[llvm-exegesis] [NFC] Fixing typo.
[llvm-complete.git] / lib / Transforms / Scalar / ADCE.cpp
blob8dcf6393f46027df7b5c2195ebf5256707b7fce1
1 //===- ADCE.cpp - Code to perform dead code elimination -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Aggressive Dead Code Elimination pass. This pass
10 // optimistically assumes that all instructions are dead until proven otherwise,
11 // allowing it to eliminate dead computations that other DCE passes do not
12 // catch, particularly involving loop computations.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Scalar/ADCE.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/DomTreeUpdater.h"
26 #include "llvm/Analysis/GlobalsModRef.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/PostDominators.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/DebugInfoMetadata.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/InstIterator.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/PassManager.h"
42 #include "llvm/IR/Use.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/Pass.h"
45 #include "llvm/ProfileData/InstrProf.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Transforms/Scalar.h"
51 #include <cassert>
52 #include <cstddef>
53 #include <utility>
55 using namespace llvm;
57 #define DEBUG_TYPE "adce"
59 STATISTIC(NumRemoved, "Number of instructions removed");
60 STATISTIC(NumBranchesRemoved, "Number of branch instructions removed");
62 // This is a temporary option until we change the interface to this pass based
63 // on optimization level.
64 static cl::opt<bool> RemoveControlFlowFlag("adce-remove-control-flow",
65 cl::init(true), cl::Hidden);
67 // This option enables removing of may-be-infinite loops which have no other
68 // effect.
69 static cl::opt<bool> RemoveLoops("adce-remove-loops", cl::init(false),
70 cl::Hidden);
72 namespace {
74 /// Information about Instructions
75 struct InstInfoType {
76 /// True if the associated instruction is live.
77 bool Live = false;
79 /// Quick access to information for block containing associated Instruction.
80 struct BlockInfoType *Block = nullptr;
83 /// Information about basic blocks relevant to dead code elimination.
84 struct BlockInfoType {
85 /// True when this block contains a live instructions.
86 bool Live = false;
88 /// True when this block ends in an unconditional branch.
89 bool UnconditionalBranch = false;
91 /// True when this block is known to have live PHI nodes.
92 bool HasLivePhiNodes = false;
94 /// Control dependence sources need to be live for this block.
95 bool CFLive = false;
97 /// Quick access to the LiveInfo for the terminator,
98 /// holds the value &InstInfo[Terminator]
99 InstInfoType *TerminatorLiveInfo = nullptr;
101 /// Corresponding BasicBlock.
102 BasicBlock *BB = nullptr;
104 /// Cache of BB->getTerminator().
105 Instruction *Terminator = nullptr;
107 /// Post-order numbering of reverse control flow graph.
108 unsigned PostOrder;
110 bool terminatorIsLive() const { return TerminatorLiveInfo->Live; }
113 class AggressiveDeadCodeElimination {
114 Function &F;
116 // ADCE does not use DominatorTree per se, but it updates it to preserve the
117 // analysis.
118 DominatorTree *DT;
119 PostDominatorTree &PDT;
121 /// Mapping of blocks to associated information, an element in BlockInfoVec.
122 /// Use MapVector to get deterministic iteration order.
123 MapVector<BasicBlock *, BlockInfoType> BlockInfo;
124 bool isLive(BasicBlock *BB) { return BlockInfo[BB].Live; }
126 /// Mapping of instructions to associated information.
127 DenseMap<Instruction *, InstInfoType> InstInfo;
128 bool isLive(Instruction *I) { return InstInfo[I].Live; }
130 /// Instructions known to be live where we need to mark
131 /// reaching definitions as live.
132 SmallVector<Instruction *, 128> Worklist;
134 /// Debug info scopes around a live instruction.
135 SmallPtrSet<const Metadata *, 32> AliveScopes;
137 /// Set of blocks with not known to have live terminators.
138 SmallPtrSet<BasicBlock *, 16> BlocksWithDeadTerminators;
140 /// The set of blocks which we have determined whose control
141 /// dependence sources must be live and which have not had
142 /// those dependences analyzed.
143 SmallPtrSet<BasicBlock *, 16> NewLiveBlocks;
145 /// Set up auxiliary data structures for Instructions and BasicBlocks and
146 /// initialize the Worklist to the set of must-be-live Instruscions.
