIn2
.getNode() ? VecIn2
: DAG
.getUNDEF(InVT1
);
17357 assert(InVT1
== VecIn2
.getValueType() && "Unexpected second input type.");
17359 SDValue Shuffle
= DAG
.getVectorShuffle(InVT1
, DL
, VecIn1
, VecIn2
, Mask
);
17360 if (ShuffleNumElems
> NumElems
)
17361 Shuffle
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Shuffle
, ZeroIdx
);
17366 static SDValue
reduceBuildVecToShuffleWithZero(SDNode
*BV
, SelectionDAG
&DAG
) {
17367 assert(BV
->getOpcode() == ISD::BUILD_VECTOR
&& "Expected build vector");
17369 // First, determine where the build vector is not undef.
17370 // TODO: We could extend this to handle zero elements as well as undefs.
17371 int NumBVOps
= BV
->getNumOperands();
17373 for (int i
= 0; i
!= NumBVOps
; ++i
) {
17374 SDValue Op
= BV
->getOperand(i
);
17382 // Bail out if there's no non-undef element.
17386 // The build vector contains some number of undef elements and exactly
17387 // one other element. That other element must be a zero-extended scalar
17388 // extracted from a vector at a constant index to turn this into a shuffle.
17389 // Also, require that the build vector does not implicitly truncate/extend
17391 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND.
17392 EVT VT
= BV
->getValueType(0);
17393 SDValue Zext
= BV
->getOperand(ZextElt
);
17394 if (Zext
.getOpcode() != ISD::ZERO_EXTEND
|| !Zext
.hasOneUse() ||
17395 Zext
.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
17396 !isa
<ConstantSDNode
>(Zext
.getOperand(0).getOperand(1)) ||
17397 Zext
.getValueSizeInBits() != VT
.getScalarSizeInBits())
17400 // The zero-extend must be a multiple of the source size, and we must be
17401 // building a vector of the same size as the source of the extract element.
17402 SDValue Extract
= Zext
.getOperand(0);
17403 unsigned DestSize
= Zext
.getValueSizeInBits();
17404 unsigned SrcSize
= Extract
.getValueSizeInBits();
17405 if (DestSize
% SrcSize
!= 0 ||
17406 Extract
.getOperand(0).getValueSizeInBits() != VT
.getSizeInBits())
17409 // Create a shuffle mask that will combine the extracted element with zeros
17411 int ZextRatio
= DestSize
/ SrcSize
;
17412 int NumMaskElts
= NumBVOps
* ZextRatio
;
17413 SmallVector
<int, 32> ShufMask(NumMaskElts
, -1);
17414 for (int i
= 0; i
!= NumMaskElts
; ++i
) {
17415 if (i
/ ZextRatio
== ZextElt
) {
17416 // The low bits of the (potentially translated) extracted element map to
17417 // the source vector. The high bits map to zero. We will use a zero vector
17418 // as the 2nd source operand of the shuffle, so use the 1st element of
17419 // that vector (mask value is number-of-elements) for the high bits.
17420 if (i
% ZextRatio
== 0)
17421 ShufMask
[i
] = Extract
.getConstantOperandVal(1);
17423 ShufMask
[i
] = NumMaskElts
;
17426 // Undef elements of the build vector remain undef because we initialize
17427 // the shuffle mask with -1.
17430 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... -->
17431 // bitcast (shuffle V, ZeroVec, VectorMask)
17433 EVT VecVT
= Extract
.getOperand(0).getValueType();
17434 SDValue ZeroVec
= DAG
.getConstant(0, DL
, VecVT
);
17435 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
17436 SDValue Shuf
= TLI
.buildLegalVectorShuffle(VecVT
, DL
, Extract
.getOperand(0),
17437 ZeroVec
, ShufMask
, DAG
);
17440 return DAG
.getBitcast(VT
, Shuf
);
17443 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
17444 // operations. If the types of the vectors we're extracting from allow it,
17445 // turn this into a vector_shuffle node.
17446 SDValue
DAGCombiner::reduceBuildVecToShuffle(SDNode
*N
) {
17448 EVT VT
= N
->getValueType(0);
17450 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
17451 if (!isTypeLegal(VT
))
17454 if (SDValue V
= reduceBuildVecToShuffleWithZero(N
, DAG
))
17457 // May only combine to shuffle after legalize if shuffle is legal.
17458 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::VECTOR_SHUFFLE
, VT
))
17461 bool UsesZeroVector
= false;
17462 unsigned NumElems
= N
->getNumOperands();
17464 // Record, for each element of the newly built vector, which input vector
17465 // that element comes from. -1 stands for undef, 0 for the zero vector,
17466 // and positive values for the input vectors.
17467 // VectorMask maps each element to its vector number, and VecIn maps vector
17468 // numbers to their initial SDValues.
17470 SmallVector
<int, 8> VectorMask(NumElems
, -1);
17471 SmallVector
<SDValue
, 8> VecIn
;
17472 VecIn
.push_back(SDValue());
17474 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
17475 SDValue Op
= N
->getOperand(i
);
17480 // See if we can use a blend with a zero vector.
17481 // TODO: Should we generalize this to a blend with an arbitrary constant
17483 if (isNullConstant(Op
) || isNullFPConstant(Op
)) {
17484 UsesZeroVector
= true;
17489 // Not an undef or zero. If the input is something other than an
17490 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
17491 if (Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
17492 !isa
<ConstantSDNode
>(Op
.getOperand(1)))
17494 SDValue ExtractedFromVec
= Op
.getOperand(0);
17496 const APInt
&ExtractIdx
= Op
.getConstantOperandAPInt(1);
17497 if (ExtractIdx
.uge(ExtractedFromVec
.getValueType().getVectorNumElements()))
17500 // All inputs must have the same element type as the output.
17501 if (VT
.getVectorElementType() !=
17502 ExtractedFromVec
.getValueType().getVectorElementType())
17505 // Have we seen this input vector before?
17506 // The vectors are expected to be tiny (usually 1 or 2 elements), so using
17507 // a map back from SDValues to numbers isn't worth it.
17508 unsigned Idx
= std::distance(
17509 VecIn
.begin(), std::find(VecIn
.begin(), VecIn
.end(), ExtractedFromVec
));
17510 if (Idx
== VecIn
.size())
17511 VecIn
.push_back(ExtractedFromVec
);
17513 VectorMask
[i
] = Idx
;
17516 // If we didn't find at least one input vector, bail out.
17517 if (VecIn
.size() < 2)
17520 // If all the Operands of BUILD_VECTOR extract from same
17521 // vector, then split the vector efficiently based on the maximum
17522 // vector access index and adjust the VectorMask and
17523 // VecIn accordingly.
17524 bool DidSplitVec
= false;
17525 if (VecIn
.size() == 2) {
17526 unsigned MaxIndex
= 0;
17527 unsigned NearestPow2
= 0;
17528 SDValue Vec
= VecIn
.back();
17529 EVT InVT
= Vec
.getValueType();
17530 MVT IdxTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
17531 SmallVector
<unsigned, 8> IndexVec(NumElems
, 0);
17533 for (unsigned i
= 0; i
< NumElems
; i
++) {
17534 if (VectorMask
[i
] <= 0)
17536 unsigned Index
= N
->getOperand(i
).getConstantOperandVal(1);
17537 IndexVec
[i
] = Index
;
17538 MaxIndex
= std::max(MaxIndex
, Index
);
17541 NearestPow2
= PowerOf2Ceil(MaxIndex
);
17542 if (InVT
.isSimple() && NearestPow2
> 2 && MaxIndex
< NearestPow2
&&
17543 NumElems
* 2 < NearestPow2
) {
17544 unsigned SplitSize
= NearestPow2
/ 2;
17545 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(),
17546 InVT
.getVectorElementType(), SplitSize
);
17547 if (TLI
.isTypeLegal(SplitVT
)) {
17548 SDValue VecIn2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SplitVT
, Vec
,
17549 DAG
.getConstant(SplitSize
, DL
, IdxTy
));
17550 SDValue VecIn1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SplitVT
, Vec
,
17551 DAG
.getConstant(0, DL
, IdxTy
));
17553 VecIn
.push_back(VecIn1
);
17554 VecIn
.push_back(VecIn2
);
17555 DidSplitVec
= true;
17557 for (unsigned i
= 0; i
< NumElems
; i
++) {
17558 if (VectorMask
[i
] <= 0)
17560 VectorMask
[i
] = (IndexVec
[i
] < SplitSize
) ? 1 : 2;
17566 // TODO: We want to sort the vectors by descending length, so that adjacent
17567 // pairs have similar length, and the longer vector is always first in the
17570 // TODO: Should this fire if some of the input vectors has illegal type (like
17571 // it does now), or should we let legalization run its course first?
17574 // Take pairs of vectors, and shuffle them so that the result has elements
17575 // from these vectors in the correct places.
17576 // For example, given:
17577 // t10: i32 = extract_vector_elt t1, Constant:i64<0>
17578 // t11: i32 = extract_vector_elt t2, Constant:i64<0>
17579 // t12: i32 = extract_vector_elt t3, Constant:i64<0>
17580 // t13: i32 = extract_vector_elt t1, Constant:i64<1>
17581 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
17582 // We will generate:
17583 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
17584 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
17585 SmallVector
<SDValue
, 4> Shuffles
;
17586 for (unsigned In
= 0, Len
= (VecIn
.size() / 2); In
< Len
; ++In
) {
17587 unsigned LeftIdx
= 2 * In
+ 1;
17588 SDValue VecLeft
= VecIn
[LeftIdx
];
17590 (LeftIdx
+ 1) < VecIn
.size() ? VecIn
[LeftIdx
+ 1] : SDValue();
17592 if (SDValue Shuffle
= createBuildVecShuffle(DL
, N
, VectorMask
, VecLeft
,
17593 VecRight
, LeftIdx
, DidSplitVec
))
17594 Shuffles
.push_back(Shuffle
);
17599 // If we need the zero vector as an "ingredient" in the blend tree, add it
17600 // to the list of shuffles.
17601 if (UsesZeroVector
)
17602 Shuffles
.push_back(VT
.isInteger() ? DAG
.getConstant(0, DL
, VT
)
17603 : DAG
.getConstantFP(0.0, DL
, VT
));
17605 // If we only have one shuffle, we're done.
17606 if (Shuffles
.size() == 1)
17607 return Shuffles
[0];
17609 // Update the vector mask to point to the post-shuffle vectors.
17610 for (int &Vec
: VectorMask
)
17612 Vec
= Shuffles
.size() - 1;
17614 Vec
= (Vec
- 1) / 2;
17616 // More than one shuffle. Generate a binary tree of blends, e.g. if from
17617 // the previous step we got the set of shuffles t10, t11, t12, t13, we will
17619 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
17620 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
17621 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
17622 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
17623 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
17624 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
17625 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
17627 // Make sure the initial size of the shuffle list is even.
17628 if (Shuffles
.size() % 2)
17629 Shuffles
.push_back(DAG
.getUNDEF(VT
));
17631 for (unsigned CurSize
= Shuffles
.size(); CurSize
> 1; CurSize
/= 2) {
17633 Shuffles
[CurSize
] = DAG
.getUNDEF(VT
);
17636 for (unsigned In
= 0, Len
= CurSize
/ 2; In
< Len
; ++In
) {
17638 int Right
= 2 * In
+ 1;
17639 SmallVector
<int, 8> Mask(NumElems
, -1);
17640 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
17641 if (VectorMask
[i
] == Left
) {
17643 VectorMask
[i
] = In
;
17644 } else if (VectorMask
[i
] == Right
) {
17645 Mask
[i
] = i
+ NumElems
;
17646 VectorMask
[i
] = In
;
17651 DAG
.getVectorShuffle(VT
, DL
, Shuffles
[Left
], Shuffles
[Right
], Mask
);
17654 return Shuffles
[0];
17657 // Try to turn a build vector of zero extends of extract vector elts into a
17658 // a vector zero extend and possibly an extract subvector.
17659 // TODO: Support sign extend?
17660 // TODO: Allow undef elements?
17661 SDValue
DAGCombiner::convertBuildVecZextToZext(SDNode
*N
) {
17662 if (LegalOperations
)
17665 EVT VT
= N
->getValueType(0);
17667 bool FoundZeroExtend
= false;
17668 SDValue Op0
= N
->getOperand(0);
17669 auto checkElem
= [&](SDValue Op
) -> int64_t {
17670 unsigned Opc
= Op
.getOpcode();
17671 FoundZeroExtend
|= (Opc
== ISD::ZERO_EXTEND
);
17672 if ((Opc
== ISD::ZERO_EXTEND
|| Opc
== ISD::ANY_EXTEND
) &&
17673 Op
.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
17674 Op0
.getOperand(0).getOperand(0) == Op
.getOperand(0).getOperand(0))
17675 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0).getOperand(1)))
17676 return C
->getZExtValue();
17680 // Make sure the first element matches
17681 // (zext (extract_vector_elt X, C))
17682 int64_t Offset
= checkElem(Op0
);
17686 unsigned NumElems
= N
->getNumOperands();
17687 SDValue In
= Op0
.getOperand(0).getOperand(0);
17688 EVT InSVT
= In
.getValueType().getScalarType();
17689 EVT InVT
= EVT::getVectorVT(*DAG
.getContext(), InSVT
, NumElems
);
17691 // Don't create an illegal input type after type legalization.
17692 if (LegalTypes
&& !TLI
.isTypeLegal(InVT
))
17695 // Ensure all the elements come from the same vector and are adjacent.
17696 for (unsigned i
= 1; i
!= NumElems
; ++i
) {
17697 if ((Offset
+ i
) != checkElem(N
->getOperand(i
)))
17702 In
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, InVT
, In
,
17703 Op0
.getOperand(0).getOperand(1));
17704 return DAG
.getNode(FoundZeroExtend
? ISD::ZERO_EXTEND
: ISD::ANY_EXTEND
, DL
,
17708 SDValue
DAGCombiner::visitBUILD_VECTOR(SDNode
*N
) {
17709 EVT VT
= N
->getValueType(0);
17711 // A vector built entirely of undefs is undef.
17712 if (ISD::allOperandsUndef(N
))
17713 return DAG
.getUNDEF(VT
);
17715 // If this is a splat of a bitcast from another vector, change to a
17718 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
17719 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
17721 // If X is a build_vector itself, the concat can become a larger build_vector.
17722 // TODO: Maybe this is useful for non-splat too?
17723 if (!LegalOperations
) {
17724 if (SDValue Splat
= cast
<BuildVectorSDNode
>(N
)->getSplatValue()) {
17725 Splat
= peekThroughBitcasts(Splat
);
17726 EVT SrcVT
= Splat
.getValueType();
17727 if (SrcVT
.isVector()) {
17728 unsigned NumElts
= N
->getNumOperands() * SrcVT
.getVectorNumElements();
17729 EVT NewVT
= EVT::getVectorVT(*DAG
.getContext(),
17730 SrcVT
.getVectorElementType(), NumElts
);
17731 if (!LegalTypes
|| TLI
.isTypeLegal(NewVT
)) {
17732 SmallVector
<SDValue
, 8> Ops(N
->getNumOperands(), Splat
);
17733 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
),
17735 return DAG
.getBitcast(VT
, Concat
);
17741 // Check if we can express BUILD VECTOR via subvector extract.
17742 if (!LegalTypes
&& (N
->getNumOperands() > 1)) {
17743 SDValue Op0
= N
->getOperand(0);
17744 auto checkElem
= [&](SDValue Op
) -> uint64_t {
17745 if ((Op
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) &&
17746 (Op0
.getOperand(0) == Op
.getOperand(0)))
17747 if (auto CNode
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
17748 return CNode
->getZExtValue();
17752 int Offset
= checkElem(Op0
);
17753 for (unsigned i
= 0; i
< N
->getNumOperands(); ++i
) {
17754 if (Offset
+ i
!= checkElem(N
->getOperand(i
))) {
17760 if ((Offset
== 0) &&
17761 (Op0
.getOperand(0).getValueType() == N
->getValueType(0)))
17762 return Op0
.getOperand(0);
17763 if ((Offset
!= -1) &&
17764 ((Offset
% N
->getValueType(0).getVectorNumElements()) ==
17765 0)) // IDX must be multiple of output size.
17766 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), N
->getValueType(0),
17767 Op0
.getOperand(0), Op0
.getOperand(1));
17770 if (SDValue V
= convertBuildVecZextToZext(N
))
17773 if (SDValue V
= reduceBuildVecExtToExtBuildVec(N
))
17776 if (SDValue V
= reduceBuildVecToShuffle(N
))
17782 static SDValue
combineConcatVectorOfScalars(SDNode
*N
, SelectionDAG
&DAG
) {
17783 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
17784 EVT OpVT
= N
->getOperand(0).getValueType();
17786 // If the operands are legal vectors, leave them alone.
17787 if (TLI
.isTypeLegal(OpVT
))
17791 EVT VT
= N
->getValueType(0);
17792 SmallVector
<SDValue
, 8> Ops
;
17794 EVT SVT
= EVT::getIntegerVT(*DAG
.getContext(), OpVT
.getSizeInBits());
17795 SDValue ScalarUndef
= DAG
.getNode(ISD::UNDEF
, DL
, SVT
);
17797 // Keep track of what we encounter.
17798 bool AnyInteger
= false;
17799 bool AnyFP
= false;
17800 for (const SDValue
&Op
: N
->ops()) {
17801 if (ISD::BITCAST
== Op
.getOpcode() &&
17802 !Op
.getOperand(0).getValueType().isVector())
17803 Ops
.push_back(Op
.getOperand(0));
17804 else if (ISD::UNDEF
== Op
.getOpcode())
17805 Ops
.push_back(ScalarUndef
);
17809 // Note whether we encounter an integer or floating point scalar.
17810 // If it's neither, bail out, it could be something weird like x86mmx.
17811 EVT LastOpVT
= Ops
.back().getValueType();
17812 if (LastOpVT
.isFloatingPoint())
17814 else if (LastOpVT
.isInteger())
17820 // If any of the operands is a floating point scalar bitcast to a vector,
17821 // use floating point types throughout, and bitcast everything.
17822 // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
17824 SVT
= EVT::getFloatingPointVT(OpVT
.getSizeInBits());
17825 ScalarUndef
= DAG
.getNode(ISD::UNDEF
, DL
, SVT
);
17827 for (SDValue
&Op
: Ops
) {
17828 if (Op
.getValueType() == SVT
)
17833 Op
= DAG
.getBitcast(SVT
, Op
);
17838 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), SVT
,
17839 VT
.getSizeInBits() / SVT
.getSizeInBits());
17840 return DAG
.getBitcast(VT
, DAG
.getBuildVector(VecVT
, DL
, Ops
));
17843 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
17844 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
17845 // most two distinct vectors the same size as the result, attempt to turn this
17846 // into a legal shuffle.
17847 static SDValue
combineConcatVectorOfExtracts(SDNode
*N
, SelectionDAG
&DAG
) {
17848 EVT VT
= N
->getValueType(0);
17849 EVT OpVT
= N
->getOperand(0).getValueType();
17850 int NumElts
= VT
.getVectorNumElements();
17851 int NumOpElts
= OpVT
.getVectorNumElements();
17853 SDValue SV0
= DAG
.getUNDEF(VT
), SV1
= DAG
.getUNDEF(VT
);
17854 SmallVector
<int, 8> Mask
;
17856 for (SDValue Op
: N
->ops()) {
17857 Op
= peekThroughBitcasts(Op
);
17859 // UNDEF nodes convert to UNDEF shuffle mask values.
