1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass implements a simple loop unroller. It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopPass.h"
32 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Scalar.h"
56 #include "llvm/Transforms/Scalar/LoopPassManager.h"
57 #include "llvm/Transforms/Utils.h"
58 #include "llvm/Transforms/Utils/LoopSimplify.h"
59 #include "llvm/Transforms/Utils/LoopUtils.h"
60 #include "llvm/Transforms/Utils/SizeOpts.h"
61 #include "llvm/Transforms/Utils/UnrollLoop.h"
72 #define DEBUG_TYPE "loop-unroll"
74 cl::opt
<bool> llvm::ForgetSCEVInLoopUnroll(
75 "forget-scev-loop-unroll", cl::init(false), cl::Hidden
,
76 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
77 " the current top-most loop. This is somtimes preferred to reduce"
80 static cl::opt
<unsigned>
81 UnrollThreshold("unroll-threshold", cl::Hidden
,
82 cl::desc("The cost threshold for loop unrolling"));
84 static cl::opt
<unsigned> UnrollPartialThreshold(
85 "unroll-partial-threshold", cl::Hidden
,
86 cl::desc("The cost threshold for partial loop unrolling"));
88 static cl::opt
<unsigned> UnrollMaxPercentThresholdBoost(
89 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden
,
90 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
91 "to the threshold when aggressively unrolling a loop due to the "
92 "dynamic cost savings. If completely unrolling a loop will reduce "
93 "the total runtime from X to Y, we boost the loop unroll "
94 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
95 "X/Y). This limit avoids excessive code bloat."));
97 static cl::opt
<unsigned> UnrollMaxIterationsCountToAnalyze(
98 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden
,
99 cl::desc("Don't allow loop unrolling to simulate more than this number of"
100 "iterations when checking full unroll profitability"));
102 static cl::opt
<unsigned> UnrollCount(
103 "unroll-count", cl::Hidden
,
104 cl::desc("Use this unroll count for all loops including those with "
105 "unroll_count pragma values, for testing purposes"));
107 static cl::opt
<unsigned> UnrollMaxCount(
108 "unroll-max-count", cl::Hidden
,
109 cl::desc("Set the max unroll count for partial and runtime unrolling, for"
110 "testing purposes"));
112 static cl::opt
<unsigned> UnrollFullMaxCount(
113 "unroll-full-max-count", cl::Hidden
,
115 "Set the max unroll count for full unrolling, for testing purposes"));
117 static cl::opt
<unsigned> UnrollPeelCount(
118 "unroll-peel-count", cl::Hidden
,
119 cl::desc("Set the unroll peeling count, for testing purposes"));
122 UnrollAllowPartial("unroll-allow-partial", cl::Hidden
,
123 cl::desc("Allows loops to be partially unrolled until "
124 "-unroll-threshold loop size is reached."));
126 static cl::opt
<bool> UnrollAllowRemainder(
127 "unroll-allow-remainder", cl::Hidden
,
128 cl::desc("Allow generation of a loop remainder (extra iterations) "
129 "when unrolling a loop."));
132 UnrollRuntime("unroll-runtime", cl::ZeroOrMore
, cl::Hidden
,
133 cl::desc("Unroll loops with run-time trip counts"));
135 static cl::opt
<unsigned> UnrollMaxUpperBound(
136 "unroll-max-upperbound", cl::init(8), cl::Hidden
,
138 "The max of trip count upper bound that is considered in unrolling"));
140 static cl::opt
<unsigned> PragmaUnrollThreshold(
141 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden
,
142 cl::desc("Unrolled size limit for loops with an unroll(full) or "
143 "unroll_count pragma."));
145 static cl::opt
<unsigned> FlatLoopTripCountThreshold(
146 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden
,
147 cl::desc("If the runtime tripcount for the loop is lower than the "
148 "threshold, the loop is considered as flat and will be less "
149 "aggressively unrolled."));
152 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden
,
153 cl::desc("Allows loops to be peeled when the dynamic "
154 "trip count is known to be low."));
156 static cl::opt
<bool> UnrollUnrollRemainder(
157 "unroll-remainder", cl::Hidden
,
158 cl::desc("Allow the loop remainder to be unrolled."));
160 // This option isn't ever intended to be enabled, it serves to allow
161 // experiments to check the assumptions about when this kind of revisit is
163 static cl::opt
<bool> UnrollRevisitChildLoops(
164 "unroll-revisit-child-loops", cl::Hidden
,
165 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
166 "This shouldn't typically be needed as child loops (or their "
167 "clones) were already visited."));
169 /// A magic value for use with the Threshold parameter to indicate
170 /// that the loop unroll should be performed regardless of how much
171 /// code expansion would result.
172 static const unsigned NoThreshold
= std::numeric_limits
<unsigned>::max();
174 /// Gather the various unrolling parameters based on the defaults, compiler
175 /// flags, TTI overrides and user specified parameters.
176 TargetTransformInfo::UnrollingPreferences
llvm::gatherUnrollingPreferences(
177 Loop
*L
, ScalarEvolution
&SE
, const TargetTransformInfo
&TTI
,
178 BlockFrequencyInfo
*BFI
, ProfileSummaryInfo
*PSI
, int OptLevel
,
179 Optional
<unsigned> UserThreshold
, Optional
<unsigned> UserCount
,
180 Optional
<bool> UserAllowPartial
, Optional
<bool> UserRuntime
,
181 Optional
<bool> UserUpperBound
, Optional
<bool> UserAllowPeeling
,
182 Optional
<bool> UserAllowProfileBasedPeeling
) {
183 TargetTransformInfo::UnrollingPreferences UP
;
185 // Set up the defaults
186 UP
.Threshold
= OptLevel
> 2 ? 300 : 150;
187 UP
.MaxPercentThresholdBoost
= 400;
188 UP
.OptSizeThreshold
= 0;
189 UP
.PartialThreshold
= 150;
190 UP
.PartialOptSizeThreshold
= 0;
193 UP
.DefaultUnrollRuntimeCount
= 8;
194 UP
.MaxCount
= std::numeric_limits
<unsigned>::max();
195 UP
.FullUnrollMaxCount
= std::numeric_limits
<unsigned>::max();
199 UP
.AllowRemainder
= true;
200 UP
.UnrollRemainder
= false;
201 UP
.AllowExpensiveTripCount
= false;
203 UP
.UpperBound
= false;
204 UP
.AllowPeeling
= true;
205 UP
.UnrollAndJam
= false;
206 UP
.PeelProfiledIterations
= true;
207 UP
.UnrollAndJamInnerLoopThreshold
= 60;
209 // Override with any target specific settings
210 TTI
.getUnrollingPreferences(L
, SE
, UP
);
212 // Apply size attributes
213 bool OptForSize
= L
->getHeader()->getParent()->hasOptSize() ||
214 llvm::shouldOptimizeForSize(L
->getHeader(), PSI
, BFI
);
216 UP
.Threshold
= UP
.OptSizeThreshold
;
217 UP
.PartialThreshold
= UP
.PartialOptSizeThreshold
;
218 UP
.MaxPercentThresholdBoost
= 100;
221 // Apply any user values specified by cl::opt
222 if (UnrollThreshold
.getNumOccurrences() > 0)
223 UP
.Threshold
= UnrollThreshold
;
224 if (UnrollPartialThreshold
.getNumOccurrences() > 0)
225 UP
.PartialThreshold
= UnrollPartialThreshold
;
226 if (UnrollMaxPercentThresholdBoost
.getNumOccurrences() > 0)
227 UP
.MaxPercentThresholdBoost
= UnrollMaxPercentThresholdBoost
;
228 if (UnrollMaxCount
.getNumOccurrences() > 0)
229 UP
.MaxCount
= UnrollMaxCount
;
230 if (UnrollFullMaxCount
.getNumOccurrences() > 0)
231 UP
.FullUnrollMaxCount
= UnrollFullMaxCount
;
232 if (UnrollPeelCount
.getNumOccurrences() > 0)
233 UP
.PeelCount
= UnrollPeelCount
;
234 if (UnrollAllowPartial
.getNumOccurrences() > 0)
235 UP
.Partial
= UnrollAllowPartial
;
236 if (UnrollAllowRemainder
.getNumOccurrences() > 0)
237 UP
.AllowRemainder
= UnrollAllowRemainder
;
238 if (UnrollRuntime
.getNumOccurrences() > 0)
239 UP
.Runtime
= UnrollRuntime
;
240 if (UnrollMaxUpperBound
== 0)
241 UP
.UpperBound
= false;
242 if (UnrollAllowPeeling
.getNumOccurrences() > 0)
243 UP
.AllowPeeling
= UnrollAllowPeeling
;
244 if (UnrollUnrollRemainder
.getNumOccurrences() > 0)
245 UP
.UnrollRemainder
= UnrollUnrollRemainder
;
247 // Apply user values provided by argument
248 if (UserThreshold
.hasValue()) {
249 UP
.Threshold
= *UserThreshold
;
250 UP
.PartialThreshold
= *UserThreshold
;
252 if (UserCount
.hasValue())
253 UP
.Count
= *UserCount
;
254 if (UserAllowPartial
.hasValue())
255 UP
.Partial
= *UserAllowPartial
;
256 if (UserRuntime
.hasValue())
257 UP
.Runtime
= *UserRuntime
;
258 if (UserUpperBound
.hasValue())
259 UP
.UpperBound
= *UserUpperBound
;
260 if (UserAllowPeeling
.hasValue())
261 UP
.AllowPeeling
= *UserAllowPeeling
;
262 if (UserAllowProfileBasedPeeling
.hasValue())
263 UP
.PeelProfiledIterations
= *UserAllowProfileBasedPeeling
;
270 /// A struct to densely store the state of an instruction after unrolling at
273 /// This is designed to work like a tuple of <Instruction *, int> for the
274 /// purposes of hashing and lookup, but to be able to associate two boolean
275 /// states with each key.
