1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
23 // %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 // %i.next = add %i, 1
26 // %c = icmp eq %i.next, %n
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
35 // TODO: More sophistication in the way Formulae are generated and filtered.
37 // TODO: Handle multiple loops at a time.
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 // smaller encoding (on x86 at least).
45 // TODO: When a negated register is used by an add (such as in a list of
46 // multiple base registers, or as the increment expression in an addrec),
47 // we may not actually need both reg and (-1 * reg) in registers; the
48 // negation can be implemented by using a sub instead of an add. The
49 // lack of support for taking this into consideration when making
50 // register pressure decisions is partly worked around by the "Special"
53 //===----------------------------------------------------------------------===//
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopAnalysisManager.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Analysis/LoopPass.h"
72 #include "llvm/Analysis/ScalarEvolution.h"
73 #include "llvm/Analysis/ScalarEvolutionExpander.h"
74 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
75 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
76 #include "llvm/Analysis/TargetTransformInfo.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include "llvm/Config/llvm-config.h"
79 #include "llvm/IR/BasicBlock.h"
80 #include "llvm/IR/Constant.h"
81 #include "llvm/IR/Constants.h"
82 #include "llvm/IR/DerivedTypes.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/GlobalValue.h"
85 #include "llvm/IR/IRBuilder.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/OperandTraits.h"
93 #include "llvm/IR/Operator.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/IR/ValueHandle.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Transforms/Scalar.h"
109 #include "llvm/Transforms/Utils.h"
110 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
122 using namespace llvm
;
124 #define DEBUG_TYPE "loop-reduce"
126 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
127 /// bail out. This threshold is far beyond the number of users that LSR can
128 /// conceivably solve, so it should not affect generated code, but catches the
129 /// worst cases before LSR burns too much compile time and stack space.
130 static const unsigned MaxIVUsers
= 200;
132 // Temporary flag to cleanup congruent phis after LSR phi expansion.
133 // It's currently disabled until we can determine whether it's truly useful or
134 // not. The flag should be removed after the v3.0 release.
135 // This is now needed for ivchains.
136 static cl::opt
<bool> EnablePhiElim(
137 "enable-lsr-phielim", cl::Hidden
, cl::init(true),
138 cl::desc("Enable LSR phi elimination"));
140 // The flag adds instruction count to solutions cost comparision.
141 static cl::opt
<bool> InsnsCost(
142 "lsr-insns-cost", cl::Hidden
, cl::init(true),
143 cl::desc("Add instruction count to a LSR cost model"));
145 // Flag to choose how to narrow complex lsr solution
146 static cl::opt
<bool> LSRExpNarrow(
147 "lsr-exp-narrow", cl::Hidden
, cl::init(false),
148 cl::desc("Narrow LSR complex solution using"
149 " expectation of registers number"));
151 // Flag to narrow search space by filtering non-optimal formulae with
152 // the same ScaledReg and Scale.
153 static cl::opt
<bool> FilterSameScaledReg(
154 "lsr-filter-same-scaled-reg", cl::Hidden
, cl::init(true),
155 cl::desc("Narrow LSR search space by filtering non-optimal formulae"
156 " with the same ScaledReg and Scale"));
158 static cl::opt
<bool> EnableBackedgeIndexing(
159 "lsr-backedge-indexing", cl::Hidden
, cl::init(true),
160 cl::desc("Enable the generation of cross iteration indexed memops"));
162 static cl::opt
<unsigned> ComplexityLimit(
163 "lsr-complexity-limit", cl::Hidden
,
164 cl::init(std::numeric_limits
<uint16_t>::max()),
165 cl::desc("LSR search space complexity limit"));
167 static cl::opt
<unsigned> SetupCostDepthLimit(
168 "lsr-setupcost-depth-limit", cl::Hidden
, cl::init(7),
169 cl::desc("The limit on recursion depth for LSRs setup cost"));
172 // Stress test IV chain generation.
173 static cl::opt
<bool> StressIVChain(
174 "stress-ivchain", cl::Hidden
, cl::init(false),
175 cl::desc("Stress test LSR IV chains"));
177 static bool StressIVChain
= false;
183 /// Used in situations where the accessed memory type is unknown.
184 static const unsigned UnknownAddressSpace
=
185 std::numeric_limits
<unsigned>::max();
187 Type
*MemTy
= nullptr;
188 unsigned AddrSpace
= UnknownAddressSpace
;
190 MemAccessTy() = default;
191 MemAccessTy(Type
*Ty
, unsigned AS
) : MemTy(Ty
), AddrSpace(AS
) {}
193 bool operator==(MemAccessTy Other
) const {
194 return MemTy
== Other
.MemTy
&& AddrSpace
== Other
.AddrSpace
;
197 bool operator!=(MemAccessTy Other
) const { return !(*this == Other
); }
199 static MemAccessTy
getUnknown(LLVMContext
&Ctx
,
200 unsigned AS
= UnknownAddressSpace
) {
201 return MemAccessTy(Type::getVoidTy(Ctx
), AS
);
204 Type
*getType() { return MemTy
; }
207 /// This class holds data which is used to order reuse candidates.
210 /// This represents the set of LSRUse indices which reference
211 /// a particular register.
212 SmallBitVector UsedByIndices
;
214 void print(raw_ostream
&OS
) const;
218 } // end anonymous namespace
220 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
221 void RegSortData::print(raw_ostream
&OS
) const {
222 OS
<< "[NumUses=" << UsedByIndices
.count() << ']';
225 LLVM_DUMP_METHOD
void RegSortData::dump() const {
226 print(errs()); errs() << '\n';
232 /// Map register candidates to information about how they are used.
233 class RegUseTracker
{
234 using RegUsesTy
= DenseMap
<const SCEV
*, RegSortData
>;
236 RegUsesTy RegUsesMap
;
237 SmallVector
<const SCEV
*, 16> RegSequence
;
240 void countRegister(const SCEV
*Reg
, size_t LUIdx
);
241 void dropRegister(const SCEV
*Reg
, size_t LUIdx
);
242 void swapAndDropUse(size_t LUIdx
, size_t LastLUIdx
);
244 bool isRegUsedByUsesOtherThan(const SCEV
*Reg
, size_t LUIdx
) const;
246 const SmallBitVector
&getUsedByIndices(const SCEV
*Reg
) const;
250 using iterator
= SmallVectorImpl
<const SCEV
*>::iterator
;
251 using const_iterator
= SmallVectorImpl
<const SCEV
*>::const_iterator
;
253 iterator
begin() { return RegSequence
.begin(); }
254 iterator
end() { return RegSequence
.end(); }
255 const_iterator
begin() const { return RegSequence
.begin(); }
256 const_iterator
end() const { return RegSequence
.end(); }
259 } // end anonymous namespace
262 RegUseTracker::countRegister(const SCEV
*Reg
, size_t LUIdx
) {
263 std::pair
<RegUsesTy::iterator
, bool> Pair
=
264 RegUsesMap
.insert(std::make_pair(Reg
, RegSortData()));
265 RegSortData
&RSD
= Pair
.first
->second
;
267 RegSequence
.push_back(Reg
);
268 RSD
.UsedByIndices
.resize(std::max(RSD
.UsedByIndices
.size(), LUIdx
+ 1));
269 RSD
.UsedByIndices
.set(LUIdx
);
273 RegUseTracker::dropRegister(const SCEV
*Reg
, size_t LUIdx
) {
274 RegUsesTy::iterator It
= RegUsesMap
.find(Reg
);
275 assert(It
!= RegUsesMap
.end());
276 RegSortData
&RSD
= It
->second
;
277 assert(RSD
.UsedByIndices
.size() > LUIdx
);
278 RSD
.UsedByIndices
.reset(LUIdx
);
282 RegUseTracker::swapAndDropUse(size_t LUIdx
, size_t LastLUIdx
) {
283 assert(LUIdx
<= LastLUIdx
);
285 // Update RegUses. The data structure is not optimized for this purpose;
286 // we must iterate through it and update each of the bit vectors.
287 for (auto &Pair
: RegUsesMap
) {
288 SmallBitVector
&UsedByIndices
= Pair
.second
.UsedByIndices
;
289 if (LUIdx
< UsedByIndices
.size())
290 UsedByIndices
[LUIdx
] =
291 LastLUIdx
< UsedByIndices
.size() ? UsedByIndices
[LastLUIdx
] : false;
292 UsedByIndices
.resize(std::min(UsedByIndices
.size(), LastLUIdx
));
297 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV
*Reg
, size_t LUIdx
) const {
298 RegUsesTy::const_iterator I
= RegUsesMap
.find(Reg
);
299 if (I
== RegUsesMap
.end())
301 const SmallBitVector
&UsedByIndices
= I
->second
.UsedByIndices
;
302 int i
= UsedByIndices
.find_first();
303 if (i
== -1) return false;
304 if ((size_t)i
!= LUIdx
) return true;
305 return UsedByIndices
.find_next(i
) != -1;
308 const SmallBitVector
&RegUseTracker::getUsedByIndices(const SCEV
*Reg
) const {
309 RegUsesTy::const_iterator I
= RegUsesMap
.find(Reg
);
310 assert(I
!= RegUsesMap
.end() && "Unknown register!");
311 return I
->second
.UsedByIndices
;
314 void RegUseTracker::clear() {
321 /// This class holds information that describes a formula for computing
322 /// satisfying a use. It may include broken-out immediates and scaled registers.
324 /// Global base address used for complex addressing.
325 GlobalValue
*BaseGV
= nullptr;
327 /// Base offset for complex addressing.
328 int64_t BaseOffset
= 0;
330 /// Whether any complex addressing has a base register.
331 bool HasBaseReg
= false;
333 /// The scale of any complex addressing.
336 /// The list of "base" registers for this use. When this is non-empty. The
337 /// canonical representation of a formula is
338 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
339 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
340 /// 3. The reg containing recurrent expr related with currect loop in the
341 /// formula should be put in the ScaledReg.
342 /// #1 enforces that the scaled register is always used when at least two
343 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
344 /// #2 enforces that 1 * reg is reg.
345 /// #3 ensures invariant regs with respect to current loop can be combined
346 /// together in LSR codegen.
347 /// This invariant can be temporarily broken while building a formula.
348 /// However, every formula inserted into the LSRInstance must be in canonical
350 SmallVector
<const SCEV
*, 4> BaseRegs
;
352 /// The 'scaled' register for this use. This should be non-null when Scale is
354 const SCEV
*ScaledReg
= nullptr;
356 /// An additional constant offset which added near the use. This requires a
357 /// temporary register, but the offset itself can live in an add immediate
358 /// field rather than a register.
359 int64_t UnfoldedOffset
= 0;
363 void initialMatch(const SCEV
*S
, Loop
*L
, ScalarEvolution
&SE
);
365 bool isCanonical(const Loop
&L
) const;
367 void canonicalize(const Loop
&L
);
371 bool hasZeroEnd() const;
373 size_t getNumRegs() const;
374 Type
*getType() const;
376 void deleteBaseReg(const SCEV
*&S
);
378 bool referencesReg(const SCEV
*S
) const;
379 bool hasRegsUsedByUsesOtherThan(size_t LUIdx
,
380 const RegUseTracker
&RegUses
) const;
382 void print(raw_ostream
&OS
) const;
386 } // end anonymous namespace
388 /// Recursion helper for initialMatch.
389 static void DoInitialMatch(const SCEV
*S
, Loop
*L
,
390 SmallVectorImpl
<const SCEV
*> &Good
,
391 SmallVectorImpl
<const SCEV
*> &Bad
,
392 ScalarEvolution
&SE
) {
393 // Collect expressions which properly dominate the loop header.
394 if (SE
.properlyDominates(S
, L
->getHeader())) {
399 // Look at add operands.
400 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
401 for (const SCEV
*S
: Add
->operands())
402 DoInitialMatch(S
, L
, Good
, Bad
, SE
);
406 // Look at addrec operands.
407 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
))
408 if (!AR
->getStart()->isZero() && AR
->isAffine()) {
409 DoInitialMatch(AR
->getStart(), L
, Good
, Bad
, SE
);
410 DoInitialMatch(SE
.getAddRecExpr(SE
.getConstant(AR
->getType(), 0),
411 AR
->getStepRecurrence(SE
),
412 // FIXME: AR->getNoWrapFlags()
413 AR
->getLoop(), SCEV::FlagAnyWrap
),
418 // Handle a multiplication by -1 (negation) if it didn't fold.
419 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
))
420 if (Mul
->getOperand(0)->isAllOnesValue()) {
421 SmallVector
<const SCEV
*, 4> Ops(Mul
->op_begin()+1, Mul
->op_end());
422 const SCEV
*NewMul
= SE
.getMulExpr(Ops
);
424 SmallVector
<const SCEV
*, 4> MyGood
;
425 SmallVector
<const SCEV
*, 4> MyBad
;
426 DoInitialMatch(NewMul
, L
, MyGood
, MyBad
, SE
);
427 const SCEV
*NegOne
= SE
.getSCEV(ConstantInt::getAllOnesValue(
428 SE
.getEffectiveSCEVType(NewMul
->getType())));
429 for (const SCEV
*S
: MyGood
)
430 Good
.push_back(SE
.getMulExpr(NegOne
, S
));
431 for (const SCEV
*S
: MyBad
)
432 Bad
.push_back(SE
.getMulExpr(NegOne
, S
));
436 // Ok, we can't do anything interesting. Just stuff the whole thing into a
437 // register and hope for the best.
441 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
442 /// all loop-invariant and loop-computable values in a single base register.
443 void Formula::initialMatch(const SCEV
*S
, Loop
*L
, ScalarEvolution
&SE
) {
444 SmallVector
<const SCEV
*, 4> Good
;
445 SmallVector
<const SCEV
*, 4> Bad
;
446 DoInitialMatch(S
, L
, Good
, Bad
, SE
);
448 const SCEV
*Sum
= SE
.getAddExpr(Good
);
450 BaseRegs
.push_back(Sum
);
454 const SCEV
*Sum
= SE
.getAddExpr(Bad
);
456 BaseRegs
.push_back(Sum
);
462 /// Check whether or not this formula satisfies the canonical
464 /// \see Formula::BaseRegs.
465 bool Formula::isCanonical(const Loop
&L
) const {
467 return BaseRegs
.size() <= 1;
472 if (Scale
== 1 && BaseRegs
.empty())
475 const SCEVAddRecExpr
*SAR
= dyn_cast
<const SCEVAddRecExpr
>(ScaledReg
);
476 if (SAR
&& SAR
->getLoop() == &L
)
479 // If ScaledReg is not a recurrent expr, or it is but its loop is not current
480 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
481 // loop, we want to swap the reg in BaseRegs with ScaledReg.
483 find_if(make_range(BaseRegs
.begin(), BaseRegs
.end()), [&](const SCEV
*S
) {
484 return isa
<const SCEVAddRecExpr
>(S
) &&
485 (cast
<SCEVAddRecExpr
>(S
)->getLoop() == &L
);
487 return I
== BaseRegs
.end();
490 /// Helper method to morph a formula into its canonical representation.
491 /// \see Formula::BaseRegs.
492 /// Every formula having more than one base register, must use the ScaledReg
493 /// field. Otherwise, we would have to do special cases everywhere in LSR
494 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
495 /// On the other hand, 1*reg should be canonicalized into reg.
496 void Formula::canonicalize(const Loop
&L
) {
499 // So far we did not need this case. This is easy to implement but it is
500 // useless to maintain dead code. Beside it could hurt compile time.
501 assert(!BaseRegs
.empty() && "1*reg => reg, should not be needed.");
503 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
505 ScaledReg
= BaseRegs
.back();
510 // If ScaledReg is an invariant with respect to L, find the reg from
511 // BaseRegs containing the recurrent expr related with Loop L. Swap the
512 // reg with ScaledReg.
513 const SCEVAddRecExpr
*SAR
= dyn_cast
<const SCEVAddRecExpr
>(ScaledReg
);
514 if (!SAR
|| SAR
->getLoop() != &L
) {
515 auto I
= find_if(make_range(BaseRegs
.begin(), BaseRegs
.end()),
517 return isa
<const SCEVAddRecExpr
>(S
) &&
518 (cast
<SCEVAddRecExpr
>(S
)->getLoop() == &L
);
520 if (I
!= BaseRegs
.end())
521 std::swap(ScaledReg
, *I
);
525 /// Get rid of the scale in the formula.
526 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
527 /// \return true if it was possible to get rid of the scale, false otherwise.
528 /// \note After this operation the formula may not be in the canonical form.
529 bool Formula::unscale() {
533 BaseRegs
.push_back(ScaledReg
);
538 bool Formula::hasZeroEnd() const {
539 if (UnfoldedOffset
|| BaseOffset
)
541 if (BaseRegs
.size() != 1 || ScaledReg
)
546 /// Return the total number of register operands used by this formula. This does
547 /// not include register uses implied by non-constant addrec strides.
548 size_t Formula::getNumRegs() const {
549 return !!ScaledReg
+ BaseRegs
.size();
552 /// Return the type of this formula, if it has one, or null otherwise. This type
553 /// is meaningless except for the bit size.
554 Type
*Formula::getType() const {
555 return !BaseRegs
.empty() ? BaseRegs
.front()->getType() :
556 ScaledReg
? ScaledReg
->getType() :
557 BaseGV
? BaseGV
->getType() :
561 /// Delete the given base reg from the BaseRegs list.
562 void Formula::deleteBaseReg(const SCEV
*&S
) {
563 if (&S
!= &BaseRegs
.back())
564 std::swap(S
, BaseRegs
.back());
568 /// Test if this formula references the given register.
569 bool Formula::referencesReg(const SCEV
*S
) const {
570 return S
== ScaledReg
|| is_contained(BaseRegs
, S
);
573 /// Test whether this formula uses registers which are used by uses other than
574 /// the use with the given index.
575 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx
,
576 const RegUseTracker
&RegUses
) const {
578 if (RegUses
.isRegUsedByUsesOtherThan(ScaledReg
, LUIdx
))
580 for (const SCEV
*BaseReg
: BaseRegs
)
581 if (RegUses
.isRegUsedByUsesOtherThan(BaseReg
, LUIdx
))
586 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
587 void Formula::print(raw_ostream
&OS
) const {
590 if (!First
) OS
<< " + "; else First
= false;
591 BaseGV
->printAsOperand(OS
, /*PrintType=*/false);
593 if (BaseOffset
!= 0) {
594 if (!First
) OS
<< " + "; else First
= false;
597 for (const SCEV
*BaseReg
: BaseRegs
) {
598 if (!First
) OS
<< " + "; else First
= false;
599 OS
<< "reg(" << *BaseReg
<< ')';
601 if (HasBaseReg
&& BaseRegs
.empty()) {
602 if (!First
) OS
<< " + "; else First
= false;
603 OS
<< "**error: HasBaseReg**";
604 } else if (!HasBaseReg
&& !BaseRegs
.empty()) {
605 if (!First
) OS
<< " + "; else First
= false;
606 OS
<< "**error: !HasBaseReg**";
609 if (!First
) OS
<< " + "; else First
= false;
610 OS
<< Scale
<< "*reg(";
617 if (UnfoldedOffset
!= 0) {
618 if (!First
) OS
<< " + ";
619 OS
<< "imm(" << UnfoldedOffset
<< ')';
623 LLVM_DUMP_METHOD
void Formula::dump() const {
624 print(errs()); errs() << '\n';
628 /// Return true if the given addrec can be sign-extended without changing its
630 static bool isAddRecSExtable(const SCEVAddRecExpr
*AR
, ScalarEvolution
&SE
) {
632 IntegerType::get(SE
.getContext(), SE
.getTypeSizeInBits(AR
->getType()) + 1);
633 return isa
<SCEVAddRecExpr
>(SE
.getSignExtendExpr(AR
, WideTy
));
636 /// Return true if the given add can be sign-extended without changing its
638 static bool isAddSExtable(const SCEVAddExpr
*A
, ScalarEvolution
&SE
) {
640 IntegerType::get(SE
.getContext(), SE
.getTypeSizeInBits(A
->getType()) + 1);
641 return isa
<SCEVAddExpr
>(SE
.getSignExtendExpr(A
, WideTy
));
644 /// Return true if the given mul can be sign-extended without changing its
646 static bool isMulSExtable(const SCEVMulExpr
*M
, ScalarEvolution
&SE
) {
648 IntegerType::get(SE
.getContext(),
649 SE
.getTypeSizeInBits(M
->getType()) * M
->getNumOperands());
650 return isa
<SCEVMulExpr
>(SE
.getSignExtendExpr(M
, WideTy
));
653 /// Return an expression for LHS /s RHS, if it can be determined and if the
654 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
655 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
656 /// the multiplication may overflow, which is useful when the result will be
657 /// used in a context where the most significant bits are ignored.
658 static const SCEV
*getExactSDiv(const SCEV
*LHS
, const SCEV
*RHS
,
660 bool IgnoreSignificantBits
= false) {
661 // Handle the trivial case, which works for any SCEV type.
663 return SE
.getConstant(LHS
->getType(), 1);
665 // Handle a few RHS special cases.
666 const SCEVConstant
*RC
= dyn_cast
<SCEVConstant
>(RHS
);
668 const APInt
&RA
= RC
->getAPInt();
669 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
671 if (RA
.isAllOnesValue())
672 return SE
.getMulExpr(LHS
, RC
);
673 // Handle x /s 1 as x.
678 // Check for a division of a constant by a constant.
679 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(LHS
)) {
682 const APInt
&LA
= C
->getAPInt();
683 const APInt
&RA
= RC
->getAPInt();
684 if (LA
.srem(RA
) != 0)
686 return SE
.getConstant(LA
.sdiv(RA
));
689 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
690 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LHS
)) {
691 if ((IgnoreSignificantBits
|| isAddRecSExtable(AR
, SE
)) && AR
->isAffine()) {
692 const SCEV
*Step
= getExactSDiv(AR
->getStepRecurrence(SE
), RHS
, SE
,
693 IgnoreSignificantBits
);
694 if (!Step
) return nullptr;
695 const SCEV
*Start
= getExactSDiv(AR
->getStart(), RHS
, SE
,
696 IgnoreSignificantBits
);
697 if (!Start
) return nullptr;
698 // FlagNW is independent of the start value, step direction, and is
699 // preserved with smaller magnitude steps.
700 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
701 return SE
.getAddRecExpr(Start
, Step
, AR
->getLoop(), SCEV::FlagAnyWrap
);
706 // Distribute the sdiv over add operands, if the add doesn't overflow.
707 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(LHS
)) {
708 if (IgnoreSignificantBits
|| isAddSExtable(Add
, SE
)) {
709 SmallVector
<const SCEV
*, 8> Ops
;
710 for (const SCEV
*S
: Add
->operands()) {
711 const SCEV
*Op
= getExactSDiv(S
, RHS
, SE
, IgnoreSignificantBits
);
712 if (!Op
) return nullptr;
715 return SE
.getAddExpr(Ops
);
720 // Check for a multiply operand that we can pull RHS out of.
721 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(LHS
)) {
722 if (IgnoreSignificantBits
|| isMulSExtable(Mul
, SE
)) {
723 SmallVector
<const SCEV
*, 4> Ops
;
725 for (const SCEV
*S
: Mul
->operands()) {
727 if (const SCEV
*Q
= getExactSDiv(S
, RHS
, SE
,
728 IgnoreSignificantBits
)) {
734 return Found
? SE
.getMulExpr(Ops
) : nullptr;
739 // Otherwise we don't know.
743 /// If S involves the addition of a constant integer value, return that integer
744 /// value, and mutate S to point to a new SCEV with that value excluded.
745 static int64_t ExtractImmediate(const SCEV
*&S
, ScalarEvolution
&SE
) {
746 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
)) {
747 if (C
->getAPInt().getMinSignedBits() <= 64) {
748 S
= SE
.getConstant(C
->getType(), 0);
749 return C
->getValue()->getSExtValue();
751 } else if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
752 SmallVector
<const SCEV
*, 8> NewOps(Add
->op_begin(), Add
->op_end());
753 int64_t Result
= ExtractImmediate(NewOps
.front(), SE
);
755 S
= SE
.getAddExpr(NewOps
);
757 } else if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
758 SmallVector
<const SCEV
*, 8> NewOps(AR
->op_begin(), AR
->op_end());
759 int64_t Result
= ExtractImmediate(NewOps
.front(), SE
);
761 S
= SE
.getAddRecExpr(NewOps
, AR
->getLoop(),
762 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
769 /// If S involves the addition of a GlobalValue address, return that symbol, and
770 /// mutate S to point to a new SCEV with that value excluded.
771 static GlobalValue
*ExtractSymbol(const SCEV
*&S
, ScalarEvolution
&SE
) {
772 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
773 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(U
->getValue())) {
774 S
= SE
.getConstant(GV
->getType(), 0);
777 } else if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
778 SmallVector
<const SCEV
*, 8> NewOps(Add
->op_begin(), Add
->op_end());
779 GlobalValue
*Result
= ExtractSymbol(NewOps
.back(), SE
);
781 S
= SE
.getAddExpr(NewOps
);
783 } else if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
784 SmallVector
<const SCEV
*, 8> NewOps(AR
->op_begin(), AR
->op_end());
785 GlobalValue
*Result
= ExtractSymbol(NewOps
.front(), SE
);
787 S
= SE
.getAddRecExpr(NewOps
, AR
->getLoop(),
788 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
795 /// Returns true if the specified instruction is using the specified value as an
797 static bool isAddressUse(const TargetTransformInfo
&TTI
,
798 Instruction
*Inst
, Value
*OperandVal
) {
799 bool isAddress
= isa
<LoadInst
>(Inst
);
800 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
801 if (SI
->getPointerOperand() == OperandVal
)
803 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
804 // Addressing modes can also be folded into prefetches and a variety
806 switch (II
->getIntrinsicID()) {
807 case Intrinsic::memset
:
808 case Intrinsic::prefetch
:
809 if (II
->getArgOperand(0) == OperandVal
)
812 case Intrinsic::memmove
:
813 case Intrinsic::memcpy
:
814 if (II
->getArgOperand(0) == OperandVal
||
815 II
->getArgOperand(1) == OperandVal
)
819 MemIntrinsicInfo IntrInfo
;
820 if (TTI
.getTgtMemIntrinsic(II
, IntrInfo
)) {
821 if (IntrInfo
.PtrVal
== OperandVal
)
826 } else if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(Inst
)) {
827 if (RMW
->getPointerOperand() == OperandVal
)
829 } else if (AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(Inst
)) {
830 if (CmpX
->getPointerOperand() == OperandVal
)
836 /// Return the type of the memory being accessed.
837 static MemAccessTy
getAccessType(const TargetTransformInfo
&TTI
,
838 Instruction
*Inst
, Value
*OperandVal
) {
839 MemAccessTy
AccessTy(Inst
->getType(), MemAccessTy::UnknownAddressSpace
);
840 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
841 AccessTy
.MemTy
= SI
->getOperand(0)->getType();
842 AccessTy
.AddrSpace
= SI
->getPointerAddressSpace();
843 } else if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(Inst
)) {
844 AccessTy
.AddrSpace
= LI
->getPointerAddressSpace();
845 } else if (const AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(Inst
)) {
846 AccessTy
.AddrSpace
= RMW
->getPointerAddressSpace();
847 } else if (const AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(Inst
)) {
848 AccessTy
.AddrSpace
= CmpX
->getPointerAddressSpace();
849 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
850 switch (II
->getIntrinsicID()) {
851 case Intrinsic::prefetch
:
852 case Intrinsic::memset
:
853 AccessTy
.AddrSpace
= II
->getArgOperand(0)->getType()->getPointerAddressSpace();
854 AccessTy
.MemTy
= OperandVal
->getType();
856 case Intrinsic::memmove
:
857 case Intrinsic::memcpy
:
858 AccessTy
.AddrSpace
= OperandVal
->getType()->getPointerAddressSpace();
859 AccessTy
.MemTy
= OperandVal
->getType();
862 MemIntrinsicInfo IntrInfo
;
863 if (TTI
.getTgtMemIntrinsic(II
, IntrInfo
) && IntrInfo
.PtrVal
) {
865 = IntrInfo
.PtrVal
->getType()->getPointerAddressSpace();
873 // All pointers have the same requirements, so canonicalize them to an
874 // arbitrary pointer type to minimize variation.