17860 if (Op
.isUndef()) {
17861 Mask
.append((unsigned)NumOpElts
, -1);
17865 if (Op
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
17868 // What vector are we extracting the subvector from and at what index?
17869 SDValue ExtVec
= Op
.getOperand(0);
17871 // We want the EVT of the original extraction to correctly scale the
17872 // extraction index.
17873 EVT ExtVT
= ExtVec
.getValueType();
17874 ExtVec
= peekThroughBitcasts(ExtVec
);
17876 // UNDEF nodes convert to UNDEF shuffle mask values.
17877 if (ExtVec
.isUndef()) {
17878 Mask
.append((unsigned)NumOpElts
, -1);
17882 if (!isa
<ConstantSDNode
>(Op
.getOperand(1)))
17884 int ExtIdx
= Op
.getConstantOperandVal(1);
17886 // Ensure that we are extracting a subvector from a vector the same
17887 // size as the result.
17888 if (ExtVT
.getSizeInBits() != VT
.getSizeInBits())
17891 // Scale the subvector index to account for any bitcast.
17892 int NumExtElts
= ExtVT
.getVectorNumElements();
17893 if (0 == (NumExtElts
% NumElts
))
17894 ExtIdx
/= (NumExtElts
/ NumElts
);
17895 else if (0 == (NumElts
% NumExtElts
))
17896 ExtIdx
*= (NumElts
/ NumExtElts
);
17900 // At most we can reference 2 inputs in the final shuffle.
17901 if (SV0
.isUndef() || SV0
== ExtVec
) {
17903 for (int i
= 0; i
!= NumOpElts
; ++i
)
17904 Mask
.push_back(i
+ ExtIdx
);
17905 } else if (SV1
.isUndef() || SV1
== ExtVec
) {
17907 for (int i
= 0; i
!= NumOpElts
; ++i
)
17908 Mask
.push_back(i
+ ExtIdx
+ NumElts
);
17914 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
17915 return TLI
.buildLegalVectorShuffle(VT
, SDLoc(N
), DAG
.getBitcast(VT
, SV0
),
17916 DAG
.getBitcast(VT
, SV1
), Mask
, DAG
);
17919 SDValue
DAGCombiner::visitCONCAT_VECTORS(SDNode
*N
) {
17920 // If we only have one input vector, we don't need to do any concatenation.
17921 if (N
->getNumOperands() == 1)
17922 return N
->getOperand(0);
17924 // Check if all of the operands are undefs.
17925 EVT VT
= N
->getValueType(0);
17926 if (ISD::allOperandsUndef(N
))
17927 return DAG
.getUNDEF(VT
);
17929 // Optimize concat_vectors where all but the first of the vectors are undef.
17930 if (std::all_of(std::next(N
->op_begin()), N
->op_end(), [](const SDValue
&Op
) {
17931 return Op
.isUndef();
17933 SDValue In
= N
->getOperand(0);
17934 assert(In
.getValueType().isVector() && "Must concat vectors");
17936 // If the input is a concat_vectors, just make a larger concat by padding
17937 // with smaller undefs.
17938 if (In
.getOpcode() == ISD::CONCAT_VECTORS
&& In
.hasOneUse()) {
17939 unsigned NumOps
= N
->getNumOperands() * In
.getNumOperands();
17940 SmallVector
<SDValue
, 4> Ops(In
->op_begin(), In
->op_end());
17941 Ops
.resize(NumOps
, DAG
.getUNDEF(Ops
[0].getValueType()));
17942 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
17945 SDValue Scalar
= peekThroughOneUseBitcasts(In
);
17947 // concat_vectors(scalar_to_vector(scalar), undef) ->
17948 // scalar_to_vector(scalar)
17949 if (!LegalOperations
&& Scalar
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
17950 Scalar
.hasOneUse()) {
17951 EVT SVT
= Scalar
.getValueType().getVectorElementType();
17952 if (SVT
== Scalar
.getOperand(0).getValueType())
17953 Scalar
= Scalar
.getOperand(0);
17956 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
17957 if (!Scalar
.getValueType().isVector()) {
17958 // If the bitcast type isn't legal, it might be a trunc of a legal type;
17959 // look through the trunc so we can still do the transform:
17960 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
17961 if (Scalar
->getOpcode() == ISD::TRUNCATE
&&
17962 !TLI
.isTypeLegal(Scalar
.getValueType()) &&
17963 TLI
.isTypeLegal(Scalar
->getOperand(0).getValueType()))
17964 Scalar
= Scalar
->getOperand(0);
17966 EVT SclTy
= Scalar
.getValueType();
17968 if (!SclTy
.isFloatingPoint() && !SclTy
.isInteger())
17971 // Bail out if the vector size is not a multiple of the scalar size.
17972 if (VT
.getSizeInBits() % SclTy
.getSizeInBits())
17975 unsigned VNTNumElms
= VT
.getSizeInBits() / SclTy
.getSizeInBits();
17976 if (VNTNumElms
< 2)
17979 EVT NVT
= EVT::getVectorVT(*DAG
.getContext(), SclTy
, VNTNumElms
);
17980 if (!TLI
.isTypeLegal(NVT
) || !TLI
.isTypeLegal(Scalar
.getValueType()))
17983 SDValue Res
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, SDLoc(N
), NVT
, Scalar
);
17984 return DAG
.getBitcast(VT
, Res
);
17988 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
17989 // We have already tested above for an UNDEF only concatenation.
17990 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
17991 // -> (BUILD_VECTOR A, B, ..., C, D, ...)
17992 auto IsBuildVectorOrUndef
= [](const SDValue
&Op
) {
17993 return ISD::UNDEF
== Op
.getOpcode() || ISD::BUILD_VECTOR
== Op
.getOpcode();
17995 if (llvm::all_of(N
->ops(), IsBuildVectorOrUndef
)) {
17996 SmallVector
<SDValue
, 8> Opnds
;
17997 EVT SVT
= VT
.getScalarType();
18000 if (!SVT
.isFloatingPoint()) {
18001 // If BUILD_VECTOR are from built from integer, they may have different
18002 // operand types. Get the smallest type and truncate all operands to it.
18003 bool FoundMinVT
= false;
18004 for (const SDValue
&Op
: N
->ops())
18005 if (ISD::BUILD_VECTOR
== Op
.getOpcode()) {
18006 EVT OpSVT
= Op
.getOperand(0).getValueType();
18007 MinVT
= (!FoundMinVT
|| OpSVT
.bitsLE(MinVT
)) ? OpSVT
: MinVT
;
18010 assert(FoundMinVT
&& "Concat vector type mismatch");
18013 for (const SDValue
&Op
: N
->ops()) {
18014 EVT OpVT
= Op
.getValueType();
18015 unsigned NumElts
= OpVT
.getVectorNumElements();
18017 if (ISD::UNDEF
== Op
.getOpcode())
18018 Opnds
.append(NumElts
, DAG
.getUNDEF(MinVT
));
18020 if (ISD::BUILD_VECTOR
== Op
.getOpcode()) {
18021 if (SVT
.isFloatingPoint()) {
18022 assert(SVT
== OpVT
.getScalarType() && "Concat vector type mismatch");
18023 Opnds
.append(Op
->op_begin(), Op
->op_begin() + NumElts
);
18025 for (unsigned i
= 0; i
!= NumElts
; ++i
)
18027 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), MinVT
, Op
.getOperand(i
)));
18032 assert(VT
.getVectorNumElements() == Opnds
.size() &&
18033 "Concat vector type mismatch");
18034 return DAG
.getBuildVector(VT
, SDLoc(N
), Opnds
);
18037 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
18038 if (SDValue V
= combineConcatVectorOfScalars(N
, DAG
))
18041 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
18042 if (Level
< AfterLegalizeVectorOps
&& TLI
.isTypeLegal(VT
))
18043 if (SDValue V
= combineConcatVectorOfExtracts(N
, DAG
))
18046 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
18047 // nodes often generate nop CONCAT_VECTOR nodes.
18048 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
18049 // place the incoming vectors at the exact same location.
18050 SDValue SingleSource
= SDValue();
18051 unsigned PartNumElem
= N
->getOperand(0).getValueType().getVectorNumElements();
18053 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
18054 SDValue Op
= N
->getOperand(i
);
18059 // Check if this is the identity extract:
18060 if (Op
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
18063 // Find the single incoming vector for the extract_subvector.
18064 if (SingleSource
.getNode()) {
18065 if (Op
.getOperand(0) != SingleSource
)
18068 SingleSource
= Op
.getOperand(0);
18070 // Check the source type is the same as the type of the result.
18071 // If not, this concat may extend the vector, so we can not
18072 // optimize it away.
18073 if (SingleSource
.getValueType() != N
->getValueType(0))
18077 auto *CS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
18078 // The extract index must be constant.
18082 // Check that we are reading from the identity index.
18083 unsigned IdentityIndex
= i
* PartNumElem
;
18084 if (CS
->getAPIntValue() != IdentityIndex
)
18088 if (SingleSource
.getNode())
18089 return SingleSource
;
18094 // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find
18095 // if the subvector can be sourced for free.
18096 static SDValue
getSubVectorSrc(SDValue V
, SDValue Index
, EVT SubVT
) {
18097 if (V
.getOpcode() == ISD::INSERT_SUBVECTOR
&&
18098 V
.getOperand(1).getValueType() == SubVT
&& V
.getOperand(2) == Index
) {
18099 return V
.getOperand(1);
18101 auto *IndexC
= dyn_cast
<ConstantSDNode
>(Index
);
18102 if (IndexC
&& V
.getOpcode() == ISD::CONCAT_VECTORS
&&
18103 V
.getOperand(0).getValueType() == SubVT
&&
18104 (IndexC
->getZExtValue() % SubVT
.getVectorNumElements()) == 0) {
18105 uint64_t SubIdx
= IndexC
->getZExtValue() / SubVT
.getVectorNumElements();
18106 return V
.getOperand(SubIdx
);
18111 static SDValue
narrowInsertExtractVectorBinOp(SDNode
*Extract
,
18112 SelectionDAG
&DAG
) {
18113 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
18114 SDValue BinOp
= Extract
->getOperand(0);
18115 unsigned BinOpcode
= BinOp
.getOpcode();
18116 if (!TLI
.isBinOp(BinOpcode
) || BinOp
.getNode()->getNumValues() != 1)
18119 EVT VecVT
= BinOp
.getValueType();
18120 SDValue Bop0
= BinOp
.getOperand(0), Bop1
= BinOp
.getOperand(1);
18121 if (VecVT
!= Bop0
.getValueType() || VecVT
!= Bop1
.getValueType())
18124 SDValue Index
= Extract
->getOperand(1);
18125 EVT SubVT
= Extract
->getValueType(0);
18126 if (!TLI
.isOperationLegalOrCustom(BinOpcode
, SubVT
))
18129 SDValue Sub0
= getSubVectorSrc(Bop0
, Index
, SubVT
);
18130 SDValue Sub1
= getSubVectorSrc(Bop1
, Index
, SubVT
);
18132 // TODO: We could handle the case where only 1 operand is being inserted by
18133 // creating an extract of the other operand, but that requires checking
18134 // number of uses and/or costs.
18135 if (!Sub0
|| !Sub1
)
18138 // We are inserting both operands of the wide binop only to extract back
18139 // to the narrow vector size. Eliminate all of the insert/extract:
18140 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y
18141 return DAG
.getNode(BinOpcode
, SDLoc(Extract
), SubVT
, Sub0
, Sub1
,
18142 BinOp
->getFlags());
18145 /// If we are extracting a subvector produced by a wide binary operator try
18146 /// to use a narrow binary operator and/or avoid concatenation and extraction.
18147 static SDValue
narrowExtractedVectorBinOp(SDNode
*Extract
, SelectionDAG
&DAG
) {
18148 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
18149 // some of these bailouts with other transforms.
18151 if (SDValue V
= narrowInsertExtractVectorBinOp(Extract
, DAG
))
18154 // The extract index must be a constant, so we can map it to a concat operand.
18155 auto *ExtractIndexC
= dyn_cast
<ConstantSDNode
>(Extract
->getOperand(1));
18156 if (!ExtractIndexC
)
18159 // We are looking for an optionally bitcasted wide vector binary operator
18160 // feeding an extract subvector.
18161 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
18162 SDValue BinOp
= peekThroughBitcasts(Extract
->getOperand(0));
18163 unsigned BOpcode
= BinOp
.getOpcode();
18164 if (!TLI
.isBinOp(BOpcode
) || BinOp
.getNode()->getNumValues() != 1)
18167 // The binop must be a vector type, so we can extract some fraction of it.
18168 EVT WideBVT
= BinOp
.getValueType();
18169 if (!WideBVT
.isVector())
18172 EVT VT
= Extract
->getValueType(0);
18173 unsigned ExtractIndex
= ExtractIndexC
->getZExtValue();
18174 assert(ExtractIndex
% VT
.getVectorNumElements() == 0 &&
18175 "Extract index is not a multiple of the vector length.");
18177 // Bail out if this is not a proper multiple width extraction.
18178 unsigned WideWidth
= WideBVT
.getSizeInBits();
18179 unsigned NarrowWidth
= VT
.getSizeInBits();
18180 if (WideWidth
% NarrowWidth
!= 0)
18183 // Bail out if we are extracting a fraction of a single operation. This can
18184 // occur because we potentially looked through a bitcast of the binop.
18185 unsigned NarrowingRatio
= WideWidth
/ NarrowWidth
;
18186 unsigned WideNumElts
= WideBVT
.getVectorNumElements();
18187 if (WideNumElts
% NarrowingRatio
!= 0)
18190 // Bail out if the target does not support a narrower version of the binop.
18191 EVT NarrowBVT
= EVT::getVectorVT(*DAG
.getContext(), WideBVT
.getScalarType(),
18192 WideNumElts
/ NarrowingRatio
);
18193 if (!TLI
.isOperationLegalOrCustomOrPromote(BOpcode
, NarrowBVT
))
18196 // If extraction is cheap, we don't need to look at the binop operands
18197 // for concat ops. The narrow binop alone makes this transform profitable.
18198 // We can't just reuse the original extract index operand because we may have
18200 unsigned ConcatOpNum
= ExtractIndex
/ VT
.getVectorNumElements();
18201 unsigned ExtBOIdx
= ConcatOpNum
* NarrowBVT
.getVectorNumElements();
18202 EVT ExtBOIdxVT
= Extract
->getOperand(1).getValueType();
18203 if (TLI
.isExtractSubvectorCheap(NarrowBVT
, WideBVT
, ExtBOIdx
) &&
18204 BinOp
.hasOneUse() && Extract
->getOperand(0)->hasOneUse()) {
18205 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N)
18207 SDValue NewExtIndex
= DAG
.getConstant(ExtBOIdx
, DL
, ExtBOIdxVT
);
18208 SDValue X
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
18209 BinOp
.getOperand(0), NewExtIndex
);
18210 SDValue Y
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
18211 BinOp
.getOperand(1), NewExtIndex
);
18212 SDValue NarrowBinOp
= DAG
.getNode(BOpcode
, DL
, NarrowBVT
, X
, Y
,
18213 BinOp
.getNode()->getFlags());
18214 return DAG
.getBitcast(VT
, NarrowBinOp
);
18217 // Only handle the case where we are doubling and then halving. A larger ratio
18218 // may require more than two narrow binops to replace the wide binop.
18219 if (NarrowingRatio
!= 2)
18222 // TODO: The motivating case for this transform is an x86 AVX1 target. That
18223 // target has temptingly almost legal versions of bitwise logic ops in 256-bit
18224 // flavors, but no other 256-bit integer support. This could be extended to
18225 // handle any binop, but that may require fixing/adding other folds to avoid
18226 // codegen regressions.
18227 if (BOpcode
!= ISD::AND
&& BOpcode
!= ISD::OR
&& BOpcode
!= ISD::XOR
)
18230 // We need at least one concatenation operation of a binop operand to make
18231 // this transform worthwhile. The concat must double the input vector sizes.
18232 auto GetSubVector
= [ConcatOpNum
](SDValue V
) -> SDValue
{
18233 if (V
.getOpcode() == ISD::CONCAT_VECTORS
&& V
.getNumOperands() == 2)
18234 return V
.getOperand(ConcatOpNum
);
18237 SDValue SubVecL
= GetSubVector(peekThroughBitcasts(BinOp
.getOperand(0)));
18238 SDValue SubVecR
= GetSubVector(peekThroughBitcasts(BinOp
.getOperand(1)));
18240 if (SubVecL
|| SubVecR
) {
18241 // If a binop operand was not the result of a concat, we must extract a
18242 // half-sized operand for our new narrow binop:
18243 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
18244 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC)
18245 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN
18247 SDValue IndexC
= DAG
.getConstant(ExtBOIdx
, DL
, ExtBOIdxVT
);
18248 SDValue X
= SubVecL
? DAG
.getBitcast(NarrowBVT
, SubVecL
)
18249 : DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
18250 BinOp
.getOperand(0), IndexC
);
18252 SDValue Y
= SubVecR
? DAG
.getBitcast(NarrowBVT
, SubVecR
)
18253 : DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
18254 BinOp
.getOperand(1), IndexC
);
18256 SDValue NarrowBinOp
= DAG
.getNode(BOpcode
, DL
, NarrowBVT
, X
, Y
);
18257 return DAG
.getBitcast(VT
, NarrowBinOp
);
18263 /// If we are extracting a subvector from a wide vector load, convert to a
18264 /// narrow load to eliminate the extraction:
18265 /// (extract_subvector (load wide vector)) --> (load narrow vector)
18266 static SDValue
narrowExtractedVectorLoad(SDNode
*Extract
, SelectionDAG
&DAG
) {
18267 // TODO: Add support for big-endian. The offset calculation must be adjusted.
18268 if (DAG
.getDataLayout().isBigEndian())
18271 auto *Ld
= dyn_cast
<LoadSDNode
>(Extract
->getOperand(0));
18272 auto *ExtIdx
= dyn_cast
<ConstantSDNode
>(Extract
->getOperand(1));
18273 if (!Ld
|| Ld
->getExtensionType() || Ld
->isVolatile() || !ExtIdx
)
18276 // Allow targets to opt-out.
18277 EVT VT
= Extract
->getValueType(0);
18278 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
18279 if (!TLI
.shouldReduceLoadWidth(Ld
, Ld
->getExtensionType(), VT
))
18282 // The narrow load will be offset from the base address of the old load if
18283 // we are extracting from something besides index 0 (little-endian).
18285 SDValue BaseAddr
= Ld
->getOperand(1);
18286 unsigned Offset
= ExtIdx
->getZExtValue() * VT
.getScalarType().getStoreSize();
18288 // TODO: Use "BaseIndexOffset" to make this more effective.
18289 SDValue NewAddr
= DAG
.getMemBasePlusOffset(BaseAddr
, Offset
, DL
);
18290 MachineFunction
&MF
= DAG
.getMachineFunction();
18291 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(Ld
->getMemOperand(), Offset
,
18292 VT
.getStoreSize());
18293 SDValue NewLd
= DAG
.getLoad(VT
, DL
, Ld
->getChain(), NewAddr
, MMO
);
18294 DAG
.makeEquivalentMemoryOrdering(Ld
, NewLd
);
18298 SDValue
DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode
*N
) {
18299 EVT NVT
= N
->getValueType(0);
18300 SDValue V
= N
->getOperand(0);
18302 // Extract from UNDEF is UNDEF.
