[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / Transforms / Scalar / LoopUnrollPass.cpp
blobd52ce9e815b662ea6da7dd0c4e54dfe167b7b408
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller. It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopPass.h"
32 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Scalar.h"
56 #include "llvm/Transforms/Scalar/LoopPassManager.h"
57 #include "llvm/Transforms/Utils.h"
58 #include "llvm/Transforms/Utils/LoopSimplify.h"
59 #include "llvm/Transforms/Utils/LoopUtils.h"
60 #include "llvm/Transforms/Utils/SizeOpts.h"
61 #include "llvm/Transforms/Utils/UnrollLoop.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <limits>
66 #include <string>
67 #include <tuple>
68 #include <utility>
70 using namespace llvm;
72 #define DEBUG_TYPE "loop-unroll"
74 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
75 "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
76 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
77 " the current top-most loop. This is somtimes preferred to reduce"
78 " compile time."));
80 static cl::opt<unsigned>
81 UnrollThreshold("unroll-threshold", cl::Hidden,
82 cl::desc("The cost threshold for loop unrolling"));
84 static cl::opt<unsigned> UnrollPartialThreshold(
85 "unroll-partial-threshold", cl::Hidden,
86 cl::desc("The cost threshold for partial loop unrolling"));
88 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
89 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
90 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
91 "to the threshold when aggressively unrolling a loop due to the "
92 "dynamic cost savings. If completely unrolling a loop will reduce "
93 "the total runtime from X to Y, we boost the loop unroll "
94 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
95 "X/Y). This limit avoids excessive code bloat."));
97 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
98 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
99 cl::desc("Don't allow loop unrolling to simulate more than this number of"
100 "iterations when checking full unroll profitability"));
102 static cl::opt<unsigned> UnrollCount(
103 "unroll-count", cl::Hidden,
104 cl::desc("Use this unroll count for all loops including those with "
105 "unroll_count pragma values, for testing purposes"));
107 static cl::opt<unsigned> UnrollMaxCount(
108 "unroll-max-count", cl::Hidden,
109 cl::desc("Set the max unroll count for partial and runtime unrolling, for"
110 "testing purposes"));
112 static cl::opt<unsigned> UnrollFullMaxCount(
113 "unroll-full-max-count", cl::Hidden,
114 cl::desc(
115 "Set the max unroll count for full unrolling, for testing purposes"));
117 static cl::opt<unsigned> UnrollPeelCount(
118 "unroll-peel-count", cl::Hidden,
119 cl::desc("Set the unroll peeling count, for testing purposes"));
121 static cl::opt<bool>
122 UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
123 cl::desc("Allows loops to be partially unrolled until "
124 "-unroll-threshold loop size is reached."));
126 static cl::opt<bool> UnrollAllowRemainder(
127 "unroll-allow-remainder", cl::Hidden,
128 cl::desc("Allow generation of a loop remainder (extra iterations) "
129 "when unrolling a loop."));
131 static cl::opt<bool>
132 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
133 cl::desc("Unroll loops with run-time trip counts"));
135 static cl::opt<unsigned> UnrollMaxUpperBound(
136 "unroll-max-upperbound", cl::init(8), cl::Hidden,
137 cl::desc(
138 "The max of trip count upper bound that is considered in unrolling"));
140 static cl::opt<unsigned> PragmaUnrollThreshold(
141 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
142 cl::desc("Unrolled size limit for loops with an unroll(full) or "
143 "unroll_count pragma."));
145 static cl::opt<unsigned> FlatLoopTripCountThreshold(
146 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
147 cl::desc("If the runtime tripcount for the loop is lower than the "
148 "threshold, the loop is considered as flat and will be less "
149 "aggressively unrolled."));
151 static cl::opt<bool>
152 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
153 cl::desc("Allows loops to be peeled when the dynamic "
154 "trip count is known to be low."));
156 static cl::opt<bool> UnrollUnrollRemainder(
157 "unroll-remainder", cl::Hidden,
158 cl::desc("Allow the loop remainder to be unrolled."));
160 // This option isn't ever intended to be enabled, it serves to allow
161 // experiments to check the assumptions about when this kind of revisit is
162 // necessary.
163 static cl::opt<bool> UnrollRevisitChildLoops(
164 "unroll-revisit-child-loops", cl::Hidden,
165 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
166 "This shouldn't typically be needed as child loops (or their "
167 "clones) were already visited."));
169 /// A magic value for use with the Threshold parameter to indicate
170 /// that the loop unroll should be performed regardless of how much
171 /// code expansion would result.
172 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
174 /// Gather the various unrolling parameters based on the defaults, compiler
175 /// flags, TTI overrides and user specified parameters.
176 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
177 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
178 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel,
179 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
180 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
181 Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling,
182 Optional<bool> UserAllowProfileBasedPeeling) {
183 TargetTransformInfo::UnrollingPreferences UP;
185 // Set up the defaults
186 UP.Threshold = OptLevel > 2 ? 300 : 150;
187 UP.MaxPercentThresholdBoost = 400;
188 UP.OptSizeThreshold = 0;
189 UP.PartialThreshold = 150;
190 UP.PartialOptSizeThreshold = 0;
191 UP.Count = 0;
192 UP.PeelCount = 0;
193 UP.DefaultUnrollRuntimeCount = 8;
194 UP.MaxCount = std::numeric_limits<unsigned>::max();
195 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
196 UP.BEInsns = 2;
197 UP.Partial = false;
198 UP.Runtime = false;
199 UP.AllowRemainder = true;
200 UP.UnrollRemainder = false;
201 UP.AllowExpensiveTripCount = false;
202 UP.Force = false;
203 UP.UpperBound = false;
204 UP.AllowPeeling = true;
205 UP.UnrollAndJam = false;
206 UP.PeelProfiledIterations = true;
207 UP.UnrollAndJamInnerLoopThreshold = 60;
209 // Override with any target specific settings
210 TTI.getUnrollingPreferences(L, SE, UP);
212 // Apply size attributes
213 bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
214 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI);
215 if (OptForSize) {
216 UP.Threshold = UP.OptSizeThreshold;
217 UP.PartialThreshold = UP.PartialOptSizeThreshold;
218 UP.MaxPercentThresholdBoost = 100;
221 // Apply any user values specified by cl::opt
222 if (UnrollThreshold.getNumOccurrences() > 0)
223 UP.Threshold = UnrollThreshold;
224 if (UnrollPartialThreshold.getNumOccurrences() > 0)
225 UP.PartialThreshold = UnrollPartialThreshold;
226 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
227 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
228 if (UnrollMaxCount.getNumOccurrences() > 0)
229 UP.MaxCount = UnrollMaxCount;
230 if (UnrollFullMaxCount.getNumOccurrences() > 0)
231 UP.FullUnrollMaxCount = UnrollFullMaxCount;
232 if (UnrollPeelCount.getNumOccurrences() > 0)
233 UP.PeelCount = UnrollPeelCount;
234 if (UnrollAllowPartial.getNumOccurrences() > 0)
235 UP.Partial = UnrollAllowPartial;
236 if (UnrollAllowRemainder.getNumOccurrences() > 0)
237 UP.AllowRemainder = UnrollAllowRemainder;
238 if (UnrollRuntime.getNumOccurrences() > 0)
239 UP.Runtime = UnrollRuntime;
240 if (UnrollMaxUpperBound == 0)
241 UP.UpperBound = false;
242 if (UnrollAllowPeeling.getNumOccurrences() > 0)
243 UP.AllowPeeling = UnrollAllowPeeling;
244 if (UnrollUnrollRemainder.getNumOccurrences() > 0)
245 UP.UnrollRemainder = UnrollUnrollRemainder;
247 // Apply user values provided by argument
248 if (UserThreshold.hasValue()) {
249 UP.Threshold = *UserThreshold;
250 UP.PartialThreshold = *UserThreshold;
252 if (UserCount.hasValue())
253 UP.Count = *UserCount;
254 if (UserAllowPartial.hasValue())
255 UP.Partial = *UserAllowPartial;
256 if (UserRuntime.hasValue())
257 UP.Runtime = *UserRuntime;
258 if (UserUpperBound.hasValue())
259 UP.UpperBound = *UserUpperBound;
260 if (UserAllowPeeling.hasValue())
261 UP.AllowPeeling = *UserAllowPeeling;
262 if (UserAllowProfileBasedPeeling.hasValue())
263 UP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
265 return UP;
268 namespace {
270 /// A struct to densely store the state of an instruction after unrolling at
271 /// each iteration.
273 /// This is designed to work like a tuple of <Instruction *, int> for the
274 /// purposes of hashing and lookup, but to be able to associate two boolean
275 /// states with each key.
276 struct UnrolledInstState {
277 Instruction *I;
278 int Iteration : 30;
279 unsigned IsFree : 1;
280 unsigned IsCounted : 1;
283 /// Hashing and equality testing for a set of the instruction states.
284 struct UnrolledInstStateKeyInfo {
285 using PtrInfo = DenseMapInfo<Instruction *>;
286 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
288 static inline UnrolledInstState getEmptyKey() {
289 return {PtrInfo::getEmptyKey(), 0, 0, 0};
292 static inline UnrolledInstState getTombstoneKey() {
293 return {PtrInfo::getTombstoneKey(), 0, 0, 0};
296 static inline unsigned getHashValue(const UnrolledInstState &S) {
297 return PairInfo::getHashValue({S.I, S.Iteration});
300 static inline bool isEqual(const UnrolledInstState &LHS,
301 const UnrolledInstState &RHS) {
302 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
306 struct EstimatedUnrollCost {
307 /// The estimated cost after unrolling.
308 unsigned UnrolledCost;
310 /// The estimated dynamic cost of executing the instructions in the
311 /// rolled form.
312 unsigned RolledDynamicCost;
315 } // end anonymous namespace
317 /// Figure out if the loop is worth full unrolling.
319 /// Complete loop unrolling can make some loads constant, and we need to know
320 /// if that would expose any further optimization opportunities. This routine
321 /// estimates this optimization. It computes cost of unrolled loop
322 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
323 /// dynamic cost we mean that we won't count costs of blocks that are known not
324 /// to be executed (i.e. if we have a branch in the loop and we know that at the
325 /// given iteration its condition would be resolved to true, we won't add up the
326 /// cost of the 'false'-block).
327 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
328 /// the analysis failed (no benefits expected from the unrolling, or the loop is
329 /// too big to analyze), the returned value is None.
330 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
331 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
332 const SmallPtrSetImpl<const Value *> &EphValues,
333 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) {
334 // We want to be able to scale offsets by the trip count and add more offsets
335 // to them without checking for overflows, and we already don't want to
336 // analyze *massive* trip counts, so we force the max to be reasonably small.
337 assert(UnrollMaxIterationsCountToAnalyze <
338 (unsigned)(std::numeric_limits<int>::max() / 2) &&
339 "The unroll iterations max is too large!");
341 // Only analyze inner loops. We can't properly estimate cost of nested loops
342 // and we won't visit inner loops again anyway.
343 if (!L->empty())
344 return None;
346 // Don't simulate loops with a big or unknown tripcount
347 if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
348 TripCount > UnrollMaxIterationsCountToAnalyze)
349 return None;
351 SmallSetVector<BasicBlock *, 16> BBWorklist;
352 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
353 DenseMap<Value *, Constant *> SimplifiedValues;
354 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
356 // The estimated cost of the unrolled form of the loop. We try to estimate
357 // this by simplifying as much as we can while computing the estimate.
358 unsigned UnrolledCost = 0;
360 // We also track the estimated dynamic (that is, actually executed) cost in
361 // the rolled form. This helps identify cases when the savings from unrolling
362 // aren't just exposing dead control flows, but actual reduced dynamic
363 // instructions due to the simplifications which we expect to occur after
364 // unrolling.
365 unsigned RolledDynamicCost = 0;
367 // We track the simplification of each instruction in each iteration. We use
368 // this to recursively merge costs into the unrolled cost on-demand so that
369 // we don't count the cost of any dead code. This is essentially a map from
370 // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
371 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
373 // A small worklist used to accumulate cost of instructions from each
374 // observable and reached root in the loop.
375 SmallVector<Instruction *, 16> CostWorklist;
377 // PHI-used worklist used between iterations while accumulating cost.
378 SmallVector<Instruction *, 4> PHIUsedList;
380 // Helper function to accumulate cost for instructions in the loop.
381 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
382 assert(Iteration >= 0 && "Cannot have a negative iteration!");
383 assert(CostWorklist.empty() && "Must start with an empty cost list");
384 assert(PHIUsedList.empty() && "Must start with an empty phi used list");
385 CostWorklist.push_back(&RootI);
386 for (;; --Iteration) {
387 do {
388 Instruction *I = CostWorklist.pop_back_val();
390 // InstCostMap only uses I and Iteration as a key, the other two values
391 // don't matter here.
392 auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
393 if (CostIter == InstCostMap.end())
394 // If an input to a PHI node comes from a dead path through the loop
395 // we may have no cost data for it here. What that actually means is
396 // that it is free.
397 continue;
398 auto &Cost = *CostIter;
399 if (Cost.IsCounted)
400 // Already counted this instruction.
401 continue;
403 // Mark that we are counting the cost of this instruction now.
404 Cost.IsCounted = true;
406 // If this is a PHI node in the loop header, just add it to the PHI set.
407 if (auto *PhiI = dyn_cast<PHINode>(I))
408 if (PhiI->getParent() == L->getHeader()) {
409 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
410 "inherently simplify during unrolling.");
411 if (Iteration == 0)
412 continue;
414 // Push the incoming value from the backedge into the PHI used list
415 // if it is an in-loop instruction. We'll use this to populate the
416 // cost worklist for the next iteration (as we count backwards).
417 if (auto *OpI = dyn_cast<Instruction>(
418 PhiI->getIncomingValueForBlock(L->getLoopLatch())))
419 if (L->contains(OpI))
420 PHIUsedList.push_back(OpI);
421 continue;
424 // First accumulate the cost of this instruction.
425 if (!Cost.IsFree) {
426 UnrolledCost += TTI.getUserCost(I);
427 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
428 << Iteration << "): ");
429 LLVM_DEBUG(I->dump());
432 // We must count the cost of every operand which is not free,
433 // recursively. If we reach a loop PHI node, simply add it to the set
434 // to be considered on the next iteration (backwards!).
435 for (Value *Op : I->operands()) {
436 // Check whether this operand is free due to being a constant or
437 // outside the loop.
438 auto *OpI = dyn_cast<Instruction>(Op);
439 if (!OpI || !L->contains(OpI))
440 continue;
442 // Otherwise accumulate its cost.
443 CostWorklist.push_back(OpI);
445 } while (!CostWorklist.empty());
447 if (PHIUsedList.empty())
448 // We've exhausted the search.
449 break;
451 assert(Iteration > 0 &&
452 "Cannot track PHI-used values past the first iteration!");
453 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
454 PHIUsedList.clear();
458 // Ensure that we don't violate the loop structure invariants relied on by
459 // this analysis.
460 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
461 assert(L->isLCSSAForm(DT) &&
462 "Must have loops in LCSSA form to track live-out values.");
464 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
466 // Simulate execution of each iteration of the loop counting instructions,
467 // which would be simplified.
468 // Since the same load will take different values on different iterations,
469 // we literally have to go through all loop's iterations.
470 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
471 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
473 // Prepare for the iteration by collecting any simplified entry or backedge
474 // inputs.
475 for (Instruction &I : *L->getHeader()) {
476 auto *PHI = dyn_cast<PHINode>(&I);
477 if (!PHI)
478 break;
480 // The loop header PHI nodes must have exactly two input: one from the
481 // loop preheader and one from the loop latch.
482 assert(
483 PHI->getNumIncomingValues() == 2 &&
484 "Must have an incoming value only for the preheader and the latch.");
486 Value *V = PHI->getIncomingValueForBlock(
487 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
488 Constant *C = dyn_cast<Constant>(V);
489 if (Iteration != 0 && !C)
490 C = SimplifiedValues.lookup(V);
491 if (C)
492 SimplifiedInputValues.push_back({PHI, C});
495 // Now clear and re-populate the map for the next iteration.
496 SimplifiedValues.clear();
497 while (!SimplifiedInputValues.empty())
498 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
500 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
502 BBWorklist.clear();
503 BBWorklist.insert(L->getHeader());
504 // Note that we *must not* cache the size, this loop grows the worklist.
505 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
506 BasicBlock *BB = BBWorklist[Idx];
508 // Visit all instructions in the given basic block and try to simplify
509 // it. We don't change the actual IR, just count optimization
510 // opportunities.
511 for (Instruction &I : *BB) {
512 // These won't get into the final code - don't even try calculating the
513 // cost for them.
514 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
515 continue;
517 // Track this instruction's expected baseline cost when executing the
518 // rolled loop form.
519 RolledDynamicCost += TTI.getUserCost(&I);
521 // Visit the instruction to analyze its loop cost after unrolling,
522 // and if the visitor returns true, mark the instruction as free after
523 // unrolling and continue.
524 bool IsFree = Analyzer.visit(I);
525 bool Inserted = InstCostMap.insert({&I, (int)Iteration,
526 (unsigned)IsFree,
527 /*IsCounted*/ false}).second;
528 (void)Inserted;
529 assert(Inserted && "Cannot have a state for an unvisited instruction!");
531 if (IsFree)
532 continue;
534 // Can't properly model a cost of a call.
535 // FIXME: With a proper cost model we should be able to do it.
536 if (auto *CI = dyn_cast<CallInst>(&I)) {
537 const Function *Callee = CI->getCalledFunction();
538 if (!Callee || TTI.isLoweredToCall(Callee)) {
539 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
540 return None;
544 // If the instruction might have a side-effect recursively account for
545 // the cost of it and all the instructions leading up to it.
546 if (I.mayHaveSideEffects())
547 AddCostRecursively(I, Iteration);
549 // If unrolled body turns out to be too big, bail out.
550 if (UnrolledCost > MaxUnrolledLoopSize) {
551 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
552 << " UnrolledCost: " << UnrolledCost
553 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
554 << "\n");
555 return None;
559 Instruction *TI = BB->getTerminator();
561 // Add in the live successors by first checking whether we have terminator
562 // that may be simplified based on the values simplified by this call.
563 BasicBlock *KnownSucc = nullptr;
564 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
565 if (BI->isConditional()) {
566 if (Constant *SimpleCond =
567 SimplifiedValues.lookup(BI->getCondition())) {
568 // Just take the first successor if condition is undef
569 if (isa<UndefValue>(SimpleCond))
570 KnownSucc = BI->getSuccessor(0);
571 else if (ConstantInt *SimpleCondVal =
572 dyn_cast<ConstantInt>(SimpleCond))
573 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
576 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
577 if (Constant *SimpleCond =
578 SimplifiedValues.lookup(SI->getCondition())) {
579 // Just take the first successor if condition is undef
580 if (isa<UndefValue>(SimpleCond))
581 KnownSucc = SI->getSuccessor(0);
582 else if (ConstantInt *SimpleCondVal =
583 dyn_cast<ConstantInt>(SimpleCond))
584 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
587 if (KnownSucc) {
588 if (L->contains(KnownSucc))
589 BBWorklist.insert(KnownSucc);
590 else
591 ExitWorklist.insert({BB, KnownSucc});
592 continue;
595 // Add BB's successors to the worklist.
596 for (BasicBlock *Succ : successors(BB))
597 if (L->contains(Succ))
598 BBWorklist.insert(Succ);
599 else
600 ExitWorklist.insert({BB, Succ});
601 AddCostRecursively(*TI, Iteration);
604 // If we found no optimization opportunities on the first iteration, we
605 // won't find them on later ones too.
606 if (UnrolledCost == RolledDynamicCost) {
607 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n"
608 << " UnrolledCost: " << UnrolledCost << "\n");
609 return None;
613 while (!ExitWorklist.empty()) {
614 BasicBlock *ExitingBB, *ExitBB;
615 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
617 for (Instruction &I : *ExitBB) {
618 auto *PN = dyn_cast<PHINode>(&I);
619 if (!PN)
620 break;
622 Value *Op = PN->getIncomingValueForBlock(ExitingBB);
623 if (auto *OpI = dyn_cast<Instruction>(Op))
624 if (L->contains(OpI))
625 AddCostRecursively(*OpI, TripCount - 1);
629 LLVM_DEBUG(dbgs() << "Analysis finished:\n"
630 << "UnrolledCost: " << UnrolledCost << ", "
631 << "RolledDynamicCost: " << RolledDynamicCost << "\n");
632 return {{UnrolledCost, RolledDynamicCost}};
635 /// ApproximateLoopSize - Approximate the size of the loop.
636 unsigned llvm::ApproximateLoopSize(
637 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
638 const TargetTransformInfo &TTI,
639 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
640 CodeMetrics Metrics;
641 for (BasicBlock *BB : L->blocks())
642 Metrics.analyzeBasicBlock(BB, TTI, EphValues);
643 NumCalls = Metrics.NumInlineCandidates;
644 NotDuplicatable = Metrics.notDuplicatable;
645 Convergent = Metrics.convergent;
647 unsigned LoopSize = Metrics.NumInsts;
649 // Don't allow an estimate of size zero. This would allows unrolling of loops
650 // with huge iteration counts, which is a compile time problem even if it's
651 // not a problem for code quality. Also, the code using this size may assume
652 // that each loop has at least three instructions (likely a conditional
653 // branch, a comparison feeding that branch, and some kind of loop increment
654 // feeding that comparison instruction).
655 LoopSize = std::max(LoopSize, BEInsns + 1);
657 return LoopSize;
660 // Returns the loop hint metadata node with the given name (for example,
661 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
662 // returned.
663 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
664 if (MDNode *LoopID = L->getLoopID())
665 return GetUnrollMetadata(LoopID, Name);
666 return nullptr;
669 // Returns true if the loop has an unroll(full) pragma.
670 static bool HasUnrollFullPragma(const Loop *L) {
671 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
674 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
675 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
676 static bool HasUnrollEnablePragma(const Loop *L) {
677 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
680 // Returns true if the loop has an runtime unroll(disable) pragma.
681 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
682 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
685 // If loop has an unroll_count pragma return the (necessarily
686 // positive) value from the pragma. Otherwise return 0.
687 static unsigned UnrollCountPragmaValue(const Loop *L) {
688 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
689 if (MD) {
690 assert(MD->getNumOperands() == 2 &&
691 "Unroll count hint metadata should have two operands.");
692 unsigned Count =
693 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
694 assert(Count >= 1 && "Unroll count must be positive.");
695 return Count;
697 return 0;
700 // Computes the boosting factor for complete unrolling.
701 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
702 // be beneficial to fully unroll the loop even if unrolledcost is large. We
703 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
704 // the unroll threshold.
705 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
706 unsigned MaxPercentThresholdBoost) {
707 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
708 return 100;
709 else if (Cost.UnrolledCost != 0)
710 // The boosting factor is RolledDynamicCost / UnrolledCost
711 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
712 MaxPercentThresholdBoost);
713 else
714 return MaxPercentThresholdBoost;
717 // Returns loop size estimation for unrolled loop.
718 static uint64_t getUnrolledLoopSize(
719 unsigned LoopSize,
720 TargetTransformInfo::UnrollingPreferences &UP) {
721 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
722 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
725 // Returns true if unroll count was set explicitly.
726 // Calculates unroll count and writes it to UP.Count.
727 // Unless IgnoreUser is true, will also use metadata and command-line options
728 // that are specific to to the LoopUnroll pass (which, for instance, are
729 // irrelevant for the LoopUnrollAndJam pass).
730 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
731 // many LoopUnroll-specific options. The shared functionality should be
732 // refactored into it own function.
733 bool llvm::computeUnrollCount(
734 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
735 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
736 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
737 unsigned &TripMultiple, unsigned LoopSize,
738 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
740 // Check for explicit Count.
741 // 1st priority is unroll count set by "unroll-count" option.
742 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
743 if (UserUnrollCount) {
744 UP.Count = UnrollCount;
745 UP.AllowExpensiveTripCount = true;
746 UP.Force = true;
747 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
748 return true;
751 // 2nd priority is unroll count set by pragma.
752 unsigned PragmaCount = UnrollCountPragmaValue(L);
753 if (PragmaCount > 0) {
754 UP.Count = PragmaCount;
755 UP.Runtime = true;
756 UP.AllowExpensiveTripCount = true;
757 UP.Force = true;
758 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
759 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
760 return true;
762 bool PragmaFullUnroll = HasUnrollFullPragma(L);
763 if (PragmaFullUnroll && TripCount != 0) {
764 UP.Count = TripCount;
765 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
766 return false;
769 bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
770 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
771 PragmaEnableUnroll || UserUnrollCount;
773 if (ExplicitUnroll && TripCount != 0) {
774 // If the loop has an unrolling pragma, we want to be more aggressive with
775 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
776 // value which is larger than the default limits.
777 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
778 UP.PartialThreshold =
779 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
782 // 3rd priority is full unroll count.
783 // Full unroll makes sense only when TripCount or its upper bound could be
784 // statically calculated.
785 // Also we need to check if we exceed FullUnrollMaxCount.
786 // If using the upper bound to unroll, TripMultiple should be set to 1 because
787 // we do not know when loop may exit.
788 // MaxTripCount and ExactTripCount cannot both be non zero since we only
789 // compute the former when the latter is zero.
790 unsigned ExactTripCount = TripCount;
791 assert((ExactTripCount == 0 || MaxTripCount == 0) &&
792 "ExtractTripCount and MaxTripCount cannot both be non zero.");
793 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount;
794 UP.Count = FullUnrollTripCount;
795 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
796 // When computing the unrolled size, note that BEInsns are not replicated
797 // like the rest of the loop body.
798 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
799 UseUpperBound = (MaxTripCount == FullUnrollTripCount);
800 TripCount = FullUnrollTripCount;
801 TripMultiple = UP.UpperBound ? 1 : TripMultiple;
802 return ExplicitUnroll;
803 } else {
804 // The loop isn't that small, but we still can fully unroll it if that
805 // helps to remove a significant number of instructions.
806 // To check that, run additional analysis on the loop.
807 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
808 L, FullUnrollTripCount, DT, SE, EphValues, TTI,
809 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) {
810 unsigned Boost =
811 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
812 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
813 UseUpperBound = (MaxTripCount == FullUnrollTripCount);
814 TripCount = FullUnrollTripCount;
815 TripMultiple = UP.UpperBound ? 1 : TripMultiple;
816 return ExplicitUnroll;
822 // 4th priority is loop peeling.
823 computePeelCount(L, LoopSize, UP, TripCount, SE);
824 if (UP.PeelCount) {
825 UP.Runtime = false;
826 UP.Count = 1;
827 return ExplicitUnroll;
830 // 5th priority is partial unrolling.
831 // Try partial unroll only when TripCount could be statically calculated.
832 if (TripCount) {
833 UP.Partial |= ExplicitUnroll;
834 if (!UP.Partial) {
835 LLVM_DEBUG(dbgs() << " will not try to unroll partially because "
836 << "-unroll-allow-partial not given\n");
837 UP.Count = 0;
838 return false;
840 if (UP.Count == 0)
841 UP.Count = TripCount;
842 if (UP.PartialThreshold != NoThreshold) {
843 // Reduce unroll count to be modulo of TripCount for partial unrolling.
844 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
845 UP.Count =
846 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
847 (LoopSize - UP.BEInsns);
848 if (UP.Count > UP.MaxCount)
849 UP.Count = UP.MaxCount;
850 while (UP.Count != 0 && TripCount % UP.Count != 0)
851 UP.Count--;
852 if (UP.AllowRemainder && UP.Count <= 1) {
853 // If there is no Count that is modulo of TripCount, set Count to
854 // largest power-of-two factor that satisfies the threshold limit.
855 // As we'll create fixup loop, do the type of unrolling only if
856 // remainder loop is allowed.
857 UP.Count = UP.DefaultUnrollRuntimeCount;
858 while (UP.Count != 0 &&
859 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
860 UP.Count >>= 1;
862 if (UP.Count < 2) {
863 if (PragmaEnableUnroll)
864 ORE->emit([&]() {
865 return OptimizationRemarkMissed(DEBUG_TYPE,
866 "UnrollAsDirectedTooLarge",
867 L->getStartLoc(), L->getHeader())
868 << "Unable to unroll loop as directed by unroll(enable) "
869 "pragma "
870 "because unrolled size is too large.";
872 UP.Count = 0;
874 } else {
875 UP.Count = TripCount;
877 if (UP.Count > UP.MaxCount)
878 UP.Count = UP.MaxCount;
879 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
880 UP.Count != TripCount)
881 ORE->emit([&]() {
882 return OptimizationRemarkMissed(DEBUG_TYPE,
883 "FullUnrollAsDirectedTooLarge",
884 L->getStartLoc(), L->getHeader())
885 << "Unable to fully unroll loop as directed by unroll pragma "
886 "because "
887 "unrolled size is too large.";
889 return ExplicitUnroll;
891 assert(TripCount == 0 &&
892 "All cases when TripCount is constant should be covered here.");
893 if (PragmaFullUnroll)
894 ORE->emit([&]() {
895 return OptimizationRemarkMissed(
896 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
897 L->getStartLoc(), L->getHeader())
898 << "Unable to fully unroll loop as directed by unroll(full) "
899 "pragma "
900 "because loop has a runtime trip count.";
903 // 6th priority is runtime unrolling.
904 // Don't unroll a runtime trip count loop when it is disabled.
905 if (HasRuntimeUnrollDisablePragma(L)) {
906 UP.Count = 0;
907 return false;
910 // Check if the runtime trip count is too small when profile is available.
911 if (L->getHeader()->getParent()->hasProfileData()) {
912 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
913 if (*ProfileTripCount < FlatLoopTripCountThreshold)
914 return false;
915 else
916 UP.AllowExpensiveTripCount = true;
920 // Reduce count based on the type of unrolling and the threshold values.
921 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
922 if (!UP.Runtime) {
923 LLVM_DEBUG(
924 dbgs() << " will not try to unroll loop with runtime trip count "
925 << "-unroll-runtime not given\n");
926 UP.Count = 0;
927 return false;
929 if (UP.Count == 0)
930 UP.Count = UP.DefaultUnrollRuntimeCount;
932 // Reduce unroll count to be the largest power-of-two factor of
933 // the original count which satisfies the threshold limit.
934 while (UP.Count != 0 &&
935 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
936 UP.Count >>= 1;
938 #ifndef NDEBUG
939 unsigned OrigCount = UP.Count;
940 #endif
942 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
943 while (UP.Count != 0 && TripMultiple % UP.Count != 0)
944 UP.Count >>= 1;
945 LLVM_DEBUG(
946 dbgs() << "Remainder loop is restricted (that could architecture "
947 "specific or because the loop contains a convergent "
948 "instruction), so unroll count must divide the trip "
949 "multiple, "
950 << TripMultiple << ". Reducing unroll count from " << OrigCount
951 << " to " << UP.Count << ".\n");
953 using namespace ore;
955 if (PragmaCount > 0 && !UP.AllowRemainder)
956 ORE->emit([&]() {
957 return OptimizationRemarkMissed(DEBUG_TYPE,
958 "DifferentUnrollCountFromDirected",
959 L->getStartLoc(), L->getHeader())
960 << "Unable to unroll loop the number of times directed by "
961 "unroll_count pragma because remainder loop is restricted "
962 "(that could architecture specific or because the loop "
963 "contains a convergent instruction) and so must have an "
964 "unroll "
965 "count that divides the loop trip multiple of "
966 << NV("TripMultiple", TripMultiple) << ". Unrolling instead "
967 << NV("UnrollCount", UP.Count) << " time(s).";
971 if (UP.Count > UP.MaxCount)
972 UP.Count = UP.MaxCount;
973 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count
974 << "\n");
975 if (UP.Count < 2)
976 UP.Count = 0;
977 return ExplicitUnroll;
980 static LoopUnrollResult tryToUnrollLoop(
981 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
982 const TargetTransformInfo &TTI, AssumptionCache &AC,
983 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
984 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
985 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
986 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
987 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
988 Optional<bool> ProvidedAllowPeeling,
989 Optional<bool> ProvidedAllowProfileBasedPeeling) {
990 LLVM_DEBUG(dbgs() << "Loop Unroll: F["
991 << L->getHeader()->getParent()->getName() << "] Loop %"
992 << L->getHeader()->getName() << "\n");
993 TransformationMode TM = hasUnrollTransformation(L);
994 if (TM & TM_Disable)
995 return LoopUnrollResult::Unmodified;
996 if (!L->isLoopSimplifyForm()) {
997 LLVM_DEBUG(
998 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
999 return LoopUnrollResult::Unmodified;
1002 // When automtatic unrolling is disabled, do not unroll unless overridden for
1003 // this loop.
1004 if (OnlyWhenForced && !(TM & TM_Enable))
1005 return LoopUnrollResult::Unmodified;
1007 bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1008 unsigned NumInlineCandidates;
1009 bool NotDuplicatable;
1010 bool Convergent;
1011 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1012 L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount,
1013 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1014 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling);
1016 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1017 // as threshold later on.
1018 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1019 !OptForSize)
1020 return LoopUnrollResult::Unmodified;
1022 SmallPtrSet<const Value *, 32> EphValues;
1023 CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1025 unsigned LoopSize =
1026 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1027 TTI, EphValues, UP.BEInsns);
1028 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
1029 if (NotDuplicatable) {
1030 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
1031 << " instructions.\n");
1032 return LoopUnrollResult::Unmodified;
1035 // When optimizing for size, use LoopSize as threshold, to (fully) unroll
1036 // loops, if it does not increase code size.
1037 if (OptForSize)
1038 UP.Threshold = std::max(UP.Threshold, LoopSize);
1040 if (NumInlineCandidates != 0) {
1041 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
1042 return LoopUnrollResult::Unmodified;
1045 // Find trip count and trip multiple if count is not available
1046 unsigned TripCount = 0;
1047 unsigned MaxTripCount = 0;
1048 unsigned TripMultiple = 1;
1049 // If there are multiple exiting blocks but one of them is the latch, use the
1050 // latch for the trip count estimation. Otherwise insist on a single exiting
1051 // block for the trip count estimation.
1052 BasicBlock *ExitingBlock = L->getLoopLatch();
1053 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1054 ExitingBlock = L->getExitingBlock();
1055 if (ExitingBlock) {
1056 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
1057 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1060 // If the loop contains a convergent operation, the prelude we'd add
1061 // to do the first few instructions before we hit the unrolled loop
1062 // is unsafe -- it adds a control-flow dependency to the convergent
1063 // operation. Therefore restrict remainder loop (try unrollig without).
1065 // TODO: This is quite conservative. In practice, convergent_op()
1066 // is likely to be called unconditionally in the loop. In this
1067 // case, the program would be ill-formed (on most architectures)
1068 // unless n were the same on all threads in a thread group.
1069 // Assuming n is the same on all threads, any kind of unrolling is
1070 // safe. But currently llvm's notion of convergence isn't powerful
1071 // enough to express this.
1072 if (Convergent)
1073 UP.AllowRemainder = false;
1075 // Try to find the trip count upper bound if we cannot find the exact trip
1076 // count.
1077 bool MaxOrZero = false;
1078 if (!TripCount) {
1079 MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1080 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1081 // We can unroll by the upper bound amount if it's generally allowed or if
1082 // we know that the loop is executed either the upper bound or zero times.
1083 // (MaxOrZero unrolling keeps only the first loop test, so the number of
1084 // loop tests remains the same compared to the non-unrolled version, whereas
1085 // the generic upper bound unrolling keeps all but the last loop test so the
1086 // number of loop tests goes up which may end up being worse on targets with
1087 // constrained branch predictor resources so is controlled by an option.)
1088 // In addition we only unroll small upper bounds.
1089 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) {
1090 MaxTripCount = 0;
1094 // computeUnrollCount() decides whether it is beneficial to use upper bound to
1095 // fully unroll the loop.
1096 bool UseUpperBound = false;
1097 bool IsCountSetExplicitly = computeUnrollCount(
1098 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount,
1099 TripMultiple, LoopSize, UP, UseUpperBound);
1100 if (!UP.Count)
1101 return LoopUnrollResult::Unmodified;
1102 // Unroll factor (Count) must be less or equal to TripCount.
1103 if (TripCount && UP.Count > TripCount)
1104 UP.Count = TripCount;
1106 // Save loop properties before it is transformed.
1107 MDNode *OrigLoopID = L->getLoopID();
1109 // Unroll the loop.
1110 Loop *RemainderLoop = nullptr;
1111 LoopUnrollResult UnrollResult = UnrollLoop(
1113 {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1114 UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder,
1115 ForgetAllSCEV},
1116 LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop);
1117 if (UnrollResult == LoopUnrollResult::Unmodified)
1118 return LoopUnrollResult::Unmodified;
1120 if (RemainderLoop) {
1121 Optional<MDNode *> RemainderLoopID =
1122 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1123 LLVMLoopUnrollFollowupRemainder});
1124 if (RemainderLoopID.hasValue())
1125 RemainderLoop->setLoopID(RemainderLoopID.getValue());
1128 if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1129 Optional<MDNode *> NewLoopID =
1130 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1131 LLVMLoopUnrollFollowupUnrolled});
1132 if (NewLoopID.hasValue()) {
1133 L->setLoopID(NewLoopID.getValue());
1135 // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1136 // explicitly.
1137 return UnrollResult;
1141 // If loop has an unroll count pragma or unrolled by explicitly set count
1142 // mark loop as unrolled to prevent unrolling beyond that requested.
1143 // If the loop was peeled, we already "used up" the profile information
1144 // we had, so we don't want to unroll or peel again.
1145 if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
1146 (IsCountSetExplicitly || (UP.PeelProfiledIterations && UP.PeelCount)))
1147 L->setLoopAlreadyUnrolled();
1149 return UnrollResult;
1152 namespace {
1154 class LoopUnroll : public LoopPass {
1155 public:
1156 static char ID; // Pass ID, replacement for typeid
1158 int OptLevel;
1160 /// If false, use a cost model to determine whether unrolling of a loop is
1161 /// profitable. If true, only loops that explicitly request unrolling via
1162 /// metadata are considered. All other loops are skipped.
1163 bool OnlyWhenForced;
1165 /// If false, when SCEV is invalidated, only forget everything in the
1166 /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1167 /// Otherwise, forgetAllLoops and rebuild when needed next.
1168 bool ForgetAllSCEV;
1170 Optional<unsigned> ProvidedCount;
1171 Optional<unsigned> ProvidedThreshold;
1172 Optional<bool> ProvidedAllowPartial;
1173 Optional<bool> ProvidedRuntime;
1174 Optional<bool> ProvidedUpperBound;
1175 Optional<bool> ProvidedAllowPeeling;
1176 Optional<bool> ProvidedAllowProfileBasedPeeling;
1178 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1179 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
1180 Optional<unsigned> Count = None,
1181 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1182 Optional<bool> UpperBound = None,
1183 Optional<bool> AllowPeeling = None,
1184 Optional<bool> AllowProfileBasedPeeling = None)
1185 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1186 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1187 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1188 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1189 ProvidedAllowPeeling(AllowPeeling),
1190 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling) {
1191 initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1194 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1195 if (skipLoop(L))
1196 return false;
1198 Function &F = *L->getHeader()->getParent();
1200 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1201 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1202 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1203 const TargetTransformInfo &TTI =
1204 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1205 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1206 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1207 // pass. Function analyses need to be preserved across loop transformations
1208 // but ORE cannot be preserved (see comment before the pass definition).
1209 OptimizationRemarkEmitter ORE(&F);
1210 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1212 LoopUnrollResult Result = tryToUnrollLoop(
1213 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1214 OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
1215 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1216 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling);
1218 if (Result == LoopUnrollResult::FullyUnrolled)
1219 LPM.markLoopAsDeleted(*L);
1221 return Result != LoopUnrollResult::Unmodified;
1224 /// This transformation requires natural loop information & requires that
1225 /// loop preheaders be inserted into the CFG...
1226 void getAnalysisUsage(AnalysisUsage &AU) const override {
1227 AU.addRequired<AssumptionCacheTracker>();
1228 AU.addRequired<TargetTransformInfoWrapperPass>();
1229 // FIXME: Loop passes are required to preserve domtree, and for now we just
1230 // recreate dom info if anything gets unrolled.
1231 getLoopAnalysisUsage(AU);
1235 } // end anonymous namespace
1237 char LoopUnroll::ID = 0;
1239 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1240 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1241 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1242 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1243 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1245 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1246 bool ForgetAllSCEV, int Threshold, int Count,
1247 int AllowPartial, int Runtime, int UpperBound,
1248 int AllowPeeling) {
1249 // TODO: It would make more sense for this function to take the optionals
1250 // directly, but that's dangerous since it would silently break out of tree
1251 // callers.
1252 return new LoopUnroll(
1253 OptLevel, OnlyWhenForced, ForgetAllSCEV,
1254 Threshold == -1 ? None : Optional<unsigned>(Threshold),
1255 Count == -1 ? None : Optional<unsigned>(Count),
1256 AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1257 Runtime == -1 ? None : Optional<bool>(Runtime),
1258 UpperBound == -1 ? None : Optional<bool>(UpperBound),
1259 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1262 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1263 bool ForgetAllSCEV) {
1264 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
1265 0, 0, 0, 0);
1268 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1269 LoopStandardAnalysisResults &AR,
1270 LPMUpdater &Updater) {
1271 const auto &FAM =
1272 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
1273 Function *F = L.getHeader()->getParent();
1275 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
1276 // FIXME: This should probably be optional rather than required.
1277 if (!ORE)
1278 report_fatal_error(
1279 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
1280 "cached at a higher level");
1282 // Keep track of the previous loop structure so we can identify new loops
1283 // created by unrolling.
1284 Loop *ParentL = L.getParentLoop();
1285 SmallPtrSet<Loop *, 4> OldLoops;
1286 if (ParentL)
1287 OldLoops.insert(ParentL->begin(), ParentL->end());
1288 else
1289 OldLoops.insert(AR.LI.begin(), AR.LI.end());
1291 std::string LoopName = L.getName();
1293 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE,
1294 /*BFI*/ nullptr, /*PSI*/ nullptr,
1295 /*PreserveLCSSA*/ true, OptLevel,
1296 OnlyWhenForced, ForgetSCEV, /*Count*/ None,
1297 /*Threshold*/ None, /*AllowPartial*/ false,
1298 /*Runtime*/ false, /*UpperBound*/ false,
1299 /*AllowPeeling*/ false,
1300 /*AllowProfileBasedPeeling*/ false) !=
1301 LoopUnrollResult::Unmodified;
1302 if (!Changed)
1303 return PreservedAnalyses::all();
1305 // The parent must not be damaged by unrolling!
1306 #ifndef NDEBUG
1307 if (ParentL)
1308 ParentL->verifyLoop();
1309 #endif
1311 // Unrolling can do several things to introduce new loops into a loop nest:
1312 // - Full unrolling clones child loops within the current loop but then
1313 // removes the current loop making all of the children appear to be new
1314 // sibling loops.
1316 // When a new loop appears as a sibling loop after fully unrolling,
1317 // its nesting structure has fundamentally changed and we want to revisit
1318 // it to reflect that.
1320 // When unrolling has removed the current loop, we need to tell the
1321 // infrastructure that it is gone.
1323 // Finally, we support a debugging/testing mode where we revisit child loops
1324 // as well. These are not expected to require further optimizations as either
1325 // they or the loop they were cloned from have been directly visited already.
1326 // But the debugging mode allows us to check this assumption.
1327 bool IsCurrentLoopValid = false;
1328 SmallVector<Loop *, 4> SibLoops;
1329 if (ParentL)
1330 SibLoops.append(ParentL->begin(), ParentL->end());
1331 else
1332 SibLoops.append(AR.LI.begin(), AR.LI.end());
1333 erase_if(SibLoops, [&](Loop *SibLoop) {
1334 if (SibLoop == &L) {
1335 IsCurrentLoopValid = true;
1336 return true;
1339 // Otherwise erase the loop from the list if it was in the old loops.
1340 return OldLoops.count(SibLoop) != 0;
1342 Updater.addSiblingLoops(SibLoops);
1344 if (!IsCurrentLoopValid) {
1345 Updater.markLoopAsDeleted(L, LoopName);
1346 } else {
1347 // We can only walk child loops if the current loop remained valid.
1348 if (UnrollRevisitChildLoops) {
1349 // Walk *all* of the child loops.
1350 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1351 Updater.addChildLoops(ChildLoops);
1355 return getLoopPassPreservedAnalyses();
1358 template <typename RangeT>
1359 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) {
1360 SmallVector<Loop *, 8> Worklist;
1361 // We use an internal worklist to build up the preorder traversal without
1362 // recursion.
1363 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1365 for (Loop *RootL : Loops) {
1366 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1367 assert(PreOrderWorklist.empty() &&
1368 "Must start with an empty preorder walk worklist.");
1369 PreOrderWorklist.push_back(RootL);
1370 do {
1371 Loop *L = PreOrderWorklist.pop_back_val();
1372 PreOrderWorklist.append(L->begin(), L->end());
1373 PreOrderLoops.push_back(L);
1374 } while (!PreOrderWorklist.empty());
1376 Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end());
1377 PreOrderLoops.clear();
1379 return Worklist;
1382 PreservedAnalyses LoopUnrollPass::run(Function &F,
1383 FunctionAnalysisManager &AM) {
1384 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1385 auto &LI = AM.getResult<LoopAnalysis>(F);
1386 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1387 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1388 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1389 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1391 LoopAnalysisManager *LAM = nullptr;
1392 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1393 LAM = &LAMProxy->getManager();
1395 const ModuleAnalysisManager &MAM =
1396 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
1397 ProfileSummaryInfo *PSI =
1398 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1399 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1400 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1402 bool Changed = false;
1404 // The unroller requires loops to be in simplified form, and also needs LCSSA.
1405 // Since simplification may add new inner loops, it has to run before the
1406 // legality and profitability checks. This means running the loop unroller
1407 // will simplify all loops, regardless of whether anything end up being
1408 // unrolled.
1409 for (auto &L : LI) {
1410 Changed |=
1411 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1412 Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1415 SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI);
1417 while (!Worklist.empty()) {
1418 // Because the LoopInfo stores the loops in RPO, we walk the worklist
1419 // from back to front so that we work forward across the CFG, which
1420 // for unrolling is only needed to get optimization remarks emitted in
1421 // a forward order.
1422 Loop &L = *Worklist.pop_back_val();
1423 #ifndef NDEBUG
1424 Loop *ParentL = L.getParentLoop();
1425 #endif
1427 // Check if the profile summary indicates that the profiled application
1428 // has a huge working set size, in which case we disable peeling to avoid
1429 // bloating it further.
1430 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1431 if (PSI && PSI->hasHugeWorkingSetSize())
1432 LocalAllowPeeling = false;
1433 std::string LoopName = L.getName();
1434 // The API here is quite complex to call and we allow to select some
1435 // flavors of unrolling during construction time (by setting UnrollOpts).
1436 LoopUnrollResult Result = tryToUnrollLoop(
1437 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1438 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1439 UnrollOpts.ForgetSCEV, /*Count*/ None,
1440 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
1441 UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1442 UnrollOpts.AllowProfileBasedPeeling);
1443 Changed |= Result != LoopUnrollResult::Unmodified;
1445 // The parent must not be damaged by unrolling!
1446 #ifndef NDEBUG
1447 if (Result != LoopUnrollResult::Unmodified && ParentL)
1448 ParentL->verifyLoop();
1449 #endif
1451 // Clear any cached analysis results for L if we removed it completely.
1452 if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1453 LAM->clear(L, LoopName);
1456 if (!Changed)
1457 return PreservedAnalyses::all();
1459 return getLoopPassPreservedAnalyses();