875 if (PointerType
*PTy
= dyn_cast
<PointerType
>(AccessTy
.MemTy
))
876 AccessTy
.MemTy
= PointerType::get(IntegerType::get(PTy
->getContext(), 1),
877 PTy
->getAddressSpace());
882 /// Return true if this AddRec is already a phi in its loop.
883 static bool isExistingPhi(const SCEVAddRecExpr
*AR
, ScalarEvolution
&SE
) {
884 for (PHINode
&PN
: AR
->getLoop()->getHeader()->phis()) {
885 if (SE
.isSCEVable(PN
.getType()) &&
886 (SE
.getEffectiveSCEVType(PN
.getType()) ==
887 SE
.getEffectiveSCEVType(AR
->getType())) &&
888 SE
.getSCEV(&PN
) == AR
)
894 /// Check if expanding this expression is likely to incur significant cost. This
895 /// is tricky because SCEV doesn't track which expressions are actually computed
896 /// by the current IR.
898 /// We currently allow expansion of IV increments that involve adds,
899 /// multiplication by constants, and AddRecs from existing phis.
901 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
902 /// obvious multiple of the UDivExpr.
903 static bool isHighCostExpansion(const SCEV
*S
,
904 SmallPtrSetImpl
<const SCEV
*> &Processed
,
905 ScalarEvolution
&SE
) {
906 // Zero/One operand expressions
907 switch (S
->getSCEVType()) {
912 return isHighCostExpansion(cast
<SCEVTruncateExpr
>(S
)->getOperand(),
915 return isHighCostExpansion(cast
<SCEVZeroExtendExpr
>(S
)->getOperand(),
918 return isHighCostExpansion(cast
<SCEVSignExtendExpr
>(S
)->getOperand(),
922 if (!Processed
.insert(S
).second
)
925 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
926 for (const SCEV
*S
: Add
->operands()) {
927 if (isHighCostExpansion(S
, Processed
, SE
))
933 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
934 if (Mul
->getNumOperands() == 2) {
935 // Multiplication by a constant is ok
936 if (isa
<SCEVConstant
>(Mul
->getOperand(0)))
937 return isHighCostExpansion(Mul
->getOperand(1), Processed
, SE
);
939 // If we have the value of one operand, check if an existing
940 // multiplication already generates this expression.
941 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(Mul
->getOperand(1))) {
942 Value
*UVal
= U
->getValue();
943 for (User
*UR
: UVal
->users()) {
944 // If U is a constant, it may be used by a ConstantExpr.
945 Instruction
*UI
= dyn_cast
<Instruction
>(UR
);
946 if (UI
&& UI
->getOpcode() == Instruction::Mul
&&
947 SE
.isSCEVable(UI
->getType())) {
948 return SE
.getSCEV(UI
) == Mul
;
955 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
956 if (isExistingPhi(AR
, SE
))
960 // Fow now, consider any other type of expression (div/mul/min/max) high cost.
964 /// If any of the instructions in the specified set are trivially dead, delete
965 /// them and see if this makes any of their operands subsequently dead.
967 DeleteTriviallyDeadInstructions(SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) {
968 bool Changed
= false;
970 while (!DeadInsts
.empty()) {
971 Value
*V
= DeadInsts
.pop_back_val();
972 Instruction
*I
= dyn_cast_or_null
<Instruction
>(V
);
974 if (!I
|| !isInstructionTriviallyDead(I
))
977 for (Use
&O
: I
->operands())
978 if (Instruction
*U
= dyn_cast
<Instruction
>(O
)) {
981 DeadInsts
.emplace_back(U
);
984 I
->eraseFromParent();
995 } // end anonymous namespace
997 /// Check if the addressing mode defined by \p F is completely
998 /// folded in \p LU at isel time.
999 /// This includes address-mode folding and special icmp tricks.
1000 /// This function returns true if \p LU can accommodate what \p F
1001 /// defines and up to 1 base + 1 scaled + offset.
1002 /// In other words, if \p F has several base registers, this function may
1003 /// still return true. Therefore, users still need to account for
1004 /// additional base registers and/or unfolded offsets to derive an
1005 /// accurate cost model.
1006 static bool isAMCompletelyFolded(const TargetTransformInfo
&TTI
,
1007 const LSRUse
&LU
, const Formula
&F
);
1009 // Get the cost of the scaling factor used in F for LU.
1010 static unsigned getScalingFactorCost(const TargetTransformInfo
&TTI
,
1011 const LSRUse
&LU
, const Formula
&F
,
1016 /// This class is used to measure and compare candidate formulae.
1018 const Loop
*L
= nullptr;
1019 ScalarEvolution
*SE
= nullptr;
1020 const TargetTransformInfo
*TTI
= nullptr;
1021 TargetTransformInfo::LSRCost C
;
1025 Cost(const Loop
*L
, ScalarEvolution
&SE
, const TargetTransformInfo
&TTI
) :
1026 L(L
), SE(&SE
), TTI(&TTI
) {
1037 bool isLess(Cost
&Other
);
1042 // Once any of the metrics loses, they must all remain losers.
1044 return ((C
.Insns
| C
.NumRegs
| C
.AddRecCost
| C
.NumIVMuls
| C
.NumBaseAdds
1045 | C
.ImmCost
| C
.SetupCost
| C
.ScaleCost
) != ~0u)
1046 || ((C
.Insns
& C
.NumRegs
& C
.AddRecCost
& C
.NumIVMuls
& C
.NumBaseAdds
1047 & C
.ImmCost
& C
.SetupCost
& C
.ScaleCost
) == ~0u);
1052 assert(isValid() && "invalid cost");
1053 return C
.NumRegs
== ~0u;
1056 void RateFormula(const Formula
&F
,
1057 SmallPtrSetImpl
<const SCEV
*> &Regs
,
1058 const DenseSet
<const SCEV
*> &VisitedRegs
,
1060 SmallPtrSetImpl
<const SCEV
*> *LoserRegs
= nullptr);
1062 void print(raw_ostream
&OS
) const;
1066 void RateRegister(const Formula
&F
, const SCEV
*Reg
,
1067 SmallPtrSetImpl
<const SCEV
*> &Regs
);
1068 void RatePrimaryRegister(const Formula
&F
, const SCEV
*Reg
,
1069 SmallPtrSetImpl
<const SCEV
*> &Regs
,
1070 SmallPtrSetImpl
<const SCEV
*> *LoserRegs
);
1073 /// An operand value in an instruction which is to be replaced with some
1074 /// equivalent, possibly strength-reduced, replacement.
1076 /// The instruction which will be updated.
1077 Instruction
*UserInst
= nullptr;
1079 /// The operand of the instruction which will be replaced. The operand may be
1080 /// used more than once; every instance will be replaced.
1081 Value
*OperandValToReplace
= nullptr;
1083 /// If this user is to use the post-incremented value of an induction
1084 /// variable, this set is non-empty and holds the loops associated with the
1085 /// induction variable.
1086 PostIncLoopSet PostIncLoops
;
1088 /// A constant offset to be added to the LSRUse expression. This allows
1089 /// multiple fixups to share the same LSRUse with different offsets, for
1090 /// example in an unrolled loop.
1093 LSRFixup() = default;
1095 bool isUseFullyOutsideLoop(const Loop
*L
) const;
1097 void print(raw_ostream
&OS
) const;
1101 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1102 /// SmallVectors of const SCEV*.
1103 struct UniquifierDenseMapInfo
{
1104 static SmallVector
<const SCEV
*, 4> getEmptyKey() {
1105 SmallVector
<const SCEV
*, 4> V
;
1106 V
.push_back(reinterpret_cast<const SCEV
*>(-1));
1110 static SmallVector
<const SCEV
*, 4> getTombstoneKey() {
1111 SmallVector
<const SCEV
*, 4> V
;
1112 V
.push_back(reinterpret_cast<const SCEV
*>(-2));
1116 static unsigned getHashValue(const SmallVector
<const SCEV
*, 4> &V
) {
1117 return static_cast<unsigned>(hash_combine_range(V
.begin(), V
.end()));
1120 static bool isEqual(const SmallVector
<const SCEV
*, 4> &LHS
,
1121 const SmallVector
<const SCEV
*, 4> &RHS
) {
1126 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1127 /// as uses invented by LSR itself. It includes information about what kinds of
1128 /// things can be folded into the user, information about the user itself, and
1129 /// information about how the use may be satisfied. TODO: Represent multiple
1130 /// users of the same expression in common?
1132 DenseSet
<SmallVector
<const SCEV
*, 4>, UniquifierDenseMapInfo
> Uniquifier
;
1135 /// An enum for a kind of use, indicating what types of scaled and immediate
1136 /// operands it might support.
1138 Basic
, ///< A normal use, with no folding.
1139 Special
, ///< A special case of basic, allowing -1 scales.
1140 Address
, ///< An address use; folding according to TargetLowering
1141 ICmpZero
///< An equality icmp with both operands folded into one.
1142 // TODO: Add a generic icmp too?
1145 using SCEVUseKindPair
= PointerIntPair
<const SCEV
*, 2, KindType
>;
1148 MemAccessTy AccessTy
;
1150 /// The list of operands which are to be replaced.
1151 SmallVector
<LSRFixup
, 8> Fixups
;
1153 /// Keep track of the min and max offsets of the fixups.
1154 int64_t MinOffset
= std::numeric_limits
<int64_t>::max();
1155 int64_t MaxOffset
= std::numeric_limits
<int64_t>::min();
1157 /// This records whether all of the fixups using this LSRUse are outside of
1158 /// the loop, in which case some special-case heuristics may be used.
1159 bool AllFixupsOutsideLoop
= true;
1161 /// RigidFormula is set to true to guarantee that this use will be associated
1162 /// with a single formula--the one that initially matched. Some SCEV
1163 /// expressions cannot be expanded. This allows LSR to consider the registers
1164 /// used by those expressions without the need to expand them later after
1165 /// changing the formula.
1166 bool RigidFormula
= false;
1168 /// This records the widest use type for any fixup using this
1169 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1170 /// fixup widths to be equivalent, because the narrower one may be relying on
1171 /// the implicit truncation to truncate away bogus bits.
1172 Type
*WidestFixupType
= nullptr;
1174 /// A list of ways to build a value that can satisfy this user. After the
1175 /// list is populated, one of these is selected heuristically and used to
1176 /// formulate a replacement for OperandValToReplace in UserInst.
1177 SmallVector
<Formula
, 12> Formulae
;
1179 /// The set of register candidates used by all formulae in this LSRUse.
1180 SmallPtrSet
<const SCEV
*, 4> Regs
;
1182 LSRUse(KindType K
, MemAccessTy AT
) : Kind(K
), AccessTy(AT
) {}
1184 LSRFixup
&getNewFixup() {
1185 Fixups
.push_back(LSRFixup());
1186 return Fixups
.back();
1189 void pushFixup(LSRFixup
&f
) {
1190 Fixups
.push_back(f
);
1191 if (f
.Offset
> MaxOffset
)
1192 MaxOffset
= f
.Offset
;
1193 if (f
.Offset
< MinOffset
)
1194 MinOffset
= f
.Offset
;
1197 bool HasFormulaWithSameRegs(const Formula
&F
) const;
1198 float getNotSelectedProbability(const SCEV
*Reg
) const;
1199 bool InsertFormula(const Formula
&F
, const Loop
&L
);
1200 void DeleteFormula(Formula
&F
);
1201 void RecomputeRegs(size_t LUIdx
, RegUseTracker
&Reguses
);
1203 void print(raw_ostream
&OS
) const;
1207 } // end anonymous namespace
1209 static bool isAMCompletelyFolded(const TargetTransformInfo
&TTI
,
1210 LSRUse::KindType Kind
, MemAccessTy AccessTy
,
1211 GlobalValue
*BaseGV
, int64_t BaseOffset
,
1212 bool HasBaseReg
, int64_t Scale
,
1213 Instruction
*Fixup
= nullptr);
1215 static unsigned getSetupCost(const SCEV
*Reg
, unsigned Depth
) {
1216 if (isa
<SCEVUnknown
>(Reg
) || isa
<SCEVConstant
>(Reg
))
1220 if (const auto *S
= dyn_cast
<SCEVAddRecExpr
>(Reg
))
1221 return getSetupCost(S
->getStart(), Depth
- 1);
1222 if (auto S
= dyn_cast
<SCEVCastExpr
>(Reg
))
1223 return getSetupCost(S
->getOperand(), Depth
- 1);
1224 if (auto S
= dyn_cast
<SCEVNAryExpr
>(Reg
))
1225 return std::accumulate(S
->op_begin(), S
->op_end(), 0,
1226 [&](unsigned i
, const SCEV
*Reg
) {
1227 return i
+ getSetupCost(Reg
, Depth
- 1);
1229 if (auto S
= dyn_cast
<SCEVUDivExpr
>(Reg
))
1230 return getSetupCost(S
->getLHS(), Depth
- 1) +
1231 getSetupCost(S
->getRHS(), Depth
- 1);
1235 /// Tally up interesting quantities from the given register.
1236 void Cost::RateRegister(const Formula
&F
, const SCEV
*Reg
,
1237 SmallPtrSetImpl
<const SCEV
*> &Regs
) {
1238 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Reg
)) {
1239 // If this is an addrec for another loop, it should be an invariant
1240 // with respect to L since L is the innermost loop (at least
1241 // for now LSR only handles innermost loops).
1242 if (AR
->getLoop() != L
) {
1243 // If the AddRec exists, consider it's register free and leave it alone.
1244 if (isExistingPhi(AR
, *SE
))
1247 // It is bad to allow LSR for current loop to add induction variables
1248 // for its sibling loops.
1249 if (!AR
->getLoop()->contains(L
)) {
1254 // Otherwise, it will be an invariant with respect to Loop L.
1259 unsigned LoopCost
= 1;
1260 if (TTI
->isIndexedLoadLegal(TTI
->MIM_PostInc
, AR
->getType()) ||
1261 TTI
->isIndexedStoreLegal(TTI
->MIM_PostInc
, AR
->getType())) {
1263 // If the step size matches the base offset, we could use pre-indexed
1265 if (TTI
->shouldFavorBackedgeIndex(L
)) {
1266 if (auto *Step
= dyn_cast
<SCEVConstant
>(AR
->getStepRecurrence(*SE
)))
1267 if (Step
->getAPInt() == F
.BaseOffset
)
1271 if (TTI
->shouldFavorPostInc()) {
1272 const SCEV
*LoopStep
= AR
->getStepRecurrence(*SE
);
1273 if (isa
<SCEVConstant
>(LoopStep
)) {
1274 const SCEV
*LoopStart
= AR
->getStart();
1275 if (!isa
<SCEVConstant
>(LoopStart
) &&
1276 SE
->isLoopInvariant(LoopStart
, L
))
1281 C
.AddRecCost
+= LoopCost
;
1283 // Add the step value register, if it needs one.
1284 // TODO: The non-affine case isn't precisely modeled here.
1285 if (!AR
->isAffine() || !isa
<SCEVConstant
>(AR
->getOperand(1))) {
1286 if (!Regs
.count(AR
->getOperand(1))) {
1287 RateRegister(F
, AR
->getOperand(1), Regs
);
1295 // Rough heuristic; favor registers which don't require extra setup
1296 // instructions in the preheader.
1297 C
.SetupCost
+= getSetupCost(Reg
, SetupCostDepthLimit
);
1298 // Ensure we don't, even with the recusion limit, produce invalid costs.
1299 C
.SetupCost
= std::min
<unsigned>(C
.SetupCost
, 1 << 16);
1301 C
.NumIVMuls
+= isa
<SCEVMulExpr
>(Reg
) &&
1302 SE
->hasComputableLoopEvolution(Reg
, L
);
1305 /// Record this register in the set. If we haven't seen it before, rate
1306 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1307 /// one of those regs an instant loser.
1308 void Cost::RatePrimaryRegister(const Formula
&F
, const SCEV
*Reg
,
1309 SmallPtrSetImpl
<const SCEV
*> &Regs
,
1310 SmallPtrSetImpl
<const SCEV
*> *LoserRegs
) {
1311 if (LoserRegs
&& LoserRegs
->count(Reg
)) {
1315 if (Regs
.insert(Reg
).second
) {
1316 RateRegister(F
, Reg
, Regs
);
1317 if (LoserRegs
&& isLoser())
1318 LoserRegs
->insert(Reg
);
1322 void Cost::RateFormula(const Formula
&F
,
1323 SmallPtrSetImpl
<const SCEV
*> &Regs
,
1324 const DenseSet
<const SCEV
*> &VisitedRegs
,
1326 SmallPtrSetImpl
<const SCEV
*> *LoserRegs
) {
1327 assert(F
.isCanonical(*L
) && "Cost is accurate only for canonical formula");
1328 // Tally up the registers.
1329 unsigned PrevAddRecCost
= C
.AddRecCost
;
1330 unsigned PrevNumRegs
= C
.NumRegs
;
1331 unsigned PrevNumBaseAdds
= C
.NumBaseAdds
;
1332 if (const SCEV
*ScaledReg
= F
.ScaledReg
) {
1333 if (VisitedRegs
.count(ScaledReg
)) {
1337 RatePrimaryRegister(F
, ScaledReg
, Regs
, LoserRegs
);
1341 for (const SCEV
*BaseReg
: F
.BaseRegs
) {
1342 if (VisitedRegs
.count(BaseReg
)) {
1346 RatePrimaryRegister(F
, BaseReg
, Regs
, LoserRegs
);
1351 // Determine how many (unfolded) adds we'll need inside the loop.
1352 size_t NumBaseParts
= F
.getNumRegs();
1353 if (NumBaseParts
> 1)
1354 // Do not count the base and a possible second register if the target
1355 // allows to fold 2 registers.
1357 NumBaseParts
- (1 + (F
.Scale
&& isAMCompletelyFolded(*TTI
, LU
, F
)));
1358 C
.NumBaseAdds
+= (F
.UnfoldedOffset
!= 0);
1360 // Accumulate non-free scaling amounts.
1361 C
.ScaleCost
+= getScalingFactorCost(*TTI
, LU
, F
, *L
);
1363 // Tally up the non-zero immediates.
1364 for (const LSRFixup
&Fixup
: LU
.Fixups
) {
1365 int64_t O
= Fixup
.Offset
;
1366 int64_t Offset
= (uint64_t)O
+ F
.BaseOffset
;
1368 C
.ImmCost
+= 64; // Handle symbolic values conservatively.
1369 // TODO: This should probably be the pointer size.
1370 else if (Offset
!= 0)
1371 C
.ImmCost
+= APInt(64, Offset
, true).getMinSignedBits();
1373 // Check with target if this offset with this instruction is
1374 // specifically not supported.
1375 if (LU
.Kind
== LSRUse::Address
&& Offset
!= 0 &&
1376 !isAMCompletelyFolded(*TTI
, LSRUse::Address
, LU
.AccessTy
, F
.BaseGV
,
1377 Offset
, F
.HasBaseReg
, F
.Scale
, Fixup
.UserInst
))
1381 // If we don't count instruction cost exit here.
1383 assert(isValid() && "invalid cost");
1387 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1388 // additional instruction (at least fill).
1389 unsigned TTIRegNum
= TTI
->getNumberOfRegisters(false) - 1;
1390 if (C
.NumRegs
> TTIRegNum
) {
1391 // Cost already exceeded TTIRegNum, then only newly added register can add
1392 // new instructions.
1393 if (PrevNumRegs
> TTIRegNum
)
1394 C
.Insns
+= (C
.NumRegs
- PrevNumRegs
);
1396 C
.Insns
+= (C
.NumRegs
- TTIRegNum
);
1399 // If ICmpZero formula ends with not 0, it could not be replaced by
1400 // just add or sub. We'll need to compare final result of AddRec.
1401 // That means we'll need an additional instruction. But if the target can
1402 // macro-fuse a compare with a branch, don't count this extra instruction.
1403 // For -10 + {0, +, 1}:
1409 if (LU
.Kind
== LSRUse::ICmpZero
&& !F
.hasZeroEnd() &&
1410 !TTI
->canMacroFuseCmp())
1412 // Each new AddRec adds 1 instruction to calculation.
1413 C
.Insns
+= (C
.AddRecCost
- PrevAddRecCost
);
1415 // BaseAdds adds instructions for unfolded registers.
1416 if (LU
.Kind
!= LSRUse::ICmpZero
)
1417 C
.Insns
+= C
.NumBaseAdds
- PrevNumBaseAdds
;
1418 assert(isValid() && "invalid cost");
1421 /// Set this cost to a losing value.
1423 C
.Insns
= std::numeric_limits
<unsigned>::max();
1424 C
.NumRegs
= std::numeric_limits
<unsigned>::max();
1425 C
.AddRecCost
= std::numeric_limits
<unsigned>::max();
1426 C
.NumIVMuls
= std::numeric_limits
<unsigned>::max();
1427 C
.NumBaseAdds
= std::numeric_limits
<unsigned>::max();
1428 C
.ImmCost
= std::numeric_limits
<unsigned>::max();
1429 C
.SetupCost
= std::numeric_limits
<unsigned>::max();
1430 C
.ScaleCost
= std::numeric_limits
<unsigned>::max();
1433 /// Choose the lower cost.
1434 bool Cost::isLess(Cost
&Other
) {
1435 if (InsnsCost
.getNumOccurrences() > 0 && InsnsCost
&&
1436 C
.Insns
!= Other
.C
.Insns
)
1437 return C
.Insns
< Other
.C
.Insns
;
1438 return TTI
->isLSRCostLess(C
, Other
.C
);
1441 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1442 void Cost::print(raw_ostream
&OS
) const {
1444 OS
<< C
.Insns
<< " instruction" << (C
.Insns
== 1 ? " " : "s ");
1445 OS
<< C
.NumRegs
<< " reg" << (C
.NumRegs
== 1 ? "" : "s");
1446 if (C
.AddRecCost
!= 0)
1447 OS
<< ", with addrec cost " << C
.AddRecCost
;
1448 if (C
.NumIVMuls
!= 0)
1449 OS
<< ", plus " << C
.NumIVMuls
<< " IV mul"
1450 << (C
.NumIVMuls
== 1 ? "" : "s");
1451 if (C
.NumBaseAdds
!= 0)
1452 OS
<< ", plus " << C
.NumBaseAdds
<< " base add"
1453 << (C
.NumBaseAdds
== 1 ? "" : "s");
1454 if (C
.ScaleCost
!= 0)
1455 OS
<< ", plus " << C
.ScaleCost
<< " scale cost";
1457 OS
<< ", plus " << C
.ImmCost
<< " imm cost";
1458 if (C
.SetupCost
!= 0)
1459 OS
<< ", plus " << C
.SetupCost
<< " setup cost";
1462 LLVM_DUMP_METHOD
void Cost::dump() const {
1463 print(errs()); errs() << '\n';
1467 /// Test whether this fixup always uses its value outside of the given loop.
1468 bool LSRFixup::isUseFullyOutsideLoop(const Loop
*L
) const {
1469 // PHI nodes use their value in their incoming blocks.
1470 if (const PHINode
*PN
= dyn_cast
<PHINode
>(UserInst
)) {
1471 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
1472 if (PN
->getIncomingValue(i
) == OperandValToReplace
&&
1473 L
->contains(PN
->getIncomingBlock(i
)))
1478 return !L
->contains(UserInst
);
1481 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1482 void LSRFixup::print(raw_ostream
&OS
) const {
1484 // Store is common and interesting enough to be worth special-casing.
1485 if (StoreInst
*Store
= dyn_cast
<StoreInst
>(UserInst
)) {
1487 Store
->getOperand(0)->printAsOperand(OS
, /*PrintType=*/false);
1488 } else if (UserInst
->getType()->isVoidTy())
1489 OS
<< UserInst
->getOpcodeName();
1491 UserInst
->printAsOperand(OS
, /*PrintType=*/false);
1493 OS
<< ", OperandValToReplace=";
1494 OperandValToReplace
->printAsOperand(OS
, /*PrintType=*/false);
1496 for (const Loop
*PIL
: PostIncLoops
) {
1497 OS
<< ", PostIncLoop=";
1498 PIL
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
1502 OS
<< ", Offset=" << Offset
;
1505 LLVM_DUMP_METHOD
void LSRFixup::dump() const {
1506 print(errs()); errs() << '\n';
1510 /// Test whether this use as a formula which has the same registers as the given
1512 bool LSRUse::HasFormulaWithSameRegs(const Formula
&F
) const {
1513 SmallVector
<const SCEV
*, 4> Key
= F
.BaseRegs
;
1514 if (F
.ScaledReg
) Key
.push_back(F
.ScaledReg
);
1515 // Unstable sort by host order ok, because this is only used for uniquifying.
1517 return Uniquifier
.count(Key
);
1520 /// The function returns a probability of selecting formula without Reg.
1521 float LSRUse::getNotSelectedProbability(const SCEV
*Reg
) const {
1523 for (const Formula
&F
: Formulae
)
1524 if (F
.referencesReg(Reg
))
1526 return ((float)(Formulae
.size() - FNum
)) / Formulae
.size();
1529 /// If the given formula has not yet been inserted, add it to the list, and
1530 /// return true. Return false otherwise. The formula must be in canonical form.
1531 bool LSRUse::InsertFormula(const Formula
&F
, const Loop
&L
) {
1532 assert(F
.isCanonical(L
) && "Invalid canonical representation");
1534 if (!Formulae
.empty() && RigidFormula
)
1537 SmallVector
<const SCEV
*, 4> Key
= F
.BaseRegs
;
1538 if (F
.ScaledReg
) Key
.push_back(F
.ScaledReg
);
1539 // Unstable sort by host order ok, because this is only used for uniquifying.
1542 if (!Uniquifier
.insert(Key
).second
)
1545 // Using a register to hold the value of 0 is not profitable.
1546 assert((!F
.ScaledReg
|| !F
.ScaledReg
->isZero()) &&
1547 "Zero allocated in a scaled register!");
1549 for (const SCEV
*BaseReg
: F
.BaseRegs
)
1550 assert(!BaseReg
->isZero() && "Zero allocated in a base register!");
1553 // Add the formula to the list.
1554 Formulae
.push_back(F
);
1556 // Record registers now being used by this use.
1557 Regs
.insert(F
.BaseRegs
.begin(), F
.BaseRegs
.end());
1559 Regs
.insert(F
.ScaledReg
);
1564 /// Remove the given formula from this use's list.
1565 void LSRUse::DeleteFormula(Formula
&F
) {
1566 if (&F
!= &Formulae
.back())
1567 std::swap(F
, Formulae
.back());
1568 Formulae
.pop_back();
1571 /// Recompute the Regs field, and update RegUses.
1572 void LSRUse::RecomputeRegs(size_t LUIdx
, RegUseTracker
&RegUses
) {
1573 // Now that we've filtered out some formulae, recompute the Regs set.
1574 SmallPtrSet
<const SCEV
*, 4> OldRegs
= std::move(Regs
);
1576 for (const Formula
&F
: Formulae
) {
1577 if (F
.ScaledReg
) Regs
.insert(F
.ScaledReg
);
1578 Regs
.insert(F
.BaseRegs
.begin(), F
.BaseRegs
.end());
1581 // Update the RegTracker.
1582 for (const SCEV
*S
: OldRegs
)
1584 RegUses
.dropRegister(S
, LUIdx
);
1587 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1588 void LSRUse::print(raw_ostream
&OS
) const {
1589 OS
<< "LSR Use: Kind=";
1591 case Basic
: OS
<< "Basic"; break;
1592 case Special
: OS
<< "Special"; break;
1593 case ICmpZero
: OS
<< "ICmpZero"; break;
1595 OS
<< "Address of ";
1596 if (AccessTy
.MemTy
->isPointerTy())
1597 OS
<< "pointer"; // the full pointer type could be really verbose
1599 OS
<< *AccessTy
.MemTy
;
1602 OS
<< " in addrspace(" << AccessTy
.AddrSpace
<< ')';
1605 OS
<< ", Offsets={";
1606 bool NeedComma
= false;
1607 for (const LSRFixup
&Fixup
: Fixups
) {
1608 if (NeedComma
) OS
<< ',';
1614 if (AllFixupsOutsideLoop
)
1615 OS
<< ", all-fixups-outside-loop";
1617 if (WidestFixupType
)
1618 OS
<< ", widest fixup type: " << *WidestFixupType
;
1621 LLVM_DUMP_METHOD
void LSRUse::dump() const {
1622 print(errs()); errs() << '\n';
1626 static bool isAMCompletelyFolded(const TargetTransformInfo
&TTI
,
1627 LSRUse::KindType Kind
, MemAccessTy AccessTy
,
1628 GlobalValue
*BaseGV
, int64_t BaseOffset
,
1629 bool HasBaseReg
, int64_t Scale
,
1630 Instruction
*Fixup
/*= nullptr*/) {
1632 case LSRUse::Address
:
1633 return TTI
.isLegalAddressingMode(AccessTy
.MemTy
, BaseGV
, BaseOffset
,
1634 HasBaseReg
, Scale
, AccessTy
.AddrSpace
, Fixup
);
1636 case LSRUse::ICmpZero
:
1637 // There's not even a target hook for querying whether it would be legal to
1638 // fold a GV into an ICmp.