18304 return DAG
.getUNDEF(NVT
);
18306 if (TLI
.isOperationLegalOrCustomOrPromote(ISD::LOAD
, NVT
))
18307 if (SDValue NarrowLoad
= narrowExtractedVectorLoad(N
, DAG
))
18310 // Combine an extract of an extract into a single extract_subvector.
18311 // ext (ext X, C), 0 --> ext X, C
18312 SDValue Index
= N
->getOperand(1);
18313 if (isNullConstant(Index
) && V
.getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
18314 V
.hasOneUse() && isa
<ConstantSDNode
>(V
.getOperand(1))) {
18315 if (TLI
.isExtractSubvectorCheap(NVT
, V
.getOperand(0).getValueType(),
18316 V
.getConstantOperandVal(1)) &&
18317 TLI
.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, NVT
)) {
18318 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), NVT
, V
.getOperand(0),
18323 // Try to move vector bitcast after extract_subv by scaling extraction index:
18324 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index')
18325 if (isa
<ConstantSDNode
>(Index
) && V
.getOpcode() == ISD::BITCAST
&&
18326 V
.getOperand(0).getValueType().isVector()) {
18327 SDValue SrcOp
= V
.getOperand(0);
18328 EVT SrcVT
= SrcOp
.getValueType();
18329 unsigned SrcNumElts
= SrcVT
.getVectorNumElements();
18330 unsigned DestNumElts
= V
.getValueType().getVectorNumElements();
18331 if ((SrcNumElts
% DestNumElts
) == 0) {
18332 unsigned SrcDestRatio
= SrcNumElts
/ DestNumElts
;
18333 unsigned NewExtNumElts
= NVT
.getVectorNumElements() * SrcDestRatio
;
18334 EVT NewExtVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
.getScalarType(),
18336 if (TLI
.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, NewExtVT
)) {
18337 unsigned IndexValScaled
= N
->getConstantOperandVal(1) * SrcDestRatio
;
18339 SDValue NewIndex
= DAG
.getIntPtrConstant(IndexValScaled
, DL
);
18340 SDValue NewExtract
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NewExtVT
,
18341 V
.getOperand(0), NewIndex
);
18342 return DAG
.getBitcast(NVT
, NewExtract
);
18345 // TODO - handle (DestNumElts % SrcNumElts) == 0
18349 // (extract_subvec (concat V1, V2, ...), i)
18352 // Only operand 0 is checked as 'concat' assumes all inputs of the same
18354 if (V
.getOpcode() == ISD::CONCAT_VECTORS
&& isa
<ConstantSDNode
>(Index
) &&
18355 V
.getOperand(0).getValueType() == NVT
) {
18356 unsigned Idx
= N
->getConstantOperandVal(1);
18357 unsigned NumElems
= NVT
.getVectorNumElements();
18358 assert((Idx
% NumElems
) == 0 &&
18359 "IDX in concat is not a multiple of the result vector length.");
18360 return V
->getOperand(Idx
/ NumElems
);
18363 V
= peekThroughBitcasts(V
);
18365 // If the input is a build vector. Try to make a smaller build vector.
18366 if (V
.getOpcode() == ISD::BUILD_VECTOR
) {
18367 if (auto *IdxC
= dyn_cast
<ConstantSDNode
>(Index
)) {
18368 EVT InVT
= V
.getValueType();
18369 unsigned ExtractSize
= NVT
.getSizeInBits();
18370 unsigned EltSize
= InVT
.getScalarSizeInBits();
18371 // Only do this if we won't split any elements.
18372 if (ExtractSize
% EltSize
== 0) {
18373 unsigned NumElems
= ExtractSize
/ EltSize
;
18374 EVT EltVT
= InVT
.getVectorElementType();
18375 EVT ExtractVT
= NumElems
== 1 ? EltVT
18376 : EVT::getVectorVT(*DAG
.getContext(),
18378 if ((Level
< AfterLegalizeDAG
||
18380 TLI
.isOperationLegal(ISD::BUILD_VECTOR
, ExtractVT
))) &&
18381 (!LegalTypes
|| TLI
.isTypeLegal(ExtractVT
))) {
18382 unsigned IdxVal
= IdxC
->getZExtValue();
18383 IdxVal
*= NVT
.getScalarSizeInBits();
18386 if (NumElems
== 1) {
18387 SDValue Src
= V
->getOperand(IdxVal
);
18388 if (EltVT
!= Src
.getValueType())
18389 Src
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), InVT
, Src
);
18390 return DAG
.getBitcast(NVT
, Src
);
18393 // Extract the pieces from the original build_vector.
18394 SDValue BuildVec
= DAG
.getBuildVector(
18395 ExtractVT
, SDLoc(N
), V
->ops().slice(IdxVal
, NumElems
));
18396 return DAG
.getBitcast(NVT
, BuildVec
);
18402 if (V
.getOpcode() == ISD::INSERT_SUBVECTOR
) {
18403 // Handle only simple case where vector being inserted and vector
18404 // being extracted are of same size.
18405 EVT SmallVT
= V
.getOperand(1).getValueType();
18406 if (!NVT
.bitsEq(SmallVT
))
18409 // Only handle cases where both indexes are constants.
18410 auto *ExtIdx
= dyn_cast
<ConstantSDNode
>(Index
);
18411 auto *InsIdx
= dyn_cast
<ConstantSDNode
>(V
.getOperand(2));
18412 if (InsIdx
&& ExtIdx
) {
18414 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
18416 // indices are equal or bit offsets are equal => V1
18417 // otherwise => (extract_subvec V1, ExtIdx)
18418 if (InsIdx
->getZExtValue() * SmallVT
.getScalarSizeInBits() ==
18419 ExtIdx
->getZExtValue() * NVT
.getScalarSizeInBits())
18420 return DAG
.getBitcast(NVT
, V
.getOperand(1));
18421 return DAG
.getNode(
18422 ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), NVT
,
18423 DAG
.getBitcast(N
->getOperand(0).getValueType(), V
.getOperand(0)),
18428 if (SDValue NarrowBOp
= narrowExtractedVectorBinOp(N
, DAG
))
18431 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
18432 return SDValue(N
, 0);
18437 /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles
18438 /// followed by concatenation. Narrow vector ops may have better performance
18439 /// than wide ops, and this can unlock further narrowing of other vector ops.
18440 /// Targets can invert this transform later if it is not profitable.
18441 static SDValue
foldShuffleOfConcatUndefs(ShuffleVectorSDNode
*Shuf
,
18442 SelectionDAG
&DAG
) {
18443 SDValue N0
= Shuf
->getOperand(0), N1
= Shuf
->getOperand(1);
18444 if (N0
.getOpcode() != ISD::CONCAT_VECTORS
|| N0
.getNumOperands() != 2 ||
18445 N1
.getOpcode() != ISD::CONCAT_VECTORS
|| N1
.getNumOperands() != 2 ||
18446 !N0
.getOperand(1).isUndef() || !N1
.getOperand(1).isUndef())
18449 // Split the wide shuffle mask into halves. Any mask element that is accessing
18450 // operand 1 is offset down to account for narrowing of the vectors.
18451 ArrayRef
<int> Mask
= Shuf
->getMask();
18452 EVT VT
= Shuf
->getValueType(0);
18453 unsigned NumElts
= VT
.getVectorNumElements();
18454 unsigned HalfNumElts
= NumElts
/ 2;
18455 SmallVector
<int, 16> Mask0(HalfNumElts
, -1);
18456 SmallVector
<int, 16> Mask1(HalfNumElts
, -1);
18457 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18460 int M
= Mask
[i
] < (int)NumElts
? Mask
[i
] : Mask
[i
] - (int)HalfNumElts
;
18461 if (i
< HalfNumElts
)
18464 Mask1
[i
- HalfNumElts
] = M
;
18467 // Ask the target if this is a valid transform.
18468 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
18469 EVT HalfVT
= EVT::getVectorVT(*DAG
.getContext(), VT
.getScalarType(),
18471 if (!TLI
.isShuffleMaskLegal(Mask0
, HalfVT
) ||
18472 !TLI
.isShuffleMaskLegal(Mask1
, HalfVT
))
18475 // shuffle (concat X, undef), (concat Y, undef), Mask -->
18476 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
18477 SDValue X
= N0
.getOperand(0), Y
= N1
.getOperand(0);
18479 SDValue Shuf0
= DAG
.getVectorShuffle(HalfVT
, DL
, X
, Y
, Mask0
);
18480 SDValue Shuf1
= DAG
.getVectorShuffle(HalfVT
, DL
, X
, Y
, Mask1
);
18481 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, Shuf0
, Shuf1
);
18484 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
18485 // or turn a shuffle of a single concat into simpler shuffle then concat.
18486 static SDValue
partitionShuffleOfConcats(SDNode
*N
, SelectionDAG
&DAG
) {
18487 EVT VT
= N
->getValueType(0);
18488 unsigned NumElts
= VT
.getVectorNumElements();
18490 SDValue N0
= N
->getOperand(0);
18491 SDValue N1
= N
->getOperand(1);
18492 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
18493 ArrayRef
<int> Mask
= SVN
->getMask();
18495 SmallVector
<SDValue
, 4> Ops
;
18496 EVT ConcatVT
= N0
.getOperand(0).getValueType();
18497 unsigned NumElemsPerConcat
= ConcatVT
.getVectorNumElements();
18498 unsigned NumConcats
= NumElts
/ NumElemsPerConcat
;
18500 auto IsUndefMaskElt
= [](int i
) { return i
== -1; };
18502 // Special case: shuffle(concat(A,B)) can be more efficiently represented
18503 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
18504 // half vector elements.
18505 if (NumElemsPerConcat
* 2 == NumElts
&& N1
.isUndef() &&
18506 llvm::all_of(Mask
.slice(NumElemsPerConcat
, NumElemsPerConcat
),
18508 N0
= DAG
.getVectorShuffle(ConcatVT
, SDLoc(N
), N0
.getOperand(0),
18510 Mask
.slice(0, NumElemsPerConcat
));
18511 N1
= DAG
.getUNDEF(ConcatVT
);
18512 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, N0
, N1
);
18515 // Look at every vector that's inserted. We're looking for exact
18516 // subvector-sized copies from a concatenated vector
18517 for (unsigned I
= 0; I
!= NumConcats
; ++I
) {
18518 unsigned Begin
= I
* NumElemsPerConcat
;
18519 ArrayRef
<int> SubMask
= Mask
.slice(Begin
, NumElemsPerConcat
);
18521 // Make sure we're dealing with a copy.
18522 if (llvm::all_of(SubMask
, IsUndefMaskElt
)) {
18523 Ops
.push_back(DAG
.getUNDEF(ConcatVT
));
18528 for (int i
= 0; i
!= (int)NumElemsPerConcat
; ++i
) {
18529 if (IsUndefMaskElt(SubMask
[i
]))
18531 if ((SubMask
[i
] % (int)NumElemsPerConcat
) != i
)
18533 int EltOpIdx
= SubMask
[i
] / NumElemsPerConcat
;
18534 if (0 <= OpIdx
&& EltOpIdx
!= OpIdx
)
18538 assert(0 <= OpIdx
&& "Unknown concat_vectors op");
18540 if (OpIdx
< (int)N0
.getNumOperands())
18541 Ops
.push_back(N0
.getOperand(OpIdx
));
18543 Ops
.push_back(N1
.getOperand(OpIdx
- N0
.getNumOperands()));
18546 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
18549 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
18550 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
18552 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
18553 // a simplification in some sense, but it isn't appropriate in general: some
18554 // BUILD_VECTORs are substantially cheaper than others. The general case
18555 // of a BUILD_VECTOR requires inserting each element individually (or
18556 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
18557 // all constants is a single constant pool load. A BUILD_VECTOR where each
18558 // element is identical is a splat. A BUILD_VECTOR where most of the operands
18559 // are undef lowers to a small number of element insertions.
18561 // To deal with this, we currently use a bunch of mostly arbitrary heuristics.
18562 // We don't fold shuffles where one side is a non-zero constant, and we don't
18563 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
18564 // non-constant operands. This seems to work out reasonably well in practice.
18565 static SDValue
combineShuffleOfScalars(ShuffleVectorSDNode
*SVN
,
18567 const TargetLowering
&TLI
) {
18568 EVT VT
= SVN
->getValueType(0);
18569 unsigned NumElts
= VT
.getVectorNumElements();
18570 SDValue N0
= SVN
->getOperand(0);
18571 SDValue N1
= SVN
->getOperand(1);
18573 if (!N0
->hasOneUse())
18576 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
18577 // discussed above.
18578 if (!N1
.isUndef()) {
18579 if (!N1
->hasOneUse())
18582 bool N0AnyConst
= isAnyConstantBuildVector(N0
);
18583 bool N1AnyConst
= isAnyConstantBuildVector(N1
);
18584 if (N0AnyConst
&& !N1AnyConst
&& !ISD::isBuildVectorAllZeros(N0
.getNode()))
18586 if (!N0AnyConst
&& N1AnyConst
&& !ISD::isBuildVectorAllZeros(N1
.getNode()))
18590 // If both inputs are splats of the same value then we can safely merge this
18591 // to a single BUILD_VECTOR with undef elements based on the shuffle mask.
18592 bool IsSplat
= false;
18593 auto *BV0
= dyn_cast
<BuildVectorSDNode
>(N0
);
18594 auto *BV1
= dyn_cast
<BuildVectorSDNode
>(N1
);
18596 if (SDValue Splat0
= BV0
->getSplatValue())
18597 IsSplat
= (Splat0
== BV1
->getSplatValue());
18599 SmallVector
<SDValue
, 8> Ops
;
18600 SmallSet
<SDValue
, 16> DuplicateOps
;
18601 for (int M
: SVN
->getMask()) {
18602 SDValue Op
= DAG
.getUNDEF(VT
.getScalarType());
18604 int Idx
= M
< (int)NumElts
? M
: M
- NumElts
;
18605 SDValue
&S
= (M
< (int)NumElts
? N0
: N1
);
18606 if (S
.getOpcode() == ISD::BUILD_VECTOR
) {
18607 Op
= S
.getOperand(Idx
);
18608 } else if (S
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
18609 SDValue Op0
= S
.getOperand(0);
18610 Op
= Idx
== 0 ? Op0
: DAG
.getUNDEF(Op0
.getValueType());
18612 // Operand can't be combined - bail out.
18617 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're
18618 // generating a splat; semantically, this is fine, but it's likely to
18619 // generate low-quality code if the target can't reconstruct an appropriate
18621 if (!Op
.isUndef() && !isa
<ConstantSDNode
>(Op
) && !isa
<ConstantFPSDNode
>(Op
))
18622 if (!IsSplat
&& !DuplicateOps
.insert(Op
).second
)
18628 // BUILD_VECTOR requires all inputs to be of the same type, find the
18629 // maximum type and extend them all.
18630 EVT SVT
= VT
.getScalarType();
18631 if (SVT
.isInteger())
18632 for (SDValue
&Op
: Ops
)
18633 SVT
= (SVT
.bitsLT(Op
.getValueType()) ? Op
.getValueType() : SVT
);
18634 if (SVT
!= VT
.getScalarType())
18635 for (SDValue
&Op
: Ops
)
18636 Op
= TLI
.isZExtFree(Op
.getValueType(), SVT
)
18637 ? DAG
.getZExtOrTrunc(Op
, SDLoc(SVN
), SVT
)
18638 : DAG
.getSExtOrTrunc(Op
, SDLoc(SVN
), SVT
);
18639 return DAG
.getBuildVector(VT
, SDLoc(SVN
), Ops
);
18642 // Match shuffles that can be converted to any_vector_extend_in_reg.
18643 // This is often generated during legalization.
18644 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
18645 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case.
18646 static SDValue
combineShuffleToVectorExtend(ShuffleVectorSDNode
*SVN
,
18648 const TargetLowering
&TLI
,
18649 bool LegalOperations
) {
18650 EVT VT
= SVN
->getValueType(0);
18651 bool IsBigEndian
= DAG
.getDataLayout().isBigEndian();
18653 // TODO Add support for big-endian when we have a test case.
18654 if (!VT
.isInteger() || IsBigEndian
)
18657 unsigned NumElts
= VT
.getVectorNumElements();
18658 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
18659 ArrayRef
<int> Mask
= SVN
->getMask();
18660 SDValue N0
= SVN
->getOperand(0);
18662 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
18663 auto isAnyExtend
= [&Mask
, &NumElts
](unsigned Scale
) {
18664 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18667 if ((i
% Scale
) == 0 && Mask
[i
] == (int)(i
/ Scale
))
18674 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
18675 // power-of-2 extensions as they are the most likely.
18676 for (unsigned Scale
= 2; Scale
< NumElts
; Scale
*= 2) {
18677 // Check for non power of 2 vector sizes
18678 if (NumElts
% Scale
!= 0)
18680 if (!isAnyExtend(Scale
))
18683 EVT OutSVT
= EVT::getIntegerVT(*DAG
.getContext(), EltSizeInBits
* Scale
);
18684 EVT OutVT
= EVT::getVectorVT(*DAG
.getContext(), OutSVT
, NumElts
/ Scale
);
18685 // Never create an illegal type. Only create unsupported operations if we
18686 // are pre-legalization.
18687 if (TLI
.isTypeLegal(OutVT
))
18688 if (!LegalOperations
||
18689 TLI
.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG
, OutVT
))
18690 return DAG
.getBitcast(VT
,
18691 DAG
.getNode(ISD::ANY_EXTEND_VECTOR_INREG
,
18692 SDLoc(SVN
), OutVT
, N0
));
18698 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
18699 // each source element of a large type into the lowest elements of a smaller
18700 // destination type. This is often generated during legalization.
18701 // If the source node itself was a '*_extend_vector_inreg' node then we should
18702 // then be able to remove it.
18703 static SDValue
combineTruncationShuffle(ShuffleVectorSDNode
*SVN
,
18704 SelectionDAG
&DAG
) {
18705 EVT VT
= SVN
->getValueType(0);
18706 bool IsBigEndian
= DAG
.getDataLayout().isBigEndian();
18708 // TODO Add support for big-endian when we have a test case.
18709 if (!VT
.isInteger() || IsBigEndian
)
18712 SDValue N0
= peekThroughBitcasts(SVN
->getOperand(0));
18714 unsigned Opcode
= N0
.getOpcode();
18715 if (Opcode
!= ISD::ANY_EXTEND_VECTOR_INREG
&&
18716 Opcode
!= ISD::SIGN_EXTEND_VECTOR_INREG
&&
18717 Opcode
!= ISD::ZERO_EXTEND_VECTOR_INREG
)
18720 SDValue N00
= N0
.getOperand(0);
18721 ArrayRef
<int> Mask
= SVN
->getMask();
18722 unsigned NumElts
= VT
.getVectorNumElements();
18723 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
18724 unsigned ExtSrcSizeInBits
= N00
.getScalarValueSizeInBits();
18725 unsigned ExtDstSizeInBits
= N0
.getScalarValueSizeInBits();
18727 if (ExtDstSizeInBits
% ExtSrcSizeInBits
!= 0)
18729 unsigned ExtScale
= ExtDstSizeInBits
/ ExtSrcSizeInBits
;
18731 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
18732 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
18733 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
18734 auto isTruncate
= [&Mask
, &NumElts
](unsigned Scale
) {
18735 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18738 if ((i
* Scale
) < NumElts
&& Mask
[i
] == (int)(i
* Scale
))
18745 // At the moment we just handle the case where we've truncated back to the
18746 // same size as before the extension.