276 struct UnrolledInstState
{
280 unsigned IsCounted
: 1;
283 /// Hashing and equality testing for a set of the instruction states.
284 struct UnrolledInstStateKeyInfo
{
285 using PtrInfo
= DenseMapInfo
<Instruction
*>;
286 using PairInfo
= DenseMapInfo
<std::pair
<Instruction
*, int>>;
288 static inline UnrolledInstState
getEmptyKey() {
289 return {PtrInfo::getEmptyKey(), 0, 0, 0};
292 static inline UnrolledInstState
getTombstoneKey() {
293 return {PtrInfo::getTombstoneKey(), 0, 0, 0};
296 static inline unsigned getHashValue(const UnrolledInstState
&S
) {
297 return PairInfo::getHashValue({S
.I
, S
.Iteration
});
300 static inline bool isEqual(const UnrolledInstState
&LHS
,
301 const UnrolledInstState
&RHS
) {
302 return PairInfo::isEqual({LHS
.I
, LHS
.Iteration
}, {RHS
.I
, RHS
.Iteration
});
306 struct EstimatedUnrollCost
{
307 /// The estimated cost after unrolling.
308 unsigned UnrolledCost
;
310 /// The estimated dynamic cost of executing the instructions in the
312 unsigned RolledDynamicCost
;
315 } // end anonymous namespace
317 /// Figure out if the loop is worth full unrolling.
319 /// Complete loop unrolling can make some loads constant, and we need to know
320 /// if that would expose any further optimization opportunities. This routine
321 /// estimates this optimization. It computes cost of unrolled loop
322 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
323 /// dynamic cost we mean that we won't count costs of blocks that are known not
324 /// to be executed (i.e. if we have a branch in the loop and we know that at the
325 /// given iteration its condition would be resolved to true, we won't add up the
326 /// cost of the 'false'-block).
327 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
328 /// the analysis failed (no benefits expected from the unrolling, or the loop is
329 /// too big to analyze), the returned value is None.
330 static Optional
<EstimatedUnrollCost
> analyzeLoopUnrollCost(
331 const Loop
*L
, unsigned TripCount
, DominatorTree
&DT
, ScalarEvolution
&SE
,
332 const SmallPtrSetImpl
<const Value
*> &EphValues
,
333 const TargetTransformInfo
&TTI
, unsigned MaxUnrolledLoopSize
) {
334 // We want to be able to scale offsets by the trip count and add more offsets
335 // to them without checking for overflows, and we already don't want to
336 // analyze *massive* trip counts, so we force the max to be reasonably small.
337 assert(UnrollMaxIterationsCountToAnalyze
<
338 (unsigned)(std::numeric_limits
<int>::max() / 2) &&
339 "The unroll iterations max is too large!");
341 // Only analyze inner loops. We can't properly estimate cost of nested loops
342 // and we won't visit inner loops again anyway.
346 // Don't simulate loops with a big or unknown tripcount
347 if (!UnrollMaxIterationsCountToAnalyze
|| !TripCount
||
348 TripCount
> UnrollMaxIterationsCountToAnalyze
)
351 SmallSetVector
<BasicBlock
*, 16> BBWorklist
;
352 SmallSetVector
<std::pair
<BasicBlock
*, BasicBlock
*>, 4> ExitWorklist
;
353 DenseMap
<Value
*, Constant
*> SimplifiedValues
;
354 SmallVector
<std::pair
<Value
*, Constant
*>, 4> SimplifiedInputValues
;
356 // The estimated cost of the unrolled form of the loop. We try to estimate
357 // this by simplifying as much as we can while computing the estimate.
358 unsigned UnrolledCost
= 0;
360 // We also track the estimated dynamic (that is, actually executed) cost in
361 // the rolled form. This helps identify cases when the savings from unrolling
362 // aren't just exposing dead control flows, but actual reduced dynamic
363 // instructions due to the simplifications which we expect to occur after
365 unsigned RolledDynamicCost
= 0;
367 // We track the simplification of each instruction in each iteration. We use
368 // this to recursively merge costs into the unrolled cost on-demand so that
369 // we don't count the cost of any dead code. This is essentially a map from
370 // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
371 DenseSet
<UnrolledInstState
, UnrolledInstStateKeyInfo
> InstCostMap
;
373 // A small worklist used to accumulate cost of instructions from each
374 // observable and reached root in the loop.
375 SmallVector
<Instruction
*, 16> CostWorklist
;
377 // PHI-used worklist used between iterations while accumulating cost.
378 SmallVector
<Instruction
*, 4> PHIUsedList
;
380 // Helper function to accumulate cost for instructions in the loop.
381 auto AddCostRecursively
= [&](Instruction
&RootI
, int Iteration
) {
382 assert(Iteration
>= 0 && "Cannot have a negative iteration!");
383 assert(CostWorklist
.empty() && "Must start with an empty cost list");
384 assert(PHIUsedList
.empty() && "Must start with an empty phi used list");
385 CostWorklist
.push_back(&RootI
);
386 for (;; --Iteration
) {
388 Instruction
*I
= CostWorklist
.pop_back_val();
390 // InstCostMap only uses I and Iteration as a key, the other two values
391 // don't matter here.
392 auto CostIter
= InstCostMap
.find({I
, Iteration
, 0, 0});
393 if (CostIter
== InstCostMap
.end())
394 // If an input to a PHI node comes from a dead path through the loop
395 // we may have no cost data for it here. What that actually means is
398 auto &Cost
= *CostIter
;
400 // Already counted this instruction.