1642 // ICmp only has two operands; don't allow more than two non-trivial parts.
1643 if (Scale
!= 0 && HasBaseReg
&& BaseOffset
!= 0)
1646 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1647 // putting the scaled register in the other operand of the icmp.
1648 if (Scale
!= 0 && Scale
!= -1)
1651 // If we have low-level target information, ask the target if it can fold an
1652 // integer immediate on an icmp.
1653 if (BaseOffset
!= 0) {
1655 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1656 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1657 // Offs is the ICmp immediate.
1659 // The cast does the right thing with
1660 // std::numeric_limits<int64_t>::min().
1661 BaseOffset
= -(uint64_t)BaseOffset
;
1662 return TTI
.isLegalICmpImmediate(BaseOffset
);
1665 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1669 // Only handle single-register values.
1670 return !BaseGV
&& Scale
== 0 && BaseOffset
== 0;
1672 case LSRUse::Special
:
1673 // Special case Basic to handle -1 scales.
1674 return !BaseGV
&& (Scale
== 0 || Scale
== -1) && BaseOffset
== 0;
1677 llvm_unreachable("Invalid LSRUse Kind!");
1680 static bool isAMCompletelyFolded(const TargetTransformInfo
&TTI
,
1681 int64_t MinOffset
, int64_t MaxOffset
,
1682 LSRUse::KindType Kind
, MemAccessTy AccessTy
,
1683 GlobalValue
*BaseGV
, int64_t BaseOffset
,
1684 bool HasBaseReg
, int64_t Scale
) {
1685 // Check for overflow.
1686 if (((int64_t)((uint64_t)BaseOffset
+ MinOffset
) > BaseOffset
) !=
1689 MinOffset
= (uint64_t)BaseOffset
+ MinOffset
;
1690 if (((int64_t)((uint64_t)BaseOffset
+ MaxOffset
) > BaseOffset
) !=
1693 MaxOffset
= (uint64_t)BaseOffset
+ MaxOffset
;
1695 return isAMCompletelyFolded(TTI
, Kind
, AccessTy
, BaseGV
, MinOffset
,
1696 HasBaseReg
, Scale
) &&
1697 isAMCompletelyFolded(TTI
, Kind
, AccessTy
, BaseGV
, MaxOffset
,
1701 static bool isAMCompletelyFolded(const TargetTransformInfo
&TTI
,
1702 int64_t MinOffset
, int64_t MaxOffset
,
1703 LSRUse::KindType Kind
, MemAccessTy AccessTy
,
1704 const Formula
&F
, const Loop
&L
) {
1705 // For the purpose of isAMCompletelyFolded either having a canonical formula
1706 // or a scale not equal to zero is correct.
1707 // Problems may arise from non canonical formulae having a scale == 0.
1708 // Strictly speaking it would best to just rely on canonical formulae.
1709 // However, when we generate the scaled formulae, we first check that the
1710 // scaling factor is profitable before computing the actual ScaledReg for
1711 // compile time sake.
1712 assert((F
.isCanonical(L
) || F
.Scale
!= 0));
1713 return isAMCompletelyFolded(TTI
, MinOffset
, MaxOffset
, Kind
, AccessTy
,
1714 F
.BaseGV
, F
.BaseOffset
, F
.HasBaseReg
, F
.Scale
);
1717 /// Test whether we know how to expand the current formula.
1718 static bool isLegalUse(const TargetTransformInfo
&TTI
, int64_t MinOffset
,
1719 int64_t MaxOffset
, LSRUse::KindType Kind
,
1720 MemAccessTy AccessTy
, GlobalValue
*BaseGV
,
1721 int64_t BaseOffset
, bool HasBaseReg
, int64_t Scale
) {
1722 // We know how to expand completely foldable formulae.
1723 return isAMCompletelyFolded(TTI
, MinOffset
, MaxOffset
, Kind
, AccessTy
, BaseGV
,
1724 BaseOffset
, HasBaseReg
, Scale
) ||
1725 // Or formulae that use a base register produced by a sum of base
1728 isAMCompletelyFolded(TTI
, MinOffset
, MaxOffset
, Kind
, AccessTy
,
1729 BaseGV
, BaseOffset
, true, 0));
1732 static bool isLegalUse(const TargetTransformInfo
&TTI
, int64_t MinOffset
,
1733 int64_t MaxOffset
, LSRUse::KindType Kind
,
1734 MemAccessTy AccessTy
, const Formula
&F
) {
1735 return isLegalUse(TTI
, MinOffset
, MaxOffset
, Kind
, AccessTy
, F
.BaseGV
,
1736 F
.BaseOffset
, F
.HasBaseReg
, F
.Scale
);
1739 static bool isAMCompletelyFolded(const TargetTransformInfo
&TTI
,
1740 const LSRUse
&LU
, const Formula
&F
) {
1741 // Target may want to look at the user instructions.
1742 if (LU
.Kind
== LSRUse::Address
&& TTI
.LSRWithInstrQueries()) {
1743 for (const LSRFixup
&Fixup
: LU
.Fixups
)
1744 if (!isAMCompletelyFolded(TTI
, LSRUse::Address
, LU
.AccessTy
, F
.BaseGV
,
1745 (F
.BaseOffset
+ Fixup
.Offset
), F
.HasBaseReg
,
1746 F
.Scale
, Fixup
.UserInst
))
1751 return isAMCompletelyFolded(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
,
1752 LU
.AccessTy
, F
.BaseGV
, F
.BaseOffset
, F
.HasBaseReg
,
1756 static unsigned getScalingFactorCost(const TargetTransformInfo
&TTI
,
1757 const LSRUse
&LU
, const Formula
&F
,
1762 // If the use is not completely folded in that instruction, we will have to
1763 // pay an extra cost only for scale != 1.
1764 if (!isAMCompletelyFolded(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
,
1766 return F
.Scale
!= 1;
1769 case LSRUse::Address
: {
1770 // Check the scaling factor cost with both the min and max offsets.
1771 int ScaleCostMinOffset
= TTI
.getScalingFactorCost(
1772 LU
.AccessTy
.MemTy
, F
.BaseGV
, F
.BaseOffset
+ LU
.MinOffset
, F
.HasBaseReg
,
1773 F
.Scale
, LU
.AccessTy
.AddrSpace
);
1774 int ScaleCostMaxOffset
= TTI
.getScalingFactorCost(
1775 LU
.AccessTy
.MemTy
, F
.BaseGV
, F
.BaseOffset
+ LU
.MaxOffset
, F
.HasBaseReg
,
1776 F
.Scale
, LU
.AccessTy
.AddrSpace
);
1778 assert(ScaleCostMinOffset
>= 0 && ScaleCostMaxOffset
>= 0 &&
1779 "Legal addressing mode has an illegal cost!");
1780 return std::max(ScaleCostMinOffset
, ScaleCostMaxOffset
);
1782 case LSRUse::ICmpZero
:
1784 case LSRUse::Special
:
1785 // The use is completely folded, i.e., everything is folded into the
1790 llvm_unreachable("Invalid LSRUse Kind!");
1793 static bool isAlwaysFoldable(const TargetTransformInfo
&TTI
,
1794 LSRUse::KindType Kind
, MemAccessTy AccessTy
,
1795 GlobalValue
*BaseGV
, int64_t BaseOffset
,
1797 // Fast-path: zero is always foldable.
1798 if (BaseOffset
== 0 && !BaseGV
) return true;
1800 // Conservatively, create an address with an immediate and a
1801 // base and a scale.
1802 int64_t Scale
= Kind
== LSRUse::ICmpZero
? -1 : 1;
1804 // Canonicalize a scale of 1 to a base register if the formula doesn't
1805 // already have a base register.
1806 if (!HasBaseReg
&& Scale
== 1) {
1811 return isAMCompletelyFolded(TTI
, Kind
, AccessTy
, BaseGV
, BaseOffset
,
1815 static bool isAlwaysFoldable(const TargetTransformInfo
&TTI
,
1816 ScalarEvolution
&SE
, int64_t MinOffset
,
1817 int64_t MaxOffset
, LSRUse::KindType Kind
,
1818 MemAccessTy AccessTy
, const SCEV
*S
,
1820 // Fast-path: zero is always foldable.
1821 if (S
->isZero()) return true;
1823 // Conservatively, create an address with an immediate and a
1824 // base and a scale.
1825 int64_t BaseOffset
= ExtractImmediate(S
, SE
);
1826 GlobalValue
*BaseGV
= ExtractSymbol(S
, SE
);
1828 // If there's anything else involved, it's not foldable.
1829 if (!S
->isZero()) return false;
1831 // Fast-path: zero is always foldable.
1832 if (BaseOffset
== 0 && !BaseGV
) return true;
1834 // Conservatively, create an address with an immediate and a
1835 // base and a scale.
1836 int64_t Scale
= Kind
== LSRUse::ICmpZero
? -1 : 1;
1838 return isAMCompletelyFolded(TTI
, MinOffset
, MaxOffset
, Kind
, AccessTy
, BaseGV
,
1839 BaseOffset
, HasBaseReg
, Scale
);
1844 /// An individual increment in a Chain of IV increments. Relate an IV user to
1845 /// an expression that computes the IV it uses from the IV used by the previous
1846 /// link in the Chain.
1848 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1849 /// original IVOperand. The head of the chain's IVOperand is only valid during
1850 /// chain collection, before LSR replaces IV users. During chain generation,
1851 /// IncExpr can be used to find the new IVOperand that computes the same
1854 Instruction
*UserInst
;
1856 const SCEV
*IncExpr
;
1858 IVInc(Instruction
*U
, Value
*O
, const SCEV
*E
)
1859 : UserInst(U
), IVOperand(O
), IncExpr(E
) {}
1862 // The list of IV increments in program order. We typically add the head of a
1863 // chain without finding subsequent links.
1865 SmallVector
<IVInc
, 1> Incs
;
1866 const SCEV
*ExprBase
= nullptr;
1868 IVChain() = default;
1869 IVChain(const IVInc
&Head
, const SCEV
*Base
)
1870 : Incs(1, Head
), ExprBase(Base
) {}
1872 using const_iterator
= SmallVectorImpl
<IVInc
>::const_iterator
;
1874 // Return the first increment in the chain.
1875 const_iterator
begin() const {
1876 assert(!Incs
.empty());
1877 return std::next(Incs
.begin());
1879 const_iterator
end() const {
1883 // Returns true if this chain contains any increments.
1884 bool hasIncs() const { return Incs
.size() >= 2; }
1886 // Add an IVInc to the end of this chain.
1887 void add(const IVInc
&X
) { Incs
.push_back(X
); }
1889 // Returns the last UserInst in the chain.
1890 Instruction
*tailUserInst() const { return Incs
.back().UserInst
; }
1892 // Returns true if IncExpr can be profitably added to this chain.
1893 bool isProfitableIncrement(const SCEV
*OperExpr
,
1894 const SCEV
*IncExpr
,
1898 /// Helper for CollectChains to track multiple IV increment uses. Distinguish
1899 /// between FarUsers that definitely cross IV increments and NearUsers that may
1900 /// be used between IV increments.
1902 SmallPtrSet
<Instruction
*, 4> FarUsers
;
1903 SmallPtrSet
<Instruction
*, 4> NearUsers
;
1906 /// This class holds state for the main loop strength reduction logic.
1909 ScalarEvolution
&SE
;
1912 AssumptionCache
&AC
;
1913 TargetLibraryInfo
&LibInfo
;
1914 const TargetTransformInfo
&TTI
;
1916 bool FavorBackedgeIndex
= false;
1917 bool Changed
= false;
1919 /// This is the insert position that the current loop's induction variable
1920 /// increment should be placed. In simple loops, this is the latch block's
1921 /// terminator. But in more complicated cases, this is a position which will
1922 /// dominate all the in-loop post-increment users.
1923 Instruction
*IVIncInsertPos
= nullptr;
1925 /// Interesting factors between use strides.
1927 /// We explicitly use a SetVector which contains a SmallSet, instead of the
1928 /// default, a SmallDenseSet, because we need to use the full range of
1929 /// int64_ts, and there's currently no good way of doing that with
1931 SetVector
<int64_t, SmallVector
<int64_t, 8>, SmallSet
<int64_t, 8>> Factors
;
1933 /// Interesting use types, to facilitate truncation reuse.
1934 SmallSetVector
<Type
*, 4> Types
;
1936 /// The list of interesting uses.
1937 mutable SmallVector
<LSRUse
, 16> Uses
;
1939 /// Track which uses use which register candidates.
1940 RegUseTracker RegUses
;
1942 // Limit the number of chains to avoid quadratic behavior. We don't expect to
1943 // have more than a few IV increment chains in a loop. Missing a Chain falls
1944 // back to normal LSR behavior for those uses.
1945 static const unsigned MaxChains
= 8;
1947 /// IV users can form a chain of IV increments.
1948 SmallVector
<IVChain
, MaxChains
> IVChainVec
;
1950 /// IV users that belong to profitable IVChains.
1951 SmallPtrSet
<Use
*, MaxChains
> IVIncSet
;
1953 void OptimizeShadowIV();
1954 bool FindIVUserForCond(ICmpInst
*Cond
, IVStrideUse
*&CondUse
);
1955 ICmpInst
*OptimizeMax(ICmpInst
*Cond
, IVStrideUse
* &CondUse
);
1956 void OptimizeLoopTermCond();
1958 void ChainInstruction(Instruction
*UserInst
, Instruction
*IVOper
,
1959 SmallVectorImpl
<ChainUsers
> &ChainUsersVec
);
1960 void FinalizeChain(IVChain
&Chain
);
1961 void CollectChains();
1962 void GenerateIVChain(const IVChain
&Chain
, SCEVExpander
&Rewriter
,
1963 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
);
1965 void CollectInterestingTypesAndFactors();
1966 void CollectFixupsAndInitialFormulae();
1968 // Support for sharing of LSRUses between LSRFixups.
1969 using UseMapTy
= DenseMap
<LSRUse::SCEVUseKindPair
, size_t>;
1972 bool reconcileNewOffset(LSRUse
&LU
, int64_t NewOffset
, bool HasBaseReg
,
1973 LSRUse::KindType Kind
, MemAccessTy AccessTy
);
1975 std::pair
<size_t, int64_t> getUse(const SCEV
*&Expr
, LSRUse::KindType Kind
,
1976 MemAccessTy AccessTy
);
1978 void DeleteUse(LSRUse
&LU
, size_t LUIdx
);
1980 LSRUse
*FindUseWithSimilarFormula(const Formula
&F
, const LSRUse
&OrigLU
);
1982 void InsertInitialFormula(const SCEV
*S
, LSRUse
&LU
, size_t LUIdx
);
1983 void InsertSupplementalFormula(const SCEV
*S
, LSRUse
&LU
, size_t LUIdx
);
1984 void CountRegisters(const Formula
&F
, size_t LUIdx
);
1985 bool InsertFormula(LSRUse
&LU
, unsigned LUIdx
, const Formula
&F
);
1987 void CollectLoopInvariantFixupsAndFormulae();
1989 void GenerateReassociations(LSRUse
&LU
, unsigned LUIdx
, Formula Base
,
1990 unsigned Depth
= 0);
1992 void GenerateReassociationsImpl(LSRUse
&LU
, unsigned LUIdx
,
1993 const Formula
&Base
, unsigned Depth
,
1994 size_t Idx
, bool IsScaledReg
= false);
1995 void GenerateCombinations(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1996 void GenerateSymbolicOffsetsImpl(LSRUse
&LU
, unsigned LUIdx
,
1997 const Formula
&Base
, size_t Idx
,
1998 bool IsScaledReg
= false);
1999 void GenerateSymbolicOffsets(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
2000 void GenerateConstantOffsetsImpl(LSRUse
&LU
, unsigned LUIdx
,
2001 const Formula
&Base
,
2002 const SmallVectorImpl
<int64_t> &Worklist
,
2003 size_t Idx
, bool IsScaledReg
= false);
2004 void GenerateConstantOffsets(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
2005 void GenerateICmpZeroScales(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
2006 void GenerateScales(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
2007 void GenerateTruncates(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
2008 void GenerateCrossUseConstantOffsets();
2009 void GenerateAllReuseFormulae();
2011 void FilterOutUndesirableDedicatedRegisters();
2013 size_t EstimateSearchSpaceComplexity() const;
2014 void NarrowSearchSpaceByDetectingSupersets();
2015 void NarrowSearchSpaceByCollapsingUnrolledCode();
2016 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2017 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2018 void NarrowSearchSpaceByDeletingCostlyFormulas();
2019 void NarrowSearchSpaceByPickingWinnerRegs();
2020 void NarrowSearchSpaceUsingHeuristics();
2022 void SolveRecurse(SmallVectorImpl
<const Formula
*> &Solution
,
2024 SmallVectorImpl
<const Formula
*> &Workspace
,
2025 const Cost
&CurCost
,
2026 const SmallPtrSet
<const SCEV
*, 16> &CurRegs
,
2027 DenseSet
<const SCEV
*> &VisitedRegs
) const;
2028 void Solve(SmallVectorImpl
<const Formula
*> &Solution
) const;
2030 BasicBlock::iterator
2031 HoistInsertPosition(BasicBlock::iterator IP
,
2032 const SmallVectorImpl
<Instruction
*> &Inputs
) const;
2033 BasicBlock::iterator
2034 AdjustInsertPositionForExpand(BasicBlock::iterator IP
,
2037 SCEVExpander
&Rewriter
) const;
2039 Value
*Expand(const LSRUse
&LU
, const LSRFixup
&LF
, const Formula
&F
,
2040 BasicBlock::iterator IP
, SCEVExpander
&Rewriter
,
2041 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) const;
2042 void RewriteForPHI(PHINode
*PN
, const LSRUse
&LU
, const LSRFixup
&LF
,
2043 const Formula
&F
, SCEVExpander
&Rewriter
,
2044 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) const;
2045 void Rewrite(const LSRUse
&LU
, const LSRFixup
&LF
, const Formula
&F
,
2046 SCEVExpander
&Rewriter
,
2047 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) const;
2048 void ImplementSolution(const SmallVectorImpl
<const Formula
*> &Solution
);
2051 LSRInstance(Loop
*L
, IVUsers
&IU
, ScalarEvolution
&SE
, DominatorTree
&DT
,
2052 LoopInfo
&LI
, const TargetTransformInfo
&TTI
, AssumptionCache
&AC
,
2053 TargetLibraryInfo
&LibInfo
);
2055 bool getChanged() const { return Changed
; }
2057 void print_factors_and_types(raw_ostream
&OS
) const;
2058 void print_fixups(raw_ostream
&OS
) const;
2059 void print_uses(raw_ostream
&OS
) const;
2060 void print(raw_ostream
&OS
) const;
2064 } // end anonymous namespace
2066 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2067 /// the cast operation.
2068 void LSRInstance::OptimizeShadowIV() {
2069 const SCEV
*BackedgeTakenCount
= SE
.getBackedgeTakenCount(L
);
2070 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
2073 for (IVUsers::const_iterator UI
= IU
.begin(), E
= IU
.end();
2074 UI
!= E
; /* empty */) {
2075 IVUsers::const_iterator CandidateUI
= UI
;
2077 Instruction
*ShadowUse
= CandidateUI
->getUser();
2078 Type
*DestTy
= nullptr;
2079 bool IsSigned
= false;
2081 /* If shadow use is a int->float cast then insert a second IV
2082 to eliminate this cast.
2084 for (unsigned i = 0; i < n; ++i)
2090 for (unsigned i = 0; i < n; ++i, ++d)
2093 if (UIToFPInst
*UCast
= dyn_cast
<UIToFPInst
>(CandidateUI
->getUser())) {
2095 DestTy
= UCast
->getDestTy();
2097 else if (SIToFPInst
*SCast
= dyn_cast
<SIToFPInst
>(CandidateUI
->getUser())) {
2099 DestTy
= SCast
->getDestTy();
2101 if (!DestTy
) continue;
2103 // If target does not support DestTy natively then do not apply
2104 // this transformation.
2105 if (!TTI
.isTypeLegal(DestTy
)) continue;
2107 PHINode
*PH
= dyn_cast
<PHINode
>(ShadowUse
->getOperand(0));
2109 if (PH
->getNumIncomingValues() != 2) continue;
2111 // If the calculation in integers overflows, the result in FP type will
2112 // differ. So we only can do this transformation if we are guaranteed to not
2113 // deal with overflowing values
2114 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(SE
.getSCEV(PH
));
2116 if (IsSigned
&& !AR
->hasNoSignedWrap()) continue;
2117 if (!IsSigned
&& !AR
->hasNoUnsignedWrap()) continue;
2119 Type
*SrcTy
= PH
->getType();
2120 int Mantissa
= DestTy
->getFPMantissaWidth();
2121 if (Mantissa
== -1) continue;
2122 if ((int)SE
.getTypeSizeInBits(SrcTy
) > Mantissa
)
2125 unsigned Entry
, Latch
;
2126 if (PH
->getIncomingBlock(0) == L
->getLoopPreheader()) {
2134 ConstantInt
*Init
= dyn_cast
<ConstantInt
>(PH
->getIncomingValue(Entry
));
2135 if (!Init
) continue;
2136 Constant
*NewInit
= ConstantFP::get(DestTy
, IsSigned
?
2137 (double)Init
->getSExtValue() :
2138 (double)Init
->getZExtValue());
2140 BinaryOperator
*Incr
=
2141 dyn_cast
<BinaryOperator
>(PH
->getIncomingValue(Latch
));
2142 if (!Incr
) continue;
2143 if (Incr
->getOpcode() != Instruction::Add
2144 && Incr
->getOpcode() != Instruction::Sub
)
2147 /* Initialize new IV, double d = 0.0 in above example. */
2148 ConstantInt
*C
= nullptr;
2149 if (Incr
->getOperand(0) == PH
)
2150 C
= dyn_cast
<ConstantInt
>(Incr
->getOperand(1));
2151 else if (Incr
->getOperand(1) == PH
)
2152 C
= dyn_cast
<ConstantInt
>(Incr
->getOperand(0));
2158 // Ignore negative constants, as the code below doesn't handle them
2159 // correctly. TODO: Remove this restriction.
2160 if (!C
->getValue().isStrictlyPositive()) continue;
2162 /* Add new PHINode. */
2163 PHINode
*NewPH
= PHINode::Create(DestTy
, 2, "IV.S.", PH
);
2165 /* create new increment. '++d' in above example. */
2166 Constant
*CFP
= ConstantFP::get(DestTy
, C
->getZExtValue());
2167 BinaryOperator
*NewIncr
=
2168 BinaryOperator::Create(Incr
->getOpcode() == Instruction::Add
?
2169 Instruction::FAdd
: Instruction::FSub
,
2170 NewPH
, CFP
, "IV.S.next.", Incr
);
2172 NewPH
->addIncoming(NewInit
, PH
->getIncomingBlock(Entry
));
2173 NewPH
->addIncoming(NewIncr
, PH
->getIncomingBlock(Latch
));
2175 /* Remove cast operation */
2176 ShadowUse
->replaceAllUsesWith(NewPH
);
2177 ShadowUse
->eraseFromParent();
2183 /// If Cond has an operand that is an expression of an IV, set the IV user and
2184 /// stride information and return true, otherwise return false.
2185 bool LSRInstance::FindIVUserForCond(ICmpInst
*Cond
, IVStrideUse
*&CondUse
) {
2186 for (IVStrideUse
&U
: IU
)
2187 if (U
.getUser() == Cond
) {
2188 // NOTE: we could handle setcc instructions with multiple uses here, but
2189 // InstCombine does it as well for simple uses, it's not clear that it
2190 // occurs enough in real life to handle.
2197 /// Rewrite the loop's terminating condition if it uses a max computation.
2199 /// This is a narrow solution to a specific, but acute, problem. For loops
2205 /// } while (++i < n);
2207 /// the trip count isn't just 'n', because 'n' might not be positive. And
2208 /// unfortunately this can come up even for loops where the user didn't use
2209 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2210 /// will commonly be lowered like this:
2216 /// } while (++i < n);
2219 /// and then it's possible for subsequent optimization to obscure the if
2220 /// test in such a way that indvars can't find it.
2222 /// When indvars can't find the if test in loops like this, it creates a
2223 /// max expression, which allows it to give the loop a canonical
2224 /// induction variable:
2227 /// max = n < 1 ? 1 : n;
2230 /// } while (++i != max);
2232 /// Canonical induction variables are necessary because the loop passes
2233 /// are designed around them. The most obvious example of this is the
2234 /// LoopInfo analysis, which doesn't remember trip count values. It
2235 /// expects to be able to rediscover the trip count each time it is
2236 /// needed, and it does this using a simple analysis that only succeeds if
2237 /// the loop has a canonical induction variable.
2239 /// However, when it comes time to generate code, the maximum operation
2240 /// can be quite costly, especially if it's inside of an outer loop.
2242 /// This function solves this problem by detecting this type of loop and
2243 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2244 /// the instructions for the maximum computation.
2245 ICmpInst
*LSRInstance::OptimizeMax(ICmpInst
*Cond
, IVStrideUse
* &CondUse
) {
2246 // Check that the loop matches the pattern we're looking for.
2247 if (Cond
->getPredicate() != CmpInst::ICMP_EQ
&&
2248 Cond
->getPredicate() != CmpInst::ICMP_NE
)
2251 SelectInst
*Sel
= dyn_cast
<SelectInst
>(Cond
->getOperand(1));
2252 if (!Sel
|| !Sel
->hasOneUse()) return Cond
;
2254 const SCEV
*BackedgeTakenCount
= SE
.getBackedgeTakenCount(L
);
2255 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
2257 const SCEV
*One
= SE
.getConstant(BackedgeTakenCount
->getType(), 1);
2259 // Add one to the backedge-taken count to get the trip count.
2260 const SCEV
*IterationCount
= SE
.getAddExpr(One
, BackedgeTakenCount
);
2261 if (IterationCount
!= SE
.getSCEV(Sel
)) return Cond
;
2263 // Check for a max calculation that matches the pattern. There's no check
2264 // for ICMP_ULE here because the comparison would be with zero, which
2265 // isn't interesting.
2266 CmpInst::Predicate Pred
= ICmpInst::BAD_ICMP_PREDICATE
;
2267 const SCEVNAryExpr
*Max
= nullptr;
2268 if (const SCEVSMaxExpr
*S
= dyn_cast
<SCEVSMaxExpr
>(BackedgeTakenCount
)) {
2269 Pred
= ICmpInst::ICMP_SLE
;
2271 } else if (const SCEVSMaxExpr
*S
= dyn_cast
<SCEVSMaxExpr
>(IterationCount
)) {
2272 Pred
= ICmpInst::ICMP_SLT
;
2274 } else if (const SCEVUMaxExpr
*U
= dyn_cast
<SCEVUMaxExpr
>(IterationCount
)) {
2275 Pred
= ICmpInst::ICMP_ULT
;
2282 // To handle a max with more than two operands, this optimization would
2283 // require additional checking and setup.
2284 if (Max
->getNumOperands() != 2)
2287 const SCEV
*MaxLHS
= Max
->getOperand(0);
2288 const SCEV
*MaxRHS
= Max
->getOperand(1);
2290 // ScalarEvolution canonicalizes constants to the left. For < and >, look
2291 // for a comparison with 1. For <= and >=, a comparison with zero.