18747 // TODO: handle more extension/truncation cases as cases arise.
18748 if (EltSizeInBits
!= ExtSrcSizeInBits
)
18751 // We can remove *extend_vector_inreg only if the truncation happens at
18752 // the same scale as the extension.
18753 if (isTruncate(ExtScale
))
18754 return DAG
.getBitcast(VT
, N00
);
18759 // Combine shuffles of splat-shuffles of the form:
18760 // shuffle (shuffle V, undef, splat-mask), undef, M
18761 // If splat-mask contains undef elements, we need to be careful about
18762 // introducing undef's in the folded mask which are not the result of composing
18763 // the masks of the shuffles.
18764 static SDValue
combineShuffleOfSplatVal(ShuffleVectorSDNode
*Shuf
,
18765 SelectionDAG
&DAG
) {
18766 if (!Shuf
->getOperand(1).isUndef())
18768 auto *Splat
= dyn_cast
<ShuffleVectorSDNode
>(Shuf
->getOperand(0));
18769 if (!Splat
|| !Splat
->isSplat())
18772 ArrayRef
<int> ShufMask
= Shuf
->getMask();
18773 ArrayRef
<int> SplatMask
= Splat
->getMask();
18774 assert(ShufMask
.size() == SplatMask
.size() && "Mask length mismatch");
18776 // Prefer simplifying to the splat-shuffle, if possible. This is legal if
18777 // every undef mask element in the splat-shuffle has a corresponding undef
18778 // element in the user-shuffle's mask or if the composition of mask elements
18779 // would result in undef.
18780 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
18781 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
18782 // In this case it is not legal to simplify to the splat-shuffle because we
18783 // may be exposing the users of the shuffle an undef element at index 1
18784 // which was not there before the combine.
18785 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
18786 // In this case the composition of masks yields SplatMask, so it's ok to
18787 // simplify to the splat-shuffle.
18788 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
18789 // In this case the composed mask includes all undef elements of SplatMask
18790 // and in addition sets element zero to undef. It is safe to simplify to
18791 // the splat-shuffle.
18792 auto CanSimplifyToExistingSplat
= [](ArrayRef
<int> UserMask
,
18793 ArrayRef
<int> SplatMask
) {
18794 for (unsigned i
= 0, e
= UserMask
.size(); i
!= e
; ++i
)
18795 if (UserMask
[i
] != -1 && SplatMask
[i
] == -1 &&
18796 SplatMask
[UserMask
[i
]] != -1)
18800 if (CanSimplifyToExistingSplat(ShufMask
, SplatMask
))
18801 return Shuf
->getOperand(0);
18803 // Create a new shuffle with a mask that is composed of the two shuffles'
18805 SmallVector
<int, 32> NewMask
;
18806 for (int Idx
: ShufMask
)
18807 NewMask
.push_back(Idx
== -1 ? -1 : SplatMask
[Idx
]);
18809 return DAG
.getVectorShuffle(Splat
->getValueType(0), SDLoc(Splat
),
18810 Splat
->getOperand(0), Splat
->getOperand(1),
18814 /// If the shuffle mask is taking exactly one element from the first vector
18815 /// operand and passing through all other elements from the second vector
18816 /// operand, return the index of the mask element that is choosing an element
18817 /// from the first operand. Otherwise, return -1.
18818 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef
<int> Mask
) {
18819 int MaskSize
= Mask
.size();
18820 int EltFromOp0
= -1;
18821 // TODO: This does not match if there are undef elements in the shuffle mask.
18822 // Should we ignore undefs in the shuffle mask instead? The trade-off is
18823 // removing an instruction (a shuffle), but losing the knowledge that some
18824 // vector lanes are not needed.
18825 for (int i
= 0; i
!= MaskSize
; ++i
) {
18826 if (Mask
[i
] >= 0 && Mask
[i
] < MaskSize
) {
18827 // We're looking for a shuffle of exactly one element from operand 0.
18828 if (EltFromOp0
!= -1)
18831 } else if (Mask
[i
] != i
+ MaskSize
) {
18832 // Nothing from operand 1 can change lanes.
18839 /// If a shuffle inserts exactly one element from a source vector operand into
18840 /// another vector operand and we can access the specified element as a scalar,
18841 /// then we can eliminate the shuffle.
18842 static SDValue
replaceShuffleOfInsert(ShuffleVectorSDNode
*Shuf
,
18843 SelectionDAG
&DAG
) {
18844 // First, check if we are taking one element of a vector and shuffling that
18845 // element into another vector.
18846 ArrayRef
<int> Mask
= Shuf
->getMask();
18847 SmallVector
<int, 16> CommutedMask(Mask
.begin(), Mask
.end());
18848 SDValue Op0
= Shuf
->getOperand(0);
18849 SDValue Op1
= Shuf
->getOperand(1);
18850 int ShufOp0Index
= getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask
);
18851 if (ShufOp0Index
== -1) {
18852 // Commute mask and check again.
18853 ShuffleVectorSDNode::commuteMask(CommutedMask
);
18854 ShufOp0Index
= getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask
);
18855 if (ShufOp0Index
== -1)
18857 // Commute operands to match the commuted shuffle mask.
18858 std::swap(Op0
, Op1
);
18859 Mask
= CommutedMask
;
18862 // The shuffle inserts exactly one element from operand 0 into operand 1.
18863 // Now see if we can access that element as a scalar via a real insert element
18865 // TODO: We can try harder to locate the element as a scalar. Examples: it
18866 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant.
18867 assert(Mask
[ShufOp0Index
] >= 0 && Mask
[ShufOp0Index
] < (int)Mask
.size() &&
18868 "Shuffle mask value must be from operand 0");
18869 if (Op0
.getOpcode() != ISD::INSERT_VECTOR_ELT
)
18872 auto *InsIndexC
= dyn_cast
<ConstantSDNode
>(Op0
.getOperand(2));
18873 if (!InsIndexC
|| InsIndexC
->getSExtValue() != Mask
[ShufOp0Index
])
18876 // There's an existing insertelement with constant insertion index, so we
18877 // don't need to check the legality/profitability of a replacement operation
18878 // that differs at most in the constant value. The target should be able to
18879 // lower any of those in a similar way. If not, legalization will expand this
18880 // to a scalar-to-vector plus shuffle.
18882 // Note that the shuffle may move the scalar from the position that the insert
18883 // element used. Therefore, our new insert element occurs at the shuffle's
18884 // mask index value, not the insert's index value.
18885 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
18886 SDValue NewInsIndex
= DAG
.getConstant(ShufOp0Index
, SDLoc(Shuf
),
18887 Op0
.getOperand(2).getValueType());
18888 return DAG
.getNode(ISD::INSERT_VECTOR_ELT
, SDLoc(Shuf
), Op0
.getValueType(),
18889 Op1
, Op0
.getOperand(1), NewInsIndex
);
18892 /// If we have a unary shuffle of a shuffle, see if it can be folded away
18893 /// completely. This has the potential to lose undef knowledge because the first
18894 /// shuffle may not have an undef mask element where the second one does. So
18895 /// only call this after doing simplifications based on demanded elements.
18896 static SDValue
simplifyShuffleOfShuffle(ShuffleVectorSDNode
*Shuf
) {
18897 // shuf (shuf0 X, Y, Mask0), undef, Mask
18898 auto *Shuf0
= dyn_cast
<ShuffleVectorSDNode
>(Shuf
->getOperand(0));
18899 if (!Shuf0
|| !Shuf
->getOperand(1).isUndef())
18902 ArrayRef
<int> Mask
= Shuf
->getMask();
18903 ArrayRef
<int> Mask0
= Shuf0
->getMask();
18904 for (int i
= 0, e
= (int)Mask
.size(); i
!= e
; ++i
) {
18905 // Ignore undef elements.
18908 assert(Mask
[i
] >= 0 && Mask
[i
] < e
&& "Unexpected shuffle mask value");
18910 // Is the element of the shuffle operand chosen by this shuffle the same as
18911 // the element chosen by the shuffle operand itself?
18912 if (Mask0
[Mask
[i
]] != Mask0
[i
])
18915 // Every element of this shuffle is identical to the result of the previous
18916 // shuffle, so we can replace this value.
18917 return Shuf
->getOperand(0);
18920 SDValue
DAGCombiner::visitVECTOR_SHUFFLE(SDNode
*N
) {
18921 EVT VT
= N
->getValueType(0);
18922 unsigned NumElts
= VT
.getVectorNumElements();
18924 SDValue N0
= N
->getOperand(0);
18925 SDValue N1
= N
->getOperand(1);
18927 assert(N0
.getValueType() == VT
&& "Vector shuffle must be normalized in DAG");
18929 // Canonicalize shuffle undef, undef -> undef
18930 if (N0
.isUndef() && N1
.isUndef())
18931 return DAG
.getUNDEF(VT
);
18933 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
18935 // Canonicalize shuffle v, v -> v, undef
18937 SmallVector
<int, 8> NewMask
;
18938 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18939 int Idx
= SVN
->getMaskElt(i
);
18940 if (Idx
>= (int)NumElts
) Idx
-= NumElts
;
18941 NewMask
.push_back(Idx
);
18943 return DAG
.getVectorShuffle(VT
, SDLoc(N
), N0
, DAG
.getUNDEF(VT
), NewMask
);
18946 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
18948 return DAG
.getCommutedVectorShuffle(*SVN
);
18950 // Remove references to rhs if it is undef
18951 if (N1
.isUndef()) {
18952 bool Changed
= false;
18953 SmallVector
<int, 8> NewMask
;
18954 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18955 int Idx
= SVN
->getMaskElt(i
);
18956 if (Idx
>= (int)NumElts
) {
18960 NewMask
.push_back(Idx
);
18963 return DAG
.getVectorShuffle(VT
, SDLoc(N
), N0
, N1
, NewMask
);
18966 if (SDValue InsElt
= replaceShuffleOfInsert(SVN
, DAG
))
18969 // A shuffle of a single vector that is a splatted value can always be folded.
18970 if (SDValue V
= combineShuffleOfSplatVal(SVN
, DAG
))
18973 // If it is a splat, check if the argument vector is another splat or a
18975 if (SVN
->isSplat() && SVN
->getSplatIndex() < (int)NumElts
) {
18976 int SplatIndex
= SVN
->getSplatIndex();
18977 if (TLI
.isExtractVecEltCheap(VT
, SplatIndex
) &&
18978 TLI
.isBinOp(N0
.getOpcode()) && N0
.getNode()->getNumValues() == 1) {
18979 // splat (vector_bo L, R), Index -->
18980 // splat (scalar_bo (extelt L, Index), (extelt R, Index))
18981 SDValue L
= N0
.getOperand(0), R
= N0
.getOperand(1);
18983 EVT EltVT
= VT
.getScalarType();
18984 SDValue Index
= DAG
.getIntPtrConstant(SplatIndex
, DL
);
18985 SDValue ExtL
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, L
, Index
);
18986 SDValue ExtR
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, R
, Index
);
18987 SDValue NewBO
= DAG
.getNode(N0
.getOpcode(), DL
, EltVT
, ExtL
, ExtR
,
18988 N0
.getNode()->getFlags());
18989 SDValue Insert
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, DL
, VT
, NewBO
);
18990 SmallVector
<int, 16> ZeroMask(VT
.getVectorNumElements(), 0);
18991 return DAG
.getVectorShuffle(VT
, DL
, Insert
, DAG
.getUNDEF(VT
), ZeroMask
);
18994 // If this is a bit convert that changes the element type of the vector but
18995 // not the number of vector elements, look through it. Be careful not to
18996 // look though conversions that change things like v4f32 to v2f64.
18997 SDNode
*V
= N0
.getNode();
18998 if (V
->getOpcode() == ISD::BITCAST
) {
18999 SDValue ConvInput
= V
->getOperand(0);
19000 if (ConvInput
.getValueType().isVector() &&
19001 ConvInput
.getValueType().getVectorNumElements() == NumElts
)
19002 V
= ConvInput
.getNode();
19005 if (V
->getOpcode() == ISD::BUILD_VECTOR
) {
19006 assert(V
->getNumOperands() == NumElts
&&
19007 "BUILD_VECTOR has wrong number of operands");
19009 bool AllSame
= true;
19010 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
19011 if (!V
->getOperand(i
).isUndef()) {
19012 Base
= V
->getOperand(i
);
19016 // Splat of <u, u, u, u>, return <u, u, u, u>
19017 if (!Base
.getNode())
19019 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
19020 if (V
->getOperand(i
) != Base
) {
19025 // Splat of <x, x, x, x>, return <x, x, x, x>
19029 // Canonicalize any other splat as a build_vector.
19030 SDValue Splatted
= V
->getOperand(SplatIndex
);
19031 SmallVector
<SDValue
, 8> Ops(NumElts
, Splatted
);
19032 SDValue NewBV
= DAG
.getBuildVector(V
->getValueType(0), SDLoc(N
), Ops
);
19034 // We may have jumped through bitcasts, so the type of the
19035 // BUILD_VECTOR may not match the type of the shuffle.
19036 if (V
->getValueType(0) != VT
)
19037 NewBV
= DAG
.getBitcast(VT
, NewBV
);
19042 // Simplify source operands based on shuffle mask.
19043 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
19044 return SDValue(N
, 0);
19046 // This is intentionally placed after demanded elements simplification because
19047 // it could eliminate knowledge of undef elements created by this shuffle.
19048 if (SDValue ShufOp
= simplifyShuffleOfShuffle(SVN
))
19051 // Match shuffles that can be converted to any_vector_extend_in_reg.
19052 if (SDValue V
= combineShuffleToVectorExtend(SVN
, DAG
, TLI
, LegalOperations
))
19055 // Combine "truncate_vector_in_reg" style shuffles.
19056 if (SDValue V
= combineTruncationShuffle(SVN
, DAG
))
19059 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&&
19060 Level
< AfterLegalizeVectorOps
&&
19062 (N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
19063 N0
.getOperand(0).getValueType() == N1
.getOperand(0).getValueType()))) {
19064 if (SDValue V
= partitionShuffleOfConcats(N
, DAG
))
19068 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
19069 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
19070 if (Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
))
19071 if (SDValue Res
= combineShuffleOfScalars(SVN
, DAG
, TLI
))
19074 // If this shuffle only has a single input that is a bitcasted shuffle,
19075 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
19076 // back to their original types.
19077 if (N0
.getOpcode() == ISD::BITCAST
&& N0
.hasOneUse() &&
19078 N1
.isUndef() && Level
< AfterLegalizeVectorOps
&&
19079 TLI
.isTypeLegal(VT
)) {
19080 auto ScaleShuffleMask
= [](ArrayRef
<int> Mask
, int Scale
) {
19082 return SmallVector
<int, 8>(Mask
.begin(), Mask
.end());
19084 SmallVector
<int, 8> NewMask
;
19086 for (int s
= 0; s
!= Scale
; ++s
)
19087 NewMask
.push_back(M
< 0 ? -1 : Scale
* M
+ s
);
19091 SDValue BC0
= peekThroughOneUseBitcasts(N0
);
19092 if (BC0
.getOpcode() == ISD::VECTOR_SHUFFLE
&& BC0
.hasOneUse()) {
19093 EVT SVT
= VT
.getScalarType();
19094 EVT InnerVT
= BC0
->getValueType(0);
19095 EVT InnerSVT
= InnerVT
.getScalarType();
19097 // Determine which shuffle works with the smaller scalar type.
19098 EVT ScaleVT
= SVT
.bitsLT(InnerSVT
) ? VT
: InnerVT
;
19099 EVT ScaleSVT
= ScaleVT
.getScalarType();
19101 if (TLI
.isTypeLegal(ScaleVT
) &&
19102 0 == (InnerSVT
.getSizeInBits() % ScaleSVT
.getSizeInBits()) &&
19103 0 == (SVT
.getSizeInBits() % ScaleSVT
.getSizeInBits())) {
19104 int InnerScale
= InnerSVT
.getSizeInBits() / ScaleSVT
.getSizeInBits();
19105 int OuterScale
= SVT
.getSizeInBits() / ScaleSVT
.getSizeInBits();
19107 // Scale the shuffle masks to the smaller scalar type.
19108 ShuffleVectorSDNode
*InnerSVN
= cast
<ShuffleVectorSDNode
>(BC0
);
19109 SmallVector
<int, 8> InnerMask
=
19110 ScaleShuffleMask(InnerSVN
->getMask(), InnerScale
);
19111 SmallVector
<int, 8> OuterMask
=
19112 ScaleShuffleMask(SVN
->getMask(), OuterScale
);
19114 // Merge the shuffle masks.
19115 SmallVector
<int, 8> NewMask
;
19116 for (int M
: OuterMask
)
19117 NewMask
.push_back(M
< 0 ? -1 : InnerMask
[M
]);
19119 // Test for shuffle mask legality over both commutations.
19120 SDValue SV0
= BC0
->getOperand(0);
19121 SDValue SV1
= BC0
->getOperand(1);
19122 bool LegalMask
= TLI
.isShuffleMaskLegal(NewMask
, ScaleVT
);
19124 std::swap(SV0
, SV1
);
19125 ShuffleVectorSDNode::commuteMask(NewMask
);
19126 LegalMask
= TLI
.isShuffleMaskLegal(NewMask
, ScaleVT
);
19130 SV0
= DAG
.getBitcast(ScaleVT
, SV0
);
19131 SV1
= DAG
.getBitcast(ScaleVT
, SV1
);
19132 return DAG
.getBitcast(
19133 VT
, DAG
.getVectorShuffle(ScaleVT
, SDLoc(N
), SV0
, SV1
, NewMask
));
19139 // Canonicalize shuffles according to rules:
19140 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
19141 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
19142 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
19143 if (N1
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
19144 N0
.getOpcode() != ISD::VECTOR_SHUFFLE
&& Level
< AfterLegalizeDAG
&&
19145 TLI
.isTypeLegal(VT
)) {
19146 // The incoming shuffle must be of the same type as the result of the
19147 // current shuffle.
19148 assert(N1
->getOperand(0).getValueType() == VT
&&
19149 "Shuffle types don't match");
19151 SDValue SV0
= N1
->getOperand(0);
19152 SDValue SV1
= N1
->getOperand(1);
19153 bool HasSameOp0
= N0
== SV0
;
19154 bool IsSV1Undef
= SV1
.isUndef();
19155 if (HasSameOp0
|| IsSV1Undef
|| N0
== SV1
)
19156 // Commute the operands of this shuffle so that next rule
19158 return DAG
.getCommutedVectorShuffle(*SVN
);
19161 // Try to fold according to rules:
19162 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
19163 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
19164 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
19165 // Don't try to fold shuffles with illegal type.
19166 // Only fold if this shuffle is the only user of the other shuffle.
19167 if (N0
.getOpcode() == ISD::VECTOR_SHUFFLE
&& N
->isOnlyUserOf(N0
.getNode()) &&
19168 Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
)) {
19169 ShuffleVectorSDNode
*OtherSV
= cast
<ShuffleVectorSDNode
>(N0
);
19171 // Don't try to fold splats; they're likely to simplify somehow, or they
19173 if (OtherSV
->isSplat())
19176 // The incoming shuffle must be of the same type as the result of the
19177 // current shuffle.