403 // Mark that we are counting the cost of this instruction now.
404 Cost
.IsCounted
= true;
406 // If this is a PHI node in the loop header, just add it to the PHI set.
407 if (auto *PhiI
= dyn_cast
<PHINode
>(I
))
408 if (PhiI
->getParent() == L
->getHeader()) {
409 assert(Cost
.IsFree
&& "Loop PHIs shouldn't be evaluated as they "
410 "inherently simplify during unrolling.");
414 // Push the incoming value from the backedge into the PHI used list
415 // if it is an in-loop instruction. We'll use this to populate the
416 // cost worklist for the next iteration (as we count backwards).
417 if (auto *OpI
= dyn_cast
<Instruction
>(
418 PhiI
->getIncomingValueForBlock(L
->getLoopLatch())))
419 if (L
->contains(OpI
))
420 PHIUsedList
.push_back(OpI
);
424 // First accumulate the cost of this instruction.
426 UnrolledCost
+= TTI
.getUserCost(I
);
427 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
428 << Iteration
<< "): ");
429 LLVM_DEBUG(I
->dump());
432 // We must count the cost of every operand which is not free,
433 // recursively. If we reach a loop PHI node, simply add it to the set
434 // to be considered on the next iteration (backwards!).
435 for (Value
*Op
: I
->operands()) {
436 // Check whether this operand is free due to being a constant or
438 auto *OpI
= dyn_cast
<Instruction
>(Op
);
439 if (!OpI
|| !L
->contains(OpI
))
442 // Otherwise accumulate its cost.
443 CostWorklist
.push_back(OpI
);
445 } while (!CostWorklist
.empty());
447 if (PHIUsedList
.empty())
448 // We've exhausted the search.
451 assert(Iteration
> 0 &&
452 "Cannot track PHI-used values past the first iteration!");
453 CostWorklist
.append(PHIUsedList
.begin(), PHIUsedList
.end());
458 // Ensure that we don't violate the loop structure invariants relied on by
460 assert(L
->isLoopSimplifyForm() && "Must put loop into normal form first.");
461 assert(L
->isLCSSAForm(DT
) &&
462 "Must have loops in LCSSA form to track live-out values.");
464 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
466 // Simulate execution of each iteration of the loop counting instructions,
467 // which would be simplified.
468 // Since the same load will take different values on different iterations,
469 // we literally have to go through all loop's iterations.
470 for (unsigned Iteration
= 0; Iteration
< TripCount
; ++Iteration
) {
471 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration
<< "\n");
473 // Prepare for the iteration by collecting any simplified entry or backedge
475 for (Instruction
&I
: *L
->getHeader()) {
476 auto *PHI
= dyn_cast
<PHINode
>(&I
);
480 // The loop header PHI nodes must have exactly two input: one from the
481 // loop preheader and one from the loop latch.
483 PHI
->getNumIncomingValues() == 2 &&
484 "Must have an incoming value only for the preheader and the latch.");
486 Value
*V
= PHI
->getIncomingValueForBlock(
487 Iteration
== 0 ? L
->getLoopPreheader() : L
->getLoopLatch());
488 Constant
*C
= dyn_cast
<Constant
>(V
);
489 if (Iteration
!= 0 && !C
)
490 C
= SimplifiedValues
.lookup(V
);
492 SimplifiedInputValues
.push_back({PHI
, C
});
495 // Now clear and re-populate the map for the next iteration.
496 SimplifiedValues
.clear();
497 while (!SimplifiedInputValues
.empty())
498 SimplifiedValues
.insert(SimplifiedInputValues
.pop_back_val());
500 UnrolledInstAnalyzer
Analyzer(Iteration
, SimplifiedValues
, SE
, L
);
503 BBWorklist
.insert(L
->getHeader());
504 // Note that we *must not* cache the size, this loop grows the worklist.
505 for (unsigned Idx
= 0; Idx
!= BBWorklist
.size(); ++Idx
) {
506 BasicBlock
*BB
= BBWorklist
[Idx
];
508 // Visit all instructions in the given basic block and try to simplify
509 // it. We don't change the actual IR, just count optimization
511 for (Instruction
&I
: *BB
) {
512 // These won't get into the final code - don't even try calculating the
514 if (isa
<DbgInfoIntrinsic
>(I
) || EphValues
.count(&I
))
517 // Track this instruction's expected baseline cost when executing the
519 RolledDynamicCost
+= TTI
.getUserCost(&I
);
521 // Visit the instruction to analyze its loop cost after unrolling,
522 // and if the visitor returns true, mark the instruction as free after
523 // unrolling and continue.
524 bool IsFree
= Analyzer
.visit(I
);
525 bool Inserted
= InstCostMap
.insert({&I
, (int)Iteration
,
527 /*IsCounted*/ false}).second
;
529 assert(Inserted
&& "Cannot have a state for an unvisited instruction!");
534 // Can't properly model a cost of a call.
535 // FIXME: With a proper cost model we should be able to do it.
536 if (auto *CI
= dyn_cast
<CallInst
>(&I
)) {
537 const Function
*Callee
= CI
->getCalledFunction();
538 if (!Callee
|| TTI
.isLoweredToCall(Callee
)) {
539 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
544 // If the instruction might have a side-effect recursively account for
545 // the cost of it and all the instructions leading up to it.
546 if (I
.mayHaveSideEffects())
547 AddCostRecursively(I
, Iteration
);
549 // If unrolled body turns out to be too big, bail out.
550 if (UnrolledCost
> MaxUnrolledLoopSize
) {
551 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
552 << " UnrolledCost: " << UnrolledCost
553 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
559 Instruction
*TI
= BB
->getTerminator();
561 // Add in the live successors by first checking whether we have terminator
562 // that may be simplified based on the values simplified by this call.
563 BasicBlock
*KnownSucc
= nullptr;
564 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
565 if (BI
->isConditional()) {
566 if (Constant
*SimpleCond
=
567 SimplifiedValues
.lookup(BI
->getCondition())) {
568 // Just take the first successor if condition is undef
569 if (isa
<UndefValue
>(SimpleCond
))
570 KnownSucc
= BI
->getSuccessor(0);
571 else if (ConstantInt
*SimpleCondVal
=
572 dyn_cast
<ConstantInt
>(SimpleCond
))
573 KnownSucc
= BI
->getSuccessor(SimpleCondVal
->isZero() ? 1 : 0);
576 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
577 if (Constant
*SimpleCond
=
578 SimplifiedValues
.lookup(SI
->getCondition())) {
579 // Just take the first successor if condition is undef
580 if (isa
<UndefValue
>(SimpleCond
))
581 KnownSucc
= SI
->getSuccessor(0);
582 else if (ConstantInt
*SimpleCondVal
=
583 dyn_cast
<ConstantInt
>(SimpleCond
))
584 KnownSucc
= SI
->findCaseValue(SimpleCondVal
)->getCaseSuccessor();
588 if (L
->contains(KnownSucc
))
589 BBWorklist
.insert(KnownSucc
);
591 ExitWorklist
.insert({BB
, KnownSucc
});
595 // Add BB's successors to the worklist.
596 for (BasicBlock
*Succ
: successors(BB
))
597 if (L
->contains(Succ
))
598 BBWorklist
.insert(Succ
);
600 ExitWorklist
.insert({BB
, Succ
});
601 AddCostRecursively(*TI
, Iteration
);
604 // If we found no optimization opportunities on the first iteration, we
605 // won't find them on later ones too.