2293 (ICmpInst::isTrueWhenEqual(Pred
) ? !MaxLHS
->isZero() : (MaxLHS
!= One
)))
2296 // Check the relevant induction variable for conformance to
2298 const SCEV
*IV
= SE
.getSCEV(Cond
->getOperand(0));
2299 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(IV
);
2300 if (!AR
|| !AR
->isAffine() ||
2301 AR
->getStart() != One
||
2302 AR
->getStepRecurrence(SE
) != One
)
2305 assert(AR
->getLoop() == L
&&
2306 "Loop condition operand is an addrec in a different loop!");
2308 // Check the right operand of the select, and remember it, as it will
2309 // be used in the new comparison instruction.
2310 Value
*NewRHS
= nullptr;
2311 if (ICmpInst::isTrueWhenEqual(Pred
)) {
2312 // Look for n+1, and grab n.
2313 if (AddOperator
*BO
= dyn_cast
<AddOperator
>(Sel
->getOperand(1)))
2314 if (ConstantInt
*BO1
= dyn_cast
<ConstantInt
>(BO
->getOperand(1)))
2315 if (BO1
->isOne() && SE
.getSCEV(BO
->getOperand(0)) == MaxRHS
)
2316 NewRHS
= BO
->getOperand(0);
2317 if (AddOperator
*BO
= dyn_cast
<AddOperator
>(Sel
->getOperand(2)))
2318 if (ConstantInt
*BO1
= dyn_cast
<ConstantInt
>(BO
->getOperand(1)))
2319 if (BO1
->isOne() && SE
.getSCEV(BO
->getOperand(0)) == MaxRHS
)
2320 NewRHS
= BO
->getOperand(0);
2323 } else if (SE
.getSCEV(Sel
->getOperand(1)) == MaxRHS
)
2324 NewRHS
= Sel
->getOperand(1);
2325 else if (SE
.getSCEV(Sel
->getOperand(2)) == MaxRHS
)
2326 NewRHS
= Sel
->getOperand(2);
2327 else if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(MaxRHS
))
2328 NewRHS
= SU
->getValue();
2330 // Max doesn't match expected pattern.
2333 // Determine the new comparison opcode. It may be signed or unsigned,
2334 // and the original comparison may be either equality or inequality.
2335 if (Cond
->getPredicate() == CmpInst::ICMP_EQ
)
2336 Pred
= CmpInst::getInversePredicate(Pred
);
2338 // Ok, everything looks ok to change the condition into an SLT or SGE and
2339 // delete the max calculation.
2341 new ICmpInst(Cond
, Pred
, Cond
->getOperand(0), NewRHS
, "scmp");
2343 // Delete the max calculation instructions.
2344 Cond
->replaceAllUsesWith(NewCond
);
2345 CondUse
->setUser(NewCond
);
2346 Instruction
*Cmp
= cast
<Instruction
>(Sel
->getOperand(0));
2347 Cond
->eraseFromParent();
2348 Sel
->eraseFromParent();
2349 if (Cmp
->use_empty())
2350 Cmp
->eraseFromParent();
2354 /// Change loop terminating condition to use the postinc iv when possible.
2356 LSRInstance::OptimizeLoopTermCond() {
2357 SmallPtrSet
<Instruction
*, 4> PostIncs
;
2359 // We need a different set of heuristics for rotated and non-rotated loops.
2360 // If a loop is rotated then the latch is also the backedge, so inserting
2361 // post-inc expressions just before the latch is ideal. To reduce live ranges
2362 // it also makes sense to rewrite terminating conditions to use post-inc
2365 // If the loop is not rotated then the latch is not a backedge; the latch
2366 // check is done in the loop head. Adding post-inc expressions before the
2367 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2368 // in the loop body. In this case we do *not* want to use post-inc expressions
2369 // in the latch check, and we want to insert post-inc expressions before
2371 BasicBlock
*LatchBlock
= L
->getLoopLatch();
2372 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
2373 L
->getExitingBlocks(ExitingBlocks
);
2374 if (llvm::all_of(ExitingBlocks
, [&LatchBlock
](const BasicBlock
*BB
) {
2375 return LatchBlock
!= BB
;
2377 // The backedge doesn't exit the loop; treat this as a head-tested loop.
2378 IVIncInsertPos
= LatchBlock
->getTerminator();
2382 // Otherwise treat this as a rotated loop.
2383 for (BasicBlock
*ExitingBlock
: ExitingBlocks
) {
2384 // Get the terminating condition for the loop if possible. If we
2385 // can, we want to change it to use a post-incremented version of its
2386 // induction variable, to allow coalescing the live ranges for the IV into
2387 // one register value.
2389 BranchInst
*TermBr
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
2392 // FIXME: Overly conservative, termination condition could be an 'or' etc..
2393 if (TermBr
->isUnconditional() || !isa
<ICmpInst
>(TermBr
->getCondition()))
2396 // Search IVUsesByStride to find Cond's IVUse if there is one.
2397 IVStrideUse
*CondUse
= nullptr;
2398 ICmpInst
*Cond
= cast
<ICmpInst
>(TermBr
->getCondition());
2399 if (!FindIVUserForCond(Cond
, CondUse
))
2402 // If the trip count is computed in terms of a max (due to ScalarEvolution
2403 // being unable to find a sufficient guard, for example), change the loop
2404 // comparison to use SLT or ULT instead of NE.
2405 // One consequence of doing this now is that it disrupts the count-down
2406 // optimization. That's not always a bad thing though, because in such
2407 // cases it may still be worthwhile to avoid a max.
2408 Cond
= OptimizeMax(Cond
, CondUse
);
2410 // If this exiting block dominates the latch block, it may also use
2411 // the post-inc value if it won't be shared with other uses.
2412 // Check for dominance.
2413 if (!DT
.dominates(ExitingBlock
, LatchBlock
))
2416 // Conservatively avoid trying to use the post-inc value in non-latch
2417 // exits if there may be pre-inc users in intervening blocks.
2418 if (LatchBlock
!= ExitingBlock
)
2419 for (IVUsers::const_iterator UI
= IU
.begin(), E
= IU
.end(); UI
!= E
; ++UI
)
2420 // Test if the use is reachable from the exiting block. This dominator
2421 // query is a conservative approximation of reachability.
2422 if (&*UI
!= CondUse
&&
2423 !DT
.properlyDominates(UI
->getUser()->getParent(), ExitingBlock
)) {
2424 // Conservatively assume there may be reuse if the quotient of their
2425 // strides could be a legal scale.
2426 const SCEV
*A
= IU
.getStride(*CondUse
, L
);
2427 const SCEV
*B
= IU
.getStride(*UI
, L
);
2428 if (!A
|| !B
) continue;
2429 if (SE
.getTypeSizeInBits(A
->getType()) !=
2430 SE
.getTypeSizeInBits(B
->getType())) {
2431 if (SE
.getTypeSizeInBits(A
->getType()) >
2432 SE
.getTypeSizeInBits(B
->getType()))
2433 B
= SE
.getSignExtendExpr(B
, A
->getType());
2435 A
= SE
.getSignExtendExpr(A
, B
->getType());
2437 if (const SCEVConstant
*D
=
2438 dyn_cast_or_null
<SCEVConstant
>(getExactSDiv(B
, A
, SE
))) {
2439 const ConstantInt
*C
= D
->getValue();
2440 // Stride of one or negative one can have reuse with non-addresses.
2441 if (C
->isOne() || C
->isMinusOne())
2442 goto decline_post_inc
;
2443 // Avoid weird situations.
2444 if (C
->getValue().getMinSignedBits() >= 64 ||
2445 C
->getValue().isMinSignedValue())
2446 goto decline_post_inc
;
2447 // Check for possible scaled-address reuse.
2448 if (isAddressUse(TTI
, UI
->getUser(), UI
->getOperandValToReplace())) {
2449 MemAccessTy AccessTy
= getAccessType(
2450 TTI
, UI
->getUser(), UI
->getOperandValToReplace());
2451 int64_t Scale
= C
->getSExtValue();
2452 if (TTI
.isLegalAddressingMode(AccessTy
.MemTy
, /*BaseGV=*/nullptr,
2454 /*HasBaseReg=*/false, Scale
,
2455 AccessTy
.AddrSpace
))
2456 goto decline_post_inc
;
2458 if (TTI
.isLegalAddressingMode(AccessTy
.MemTy
, /*BaseGV=*/nullptr,
2460 /*HasBaseReg=*/false, Scale
,
2461 AccessTy
.AddrSpace
))
2462 goto decline_post_inc
;
2467 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
2470 // It's possible for the setcc instruction to be anywhere in the loop, and
2471 // possible for it to have multiple users. If it is not immediately before
2472 // the exiting block branch, move it.
2473 if (&*++BasicBlock::iterator(Cond
) != TermBr
) {
2474 if (Cond
->hasOneUse()) {
2475 Cond
->moveBefore(TermBr
);
2477 // Clone the terminating condition and insert into the loopend.
2478 ICmpInst
*OldCond
= Cond
;
2479 Cond
= cast
<ICmpInst
>(Cond
->clone());
2480 Cond
->setName(L
->getHeader()->getName() + ".termcond");
2481 ExitingBlock
->getInstList().insert(TermBr
->getIterator(), Cond
);
2483 // Clone the IVUse, as the old use still exists!
2484 CondUse
= &IU
.AddUser(Cond
, CondUse
->getOperandValToReplace());
2485 TermBr
->replaceUsesOfWith(OldCond
, Cond
);
2489 // If we get to here, we know that we can transform the setcc instruction to
2490 // use the post-incremented version of the IV, allowing us to coalesce the
2491 // live ranges for the IV correctly.
2492 CondUse
->transformToPostInc(L
);
2495 PostIncs
.insert(Cond
);
2499 // Determine an insertion point for the loop induction variable increment. It
2500 // must dominate all the post-inc comparisons we just set up, and it must
2501 // dominate the loop latch edge.
2502 IVIncInsertPos
= L
->getLoopLatch()->getTerminator();
2503 for (Instruction
*Inst
: PostIncs
) {
2505 DT
.findNearestCommonDominator(IVIncInsertPos
->getParent(),
2507 if (BB
== Inst
->getParent())
2508 IVIncInsertPos
= Inst
;
2509 else if (BB
!= IVIncInsertPos
->getParent())
2510 IVIncInsertPos
= BB
->getTerminator();
2514 /// Determine if the given use can accommodate a fixup at the given offset and
2515 /// other details. If so, update the use and return true.
2516 bool LSRInstance::reconcileNewOffset(LSRUse
&LU
, int64_t NewOffset
,
2517 bool HasBaseReg
, LSRUse::KindType Kind
,
2518 MemAccessTy AccessTy
) {
2519 int64_t NewMinOffset
= LU
.MinOffset
;
2520 int64_t NewMaxOffset
= LU
.MaxOffset
;
2521 MemAccessTy NewAccessTy
= AccessTy
;
2523 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2524 // something conservative, however this can pessimize in the case that one of
2525 // the uses will have all its uses outside the loop, for example.
2526 if (LU
.Kind
!= Kind
)
2529 // Check for a mismatched access type, and fall back conservatively as needed.
2530 // TODO: Be less conservative when the type is similar and can use the same
2531 // addressing modes.
2532 if (Kind
== LSRUse::Address
) {
2533 if (AccessTy
.MemTy
!= LU
.AccessTy
.MemTy
) {
2534 NewAccessTy
= MemAccessTy::getUnknown(AccessTy
.MemTy
->getContext(),
2535 AccessTy
.AddrSpace
);
2539 // Conservatively assume HasBaseReg is true for now.
2540 if (NewOffset
< LU
.MinOffset
) {
2541 if (!isAlwaysFoldable(TTI
, Kind
, NewAccessTy
, /*BaseGV=*/nullptr,
2542 LU
.MaxOffset
- NewOffset
, HasBaseReg
))
2544 NewMinOffset
= NewOffset
;
2545 } else if (NewOffset
> LU
.MaxOffset
) {
2546 if (!isAlwaysFoldable(TTI
, Kind
, NewAccessTy
, /*BaseGV=*/nullptr,
2547 NewOffset
- LU
.MinOffset
, HasBaseReg
))
2549 NewMaxOffset
= NewOffset
;
2553 LU
.MinOffset
= NewMinOffset
;
2554 LU
.MaxOffset
= NewMaxOffset
;
2555 LU
.AccessTy
= NewAccessTy
;
2559 /// Return an LSRUse index and an offset value for a fixup which needs the given
2560 /// expression, with the given kind and optional access type. Either reuse an
2561 /// existing use or create a new one, as needed.
2562 std::pair
<size_t, int64_t> LSRInstance::getUse(const SCEV
*&Expr
,
2563 LSRUse::KindType Kind
,
2564 MemAccessTy AccessTy
) {
2565 const SCEV
*Copy
= Expr
;
2566 int64_t Offset
= ExtractImmediate(Expr
, SE
);
2568 // Basic uses can't accept any offset, for example.
2569 if (!isAlwaysFoldable(TTI
, Kind
, AccessTy
, /*BaseGV=*/ nullptr,
2570 Offset
, /*HasBaseReg=*/ true)) {
2575 std::pair
<UseMapTy::iterator
, bool> P
=
2576 UseMap
.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr
, Kind
), 0));
2578 // A use already existed with this base.
2579 size_t LUIdx
= P
.first
->second
;
2580 LSRUse
&LU
= Uses
[LUIdx
];
2581 if (reconcileNewOffset(LU
, Offset
, /*HasBaseReg=*/true, Kind
, AccessTy
))
2583 return std::make_pair(LUIdx
, Offset
);
2586 // Create a new use.
2587 size_t LUIdx
= Uses
.size();
2588 P
.first
->second
= LUIdx
;
2589 Uses
.push_back(LSRUse(Kind
, AccessTy
));
2590 LSRUse
&LU
= Uses
[LUIdx
];
2592 LU
.MinOffset
= Offset
;
2593 LU
.MaxOffset
= Offset
;
2594 return std::make_pair(LUIdx
, Offset
);
2597 /// Delete the given use from the Uses list.
2598 void LSRInstance::DeleteUse(LSRUse
&LU
, size_t LUIdx
) {
2599 if (&LU
!= &Uses
.back())
2600 std::swap(LU
, Uses
.back());
2604 RegUses
.swapAndDropUse(LUIdx
, Uses
.size());
2607 /// Look for a use distinct from OrigLU which is has a formula that has the same
2608 /// registers as the given formula.
2610 LSRInstance::FindUseWithSimilarFormula(const Formula
&OrigF
,
2611 const LSRUse
&OrigLU
) {
2612 // Search all uses for the formula. This could be more clever.
2613 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
2614 LSRUse
&LU
= Uses
[LUIdx
];
2615 // Check whether this use is close enough to OrigLU, to see whether it's
2616 // worthwhile looking through its formulae.
2617 // Ignore ICmpZero uses because they may contain formulae generated by
2618 // GenerateICmpZeroScales, in which case adding fixup offsets may
2620 if (&LU
!= &OrigLU
&&
2621 LU
.Kind
!= LSRUse::ICmpZero
&&
2622 LU
.Kind
== OrigLU
.Kind
&& OrigLU
.AccessTy
== LU
.AccessTy
&&
2623 LU
.WidestFixupType
== OrigLU
.WidestFixupType
&&
2624 LU
.HasFormulaWithSameRegs(OrigF
)) {
2625 // Scan through this use's formulae.
2626 for (const Formula
&F
: LU
.Formulae
) {
2627 // Check to see if this formula has the same registers and symbols
2629 if (F
.BaseRegs
== OrigF
.BaseRegs
&&
2630 F
.ScaledReg
== OrigF
.ScaledReg
&&
2631 F
.BaseGV
== OrigF
.BaseGV
&&
2632 F
.Scale
== OrigF
.Scale
&&
2633 F
.UnfoldedOffset
== OrigF
.UnfoldedOffset
) {
2634 if (F
.BaseOffset
== 0)
2636 // This is the formula where all the registers and symbols matched;
2637 // there aren't going to be any others. Since we declined it, we
2638 // can skip the rest of the formulae and proceed to the next LSRUse.
2645 // Nothing looked good.
2649 void LSRInstance::CollectInterestingTypesAndFactors() {
2650 SmallSetVector
<const SCEV
*, 4> Strides
;
2652 // Collect interesting types and strides.
2653 SmallVector
<const SCEV
*, 4> Worklist
;
2654 for (const IVStrideUse
&U
: IU
) {
2655 const SCEV
*Expr
= IU
.getExpr(U
);
2657 // Collect interesting types.
2658 Types
.insert(SE
.getEffectiveSCEVType(Expr
->getType()));
2660 // Add strides for mentioned loops.
2661 Worklist
.push_back(Expr
);
2663 const SCEV
*S
= Worklist
.pop_back_val();
2664 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
2665 if (AR
->getLoop() == L
)
2666 Strides
.insert(AR
->getStepRecurrence(SE
));
2667 Worklist
.push_back(AR
->getStart());
2668 } else if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
2669 Worklist
.append(Add
->op_begin(), Add
->op_end());
2671 } while (!Worklist
.empty());
2674 // Compute interesting factors from the set of interesting strides.
2675 for (SmallSetVector
<const SCEV
*, 4>::const_iterator
2676 I
= Strides
.begin(), E
= Strides
.end(); I
!= E
; ++I
)
2677 for (SmallSetVector
<const SCEV
*, 4>::const_iterator NewStrideIter
=
2678 std::next(I
); NewStrideIter
!= E
; ++NewStrideIter
) {
2679 const SCEV
*OldStride
= *I
;
2680 const SCEV
*NewStride
= *NewStrideIter
;
2682 if (SE
.getTypeSizeInBits(OldStride
->getType()) !=
2683 SE
.getTypeSizeInBits(NewStride
->getType())) {
2684 if (SE
.getTypeSizeInBits(OldStride
->getType()) >
2685 SE
.getTypeSizeInBits(NewStride
->getType()))
2686 NewStride
= SE
.getSignExtendExpr(NewStride
, OldStride
->getType());
2688 OldStride
= SE
.getSignExtendExpr(OldStride
, NewStride
->getType());
2690 if (const SCEVConstant
*Factor
=
2691 dyn_cast_or_null
<SCEVConstant
>(getExactSDiv(NewStride
, OldStride
,
2693 if (Factor
->getAPInt().getMinSignedBits() <= 64)
2694 Factors
.insert(Factor
->getAPInt().getSExtValue());
2695 } else if (const SCEVConstant
*Factor
=
2696 dyn_cast_or_null
<SCEVConstant
>(getExactSDiv(OldStride
,
2699 if (Factor
->getAPInt().getMinSignedBits() <= 64)
2700 Factors
.insert(Factor
->getAPInt().getSExtValue());
2704 // If all uses use the same type, don't bother looking for truncation-based
2706 if (Types
.size() == 1)
2709 LLVM_DEBUG(print_factors_and_types(dbgs()));
2712 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2713 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2714 /// IVStrideUses, we could partially skip this.
2715 static User::op_iterator
2716 findIVOperand(User::op_iterator OI
, User::op_iterator OE
,
2717 Loop
*L
, ScalarEvolution
&SE
) {
2718 for(; OI
!= OE
; ++OI
) {
2719 if (Instruction
*Oper
= dyn_cast
<Instruction
>(*OI
)) {
2720 if (!SE
.isSCEVable(Oper
->getType()))
2723 if (const SCEVAddRecExpr
*AR
=
2724 dyn_cast
<SCEVAddRecExpr
>(SE
.getSCEV(Oper
))) {
2725 if (AR
->getLoop() == L
)
2733 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2734 /// a convenient helper.
2735 static Value
*getWideOperand(Value
*Oper
) {
2736 if (TruncInst
*Trunc
= dyn_cast
<TruncInst
>(Oper
))
2737 return Trunc
->getOperand(0);
2741 /// Return true if we allow an IV chain to include both types.
2742 static bool isCompatibleIVType(Value
*LVal
, Value
*RVal
) {
2743 Type
*LType
= LVal
->getType();
2744 Type
*RType
= RVal
->getType();
2745 return (LType
== RType
) || (LType
->isPointerTy() && RType
->isPointerTy() &&
2746 // Different address spaces means (possibly)
2747 // different types of the pointer implementation,
2748 // e.g. i16 vs i32 so disallow that.
2749 (LType
->getPointerAddressSpace() ==
2750 RType
->getPointerAddressSpace()));
2753 /// Return an approximation of this SCEV expression's "base", or NULL for any
2754 /// constant. Returning the expression itself is conservative. Returning a
2755 /// deeper subexpression is more precise and valid as long as it isn't less
2756 /// complex than another subexpression. For expressions involving multiple
2757 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2758 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2761 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2762 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2763 static const SCEV
*getExprBase(const SCEV
*S
) {
2764 switch (S
->getSCEVType()) {
2765 default: // uncluding scUnknown.
2770 return getExprBase(cast
<SCEVTruncateExpr
>(S
)->getOperand());
2772 return getExprBase(cast
<SCEVZeroExtendExpr
>(S
)->getOperand());
2774 return getExprBase(cast
<SCEVSignExtendExpr
>(S
)->getOperand());
2776 // Skip over scaled operands (scMulExpr) to follow add operands as long as
2777 // there's nothing more complex.
2778 // FIXME: not sure if we want to recognize negation.
2779 const SCEVAddExpr
*Add
= cast
<SCEVAddExpr
>(S
);
2780 for (std::reverse_iterator
<SCEVAddExpr::op_iterator
> I(Add
->op_end()),
2781 E(Add
->op_begin()); I
!= E
; ++I
) {
2782 const SCEV
*SubExpr
= *I
;
2783 if (SubExpr
->getSCEVType() == scAddExpr
)
2784 return getExprBase(SubExpr
);
2786 if (SubExpr
->getSCEVType() != scMulExpr
)
2789 return S
; // all operands are scaled, be conservative.
2792 return getExprBase(cast
<SCEVAddRecExpr
>(S
)->getStart());
2796 /// Return true if the chain increment is profitable to expand into a loop
2797 /// invariant value, which may require its own register. A profitable chain
2798 /// increment will be an offset relative to the same base. We allow such offsets
2799 /// to potentially be used as chain increment as long as it's not obviously
2800 /// expensive to expand using real instructions.
2801 bool IVChain::isProfitableIncrement(const SCEV
*OperExpr
,
2802 const SCEV
*IncExpr
,
2803 ScalarEvolution
&SE
) {
2804 // Aggressively form chains when -stress-ivchain.
2808 // Do not replace a constant offset from IV head with a nonconstant IV
2810 if (!isa
<SCEVConstant
>(IncExpr
)) {
2811 const SCEV
*HeadExpr
= SE
.getSCEV(getWideOperand(Incs
[0].IVOperand
));
2812 if (isa
<SCEVConstant
>(SE
.getMinusSCEV(OperExpr
, HeadExpr
)))
2816 SmallPtrSet
<const SCEV
*, 8> Processed
;
2817 return !isHighCostExpansion(IncExpr
, Processed
, SE
);
2820 /// Return true if the number of registers needed for the chain is estimated to
2821 /// be less than the number required for the individual IV users. First prohibit
2822 /// any IV users that keep the IV live across increments (the Users set should
2823 /// be empty). Next count the number and type of increments in the chain.
2825 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2826 /// effectively use postinc addressing modes. Only consider it profitable it the
2827 /// increments can be computed in fewer registers when chained.
2829 /// TODO: Consider IVInc free if it's already used in another chains.
2831 isProfitableChain(IVChain
&Chain
, SmallPtrSetImpl
<Instruction
*> &Users
,
2832 ScalarEvolution
&SE
) {
2836 if (!Chain
.hasIncs())
2839 if (!Users
.empty()) {
2840 LLVM_DEBUG(dbgs() << "Chain: " << *Chain
.Incs
[0].UserInst
<< " users:\n";
2841 for (Instruction
*Inst
2842 : Users
) { dbgs() << " " << *Inst
<< "\n"; });
2845 assert(!Chain
.Incs
.empty() && "empty IV chains are not allowed");
2847 // The chain itself may require a register, so intialize cost to 1.
2850 // A complete chain likely eliminates the need for keeping the original IV in
2851 // a register. LSR does not currently know how to form a complete chain unless
2852 // the header phi already exists.
2853 if (isa
<PHINode
>(Chain
.tailUserInst())
2854 && SE
.getSCEV(Chain
.tailUserInst()) == Chain
.Incs
[0].IncExpr
) {
2857 const SCEV
*LastIncExpr
= nullptr;
2858 unsigned NumConstIncrements
= 0;
2859 unsigned NumVarIncrements
= 0;
2860 unsigned NumReusedIncrements
= 0;
2861 for (const IVInc
&Inc
: Chain
) {
2862 if (Inc
.IncExpr
->isZero())
2865 // Incrementing by zero or some constant is neutral. We assume constants can
2866 // be folded into an addressing mode or an add's immediate operand.
2867 if (isa
<SCEVConstant
>(Inc
.IncExpr
)) {
2868 ++NumConstIncrements
;
2872 if (Inc
.IncExpr
== LastIncExpr
)
2873 ++NumReusedIncrements
;
2877 LastIncExpr
= Inc
.IncExpr
;
2879 // An IV chain with a single increment is handled by LSR's postinc
2880 // uses. However, a chain with multiple increments requires keeping the IV's
2881 // value live longer than it needs to be if chained.
2882 if (NumConstIncrements
> 1)
2885 // Materializing increment expressions in the preheader that didn't exist in
2886 // the original code may cost a register. For example, sign-extended array
2887 // indices can produce ridiculous increments like this:
2888 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2889 cost
+= NumVarIncrements
;
2891 // Reusing variable increments likely saves a register to hold the multiple of
2893 cost
-= NumReusedIncrements
;
2895 LLVM_DEBUG(dbgs() << "Chain: " << *Chain
.Incs
[0].UserInst
<< " Cost: " << cost
2901 /// Add this IV user to an existing chain or make it the head of a new chain.
2902 void LSRInstance::ChainInstruction(Instruction
*UserInst
, Instruction
*IVOper
,
2903 SmallVectorImpl
<ChainUsers
> &ChainUsersVec
) {
2904 // When IVs are used as types of varying widths, they are generally converted
2905 // to a wider type with some uses remaining narrow under a (free) trunc.
2906 Value
*const NextIV
= getWideOperand(IVOper
);
2907 const SCEV
*const OperExpr
= SE
.getSCEV(NextIV
);
2908 const SCEV
*const OperExprBase
= getExprBase(OperExpr
);
2910 // Visit all existing chains. Check if its IVOper can be computed as a
2911 // profitable loop invariant increment from the last link in the Chain.
2912 unsigned ChainIdx
= 0, NChains
= IVChainVec
.size();
2913 const SCEV
*LastIncExpr
= nullptr;
2914 for (; ChainIdx
< NChains
; ++ChainIdx
) {
2915 IVChain
&Chain
= IVChainVec
[ChainIdx
];
2917 // Prune the solution space aggressively by checking that both IV operands
2918 // are expressions that operate on the same unscaled SCEVUnknown. This
2919 // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2920 // first avoids creating extra SCEV expressions.
2921 if (!StressIVChain
&& Chain
.ExprBase
!= OperExprBase
)
2924 Value
*PrevIV
= getWideOperand(Chain
.Incs
.back().IVOperand
);
2925 if (!isCompatibleIVType(PrevIV
, NextIV
))
2928 // A phi node terminates a chain.
2929 if (isa
<PHINode
>(UserInst
) && isa
<PHINode
>(Chain
.tailUserInst()))
2932 // The increment must be loop-invariant so it can be kept in a register.
2933 const SCEV
*PrevExpr
= SE
.getSCEV(PrevIV
);
2934 const SCEV
*IncExpr
= SE
.getMinusSCEV(OperExpr
, PrevExpr
);
2935 if (!SE
.isLoopInvariant(IncExpr
, L
))
2938 if (Chain
.isProfitableIncrement(OperExpr
, IncExpr
, SE
)) {
2939 LastIncExpr
= IncExpr
;
2943 // If we haven't found a chain, create a new one, unless we hit the max. Don't
2944 // bother for phi nodes, because they must be last in the chain.
2945 if (ChainIdx
== NChains
) {
2946 if (isa
<PHINode
>(UserInst
))
2948 if (NChains
>= MaxChains
&& !StressIVChain
) {
2949 LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2952 LastIncExpr
= OperExpr
;
2953 // IVUsers may have skipped over sign/zero extensions. We don't currently
2954 // attempt to form chains involving extensions unless they can be hoisted
2955 // into this loop's AddRec.