19178 assert(OtherSV
->getOperand(0).getValueType() == VT
&&
19179 "Shuffle types don't match");
19182 SmallVector
<int, 4> Mask
;
19183 // Compute the combined shuffle mask for a shuffle with SV0 as the first
19184 // operand, and SV1 as the second operand.
19185 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
19186 int Idx
= SVN
->getMaskElt(i
);
19188 // Propagate Undef.
19189 Mask
.push_back(Idx
);
19193 SDValue CurrentVec
;
19194 if (Idx
< (int)NumElts
) {
19195 // This shuffle index refers to the inner shuffle N0. Lookup the inner
19196 // shuffle mask to identify which vector is actually referenced.
19197 Idx
= OtherSV
->getMaskElt(Idx
);
19199 // Propagate Undef.
19200 Mask
.push_back(Idx
);
19204 CurrentVec
= (Idx
< (int) NumElts
) ? OtherSV
->getOperand(0)
19205 : OtherSV
->getOperand(1);
19207 // This shuffle index references an element within N1.
19211 // Simple case where 'CurrentVec' is UNDEF.
19212 if (CurrentVec
.isUndef()) {
19213 Mask
.push_back(-1);
19217 // Canonicalize the shuffle index. We don't know yet if CurrentVec
19218 // will be the first or second operand of the combined shuffle.
19219 Idx
= Idx
% NumElts
;
19220 if (!SV0
.getNode() || SV0
== CurrentVec
) {
19221 // Ok. CurrentVec is the left hand side.
19222 // Update the mask accordingly.
19224 Mask
.push_back(Idx
);
19228 // Bail out if we cannot convert the shuffle pair into a single shuffle.
19229 if (SV1
.getNode() && SV1
!= CurrentVec
)
19232 // Ok. CurrentVec is the right hand side.
19233 // Update the mask accordingly.
19235 Mask
.push_back(Idx
+ NumElts
);
19238 // Check if all indices in Mask are Undef. In case, propagate Undef.
19239 bool isUndefMask
= true;
19240 for (unsigned i
= 0; i
!= NumElts
&& isUndefMask
; ++i
)
19241 isUndefMask
&= Mask
[i
] < 0;
19244 return DAG
.getUNDEF(VT
);
19246 if (!SV0
.getNode())
19247 SV0
= DAG
.getUNDEF(VT
);
19248 if (!SV1
.getNode())
19249 SV1
= DAG
.getUNDEF(VT
);
19251 // Avoid introducing shuffles with illegal mask.
19252 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
19253 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
19254 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
19255 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
19256 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
19257 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
19258 return TLI
.buildLegalVectorShuffle(VT
, SDLoc(N
), SV0
, SV1
, Mask
, DAG
);
19261 if (SDValue V
= foldShuffleOfConcatUndefs(SVN
, DAG
))
19267 SDValue
DAGCombiner::visitSCALAR_TO_VECTOR(SDNode
*N
) {
19268 SDValue InVal
= N
->getOperand(0);
19269 EVT VT
= N
->getValueType(0);
19271 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
19272 // with a VECTOR_SHUFFLE and possible truncate.
19273 if (InVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
19274 SDValue InVec
= InVal
->getOperand(0);
19275 SDValue EltNo
= InVal
->getOperand(1);
19276 auto InVecT
= InVec
.getValueType();
19277 if (ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(EltNo
)) {
19278 SmallVector
<int, 8> NewMask(InVecT
.getVectorNumElements(), -1);
19279 int Elt
= C0
->getZExtValue();
19281 // If we have an implict truncate do truncate here as long as it's legal.
19282 // if it's not legal, this should
19283 if (VT
.getScalarType() != InVal
.getValueType() &&
19284 InVal
.getValueType().isScalarInteger() &&
19285 isTypeLegal(VT
.getScalarType())) {
19287 DAG
.getNode(ISD::TRUNCATE
, SDLoc(InVal
), VT
.getScalarType(), InVal
);
19288 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, SDLoc(N
), VT
, Val
);
19290 if (VT
.getScalarType() == InVecT
.getScalarType() &&
19291 VT
.getVectorNumElements() <= InVecT
.getVectorNumElements()) {
19292 SDValue LegalShuffle
=
19293 TLI
.buildLegalVectorShuffle(InVecT
, SDLoc(N
), InVec
,
19294 DAG
.getUNDEF(InVecT
), NewMask
, DAG
);
19295 if (LegalShuffle
) {
19296 // If the initial vector is the correct size this shuffle is a
19299 return LegalShuffle
;
19300 // If not we must truncate the vector.
19301 if (VT
.getVectorNumElements() != InVecT
.getVectorNumElements()) {
19302 MVT IdxTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
19303 SDValue ZeroIdx
= DAG
.getConstant(0, SDLoc(N
), IdxTy
);
19305 EVT::getVectorVT(*DAG
.getContext(), InVecT
.getVectorElementType(),
19306 VT
.getVectorNumElements());
19307 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), SubVT
,
19308 LegalShuffle
, ZeroIdx
);
19318 SDValue
DAGCombiner::visitINSERT_SUBVECTOR(SDNode
*N
) {
19319 EVT VT
= N
->getValueType(0);
19320 SDValue N0
= N
->getOperand(0);
19321 SDValue N1
= N
->getOperand(1);
19322 SDValue N2
= N
->getOperand(2);
19324 // If inserting an UNDEF, just return the original vector.
19328 // If this is an insert of an extracted vector into an undef vector, we can
19329 // just use the input to the extract.
19330 if (N0
.isUndef() && N1
.getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
19331 N1
.getOperand(1) == N2
&& N1
.getOperand(0).getValueType() == VT
)
19332 return N1
.getOperand(0);
19334 // If we are inserting a bitcast value into an undef, with the same
19335 // number of elements, just use the bitcast input of the extract.
19336 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
19337 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
19338 if (N0
.isUndef() && N1
.getOpcode() == ISD::BITCAST
&&
19339 N1
.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
19340 N1
.getOperand(0).getOperand(1) == N2
&&
19341 N1
.getOperand(0).getOperand(0).getValueType().getVectorNumElements() ==
19342 VT
.getVectorNumElements() &&
19343 N1
.getOperand(0).getOperand(0).getValueType().getSizeInBits() ==
19344 VT
.getSizeInBits()) {
19345 return DAG
.getBitcast(VT
, N1
.getOperand(0).getOperand(0));
19348 // If both N1 and N2 are bitcast values on which insert_subvector
19349 // would makes sense, pull the bitcast through.
19350 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
19351 // BITCAST (INSERT_SUBVECTOR N0 N1 N2)
19352 if (N0
.getOpcode() == ISD::BITCAST
&& N1
.getOpcode() == ISD::BITCAST
) {
19353 SDValue CN0
= N0
.getOperand(0);
19354 SDValue CN1
= N1
.getOperand(0);
19355 EVT CN0VT
= CN0
.getValueType();
19356 EVT CN1VT
= CN1
.getValueType();
19357 if (CN0VT
.isVector() && CN1VT
.isVector() &&
19358 CN0VT
.getVectorElementType() == CN1VT
.getVectorElementType() &&
19359 CN0VT
.getVectorNumElements() == VT
.getVectorNumElements()) {
19360 SDValue NewINSERT
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
),
19361 CN0
.getValueType(), CN0
, CN1
, N2
);
19362 return DAG
.getBitcast(VT
, NewINSERT
);
19366 // Combine INSERT_SUBVECTORs where we are inserting to the same index.
19367 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
19368 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
19369 if (N0
.getOpcode() == ISD::INSERT_SUBVECTOR
&&
19370 N0
.getOperand(1).getValueType() == N1
.getValueType() &&
19371 N0
.getOperand(2) == N2
)
19372 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
, N0
.getOperand(0),
19375 // Eliminate an intermediate insert into an undef vector:
19376 // insert_subvector undef, (insert_subvector undef, X, 0), N2 -->
19377 // insert_subvector undef, X, N2
19378 if (N0
.isUndef() && N1
.getOpcode() == ISD::INSERT_SUBVECTOR
&&
19379 N1
.getOperand(0).isUndef() && isNullConstant(N1
.getOperand(2)))
19380 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
, N0
,
19381 N1
.getOperand(1), N2
);
19383 if (!isa
<ConstantSDNode
>(N2
))
19386 uint64_t InsIdx
= cast
<ConstantSDNode
>(N2
)->getZExtValue();
19388 // Push subvector bitcasts to the output, adjusting the index as we go.
19389 // insert_subvector(bitcast(v), bitcast(s), c1)
19390 // -> bitcast(insert_subvector(v, s, c2))
19391 if ((N0
.isUndef() || N0
.getOpcode() == ISD::BITCAST
) &&
19392 N1
.getOpcode() == ISD::BITCAST
) {
19393 SDValue N0Src
= peekThroughBitcasts(N0
);
19394 SDValue N1Src
= peekThroughBitcasts(N1
);
19395 EVT N0SrcSVT
= N0Src
.getValueType().getScalarType();
19396 EVT N1SrcSVT
= N1Src
.getValueType().getScalarType();
19397 if ((N0
.isUndef() || N0SrcSVT
== N1SrcSVT
) &&
19398 N0Src
.getValueType().isVector() && N1Src
.getValueType().isVector()) {
19402 MVT IdxVT
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
19403 LLVMContext
&Ctx
= *DAG
.getContext();
19404 unsigned NumElts
= VT
.getVectorNumElements();
19405 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
19406 if ((EltSizeInBits
% N1SrcSVT
.getSizeInBits()) == 0) {
19407 unsigned Scale
= EltSizeInBits
/ N1SrcSVT
.getSizeInBits();
19408 NewVT
= EVT::getVectorVT(Ctx
, N1SrcSVT
, NumElts
* Scale
);
19409 NewIdx
= DAG
.getConstant(InsIdx
* Scale
, DL
, IdxVT
);
19410 } else if ((N1SrcSVT
.getSizeInBits() % EltSizeInBits
) == 0) {
19411 unsigned Scale
= N1SrcSVT
.getSizeInBits() / EltSizeInBits
;
19412 if ((NumElts
% Scale
) == 0 && (InsIdx
% Scale
) == 0) {
19413 NewVT
= EVT::getVectorVT(Ctx
, N1SrcSVT
, NumElts
/ Scale
);
19414 NewIdx
= DAG
.getConstant(InsIdx
/ Scale
, DL
, IdxVT
);
19417 if (NewIdx
&& hasOperation(ISD::INSERT_SUBVECTOR
, NewVT
)) {
19418 SDValue Res
= DAG
.getBitcast(NewVT
, N0Src
);
19419 Res
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, NewVT
, Res
, N1Src
, NewIdx
);
19420 return DAG
.getBitcast(VT
, Res
);
19425 // Canonicalize insert_subvector dag nodes.
19427 // (insert_subvector (insert_subvector A, Idx0), Idx1)
19428 // -> (insert_subvector (insert_subvector A, Idx1), Idx0)
19429 if (N0
.getOpcode() == ISD::INSERT_SUBVECTOR
&& N0
.hasOneUse() &&
19430 N1
.getValueType() == N0
.getOperand(1).getValueType() &&
19431 isa
<ConstantSDNode
>(N0
.getOperand(2))) {
19432 unsigned OtherIdx
= N0
.getConstantOperandVal(2);
19433 if (InsIdx
< OtherIdx
) {
19435 SDValue NewOp
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
,
19436 N0
.getOperand(0), N1
, N2
);
19437 AddToWorklist(NewOp
.getNode());
19438 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N0
.getNode()),
19439 VT
, NewOp
, N0
.getOperand(1), N0
.getOperand(2));
19443 // If the input vector is a concatenation, and the insert replaces
19444 // one of the pieces, we can optimize into a single concat_vectors.
19445 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&& N0
.hasOneUse() &&
19446 N0
.getOperand(0).getValueType() == N1
.getValueType()) {
19447 unsigned Factor
= N1
.getValueType().getVectorNumElements();
19449 SmallVector
<SDValue
, 8> Ops(N0
->op_begin(), N0
->op_end());
19450 Ops
[cast
<ConstantSDNode
>(N2
)->getZExtValue() / Factor
] = N1
;
19452 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
19455 // Simplify source operands based on insertion.
19456 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
19457 return SDValue(N
, 0);
19462 SDValue
DAGCombiner::visitFP_TO_FP16(SDNode
*N
) {
19463 SDValue N0
= N
->getOperand(0);
19465 // fold (fp_to_fp16 (fp16_to_fp op)) -> op
19466 if (N0
->getOpcode() == ISD::FP16_TO_FP
)
19467 return N0
->getOperand(0);
19472 SDValue
DAGCombiner::visitFP16_TO_FP(SDNode
*N
) {
19473 SDValue N0
= N
->getOperand(0);
19475 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
19476 if (N0
->getOpcode() == ISD::AND
) {
19477 ConstantSDNode
*AndConst
= getAsNonOpaqueConstant(N0
.getOperand(1));
19478 if (AndConst
&& AndConst
->getAPIntValue() == 0xffff) {
19479 return DAG
.getNode(ISD::FP16_TO_FP
, SDLoc(N
), N
->getValueType(0),
19487 SDValue
DAGCombiner::visitVECREDUCE(SDNode
*N
) {
19488 SDValue N0
= N
->getOperand(0);
19489 EVT VT
= N0
.getValueType();
19490 unsigned Opcode
= N
->getOpcode();
19492 // VECREDUCE over 1-element vector is just an extract.
19493 if (VT
.getVectorNumElements() == 1) {
19495 SDValue Res
= DAG
.getNode(
19496 ISD::EXTRACT_VECTOR_ELT
, dl
, VT
.getVectorElementType(), N0
,
19497 DAG
.getConstant(0, dl
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
19498 if (Res
.getValueType() != N
->getValueType(0))
19499 Res
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, N
->getValueType(0), Res
);
19503 // On an boolean vector an and/or reduction is the same as a umin/umax
19504 // reduction. Convert them if the latter is legal while the former isn't.
19505 if (Opcode
== ISD::VECREDUCE_AND
|| Opcode
== ISD::VECREDUCE_OR
) {
19506 unsigned NewOpcode
= Opcode
== ISD::VECREDUCE_AND
19507 ? ISD::VECREDUCE_UMIN
: ISD::VECREDUCE_UMAX
;
19508 if (!TLI
.isOperationLegalOrCustom(Opcode
, VT
) &&
19509 TLI
.isOperationLegalOrCustom(NewOpcode
, VT
) &&
19510 DAG
.ComputeNumSignBits(N0
) == VT
.getScalarSizeInBits())
19511 return DAG
.getNode(NewOpcode
, SDLoc(N
), N
->getValueType(0), N0
);
19517 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
19518 /// with the destination vector and a zero vector.
19519 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
19520 /// vector_shuffle V, Zero, <0, 4, 2, 4>
19521 SDValue
DAGCombiner::XformToShuffleWithZero(SDNode
*N
) {
19522 assert(N
->getOpcode() == ISD::AND
&& "Unexpected opcode!");
19524 EVT VT
= N
->getValueType(0);
19525 SDValue LHS
= N
->getOperand(0);
19526 SDValue RHS
= peekThroughBitcasts(N
->getOperand(1));
19529 // Make sure we're not running after operation legalization where it
19530 // may have custom lowered the vector shuffles.
19531 if (LegalOperations
)
19534 if (RHS
.getOpcode() != ISD::BUILD_VECTOR
)
19537 EVT RVT
= RHS
.getValueType();
19538 unsigned NumElts
= RHS
.getNumOperands();
19540 // Attempt to create a valid clear mask, splitting the mask into
19541 // sub elements and checking to see if each is
19542 // all zeros or all ones - suitable for shuffle masking.
19543 auto BuildClearMask
= [&](int Split
) {
19544 int NumSubElts
= NumElts
* Split
;
19545 int NumSubBits
= RVT
.getScalarSizeInBits() / Split
;
19547 SmallVector
<int, 8> Indices
;
19548 for (int i
= 0; i
!= NumSubElts
; ++i
) {
19549 int EltIdx
= i
/ Split
;
19550 int SubIdx
= i
% Split
;
19551 SDValue Elt
= RHS
.getOperand(EltIdx
);
19552 if (Elt
.isUndef()) {
19553 Indices
.push_back(-1);
19558 if (isa
<ConstantSDNode
>(Elt
))
19559 Bits
= cast
<ConstantSDNode
>(Elt
)->getAPIntValue();
19560 else if (isa
<ConstantFPSDNode
>(Elt
))
19561 Bits
= cast
<ConstantFPSDNode
>(Elt
)->getValueAPF().bitcastToAPInt();
19565 // Extract the sub element from the constant bit mask.
19566 if (DAG
.getDataLayout().isBigEndian()) {
19567 Bits
.lshrInPlace((Split
- SubIdx
- 1) * NumSubBits
);
19569 Bits
.lshrInPlace(SubIdx
* NumSubBits
);
19573 Bits
= Bits
.trunc(NumSubBits
);
19575 if (Bits
.isAllOnesValue())
19576 Indices
.push_back(i
);
19577 else if (Bits
== 0)
19578 Indices
.push_back(i
+ NumSubElts
);
19583 // Let's see if the target supports this vector_shuffle.
19584 EVT ClearSVT
= EVT::getIntegerVT(*DAG
.getContext(), NumSubBits
);
19585 EVT ClearVT
= EVT::getVectorVT(*DAG
.getContext(), ClearSVT
, NumSubElts
);
19586 if (!TLI
.isVectorClearMaskLegal(Indices
, ClearVT
))
19589 SDValue Zero
= DAG
.getConstant(0, DL
, ClearVT
);
19590 return DAG
.getBitcast(VT
, DAG
.getVectorShuffle(ClearVT
, DL
,
19591 DAG
.getBitcast(ClearVT
, LHS
),
19595 // Determine maximum split level (byte level masking).
19597 if (RVT
.getScalarSizeInBits() % 8 == 0)
19598 MaxSplit
= RVT
.getScalarSizeInBits() / 8;
19600 for (int Split
= 1; Split
<= MaxSplit
; ++Split
)
19601 if (RVT
.getScalarSizeInBits() % Split
== 0)
19602 if (SDValue S
= BuildClearMask(Split
))
19608 /// If a vector binop is performed on splat values, it may be profitable to
19609 /// extract, scalarize, and insert/splat.
19610 static SDValue
scalarizeBinOpOfSplats(SDNode
*N
, SelectionDAG
&DAG
) {
19611 SDValue N0
= N
->getOperand(0);
19612 SDValue N1
= N
->getOperand(1);
19613 unsigned Opcode
= N
->getOpcode();
19614 EVT VT
= N
->getValueType(0);
19615 EVT EltVT
= VT
.getVectorElementType();
19616 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
19618 // TODO: Remove/replace the extract cost check? If the elements are available
19619 // as scalars, then there may be no extract cost. Should we ask if
19620 // inserting a scalar back into a vector is cheap instead?