147 void initialize();
149 /// Return true for operations which are always treated as live.
150 bool isAlwaysLive(Instruction &I);
152 /// Return true for instrumentation instructions for value profiling.
153 bool isInstrumentsConstant(Instruction &I);
155 /// Propagate liveness to reaching definitions.
156 void markLiveInstructions();
158 /// Mark an instruction as live.
159 void markLive(Instruction *I);
161 /// Mark a block as live.
162 void markLive(BlockInfoType &BB);
163 void markLive(BasicBlock *BB) { markLive(BlockInfo[BB]); }
165 /// Mark terminators of control predecessors of a PHI node live.
166 void markPhiLive(PHINode *PN);
168 /// Record the Debug Scopes which surround live debug information.
169 void collectLiveScopes(const DILocalScope &LS);
170 void collectLiveScopes(const DILocation &DL);
172 /// Analyze dead branches to find those whose branches are the sources
173 /// of control dependences impacting a live block. Those branches are
174 /// marked live.
175 void markLiveBranchesFromControlDependences();
177 /// Remove instructions not marked live, return if any instruction was
178 /// removed.
179 bool removeDeadInstructions();
181 /// Identify connected sections of the control flow graph which have
182 /// dead terminators and rewrite the control flow graph to remove them.
183 void updateDeadRegions();
185 /// Set the BlockInfo::PostOrder field based on a post-order
186 /// numbering of the reverse control flow graph.
187 void computeReversePostOrder();
189 /// Make the terminator of this block an unconditional branch to \p Target.
190 void makeUnconditional(BasicBlock *BB, BasicBlock *Target);
192 public:
193 AggressiveDeadCodeElimination(Function &F, DominatorTree *DT,
194 PostDominatorTree &PDT)
195 : F(F), DT(DT), PDT(PDT) {}
197 bool performDeadCodeElimination();
200 } // end anonymous namespace
202 bool AggressiveDeadCodeElimination::performDeadCodeElimination() {
203 initialize();
204 markLiveInstructions();
205 return removeDeadInstructions();
208 static bool isUnconditionalBranch(Instruction *Term) {
209 auto *BR = dyn_cast<BranchInst>(Term);
210 return BR && BR->isUnconditional();
213 void AggressiveDeadCodeElimination::initialize() {
214 auto NumBlocks = F.size();
216 // We will have an entry in the map for each block so we grow the
217 // structure to twice that size to keep the load factor low in the hash table.
218 BlockInfo.reserve(NumBlocks);
219 size_t NumInsts = 0;
221 // Iterate over blocks and initialize BlockInfoVec entries, count
222 // instructions to size the InstInfo hash table.
223 for (auto &BB : F) {
224 NumInsts += BB.size();
225 auto &Info = BlockInfo[&BB];
226 Info.BB = &BB;
227 Info.Terminator = BB.getTerminator();
228 Info.UnconditionalBranch = isUnconditionalBranch(Info.Terminator);
231 // Initialize instruction map and set pointers to block info.
232 InstInfo.reserve(NumInsts);
233 for (auto &BBInfo : BlockInfo)
234 for (Instruction &I : *BBInfo.second.BB)
235 InstInfo[&I].Block = &BBInfo.second;
237 // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not
238 // add any more elements to either after this point.
239 for (auto &BBInfo : BlockInfo)
240 BBInfo.second.TerminatorLiveInfo = &InstInfo[BBInfo.second.Terminator];
242 // Collect the set of "root" instructions that are known live.
243 for (Instruction &I : instructions(F))
244 if (isAlwaysLive(I))
245 markLive(&I);
247 if (!RemoveControlFlowFlag)
248 return;
250 if (!RemoveLoops) {
251 // This stores state for the depth-first iterator. In addition
252 // to recording which nodes have been visited we also record whether
253 // a node is currently on the "stack" of active ancestors of the current
254 // node.
255 using StatusMap = DenseMap<BasicBlock *, bool>;
257 class DFState : public StatusMap {
258 public:
259 std::pair<StatusMap::iterator, bool> insert(BasicBlock *BB) {
260 return StatusMap::insert(std::make_pair(BB, true));
263 // Invoked after we have visited all children of a node.