2956 if (!isa
<SCEVAddRecExpr
>(LastIncExpr
))
2959 IVChainVec
.push_back(IVChain(IVInc(UserInst
, IVOper
, LastIncExpr
),
2961 ChainUsersVec
.resize(NChains
);
2962 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx
<< " Head: (" << *UserInst
2963 << ") IV=" << *LastIncExpr
<< "\n");
2965 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx
<< " Inc: (" << *UserInst
2966 << ") IV+" << *LastIncExpr
<< "\n");
2967 // Add this IV user to the end of the chain.
2968 IVChainVec
[ChainIdx
].add(IVInc(UserInst
, IVOper
, LastIncExpr
));
2970 IVChain
&Chain
= IVChainVec
[ChainIdx
];
2972 SmallPtrSet
<Instruction
*,4> &NearUsers
= ChainUsersVec
[ChainIdx
].NearUsers
;
2973 // This chain's NearUsers become FarUsers.
2974 if (!LastIncExpr
->isZero()) {
2975 ChainUsersVec
[ChainIdx
].FarUsers
.insert(NearUsers
.begin(),
2980 // All other uses of IVOperand become near uses of the chain.
2981 // We currently ignore intermediate values within SCEV expressions, assuming
2982 // they will eventually be used be the current chain, or can be computed
2983 // from one of the chain increments. To be more precise we could
2984 // transitively follow its user and only add leaf IV users to the set.
2985 for (User
*U
: IVOper
->users()) {
2986 Instruction
*OtherUse
= dyn_cast
<Instruction
>(U
);
2989 // Uses in the chain will no longer be uses if the chain is formed.
2990 // Include the head of the chain in this iteration (not Chain.begin()).
2991 IVChain::const_iterator IncIter
= Chain
.Incs
.begin();
2992 IVChain::const_iterator IncEnd
= Chain
.Incs
.end();
2993 for( ; IncIter
!= IncEnd
; ++IncIter
) {
2994 if (IncIter
->UserInst
== OtherUse
)
2997 if (IncIter
!= IncEnd
)
3000 if (SE
.isSCEVable(OtherUse
->getType())
3001 && !isa
<SCEVUnknown
>(SE
.getSCEV(OtherUse
))
3002 && IU
.isIVUserOrOperand(OtherUse
)) {
3005 NearUsers
.insert(OtherUse
);
3008 // Since this user is part of the chain, it's no longer considered a use
3010 ChainUsersVec
[ChainIdx
].FarUsers
.erase(UserInst
);
3013 /// Populate the vector of Chains.
3015 /// This decreases ILP at the architecture level. Targets with ample registers,
3016 /// multiple memory ports, and no register renaming probably don't want
3017 /// this. However, such targets should probably disable LSR altogether.
3019 /// The job of LSR is to make a reasonable choice of induction variables across
3020 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3021 /// ILP *within the loop* if the target wants it.
3023 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3024 /// will not reorder memory operations, it will recognize this as a chain, but
3025 /// will generate redundant IV increments. Ideally this would be corrected later
3026 /// by a smart scheduler:
3032 /// TODO: Walk the entire domtree within this loop, not just the path to the
3033 /// loop latch. This will discover chains on side paths, but requires
3034 /// maintaining multiple copies of the Chains state.
3035 void LSRInstance::CollectChains() {
3036 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3037 SmallVector
<ChainUsers
, 8> ChainUsersVec
;
3039 SmallVector
<BasicBlock
*,8> LatchPath
;
3040 BasicBlock
*LoopHeader
= L
->getHeader();
3041 for (DomTreeNode
*Rung
= DT
.getNode(L
->getLoopLatch());
3042 Rung
->getBlock() != LoopHeader
; Rung
= Rung
->getIDom()) {
3043 LatchPath
.push_back(Rung
->getBlock());
3045 LatchPath
.push_back(LoopHeader
);
3047 // Walk the instruction stream from the loop header to the loop latch.
3048 for (BasicBlock
*BB
: reverse(LatchPath
)) {
3049 for (Instruction
&I
: *BB
) {
3050 // Skip instructions that weren't seen by IVUsers analysis.
3051 if (isa
<PHINode
>(I
) || !IU
.isIVUserOrOperand(&I
))
3054 // Ignore users that are part of a SCEV expression. This way we only
3055 // consider leaf IV Users. This effectively rediscovers a portion of
3056 // IVUsers analysis but in program order this time.
3057 if (SE
.isSCEVable(I
.getType()) && !isa
<SCEVUnknown
>(SE
.getSCEV(&I
)))
3060 // Remove this instruction from any NearUsers set it may be in.
3061 for (unsigned ChainIdx
= 0, NChains
= IVChainVec
.size();
3062 ChainIdx
< NChains
; ++ChainIdx
) {
3063 ChainUsersVec
[ChainIdx
].NearUsers
.erase(&I
);
3065 // Search for operands that can be chained.
3066 SmallPtrSet
<Instruction
*, 4> UniqueOperands
;
3067 User::op_iterator IVOpEnd
= I
.op_end();
3068 User::op_iterator IVOpIter
= findIVOperand(I
.op_begin(), IVOpEnd
, L
, SE
);
3069 while (IVOpIter
!= IVOpEnd
) {
3070 Instruction
*IVOpInst
= cast
<Instruction
>(*IVOpIter
);
3071 if (UniqueOperands
.insert(IVOpInst
).second
)
3072 ChainInstruction(&I
, IVOpInst
, ChainUsersVec
);
3073 IVOpIter
= findIVOperand(std::next(IVOpIter
), IVOpEnd
, L
, SE
);
3075 } // Continue walking down the instructions.
3076 } // Continue walking down the domtree.
3077 // Visit phi backedges to determine if the chain can generate the IV postinc.
3078 for (PHINode
&PN
: L
->getHeader()->phis()) {
3079 if (!SE
.isSCEVable(PN
.getType()))
3083 dyn_cast
<Instruction
>(PN
.getIncomingValueForBlock(L
->getLoopLatch()));
3085 ChainInstruction(&PN
, IncV
, ChainUsersVec
);
3087 // Remove any unprofitable chains.
3088 unsigned ChainIdx
= 0;
3089 for (unsigned UsersIdx
= 0, NChains
= IVChainVec
.size();
3090 UsersIdx
< NChains
; ++UsersIdx
) {
3091 if (!isProfitableChain(IVChainVec
[UsersIdx
],
3092 ChainUsersVec
[UsersIdx
].FarUsers
, SE
))
3094 // Preserve the chain at UsesIdx.
3095 if (ChainIdx
!= UsersIdx
)
3096 IVChainVec
[ChainIdx
] = IVChainVec
[UsersIdx
];
3097 FinalizeChain(IVChainVec
[ChainIdx
]);
3100 IVChainVec
.resize(ChainIdx
);
3103 void LSRInstance::FinalizeChain(IVChain
&Chain
) {
3104 assert(!Chain
.Incs
.empty() && "empty IV chains are not allowed");
3105 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain
.Incs
[0].UserInst
<< "\n");
3107 for (const IVInc
&Inc
: Chain
) {
3108 LLVM_DEBUG(dbgs() << " Inc: " << *Inc
.UserInst
<< "\n");
3109 auto UseI
= find(Inc
.UserInst
->operands(), Inc
.IVOperand
);
3110 assert(UseI
!= Inc
.UserInst
->op_end() && "cannot find IV operand");
3111 IVIncSet
.insert(UseI
);
3115 /// Return true if the IVInc can be folded into an addressing mode.
3116 static bool canFoldIVIncExpr(const SCEV
*IncExpr
, Instruction
*UserInst
,
3117 Value
*Operand
, const TargetTransformInfo
&TTI
) {
3118 const SCEVConstant
*IncConst
= dyn_cast
<SCEVConstant
>(IncExpr
);
3119 if (!IncConst
|| !isAddressUse(TTI
, UserInst
, Operand
))
3122 if (IncConst
->getAPInt().getMinSignedBits() > 64)
3125 MemAccessTy AccessTy
= getAccessType(TTI
, UserInst
, Operand
);
3126 int64_t IncOffset
= IncConst
->getValue()->getSExtValue();
3127 if (!isAlwaysFoldable(TTI
, LSRUse::Address
, AccessTy
, /*BaseGV=*/nullptr,
3128 IncOffset
, /*HasBaseReg=*/false))
3134 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3135 /// user's operand from the previous IV user's operand.
3136 void LSRInstance::GenerateIVChain(const IVChain
&Chain
, SCEVExpander
&Rewriter
,
3137 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) {
3138 // Find the new IVOperand for the head of the chain. It may have been replaced
3140 const IVInc
&Head
= Chain
.Incs
[0];
3141 User::op_iterator IVOpEnd
= Head
.UserInst
->op_end();
3142 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3143 User::op_iterator IVOpIter
= findIVOperand(Head
.UserInst
->op_begin(),
3145 Value
*IVSrc
= nullptr;
3146 while (IVOpIter
!= IVOpEnd
) {
3147 IVSrc
= getWideOperand(*IVOpIter
);
3149 // If this operand computes the expression that the chain needs, we may use
3150 // it. (Check this after setting IVSrc which is used below.)
3152 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3153 // narrow for the chain, so we can no longer use it. We do allow using a
3154 // wider phi, assuming the LSR checked for free truncation. In that case we
3155 // should already have a truncate on this operand such that
3156 // getSCEV(IVSrc) == IncExpr.
3157 if (SE
.getSCEV(*IVOpIter
) == Head
.IncExpr
3158 || SE
.getSCEV(IVSrc
) == Head
.IncExpr
) {
3161 IVOpIter
= findIVOperand(std::next(IVOpIter
), IVOpEnd
, L
, SE
);
3163 if (IVOpIter
== IVOpEnd
) {
3164 // Gracefully give up on this chain.
3165 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head
.UserInst
<< "\n");
3169 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc
<< "\n");
3170 Type
*IVTy
= IVSrc
->getType();
3171 Type
*IntTy
= SE
.getEffectiveSCEVType(IVTy
);
3172 const SCEV
*LeftOverExpr
= nullptr;
3173 for (const IVInc
&Inc
: Chain
) {
3174 Instruction
*InsertPt
= Inc
.UserInst
;
3175 if (isa
<PHINode
>(InsertPt
))
3176 InsertPt
= L
->getLoopLatch()->getTerminator();
3178 // IVOper will replace the current IV User's operand. IVSrc is the IV
3179 // value currently held in a register.
3180 Value
*IVOper
= IVSrc
;
3181 if (!Inc
.IncExpr
->isZero()) {
3182 // IncExpr was the result of subtraction of two narrow values, so must
3184 const SCEV
*IncExpr
= SE
.getNoopOrSignExtend(Inc
.IncExpr
, IntTy
);
3185 LeftOverExpr
= LeftOverExpr
?
3186 SE
.getAddExpr(LeftOverExpr
, IncExpr
) : IncExpr
;
3188 if (LeftOverExpr
&& !LeftOverExpr
->isZero()) {
3189 // Expand the IV increment.
3190 Rewriter
.clearPostInc();
3191 Value
*IncV
= Rewriter
.expandCodeFor(LeftOverExpr
, IntTy
, InsertPt
);
3192 const SCEV
*IVOperExpr
= SE
.getAddExpr(SE
.getUnknown(IVSrc
),
3193 SE
.getUnknown(IncV
));
3194 IVOper
= Rewriter
.expandCodeFor(IVOperExpr
, IVTy
, InsertPt
);
3196 // If an IV increment can't be folded, use it as the next IV value.
3197 if (!canFoldIVIncExpr(LeftOverExpr
, Inc
.UserInst
, Inc
.IVOperand
, TTI
)) {
3198 assert(IVTy
== IVOper
->getType() && "inconsistent IV increment type");
3200 LeftOverExpr
= nullptr;
3203 Type
*OperTy
= Inc
.IVOperand
->getType();
3204 if (IVTy
!= OperTy
) {
3205 assert(SE
.getTypeSizeInBits(IVTy
) >= SE
.getTypeSizeInBits(OperTy
) &&
3206 "cannot extend a chained IV");
3207 IRBuilder
<> Builder(InsertPt
);
3208 IVOper
= Builder
.CreateTruncOrBitCast(IVOper
, OperTy
, "lsr.chain");
3210 Inc
.UserInst
->replaceUsesOfWith(Inc
.IVOperand
, IVOper
);
3211 DeadInsts
.emplace_back(Inc
.IVOperand
);
3213 // If LSR created a new, wider phi, we may also replace its postinc. We only
3214 // do this if we also found a wide value for the head of the chain.
3215 if (isa
<PHINode
>(Chain
.tailUserInst())) {
3216 for (PHINode
&Phi
: L
->getHeader()->phis()) {
3217 if (!isCompatibleIVType(&Phi
, IVSrc
))
3219 Instruction
*PostIncV
= dyn_cast
<Instruction
>(
3220 Phi
.getIncomingValueForBlock(L
->getLoopLatch()));
3221 if (!PostIncV
|| (SE
.getSCEV(PostIncV
) != SE
.getSCEV(IVSrc
)))
3223 Value
*IVOper
= IVSrc
;
3224 Type
*PostIncTy
= PostIncV
->getType();
3225 if (IVTy
!= PostIncTy
) {
3226 assert(PostIncTy
->isPointerTy() && "mixing int/ptr IV types");
3227 IRBuilder
<> Builder(L
->getLoopLatch()->getTerminator());
3228 Builder
.SetCurrentDebugLocation(PostIncV
->getDebugLoc());
3229 IVOper
= Builder
.CreatePointerCast(IVSrc
, PostIncTy
, "lsr.chain");
3231 Phi
.replaceUsesOfWith(PostIncV
, IVOper
);
3232 DeadInsts
.emplace_back(PostIncV
);
3237 void LSRInstance::CollectFixupsAndInitialFormulae() {
3238 BranchInst
*ExitBranch
= nullptr;
3239 bool SaveCmp
= TTI
.canSaveCmp(L
, &ExitBranch
, &SE
, &LI
, &DT
, &AC
, &LibInfo
);
3241 for (const IVStrideUse
&U
: IU
) {
3242 Instruction
*UserInst
= U
.getUser();
3243 // Skip IV users that are part of profitable IV Chains.
3244 User::op_iterator UseI
=
3245 find(UserInst
->operands(), U
.getOperandValToReplace());
3246 assert(UseI
!= UserInst
->op_end() && "cannot find IV operand");
3247 if (IVIncSet
.count(UseI
)) {
3248 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI
<< '\n');
3252 LSRUse::KindType Kind
= LSRUse::Basic
;
3253 MemAccessTy AccessTy
;
3254 if (isAddressUse(TTI
, UserInst
, U
.getOperandValToReplace())) {
3255 Kind
= LSRUse::Address
;
3256 AccessTy
= getAccessType(TTI
, UserInst
, U
.getOperandValToReplace());
3259 const SCEV
*S
= IU
.getExpr(U
);
3260 PostIncLoopSet TmpPostIncLoops
= U
.getPostIncLoops();
3262 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3263 // (N - i == 0), and this allows (N - i) to be the expression that we work
3264 // with rather than just N or i, so we can consider the register
3265 // requirements for both N and i at the same time. Limiting this code to
3266 // equality icmps is not a problem because all interesting loops use
3267 // equality icmps, thanks to IndVarSimplify.
3268 if (ICmpInst
*CI
= dyn_cast
<ICmpInst
>(UserInst
)) {
3269 // If CI can be saved in some target, like replaced inside hardware loop
3270 // in PowerPC, no need to generate initial formulae for it.
3271 if (SaveCmp
&& CI
== dyn_cast
<ICmpInst
>(ExitBranch
->getCondition()))
3273 if (CI
->isEquality()) {
3274 // Swap the operands if needed to put the OperandValToReplace on the
3275 // left, for consistency.
3276 Value
*NV
= CI
->getOperand(1);
3277 if (NV
== U
.getOperandValToReplace()) {
3278 CI
->setOperand(1, CI
->getOperand(0));
3279 CI
->setOperand(0, NV
);
3280 NV
= CI
->getOperand(1);
3284 // x == y --> x - y == 0
3285 const SCEV
*N
= SE
.getSCEV(NV
);
3286 if (SE
.isLoopInvariant(N
, L
) && isSafeToExpand(N
, SE
)) {
3287 // S is normalized, so normalize N before folding it into S
3288 // to keep the result normalized.
3289 N
= normalizeForPostIncUse(N
, TmpPostIncLoops
, SE
);
3290 Kind
= LSRUse::ICmpZero
;
3291 S
= SE
.getMinusSCEV(N
, S
);
3294 // -1 and the negations of all interesting strides (except the negation
3295 // of -1) are now also interesting.
3296 for (size_t i
= 0, e
= Factors
.size(); i
!= e
; ++i
)
3297 if (Factors
[i
] != -1)
3298 Factors
.insert(-(uint64_t)Factors
[i
]);
3303 // Get or create an LSRUse.
3304 std::pair
<size_t, int64_t> P
= getUse(S
, Kind
, AccessTy
);
3305 size_t LUIdx
= P
.first
;
3306 int64_t Offset
= P
.second
;
3307 LSRUse
&LU
= Uses
[LUIdx
];
3309 // Record the fixup.
3310 LSRFixup
&LF
= LU
.getNewFixup();
3311 LF
.UserInst
= UserInst
;
3312 LF
.OperandValToReplace
= U
.getOperandValToReplace();
3313 LF
.PostIncLoops
= TmpPostIncLoops
;
3315 LU
.AllFixupsOutsideLoop
&= LF
.isUseFullyOutsideLoop(L
);
3317 if (!LU
.WidestFixupType
||
3318 SE
.getTypeSizeInBits(LU
.WidestFixupType
) <
3319 SE
.getTypeSizeInBits(LF
.OperandValToReplace
->getType()))
3320 LU
.WidestFixupType
= LF
.OperandValToReplace
->getType();
3322 // If this is the first use of this LSRUse, give it a formula.
3323 if (LU
.Formulae
.empty()) {
3324 InsertInitialFormula(S
, LU
, LUIdx
);
3325 CountRegisters(LU
.Formulae
.back(), LUIdx
);
3329 LLVM_DEBUG(print_fixups(dbgs()));
3332 /// Insert a formula for the given expression into the given use, separating out
3333 /// loop-variant portions from loop-invariant and loop-computable portions.
3335 LSRInstance::InsertInitialFormula(const SCEV
*S
, LSRUse
&LU
, size_t LUIdx
) {
3336 // Mark uses whose expressions cannot be expanded.
3337 if (!isSafeToExpand(S
, SE
))
3338 LU
.RigidFormula
= true;
3341 F
.initialMatch(S
, L
, SE
);
3342 bool Inserted
= InsertFormula(LU
, LUIdx
, F
);
3343 assert(Inserted
&& "Initial formula already exists!"); (void)Inserted
;
3346 /// Insert a simple single-register formula for the given expression into the
3349 LSRInstance::InsertSupplementalFormula(const SCEV
*S
,
3350 LSRUse
&LU
, size_t LUIdx
) {
3352 F
.BaseRegs
.push_back(S
);
3353 F
.HasBaseReg
= true;
3354 bool Inserted
= InsertFormula(LU
, LUIdx
, F
);
3355 assert(Inserted
&& "Supplemental formula already exists!"); (void)Inserted
;
3358 /// Note which registers are used by the given formula, updating RegUses.
3359 void LSRInstance::CountRegisters(const Formula
&F
, size_t LUIdx
) {
3361 RegUses
.countRegister(F
.ScaledReg
, LUIdx
);
3362 for (const SCEV
*BaseReg
: F
.BaseRegs
)
3363 RegUses
.countRegister(BaseReg
, LUIdx
);
3366 /// If the given formula has not yet been inserted, add it to the list, and
3367 /// return true. Return false otherwise.
3368 bool LSRInstance::InsertFormula(LSRUse
&LU
, unsigned LUIdx
, const Formula
&F
) {
3369 // Do not insert formula that we will not be able to expand.
3370 assert(isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
, LU
.AccessTy
, F
) &&
3371 "Formula is illegal");
3373 if (!LU
.InsertFormula(F
, *L
))
3376 CountRegisters(F
, LUIdx
);
3380 /// Check for other uses of loop-invariant values which we're tracking. These
3381 /// other uses will pin these values in registers, making them less profitable
3382 /// for elimination.
3383 /// TODO: This currently misses non-constant addrec step registers.
3384 /// TODO: Should this give more weight to users inside the loop?
3386 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3387 SmallVector
<const SCEV
*, 8> Worklist(RegUses
.begin(), RegUses
.end());
3388 SmallPtrSet
<const SCEV
*, 32> Visited
;
3390 while (!Worklist
.empty()) {
3391 const SCEV
*S
= Worklist
.pop_back_val();
3393 // Don't process the same SCEV twice
3394 if (!Visited
.insert(S
).second
)
3397 if (const SCEVNAryExpr
*N
= dyn_cast
<SCEVNAryExpr
>(S
))
3398 Worklist
.append(N
->op_begin(), N
->op_end());
3399 else if (const SCEVCastExpr
*C
= dyn_cast
<SCEVCastExpr
>(S
))
3400 Worklist
.push_back(C
->getOperand());
3401 else if (const SCEVUDivExpr
*D
= dyn_cast
<SCEVUDivExpr
>(S
)) {
3402 Worklist
.push_back(D
->getLHS());
3403 Worklist
.push_back(D
->getRHS());
3404 } else if (const SCEVUnknown
*US
= dyn_cast
<SCEVUnknown
>(S
)) {
3405 const Value
*V
= US
->getValue();
3406 if (const Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
3407 // Look for instructions defined outside the loop.
3408 if (L
->contains(Inst
)) continue;
3409 } else if (isa
<UndefValue
>(V
))
3410 // Undef doesn't have a live range, so it doesn't matter.
3412 for (const Use
&U
: V
->uses()) {
3413 const Instruction
*UserInst
= dyn_cast
<Instruction
>(U
.getUser());
3414 // Ignore non-instructions.
3417 // Ignore instructions in other functions (as can happen with
3419 if (UserInst
->getParent()->getParent() != L
->getHeader()->getParent())
3421 // Ignore instructions not dominated by the loop.
3422 const BasicBlock
*UseBB
= !isa
<PHINode
>(UserInst
) ?
3423 UserInst
->getParent() :
3424 cast
<PHINode
>(UserInst
)->getIncomingBlock(
3425 PHINode::getIncomingValueNumForOperand(U
.getOperandNo()));
3426 if (!DT
.dominates(L
->getHeader(), UseBB
))
3428 // Don't bother if the instruction is in a BB which ends in an EHPad.
3429 if (UseBB
->getTerminator()->isEHPad())
3431 // Don't bother rewriting PHIs in catchswitch blocks.
3432 if (isa
<CatchSwitchInst
>(UserInst
->getParent()->getTerminator()))
3434 // Ignore uses which are part of other SCEV expressions, to avoid
3435 // analyzing them multiple times.
3436 if (SE
.isSCEVable(UserInst
->getType())) {
3437 const SCEV
*UserS
= SE
.getSCEV(const_cast<Instruction
*>(UserInst
));
3438 // If the user is a no-op, look through to its uses.
3439 if (!isa
<SCEVUnknown
>(UserS
))
3443 SE
.getUnknown(const_cast<Instruction
*>(UserInst
)));
3447 // Ignore icmp instructions which are already being analyzed.
3448 if (const ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(UserInst
)) {
3449 unsigned OtherIdx
= !U
.getOperandNo();
3450 Value
*OtherOp
= const_cast<Value
*>(ICI
->getOperand(OtherIdx
));
3451 if (SE
.hasComputableLoopEvolution(SE
.getSCEV(OtherOp
), L
))
3455 std::pair
<size_t, int64_t> P
= getUse(
3456 S
, LSRUse::Basic
, MemAccessTy());
3457 size_t LUIdx
= P
.first
;
3458 int64_t Offset
= P
.second
;
3459 LSRUse
&LU
= Uses
[LUIdx
];
3460 LSRFixup
&LF
= LU
.getNewFixup();
3461 LF
.UserInst
= const_cast<Instruction
*>(UserInst
);
3462 LF
.OperandValToReplace
= U
;
3464 LU
.AllFixupsOutsideLoop
&= LF
.isUseFullyOutsideLoop(L
);
3465 if (!LU
.WidestFixupType
||
3466 SE
.getTypeSizeInBits(LU
.WidestFixupType
) <
3467 SE
.getTypeSizeInBits(LF
.OperandValToReplace
->getType()))
3468 LU
.WidestFixupType
= LF
.OperandValToReplace
->getType();
3469 InsertSupplementalFormula(US
, LU
, LUIdx
);
3470 CountRegisters(LU
.Formulae
.back(), Uses
.size() - 1);
3477 /// Split S into subexpressions which can be pulled out into separate
3478 /// registers. If C is non-null, multiply each subexpression by C.
3480 /// Return remainder expression after factoring the subexpressions captured by
3481 /// Ops. If Ops is complete, return NULL.
3482 static const SCEV
*CollectSubexprs(const SCEV
*S
, const SCEVConstant
*C
,
3483 SmallVectorImpl
<const SCEV
*> &Ops
,
3485 ScalarEvolution
&SE
,
3486 unsigned Depth
= 0) {
3487 // Arbitrarily cap recursion to protect compile time.
3491 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
3492 // Break out add operands.
3493 for (const SCEV
*S
: Add
->operands()) {
3494 const SCEV
*Remainder
= CollectSubexprs(S
, C
, Ops
, L
, SE
, Depth
+1);
3496 Ops
.push_back(C
? SE
.getMulExpr(C
, Remainder
) : Remainder
);
3499 } else if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
3500 // Split a non-zero base out of an addrec.
3501 if (AR
->getStart()->isZero() || !AR
->isAffine())
3504 const SCEV
*Remainder
= CollectSubexprs(AR
->getStart(),
3505 C
, Ops
, L
, SE
, Depth
+1);
3506 // Split the non-zero AddRec unless it is part of a nested recurrence that
3507 // does not pertain to this loop.
3508 if (Remainder
&& (AR
->getLoop() == L
|| !isa
<SCEVAddRecExpr
>(Remainder
))) {
3509 Ops
.push_back(C
? SE
.getMulExpr(C
, Remainder
) : Remainder
);
3510 Remainder
= nullptr;
3512 if (Remainder
!= AR
->getStart()) {
3514 Remainder
= SE
.getConstant(AR
->getType(), 0);
3515 return SE
.getAddRecExpr(Remainder
,
3516 AR
->getStepRecurrence(SE
),
3518 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3521 } else if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
3522 // Break (C * (a + b + c)) into C*a + C*b + C*c.
3523 if (Mul
->getNumOperands() != 2)
3525 if (const SCEVConstant
*Op0
=
3526 dyn_cast
<SCEVConstant
>(Mul
->getOperand(0))) {
3527 C
= C
? cast
<SCEVConstant
>(SE
.getMulExpr(C
, Op0
)) : Op0
;
3528 const SCEV
*Remainder
=
3529 CollectSubexprs(Mul
->getOperand(1), C
, Ops
, L
, SE
, Depth
+1);
3531 Ops
.push_back(SE
.getMulExpr(C
, Remainder
));
3538 /// Return true if the SCEV represents a value that may end up as a
3539 /// post-increment operation.
3540 static bool mayUsePostIncMode(const TargetTransformInfo
&TTI
,
3541 LSRUse
&LU
, const SCEV
*S
, const Loop
*L
,
3542 ScalarEvolution
&SE
) {
3543 if (LU
.Kind
!= LSRUse::Address
||
3544 !LU
.AccessTy
.getType()->isIntOrIntVectorTy())
3546 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
);
3549 const SCEV
*LoopStep
= AR
->getStepRecurrence(SE
);
3550 if (!isa
<SCEVConstant
>(LoopStep
))
3552 if (LU
.AccessTy
.getType()->getScalarSizeInBits() !=
3553 LoopStep
->getType()->getScalarSizeInBits())
3555 // Check if a post-indexed load/store can be used.
3556 if (TTI
.isIndexedLoadLegal(TTI
.MIM_PostInc
, AR
->getType()) ||
3557 TTI
.isIndexedStoreLegal(TTI
.MIM_PostInc
, AR
->getType())) {
3558 const SCEV
*LoopStart
= AR
->getStart();
3559 if (!isa
<SCEVConstant
>(LoopStart
) && SE
.isLoopInvariant(LoopStart
, L
))
3565 /// Helper function for LSRInstance::GenerateReassociations.