19621 int Index0
, Index1
;
19622 SDValue Src0
= DAG
.getSplatSourceVector(N0
, Index0
);
19623 SDValue Src1
= DAG
.getSplatSourceVector(N1
, Index1
);
19624 if (!Src0
|| !Src1
|| Index0
!= Index1
||
19625 Src0
.getValueType().getVectorElementType() != EltVT
||
19626 Src1
.getValueType().getVectorElementType() != EltVT
||
19627 !TLI
.isExtractVecEltCheap(VT
, Index0
) ||
19628 !TLI
.isOperationLegalOrCustom(Opcode
, EltVT
))
19633 DAG
.getConstant(Index0
, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout()));
19634 SDValue X
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, N0
, IndexC
);
19635 SDValue Y
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, N1
, IndexC
);
19636 SDValue ScalarBO
= DAG
.getNode(Opcode
, DL
, EltVT
, X
, Y
, N
->getFlags());
19638 // If all lanes but 1 are undefined, no need to splat the scalar result.
19639 // TODO: Keep track of undefs and use that info in the general case.
19640 if (N0
.getOpcode() == ISD::BUILD_VECTOR
&& N0
.getOpcode() == N1
.getOpcode() &&
19641 count_if(N0
->ops(), [](SDValue V
) { return !V
.isUndef(); }) == 1 &&
19642 count_if(N1
->ops(), [](SDValue V
) { return !V
.isUndef(); }) == 1) {
19643 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) -->
19644 // build_vec ..undef, (bo X, Y), undef...
19645 SmallVector
<SDValue
, 8> Ops(VT
.getVectorNumElements(), DAG
.getUNDEF(EltVT
));
19646 Ops
[Index0
] = ScalarBO
;
19647 return DAG
.getBuildVector(VT
, DL
, Ops
);
19650 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index
19651 SmallVector
<SDValue
, 8> Ops(VT
.getVectorNumElements(), ScalarBO
);
19652 return DAG
.getBuildVector(VT
, DL
, Ops
);
19655 /// Visit a binary vector operation, like ADD.
19656 SDValue
DAGCombiner::SimplifyVBinOp(SDNode
*N
) {
19657 assert(N
->getValueType(0).isVector() &&
19658 "SimplifyVBinOp only works on vectors!");
19660 SDValue LHS
= N
->getOperand(0);
19661 SDValue RHS
= N
->getOperand(1);
19662 SDValue Ops
[] = {LHS
, RHS
};
19663 EVT VT
= N
->getValueType(0);
19664 unsigned Opcode
= N
->getOpcode();
19666 // See if we can constant fold the vector operation.
19667 if (SDValue Fold
= DAG
.FoldConstantVectorArithmetic(
19668 Opcode
, SDLoc(LHS
), LHS
.getValueType(), Ops
, N
->getFlags()))
19671 // Move unary shuffles with identical masks after a vector binop:
19672 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask))
19673 // --> shuffle (VBinOp A, B), Undef, Mask
19674 // This does not require type legality checks because we are creating the
19675 // same types of operations that are in the original sequence. We do have to
19676 // restrict ops like integer div that have immediate UB (eg, div-by-zero)
19677 // though. This code is adapted from the identical transform in instcombine.
19678 if (Opcode
!= ISD::UDIV
&& Opcode
!= ISD::SDIV
&&
19679 Opcode
!= ISD::UREM
&& Opcode
!= ISD::SREM
&&
19680 Opcode
!= ISD::UDIVREM
&& Opcode
!= ISD::SDIVREM
) {
19681 auto *Shuf0
= dyn_cast
<ShuffleVectorSDNode
>(LHS
);
19682 auto *Shuf1
= dyn_cast
<ShuffleVectorSDNode
>(RHS
);
19683 if (Shuf0
&& Shuf1
&& Shuf0
->getMask().equals(Shuf1
->getMask()) &&
19684 LHS
.getOperand(1).isUndef() && RHS
.getOperand(1).isUndef() &&
19685 (LHS
.hasOneUse() || RHS
.hasOneUse() || LHS
== RHS
)) {
19687 SDValue NewBinOp
= DAG
.getNode(Opcode
, DL
, VT
, LHS
.getOperand(0),
19688 RHS
.getOperand(0), N
->getFlags());
19689 SDValue UndefV
= LHS
.getOperand(1);
19690 return DAG
.getVectorShuffle(VT
, DL
, NewBinOp
, UndefV
, Shuf0
->getMask());
19694 // The following pattern is likely to emerge with vector reduction ops. Moving
19695 // the binary operation ahead of insertion may allow using a narrower vector
19696 // instruction that has better performance than the wide version of the op:
19697 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z
19698 if (LHS
.getOpcode() == ISD::INSERT_SUBVECTOR
&& LHS
.getOperand(0).isUndef() &&
19699 RHS
.getOpcode() == ISD::INSERT_SUBVECTOR
&& RHS
.getOperand(0).isUndef() &&
19700 LHS
.getOperand(2) == RHS
.getOperand(2) &&
19701 (LHS
.hasOneUse() || RHS
.hasOneUse())) {
19702 SDValue X
= LHS
.getOperand(1);
19703 SDValue Y
= RHS
.getOperand(1);
19704 SDValue Z
= LHS
.getOperand(2);
19705 EVT NarrowVT
= X
.getValueType();
19706 if (NarrowVT
== Y
.getValueType() &&
19707 TLI
.isOperationLegalOrCustomOrPromote(Opcode
, NarrowVT
)) {
19708 // (binop undef, undef) may not return undef, so compute that result.
19711 DAG
.getNode(Opcode
, DL
, VT
, DAG
.getUNDEF(VT
), DAG
.getUNDEF(VT
));
19712 SDValue NarrowBO
= DAG
.getNode(Opcode
, DL
, NarrowVT
, X
, Y
);
19713 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, VT
, VecC
, NarrowBO
, Z
);
19717 // Make sure all but the first op are undef or constant.
19718 auto ConcatWithConstantOrUndef
= [](SDValue Concat
) {
19719 return Concat
.getOpcode() == ISD::CONCAT_VECTORS
&&
19720 std::all_of(std::next(Concat
->op_begin()), Concat
->op_end(),
19721 [](const SDValue
&Op
) {
19722 return Op
.isUndef() ||
19723 ISD::isBuildVectorOfConstantSDNodes(Op
.getNode());
19727 // The following pattern is likely to emerge with vector reduction ops. Moving
19728 // the binary operation ahead of the concat may allow using a narrower vector
19729 // instruction that has better performance than the wide version of the op:
19730 // VBinOp (concat X, undef/constant), (concat Y, undef/constant) -->
19731 // concat (VBinOp X, Y), VecC
19732 if (ConcatWithConstantOrUndef(LHS
) && ConcatWithConstantOrUndef(RHS
) &&
19733 (LHS
.hasOneUse() || RHS
.hasOneUse())) {
19734 EVT NarrowVT
= LHS
.getOperand(0).getValueType();
19735 if (NarrowVT
== RHS
.getOperand(0).getValueType() &&
19736 TLI
.isOperationLegalOrCustomOrPromote(Opcode
, NarrowVT
)) {
19738 unsigned NumOperands
= LHS
.getNumOperands();
19739 SmallVector
<SDValue
, 4> ConcatOps
;
19740 for (unsigned i
= 0; i
!= NumOperands
; ++i
) {
19741 // This constant fold for operands 1 and up.
19742 ConcatOps
.push_back(DAG
.getNode(Opcode
, DL
, NarrowVT
, LHS
.getOperand(i
),
19743 RHS
.getOperand(i
)));
19746 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
);
19750 if (SDValue V
= scalarizeBinOpOfSplats(N
, DAG
))
19756 SDValue
DAGCombiner::SimplifySelect(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
19758 assert(N0
.getOpcode() ==ISD::SETCC
&& "First argument must be a SetCC node!");
19760 SDValue SCC
= SimplifySelectCC(DL
, N0
.getOperand(0), N0
.getOperand(1), N1
, N2
,
19761 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
19763 // If we got a simplified select_cc node back from SimplifySelectCC, then
19764 // break it down into a new SETCC node, and a new SELECT node, and then return
19765 // the SELECT node, since we were called with a SELECT node.
19766 if (SCC
.getNode()) {
19767 // Check to see if we got a select_cc back (to turn into setcc/select).
19768 // Otherwise, just return whatever node we got back, like fabs.
19769 if (SCC
.getOpcode() == ISD::SELECT_CC
) {
19770 const SDNodeFlags Flags
= N0
.getNode()->getFlags();
19771 SDValue SETCC
= DAG
.getNode(ISD::SETCC
, SDLoc(N0
),
19773 SCC
.getOperand(0), SCC
.getOperand(1),
19774 SCC
.getOperand(4), Flags
);
19775 AddToWorklist(SETCC
.getNode());
19776 SDValue SelectNode
= DAG
.getSelect(SDLoc(SCC
), SCC
.getValueType(), SETCC
,
19777 SCC
.getOperand(2), SCC
.getOperand(3));
19778 SelectNode
->setFlags(Flags
);
19787 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
19788 /// being selected between, see if we can simplify the select. Callers of this
19789 /// should assume that TheSelect is deleted if this returns true. As such, they
19790 /// should return the appropriate thing (e.g. the node) back to the top-level of
19791 /// the DAG combiner loop to avoid it being looked at.
19792 bool DAGCombiner::SimplifySelectOps(SDNode
*TheSelect
, SDValue LHS
,
19794 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
19795 // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
19796 if (const ConstantFPSDNode
*NaN
= isConstOrConstSplatFP(LHS
)) {
19797 if (NaN
->isNaN() && RHS
.getOpcode() == ISD::FSQRT
) {
19798 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
19799 SDValue Sqrt
= RHS
;
19802 const ConstantFPSDNode
*Zero
= nullptr;
19804 if (TheSelect
->getOpcode() == ISD::SELECT_CC
) {
19805 CC
= cast
<CondCodeSDNode
>(TheSelect
->getOperand(4))->get();
19806 CmpLHS
= TheSelect
->getOperand(0);
19807 Zero
= isConstOrConstSplatFP(TheSelect
->getOperand(1));
19809 // SELECT or VSELECT
19810 SDValue Cmp
= TheSelect
->getOperand(0);
19811 if (Cmp
.getOpcode() == ISD::SETCC
) {
19812 CC
= cast
<CondCodeSDNode
>(Cmp
.getOperand(2))->get();
19813 CmpLHS
= Cmp
.getOperand(0);
19814 Zero
= isConstOrConstSplatFP(Cmp
.getOperand(1));
19817 if (Zero
&& Zero
->isZero() &&
19818 Sqrt
.getOperand(0) == CmpLHS
&& (CC
== ISD::SETOLT
||
19819 CC
== ISD::SETULT
|| CC
== ISD::SETLT
)) {
19820 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
19821 CombineTo(TheSelect
, Sqrt
);
19826 // Cannot simplify select with vector condition
19827 if (TheSelect
->getOperand(0).getValueType().isVector()) return false;
19829 // If this is a select from two identical things, try to pull the operation
19830 // through the select.
19831 if (LHS
.getOpcode() != RHS
.getOpcode() ||
19832 !LHS
.hasOneUse() || !RHS
.hasOneUse())
19835 // If this is a load and the token chain is identical, replace the select
19836 // of two loads with a load through a select of the address to load from.
19837 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
19838 // constants have been dropped into the constant pool.
19839 if (LHS
.getOpcode() == ISD::LOAD
) {
19840 LoadSDNode
*LLD
= cast
<LoadSDNode
>(LHS
);
19841 LoadSDNode
*RLD
= cast
<LoadSDNode
>(RHS
);
19843 // Token chains must be identical.
19844 if (LHS
.getOperand(0) != RHS
.getOperand(0) ||
19845 // Do not let this transformation reduce the number of volatile loads.
19846 LLD
->isVolatile() || RLD
->isVolatile() ||
19847 // FIXME: If either is a pre/post inc/dec load,
19848 // we'd need to split out the address adjustment.
19849 LLD
->isIndexed() || RLD
->isIndexed() ||
19850 // If this is an EXTLOAD, the VT's must match.
19851 LLD
->getMemoryVT() != RLD
->getMemoryVT() ||
19852 // If this is an EXTLOAD, the kind of extension must match.
19853 (LLD
->getExtensionType() != RLD
->getExtensionType() &&
19854 // The only exception is if one of the extensions is anyext.
19855 LLD
->getExtensionType() != ISD::EXTLOAD
&&
19856 RLD
->getExtensionType() != ISD::EXTLOAD
) ||
19857 // FIXME: this discards src value information. This is
19858 // over-conservative. It would be beneficial to be able to remember
19859 // both potential memory locations. Since we are discarding
19860 // src value info, don't do the transformation if the memory
19861 // locations are not in the default address space.
19862 LLD
->getPointerInfo().getAddrSpace() != 0 ||
19863 RLD
->getPointerInfo().getAddrSpace() != 0 ||
19864 // We can't produce a CMOV of a TargetFrameIndex since we won't
19865 // generate the address generation required.
19866 LLD
->getBasePtr().getOpcode() == ISD::TargetFrameIndex
||
19867 RLD
->getBasePtr().getOpcode() == ISD::TargetFrameIndex
||
19868 !TLI
.isOperationLegalOrCustom(TheSelect
->getOpcode(),
19869 LLD
->getBasePtr().getValueType()))
19872 // The loads must not depend on one another.
19873 if (LLD
->isPredecessorOf(RLD
) || RLD
->isPredecessorOf(LLD
))
19876 // Check that the select condition doesn't reach either load. If so,
19877 // folding this will induce a cycle into the DAG. If not, this is safe to
19878 // xform, so create a select of the addresses.
19880 SmallPtrSet
<const SDNode
*, 32> Visited
;
19881 SmallVector
<const SDNode
*, 16> Worklist
;
19883 // Always fail if LLD and RLD are not independent. TheSelect is a
19884 // predecessor to all Nodes in question so we need not search past it.
19886 Visited
.insert(TheSelect
);
19887 Worklist
.push_back(LLD
);
19888 Worklist
.push_back(RLD
);
19890 if (SDNode::hasPredecessorHelper(LLD
, Visited
, Worklist
) ||
19891 SDNode::hasPredecessorHelper(RLD
, Visited
, Worklist
))
19895 if (TheSelect
->getOpcode() == ISD::SELECT
) {
19896 // We cannot do this optimization if any pair of {RLD, LLD} is a
19897 // predecessor to {RLD, LLD, CondNode}. As we've already compared the
19898 // Loads, we only need to check if CondNode is a successor to one of the
19899 // loads. We can further avoid this if there's no use of their chain
19901 SDNode
*CondNode
= TheSelect
->getOperand(0).getNode();
19902 Worklist
.push_back(CondNode
);
19904 if ((LLD
->hasAnyUseOfValue(1) &&
19905 SDNode::hasPredecessorHelper(LLD
, Visited
, Worklist
)) ||
19906 (RLD
->hasAnyUseOfValue(1) &&
19907 SDNode::hasPredecessorHelper(RLD
, Visited
, Worklist
)))
19910 Addr
= DAG
.getSelect(SDLoc(TheSelect
),
19911 LLD
->getBasePtr().getValueType(),
19912 TheSelect
->getOperand(0), LLD
->getBasePtr(),
19913 RLD
->getBasePtr());
19914 } else { // Otherwise SELECT_CC
19915 // We cannot do this optimization if any pair of {RLD, LLD} is a
19916 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
19917 // the Loads, we only need to check if CondLHS/CondRHS is a successor to
19918 // one of the loads. We can further avoid this if there's no use of their
19921 SDNode
*CondLHS
= TheSelect
->getOperand(0).getNode();
19922 SDNode
*CondRHS
= TheSelect
->getOperand(1).getNode();
19923 Worklist
.push_back(CondLHS
);
19924 Worklist
.push_back(CondRHS
);
19926 if ((LLD
->hasAnyUseOfValue(1) &&
19927 SDNode::hasPredecessorHelper(LLD
, Visited
, Worklist
)) ||
19928 (RLD
->hasAnyUseOfValue(1) &&
19929 SDNode::hasPredecessorHelper(RLD
, Visited
, Worklist
)))
19932 Addr
= DAG
.getNode(ISD::SELECT_CC
, SDLoc(TheSelect
),
19933 LLD
->getBasePtr().getValueType(),
19934 TheSelect
->getOperand(0),
19935 TheSelect
->getOperand(1),
19936 LLD
->getBasePtr(), RLD
->getBasePtr(),
19937 TheSelect
->getOperand(4));
19941 // It is safe to replace the two loads if they have different alignments,
19942 // but the new load must be the minimum (most restrictive) alignment of the
19944 unsigned Alignment
= std::min(LLD
->getAlignment(), RLD
->getAlignment());
19945 MachineMemOperand::Flags MMOFlags
= LLD
->getMemOperand()->getFlags();
19946 if (!RLD
->isInvariant())
19947 MMOFlags
&= ~MachineMemOperand::MOInvariant
;
19948 if (!RLD
->isDereferenceable())
19949 MMOFlags
&= ~MachineMemOperand::MODereferenceable
;
19950 if (LLD
->getExtensionType() == ISD::NON_EXTLOAD
) {
19951 // FIXME: Discards pointer and AA info.
19952 Load
= DAG
.getLoad(TheSelect
->getValueType(0), SDLoc(TheSelect
),
19953 LLD
->getChain(), Addr
, MachinePointerInfo(), Alignment
,
19956 // FIXME: Discards pointer and AA info.
19957 Load
= DAG
.getExtLoad(
19958 LLD
->getExtensionType() == ISD::EXTLOAD
? RLD
->getExtensionType()
19959 : LLD
->getExtensionType(),
19960 SDLoc(TheSelect
), TheSelect
->getValueType(0), LLD
->getChain(), Addr
,
19961 MachinePointerInfo(), LLD
->getMemoryVT(), Alignment
, MMOFlags
);
19964 // Users of the select now use the result of the load.
19965 CombineTo(TheSelect
, Load
);
19967 // Users of the old loads now use the new load's chain. We know the
19968 // old-load value is dead now.
19969 CombineTo(LHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
19970 CombineTo(RHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
19977 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
19979 SDValue
DAGCombiner::foldSelectCCToShiftAnd(const SDLoc
&DL
, SDValue N0
,
19980 SDValue N1
, SDValue N2
, SDValue N3
,
19981 ISD::CondCode CC
) {
19982 // If this is a select where the false operand is zero and the compare is a
19983 // check of the sign bit, see if we can perform the "gzip trick":
19984 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
19985 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
19986 EVT XType
= N0
.getValueType();
19987 EVT AType
= N2
.getValueType();
19988 if (!isNullConstant(N3
) || !XType
.bitsGE(AType
))
19991 // If the comparison is testing for a positive value, we have to invert
19992 // the sign bit mask, so only do that transform if the target has a bitwise
19993 // 'and not' instruction (the invert is free).
19994 if (CC
== ISD::SETGT
&& TLI
.hasAndNot(N2
)) {
19995 // (X > -1) ? A : 0
19996 // (X > 0) ? X : 0 <-- This is canonical signed max.