606 if (UnrolledCost
== RolledDynamicCost
) {
607 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n"
608 << " UnrolledCost: " << UnrolledCost
<< "\n");
613 while (!ExitWorklist
.empty()) {
614 BasicBlock
*ExitingBB
, *ExitBB
;
615 std::tie(ExitingBB
, ExitBB
) = ExitWorklist
.pop_back_val();
617 for (Instruction
&I
: *ExitBB
) {
618 auto *PN
= dyn_cast
<PHINode
>(&I
);
622 Value
*Op
= PN
->getIncomingValueForBlock(ExitingBB
);
623 if (auto *OpI
= dyn_cast
<Instruction
>(Op
))
624 if (L
->contains(OpI
))
625 AddCostRecursively(*OpI
, TripCount
- 1);
629 LLVM_DEBUG(dbgs() << "Analysis finished:\n"
630 << "UnrolledCost: " << UnrolledCost
<< ", "
631 << "RolledDynamicCost: " << RolledDynamicCost
<< "\n");
632 return {{UnrolledCost
, RolledDynamicCost
}};
635 /// ApproximateLoopSize - Approximate the size of the loop.
636 unsigned llvm::ApproximateLoopSize(
637 const Loop
*L
, unsigned &NumCalls
, bool &NotDuplicatable
, bool &Convergent
,
638 const TargetTransformInfo
&TTI
,
639 const SmallPtrSetImpl
<const Value
*> &EphValues
, unsigned BEInsns
) {
641 for (BasicBlock
*BB
: L
->blocks())
642 Metrics
.analyzeBasicBlock(BB
, TTI
, EphValues
);
643 NumCalls
= Metrics
.NumInlineCandidates
;
644 NotDuplicatable
= Metrics
.notDuplicatable
;
645 Convergent
= Metrics
.convergent
;
647 unsigned LoopSize
= Metrics
.NumInsts
;
649 // Don't allow an estimate of size zero. This would allows unrolling of loops
650 // with huge iteration counts, which is a compile time problem even if it's
651 // not a problem for code quality. Also, the code using this size may assume
652 // that each loop has at least three instructions (likely a conditional
653 // branch, a comparison feeding that branch, and some kind of loop increment
654 // feeding that comparison instruction).
655 LoopSize
= std::max(LoopSize
, BEInsns
+ 1);
660 // Returns the loop hint metadata node with the given name (for example,
661 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
663 static MDNode
*GetUnrollMetadataForLoop(const Loop
*L
, StringRef Name
) {
664 if (MDNode
*LoopID
= L
->getLoopID())
665 return GetUnrollMetadata(LoopID
, Name
);
669 // Returns true if the loop has an unroll(full) pragma.
670 static bool HasUnrollFullPragma(const Loop
*L
) {
671 return GetUnrollMetadataForLoop(L
, "llvm.loop.unroll.full");
674 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
675 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
676 static bool HasUnrollEnablePragma(const Loop
*L
) {
677 return GetUnrollMetadataForLoop(L
, "llvm.loop.unroll.enable");
680 // Returns true if the loop has an runtime unroll(disable) pragma.
681 static bool HasRuntimeUnrollDisablePragma(const Loop
*L
) {
682 return GetUnrollMetadataForLoop(L
, "llvm.loop.unroll.runtime.disable");
685 // If loop has an unroll_count pragma return the (necessarily
686 // positive) value from the pragma. Otherwise return 0.
687 static unsigned UnrollCountPragmaValue(const Loop
*L
) {
688 MDNode
*MD
= GetUnrollMetadataForLoop(L
, "llvm.loop.unroll.count");
690 assert(MD
->getNumOperands() == 2 &&
691 "Unroll count hint metadata should have two operands.");
693 mdconst::extract
<ConstantInt
>(MD
->getOperand(1))->getZExtValue();
694 assert(Count
>= 1 && "Unroll count must be positive.");
700 // Computes the boosting factor for complete unrolling.
701 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
702 // be beneficial to fully unroll the loop even if unrolledcost is large. We
703 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
704 // the unroll threshold.
705 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost
&Cost
,
706 unsigned MaxPercentThresholdBoost
) {
707 if (Cost
.RolledDynamicCost
>= std::numeric_limits
<unsigned>::max() / 100)
709 else if (Cost
.UnrolledCost
!= 0)
710 // The boosting factor is RolledDynamicCost / UnrolledCost
711 return std::min(100 * Cost
.RolledDynamicCost
/ Cost
.UnrolledCost
,
712 MaxPercentThresholdBoost
);
714 return MaxPercentThresholdBoost
;
717 // Returns loop size estimation for unrolled loop.
718 static uint64_t getUnrolledLoopSize(
720 TargetTransformInfo::UnrollingPreferences
&UP
) {
721 assert(LoopSize
>= UP
.BEInsns
&& "LoopSize should not be less than BEInsns!");
722 return (uint64_t)(LoopSize
- UP
.BEInsns
) * UP
.Count
+ UP
.BEInsns
;
725 // Returns true if unroll count was set explicitly.
726 // Calculates unroll count and writes it to UP.Count.
727 // Unless IgnoreUser is true, will also use metadata and command-line options
728 // that are specific to to the LoopUnroll pass (which, for instance, are
729 // irrelevant for the LoopUnrollAndJam pass).
730 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
731 // many LoopUnroll-specific options. The shared functionality should be
732 // refactored into it own function.
733 bool llvm::computeUnrollCount(
734 Loop
*L
, const TargetTransformInfo
&TTI
, DominatorTree
&DT
, LoopInfo
*LI
,
735 ScalarEvolution
&SE
, const SmallPtrSetImpl
<const Value
*> &EphValues
,
736 OptimizationRemarkEmitter
*ORE
, unsigned &TripCount
, unsigned MaxTripCount
,
737 unsigned &TripMultiple
, unsigned LoopSize
,
738 TargetTransformInfo::UnrollingPreferences
&UP
, bool &UseUpperBound
) {
740 // Check for explicit Count.
741 // 1st priority is unroll count set by "unroll-count" option.
742 bool UserUnrollCount
= UnrollCount
.getNumOccurrences() > 0;
743 if (UserUnrollCount
) {
744 UP
.Count
= UnrollCount
;
745 UP
.AllowExpensiveTripCount
= true;
747 if (UP
.AllowRemainder
&& getUnrolledLoopSize(LoopSize
, UP
) < UP
.Threshold
)
751 // 2nd priority is unroll count set by pragma.
752 unsigned PragmaCount
= UnrollCountPragmaValue(L
);
753 if (PragmaCount
> 0) {
754 UP
.Count
= PragmaCount
;
756 UP
.AllowExpensiveTripCount
= true;
758 if ((UP
.AllowRemainder
|| (TripMultiple
% PragmaCount
== 0)) &&
759 getUnrolledLoopSize(LoopSize
, UP
) < PragmaUnrollThreshold
)
762 bool PragmaFullUnroll
= HasUnrollFullPragma(L
);
763 if (PragmaFullUnroll
&& TripCount
!= 0) {
764 UP
.Count
= TripCount
;
765 if (getUnrolledLoopSize(LoopSize
, UP
) < PragmaUnrollThreshold
)
769 bool PragmaEnableUnroll
= HasUnrollEnablePragma(L
);
770 bool ExplicitUnroll
= PragmaCount
> 0 || PragmaFullUnroll
||
771 PragmaEnableUnroll
|| UserUnrollCount
;
773 if (ExplicitUnroll
&& TripCount
!= 0) {
774 // If the loop has an unrolling pragma, we want to be more aggressive with
775 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
776 // value which is larger than the default limits.
777 UP
.Threshold
= std::max
<unsigned>(UP
.Threshold
, PragmaUnrollThreshold
);
778 UP
.PartialThreshold
=
779 std::max
<unsigned>(UP
.PartialThreshold
, PragmaUnrollThreshold
);
782 // 3rd priority is full unroll count.
783 // Full unroll makes sense only when TripCount or its upper bound could be
784 // statically calculated.
785 // Also we need to check if we exceed FullUnrollMaxCount.
786 // If using the upper bound to unroll, TripMultiple should be set to 1 because
787 // we do not know when loop may exit.
788 // MaxTripCount and ExactTripCount cannot both be non zero since we only
789 // compute the former when the latter is zero.
790 unsigned ExactTripCount
= TripCount
;
791 assert((ExactTripCount
== 0 || MaxTripCount
== 0) &&
792 "ExtractTripCount and MaxTripCount cannot both be non zero.");
793 unsigned FullUnrollTripCount
= ExactTripCount
? ExactTripCount
: MaxTripCount
;
794 UP
.Count
= FullUnrollTripCount
;
795 if (FullUnrollTripCount
&& FullUnrollTripCount
<= UP
.FullUnrollMaxCount
) {
796 // When computing the unrolled size, note that BEInsns are not replicated
797 // like the rest of the loop body.
798 if (getUnrolledLoopSize(LoopSize
, UP
) < UP
.Threshold
) {
799 UseUpperBound
= (MaxTripCount
== FullUnrollTripCount
);
800 TripCount
= FullUnrollTripCount
;
801 TripMultiple
= UP
.UpperBound
? 1 : TripMultiple
;
802 return ExplicitUnroll
;
804 // The loop isn't that small, but we still can fully unroll it if that
805 // helps to remove a significant number of instructions.
806 // To check that, run additional analysis on the loop.
807 if (Optional
<EstimatedUnrollCost
> Cost
= analyzeLoopUnrollCost(
808 L
, FullUnrollTripCount
, DT
, SE
, EphValues
, TTI
,
809 UP
.Threshold
* UP
.MaxPercentThresholdBoost
/ 100)) {
811 getFullUnrollBoostingFactor(*Cost
, UP
.MaxPercentThresholdBoost
);
812 if (Cost
->UnrolledCost
< UP
.Threshold
* Boost
/ 100) {
813 UseUpperBound
= (MaxTripCount
== FullUnrollTripCount
);
814 TripCount
= FullUnrollTripCount
;
815 TripMultiple
= UP
.UpperBound
? 1 : TripMultiple
;
816 return ExplicitUnroll
;
822 // 4th priority is loop peeling.
823 computePeelCount(L
, LoopSize
, UP
, TripCount
, SE
);
827 return ExplicitUnroll
;
830 // 5th priority is partial unrolling.
831 // Try partial unroll only when TripCount could be statically calculated.
833 UP
.Partial
|= ExplicitUnroll
;
835 LLVM_DEBUG(dbgs() << " will not try to unroll partially because "
836 << "-unroll-allow-partial not given\n");
841 UP
.Count
= TripCount
;
842 if (UP
.PartialThreshold
!= NoThreshold
) {
843 // Reduce unroll count to be modulo of TripCount for partial unrolling.
844 if (getUnrolledLoopSize(LoopSize
, UP
) > UP
.PartialThreshold
)
846 (std::max(UP
.PartialThreshold
, UP
.BEInsns
+ 1) - UP
.BEInsns
) /
847 (LoopSize
- UP
.BEInsns
);
848 if (UP
.Count
> UP
.MaxCount
)
849 UP
.Count
= UP
.MaxCount
;
850 while (UP
.Count
!= 0 && TripCount
% UP
.Count
!= 0)
852 if (UP
.AllowRemainder
&& UP
.Count
<= 1) {
853 // If there is no Count that is modulo of TripCount, set Count to
854 // largest power-of-two factor that satisfies the threshold limit.
855 // As we'll create fixup loop, do the type of unrolling only if
856 // remainder loop is allowed.
857 UP
.Count
= UP
.DefaultUnrollRuntimeCount
;
858 while (UP
.Count
!= 0 &&
859 getUnrolledLoopSize(LoopSize
, UP
) > UP
.PartialThreshold
)
863 if (PragmaEnableUnroll
)
865 return OptimizationRemarkMissed(DEBUG_TYPE
,
866 "UnrollAsDirectedTooLarge",
867 L
->getStartLoc(), L
->getHeader())
868 << "Unable to unroll loop as directed by unroll(enable) "
870 "because unrolled size is too large.";
875 UP
.Count
= TripCount
;
877 if (UP
.Count
> UP
.MaxCount
)
878 UP
.Count
= UP
.MaxCount
;
879 if ((PragmaFullUnroll
|| PragmaEnableUnroll
) && TripCount
&&
880 UP
.Count
!= TripCount
)
882 return OptimizationRemarkMissed(DEBUG_TYPE
,
883 "FullUnrollAsDirectedTooLarge",
884 L
->getStartLoc(), L
->getHeader())
885 << "Unable to fully unroll loop as directed by unroll pragma "
887 "unrolled size is too large.";
889 return ExplicitUnroll
;
891 assert(TripCount
== 0 &&
892 "All cases when TripCount is constant should be covered here.");
893 if (PragmaFullUnroll
)
895 return OptimizationRemarkMissed(
896 DEBUG_TYPE
, "CantFullUnrollAsDirectedRuntimeTripCount",
897 L
->getStartLoc(), L
->getHeader())
898 << "Unable to fully unroll loop as directed by unroll(full) "
900 "because loop has a runtime trip count.";
903 // 6th priority is runtime unrolling.
904 // Don't unroll a runtime trip count loop when it is disabled.
905 if (HasRuntimeUnrollDisablePragma(L
)) {
910 // Check if the runtime trip count is too small when profile is available.
911 if (L
->getHeader()->getParent()->hasProfileData()) {
912 if (auto ProfileTripCount
= getLoopEstimatedTripCount(L
)) {
913 if (*ProfileTripCount
< FlatLoopTripCountThreshold
)
916 UP
.AllowExpensiveTripCount
= true;
920 // Reduce count based on the type of unrolling and the threshold values.
921 UP
.Runtime
|= PragmaEnableUnroll
|| PragmaCount
> 0 || UserUnrollCount
;
924 dbgs() << " will not try to unroll loop with runtime trip count "
925 << "-unroll-runtime not given\n");
930 UP
.Count
= UP
.DefaultUnrollRuntimeCount
;
932 // Reduce unroll count to be the largest power-of-two factor of
933 // the original count which satisfies the threshold limit.
934 while (UP
.Count
!= 0 &&
935 getUnrolledLoopSize(LoopSize
, UP
) > UP
.PartialThreshold
)
939 unsigned OrigCount
= UP
.Count
;
942 if (!UP
.AllowRemainder
&& UP
.Count
!= 0 && (TripMultiple
% UP
.Count
) != 0) {
943 while (UP
.Count
!= 0 && TripMultiple
% UP
.Count
!= 0)
946 dbgs() << "Remainder loop is restricted (that could architecture "
947 "specific or because the loop contains a convergent "
948 "instruction), so unroll count must divide the trip "
950 << TripMultiple
<< ". Reducing unroll count from " << OrigCount
951 << " to " << UP
.Count
<< ".\n");
955 if (PragmaCount
> 0 && !UP
.AllowRemainder
)
957 return OptimizationRemarkMissed(DEBUG_TYPE
,
958 "DifferentUnrollCountFromDirected",
959 L
->getStartLoc(), L
->getHeader())
960 << "Unable to unroll loop the number of times directed by "
961 "unroll_count pragma because remainder loop is restricted "
962 "(that could architecture specific or because the loop "
963 "contains a convergent instruction) and so must have an "
965 "count that divides the loop trip multiple of "
966 << NV("TripMultiple", TripMultiple
) << ". Unrolling instead "
967 << NV("UnrollCount", UP
.Count
) << " time(s).";
971 if (UP
.Count
> UP
.MaxCount
)
972 UP
.Count
= UP
.MaxCount
;
973 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP
.Count
977 return ExplicitUnroll
;
980 static LoopUnrollResult
tryToUnrollLoop(
981 Loop
*L
, DominatorTree
&DT
, LoopInfo
*LI
, ScalarEvolution
&SE
,
982 const TargetTransformInfo
&TTI
, AssumptionCache
&AC
,
983 OptimizationRemarkEmitter
&ORE
, BlockFrequencyInfo
*BFI
,
984 ProfileSummaryInfo
*PSI
, bool PreserveLCSSA
, int OptLevel
,
985 bool OnlyWhenForced
, bool ForgetAllSCEV
, Optional
<unsigned> ProvidedCount
,
986 Optional
<unsigned> ProvidedThreshold
, Optional
<bool> ProvidedAllowPartial
,
987 Optional
<bool> ProvidedRuntime
, Optional
<bool> ProvidedUpperBound
,
988 Optional
<bool> ProvidedAllowPeeling
,
989 Optional
<bool> ProvidedAllowProfileBasedPeeling
) {
990 LLVM_DEBUG(dbgs() << "Loop Unroll: F["
991 << L
->getHeader()->getParent()->getName() << "] Loop %"
992 << L
->getHeader()->getName() << "\n");
993 TransformationMode TM
= hasUnrollTransformation(L
);
995 return LoopUnrollResult::Unmodified
;
996 if (!L
->isLoopSimplifyForm()) {
998 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
999 return LoopUnrollResult::Unmodified
;
1002 // When automtatic unrolling is disabled, do not unroll unless overridden for
1004 if (OnlyWhenForced
&& !(TM
& TM_Enable
))
1005 return LoopUnrollResult::Unmodified
;
1007 bool OptForSize
= L
->getHeader()->getParent()->hasOptSize();
1008 unsigned NumInlineCandidates
;
1009 bool NotDuplicatable
;
1011 TargetTransformInfo::UnrollingPreferences UP
= gatherUnrollingPreferences(
1012 L
, SE
, TTI
, BFI
, PSI
, OptLevel
, ProvidedThreshold
, ProvidedCount
,
1013 ProvidedAllowPartial
, ProvidedRuntime
, ProvidedUpperBound
,
1014 ProvidedAllowPeeling
, ProvidedAllowProfileBasedPeeling
);
1016 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1017 // as threshold later on.
1018 if (UP
.Threshold
== 0 && (!UP
.Partial
|| UP
.PartialThreshold
== 0) &&
1020 return LoopUnrollResult::Unmodified
;
1022 SmallPtrSet
<const Value
*, 32> EphValues
;
1023 CodeMetrics::collectEphemeralValues(L
, &AC
, EphValues
);
1026 ApproximateLoopSize(L
, NumInlineCandidates
, NotDuplicatable
, Convergent
,
1027 TTI
, EphValues
, UP
.BEInsns
);
1028 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize
<< "\n");
1029 if (NotDuplicatable
) {
1030 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
1031 << " instructions.\n");
1032 return LoopUnrollResult::Unmodified
;
1035 // When optimizing for size, use LoopSize as threshold, to (fully) unroll
1036 // loops, if it does not increase code size.
1038 UP
.Threshold
= std::max(UP
.Threshold
, LoopSize
);
1040 if (NumInlineCandidates
!= 0) {
1041 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
1042 return LoopUnrollResult::Unmodified
;
1045 // Find trip count and trip multiple if count is not available
1046 unsigned TripCount
= 0;
1047 unsigned MaxTripCount
= 0;
1048 unsigned TripMultiple
= 1;
1049 // If there are multiple exiting blocks but one of them is the latch, use the
1050 // latch for the trip count estimation. Otherwise insist on a single exiting
1051 // block for the trip count estimation.
1052 BasicBlock
*ExitingBlock
= L
->getLoopLatch();
1053 if (!ExitingBlock
|| !L
->isLoopExiting(ExitingBlock
))
1054 ExitingBlock
= L
->getExitingBlock();
1056 TripCount
= SE
.getSmallConstantTripCount(L
, ExitingBlock
);
1057 TripMultiple
= SE
.getSmallConstantTripMultiple(L
, ExitingBlock
);
1060 // If the loop contains a convergent operation, the prelude we'd add
1061 // to do the first few instructions before we hit the unrolled loop
1062 // is unsafe -- it adds a control-flow dependency to the convergent
1063 // operation. Therefore restrict remainder loop (try unrollig without).
1065 // TODO: This is quite conservative. In practice, convergent_op()
1066 // is likely to be called unconditionally in the loop. In this
1067 // case, the program would be ill-formed (on most architectures)
1068 // unless n were the same on all threads in a thread group.
1069 // Assuming n is the same on all threads, any kind of unrolling is
1070 // safe. But currently llvm's notion of convergence isn't powerful
1071 // enough to express this.
1073 UP
.AllowRemainder
= false;
1075 // Try to find the trip count upper bound if we cannot find the exact trip
1077 bool MaxOrZero
= false;
1079 MaxTripCount
= SE
.getSmallConstantMaxTripCount(L
);
1080 MaxOrZero
= SE
.isBackedgeTakenCountMaxOrZero(L
);
1081 // We can unroll by the upper bound amount if it's generally allowed or if
1082 // we know that the loop is executed either the upper bound or zero times.
1083 // (MaxOrZero unrolling keeps only the first loop test, so the number of
1084 // loop tests remains the same compared to the non-unrolled version, whereas
1085 // the generic upper bound unrolling keeps all but the last loop test so the
1086 // number of loop tests goes up which may end up being worse on targets with
1087 // constrained branch predictor resources so is controlled by an option.)
1088 // In addition we only unroll small upper bounds.
1089 if (!(UP
.UpperBound
|| MaxOrZero
) || MaxTripCount
> UnrollMaxUpperBound
) {
1094 // computeUnrollCount() decides whether it is beneficial to use upper bound to
1095 // fully unroll the loop.
1096 bool UseUpperBound
= false;
1097 bool IsCountSetExplicitly
= computeUnrollCount(
1098 L
, TTI
, DT
, LI
, SE
, EphValues
, &ORE
, TripCount
, MaxTripCount
,
1099 TripMultiple
, LoopSize
, UP
, UseUpperBound
);
1101 return LoopUnrollResult::Unmodified
;
1102 // Unroll factor (Count) must be less or equal to TripCount.
1103 if (TripCount
&& UP
.Count
> TripCount
)
1104 UP
.Count
= TripCount
;
1106 // Save loop properties before it is transformed.
1107 MDNode
*OrigLoopID
= L
->getLoopID();
1110 Loop
*RemainderLoop
= nullptr;
1111 LoopUnrollResult UnrollResult
= UnrollLoop(
1113 {UP
.Count
, TripCount
, UP
.Force
, UP
.Runtime
, UP
.AllowExpensiveTripCount
,
1114 UseUpperBound
, MaxOrZero
, TripMultiple
, UP
.PeelCount
, UP
.UnrollRemainder
,
1116 LI
, &SE
, &DT
, &AC
, &ORE
, PreserveLCSSA
, &RemainderLoop
);
1117 if (UnrollResult
== LoopUnrollResult::Unmodified
)
1118 return LoopUnrollResult::Unmodified
;
1120 if (RemainderLoop
) {
1121 Optional
<MDNode
*> RemainderLoopID
=
1122 makeFollowupLoopID(OrigLoopID
, {LLVMLoopUnrollFollowupAll
,
1123 LLVMLoopUnrollFollowupRemainder
});
1124 if (RemainderLoopID
.hasValue())
1125 RemainderLoop
->setLoopID(RemainderLoopID
.getValue());
1128 if (UnrollResult
!= LoopUnrollResult::FullyUnrolled
) {
1129 Optional
<MDNode
*> NewLoopID
=
1130 makeFollowupLoopID(OrigLoopID
, {LLVMLoopUnrollFollowupAll
,
1131 LLVMLoopUnrollFollowupUnrolled
});
1132 if (NewLoopID
.hasValue()) {
1133 L
->setLoopID(NewLoopID
.getValue());
1135 // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1137 return UnrollResult
;
1141 // If loop has an unroll count pragma or unrolled by explicitly set count
1142 // mark loop as unrolled to prevent unrolling beyond that requested.
1143 // If the loop was peeled, we already "used up" the profile information
1144 // we had, so we don't want to unroll or peel again.
1145 if (UnrollResult
!= LoopUnrollResult::FullyUnrolled
&&
1146 (IsCountSetExplicitly
|| (UP
.PeelProfiledIterations
&& UP
.PeelCount
)))
1147 L
->setLoopAlreadyUnrolled();
1149 return UnrollResult
;
1154 class LoopUnroll
: public LoopPass
{
1156 static char ID
; // Pass ID, replacement for typeid
1160 /// If false, use a cost model to determine whether unrolling of a loop is
1161 /// profitable. If true, only loops that explicitly request unrolling via
1162 /// metadata are considered. All other loops are skipped.
1163 bool OnlyWhenForced
;
1165 /// If false, when SCEV is invalidated, only forget everything in the
1166 /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1167 /// Otherwise, forgetAllLoops and rebuild when needed next.
1170 Optional
<unsigned> ProvidedCount
;
1171 Optional
<unsigned> ProvidedThreshold
;
1172 Optional
<bool> ProvidedAllowPartial
;
1173 Optional
<bool> ProvidedRuntime
;
1174 Optional
<bool> ProvidedUpperBound
;
1175 Optional
<bool> ProvidedAllowPeeling
;
1176 Optional
<bool> ProvidedAllowProfileBasedPeeling
;
1178 LoopUnroll(int OptLevel
= 2, bool OnlyWhenForced
= false,
1179 bool ForgetAllSCEV
= false, Optional
<unsigned> Threshold
= None
,
1180 Optional
<unsigned> Count
= None
,
1181 Optional
<bool> AllowPartial
= None
, Optional
<bool> Runtime
= None
,
1182 Optional
<bool> UpperBound
= None
,
1183 Optional
<bool> AllowPeeling
= None
,
1184 Optional
<bool> AllowProfileBasedPeeling
= None
)
1185 : LoopPass(ID
), OptLevel(OptLevel
), OnlyWhenForced(OnlyWhenForced
),
1186 ForgetAllSCEV(ForgetAllSCEV
), ProvidedCount(std::move(Count
)),
1187 ProvidedThreshold(Threshold
), ProvidedAllowPartial(AllowPartial
),
1188 ProvidedRuntime(Runtime
), ProvidedUpperBound(UpperBound
),
1189 ProvidedAllowPeeling(AllowPeeling
),
1190 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling
) {
1191 initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1194 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
{
1198 Function
&F
= *L
->getHeader()->getParent();
1200 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
1201 LoopInfo
*LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
1202 ScalarEvolution
&SE
= getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
1203 const TargetTransformInfo
&TTI
=
1204 getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
1205 auto &AC
= getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
1206 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1207 // pass. Function analyses need to be preserved across loop transformations
1208 // but ORE cannot be preserved (see comment before the pass definition).
1209 OptimizationRemarkEmitter
ORE(&F
);
1210 bool PreserveLCSSA
= mustPreserveAnalysisID(LCSSAID
);
1212 LoopUnrollResult Result
= tryToUnrollLoop(
1213 L
, DT
, LI
, SE
, TTI
, AC
, ORE
, nullptr, nullptr, PreserveLCSSA
, OptLevel
,
1214 OnlyWhenForced
, ForgetAllSCEV
, ProvidedCount
, ProvidedThreshold
,
1215 ProvidedAllowPartial
, ProvidedRuntime
, ProvidedUpperBound
,
1216 ProvidedAllowPeeling
, ProvidedAllowProfileBasedPeeling
);
1218 if (Result
== LoopUnrollResult::FullyUnrolled
)
1219 LPM
.markLoopAsDeleted(*L
);
1221 return Result
!= LoopUnrollResult::Unmodified
;
1224 /// This transformation requires natural loop information & requires that
1225 /// loop preheaders be inserted into the CFG...
1226 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1227 AU
.addRequired
<AssumptionCacheTracker
>();
1228 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
1229 // FIXME: Loop passes are required to preserve domtree, and for now we just
1230 // recreate dom info if anything gets unrolled.
1231 getLoopAnalysisUsage(AU
);
1235 } // end anonymous namespace
1237 char LoopUnroll::ID
= 0;
1239 INITIALIZE_PASS_BEGIN(LoopUnroll
, "loop-unroll", "Unroll loops", false, false)
1240 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
1241 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
1242 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
1243 INITIALIZE_PASS_END(LoopUnroll
, "loop-unroll", "Unroll loops", false, false)
1245 Pass
*llvm::createLoopUnrollPass(int OptLevel
, bool OnlyWhenForced
,
1246 bool ForgetAllSCEV
, int Threshold
, int Count
,
1247 int AllowPartial
, int Runtime
, int UpperBound
,
1249 // TODO: It would make more sense for this function to take the optionals
1250 // directly, but that's dangerous since it would silently break out of tree
1252 return new LoopUnroll(
1253 OptLevel
, OnlyWhenForced
, ForgetAllSCEV
,
1254 Threshold
== -1 ? None
: Optional
<unsigned>(Threshold
),
1255 Count
== -1 ? None
: Optional
<unsigned>(Count
),
1256 AllowPartial
== -1 ? None
: Optional
<bool>(AllowPartial
),
1257 Runtime
== -1 ? None
: Optional
<bool>(Runtime
),
1258 UpperBound
== -1 ? None
: Optional
<bool>(UpperBound
),
1259 AllowPeeling
== -1 ? None
: Optional
<bool>(AllowPeeling
));
1262 Pass
*llvm::createSimpleLoopUnrollPass(int OptLevel
, bool OnlyWhenForced
,
1263 bool ForgetAllSCEV
) {
1264 return createLoopUnrollPass(OptLevel
, OnlyWhenForced
, ForgetAllSCEV
, -1, -1,
1268 PreservedAnalyses
LoopFullUnrollPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
1269 LoopStandardAnalysisResults
&AR
,
1270 LPMUpdater
&Updater
) {
1272 AM
.getResult
<FunctionAnalysisManagerLoopProxy
>(L
, AR
).getManager();
1273 Function
*F
= L
.getHeader()->getParent();
1275 auto *ORE
= FAM
.getCachedResult
<OptimizationRemarkEmitterAnalysis
>(*F
);
1276 // FIXME: This should probably be optional rather than required.
1279 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
1280 "cached at a higher level");
1282 // Keep track of the previous loop structure so we can identify new loops
1283 // created by unrolling.
1284 Loop
*ParentL
= L
.getParentLoop();
1285 SmallPtrSet
<Loop
*, 4> OldLoops
;
1287 OldLoops
.insert(ParentL
->begin(), ParentL
->end());
1289 OldLoops
.insert(AR
.LI
.begin(), AR
.LI
.end());
1291 std::string LoopName
= L
.getName();
1293 bool Changed
= tryToUnrollLoop(&L
, AR
.DT
, &AR
.LI
, AR
.SE
, AR
.TTI
, AR
.AC
, *ORE
,
1294 /*BFI*/ nullptr, /*PSI*/ nullptr,
1295 /*PreserveLCSSA*/ true, OptLevel
,
1296 OnlyWhenForced
, ForgetSCEV
, /*Count*/ None
,
1297 /*Threshold*/ None
, /*AllowPartial*/ false,
1298 /*Runtime*/ false, /*UpperBound*/ false,
1299 /*AllowPeeling*/ false,
1300 /*AllowProfileBasedPeeling*/ false) !=
1301 LoopUnrollResult::Unmodified
;
1303 return PreservedAnalyses::all();
1305 // The parent must not be damaged by unrolling!
1308 ParentL
->verifyLoop();
1311 // Unrolling can do several things to introduce new loops into a loop nest:
1312 // - Full unrolling clones child loops within the current loop but then
1313 // removes the current loop making all of the children appear to be new
1316 // When a new loop appears as a sibling loop after fully unrolling,
1317 // its nesting structure has fundamentally changed and we want to revisit
1318 // it to reflect that.
1320 // When unrolling has removed the current loop, we need to tell the
1321 // infrastructure that it is gone.
1323 // Finally, we support a debugging/testing mode where we revisit child loops
1324 // as well. These are not expected to require further optimizations as either
1325 // they or the loop they were cloned from have been directly visited already.
1326 // But the debugging mode allows us to check this assumption.
1327 bool IsCurrentLoopValid
= false;
1328 SmallVector
<Loop
*, 4> SibLoops
;
1330 SibLoops
.append(ParentL
->begin(), ParentL
->end());
1332 SibLoops
.append(AR
.LI
.begin(), AR
.LI
.end());
1333 erase_if(SibLoops
, [&](Loop
*SibLoop
) {
1334 if (SibLoop
== &L
) {
1335 IsCurrentLoopValid
= true;
1339 // Otherwise erase the loop from the list if it was in the old loops.
1340 return OldLoops
.count(SibLoop
) != 0;
1342 Updater
.addSiblingLoops(SibLoops
);
1344 if (!IsCurrentLoopValid
) {
1345 Updater
.markLoopAsDeleted(L
, LoopName
);
1347 // We can only walk child loops if the current loop remained valid.
1348 if (UnrollRevisitChildLoops
) {
1349 // Walk *all* of the child loops.
1350 SmallVector
<Loop
*, 4> ChildLoops(L
.begin(), L
.end());
1351 Updater
.addChildLoops(ChildLoops
);
1355 return getLoopPassPreservedAnalyses();
1358 template <typename RangeT
>
1359 static SmallVector
<Loop
*, 8> appendLoopsToWorklist(RangeT
&&Loops
) {
1360 SmallVector
<Loop
*, 8> Worklist
;
1361 // We use an internal worklist to build up the preorder traversal without
1363 SmallVector
<Loop
*, 4> PreOrderLoops
, PreOrderWorklist
;
1365 for (Loop
*RootL
: Loops
) {
1366 assert(PreOrderLoops
.empty() && "Must start with an empty preorder walk.");
1367 assert(PreOrderWorklist
.empty() &&
1368 "Must start with an empty preorder walk worklist.");
1369 PreOrderWorklist
.push_back(RootL
);
1371 Loop
*L
= PreOrderWorklist
.pop_back_val();
1372 PreOrderWorklist
.append(L
->begin(), L
->end());
1373 PreOrderLoops
.push_back(L
);
1374 } while (!PreOrderWorklist
.empty());
1376 Worklist
.append(PreOrderLoops
.begin(), PreOrderLoops
.end());
1377 PreOrderLoops
.clear();
1382 PreservedAnalyses
LoopUnrollPass::run(Function
&F
,
1383 FunctionAnalysisManager
&AM
) {
1384 auto &SE
= AM
.getResult
<ScalarEvolutionAnalysis
>(F
);
1385 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
1386 auto &TTI
= AM
.getResult
<TargetIRAnalysis
>(F
);
1387 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
1388 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
1389 auto &ORE
= AM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
1391 LoopAnalysisManager
*LAM
= nullptr;
1392 if (auto *LAMProxy
= AM
.getCachedResult
<LoopAnalysisManagerFunctionProxy
>(F
))
1393 LAM
= &LAMProxy
->getManager();
1395 const ModuleAnalysisManager
&MAM
=
1396 AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
).getManager();
1397 ProfileSummaryInfo
*PSI
=
1398 MAM
.getCachedResult
<ProfileSummaryAnalysis
>(*F
.getParent());
1399 auto *BFI
= (PSI
&& PSI
->hasProfileSummary()) ?
1400 &AM
.getResult
<BlockFrequencyAnalysis
>(F
) : nullptr;
1402 bool Changed
= false;
1404 // The unroller requires loops to be in simplified form, and also needs LCSSA.
1405 // Since simplification may add new inner loops, it has to run before the
1406 // legality and profitability checks. This means running the loop unroller
1407 // will simplify all loops, regardless of whether anything end up being
1409 for (auto &L
: LI
) {
1411 simplifyLoop(L
, &DT
, &LI
, &SE
, &AC
, nullptr, false /* PreserveLCSSA */);
1412 Changed
|= formLCSSARecursively(*L
, DT
, &LI
, &SE
);
1415 SmallVector
<Loop
*, 8> Worklist
= appendLoopsToWorklist(LI
);
1417 while (!Worklist
.empty()) {
1418 // Because the LoopInfo stores the loops in RPO, we walk the worklist
1419 // from back to front so that we work forward across the CFG, which
1420 // for unrolling is only needed to get optimization remarks emitted in
1422 Loop
&L
= *Worklist
.pop_back_val();
1424 Loop
*ParentL
= L
.getParentLoop();
1427 // Check if the profile summary indicates that the profiled application
1428 // has a huge working set size, in which case we disable peeling to avoid
1429 // bloating it further.
1430 Optional
<bool> LocalAllowPeeling
= UnrollOpts
.AllowPeeling
;
1431 if (PSI
&& PSI
->hasHugeWorkingSetSize())
1432 LocalAllowPeeling
= false;
1433 std::string LoopName
= L
.getName();
1434 // The API here is quite complex to call and we allow to select some
1435 // flavors of unrolling during construction time (by setting UnrollOpts).
1436 LoopUnrollResult Result
= tryToUnrollLoop(
1437 &L
, DT
, &LI
, SE
, TTI
, AC
, ORE
, BFI
, PSI
,
1438 /*PreserveLCSSA*/ true, UnrollOpts
.OptLevel
, UnrollOpts
.OnlyWhenForced
,
1439 UnrollOpts
.ForgetSCEV
, /*Count*/ None
,
1440 /*Threshold*/ None
, UnrollOpts
.AllowPartial
, UnrollOpts
.AllowRuntime
,
1441 UnrollOpts
.AllowUpperBound
, LocalAllowPeeling
,
1442 UnrollOpts
.AllowProfileBasedPeeling
);
1443 Changed
|= Result
!= LoopUnrollResult::Unmodified
;
1445 // The parent must not be damaged by unrolling!
1447 if (Result
!= LoopUnrollResult::Unmodified
&& ParentL
)
1448 ParentL
->verifyLoop();
1451 // Clear any cached analysis results for L if we removed it completely.
1452 if (LAM
&& Result
== LoopUnrollResult::FullyUnrolled
)
1453 LAM
->clear(L
, LoopName
);
1457 return PreservedAnalyses::all();
1459 return getLoopPassPreservedAnalyses();