3566 void LSRInstance::GenerateReassociationsImpl(LSRUse
&LU
, unsigned LUIdx
,
3567 const Formula
&Base
,
3568 unsigned Depth
, size_t Idx
,
3570 const SCEV
*BaseReg
= IsScaledReg
? Base
.ScaledReg
: Base
.BaseRegs
[Idx
];
3571 // Don't generate reassociations for the base register of a value that
3572 // may generate a post-increment operator. The reason is that the
3573 // reassociations cause extra base+register formula to be created,
3574 // and possibly chosen, but the post-increment is more efficient.
3575 if (TTI
.shouldFavorPostInc() && mayUsePostIncMode(TTI
, LU
, BaseReg
, L
, SE
))
3577 SmallVector
<const SCEV
*, 8> AddOps
;
3578 const SCEV
*Remainder
= CollectSubexprs(BaseReg
, nullptr, AddOps
, L
, SE
);
3580 AddOps
.push_back(Remainder
);
3582 if (AddOps
.size() == 1)
3585 for (SmallVectorImpl
<const SCEV
*>::const_iterator J
= AddOps
.begin(),
3588 // Loop-variant "unknown" values are uninteresting; we won't be able to
3589 // do anything meaningful with them.
3590 if (isa
<SCEVUnknown
>(*J
) && !SE
.isLoopInvariant(*J
, L
))
3593 // Don't pull a constant into a register if the constant could be folded
3594 // into an immediate field.
3595 if (isAlwaysFoldable(TTI
, SE
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
,
3596 LU
.AccessTy
, *J
, Base
.getNumRegs() > 1))
3599 // Collect all operands except *J.
3600 SmallVector
<const SCEV
*, 8> InnerAddOps(
3601 ((const SmallVector
<const SCEV
*, 8> &)AddOps
).begin(), J
);
3602 InnerAddOps
.append(std::next(J
),
3603 ((const SmallVector
<const SCEV
*, 8> &)AddOps
).end());
3605 // Don't leave just a constant behind in a register if the constant could
3606 // be folded into an immediate field.
3607 if (InnerAddOps
.size() == 1 &&
3608 isAlwaysFoldable(TTI
, SE
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
,
3609 LU
.AccessTy
, InnerAddOps
[0], Base
.getNumRegs() > 1))
3612 const SCEV
*InnerSum
= SE
.getAddExpr(InnerAddOps
);
3613 if (InnerSum
->isZero())
3617 // Add the remaining pieces of the add back into the new formula.
3618 const SCEVConstant
*InnerSumSC
= dyn_cast
<SCEVConstant
>(InnerSum
);
3619 if (InnerSumSC
&& SE
.getTypeSizeInBits(InnerSumSC
->getType()) <= 64 &&
3620 TTI
.isLegalAddImmediate((uint64_t)F
.UnfoldedOffset
+
3621 InnerSumSC
->getValue()->getZExtValue())) {
3623 (uint64_t)F
.UnfoldedOffset
+ InnerSumSC
->getValue()->getZExtValue();
3625 F
.ScaledReg
= nullptr;
3627 F
.BaseRegs
.erase(F
.BaseRegs
.begin() + Idx
);
3628 } else if (IsScaledReg
)
3629 F
.ScaledReg
= InnerSum
;
3631 F
.BaseRegs
[Idx
] = InnerSum
;
3633 // Add J as its own register, or an unfolded immediate.
3634 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(*J
);
3635 if (SC
&& SE
.getTypeSizeInBits(SC
->getType()) <= 64 &&
3636 TTI
.isLegalAddImmediate((uint64_t)F
.UnfoldedOffset
+
3637 SC
->getValue()->getZExtValue()))
3639 (uint64_t)F
.UnfoldedOffset
+ SC
->getValue()->getZExtValue();
3641 F
.BaseRegs
.push_back(*J
);
3642 // We may have changed the number of register in base regs, adjust the
3643 // formula accordingly.
3646 if (InsertFormula(LU
, LUIdx
, F
))
3647 // If that formula hadn't been seen before, recurse to find more like
3649 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3650 // Because just Depth is not enough to bound compile time.
3651 // This means that every time AddOps.size() is greater 16^x we will add
3653 GenerateReassociations(LU
, LUIdx
, LU
.Formulae
.back(),
3654 Depth
+ 1 + (Log2_32(AddOps
.size()) >> 2));
3658 /// Split out subexpressions from adds and the bases of addrecs.
3659 void LSRInstance::GenerateReassociations(LSRUse
&LU
, unsigned LUIdx
,
3660 Formula Base
, unsigned Depth
) {
3661 assert(Base
.isCanonical(*L
) && "Input must be in the canonical form");
3662 // Arbitrarily cap recursion to protect compile time.
3666 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
)
3667 GenerateReassociationsImpl(LU
, LUIdx
, Base
, Depth
, i
);
3669 if (Base
.Scale
== 1)
3670 GenerateReassociationsImpl(LU
, LUIdx
, Base
, Depth
,
3671 /* Idx */ -1, /* IsScaledReg */ true);
3674 /// Generate a formula consisting of all of the loop-dominating registers added
3675 /// into a single register.
3676 void LSRInstance::GenerateCombinations(LSRUse
&LU
, unsigned LUIdx
,
3678 // This method is only interesting on a plurality of registers.
3679 if (Base
.BaseRegs
.size() + (Base
.Scale
== 1) +
3680 (Base
.UnfoldedOffset
!= 0) <= 1)
3683 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3684 // processing the formula.
3686 SmallVector
<const SCEV
*, 4> Ops
;
3687 Formula NewBase
= Base
;
3688 NewBase
.BaseRegs
.clear();
3689 Type
*CombinedIntegerType
= nullptr;
3690 for (const SCEV
*BaseReg
: Base
.BaseRegs
) {
3691 if (SE
.properlyDominates(BaseReg
, L
->getHeader()) &&
3692 !SE
.hasComputableLoopEvolution(BaseReg
, L
)) {
3693 if (!CombinedIntegerType
)
3694 CombinedIntegerType
= SE
.getEffectiveSCEVType(BaseReg
->getType());
3695 Ops
.push_back(BaseReg
);
3698 NewBase
.BaseRegs
.push_back(BaseReg
);
3701 // If no register is relevant, we're done.
3702 if (Ops
.size() == 0)
3705 // Utility function for generating the required variants of the combined
3707 auto GenerateFormula
= [&](const SCEV
*Sum
) {
3708 Formula F
= NewBase
;
3710 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3711 // opportunity to fold something. For now, just ignore such cases
3712 // rather than proceed with zero in a register.
3716 F
.BaseRegs
.push_back(Sum
);
3718 (void)InsertFormula(LU
, LUIdx
, F
);
3721 // If we collected at least two registers, generate a formula combining them.
3722 if (Ops
.size() > 1) {
3723 SmallVector
<const SCEV
*, 4> OpsCopy(Ops
); // Don't let SE modify Ops.
3724 GenerateFormula(SE
.getAddExpr(OpsCopy
));
3727 // If we have an unfolded offset, generate a formula combining it with the
3728 // registers collected.
3729 if (NewBase
.UnfoldedOffset
) {
3730 assert(CombinedIntegerType
&& "Missing a type for the unfolded offset");
3731 Ops
.push_back(SE
.getConstant(CombinedIntegerType
, NewBase
.UnfoldedOffset
,
3733 NewBase
.UnfoldedOffset
= 0;
3734 GenerateFormula(SE
.getAddExpr(Ops
));
3738 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3739 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse
&LU
, unsigned LUIdx
,
3740 const Formula
&Base
, size_t Idx
,
3742 const SCEV
*G
= IsScaledReg
? Base
.ScaledReg
: Base
.BaseRegs
[Idx
];
3743 GlobalValue
*GV
= ExtractSymbol(G
, SE
);
3744 if (G
->isZero() || !GV
)
3748 if (!isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
, LU
.AccessTy
, F
))
3753 F
.BaseRegs
[Idx
] = G
;
3754 (void)InsertFormula(LU
, LUIdx
, F
);
3757 /// Generate reuse formulae using symbolic offsets.
3758 void LSRInstance::GenerateSymbolicOffsets(LSRUse
&LU
, unsigned LUIdx
,
3760 // We can't add a symbolic offset if the address already contains one.
3761 if (Base
.BaseGV
) return;
3763 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
)
3764 GenerateSymbolicOffsetsImpl(LU
, LUIdx
, Base
, i
);
3765 if (Base
.Scale
== 1)
3766 GenerateSymbolicOffsetsImpl(LU
, LUIdx
, Base
, /* Idx */ -1,
3767 /* IsScaledReg */ true);
3770 /// Helper function for LSRInstance::GenerateConstantOffsets.
3771 void LSRInstance::GenerateConstantOffsetsImpl(
3772 LSRUse
&LU
, unsigned LUIdx
, const Formula
&Base
,
3773 const SmallVectorImpl
<int64_t> &Worklist
, size_t Idx
, bool IsScaledReg
) {
3775 auto GenerateOffset
= [&](const SCEV
*G
, int64_t Offset
) {
3777 F
.BaseOffset
= (uint64_t)Base
.BaseOffset
- Offset
;
3779 if (isLegalUse(TTI
, LU
.MinOffset
- Offset
, LU
.MaxOffset
- Offset
, LU
.Kind
,
3781 // Add the offset to the base register.
3782 const SCEV
*NewG
= SE
.getAddExpr(SE
.getConstant(G
->getType(), Offset
), G
);
3783 // If it cancelled out, drop the base register, otherwise update it.
3784 if (NewG
->isZero()) {
3787 F
.ScaledReg
= nullptr;
3789 F
.deleteBaseReg(F
.BaseRegs
[Idx
]);
3791 } else if (IsScaledReg
)
3794 F
.BaseRegs
[Idx
] = NewG
;
3796 (void)InsertFormula(LU
, LUIdx
, F
);
3800 const SCEV
*G
= IsScaledReg
? Base
.ScaledReg
: Base
.BaseRegs
[Idx
];
3802 // With constant offsets and constant steps, we can generate pre-inc
3803 // accesses by having the offset equal the step. So, for access #0 with a
3804 // step of 8, we generate a G - 8 base which would require the first access
3805 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3806 // for itself and hopefully becomes the base for other accesses. This means
3807 // means that a single pre-indexed access can be generated to become the new
3808 // base pointer for each iteration of the loop, resulting in no extra add/sub
3809 // instructions for pointer updating.
3810 if (FavorBackedgeIndex
&& LU
.Kind
== LSRUse::Address
) {
3811 if (auto *GAR
= dyn_cast
<SCEVAddRecExpr
>(G
)) {
3813 dyn_cast
<SCEVConstant
>(GAR
->getStepRecurrence(SE
))) {
3814 const APInt
&StepInt
= StepRec
->getAPInt();
3815 int64_t Step
= StepInt
.isNegative() ?
3816 StepInt
.getSExtValue() : StepInt
.getZExtValue();
3818 for (int64_t Offset
: Worklist
) {
3820 GenerateOffset(G
, Offset
);
3825 for (int64_t Offset
: Worklist
)
3826 GenerateOffset(G
, Offset
);
3828 int64_t Imm
= ExtractImmediate(G
, SE
);
3829 if (G
->isZero() || Imm
== 0)
3832 F
.BaseOffset
= (uint64_t)F
.BaseOffset
+ Imm
;
3833 if (!isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
, LU
.AccessTy
, F
))
3838 F
.BaseRegs
[Idx
] = G
;
3839 (void)InsertFormula(LU
, LUIdx
, F
);
3842 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3843 void LSRInstance::GenerateConstantOffsets(LSRUse
&LU
, unsigned LUIdx
,
3845 // TODO: For now, just add the min and max offset, because it usually isn't
3846 // worthwhile looking at everything inbetween.
3847 SmallVector
<int64_t, 2> Worklist
;
3848 Worklist
.push_back(LU
.MinOffset
);
3849 if (LU
.MaxOffset
!= LU
.MinOffset
)
3850 Worklist
.push_back(LU
.MaxOffset
);
3852 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
)
3853 GenerateConstantOffsetsImpl(LU
, LUIdx
, Base
, Worklist
, i
);
3854 if (Base
.Scale
== 1)
3855 GenerateConstantOffsetsImpl(LU
, LUIdx
, Base
, Worklist
, /* Idx */ -1,
3856 /* IsScaledReg */ true);
3859 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3860 /// == y -> x*c == y*c.
3861 void LSRInstance::GenerateICmpZeroScales(LSRUse
&LU
, unsigned LUIdx
,
3863 if (LU
.Kind
!= LSRUse::ICmpZero
) return;
3865 // Determine the integer type for the base formula.
3866 Type
*IntTy
= Base
.getType();
3868 if (SE
.getTypeSizeInBits(IntTy
) > 64) return;
3870 // Don't do this if there is more than one offset.
3871 if (LU
.MinOffset
!= LU
.MaxOffset
) return;
3873 // Check if transformation is valid. It is illegal to multiply pointer.
3874 if (Base
.ScaledReg
&& Base
.ScaledReg
->getType()->isPointerTy())
3876 for (const SCEV
*BaseReg
: Base
.BaseRegs
)
3877 if (BaseReg
->getType()->isPointerTy())
3879 assert(!Base
.BaseGV
&& "ICmpZero use is not legal!");
3881 // Check each interesting stride.
3882 for (int64_t Factor
: Factors
) {
3883 // Check that the multiplication doesn't overflow.
3884 if (Base
.BaseOffset
== std::numeric_limits
<int64_t>::min() && Factor
== -1)
3886 int64_t NewBaseOffset
= (uint64_t)Base
.BaseOffset
* Factor
;
3887 if (NewBaseOffset
/ Factor
!= Base
.BaseOffset
)
3889 // If the offset will be truncated at this use, check that it is in bounds.
3890 if (!IntTy
->isPointerTy() &&
3891 !ConstantInt::isValueValidForType(IntTy
, NewBaseOffset
))
3894 // Check that multiplying with the use offset doesn't overflow.
3895 int64_t Offset
= LU
.MinOffset
;
3896 if (Offset
== std::numeric_limits
<int64_t>::min() && Factor
== -1)
3898 Offset
= (uint64_t)Offset
* Factor
;
3899 if (Offset
/ Factor
!= LU
.MinOffset
)
3901 // If the offset will be truncated at this use, check that it is in bounds.
3902 if (!IntTy
->isPointerTy() &&
3903 !ConstantInt::isValueValidForType(IntTy
, Offset
))
3907 F
.BaseOffset
= NewBaseOffset
;
3909 // Check that this scale is legal.
3910 if (!isLegalUse(TTI
, Offset
, Offset
, LU
.Kind
, LU
.AccessTy
, F
))
3913 // Compensate for the use having MinOffset built into it.
3914 F
.BaseOffset
= (uint64_t)F
.BaseOffset
+ Offset
- LU
.MinOffset
;
3916 const SCEV
*FactorS
= SE
.getConstant(IntTy
, Factor
);
3918 // Check that multiplying with each base register doesn't overflow.
3919 for (size_t i
= 0, e
= F
.BaseRegs
.size(); i
!= e
; ++i
) {
3920 F
.BaseRegs
[i
] = SE
.getMulExpr(F
.BaseRegs
[i
], FactorS
);
3921 if (getExactSDiv(F
.BaseRegs
[i
], FactorS
, SE
) != Base
.BaseRegs
[i
])
3925 // Check that multiplying with the scaled register doesn't overflow.
3927 F
.ScaledReg
= SE
.getMulExpr(F
.ScaledReg
, FactorS
);
3928 if (getExactSDiv(F
.ScaledReg
, FactorS
, SE
) != Base
.ScaledReg
)
3932 // Check that multiplying with the unfolded offset doesn't overflow.
3933 if (F
.UnfoldedOffset
!= 0) {
3934 if (F
.UnfoldedOffset
== std::numeric_limits
<int64_t>::min() &&
3937 F
.UnfoldedOffset
= (uint64_t)F
.UnfoldedOffset
* Factor
;
3938 if (F
.UnfoldedOffset
/ Factor
!= Base
.UnfoldedOffset
)
3940 // If the offset will be truncated, check that it is in bounds.
3941 if (!IntTy
->isPointerTy() &&
3942 !ConstantInt::isValueValidForType(IntTy
, F
.UnfoldedOffset
))
3946 // If we make it here and it's legal, add it.
3947 (void)InsertFormula(LU
, LUIdx
, F
);
3952 /// Generate stride factor reuse formulae by making use of scaled-offset address
3953 /// modes, for example.
3954 void LSRInstance::GenerateScales(LSRUse
&LU
, unsigned LUIdx
, Formula Base
) {
3955 // Determine the integer type for the base formula.
3956 Type
*IntTy
= Base
.getType();
3959 // If this Formula already has a scaled register, we can't add another one.
3960 // Try to unscale the formula to generate a better scale.
3961 if (Base
.Scale
!= 0 && !Base
.unscale())
3964 assert(Base
.Scale
== 0 && "unscale did not did its job!");
3966 // Check each interesting stride.
3967 for (int64_t Factor
: Factors
) {
3968 Base
.Scale
= Factor
;
3969 Base
.HasBaseReg
= Base
.BaseRegs
.size() > 1;
3970 // Check whether this scale is going to be legal.
3971 if (!isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
, LU
.AccessTy
,
3973 // As a special-case, handle special out-of-loop Basic users specially.
3974 // TODO: Reconsider this special case.
3975 if (LU
.Kind
== LSRUse::Basic
&&
3976 isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LSRUse::Special
,
3977 LU
.AccessTy
, Base
) &&
3978 LU
.AllFixupsOutsideLoop
)
3979 LU
.Kind
= LSRUse::Special
;
3983 // For an ICmpZero, negating a solitary base register won't lead to
3985 if (LU
.Kind
== LSRUse::ICmpZero
&&
3986 !Base
.HasBaseReg
&& Base
.BaseOffset
== 0 && !Base
.BaseGV
)
3988 // For each addrec base reg, if its loop is current loop, apply the scale.
3989 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
) {
3990 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Base
.BaseRegs
[i
]);
3991 if (AR
&& (AR
->getLoop() == L
|| LU
.AllFixupsOutsideLoop
)) {
3992 const SCEV
*FactorS
= SE
.getConstant(IntTy
, Factor
);
3993 if (FactorS
->isZero())
3995 // Divide out the factor, ignoring high bits, since we'll be
3996 // scaling the value back up in the end.
3997 if (const SCEV
*Quotient
= getExactSDiv(AR
, FactorS
, SE
, true)) {
3998 // TODO: This could be optimized to avoid all the copying.
4000 F
.ScaledReg
= Quotient
;
4001 F
.deleteBaseReg(F
.BaseRegs
[i
]);
4002 // The canonical representation of 1*reg is reg, which is already in
4003 // Base. In that case, do not try to insert the formula, it will be
4005 if (F
.Scale
== 1 && (F
.BaseRegs
.empty() ||
4006 (AR
->getLoop() != L
&& LU
.AllFixupsOutsideLoop
)))
4008 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4009 // non canonical Formula with ScaledReg's loop not being L.
4010 if (F
.Scale
== 1 && LU
.AllFixupsOutsideLoop
)
4012 (void)InsertFormula(LU
, LUIdx
, F
);
4019 /// Generate reuse formulae from different IV types.
4020 void LSRInstance::GenerateTruncates(LSRUse
&LU
, unsigned LUIdx
, Formula Base
) {
4021 // Don't bother truncating symbolic values.
4022 if (Base
.BaseGV
) return;
4024 // Determine the integer type for the base formula.
4025 Type
*DstTy
= Base
.getType();
4027 DstTy
= SE
.getEffectiveSCEVType(DstTy
);
4029 for (Type
*SrcTy
: Types
) {
4030 if (SrcTy
!= DstTy
&& TTI
.isTruncateFree(SrcTy
, DstTy
)) {
4033 // Sometimes SCEV is able to prove zero during ext transform. It may
4034 // happen if SCEV did not do all possible transforms while creating the
4035 // initial node (maybe due to depth limitations), but it can do them while
4038 const SCEV
*NewScaledReg
= SE
.getAnyExtendExpr(F
.ScaledReg
, SrcTy
);
4039 if (NewScaledReg
->isZero())
4041 F
.ScaledReg
= NewScaledReg
;
4043 bool HasZeroBaseReg
= false;
4044 for (const SCEV
*&BaseReg
: F
.BaseRegs
) {
4045 const SCEV
*NewBaseReg
= SE
.getAnyExtendExpr(BaseReg
, SrcTy
);
4046 if (NewBaseReg
->isZero()) {
4047 HasZeroBaseReg
= true;
4050 BaseReg
= NewBaseReg
;
4055 // TODO: This assumes we've done basic processing on all uses and
4056 // have an idea what the register usage is.
4057 if (!F
.hasRegsUsedByUsesOtherThan(LUIdx
, RegUses
))
4061 (void)InsertFormula(LU
, LUIdx
, F
);
4068 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4069 /// modifications so that the search phase doesn't have to worry about the data
4070 /// structures moving underneath it.
4074 const SCEV
*OrigReg
;
4076 WorkItem(size_t LI
, int64_t I
, const SCEV
*R
)
4077 : LUIdx(LI
), Imm(I
), OrigReg(R
) {}
4079 void print(raw_ostream
&OS
) const;
4083 } // end anonymous namespace
4085 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4086 void WorkItem::print(raw_ostream
&OS
) const {
4087 OS
<< "in formulae referencing " << *OrigReg
<< " in use " << LUIdx
4088 << " , add offset " << Imm
;
4091 LLVM_DUMP_METHOD
void WorkItem::dump() const {
4092 print(errs()); errs() << '\n';
4096 /// Look for registers which are a constant distance apart and try to form reuse
4097 /// opportunities between them.
4098 void LSRInstance::GenerateCrossUseConstantOffsets() {
4099 // Group the registers by their value without any added constant offset.
4100 using ImmMapTy
= std::map
<int64_t, const SCEV
*>;
4102 DenseMap
<const SCEV
*, ImmMapTy
> Map
;
4103 DenseMap
<const SCEV
*, SmallBitVector
> UsedByIndicesMap
;
4104 SmallVector
<const SCEV
*, 8> Sequence
;
4105 for (const SCEV
*Use
: RegUses
) {
4106 const SCEV
*Reg
= Use
; // Make a copy for ExtractImmediate to modify.
4107 int64_t Imm
= ExtractImmediate(Reg
, SE
);
4108 auto Pair
= Map
.insert(std::make_pair(Reg
, ImmMapTy()));
4110 Sequence
.push_back(Reg
);
4111 Pair
.first
->second
.insert(std::make_pair(Imm
, Use
));
4112 UsedByIndicesMap
[Reg
] |= RegUses
.getUsedByIndices(Use
);
4115 // Now examine each set of registers with the same base value. Build up
4116 // a list of work to do and do the work in a separate step so that we're
4117 // not adding formulae and register counts while we're searching.
4118 SmallVector
<WorkItem
, 32> WorkItems
;
4119 SmallSet
<std::pair
<size_t, int64_t>, 32> UniqueItems
;
4120 for (const SCEV
*Reg
: Sequence
) {
4121 const ImmMapTy
&Imms
= Map
.find(Reg
)->second
;
4123 // It's not worthwhile looking for reuse if there's only one offset.
4124 if (Imms
.size() == 1)
4127 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg
<< ':';
4128 for (const auto &Entry
4130 << ' ' << Entry
.first
;
4133 // Examine each offset.
4134 for (ImmMapTy::const_iterator J
= Imms
.begin(), JE
= Imms
.end();
4136 const SCEV
*OrigReg
= J
->second
;
4138 int64_t JImm
= J
->first
;
4139 const SmallBitVector
&UsedByIndices
= RegUses
.getUsedByIndices(OrigReg
);
4141 if (!isa
<SCEVConstant
>(OrigReg
) &&
4142 UsedByIndicesMap
[Reg
].count() == 1) {
4143 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4148 // Conservatively examine offsets between this orig reg a few selected
4150 int64_t First
= Imms
.begin()->first
;
4151 int64_t Last
= std::prev(Imms
.end())->first
;
4152 // Compute (First + Last) / 2 without overflow using the fact that
4153 // First + Last = 2 * (First + Last) + (First ^ Last).
4154 int64_t Avg
= (First
& Last
) + ((First
^ Last
) >> 1);
4155 // If the result is negative and First is odd and Last even (or vice versa),
4156 // we rounded towards -inf. Add 1 in that case, to round towards 0.
4157 Avg
= Avg
+ ((First
^ Last
) & ((uint64_t)Avg
>> 63));
4158 ImmMapTy::const_iterator OtherImms
[] = {
4159 Imms
.begin(), std::prev(Imms
.end()),
4160 Imms
.lower_bound(Avg
)};
4161 for (size_t i
= 0, e
= array_lengthof(OtherImms
); i
!= e
; ++i
) {
4162 ImmMapTy::const_iterator M
= OtherImms
[i
];
4163 if (M
== J
|| M
== JE
) continue;
4165 // Compute the difference between the two.
4166 int64_t Imm
= (uint64_t)JImm
- M
->first
;
4167 for (unsigned LUIdx
: UsedByIndices
.set_bits())
4168 // Make a memo of this use, offset, and register tuple.
4169 if (UniqueItems
.insert(std::make_pair(LUIdx
, Imm
)).second
)
4170 WorkItems
.push_back(WorkItem(LUIdx
, Imm
, OrigReg
));
4177 UsedByIndicesMap
.clear();
4178 UniqueItems
.clear();
4180 // Now iterate through the worklist and add new formulae.
4181 for (const WorkItem
&WI
: WorkItems
) {
4182 size_t LUIdx
= WI
.LUIdx
;
4183 LSRUse
&LU
= Uses
[LUIdx
];
4184 int64_t Imm
= WI
.Imm
;
4185 const SCEV
*OrigReg
= WI
.OrigReg
;
4187 Type
*IntTy
= SE
.getEffectiveSCEVType(OrigReg
->getType());
4188 const SCEV
*NegImmS
= SE
.getSCEV(ConstantInt::get(IntTy
, -(uint64_t)Imm
));
4189 unsigned BitWidth
= SE
.getTypeSizeInBits(IntTy
);
4191 // TODO: Use a more targeted data structure.
4192 for (size_t L
= 0, LE
= LU
.Formulae
.size(); L
!= LE
; ++L
) {
4193 Formula F
= LU
.Formulae
[L
];
4194 // FIXME: The code for the scaled and unscaled registers looks
4195 // very similar but slightly different. Investigate if they
4196 // could be merged. That way, we would not have to unscale the
4199 // Use the immediate in the scaled register.
4200 if (F
.ScaledReg
== OrigReg
) {
4201 int64_t Offset
= (uint64_t)F
.BaseOffset
+ Imm
* (uint64_t)F
.Scale
;
4202 // Don't create 50 + reg(-50).
4203 if (F
.referencesReg(SE
.getSCEV(
4204 ConstantInt::get(IntTy
, -(uint64_t)Offset
))))
4207 NewF
.BaseOffset
= Offset
;
4208 if (!isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
, LU
.AccessTy
,
4211 NewF
.ScaledReg
= SE
.getAddExpr(NegImmS
, NewF
.ScaledReg
);
4213 // If the new scale is a constant in a register, and adding the constant
4214 // value to the immediate would produce a value closer to zero than the
4215 // immediate itself, then the formula isn't worthwhile.
4216 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(NewF
.ScaledReg
))
4217 if (C
->getValue()->isNegative() != (NewF
.BaseOffset
< 0) &&
4218 (C
->getAPInt().abs() * APInt(BitWidth
, F
.Scale
))
4219 .ule(std::abs(NewF
.BaseOffset
)))
4223 NewF
.canonicalize(*this->L
);
4224 (void)InsertFormula(LU
, LUIdx
, NewF
);
4226 // Use the immediate in a base register.
4227 for (size_t N
= 0, NE
= F
.BaseRegs
.size(); N
!= NE
; ++N
) {
4228 const SCEV
*BaseReg
= F
.BaseRegs
[N
];
4229 if (BaseReg
!= OrigReg
)
4232 NewF
.BaseOffset
= (uint64_t)NewF
.BaseOffset
+ Imm
;
4233 if (!isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
,
4234 LU
.Kind
, LU
.AccessTy
, NewF
)) {
4235 if (TTI
.shouldFavorPostInc() &&
4236 mayUsePostIncMode(TTI
, LU
, OrigReg
, this->L
, SE
))
4238 if (!TTI
.isLegalAddImmediate((uint64_t)NewF
.UnfoldedOffset
+ Imm
))
4241 NewF
.UnfoldedOffset
= (uint64_t)NewF
.UnfoldedOffset
+ Imm
;
4243 NewF
.BaseRegs
[N
] = SE
.getAddExpr(NegImmS
, BaseReg
);
4245 // If the new formula has a constant in a register, and adding the
4246 // constant value to the immediate would produce a value closer to
4247 // zero than the immediate itself, then the formula isn't worthwhile.