19997 if (!(isAllOnesConstant(N1
) || (isNullConstant(N1
) && N0
== N2
)))
19999 } else if (CC
== ISD::SETLT
) {
20001 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
20002 if (!(isNullConstant(N1
) || (isOneConstant(N1
) && N0
== N2
)))
20008 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
20010 EVT ShiftAmtTy
= getShiftAmountTy(N0
.getValueType());
20011 auto *N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
20012 if (N2C
&& ((N2C
->getAPIntValue() & (N2C
->getAPIntValue() - 1)) == 0)) {
20013 unsigned ShCt
= XType
.getSizeInBits() - N2C
->getAPIntValue().logBase2() - 1;
20014 SDValue ShiftAmt
= DAG
.getConstant(ShCt
, DL
, ShiftAmtTy
);
20015 SDValue Shift
= DAG
.getNode(ISD::SRL
, DL
, XType
, N0
, ShiftAmt
);
20016 AddToWorklist(Shift
.getNode());
20018 if (XType
.bitsGT(AType
)) {
20019 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
20020 AddToWorklist(Shift
.getNode());
20023 if (CC
== ISD::SETGT
)
20024 Shift
= DAG
.getNOT(DL
, Shift
, AType
);
20026 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
20029 SDValue ShiftAmt
= DAG
.getConstant(XType
.getSizeInBits() - 1, DL
, ShiftAmtTy
);
20030 SDValue Shift
= DAG
.getNode(ISD::SRA
, DL
, XType
, N0
, ShiftAmt
);
20031 AddToWorklist(Shift
.getNode());
20033 if (XType
.bitsGT(AType
)) {
20034 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
20035 AddToWorklist(Shift
.getNode());
20038 if (CC
== ISD::SETGT
)
20039 Shift
= DAG
.getNOT(DL
, Shift
, AType
);
20041 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
20044 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
20045 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
20046 /// in it. This may be a win when the constant is not otherwise available
20047 /// because it replaces two constant pool loads with one.
20048 SDValue
DAGCombiner::convertSelectOfFPConstantsToLoadOffset(
20049 const SDLoc
&DL
, SDValue N0
, SDValue N1
, SDValue N2
, SDValue N3
,
20050 ISD::CondCode CC
) {
20051 if (!TLI
.reduceSelectOfFPConstantLoads(N0
.getValueType().isFloatingPoint()))
20054 // If we are before legalize types, we want the other legalization to happen
20055 // first (for example, to avoid messing with soft float).
20056 auto *TV
= dyn_cast
<ConstantFPSDNode
>(N2
);
20057 auto *FV
= dyn_cast
<ConstantFPSDNode
>(N3
);
20058 EVT VT
= N2
.getValueType();
20059 if (!TV
|| !FV
|| !TLI
.isTypeLegal(VT
))
20062 // If a constant can be materialized without loads, this does not make sense.
20063 if (TLI
.getOperationAction(ISD::ConstantFP
, VT
) == TargetLowering::Legal
||
20064 TLI
.isFPImmLegal(TV
->getValueAPF(), TV
->getValueType(0), ForCodeSize
) ||
20065 TLI
.isFPImmLegal(FV
->getValueAPF(), FV
->getValueType(0), ForCodeSize
))
20068 // If both constants have multiple uses, then we won't need to do an extra
20069 // load. The values are likely around in registers for other users.
20070 if (!TV
->hasOneUse() && !FV
->hasOneUse())
20073 Constant
*Elts
[] = { const_cast<ConstantFP
*>(FV
->getConstantFPValue()),
20074 const_cast<ConstantFP
*>(TV
->getConstantFPValue()) };
20075 Type
*FPTy
= Elts
[0]->getType();
20076 const DataLayout
&TD
= DAG
.getDataLayout();
20078 // Create a ConstantArray of the two constants.
20079 Constant
*CA
= ConstantArray::get(ArrayType::get(FPTy
, 2), Elts
);
20080 SDValue CPIdx
= DAG
.getConstantPool(CA
, TLI
.getPointerTy(DAG
.getDataLayout()),
20081 TD
.getPrefTypeAlignment(FPTy
));
20082 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
20084 // Get offsets to the 0 and 1 elements of the array, so we can select between
20086 SDValue Zero
= DAG
.getIntPtrConstant(0, DL
);
20087 unsigned EltSize
= (unsigned)TD
.getTypeAllocSize(Elts
[0]->getType());
20088 SDValue One
= DAG
.getIntPtrConstant(EltSize
, SDLoc(FV
));
20090 DAG
.getSetCC(DL
, getSetCCResultType(N0
.getValueType()), N0
, N1
, CC
);
20091 AddToWorklist(Cond
.getNode());
20092 SDValue CstOffset
= DAG
.getSelect(DL
, Zero
.getValueType(), Cond
, One
, Zero
);
20093 AddToWorklist(CstOffset
.getNode());
20094 CPIdx
= DAG
.getNode(ISD::ADD
, DL
, CPIdx
.getValueType(), CPIdx
, CstOffset
);
20095 AddToWorklist(CPIdx
.getNode());
20096 return DAG
.getLoad(TV
->getValueType(0), DL
, DAG
.getEntryNode(), CPIdx
,
20097 MachinePointerInfo::getConstantPool(
20098 DAG
.getMachineFunction()), Alignment
);
20101 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3
20102 /// where 'cond' is the comparison specified by CC.
20103 SDValue
DAGCombiner::SimplifySelectCC(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
20104 SDValue N2
, SDValue N3
, ISD::CondCode CC
,
20105 bool NotExtCompare
) {
20106 // (x ? y : y) -> y.
20107 if (N2
== N3
) return N2
;
20109 EVT CmpOpVT
= N0
.getValueType();
20110 EVT CmpResVT
= getSetCCResultType(CmpOpVT
);
20111 EVT VT
= N2
.getValueType();
20112 auto *N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
20113 auto *N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
20114 auto *N3C
= dyn_cast
<ConstantSDNode
>(N3
.getNode());
20116 // Determine if the condition we're dealing with is constant.
20117 if (SDValue SCC
= DAG
.FoldSetCC(CmpResVT
, N0
, N1
, CC
, DL
)) {
20118 AddToWorklist(SCC
.getNode());
20119 if (auto *SCCC
= dyn_cast
<ConstantSDNode
>(SCC
)) {
20120 // fold select_cc true, x, y -> x
20121 // fold select_cc false, x, y -> y
20122 return !(SCCC
->isNullValue()) ? N2
: N3
;
20127 convertSelectOfFPConstantsToLoadOffset(DL
, N0
, N1
, N2
, N3
, CC
))
20130 if (SDValue V
= foldSelectCCToShiftAnd(DL
, N0
, N1
, N2
, N3
, CC
))
20133 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
20134 // where y is has a single bit set.
20135 // A plaintext description would be, we can turn the SELECT_CC into an AND
20136 // when the condition can be materialized as an all-ones register. Any
20137 // single bit-test can be materialized as an all-ones register with
20138 // shift-left and shift-right-arith.
20139 if (CC
== ISD::SETEQ
&& N0
->getOpcode() == ISD::AND
&&
20140 N0
->getValueType(0) == VT
&& isNullConstant(N1
) && isNullConstant(N2
)) {
20141 SDValue AndLHS
= N0
->getOperand(0);
20142 auto *ConstAndRHS
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
20143 if (ConstAndRHS
&& ConstAndRHS
->getAPIntValue().countPopulation() == 1) {
20144 // Shift the tested bit over the sign bit.
20145 const APInt
&AndMask
= ConstAndRHS
->getAPIntValue();
20147 DAG
.getConstant(AndMask
.countLeadingZeros(), SDLoc(AndLHS
),
20148 getShiftAmountTy(AndLHS
.getValueType()));
20149 SDValue Shl
= DAG
.getNode(ISD::SHL
, SDLoc(N0
), VT
, AndLHS
, ShlAmt
);
20151 // Now arithmetic right shift it all the way over, so the result is either
20152 // all-ones, or zero.
20154 DAG
.getConstant(AndMask
.getBitWidth() - 1, SDLoc(Shl
),
20155 getShiftAmountTy(Shl
.getValueType()));
20156 SDValue Shr
= DAG
.getNode(ISD::SRA
, SDLoc(N0
), VT
, Shl
, ShrAmt
);
20158 return DAG
.getNode(ISD::AND
, DL
, VT
, Shr
, N3
);
20162 // fold select C, 16, 0 -> shl C, 4
20163 bool Fold
= N2C
&& isNullConstant(N3
) && N2C
->getAPIntValue().isPowerOf2();
20164 bool Swap
= N3C
&& isNullConstant(N2
) && N3C
->getAPIntValue().isPowerOf2();
20166 if ((Fold
|| Swap
) &&
20167 TLI
.getBooleanContents(CmpOpVT
) ==
20168 TargetLowering::ZeroOrOneBooleanContent
&&
20169 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SETCC
, CmpOpVT
))) {
20172 CC
= ISD::getSetCCInverse(CC
, CmpOpVT
.isInteger());
20173 std::swap(N2C
, N3C
);
20176 // If the caller doesn't want us to simplify this into a zext of a compare,
20178 if (NotExtCompare
&& N2C
->isOne())
20182 // zext (setcc n0, n1)
20184 SCC
= DAG
.getSetCC(DL
, CmpResVT
, N0
, N1
, CC
);
20185 if (VT
.bitsLT(SCC
.getValueType()))
20186 Temp
= DAG
.getZeroExtendInReg(SCC
, SDLoc(N2
), VT
);
20188 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N2
), VT
, SCC
);
20190 SCC
= DAG
.getSetCC(SDLoc(N0
), MVT::i1
, N0
, N1
, CC
);
20191 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N2
), VT
, SCC
);
20194 AddToWorklist(SCC
.getNode());
20195 AddToWorklist(Temp
.getNode());
20200 // shl setcc result by log2 n2c
20201 return DAG
.getNode(ISD::SHL
, DL
, N2
.getValueType(), Temp
,
20202 DAG
.getConstant(N2C
->getAPIntValue().logBase2(),
20204 getShiftAmountTy(Temp
.getValueType())));
20207 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
20208 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
20209 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
20210 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
20211 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
20212 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
20213 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
20214 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
20215 if (N1C
&& N1C
->isNullValue() && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
20216 SDValue ValueOnZero
= N2
;
20217 SDValue Count
= N3
;
20218 // If the condition is NE instead of E, swap the operands.
20219 if (CC
== ISD::SETNE
)
20220 std::swap(ValueOnZero
, Count
);
20221 // Check if the value on zero is a constant equal to the bits in the type.
20222 if (auto *ValueOnZeroC
= dyn_cast
<ConstantSDNode
>(ValueOnZero
)) {
20223 if (ValueOnZeroC
->getAPIntValue() == VT
.getSizeInBits()) {
20224 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is
20225 // legal, combine to just cttz.
20226 if ((Count
.getOpcode() == ISD::CTTZ
||
20227 Count
.getOpcode() == ISD::CTTZ_ZERO_UNDEF
) &&
20228 N0
== Count
.getOperand(0) &&
20229 (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTTZ
, VT
)))
20230 return DAG
.getNode(ISD::CTTZ
, DL
, VT
, N0
);
20231 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
20232 // legal, combine to just ctlz.
20233 if ((Count
.getOpcode() == ISD::CTLZ
||
20234 Count
.getOpcode() == ISD::CTLZ_ZERO_UNDEF
) &&
20235 N0
== Count
.getOperand(0) &&
20236 (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTLZ
, VT
)))
20237 return DAG
.getNode(ISD::CTLZ
, DL
, VT
, N0
);
20245 /// This is a stub for TargetLowering::SimplifySetCC.
20246 SDValue
DAGCombiner::SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
,
20247 ISD::CondCode Cond
, const SDLoc
&DL
,
20248 bool foldBooleans
) {
20249 TargetLowering::DAGCombinerInfo
20250 DagCombineInfo(DAG
, Level
, false, this);
20251 return TLI
.SimplifySetCC(VT
, N0
, N1
, Cond
, foldBooleans
, DagCombineInfo
, DL
);
20254 /// Given an ISD::SDIV node expressing a divide by constant, return
20255 /// a DAG expression to select that will generate the same value by multiplying
20256 /// by a magic number.
20257 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
20258 SDValue
DAGCombiner::BuildSDIV(SDNode
*N
) {
20259 // when optimising for minimum size, we don't want to expand a div to a mul
20261 if (DAG
.getMachineFunction().getFunction().hasMinSize())
20264 SmallVector
<SDNode
*, 8> Built
;
20265 if (SDValue S
= TLI
.BuildSDIV(N
, DAG
, LegalOperations
, Built
)) {
20266 for (SDNode
*N
: Built
)
20274 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
20275 /// DAG expression that will generate the same value by right shifting.
20276 SDValue
DAGCombiner::BuildSDIVPow2(SDNode
*N
) {
20277 ConstantSDNode
*C
= isConstOrConstSplat(N
->getOperand(1));
20281 // Avoid division by zero.
20282 if (C
->isNullValue())
20285 SmallVector
<SDNode
*, 8> Built
;
20286 if (SDValue S
= TLI
.BuildSDIVPow2(N
, C
->getAPIntValue(), DAG
, Built
)) {
20287 for (SDNode
*N
: Built
)
20295 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG
20296 /// expression that will generate the same value by multiplying by a magic
20298 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
20299 SDValue
DAGCombiner::BuildUDIV(SDNode
*N
) {
20300 // when optimising for minimum size, we don't want to expand a div to a mul
20302 if (DAG
.getMachineFunction().getFunction().hasMinSize())
20305 SmallVector
<SDNode
*, 8> Built
;
20306 if (SDValue S
= TLI
.BuildUDIV(N
, DAG
, LegalOperations
, Built
)) {
20307 for (SDNode
*N
: Built
)
20315 /// Determines the LogBase2 value for a non-null input value using the
20316 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
20317 SDValue
DAGCombiner::BuildLogBase2(SDValue V
, const SDLoc
&DL
) {
20318 EVT VT
= V
.getValueType();
20319 unsigned EltBits
= VT
.getScalarSizeInBits();
20320 SDValue Ctlz
= DAG
.getNode(ISD::CTLZ
, DL
, VT
, V
);
20321 SDValue Base
= DAG
.getConstant(EltBits
- 1, DL
, VT
);
20322 SDValue LogBase2
= DAG
.getNode(ISD::SUB
, DL
, VT
, Base
, Ctlz
);
20326 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
20327 /// For the reciprocal, we need to find the zero of the function:
20328 /// F(X) = A X - 1 [which has a zero at X = 1/A]
20330 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
20331 /// does not require additional intermediate precision]
20332 SDValue
DAGCombiner::BuildReciprocalEstimate(SDValue Op
, SDNodeFlags Flags
) {
20333 if (Level
>= AfterLegalizeDAG
)
20336 // TODO: Handle half and/or extended types?
20337 EVT VT
= Op
.getValueType();
20338 if (VT
.getScalarType() != MVT::f32
&& VT
.getScalarType() != MVT::f64
)
20341 // If estimates are explicitly disabled for this function, we're done.
20342 MachineFunction
&MF
= DAG
.getMachineFunction();
20343 int Enabled
= TLI
.getRecipEstimateDivEnabled(VT
, MF
);
20344 if (Enabled
== TLI
.ReciprocalEstimate::Disabled
)
20347 // Estimates may be explicitly enabled for this type with a custom number of
20348 // refinement steps.
20349 int Iterations
= TLI
.getDivRefinementSteps(VT
, MF
);
20350 if (SDValue Est
= TLI
.getRecipEstimate(Op
, DAG
, Enabled
, Iterations
)) {
20351 AddToWorklist(Est
.getNode());
20355 SDValue FPOne
= DAG
.getConstantFP(1.0, DL
, VT
);
20357 // Newton iterations: Est = Est + Est (1 - Arg * Est)
20358 for (int i
= 0; i
< Iterations
; ++i
) {
20359 SDValue NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Op
, Est
, Flags
);
20360 NewEst
= DAG
.getNode(ISD::FSUB
, DL
, VT
, FPOne
, NewEst
, Flags
);
20361 NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, NewEst
, Flags
);
20362 Est
= DAG
.getNode(ISD::FADD
, DL
, VT
, Est
, NewEst
, Flags
);
20371 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
20372 /// For the reciprocal sqrt, we need to find the zero of the function:
20373 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
20375 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
20376 /// As a result, we precompute A/2 prior to the iteration loop.
20377 SDValue
DAGCombiner::buildSqrtNROneConst(SDValue Arg
, SDValue Est
,
20378 unsigned Iterations
,
20379 SDNodeFlags Flags
, bool Reciprocal
) {
20380 EVT VT
= Arg
.getValueType();
20382 SDValue ThreeHalves
= DAG
.getConstantFP(1.5, DL
, VT
);
20384 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
20385 // this entire sequence requires only one FP constant.
20386 SDValue HalfArg
= DAG
.getNode(ISD::FMUL
, DL
, VT
, ThreeHalves
, Arg
, Flags
);
20387 HalfArg
= DAG
.getNode(ISD::FSUB
, DL
, VT
, HalfArg
, Arg
, Flags
);
20389 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
20390 for (unsigned i
= 0; i
< Iterations
; ++i
) {
20391 SDValue NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, Est
, Flags
);
20392 NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, HalfArg
, NewEst
, Flags
);
20393 NewEst
= DAG
.getNode(ISD::FSUB
, DL
, VT
, ThreeHalves
, NewEst
, Flags
);
20394 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, NewEst
, Flags
);
20397 // If non-reciprocal square root is requested, multiply the result by Arg.
20399 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, Arg
, Flags
);
20404 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
20405 /// For the reciprocal sqrt, we need to find the zero of the function:
20406 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
20408 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
20409 SDValue
DAGCombiner::buildSqrtNRTwoConst(SDValue Arg
, SDValue Est
,
20410 unsigned Iterations
,
20411 SDNodeFlags Flags
, bool Reciprocal
) {
20412 EVT VT
= Arg
.getValueType();
20414 SDValue MinusThree
= DAG
.getConstantFP(-3.0, DL
, VT
);
20415 SDValue MinusHalf
= DAG
.getConstantFP(-0.5, DL
, VT
);
20417 // This routine must enter the loop below to work correctly
20418 // when (Reciprocal == false).
20419 assert(Iterations
> 0);
20421 // Newton iterations for reciprocal square root:
20422 // E = (E * -0.5) * ((A * E) * E + -3.0)
20423 for (unsigned i
= 0; i
< Iterations
; ++i
) {
20424 SDValue AE
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Arg
, Est
, Flags
);
20425 SDValue AEE
= DAG
.getNode(ISD::FMUL
, DL
, VT
, AE
, Est
, Flags
);
20426 SDValue RHS
= DAG
.getNode(ISD::FADD
, DL
, VT
, AEE
, MinusThree
, Flags
);
20428 // When calculating a square root at the last iteration build:
20429 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
20430 // (notice a common subexpression)
20432 if (Reciprocal
|| (i
+ 1) < Iterations
) {
20433 // RSQRT: LHS = (E * -0.5)
20434 LHS
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, MinusHalf
, Flags
);
20436 // SQRT: LHS = (A * E) * -0.5
20437 LHS
= DAG
.getNode(ISD::FMUL
, DL
, VT
, AE
, MinusHalf
, Flags
);
20440 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, LHS
, RHS
, Flags
);
20446 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
20447 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
20448 /// Op can be zero.
20449 SDValue
DAGCombiner::buildSqrtEstimateImpl(SDValue Op
, SDNodeFlags Flags
,
20451 if (Level
>= AfterLegalizeDAG
)
20454 // TODO: Handle half and/or extended types?
20455 EVT VT
= Op
.getValueType();
20456 if (VT
.getScalarType() != MVT::f32
&& VT
.getScalarType() != MVT::f64
)
20459 // If estimates are explicitly disabled for this function, we're done.
20460 MachineFunction
&MF
= DAG
.getMachineFunction();
20461 int Enabled
= TLI
.getRecipEstimateSqrtEnabled(VT
, MF
);
20462 if (Enabled
== TLI
.ReciprocalEstimate::Disabled
)
20465 // Estimates may be explicitly enabled for this type with a custom number of
20466 // refinement steps.
20467 int Iterations
= TLI
.getSqrtRefinementSteps(VT
, MF
);
20469 bool UseOneConstNR
= false;
20471 TLI
.getSqrtEstimate(Op
, DAG
, Enabled
, Iterations
, UseOneConstNR
,
20473 AddToWorklist(Est
.getNode());
20476 Est
= UseOneConstNR
20477 ? buildSqrtNROneConst(Op
, Est
, Iterations
, Flags
, Reciprocal
)
20478 : buildSqrtNRTwoConst(Op
, Est
, Iterations
, Flags
, Reciprocal
);
20481 // The estimate is now completely wrong if the input was exactly 0.0 or
20482 // possibly a denormal. Force the answer to 0.0 for those cases.
20484 EVT CCVT
= getSetCCResultType(VT
);
20485 ISD::NodeType SelOpcode
= VT
.isVector() ? ISD::VSELECT
: ISD::SELECT
;
20486 const Function
&F
= DAG
.getMachineFunction().getFunction();
20487 Attribute Denorms
= F
.getFnAttribute("denormal-fp-math");
20488 if (Denorms
.getValueAsString().equals("ieee")) {
20489 // fabs(X) < SmallestNormal ? 0.0 : Est
20490 const fltSemantics
&FltSem
= DAG
.EVTToAPFloatSemantics(VT
);
20491 APFloat SmallestNorm
= APFloat::getSmallestNormalized(FltSem
);
20492 SDValue NormC
= DAG
.getConstantFP(SmallestNorm
, DL
, VT
);
20493 SDValue FPZero
= DAG
.getConstantFP(0.0, DL
, VT
);
20494 SDValue Fabs
= DAG
.getNode(ISD::FABS
, DL
, VT
, Op
);
20495 SDValue IsDenorm
= DAG
.getSetCC(DL
, CCVT
, Fabs
, NormC
, ISD::SETLT
);
20496 Est
= DAG
.getNode(SelOpcode
, DL
, VT
, IsDenorm
, FPZero
, Est
);
20498 // X == 0.0 ? 0.0 : Est
20499 SDValue FPZero
= DAG
.getConstantFP(0.0, DL
, VT
);
20500 SDValue IsZero
= DAG
.getSetCC(DL
, CCVT
, Op
, FPZero
, ISD::SETEQ
);
20501 Est
= DAG
.getNode(SelOpcode
, DL
, VT
, IsZero
, FPZero
, Est
);
20511 SDValue
DAGCombiner::buildRsqrtEstimate(SDValue Op
, SDNodeFlags Flags
) {
20512 return buildSqrtEstimateImpl(Op
, Flags
, true);
20515 SDValue
DAGCombiner::buildSqrtEstimate(SDValue Op
, SDNodeFlags Flags
) {
20516 return buildSqrtEstimateImpl(Op
, Flags
, false);
20519 /// Return true if there is any possibility that the two addresses overlap.
20520 bool DAGCombiner::isAlias(SDNode
*Op0
, SDNode
*Op1
) const {
20522 struct MemUseCharacteristics
{
20526 Optional
<int64_t> NumBytes
;
20527 MachineMemOperand
*MMO
;
20530 auto getCharacteristics
= [](SDNode
*N
) -> MemUseCharacteristics
{
20531 if (const auto *LSN
= dyn_cast
<LSBaseSDNode
>(N
)) {
20532 int64_t Offset
= 0;
20533 if (auto *C
= dyn_cast
<ConstantSDNode
>(LSN
->getOffset()))
20534 Offset
= (LSN
->getAddressingMode() == ISD::PRE_INC
)
20535 ? C
->getSExtValue()
20536 : (LSN
->getAddressingMode() == ISD::PRE_DEC
)
20537 ? -1 * C
->getSExtValue()
20539 return {LSN
->isVolatile(), LSN
->getBasePtr(), Offset
/*base offset*/,
20540 Optional
<int64_t>(LSN
->getMemoryVT().getStoreSize()),
20541 LSN
->getMemOperand()};
20543 if (const auto *LN
= cast
<LifetimeSDNode
>(N
))
20544 return {false /*isVolatile*/, LN
->getOperand(1),
20545 (LN
->hasOffset()) ? LN
->getOffset() : 0,
20546 (LN
->hasOffset()) ? Optional
<int64_t>(LN
->getSize())
20547 : Optional
<int64_t>(),
20548 (MachineMemOperand
*)nullptr};
20550 return {false /*isvolatile*/, SDValue(), (int64_t)0 /*offset*/,
20551 Optional
<int64_t>() /*size*/, (MachineMemOperand
*)nullptr};
20554 MemUseCharacteristics MUC0
= getCharacteristics(Op0
),
20555 MUC1
= getCharacteristics(Op1
);
20557 // If they are to the same address, then they must be aliases.
20558 if (MUC0
.BasePtr
.getNode() && MUC0
.BasePtr
== MUC1
.BasePtr
&&
20559 MUC0
.Offset
== MUC1
.Offset
)
20562 // If they are both volatile then they cannot be reordered.
20563 if (MUC0
.IsVolatile
&& MUC1
.IsVolatile
)
20566 if (MUC0
.MMO
&& MUC1
.MMO
) {
20567 if ((MUC0
.MMO
->isInvariant() && MUC1
.MMO
->isStore()) ||
20568 (MUC1
.MMO
->isInvariant() && MUC0
.MMO
->isStore()))
20572 // Try to prove that there is aliasing, or that there is no aliasing. Either
20573 // way, we can return now. If nothing can be proved, proceed with more tests.
20575 if (BaseIndexOffset::computeAliasing(Op0
, MUC0
.NumBytes
, Op1
, MUC1
.NumBytes
,
20579 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if
20580 // either are not known.
20581 if (!MUC0
.MMO
|| !MUC1
.MMO
)
20584 // If one operation reads from invariant memory, and the other may store, they
20585 // cannot alias. These should really be checking the equivalent of mayWrite,
20586 // but it only matters for memory nodes other than load /store.
20587 if ((MUC0
.MMO
->isInvariant() && MUC1
.MMO
->isStore()) ||
20588 (MUC1
.MMO
->isInvariant() && MUC0
.MMO
->isStore()))
20591 // If we know required SrcValue1 and SrcValue2 have relatively large
20592 // alignment compared to the size and offset of the access, we may be able
20593 // to prove they do not alias. This check is conservative for now to catch
20594 // cases created by splitting vector types.
20595 int64_t SrcValOffset0
= MUC0
.MMO
->getOffset();
20596 int64_t SrcValOffset1
= MUC1
.MMO
->getOffset();
20597 unsigned OrigAlignment0
= MUC0
.MMO
->getBaseAlignment();
20598 unsigned OrigAlignment1
= MUC1
.MMO
->getBaseAlignment();
20599 if (OrigAlignment0
== OrigAlignment1
&& SrcValOffset0
!= SrcValOffset1
&&
20600 MUC0
.NumBytes
.hasValue() && MUC1
.NumBytes
.hasValue() &&
20601 *MUC0
.NumBytes
== *MUC1
.NumBytes
&& OrigAlignment0
> *MUC0
.NumBytes
) {
20602 int64_t OffAlign0
= SrcValOffset0
% OrigAlignment0
;
20603 int64_t OffAlign1
= SrcValOffset1
% OrigAlignment1
;
20605 // There is no overlap between these relatively aligned accesses of
20606 // similar size. Return no alias.
20607 if ((OffAlign0
+ *MUC0
.NumBytes
) <= OffAlign1
||
20608 (OffAlign1
+ *MUC1
.NumBytes
) <= OffAlign0
)
20612 bool UseAA
= CombinerGlobalAA
.getNumOccurrences() > 0
20614 : DAG
.getSubtarget().useAA();
20616 if (CombinerAAOnlyFunc
.getNumOccurrences() &&
20617 CombinerAAOnlyFunc
!= DAG
.getMachineFunction().getName())
20621 if (UseAA
&& AA
&& MUC0
.MMO
->getValue() && MUC1
.MMO
->getValue()) {
20622 // Use alias analysis information.
20623 int64_t MinOffset
= std::min(SrcValOffset0
, SrcValOffset1
);
20624 int64_t Overlap0
= *MUC0
.NumBytes
+ SrcValOffset0
- MinOffset
;
20625 int64_t Overlap1
= *MUC1
.NumBytes
+ SrcValOffset1
- MinOffset
;
20626 AliasResult AAResult
= AA
->alias(
20627 MemoryLocation(MUC0
.MMO
->getValue(), Overlap0
,
20628 UseTBAA
? MUC0
.MMO
->getAAInfo() : AAMDNodes()),
20629 MemoryLocation(MUC1
.MMO
->getValue(), Overlap1
,
20630 UseTBAA
? MUC1
.MMO
->getAAInfo() : AAMDNodes()));
20631 if (AAResult
== NoAlias
)
20635 // Otherwise we have to assume they alias.
20639 /// Walk up chain skipping non-aliasing memory nodes,
20640 /// looking for aliasing nodes and adding them to the Aliases vector.
20641 void DAGCombiner::GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
20642 SmallVectorImpl
<SDValue
> &Aliases
) {
20643 SmallVector
<SDValue
, 8> Chains
; // List of chains to visit.
20644 SmallPtrSet
<SDNode
*, 16> Visited
; // Visited node set.
20646 // Get alias information for node.
20647 const bool IsLoad
= isa
<LoadSDNode
>(N
) && !cast
<LoadSDNode
>(N
)->isVolatile();
20650 Chains
.push_back(OriginalChain
);
20651 unsigned Depth
= 0;
20653 // Attempt to improve chain by a single step
20654 std::function
<bool(SDValue
&)> ImproveChain
= [&](SDValue
&C
) -> bool {
20655 switch (C
.getOpcode()) {
20656 case ISD::EntryToken
:
20657 // No need to mark EntryToken.
20662 // Get alias information for C.
20663 bool IsOpLoad
= isa
<LoadSDNode
>(C
.getNode()) &&
20664 !cast
<LSBaseSDNode
>(C
.getNode())->isVolatile();
20665 if ((IsLoad
&& IsOpLoad
) || !isAlias(N
, C
.getNode())) {
20666 // Look further up the chain.
20667 C
= C
.getOperand(0);
20670 // Alias, so stop here.
20674 case ISD::CopyFromReg
:
20675 // Always forward past past CopyFromReg.
20676 C
= C
.getOperand(0);
20679 case ISD::LIFETIME_START
:
20680 case ISD::LIFETIME_END
: {
20681 // We can forward past any lifetime start/end that can be proven not to
20682 // alias the memory access.
20683 if (!isAlias(N
, C
.getNode())) {
20684 // Look further up the chain.
20685 C
= C
.getOperand(0);
20695 // Look at each chain and determine if it is an alias. If so, add it to the
20696 // aliases list. If not, then continue up the chain looking for the next
20698 while (!Chains
.empty()) {
20699 SDValue Chain
= Chains
.pop_back_val();
20701 // Don't bother if we've seen Chain before.
20702 if (!Visited
.insert(Chain
.getNode()).second
)
20705 // For TokenFactor nodes, look at each operand and only continue up the
20706 // chain until we reach the depth limit.
20708 // FIXME: The depth check could be made to return the last non-aliasing
20709 // chain we found before we hit a tokenfactor rather than the original
20711 if (Depth
> TLI
.getGatherAllAliasesMaxDepth()) {
20713 Aliases
.push_back(OriginalChain
);
20717 if (Chain
.getOpcode() == ISD::TokenFactor
) {
20718 // We have to check each of the operands of the token factor for "small"
20719 // token factors, so we queue them up. Adding the operands to the queue
20720 // (stack) in reverse order maintains the original order and increases the
20721 // likelihood that getNode will find a matching token factor (CSE.)
20722 if (Chain
.getNumOperands() > 16) {
20723 Aliases
.push_back(Chain
);
20726 for (unsigned n
= Chain
.getNumOperands(); n
;)
20727 Chains
.push_back(Chain
.getOperand(--n
));
20732 if (ImproveChain(Chain
)) {
20733 // Updated Chain Found, Consider new chain if one exists.
20734 if (Chain
.getNode())
20735 Chains
.push_back(Chain
);
20739 // No Improved Chain Possible, treat as Alias.
20740 Aliases
.push_back(Chain
);
20744 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
20745 /// (aliasing node.)
20746 SDValue
DAGCombiner::FindBetterChain(SDNode
*N
, SDValue OldChain
) {
20747 if (OptLevel
== CodeGenOpt::None
)
20750 // Ops for replacing token factor.
20751 SmallVector
<SDValue
, 8> Aliases
;
20753 // Accumulate all the aliases to this node.
20754 GatherAllAliases(N
, OldChain
, Aliases
);
20756 // If no operands then chain to entry token.
20757 if (Aliases
.size() == 0)
20758 return DAG
.getEntryNode();
20760 // If a single operand then chain to it. We don't need to revisit it.
20761 if (Aliases
.size() == 1)
20764 // Construct a custom tailored token factor.
20765 return DAG
.getTokenFactor(SDLoc(N
), Aliases
);
20769 // TODO: Replace with with std::monostate when we move to C++17.
20770 struct UnitT
{ } Unit
;
20771 bool operator==(const UnitT
&, const UnitT
&) { return true; }
20772 bool operator!=(const UnitT
&, const UnitT
&) { return false; }
20775 // This function tries to collect a bunch of potentially interesting
20776 // nodes to improve the chains of, all at once. This might seem
20777 // redundant, as this function gets called when visiting every store
20778 // node, so why not let the work be done on each store as it's visited?
20780 // I believe this is mainly important because MergeConsecutiveStores
20781 // is unable to deal with merging stores of different sizes, so unless
20782 // we improve the chains of all the potential candidates up-front
20783 // before running MergeConsecutiveStores, it might only see some of
20784 // the nodes that will eventually be candidates, and then not be able
20785 // to go from a partially-merged state to the desired final
20786 // fully-merged state.
20788 bool DAGCombiner::parallelizeChainedStores(StoreSDNode
*St
) {
20789 SmallVector
<StoreSDNode
*, 8> ChainedStores
;
20790 StoreSDNode
*STChain
= St
;
20791 // Intervals records which offsets from BaseIndex have been covered. In
20792 // the common case, every store writes to the immediately previous address
20793 // space and thus merged with the previous interval at insertion time.
20796 llvm::IntervalMap
<int64_t, UnitT
, 8, IntervalMapHalfOpenInfo
<int64_t>>;
20800 // This holds the base pointer, index, and the offset in bytes from the base
20802 const BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
20804 // We must have a base and an offset.
20805 if (!BasePtr
.getBase().getNode())
20808 // Do not handle stores to undef base pointers.
20809 if (BasePtr
.getBase().isUndef())
20812 // Add ST's interval.
20813 Intervals
.insert(0, (St
->getMemoryVT().getSizeInBits() + 7) / 8, Unit
);
20815 while (StoreSDNode
*Chain
= dyn_cast
<StoreSDNode
>(STChain
->getChain())) {
20816 // If the chain has more than one use, then we can't reorder the mem ops.
20817 if (!SDValue(Chain
, 0)->hasOneUse())
20819 if (Chain
->isVolatile() || Chain
->isIndexed())
20822 // Find the base pointer and offset for this memory node.
20823 const BaseIndexOffset Ptr
= BaseIndexOffset::match(Chain
, DAG
);
20824 // Check that the base pointer is the same as the original one.
20826 if (!BasePtr
.equalBaseIndex(Ptr
, DAG
, Offset
))
20828 int64_t Length
= (Chain
->getMemoryVT().getSizeInBits() + 7) / 8;
20829 // Make sure we don't overlap with other intervals by checking the ones to
20830 // the left or right before inserting.
20831 auto I
= Intervals
.find(Offset
);
20832 // If there's a next interval, we should end before it.
20833 if (I
!= Intervals
.end() && I
.start() < (Offset
+ Length
))
20835 // If there's a previous interval, we should start after it.
20836 if (I
!= Intervals
.begin() && (--I
).stop() <= Offset
)
20838 Intervals
.insert(Offset
, Offset
+ Length
, Unit
);
20840 ChainedStores
.push_back(Chain
);
20844 // If we didn't find a chained store, exit.
20845 if (ChainedStores
.size() == 0)
20848 // Improve all chained stores (St and ChainedStores members) starting from
20849 // where the store chain ended and return single TokenFactor.
20850 SDValue NewChain
= STChain
->getChain();
20851 SmallVector
<SDValue
, 8> TFOps
;
20852 for (unsigned I
= ChainedStores
.size(); I
;) {
20853 StoreSDNode
*S
= ChainedStores
[--I
];
20854 SDValue BetterChain
= FindBetterChain(S
, NewChain
);
20855 S
= cast
<StoreSDNode
>(DAG
.UpdateNodeOperands(
20856 S
, BetterChain
, S
->getOperand(1), S
->getOperand(2), S
->getOperand(3)));
20857 TFOps
.push_back(SDValue(S
, 0));
20858 ChainedStores
[I
] = S
;
20861 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo.
20862 SDValue BetterChain
= FindBetterChain(St
, NewChain
);
20864 if (St
->isTruncatingStore())
20865 NewST
= DAG
.getTruncStore(BetterChain
, SDLoc(St
), St
->getValue(),
20866 St
->getBasePtr(), St
->getMemoryVT(),
20867 St
->getMemOperand());
20869 NewST
= DAG
.getStore(BetterChain
, SDLoc(St
), St
->getValue(),
20870 St
->getBasePtr(), St
->getMemOperand());
20872 TFOps
.push_back(NewST
);
20874 // If we improved every element of TFOps, then we've lost the dependence on
20875 // NewChain to successors of St and we need to add it back to TFOps. Do so at
20876 // the beginning to keep relative order consistent with FindBetterChains.
20877 auto hasImprovedChain
= [&](SDValue ST
) -> bool {
20878 return ST
->getOperand(0) != NewChain
;
20880 bool AddNewChain
= llvm::all_of(TFOps
, hasImprovedChain
);
20882 TFOps
.insert(TFOps
.begin(), NewChain
);
20884 SDValue TF
= DAG
.getTokenFactor(SDLoc(STChain
), TFOps
);
20887 // Add TF and its operands to the worklist.
20888 AddToWorklist(TF
.getNode());
20889 for (const SDValue
&Op
: TF
->ops())
20890 AddToWorklist(Op
.getNode());
20891 AddToWorklist(STChain
);
20895 bool DAGCombiner::findBetterNeighborChains(StoreSDNode
*St
) {
20896 if (OptLevel
== CodeGenOpt::None
)
20899 const BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
20901 // We must have a base and an offset.
20902 if (!BasePtr
.getBase().getNode())
20905 // Do not handle stores to undef base pointers.
20906 if (BasePtr
.getBase().isUndef())
20909 // Directly improve a chain of disjoint stores starting at St.
20910 if (parallelizeChainedStores(St
))
20913 // Improve St's Chain..
20914 SDValue BetterChain
= FindBetterChain(St
, St
->getChain());
20915 if (St
->getChain() != BetterChain
) {
20916 replaceStoreChain(St
, BetterChain
);
20922 /// This is the entry point for the file.
20923 void SelectionDAG::Combine(CombineLevel Level
, AliasAnalysis
*AA
,
20924 CodeGenOpt::Level OptLevel
) {
20925 /// This is the main entry point to this class.
20926 DAGCombiner(*this, AA
, OptLevel
).Run(Level
);