264 void completed(BasicBlock *BB) { (*this)[BB] = false; }
266 // Return true if \p BB is currently on the active stack
267 // of ancestors.
268 bool onStack(BasicBlock *BB) {
269 auto Iter = find(BB);
270 return Iter != end() && Iter->second;
272 } State;
274 State.reserve(F.size());
275 // Iterate over blocks in depth-first pre-order and
276 // treat all edges to a block already seen as loop back edges
277 // and mark the branch live it if there is a back edge.
278 for (auto *BB: depth_first_ext(&F.getEntryBlock(), State)) {
279 Instruction *Term = BB->getTerminator();
280 if (isLive(Term))
281 continue;
283 for (auto *Succ : successors(BB))
284 if (State.onStack(Succ)) {
285 // back edge....
286 markLive(Term);
287 break;
292 // Mark blocks live if there is no path from the block to a
293 // return of the function.
294 // We do this by seeing which of the postdomtree root children exit the
295 // program, and for all others, mark the subtree live.
296 for (auto &PDTChild : children<DomTreeNode *>(PDT.getRootNode())) {
297 auto *BB = PDTChild->getBlock();
298 auto &Info = BlockInfo[BB];
299 // Real function return
300 if (isa<ReturnInst>(Info.Terminator)) {
301 LLVM_DEBUG(dbgs() << "post-dom root child is a return: " << BB->getName()
302 << '\n';);
303 continue;
306 // This child is something else, like an infinite loop.
307 for (auto DFNode : depth_first(PDTChild))
308 markLive(BlockInfo[DFNode->getBlock()].Terminator);
311 // Treat the entry block as always live
312 auto *BB = &F.getEntryBlock();
313 auto &EntryInfo = BlockInfo[BB];
314 EntryInfo.Live = true;
315 if (EntryInfo.UnconditionalBranch)
316 markLive(EntryInfo.Terminator);
318 // Build initial collection of blocks with dead terminators
319 for (auto &BBInfo : BlockInfo)
320 if (!BBInfo.second.terminatorIsLive())
321 BlocksWithDeadTerminators.insert(BBInfo.second.BB);
324 bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) {
325 // TODO -- use llvm::isInstructionTriviallyDead
326 if (I.isEHPad() || I.mayHaveSideEffects()) {
327 // Skip any value profile instrumentation calls if they are
328 // instrumenting constants.
329 if (isInstrumentsConstant(I))
330 return false;
331 return true;
333 if (!I.isTerminator())
334 return false;
335 if (RemoveControlFlowFlag && (isa<BranchInst>(I) || isa<SwitchInst>(I)))
336 return false;
337 return true;
340 // Check if this instruction is a runtime call for value profiling and
341 // if it's instrumenting a constant.
342 bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) {
343 // TODO -- move this test into llvm::isInstructionTriviallyDead
344 if (CallInst *CI = dyn_cast<CallInst>(&I))
345 if (Function *Callee = CI->getCalledFunction())
346 if (Callee->getName().equals(getInstrProfValueProfFuncName()))
347 if (isa<Constant>(CI->getArgOperand(0)))
348 return true;
349 return false;
352 void AggressiveDeadCodeElimination::markLiveInstructions() {
353 // Propagate liveness backwards to operands.
354 do {
355 // Worklist holds newly discovered live instructions
356 // where we need to mark the inputs as live.
357 while (!Worklist.empty()) {
358 Instruction *LiveInst = Worklist.pop_back_val();
359 LLVM_DEBUG(dbgs() << "work live: "; LiveInst->dump(););
361 for (Use &OI : LiveInst->operands())
362 if (Instruction *Inst = dyn_cast<Instruction>(OI))
363 markLive(Inst);
365 if (auto *PN = dyn_cast<PHINode>(LiveInst))
366 markPhiLive(PN);
369 // After data flow liveness has been identified, examine which branch
370 // decisions are required to determine live instructions are executed.
371 markLiveBranchesFromControlDependences();
373 } while (!Worklist.empty());
376 void AggressiveDeadCodeElimination::markLive(Instruction *I) {
377 auto &Info = InstInfo[I];
378 if (Info.Live)
379 return;
381 LLVM_DEBUG(dbgs() << "mark live: "; I->dump());
382 Info.Live = true;
383 Worklist.push_back(I);
385 // Collect the live debug info scopes attached to this instruction.
386 if (const DILocation *DL = I->getDebugLoc())
387 collectLiveScopes(*DL);
389 // Mark the containing block live
390 auto &BBInfo = *Info.Block;
391 if (BBInfo.Terminator == I) {
392 BlocksWithDeadTerminators.erase(BBInfo.BB);
393 // For live terminators, mark destination blocks
394 // live to preserve this control flow edges.
395 if (!BBInfo.UnconditionalBranch)
396 for (auto *BB : successors(I->getParent()))
397 markLive(BB);
399 markLive(BBInfo);
402 void AggressiveDeadCodeElimination::markLive(BlockInfoType &BBInfo) {
403 if (BBInfo.Live)
404 return;
405 LLVM_DEBUG(dbgs() << "mark block live: " << BBInfo.BB->getName() << '\n');
406 BBInfo.Live = true;
407 if (!BBInfo.CFLive) {
408 BBInfo.CFLive = true;
409 NewLiveBlocks.insert(BBInfo.BB);
412 // Mark unconditional branches at the end of live
413 // blocks as live since there is no work to do for them later
414 if (BBInfo.UnconditionalBranch)
415 markLive(BBInfo.Terminator);
418 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) {
419 if (!AliveScopes.insert(&LS).second)
420 return;
422 if (isa<DISubprogram>(LS))
423 return;
425 // Tail-recurse through the scope chain.
426 collectLiveScopes(cast<DILocalScope>(*LS.getScope()));
429 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) {
430 // Even though DILocations are not scopes, shove them into AliveScopes so we
431 // don't revisit them.
432 if (!AliveScopes.insert(&DL).second)
433 return;
435 // Collect live scopes from the scope chain.
436 collectLiveScopes(*DL.getScope());
438 // Tail-recurse through the inlined-at chain.
439 if (const DILocation *IA = DL.getInlinedAt())
440 collectLiveScopes(*IA);
443 void AggressiveDeadCodeElimination::markPhiLive(PHINode *PN) {
444 auto &Info = BlockInfo[PN->getParent()];
445 // Only need to check this once per block.
446 if (Info.HasLivePhiNodes)
447 return;
448 Info.HasLivePhiNodes = true;
450 // If a predecessor block is not live, mark it as control-flow live
451 // which will trigger marking live branches upon which
452 // that block is control dependent.
453 for (auto *PredBB : predecessors(Info.BB)) {
454 auto &Info = BlockInfo[PredBB];
455 if (!Info.CFLive) {
456 Info.CFLive = true;
457 NewLiveBlocks.insert(PredBB);
462 void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() {
463 if (BlocksWithDeadTerminators.empty())
464 return;
466 LLVM_DEBUG({
467 dbgs() << "new live blocks:\n";
468 for (auto *BB : NewLiveBlocks)
469 dbgs() << "\t" << BB->getName() << '\n';
470 dbgs() << "dead terminator blocks:\n";
471 for (auto *BB : BlocksWithDeadTerminators)
472 dbgs() << "\t" << BB->getName() << '\n';
475 // The dominance frontier of a live block X in the reverse
476 // control graph is the set of blocks upon which X is control
477 // dependent. The following sequence computes the set of blocks
478 // which currently have dead terminators that are control
479 // dependence sources of a block which is in NewLiveBlocks.
481 SmallVector<BasicBlock *, 32> IDFBlocks;
482 ReverseIDFCalculator IDFs(PDT);
483 IDFs.setDefiningBlocks(NewLiveBlocks);
484 IDFs.setLiveInBlocks(BlocksWithDeadTerminators);
485 IDFs.calculate(IDFBlocks);
486 NewLiveBlocks.clear();
488 // Dead terminators which control live blocks are now marked live.
489 for (auto *BB : IDFBlocks) {
490 LLVM_DEBUG(dbgs() << "live control in: " << BB->getName() << '\n');
491 markLive(BB->getTerminator());
495 //===----------------------------------------------------------------------===//
497 // Routines to update the CFG and SSA information before removing dead code.
499 //===----------------------------------------------------------------------===//
500 bool AggressiveDeadCodeElimination::removeDeadInstructions() {
501 // Updates control and dataflow around dead blocks
502 updateDeadRegions();
504 LLVM_DEBUG({
505 for (Instruction &I : instructions(F)) {
506 // Check if the instruction is alive.
507 if (isLive(&I))
508 continue;
510 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
511 // Check if the scope of this variable location is alive.
512 if (AliveScopes.count(DII->getDebugLoc()->getScope()))
513 continue;
515 // If intrinsic is pointing at a live SSA value, there may be an
516 // earlier optimization bug: if we know the location of the variable,
517 // why isn't the scope of the location alive?
518 if (Value *V = DII->getVariableLocation())
519 if (Instruction *II = dyn_cast<Instruction>(V))
520 if (isLive(II))
521 dbgs() << "Dropping debug info for " << *DII << "\n";
526 // The inverse of the live set is the dead set. These are those instructions
527 // that have no side effects and do not influence the control flow or return
528 // value of the function, and may therefore be deleted safely.
529 // NOTE: We reuse the Worklist vector here for memory efficiency.
530 for (Instruction &I : instructions(F)) {
531 // Check if the instruction is alive.
532 if (isLive(&I))
533 continue;
535 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) {
536 // Check if the scope of this variable location is alive.
537 if (AliveScopes.count(DII->getDebugLoc()->getScope()))
538 continue;
540 // Fallthrough and drop the intrinsic.
543 // Prepare to delete.
544 Worklist.push_back(&I);
545 I.dropAllReferences();
548 for (Instruction *&I : Worklist) {
549 ++NumRemoved;
550 I->eraseFromParent();
553 return !Worklist.empty();
556 // A dead region is the set of dead blocks with a common live post-dominator.
557 void AggressiveDeadCodeElimination::updateDeadRegions() {
558 LLVM_DEBUG({
559 dbgs() << "final dead terminator blocks: " << '\n';
560 for (auto *BB : BlocksWithDeadTerminators)
561 dbgs() << '\t' << BB->getName()
562 << (BlockInfo[BB].Live ? " LIVE\n" : "\n");
565 // Don't compute the post ordering unless we needed it.
566 bool HavePostOrder = false;
568 for (auto *BB : BlocksWithDeadTerminators) {
569 auto &Info = BlockInfo[BB];
570 if (Info.UnconditionalBranch) {
571 InstInfo[Info.Terminator].Live = true;
572 continue;
575 if (!HavePostOrder) {
576 computeReversePostOrder();
577 HavePostOrder = true;
580 // Add an unconditional branch to the successor closest to the
581 // end of the function which insures a path to the exit for each
582 // live edge.
583 BlockInfoType *PreferredSucc = nullptr;
584 for (auto *Succ : successors(BB)) {
585 auto *Info = &BlockInfo[Succ];
586 if (!PreferredSucc || PreferredSucc->PostOrder < Info->PostOrder)
587 PreferredSucc = Info;
589 assert((PreferredSucc && PreferredSucc->PostOrder > 0) &&
590 "Failed to find safe successor for dead branch");
592 // Collect removed successors to update the (Post)DominatorTrees.
593 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
594 bool First = true;
595 for (auto *Succ : successors(BB)) {
596 if (!First || Succ != PreferredSucc->BB) {
597 Succ->removePredecessor(BB);
598 RemovedSuccessors.insert(Succ);
599 } else
600 First = false;
602 makeUnconditional(BB, PreferredSucc->BB);
604 // Inform the dominators about the deleted CFG edges.
605 SmallVector<DominatorTree::UpdateType, 4> DeletedEdges;
606 for (auto *Succ : RemovedSuccessors) {
607 // It might have happened that the same successor appeared multiple times
608 // and the CFG edge wasn't really removed.
609 if (Succ != PreferredSucc->BB) {
610 LLVM_DEBUG(dbgs() << "ADCE: (Post)DomTree edge enqueued for deletion"
611 << BB->getName() << " -> " << Succ->getName()
612 << "\n");
613 DeletedEdges.push_back({DominatorTree::Delete, BB, Succ});
617 DomTreeUpdater(DT, &PDT, DomTreeUpdater::UpdateStrategy::Eager)
618 .applyUpdates(DeletedEdges);
620 NumBranchesRemoved += 1;
624 // reverse top-sort order
625 void AggressiveDeadCodeElimination::computeReversePostOrder() {
626 // This provides a post-order numbering of the reverse control flow graph
627 // Note that it is incomplete in the presence of infinite loops but we don't
628 // need numbers blocks which don't reach the end of the functions since
629 // all branches in those blocks are forced live.
631 // For each block without successors, extend the DFS from the block
632 // backward through the graph
633 SmallPtrSet<BasicBlock*, 16> Visited;
634 unsigned PostOrder = 0;
635 for (auto &BB : F) {
636 if (succ_begin(&BB) != succ_end(&BB))
637 continue;
638 for (BasicBlock *Block : inverse_post_order_ext(&BB,Visited))
639 BlockInfo[Block].PostOrder = PostOrder++;
643 void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock *BB,
644 BasicBlock *Target) {
645 Instruction *PredTerm = BB->getTerminator();
646 // Collect the live debug info scopes attached to this instruction.
647 if (const DILocation *DL = PredTerm->getDebugLoc())
648 collectLiveScopes(*DL);
650 // Just mark live an existing unconditional branch
651 if (isUnconditionalBranch(PredTerm)) {
652 PredTerm->setSuccessor(0, Target);
653 InstInfo[PredTerm].Live = true;
654 return;
656 LLVM_DEBUG(dbgs() << "making unconditional " << BB->getName() << '\n');
657 NumBranchesRemoved += 1;
658 IRBuilder<> Builder(PredTerm);
659 auto *NewTerm = Builder.CreateBr(Target);
660 InstInfo[NewTerm].Live = true;
661 if (const DILocation *DL = PredTerm->getDebugLoc())
662 NewTerm->setDebugLoc(DL);
664 InstInfo.erase(PredTerm);
665 PredTerm->eraseFromParent();
668 //===----------------------------------------------------------------------===//
670 // Pass Manager integration code
672 //===----------------------------------------------------------------------===//
673 PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &FAM) {
674 // ADCE does not need DominatorTree, but require DominatorTree here
675 // to update analysis if it is already available.
676 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
677 auto &PDT = FAM.getResult<PostDominatorTreeAnalysis>(F);
678 if (!AggressiveDeadCodeElimination(F, DT, PDT).performDeadCodeElimination())
679 return PreservedAnalyses::all();
681 PreservedAnalyses PA;
682 PA.preserveSet<CFGAnalyses>();
683 PA.preserve<GlobalsAA>();
684 PA.preserve<DominatorTreeAnalysis>();
685 PA.preserve<PostDominatorTreeAnalysis>();
686 return PA;
689 namespace {
691 struct ADCELegacyPass : public FunctionPass {
692 static char ID; // Pass identification, replacement for typeid
694 ADCELegacyPass() : FunctionPass(ID) {
695 initializeADCELegacyPassPass(*PassRegistry::getPassRegistry());
698 bool runOnFunction(Function &F) override {
699 if (skipFunction(F))
700 return false;
702 // ADCE does not need DominatorTree, but require DominatorTree here
703 // to update analysis if it is already available.
704 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
705 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
706 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
707 return AggressiveDeadCodeElimination(F, DT, PDT)
708 .performDeadCodeElimination();
711 void getAnalysisUsage(AnalysisUsage &AU) const override {
712 AU.addRequired<PostDominatorTreeWrapperPass>();
713 if (!RemoveControlFlowFlag)
714 AU.setPreservesCFG();
715 else {
716 AU.addPreserved<DominatorTreeWrapperPass>();
717 AU.addPreserved<PostDominatorTreeWrapperPass>();
719 AU.addPreserved<GlobalsAAWrapperPass>();
723 } // end anonymous namespace
725 char ADCELegacyPass::ID = 0;
727 INITIALIZE_PASS_BEGIN(ADCELegacyPass, "adce",
728 "Aggressive Dead Code Elimination", false, false)
729 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
730 INITIALIZE_PASS_END(ADCELegacyPass, "adce", "Aggressive Dead Code Elimination",
731 false, false)
733 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); }