4248 for (const SCEV
*NewReg
: NewF
.BaseRegs
)
4249 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(NewReg
))
4250 if ((C
->getAPInt() + NewF
.BaseOffset
)
4252 .slt(std::abs(NewF
.BaseOffset
)) &&
4253 (C
->getAPInt() + NewF
.BaseOffset
).countTrailingZeros() >=
4254 countTrailingZeros
<uint64_t>(NewF
.BaseOffset
))
4258 NewF
.canonicalize(*this->L
);
4259 (void)InsertFormula(LU
, LUIdx
, NewF
);
4268 /// Generate formulae for each use.
4270 LSRInstance::GenerateAllReuseFormulae() {
4271 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4272 // queries are more precise.
4273 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4274 LSRUse
&LU
= Uses
[LUIdx
];
4275 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4276 GenerateReassociations(LU
, LUIdx
, LU
.Formulae
[i
]);
4277 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4278 GenerateCombinations(LU
, LUIdx
, LU
.Formulae
[i
]);
4280 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4281 LSRUse
&LU
= Uses
[LUIdx
];
4282 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4283 GenerateSymbolicOffsets(LU
, LUIdx
, LU
.Formulae
[i
]);
4284 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4285 GenerateConstantOffsets(LU
, LUIdx
, LU
.Formulae
[i
]);
4286 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4287 GenerateICmpZeroScales(LU
, LUIdx
, LU
.Formulae
[i
]);
4288 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4289 GenerateScales(LU
, LUIdx
, LU
.Formulae
[i
]);
4291 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4292 LSRUse
&LU
= Uses
[LUIdx
];
4293 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4294 GenerateTruncates(LU
, LUIdx
, LU
.Formulae
[i
]);
4297 GenerateCrossUseConstantOffsets();
4299 LLVM_DEBUG(dbgs() << "\n"
4300 "After generating reuse formulae:\n";
4301 print_uses(dbgs()));
4304 /// If there are multiple formulae with the same set of registers used
4305 /// by other uses, pick the best one and delete the others.
4306 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4307 DenseSet
<const SCEV
*> VisitedRegs
;
4308 SmallPtrSet
<const SCEV
*, 16> Regs
;
4309 SmallPtrSet
<const SCEV
*, 16> LoserRegs
;
4311 bool ChangedFormulae
= false;
4314 // Collect the best formula for each unique set of shared registers. This
4315 // is reset for each use.
4316 using BestFormulaeTy
=
4317 DenseMap
<SmallVector
<const SCEV
*, 4>, size_t, UniquifierDenseMapInfo
>;
4319 BestFormulaeTy BestFormulae
;
4321 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4322 LSRUse
&LU
= Uses
[LUIdx
];
4323 LLVM_DEBUG(dbgs() << "Filtering for use "; LU
.print(dbgs());
4327 for (size_t FIdx
= 0, NumForms
= LU
.Formulae
.size();
4328 FIdx
!= NumForms
; ++FIdx
) {
4329 Formula
&F
= LU
.Formulae
[FIdx
];
4331 // Some formulas are instant losers. For example, they may depend on
4332 // nonexistent AddRecs from other loops. These need to be filtered
4333 // immediately, otherwise heuristics could choose them over others leading
4334 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4335 // avoids the need to recompute this information across formulae using the
4336 // same bad AddRec. Passing LoserRegs is also essential unless we remove
4337 // the corresponding bad register from the Regs set.
4338 Cost
CostF(L
, SE
, TTI
);
4340 CostF
.RateFormula(F
, Regs
, VisitedRegs
, LU
, &LoserRegs
);
4341 if (CostF
.isLoser()) {
4342 // During initial formula generation, undesirable formulae are generated
4343 // by uses within other loops that have some non-trivial address mode or
4344 // use the postinc form of the IV. LSR needs to provide these formulae
4345 // as the basis of rediscovering the desired formula that uses an AddRec
4346 // corresponding to the existing phi. Once all formulae have been
4347 // generated, these initial losers may be pruned.
4348 LLVM_DEBUG(dbgs() << " Filtering loser "; F
.print(dbgs());
4352 SmallVector
<const SCEV
*, 4> Key
;
4353 for (const SCEV
*Reg
: F
.BaseRegs
) {
4354 if (RegUses
.isRegUsedByUsesOtherThan(Reg
, LUIdx
))
4358 RegUses
.isRegUsedByUsesOtherThan(F
.ScaledReg
, LUIdx
))
4359 Key
.push_back(F
.ScaledReg
);
4360 // Unstable sort by host order ok, because this is only used for
4364 std::pair
<BestFormulaeTy::const_iterator
, bool> P
=
4365 BestFormulae
.insert(std::make_pair(Key
, FIdx
));
4369 Formula
&Best
= LU
.Formulae
[P
.first
->second
];
4371 Cost
CostBest(L
, SE
, TTI
);
4373 CostBest
.RateFormula(Best
, Regs
, VisitedRegs
, LU
);
4374 if (CostF
.isLess(CostBest
))
4376 LLVM_DEBUG(dbgs() << " Filtering out formula "; F
.print(dbgs());
4378 " in favor of formula ";
4379 Best
.print(dbgs()); dbgs() << '\n');
4382 ChangedFormulae
= true;
4384 LU
.DeleteFormula(F
);
4390 // Now that we've filtered out some formulae, recompute the Regs set.
4392 LU
.RecomputeRegs(LUIdx
, RegUses
);
4394 // Reset this to prepare for the next use.
4395 BestFormulae
.clear();
4398 LLVM_DEBUG(if (ChangedFormulae
) {
4400 "After filtering out undesirable candidates:\n";
4405 /// Estimate the worst-case number of solutions the solver might have to
4406 /// consider. It almost never considers this many solutions because it prune the
4407 /// search space, but the pruning isn't always sufficient.
4408 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4410 for (const LSRUse
&LU
: Uses
) {
4411 size_t FSize
= LU
.Formulae
.size();
4412 if (FSize
>= ComplexityLimit
) {
4413 Power
= ComplexityLimit
;
4417 if (Power
>= ComplexityLimit
)
4423 /// When one formula uses a superset of the registers of another formula, it
4424 /// won't help reduce register pressure (though it may not necessarily hurt
4425 /// register pressure); remove it to simplify the system.
4426 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4427 if (EstimateSearchSpaceComplexity() >= ComplexityLimit
) {
4428 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4430 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4431 "which use a superset of registers used by other "
4434 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4435 LSRUse
&LU
= Uses
[LUIdx
];
4437 for (size_t i
= 0, e
= LU
.Formulae
.size(); i
!= e
; ++i
) {
4438 Formula
&F
= LU
.Formulae
[i
];
4439 // Look for a formula with a constant or GV in a register. If the use
4440 // also has a formula with that same value in an immediate field,
4441 // delete the one that uses a register.
4442 for (SmallVectorImpl
<const SCEV
*>::const_iterator
4443 I
= F
.BaseRegs
.begin(), E
= F
.BaseRegs
.end(); I
!= E
; ++I
) {
4444 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(*I
)) {
4446 //FIXME: Formulas should store bitwidth to do wrapping properly.
4448 NewF
.BaseOffset
+= (uint64_t)C
->getValue()->getSExtValue();
4449 NewF
.BaseRegs
.erase(NewF
.BaseRegs
.begin() +
4450 (I
- F
.BaseRegs
.begin()));
4451 if (LU
.HasFormulaWithSameRegs(NewF
)) {
4452 LLVM_DEBUG(dbgs() << " Deleting "; F
.print(dbgs());
4454 LU
.DeleteFormula(F
);
4460 } else if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(*I
)) {
4461 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(U
->getValue()))
4465 NewF
.BaseRegs
.erase(NewF
.BaseRegs
.begin() +
4466 (I
- F
.BaseRegs
.begin()));
4467 if (LU
.HasFormulaWithSameRegs(NewF
)) {
4468 LLVM_DEBUG(dbgs() << " Deleting "; F
.print(dbgs());
4470 LU
.DeleteFormula(F
);
4481 LU
.RecomputeRegs(LUIdx
, RegUses
);
4484 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4488 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4489 /// allocate a single register for them.
4490 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4491 if (EstimateSearchSpaceComplexity() < ComplexityLimit
)
4495 dbgs() << "The search space is too complex.\n"
4496 "Narrowing the search space by assuming that uses separated "
4497 "by a constant offset will use the same registers.\n");
4499 // This is especially useful for unrolled loops.
4501 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4502 LSRUse
&LU
= Uses
[LUIdx
];
4503 for (const Formula
&F
: LU
.Formulae
) {
4504 if (F
.BaseOffset
== 0 || (F
.Scale
!= 0 && F
.Scale
!= 1))
4507 LSRUse
*LUThatHas
= FindUseWithSimilarFormula(F
, LU
);
4511 if (!reconcileNewOffset(*LUThatHas
, F
.BaseOffset
, /*HasBaseReg=*/ false,
4512 LU
.Kind
, LU
.AccessTy
))
4515 LLVM_DEBUG(dbgs() << " Deleting use "; LU
.print(dbgs()); dbgs() << '\n');
4517 LUThatHas
->AllFixupsOutsideLoop
&= LU
.AllFixupsOutsideLoop
;
4519 // Transfer the fixups of LU to LUThatHas.
4520 for (LSRFixup
&Fixup
: LU
.Fixups
) {
4521 Fixup
.Offset
+= F
.BaseOffset
;
4522 LUThatHas
->pushFixup(Fixup
);
4523 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup
.Offset
<< '\n');
4526 // Delete formulae from the new use which are no longer legal.
4528 for (size_t i
= 0, e
= LUThatHas
->Formulae
.size(); i
!= e
; ++i
) {
4529 Formula
&F
= LUThatHas
->Formulae
[i
];
4530 if (!isLegalUse(TTI
, LUThatHas
->MinOffset
, LUThatHas
->MaxOffset
,
4531 LUThatHas
->Kind
, LUThatHas
->AccessTy
, F
)) {
4532 LLVM_DEBUG(dbgs() << " Deleting "; F
.print(dbgs()); dbgs() << '\n');
4533 LUThatHas
->DeleteFormula(F
);
4541 LUThatHas
->RecomputeRegs(LUThatHas
- &Uses
.front(), RegUses
);
4543 // Delete the old use.
4544 DeleteUse(LU
, LUIdx
);
4551 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4554 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4555 /// we've done more filtering, as it may be able to find more formulae to
4557 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4558 if (EstimateSearchSpaceComplexity() >= ComplexityLimit
) {
4559 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4561 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4562 "undesirable dedicated registers.\n");
4564 FilterOutUndesirableDedicatedRegisters();
4566 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4570 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4571 /// Pick the best one and delete the others.
4572 /// This narrowing heuristic is to keep as many formulae with different
4573 /// Scale and ScaledReg pair as possible while narrowing the search space.
4574 /// The benefit is that it is more likely to find out a better solution
4575 /// from a formulae set with more Scale and ScaledReg variations than
4576 /// a formulae set with the same Scale and ScaledReg. The picking winner
4577 /// reg heuristic will often keep the formulae with the same Scale and
4578 /// ScaledReg and filter others, and we want to avoid that if possible.
4579 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4580 if (EstimateSearchSpaceComplexity() < ComplexityLimit
)
4584 dbgs() << "The search space is too complex.\n"
4585 "Narrowing the search space by choosing the best Formula "
4586 "from the Formulae with the same Scale and ScaledReg.\n");
4588 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4589 using BestFormulaeTy
= DenseMap
<std::pair
<const SCEV
*, int64_t>, size_t>;
4591 BestFormulaeTy BestFormulae
;
4593 bool ChangedFormulae
= false;
4595 DenseSet
<const SCEV
*> VisitedRegs
;
4596 SmallPtrSet
<const SCEV
*, 16> Regs
;
4598 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4599 LSRUse
&LU
= Uses
[LUIdx
];
4600 LLVM_DEBUG(dbgs() << "Filtering for use "; LU
.print(dbgs());
4603 // Return true if Formula FA is better than Formula FB.
4604 auto IsBetterThan
= [&](Formula
&FA
, Formula
&FB
) {
4605 // First we will try to choose the Formula with fewer new registers.
4606 // For a register used by current Formula, the more the register is
4607 // shared among LSRUses, the less we increase the register number
4608 // counter of the formula.
4609 size_t FARegNum
= 0;
4610 for (const SCEV
*Reg
: FA
.BaseRegs
) {
4611 const SmallBitVector
&UsedByIndices
= RegUses
.getUsedByIndices(Reg
);
4612 FARegNum
+= (NumUses
- UsedByIndices
.count() + 1);
4614 size_t FBRegNum
= 0;
4615 for (const SCEV
*Reg
: FB
.BaseRegs
) {
4616 const SmallBitVector
&UsedByIndices
= RegUses
.getUsedByIndices(Reg
);
4617 FBRegNum
+= (NumUses
- UsedByIndices
.count() + 1);
4619 if (FARegNum
!= FBRegNum
)
4620 return FARegNum
< FBRegNum
;
4622 // If the new register numbers are the same, choose the Formula with
4624 Cost
CostFA(L
, SE
, TTI
);
4625 Cost
CostFB(L
, SE
, TTI
);
4627 CostFA
.RateFormula(FA
, Regs
, VisitedRegs
, LU
);
4629 CostFB
.RateFormula(FB
, Regs
, VisitedRegs
, LU
);
4630 return CostFA
.isLess(CostFB
);
4634 for (size_t FIdx
= 0, NumForms
= LU
.Formulae
.size(); FIdx
!= NumForms
;
4636 Formula
&F
= LU
.Formulae
[FIdx
];
4639 auto P
= BestFormulae
.insert({{F
.ScaledReg
, F
.Scale
}, FIdx
});
4643 Formula
&Best
= LU
.Formulae
[P
.first
->second
];
4644 if (IsBetterThan(F
, Best
))
4646 LLVM_DEBUG(dbgs() << " Filtering out formula "; F
.print(dbgs());
4648 " in favor of formula ";
4649 Best
.print(dbgs()); dbgs() << '\n');
4651 ChangedFormulae
= true;
4653 LU
.DeleteFormula(F
);
4659 LU
.RecomputeRegs(LUIdx
, RegUses
);
4661 // Reset this to prepare for the next use.
4662 BestFormulae
.clear();
4665 LLVM_DEBUG(if (ChangedFormulae
) {
4667 "After filtering out undesirable candidates:\n";
4672 /// The function delete formulas with high registers number expectation.
4673 /// Assuming we don't know the value of each formula (already delete
4674 /// all inefficient), generate probability of not selecting for each
4678 /// reg(a) + reg({0,+,1})
4679 /// reg(a) + reg({-1,+,1}) + 1
4682 /// reg(b) + reg({0,+,1})
4683 /// reg(b) + reg({-1,+,1}) + 1
4686 /// reg(c) + reg(b) + reg({0,+,1})
4687 /// reg(c) + reg({b,+,1})
4689 /// Probability of not selecting
4691 /// reg(a) (1/3) * 1 * 1
4692 /// reg(b) 1 * (1/3) * (1/2)
4693 /// reg({0,+,1}) (2/3) * (2/3) * (1/2)
4694 /// reg({-1,+,1}) (2/3) * (2/3) * 1
4695 /// reg({a,+,1}) (2/3) * 1 * 1
4696 /// reg({b,+,1}) 1 * (2/3) * (2/3)
4697 /// reg(c) 1 * 1 * 0
4699 /// Now count registers number mathematical expectation for each formula:
4700 /// Note that for each use we exclude probability if not selecting for the use.
4701 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4702 /// probabilty 1/3 of not selecting for Use1).
4704 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted
4705 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted
4708 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted
4709 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted
4710 /// reg({b,+,1}) 2/3
4712 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4713 /// reg(c) + reg({b,+,1}) 1 + 2/3
4714 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4715 if (EstimateSearchSpaceComplexity() < ComplexityLimit
)
4717 // Ok, we have too many of formulae on our hands to conveniently handle.
4718 // Use a rough heuristic to thin out the list.
4720 // Set of Regs wich will be 100% used in final solution.
4721 // Used in each formula of a solution (in example above this is reg(c)).
4722 // We can skip them in calculations.
4723 SmallPtrSet
<const SCEV
*, 4> UniqRegs
;
4724 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4726 // Map each register to probability of not selecting
4727 DenseMap
<const SCEV
*, float> RegNumMap
;
4728 for (const SCEV
*Reg
: RegUses
) {
4729 if (UniqRegs
.count(Reg
))
4732 for (const LSRUse
&LU
: Uses
) {
4733 if (!LU
.Regs
.count(Reg
))
4735 float P
= LU
.getNotSelectedProbability(Reg
);
4739 UniqRegs
.insert(Reg
);
4741 RegNumMap
.insert(std::make_pair(Reg
, PNotSel
));
4745 dbgs() << "Narrowing the search space by deleting costly formulas\n");
4747 // Delete formulas where registers number expectation is high.
4748 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4749 LSRUse
&LU
= Uses
[LUIdx
];
4750 // If nothing to delete - continue.
4751 if (LU
.Formulae
.size() < 2)
4753 // This is temporary solution to test performance. Float should be
4754 // replaced with round independent type (based on integers) to avoid
4755 // different results for different target builds.
4756 float FMinRegNum
= LU
.Formulae
[0].getNumRegs();
4757 float FMinARegNum
= LU
.Formulae
[0].getNumRegs();
4759 for (size_t i
= 0, e
= LU
.Formulae
.size(); i
!= e
; ++i
) {
4760 Formula
&F
= LU
.Formulae
[i
];
4763 for (const SCEV
*BaseReg
: F
.BaseRegs
) {
4764 if (UniqRegs
.count(BaseReg
))
4766 FRegNum
+= RegNumMap
[BaseReg
] / LU
.getNotSelectedProbability(BaseReg
);
4767 if (isa
<SCEVAddRecExpr
>(BaseReg
))
4769 RegNumMap
[BaseReg
] / LU
.getNotSelectedProbability(BaseReg
);
4771 if (const SCEV
*ScaledReg
= F
.ScaledReg
) {
4772 if (!UniqRegs
.count(ScaledReg
)) {
4774 RegNumMap
[ScaledReg
] / LU
.getNotSelectedProbability(ScaledReg
);
4775 if (isa
<SCEVAddRecExpr
>(ScaledReg
))
4777 RegNumMap
[ScaledReg
] / LU
.getNotSelectedProbability(ScaledReg
);
4780 if (FMinRegNum
> FRegNum
||
4781 (FMinRegNum
== FRegNum
&& FMinARegNum
> FARegNum
)) {
4782 FMinRegNum
= FRegNum
;
4783 FMinARegNum
= FARegNum
;
4787 LLVM_DEBUG(dbgs() << " The formula "; LU
.Formulae
[MinIdx
].print(dbgs());
4788 dbgs() << " with min reg num " << FMinRegNum
<< '\n');
4790 std::swap(LU
.Formulae
[MinIdx
], LU
.Formulae
[0]);
4791 while (LU
.Formulae
.size() != 1) {
4792 LLVM_DEBUG(dbgs() << " Deleting "; LU
.Formulae
.back().print(dbgs());
4794 LU
.Formulae
.pop_back();
4796 LU
.RecomputeRegs(LUIdx
, RegUses
);
4797 assert(LU
.Formulae
.size() == 1 && "Should be exactly 1 min regs formula");
4798 Formula
&F
= LU
.Formulae
[0];
4799 LLVM_DEBUG(dbgs() << " Leaving only "; F
.print(dbgs()); dbgs() << '\n');
4800 // When we choose the formula, the regs become unique.
4801 UniqRegs
.insert(F
.BaseRegs
.begin(), F
.BaseRegs
.end());
4803 UniqRegs
.insert(F
.ScaledReg
);
4805 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4808 /// Pick a register which seems likely to be profitable, and then in any use
4809 /// which has any reference to that register, delete all formulae which do not
4810 /// reference that register.
4811 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4812 // With all other options exhausted, loop until the system is simple
4813 // enough to handle.
4814 SmallPtrSet
<const SCEV
*, 4> Taken
;
4815 while (EstimateSearchSpaceComplexity() >= ComplexityLimit
) {
4816 // Ok, we have too many of formulae on our hands to conveniently handle.
4817 // Use a rough heuristic to thin out the list.
4818 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4820 // Pick the register which is used by the most LSRUses, which is likely
4821 // to be a good reuse register candidate.
4822 const SCEV
*Best
= nullptr;
4823 unsigned BestNum
= 0;
4824 for (const SCEV
*Reg
: RegUses
) {
4825 if (Taken
.count(Reg
))
4829 BestNum
= RegUses
.getUsedByIndices(Reg
).count();
4831 unsigned Count
= RegUses
.getUsedByIndices(Reg
).count();
4832 if (Count
> BestNum
) {
4839 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4840 << " will yield profitable reuse.\n");
4843 // In any use with formulae which references this register, delete formulae
4844 // which don't reference it.
4845 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4846 LSRUse
&LU
= Uses
[LUIdx
];
4847 if (!LU
.Regs
.count(Best
)) continue;
4850 for (size_t i
= 0, e
= LU
.Formulae
.size(); i
!= e
; ++i
) {
4851 Formula
&F
= LU
.Formulae
[i
];
4852 if (!F
.referencesReg(Best
)) {
4853 LLVM_DEBUG(dbgs() << " Deleting "; F
.print(dbgs()); dbgs() << '\n');
4854 LU
.DeleteFormula(F
);
4858 assert(e
!= 0 && "Use has no formulae left! Is Regs inconsistent?");
4864 LU
.RecomputeRegs(LUIdx
, RegUses
);
4867 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4871 /// If there are an extraordinary number of formulae to choose from, use some
4872 /// rough heuristics to prune down the number of formulae. This keeps the main
4873 /// solver from taking an extraordinary amount of time in some worst-case
4875 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4876 NarrowSearchSpaceByDetectingSupersets();
4877 NarrowSearchSpaceByCollapsingUnrolledCode();
4878 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4879 if (FilterSameScaledReg
)
4880 NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4882 NarrowSearchSpaceByDeletingCostlyFormulas();
4884 NarrowSearchSpaceByPickingWinnerRegs();
4887 /// This is the recursive solver.
4888 void LSRInstance::SolveRecurse(SmallVectorImpl
<const Formula
*> &Solution
,
4890 SmallVectorImpl
<const Formula
*> &Workspace
,
4891 const Cost
&CurCost
,
4892 const SmallPtrSet
<const SCEV
*, 16> &CurRegs
,
4893 DenseSet
<const SCEV
*> &VisitedRegs
) const {
4896 // - use more aggressive filtering
4897 // - sort the formula so that the most profitable solutions are found first
4898 // - sort the uses too
4900 // - don't compute a cost, and then compare. compare while computing a cost
4902 // - track register sets with SmallBitVector
4904 const LSRUse
&LU
= Uses
[Workspace
.size()];
4906 // If this use references any register that's already a part of the
4907 // in-progress solution, consider it a requirement that a formula must
4908 // reference that register in order to be considered. This prunes out
4909 // unprofitable searching.
4910 SmallSetVector
<const SCEV
*, 4> ReqRegs
;
4911 for (const SCEV
*S
: CurRegs
)
4912 if (LU
.Regs
.count(S
))
4915 SmallPtrSet
<const SCEV
*, 16> NewRegs
;
4916 Cost
NewCost(L
, SE
, TTI
);
4917 for (const Formula
&F
: LU
.Formulae
) {
4918 // Ignore formulae which may not be ideal in terms of register reuse of
4919 // ReqRegs. The formula should use all required registers before
4920 // introducing new ones.
4921 int NumReqRegsToFind
= std::min(F
.getNumRegs(), ReqRegs
.size());
4922 for (const SCEV
*Reg
: ReqRegs
) {
4923 if ((F
.ScaledReg
&& F
.ScaledReg
== Reg
) ||
4924 is_contained(F
.BaseRegs
, Reg
)) {
4926 if (NumReqRegsToFind
== 0)
4930 if (NumReqRegsToFind
!= 0) {
4931 // If none of the formulae satisfied the required registers, then we could
4932 // clear ReqRegs and try again. Currently, we simply give up in this case.
4936 // Evaluate the cost of the current formula. If it's already worse than
4937 // the current best, prune the search at that point.
4940 NewCost
.RateFormula(F
, NewRegs
, VisitedRegs
, LU
);
4941 if (NewCost
.isLess(SolutionCost
)) {
4942 Workspace
.push_back(&F
);
4943 if (Workspace
.size() != Uses
.size()) {
4944 SolveRecurse(Solution
, SolutionCost
, Workspace
, NewCost
,
4945 NewRegs
, VisitedRegs
);
4946 if (F
.getNumRegs() == 1 && Workspace
.size() == 1)
4947 VisitedRegs
.insert(F
.ScaledReg
? F
.ScaledReg
: F
.BaseRegs
[0]);
4949 LLVM_DEBUG(dbgs() << "New best at "; NewCost
.print(dbgs());
4950 dbgs() << ".\nRegs:\n";
4951 for (const SCEV
*S
: NewRegs
) dbgs()
4952 << "- " << *S
<< "\n";
4955 SolutionCost
= NewCost
;
4956 Solution
= Workspace
;
4958 Workspace
.pop_back();
4963 /// Choose one formula from each use. Return the results in the given Solution
4965 void LSRInstance::Solve(SmallVectorImpl
<const Formula
*> &Solution
) const {
4966 SmallVector
<const Formula
*, 8> Workspace
;
4967 Cost
SolutionCost(L
, SE
, TTI
);
4968 SolutionCost
.Lose();
4969 Cost
CurCost(L
, SE
, TTI
);
4970 SmallPtrSet
<const SCEV
*, 16> CurRegs
;
4971 DenseSet
<const SCEV
*> VisitedRegs
;
4972 Workspace
.reserve(Uses
.size());
4974 // SolveRecurse does all the work.
4975 SolveRecurse(Solution
, SolutionCost
, Workspace
, CurCost
,
4976 CurRegs
, VisitedRegs
);
4977 if (Solution
.empty()) {
4978 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4982 // Ok, we've now made all our decisions.
4983 LLVM_DEBUG(dbgs() << "\n"
4984 "The chosen solution requires ";
4985 SolutionCost
.print(dbgs()); dbgs() << ":\n";
4986 for (size_t i
= 0, e
= Uses
.size(); i
!= e
; ++i
) {
4988 Uses
[i
].print(dbgs());
4991 Solution
[i
]->print(dbgs());
4995 assert(Solution
.size() == Uses
.size() && "Malformed solution!");
4998 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4999 /// we can go while still being dominated by the input positions. This helps
5000 /// canonicalize the insert position, which encourages sharing.
5001 BasicBlock::iterator
5002 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP
,
5003 const SmallVectorImpl
<Instruction
*> &Inputs
)
5005 Instruction
*Tentative
= &*IP
;
5007 bool AllDominate
= true;
5008 Instruction
*BetterPos
= nullptr;
5009 // Don't bother attempting to insert before a catchswitch, their basic block
5010 // cannot have other non-PHI instructions.
5011 if (isa
<CatchSwitchInst
>(Tentative
))
5014 for (Instruction
*Inst
: Inputs
) {
5015 if (Inst
== Tentative
|| !DT
.dominates(Inst
, Tentative
)) {
5016 AllDominate
= false;
5019 // Attempt to find an insert position in the middle of the block,
5020 // instead of at the end, so that it can be used for other expansions.
5021 if (Tentative
->getParent() == Inst
->getParent() &&
5022 (!BetterPos
|| !DT
.dominates(Inst
, BetterPos
)))
5023 BetterPos
= &*std::next(BasicBlock::iterator(Inst
));
5028 IP
= BetterPos
->getIterator();
5030 IP
= Tentative
->getIterator();
5032 const Loop
*IPLoop
= LI
.getLoopFor(IP
->getParent());
5033 unsigned IPLoopDepth
= IPLoop
? IPLoop
->getLoopDepth() : 0;
5036 for (DomTreeNode
*Rung
= DT
.getNode(IP
->getParent()); ; ) {
5037 if (!Rung
) return IP
;
5038 Rung
= Rung
->getIDom();
5039 if (!Rung
) return IP
;
5040 IDom
= Rung
->getBlock();
5042 // Don't climb into a loop though.
5043 const Loop
*IDomLoop
= LI
.getLoopFor(IDom
);
5044 unsigned IDomDepth
= IDomLoop
? IDomLoop
->getLoopDepth() : 0;
5045 if (IDomDepth
<= IPLoopDepth
&&
5046 (IDomDepth
!= IPLoopDepth
|| IDomLoop
== IPLoop
))
5050 Tentative
= IDom
->getTerminator();
5056 /// Determine an input position which will be dominated by the operands and
5057 /// which will dominate the result.
5058 BasicBlock::iterator
5059 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP
,
5062 SCEVExpander
&Rewriter
) const {
5063 // Collect some instructions which must be dominated by the
5064 // expanding replacement. These must be dominated by any operands that
5065 // will be required in the expansion.
5066 SmallVector
<Instruction
*, 4> Inputs
;
5067 if (Instruction
*I
= dyn_cast
<Instruction
>(LF
.OperandValToReplace
))
5068 Inputs
.push_back(I
);
5069 if (LU
.Kind
== LSRUse::ICmpZero
)
5070 if (Instruction
*I
=
5071 dyn_cast
<Instruction
>(cast
<ICmpInst
>(LF
.UserInst
)->getOperand(1)))
5072 Inputs
.push_back(I
);
5073 if (LF
.PostIncLoops
.count(L
)) {
5074 if (LF
.isUseFullyOutsideLoop(L
))
5075 Inputs
.push_back(L
->getLoopLatch()->getTerminator());
5077 Inputs
.push_back(IVIncInsertPos
);
5079 // The expansion must also be dominated by the increment positions of any
5080 // loops it for which it is using post-inc mode.
5081 for (const Loop
*PIL
: LF
.PostIncLoops
) {
5082 if (PIL
== L
) continue;
5084 // Be dominated by the loop exit.
5085 SmallVector
<BasicBlock
*, 4> ExitingBlocks
;
5086 PIL
->getExitingBlocks(ExitingBlocks
);
5087 if (!ExitingBlocks
.empty()) {
5088 BasicBlock
*BB
= ExitingBlocks
[0];
5089 for (unsigned i
= 1, e
= ExitingBlocks
.size(); i
!= e
; ++i
)
5090 BB
= DT
.findNearestCommonDominator(BB
, ExitingBlocks
[i
]);
5091 Inputs
.push_back(BB
->getTerminator());
5095 assert(!isa
<PHINode
>(LowestIP
) && !LowestIP
->isEHPad()
5096 && !isa
<DbgInfoIntrinsic
>(LowestIP
) &&
5097 "Insertion point must be a normal instruction");
5099 // Then, climb up the immediate dominator tree as far as we can go while
5100 // still being dominated by the input positions.
5101 BasicBlock::iterator IP
= HoistInsertPosition(LowestIP
, Inputs
);
5103 // Don't insert instructions before PHI nodes.
5104 while (isa
<PHINode
>(IP
)) ++IP
;
5106 // Ignore landingpad instructions.
5107 while (IP
->isEHPad()) ++IP
;
5109 // Ignore debug intrinsics.
5110 while (isa
<DbgInfoIntrinsic
>(IP
)) ++IP
;
5112 // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5113 // IP consistent across expansions and allows the previously inserted
5114 // instructions to be reused by subsequent expansion.
5115 while (Rewriter
.isInsertedInstruction(&*IP
) && IP
!= LowestIP
)
5121 /// Emit instructions for the leading candidate expression for this LSRUse (this
5122 /// is called "expanding").
5123 Value
*LSRInstance::Expand(const LSRUse
&LU
, const LSRFixup
&LF
,
5124 const Formula
&F
, BasicBlock::iterator IP
,
5125 SCEVExpander
&Rewriter
,
5126 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) const {
5127 if (LU
.RigidFormula
)
5128 return LF
.OperandValToReplace
;
5130 // Determine an input position which will be dominated by the operands and
5131 // which will dominate the result.
5132 IP
= AdjustInsertPositionForExpand(IP
, LF
, LU
, Rewriter
);
5133 Rewriter
.setInsertPoint(&*IP
);
5135 // Inform the Rewriter if we have a post-increment use, so that it can
5136 // perform an advantageous expansion.
5137 Rewriter
.setPostInc(LF
.PostIncLoops
);
5139 // This is the type that the user actually needs.
5140 Type
*OpTy
= LF
.OperandValToReplace
->getType();
5141 // This will be the type that we'll initially expand to.
5142 Type
*Ty
= F
.getType();
5144 // No type known; just expand directly to the ultimate type.
5146 else if (SE
.getEffectiveSCEVType(Ty
) == SE
.getEffectiveSCEVType(OpTy
))
5147 // Expand directly to the ultimate type if it's the right size.
5149 // This is the type to do integer arithmetic in.
5150 Type
*IntTy
= SE
.getEffectiveSCEVType(Ty
);
5152 // Build up a list of operands to add together to form the full base.
5153 SmallVector
<const SCEV
*, 8> Ops
;
5155 // Expand the BaseRegs portion.
5156 for (const SCEV
*Reg
: F
.BaseRegs
) {
5157 assert(!Reg
->isZero() && "Zero allocated in a base register!");
5159 // If we're expanding for a post-inc user, make the post-inc adjustment.
5160 Reg
= denormalizeForPostIncUse(Reg
, LF
.PostIncLoops
, SE
);
5161 Ops
.push_back(SE
.getUnknown(Rewriter
.expandCodeFor(Reg
, nullptr)));
5164 // Expand the ScaledReg portion.
5165 Value
*ICmpScaledV
= nullptr;
5167 const SCEV
*ScaledS
= F
.ScaledReg
;
5169 // If we're expanding for a post-inc user, make the post-inc adjustment.
5170 PostIncLoopSet
&Loops
= const_cast<PostIncLoopSet
&>(LF
.PostIncLoops
);
5171 ScaledS
= denormalizeForPostIncUse(ScaledS
, Loops
, SE
);
5173 if (LU
.Kind
== LSRUse::ICmpZero
) {
5174 // Expand ScaleReg as if it was part of the base regs.
5177 SE
.getUnknown(Rewriter
.expandCodeFor(ScaledS
, nullptr)));
5179 // An interesting way of "folding" with an icmp is to use a negated
5180 // scale, which we'll implement by inserting it into the other operand
5182 assert(F
.Scale
== -1 &&
5183 "The only scale supported by ICmpZero uses is -1!");
5184 ICmpScaledV
= Rewriter
.expandCodeFor(ScaledS
, nullptr);
5187 // Otherwise just expand the scaled register and an explicit scale,
5188 // which is expected to be matched as part of the address.
5190 // Flush the operand list to suppress SCEVExpander hoisting address modes.
5191 // Unless the addressing mode will not be folded.
5192 if (!Ops
.empty() && LU
.Kind
== LSRUse::Address
&&
5193 isAMCompletelyFolded(TTI
, LU
, F
)) {
5194 Value
*FullV
= Rewriter
.expandCodeFor(SE
.getAddExpr(Ops
), nullptr);
5196 Ops
.push_back(SE
.getUnknown(FullV
));
5198 ScaledS
= SE
.getUnknown(Rewriter
.expandCodeFor(ScaledS
, nullptr));
5201 SE
.getMulExpr(ScaledS
, SE
.getConstant(ScaledS
->getType(), F
.Scale
));
5202 Ops
.push_back(ScaledS
);
5206 // Expand the GV portion.
5208 // Flush the operand list to suppress SCEVExpander hoisting.
5210 Value
*FullV
= Rewriter
.expandCodeFor(SE
.getAddExpr(Ops
), Ty
);
5212 Ops
.push_back(SE
.getUnknown(FullV
));
5214 Ops
.push_back(SE
.getUnknown(F
.BaseGV
));
5217 // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5218 // unfolded offsets. LSR assumes they both live next to their uses.
5220 Value
*FullV
= Rewriter
.expandCodeFor(SE
.getAddExpr(Ops
), Ty
);
5222 Ops
.push_back(SE
.getUnknown(FullV
));
5225 // Expand the immediate portion.
5226 int64_t Offset
= (uint64_t)F
.BaseOffset
+ LF
.Offset
;
5228 if (LU
.Kind
== LSRUse::ICmpZero
) {
5229 // The other interesting way of "folding" with an ICmpZero is to use a
5230 // negated immediate.
5232 ICmpScaledV
= ConstantInt::get(IntTy
, -(uint64_t)Offset
);
5234 Ops
.push_back(SE
.getUnknown(ICmpScaledV
));
5235 ICmpScaledV
= ConstantInt::get(IntTy
, Offset
);
5238 // Just add the immediate values. These again are expected to be matched
5239 // as part of the address.
5240 Ops
.push_back(SE
.getUnknown(ConstantInt::getSigned(IntTy
, Offset
)));
5244 // Expand the unfolded offset portion.
5245 int64_t UnfoldedOffset
= F
.UnfoldedOffset
;
5246 if (UnfoldedOffset
!= 0) {
5247 // Just add the immediate values.
5248 Ops
.push_back(SE
.getUnknown(ConstantInt::getSigned(IntTy
,
5252 // Emit instructions summing all the operands.
5253 const SCEV
*FullS
= Ops
.empty() ?
5254 SE
.getConstant(IntTy
, 0) :
5256 Value
*FullV
= Rewriter
.expandCodeFor(FullS
, Ty
);
5258 // We're done expanding now, so reset the rewriter.
5259 Rewriter
.clearPostInc();
5261 // An ICmpZero Formula represents an ICmp which we're handling as a
5262 // comparison against zero. Now that we've expanded an expression for that
5263 // form, update the ICmp's other operand.
5264 if (LU
.Kind
== LSRUse::ICmpZero
) {
5265 ICmpInst
*CI
= cast
<ICmpInst
>(LF
.UserInst
);
5266 DeadInsts
.emplace_back(CI
->getOperand(1));
5267 assert(!F
.BaseGV
&& "ICmp does not support folding a global value and "
5268 "a scale at the same time!");
5269 if (F
.Scale
== -1) {
5270 if (ICmpScaledV
->getType() != OpTy
) {
5272 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV
, false,
5274 ICmpScaledV
, OpTy
, "tmp", CI
);
5277 CI
->setOperand(1, ICmpScaledV
);
5279 // A scale of 1 means that the scale has been expanded as part of the
5281 assert((F
.Scale
== 0 || F
.Scale
== 1) &&
5282 "ICmp does not support folding a global value and "
5283 "a scale at the same time!");
5284 Constant
*C
= ConstantInt::getSigned(SE
.getEffectiveSCEVType(OpTy
),
5286 if (C
->getType() != OpTy
)
5287 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
5291 CI
->setOperand(1, C
);
5298 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5299 /// effectively happens in their predecessor blocks, so the expression may need
5300 /// to be expanded in multiple places.
5301 void LSRInstance::RewriteForPHI(
5302 PHINode
*PN
, const LSRUse
&LU
, const LSRFixup
&LF
, const Formula
&F
,
5303 SCEVExpander
&Rewriter
, SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) const {
5304 DenseMap
<BasicBlock
*, Value
*> Inserted
;
5305 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
5306 if (PN
->getIncomingValue(i
) == LF
.OperandValToReplace
) {
5307 bool needUpdateFixups
= false;
5308 BasicBlock
*BB
= PN
->getIncomingBlock(i
);
5310 // If this is a critical edge, split the edge so that we do not insert
5311 // the code on all predecessor/successor paths. We do this unless this
5312 // is the canonical backedge for this loop, which complicates post-inc
5314 if (e
!= 1 && BB
->getTerminator()->getNumSuccessors() > 1 &&
5315 !isa
<IndirectBrInst
>(BB
->getTerminator()) &&
5316 !isa
<CatchSwitchInst
>(BB
->getTerminator())) {
5317 BasicBlock
*Parent
= PN
->getParent();
5318 Loop
*PNLoop
= LI
.getLoopFor(Parent
);
5319 if (!PNLoop
|| Parent
!= PNLoop
->getHeader()) {
5320 // Split the critical edge.
5321 BasicBlock
*NewBB
= nullptr;
5322 if (!Parent
->isLandingPad()) {
5323 NewBB
= SplitCriticalEdge(BB
, Parent
,
5324 CriticalEdgeSplittingOptions(&DT
, &LI
)
5325 .setMergeIdenticalEdges()
5326 .setKeepOneInputPHIs());
5328 SmallVector
<BasicBlock
*, 2> NewBBs
;
5329 SplitLandingPadPredecessors(Parent
, BB
, "", "", NewBBs
, &DT
, &LI
);
5332 // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5333 // phi predecessors are identical. The simple thing to do is skip
5334 // splitting in this case rather than complicate the API.
5336 // If PN is outside of the loop and BB is in the loop, we want to
5337 // move the block to be immediately before the PHI block, not
5338 // immediately after BB.
5339 if (L
->contains(BB
) && !L
->contains(PN
))
5340 NewBB
->moveBefore(PN
->getParent());
5342 // Splitting the edge can reduce the number of PHI entries we have.
5343 e
= PN
->getNumIncomingValues();
5345 i
= PN
->getBasicBlockIndex(BB
);
5347 needUpdateFixups
= true;
5352 std::pair
<DenseMap
<BasicBlock
*, Value
*>::iterator
, bool> Pair
=
5353 Inserted
.insert(std::make_pair(BB
, static_cast<Value
*>(nullptr)));
5355 PN
->setIncomingValue(i
, Pair
.first
->second
);
5357 Value
*FullV
= Expand(LU
, LF
, F
, BB
->getTerminator()->getIterator(),
5358 Rewriter
, DeadInsts
);
5360 // If this is reuse-by-noop-cast, insert the noop cast.
5361 Type
*OpTy
= LF
.OperandValToReplace
->getType();
5362 if (FullV
->getType() != OpTy
)
5364 CastInst::Create(CastInst::getCastOpcode(FullV
, false,
5366 FullV
, LF
.OperandValToReplace
->getType(),
5367 "tmp", BB
->getTerminator());
5369 PN
->setIncomingValue(i
, FullV
);
5370 Pair
.first
->second
= FullV
;
5373 // If LSR splits critical edge and phi node has other pending
5374 // fixup operands, we need to update those pending fixups. Otherwise
5375 // formulae will not be implemented completely and some instructions
5376 // will not be eliminated.
5377 if (needUpdateFixups
) {
5378 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
)
5379 for (LSRFixup
&Fixup
: Uses
[LUIdx
].Fixups
)
5380 // If fixup is supposed to rewrite some operand in the phi
5381 // that was just updated, it may be already moved to
5382 // another phi node. Such fixup requires update.
5383 if (Fixup
.UserInst
== PN
) {
5384 // Check if the operand we try to replace still exists in the
5386 bool foundInOriginalPHI
= false;
5387 for (const auto &val
: PN
->incoming_values())
5388 if (val
== Fixup
.OperandValToReplace
) {
5389 foundInOriginalPHI
= true;
5393 // If fixup operand found in original PHI - nothing to do.
5394 if (foundInOriginalPHI
)
5397 // Otherwise it might be moved to another PHI and requires update.
5398 // If fixup operand not found in any of the incoming blocks that
5399 // means we have already rewritten it - nothing to do.
5400 for (const auto &Block
: PN
->blocks())
5401 for (BasicBlock::iterator I
= Block
->begin(); isa
<PHINode
>(I
);
5403 PHINode
*NewPN
= cast
<PHINode
>(I
);
5404 for (const auto &val
: NewPN
->incoming_values())
5405 if (val
== Fixup
.OperandValToReplace
)
5406 Fixup
.UserInst
= NewPN
;
5413 /// Emit instructions for the leading candidate expression for this LSRUse (this
5414 /// is called "expanding"), and update the UserInst to reference the newly
5416 void LSRInstance::Rewrite(const LSRUse
&LU
, const LSRFixup
&LF
,
5417 const Formula
&F
, SCEVExpander
&Rewriter
,
5418 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) const {
5419 // First, find an insertion point that dominates UserInst. For PHI nodes,
5420 // find the nearest block which dominates all the relevant uses.
5421 if (PHINode
*PN
= dyn_cast
<PHINode
>(LF
.UserInst
)) {
5422 RewriteForPHI(PN
, LU
, LF
, F
, Rewriter
, DeadInsts
);
5425 Expand(LU
, LF
, F
, LF
.UserInst
->getIterator(), Rewriter
, DeadInsts
);
5427 // If this is reuse-by-noop-cast, insert the noop cast.
5428 Type
*OpTy
= LF
.OperandValToReplace
->getType();
5429 if (FullV
->getType() != OpTy
) {
5431 CastInst::Create(CastInst::getCastOpcode(FullV
, false, OpTy
, false),
5432 FullV
, OpTy
, "tmp", LF
.UserInst
);
5436 // Update the user. ICmpZero is handled specially here (for now) because
5437 // Expand may have updated one of the operands of the icmp already, and
5438 // its new value may happen to be equal to LF.OperandValToReplace, in
5439 // which case doing replaceUsesOfWith leads to replacing both operands
5440 // with the same value. TODO: Reorganize this.
5441 if (LU
.Kind
== LSRUse::ICmpZero
)
5442 LF
.UserInst
->setOperand(0, FullV
);
5444 LF
.UserInst
->replaceUsesOfWith(LF
.OperandValToReplace
, FullV
);
5447 DeadInsts
.emplace_back(LF
.OperandValToReplace
);
5450 /// Rewrite all the fixup locations with new values, following the chosen
5452 void LSRInstance::ImplementSolution(
5453 const SmallVectorImpl
<const Formula
*> &Solution
) {
5454 // Keep track of instructions we may have made dead, so that
5455 // we can remove them after we are done working.
5456 SmallVector
<WeakTrackingVH
, 16> DeadInsts
;
5458 SCEVExpander
Rewriter(SE
, L
->getHeader()->getModule()->getDataLayout(),
5461 Rewriter
.setDebugType(DEBUG_TYPE
);
5463 Rewriter
.disableCanonicalMode();
5464 Rewriter
.enableLSRMode();
5465 Rewriter
.setIVIncInsertPos(L
, IVIncInsertPos
);
5467 // Mark phi nodes that terminate chains so the expander tries to reuse them.
5468 for (const IVChain
&Chain
: IVChainVec
) {
5469 if (PHINode
*PN
= dyn_cast
<PHINode
>(Chain
.tailUserInst()))
5470 Rewriter
.setChainedPhi(PN
);
5473 // Expand the new value definitions and update the users.
5474 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
)
5475 for (const LSRFixup
&Fixup
: Uses
[LUIdx
].Fixups
) {
5476 Rewrite(Uses
[LUIdx
], Fixup
, *Solution
[LUIdx
], Rewriter
, DeadInsts
);
5480 for (const IVChain
&Chain
: IVChainVec
) {
5481 GenerateIVChain(Chain
, Rewriter
, DeadInsts
);
5484 // Clean up after ourselves. This must be done before deleting any
5488 Changed
|= DeleteTriviallyDeadInstructions(DeadInsts
);
5491 LSRInstance::LSRInstance(Loop
*L
, IVUsers
&IU
, ScalarEvolution
&SE
,
5492 DominatorTree
&DT
, LoopInfo
&LI
,
5493 const TargetTransformInfo
&TTI
, AssumptionCache
&AC
,
5494 TargetLibraryInfo
&LibInfo
)
5495 : IU(IU
), SE(SE
), DT(DT
), LI(LI
), AC(AC
), LibInfo(LibInfo
), TTI(TTI
), L(L
),
5496 FavorBackedgeIndex(EnableBackedgeIndexing
&&
5497 TTI
.shouldFavorBackedgeIndex(L
)) {
5498 // If LoopSimplify form is not available, stay out of trouble.
5499 if (!L
->isLoopSimplifyForm())
5502 // If there's no interesting work to be done, bail early.
5503 if (IU
.empty()) return;
5505 // If there's too much analysis to be done, bail early. We won't be able to
5506 // model the problem anyway.
5507 unsigned NumUsers
= 0;
5508 for (const IVStrideUse
&U
: IU
) {
5509 if (++NumUsers
> MaxIVUsers
) {
5511 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5515 // Bail out if we have a PHI on an EHPad that gets a value from a
5516 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is
5517 // no good place to stick any instructions.
5518 if (auto *PN
= dyn_cast
<PHINode
>(U
.getUser())) {
5519 auto *FirstNonPHI
= PN
->getParent()->getFirstNonPHI();
5520 if (isa
<FuncletPadInst
>(FirstNonPHI
) ||
5521 isa
<CatchSwitchInst
>(FirstNonPHI
))
5522 for (BasicBlock
*PredBB
: PN
->blocks())
5523 if (isa
<CatchSwitchInst
>(PredBB
->getFirstNonPHI()))
5529 // All dominating loops must have preheaders, or SCEVExpander may not be able
5530 // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5532 // IVUsers analysis should only create users that are dominated by simple loop
5533 // headers. Since this loop should dominate all of its users, its user list
5534 // should be empty if this loop itself is not within a simple loop nest.
5535 for (DomTreeNode
*Rung
= DT
.getNode(L
->getLoopPreheader());
5536 Rung
; Rung
= Rung
->getIDom()) {
5537 BasicBlock
*BB
= Rung
->getBlock();
5538 const Loop
*DomLoop
= LI
.getLoopFor(BB
);
5539 if (DomLoop
&& DomLoop
->getHeader() == BB
) {
5540 assert(DomLoop
->getLoopPreheader() && "LSR needs a simplified loop nest");
5545 LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5546 L
->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5549 // First, perform some low-level loop optimizations.
5551 OptimizeLoopTermCond();
5553 // If loop preparation eliminates all interesting IV users, bail.
5554 if (IU
.empty()) return;
5556 // Skip nested loops until we can model them better with formulae.
5558 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L
<< "\n");
5562 // Start collecting data and preparing for the solver.
5564 CollectInterestingTypesAndFactors();
5565 CollectFixupsAndInitialFormulae();
5566 CollectLoopInvariantFixupsAndFormulae();
5571 LLVM_DEBUG(dbgs() << "LSR found " << Uses
.size() << " uses:\n";
5572 print_uses(dbgs()));
5574 // Now use the reuse data to generate a bunch of interesting ways
5575 // to formulate the values needed for the uses.
5576 GenerateAllReuseFormulae();
5578 FilterOutUndesirableDedicatedRegisters();
5579 NarrowSearchSpaceUsingHeuristics();
5581 SmallVector
<const Formula
*, 8> Solution
;
5584 // Release memory that is no longer needed.
5589 if (Solution
.empty())
5593 // Formulae should be legal.
5594 for (const LSRUse
&LU
: Uses
) {
5595 for (const Formula
&F
: LU
.Formulae
)
5596 assert(isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
, LU
.AccessTy
,
5597 F
) && "Illegal formula generated!");
5601 // Now that we've decided what we want, make it so.
5602 ImplementSolution(Solution
);
5605 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5606 void LSRInstance::print_factors_and_types(raw_ostream
&OS
) const {
5607 if (Factors
.empty() && Types
.empty()) return;
5609 OS
<< "LSR has identified the following interesting factors and types: ";
5612 for (int64_t Factor
: Factors
) {
5613 if (!First
) OS
<< ", ";
5615 OS
<< '*' << Factor
;
5618 for (Type
*Ty
: Types
) {
5619 if (!First
) OS
<< ", ";
5621 OS
<< '(' << *Ty
<< ')';
5626 void LSRInstance::print_fixups(raw_ostream
&OS
) const {
5627 OS
<< "LSR is examining the following fixup sites:\n";
5628 for (const LSRUse
&LU
: Uses
)
5629 for (const LSRFixup
&LF
: LU
.Fixups
) {
5636 void LSRInstance::print_uses(raw_ostream
&OS
) const {
5637 OS
<< "LSR is examining the following uses:\n";
5638 for (const LSRUse
&LU
: Uses
) {
5642 for (const Formula
&F
: LU
.Formulae
) {
5650 void LSRInstance::print(raw_ostream
&OS
) const {
5651 print_factors_and_types(OS
);
5656 LLVM_DUMP_METHOD
void LSRInstance::dump() const {
5657 print(errs()); errs() << '\n';
5663 class LoopStrengthReduce
: public LoopPass
{
5665 static char ID
; // Pass ID, replacement for typeid
5667 LoopStrengthReduce();
5670 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
;
5671 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
5674 } // end anonymous namespace
5676 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID
) {
5677 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5680 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage
&AU
) const {
5681 // We split critical edges, so we change the CFG. However, we do update
5682 // many analyses if they are around.
5683 AU
.addPreservedID(LoopSimplifyID
);
5685 AU
.addRequired
<LoopInfoWrapperPass
>();
5686 AU
.addPreserved
<LoopInfoWrapperPass
>();
5687 AU
.addRequiredID(LoopSimplifyID
);
5688 AU
.addRequired
<DominatorTreeWrapperPass
>();
5689 AU
.addPreserved
<DominatorTreeWrapperPass
>();
5690 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
5691 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
5692 AU
.addRequired
<AssumptionCacheTracker
>();
5693 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
5694 // Requiring LoopSimplify a second time here prevents IVUsers from running
5695 // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5696 AU
.addRequiredID(LoopSimplifyID
);
5697 AU
.addRequired
<IVUsersWrapperPass
>();
5698 AU
.addPreserved
<IVUsersWrapperPass
>();
5699 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
5702 static bool ReduceLoopStrength(Loop
*L
, IVUsers
&IU
, ScalarEvolution
&SE
,
5703 DominatorTree
&DT
, LoopInfo
&LI
,
5704 const TargetTransformInfo
&TTI
,
5705 AssumptionCache
&AC
,
5706 TargetLibraryInfo
&LibInfo
) {
5708 bool Changed
= false;
5710 // Run the main LSR transformation.
5711 Changed
|= LSRInstance(L
, IU
, SE
, DT
, LI
, TTI
, AC
, LibInfo
).getChanged();
5713 // Remove any extra phis created by processing inner loops.
5714 Changed
|= DeleteDeadPHIs(L
->getHeader());
5715 if (EnablePhiElim
&& L
->isLoopSimplifyForm()) {
5716 SmallVector
<WeakTrackingVH
, 16> DeadInsts
;
5717 const DataLayout
&DL
= L
->getHeader()->getModule()->getDataLayout();
5718 SCEVExpander
Rewriter(SE
, DL
, "lsr");
5720 Rewriter
.setDebugType(DEBUG_TYPE
);
5722 unsigned numFolded
= Rewriter
.replaceCongruentIVs(L
, &DT
, DeadInsts
, &TTI
);
5725 DeleteTriviallyDeadInstructions(DeadInsts
);
5726 DeleteDeadPHIs(L
->getHeader());
5732 bool LoopStrengthReduce::runOnLoop(Loop
*L
, LPPassManager
& /*LPM*/) {
5736 auto &IU
= getAnalysis
<IVUsersWrapperPass
>().getIU();
5737 auto &SE
= getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
5738 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
5739 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
5740 const auto &TTI
= getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(
5741 *L
->getHeader()->getParent());
5742 auto &AC
= getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(
5743 *L
->getHeader()->getParent());
5744 auto &LibInfo
= getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
5745 return ReduceLoopStrength(L
, IU
, SE
, DT
, LI
, TTI
, AC
, LibInfo
);
5748 PreservedAnalyses
LoopStrengthReducePass::run(Loop
&L
, LoopAnalysisManager
&AM
,
5749 LoopStandardAnalysisResults
&AR
,
5751 if (!ReduceLoopStrength(&L
, AM
.getResult
<IVUsersAnalysis
>(L
, AR
), AR
.SE
,
5752 AR
.DT
, AR
.LI
, AR
.TTI
, AR
.AC
, AR
.TLI
))
5753 return PreservedAnalyses::all();
5755 return getLoopPassPreservedAnalyses();
5758 char LoopStrengthReduce::ID
= 0;
5760 INITIALIZE_PASS_BEGIN(LoopStrengthReduce
, "loop-reduce",
5761 "Loop Strength Reduction", false, false)
5762 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
5763 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
5764 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
5765 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass
)
5766 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
5767 INITIALIZE_PASS_DEPENDENCY(LoopSimplify
)
5768 INITIALIZE_PASS_END(LoopStrengthReduce
, "loop-reduce",
5769 "Loop Strength Reduction", false, false)
5771 Pass
*llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }