1 //===- ADCE.cpp - Code to perform dead code elimination -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Aggressive Dead Code Elimination pass. This pass
10 // optimistically assumes that all instructions are dead until proven otherwise,
11 // allowing it to eliminate dead computations that other DCE passes do not
12 // catch, particularly involving loop computations.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Scalar/ADCE.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/DomTreeUpdater.h"
26 #include "llvm/Analysis/GlobalsModRef.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/PostDominators.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/DebugInfoMetadata.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/InstIterator.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/PassManager.h"
42 #include "llvm/IR/Use.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/Pass.h"
45 #include "llvm/ProfileData/InstrProf.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Transforms/Scalar.h"
57 #define DEBUG_TYPE "adce"
59 STATISTIC(NumRemoved
, "Number of instructions removed");
60 STATISTIC(NumBranchesRemoved
, "Number of branch instructions removed");
62 // This is a temporary option until we change the interface to this pass based
63 // on optimization level.
64 static cl::opt
<bool> RemoveControlFlowFlag("adce-remove-control-flow",
65 cl::init(true), cl::Hidden
);
67 // This option enables removing of may-be-infinite loops which have no other
69 static cl::opt
<bool> RemoveLoops("adce-remove-loops", cl::init(false),
74 /// Information about Instructions
76 /// True if the associated instruction is live.
79 /// Quick access to information for block containing associated Instruction.
80 struct BlockInfoType
*Block
= nullptr;
83 /// Information about basic blocks relevant to dead code elimination.
84 struct BlockInfoType
{
85 /// True when this block contains a live instructions.
88 /// True when this block ends in an unconditional branch.
89 bool UnconditionalBranch
= false;
91 /// True when this block is known to have live PHI nodes.
92 bool HasLivePhiNodes
= false;
94 /// Control dependence sources need to be live for this block.
97 /// Quick access to the LiveInfo for the terminator,
98 /// holds the value &InstInfo[Terminator]
99 InstInfoType
*TerminatorLiveInfo
= nullptr;
101 /// Corresponding BasicBlock.
102 BasicBlock
*BB
= nullptr;
104 /// Cache of BB->getTerminator().
105 Instruction
*Terminator
= nullptr;
107 /// Post-order numbering of reverse control flow graph.
110 bool terminatorIsLive() const { return TerminatorLiveInfo
->Live
; }
113 class AggressiveDeadCodeElimination
{
116 // ADCE does not use DominatorTree per se, but it updates it to preserve the
119 PostDominatorTree
&PDT
;
121 /// Mapping of blocks to associated information, an element in BlockInfoVec.
122 /// Use MapVector to get deterministic iteration order.
123 MapVector
<BasicBlock
*, BlockInfoType
> BlockInfo
;
124 bool isLive(BasicBlock
*BB
) { return BlockInfo
[BB
].Live
; }
126 /// Mapping of instructions to associated information.
127 DenseMap
<Instruction
*, InstInfoType
> InstInfo
;
128 bool isLive(Instruction
*I
) { return InstInfo
[I
].Live
; }
130 /// Instructions known to be live where we need to mark
131 /// reaching definitions as live.
132 SmallVector
<Instruction
*, 128> Worklist
;
134 /// Debug info scopes around a live instruction.
135 SmallPtrSet
<const Metadata
*, 32> AliveScopes
;
137 /// Set of blocks with not known to have live terminators.
138 SmallPtrSet
<BasicBlock
*, 16> BlocksWithDeadTerminators
;
140 /// The set of blocks which we have determined whose control
141 /// dependence sources must be live and which have not had
142 /// those dependences analyzed.
143 SmallPtrSet
<BasicBlock
*, 16> NewLiveBlocks
;
145 /// Set up auxiliary data structures for Instructions and BasicBlocks and
146 /// initialize the Worklist to the set of must-be-live Instruscions.
149 /// Return true for operations which are always treated as live.
150 bool isAlwaysLive(Instruction
&I
);
152 /// Return true for instrumentation instructions for value profiling.
153 bool isInstrumentsConstant(Instruction
&I
);
155 /// Propagate liveness to reaching definitions.
156 void markLiveInstructions();
158 /// Mark an instruction as live.
159 void markLive(Instruction
*I
);
161 /// Mark a block as live.
162 void markLive(BlockInfoType
&BB
);
163 void markLive(BasicBlock
*BB
) { markLive(BlockInfo
[BB
]); }
165 /// Mark terminators of control predecessors of a PHI node live.
166 void markPhiLive(PHINode
*PN
);
168 /// Record the Debug Scopes which surround live debug information.
169 void collectLiveScopes(const DILocalScope
&LS
);
170 void collectLiveScopes(const DILocation
&DL
);
172 /// Analyze dead branches to find those whose branches are the sources
173 /// of control dependences impacting a live block. Those branches are
175 void markLiveBranchesFromControlDependences();
177 /// Remove instructions not marked live, return if any instruction was
179 bool removeDeadInstructions();
181 /// Identify connected sections of the control flow graph which have
182 /// dead terminators and rewrite the control flow graph to remove them.
183 void updateDeadRegions();
185 /// Set the BlockInfo::PostOrder field based on a post-order
186 /// numbering of the reverse control flow graph.
187 void computeReversePostOrder();
189 /// Make the terminator of this block an unconditional branch to \p Target.
190 void makeUnconditional(BasicBlock
*BB
, BasicBlock
*Target
);
193 AggressiveDeadCodeElimination(Function
&F
, DominatorTree
*DT
,
194 PostDominatorTree
&PDT
)
195 : F(F
), DT(DT
), PDT(PDT
) {}
197 bool performDeadCodeElimination();
200 } // end anonymous namespace
202 bool AggressiveDeadCodeElimination::performDeadCodeElimination() {
204 markLiveInstructions();
205 return removeDeadInstructions();
208 static bool isUnconditionalBranch(Instruction
*Term
) {
209 auto *BR
= dyn_cast
<BranchInst
>(Term
);
210 return BR
&& BR
->isUnconditional();
213 void AggressiveDeadCodeElimination::initialize() {
214 auto NumBlocks
= F
.size();
216 // We will have an entry in the map for each block so we grow the
217 // structure to twice that size to keep the load factor low in the hash table.
218 BlockInfo
.reserve(NumBlocks
);
221 // Iterate over blocks and initialize BlockInfoVec entries, count
222 // instructions to size the InstInfo hash table.
224 NumInsts
+= BB
.size();
225 auto &Info
= BlockInfo
[&BB
];
227 Info
.Terminator
= BB
.getTerminator();
228 Info
.UnconditionalBranch
= isUnconditionalBranch(Info
.Terminator
);
231 // Initialize instruction map and set pointers to block info.
232 InstInfo
.reserve(NumInsts
);
233 for (auto &BBInfo
: BlockInfo
)
234 for (Instruction
&I
: *BBInfo
.second
.BB
)
235 InstInfo
[&I
].Block
= &BBInfo
.second
;
237 // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not
238 // add any more elements to either after this point.
239 for (auto &BBInfo
: BlockInfo
)
240 BBInfo
.second
.TerminatorLiveInfo
= &InstInfo
[BBInfo
.second
.Terminator
];
242 // Collect the set of "root" instructions that are known live.
243 for (Instruction
&I
: instructions(F
))
247 if (!RemoveControlFlowFlag
)
251 // This stores state for the depth-first iterator. In addition
252 // to recording which nodes have been visited we also record whether
253 // a node is currently on the "stack" of active ancestors of the current
255 using StatusMap
= DenseMap
<BasicBlock
*, bool>;
257 class DFState
: public StatusMap
{
259 std::pair
<StatusMap::iterator
, bool> insert(BasicBlock
*BB
) {
260 return StatusMap::insert(std::make_pair(BB
, true));
263 // Invoked after we have visited all children of a node.
264 void completed(BasicBlock
*BB
) { (*this)[BB
] = false; }
266 // Return true if \p BB is currently on the active stack
268 bool onStack(BasicBlock
*BB
) {
269 auto Iter
= find(BB
);
270 return Iter
!= end() && Iter
->second
;
274 State
.reserve(F
.size());
275 // Iterate over blocks in depth-first pre-order and
276 // treat all edges to a block already seen as loop back edges
277 // and mark the branch live it if there is a back edge.
278 for (auto *BB
: depth_first_ext(&F
.getEntryBlock(), State
)) {
279 Instruction
*Term
= BB
->getTerminator();
283 for (auto *Succ
: successors(BB
))
284 if (State
.onStack(Succ
)) {
292 // Mark blocks live if there is no path from the block to a
293 // return of the function.
294 // We do this by seeing which of the postdomtree root children exit the
295 // program, and for all others, mark the subtree live.
296 for (auto &PDTChild
: children
<DomTreeNode
*>(PDT
.getRootNode())) {
297 auto *BB
= PDTChild
->getBlock();
298 auto &Info
= BlockInfo
[BB
];
299 // Real function return
300 if (isa
<ReturnInst
>(Info
.Terminator
)) {
301 LLVM_DEBUG(dbgs() << "post-dom root child is a return: " << BB
->getName()
306 // This child is something else, like an infinite loop.
307 for (auto DFNode
: depth_first(PDTChild
))
308 markLive(BlockInfo
[DFNode
->getBlock()].Terminator
);
311 // Treat the entry block as always live
312 auto *BB
= &F
.getEntryBlock();
313 auto &EntryInfo
= BlockInfo
[BB
];
314 EntryInfo
.Live
= true;
315 if (EntryInfo
.UnconditionalBranch
)
316 markLive(EntryInfo
.Terminator
);
318 // Build initial collection of blocks with dead terminators
319 for (auto &BBInfo
: BlockInfo
)
320 if (!BBInfo
.second
.terminatorIsLive())
321 BlocksWithDeadTerminators
.insert(BBInfo
.second
.BB
);
324 bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction
&I
) {
325 // TODO -- use llvm::isInstructionTriviallyDead
326 if (I
.isEHPad() || I
.mayHaveSideEffects()) {
327 // Skip any value profile instrumentation calls if they are
328 // instrumenting constants.
329 if (isInstrumentsConstant(I
))
333 if (!I
.isTerminator())
335 if (RemoveControlFlowFlag
&& (isa
<BranchInst
>(I
) || isa
<SwitchInst
>(I
)))
340 // Check if this instruction is a runtime call for value profiling and
341 // if it's instrumenting a constant.
342 bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction
&I
) {
343 // TODO -- move this test into llvm::isInstructionTriviallyDead
344 if (CallInst
*CI
= dyn_cast
<CallInst
>(&I
))
345 if (Function
*Callee
= CI
->getCalledFunction())
346 if (Callee
->getName().equals(getInstrProfValueProfFuncName()))
347 if (isa
<Constant
>(CI
->getArgOperand(0)))
352 void AggressiveDeadCodeElimination::markLiveInstructions() {
353 // Propagate liveness backwards to operands.
355 // Worklist holds newly discovered live instructions
356 // where we need to mark the inputs as live.
357 while (!Worklist
.empty()) {
358 Instruction
*LiveInst
= Worklist
.pop_back_val();
359 LLVM_DEBUG(dbgs() << "work live: "; LiveInst
->dump(););
361 for (Use
&OI
: LiveInst
->operands())
362 if (Instruction
*Inst
= dyn_cast
<Instruction
>(OI
))
365 if (auto *PN
= dyn_cast
<PHINode
>(LiveInst
))
369 // After data flow liveness has been identified, examine which branch
370 // decisions are required to determine live instructions are executed.
371 markLiveBranchesFromControlDependences();
373 } while (!Worklist
.empty());
376 void AggressiveDeadCodeElimination::markLive(Instruction
*I
) {
377 auto &Info
= InstInfo
[I
];
381 LLVM_DEBUG(dbgs() << "mark live: "; I
->dump());
383 Worklist
.push_back(I
);
385 // Collect the live debug info scopes attached to this instruction.
386 if (const DILocation
*DL
= I
->getDebugLoc())
387 collectLiveScopes(*DL
);
389 // Mark the containing block live
390 auto &BBInfo
= *Info
.Block
;
391 if (BBInfo
.Terminator
== I
) {
392 BlocksWithDeadTerminators
.erase(BBInfo
.BB
);
393 // For live terminators, mark destination blocks
394 // live to preserve this control flow edges.
395 if (!BBInfo
.UnconditionalBranch
)
396 for (auto *BB
: successors(I
->getParent()))
402 void AggressiveDeadCodeElimination::markLive(BlockInfoType
&BBInfo
) {
405 LLVM_DEBUG(dbgs() << "mark block live: " << BBInfo
.BB
->getName() << '\n');
407 if (!BBInfo
.CFLive
) {
408 BBInfo
.CFLive
= true;
409 NewLiveBlocks
.insert(BBInfo
.BB
);
412 // Mark unconditional branches at the end of live
413 // blocks as live since there is no work to do for them later
414 if (BBInfo
.UnconditionalBranch
)
415 markLive(BBInfo
.Terminator
);
418 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope
&LS
) {
419 if (!AliveScopes
.insert(&LS
).second
)
422 if (isa
<DISubprogram
>(LS
))
425 // Tail-recurse through the scope chain.
426 collectLiveScopes(cast
<DILocalScope
>(*LS
.getScope()));
429 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation
&DL
) {
430 // Even though DILocations are not scopes, shove them into AliveScopes so we
431 // don't revisit them.
432 if (!AliveScopes
.insert(&DL
).second
)
435 // Collect live scopes from the scope chain.
436 collectLiveScopes(*DL
.getScope());
438 // Tail-recurse through the inlined-at chain.
439 if (const DILocation
*IA
= DL
.getInlinedAt())
440 collectLiveScopes(*IA
);
443 void AggressiveDeadCodeElimination::markPhiLive(PHINode
*PN
) {
444 auto &Info
= BlockInfo
[PN
->getParent()];
445 // Only need to check this once per block.
446 if (Info
.HasLivePhiNodes
)
448 Info
.HasLivePhiNodes
= true;
450 // If a predecessor block is not live, mark it as control-flow live
451 // which will trigger marking live branches upon which
452 // that block is control dependent.
453 for (auto *PredBB
: predecessors(Info
.BB
)) {
454 auto &Info
= BlockInfo
[PredBB
];
457 NewLiveBlocks
.insert(PredBB
);
462 void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() {
463 if (BlocksWithDeadTerminators
.empty())
467 dbgs() << "new live blocks:\n";
468 for (auto *BB
: NewLiveBlocks
)
469 dbgs() << "\t" << BB
->getName() << '\n';
470 dbgs() << "dead terminator blocks:\n";
471 for (auto *BB
: BlocksWithDeadTerminators
)
472 dbgs() << "\t" << BB
->getName() << '\n';
475 // The dominance frontier of a live block X in the reverse
476 // control graph is the set of blocks upon which X is control
477 // dependent. The following sequence computes the set of blocks
478 // which currently have dead terminators that are control
479 // dependence sources of a block which is in NewLiveBlocks.
481 SmallVector
<BasicBlock
*, 32> IDFBlocks
;
482 ReverseIDFCalculator
IDFs(PDT
);
483 IDFs
.setDefiningBlocks(NewLiveBlocks
);
484 IDFs
.setLiveInBlocks(BlocksWithDeadTerminators
);
485 IDFs
.calculate(IDFBlocks
);
486 NewLiveBlocks
.clear();
488 // Dead terminators which control live blocks are now marked live.
489 for (auto *BB
: IDFBlocks
) {
490 LLVM_DEBUG(dbgs() << "live control in: " << BB
->getName() << '\n');
491 markLive(BB
->getTerminator());
495 //===----------------------------------------------------------------------===//
497 // Routines to update the CFG and SSA information before removing dead code.
499 //===----------------------------------------------------------------------===//
500 bool AggressiveDeadCodeElimination::removeDeadInstructions() {
501 // Updates control and dataflow around dead blocks
505 for (Instruction
&I
: instructions(F
)) {
506 // Check if the instruction is alive.
510 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(&I
)) {
511 // Check if the scope of this variable location is alive.
512 if (AliveScopes
.count(DII
->getDebugLoc()->getScope()))
515 // If intrinsic is pointing at a live SSA value, there may be an
516 // earlier optimization bug: if we know the location of the variable,
517 // why isn't the scope of the location alive?
518 if (Value
*V
= DII
->getVariableLocation())
519 if (Instruction
*II
= dyn_cast
<Instruction
>(V
))
521 dbgs() << "Dropping debug info for " << *DII
<< "\n";
526 // The inverse of the live set is the dead set. These are those instructions
527 // that have no side effects and do not influence the control flow or return
528 // value of the function, and may therefore be deleted safely.
529 // NOTE: We reuse the Worklist vector here for memory efficiency.
530 for (Instruction
&I
: instructions(F
)) {
531 // Check if the instruction is alive.
535 if (auto *DII
= dyn_cast
<DbgInfoIntrinsic
>(&I
)) {
536 // Check if the scope of this variable location is alive.
537 if (AliveScopes
.count(DII
->getDebugLoc()->getScope()))
540 // Fallthrough and drop the intrinsic.
543 // Prepare to delete.
544 Worklist
.push_back(&I
);
545 I
.dropAllReferences();
548 for (Instruction
*&I
: Worklist
) {
550 I
->eraseFromParent();
553 return !Worklist
.empty();
556 // A dead region is the set of dead blocks with a common live post-dominator.
557 void AggressiveDeadCodeElimination::updateDeadRegions() {
559 dbgs() << "final dead terminator blocks: " << '\n';
560 for (auto *BB
: BlocksWithDeadTerminators
)
561 dbgs() << '\t' << BB
->getName()
562 << (BlockInfo
[BB
].Live
? " LIVE\n" : "\n");
565 // Don't compute the post ordering unless we needed it.
566 bool HavePostOrder
= false;
568 for (auto *BB
: BlocksWithDeadTerminators
) {
569 auto &Info
= BlockInfo
[BB
];
570 if (Info
.UnconditionalBranch
) {
571 InstInfo
[Info
.Terminator
].Live
= true;
575 if (!HavePostOrder
) {
576 computeReversePostOrder();
577 HavePostOrder
= true;
580 // Add an unconditional branch to the successor closest to the
581 // end of the function which insures a path to the exit for each
583 BlockInfoType
*PreferredSucc
= nullptr;
584 for (auto *Succ
: successors(BB
)) {
585 auto *Info
= &BlockInfo
[Succ
];
586 if (!PreferredSucc
|| PreferredSucc
->PostOrder
< Info
->PostOrder
)
587 PreferredSucc
= Info
;
589 assert((PreferredSucc
&& PreferredSucc
->PostOrder
> 0) &&
590 "Failed to find safe successor for dead branch");
592 // Collect removed successors to update the (Post)DominatorTrees.
593 SmallPtrSet
<BasicBlock
*, 4> RemovedSuccessors
;
595 for (auto *Succ
: successors(BB
)) {
596 if (!First
|| Succ
!= PreferredSucc
->BB
) {
597 Succ
->removePredecessor(BB
);
598 RemovedSuccessors
.insert(Succ
);
602 makeUnconditional(BB
, PreferredSucc
->BB
);
604 // Inform the dominators about the deleted CFG edges.
605 SmallVector
<DominatorTree::UpdateType
, 4> DeletedEdges
;
606 for (auto *Succ
: RemovedSuccessors
) {
607 // It might have happened that the same successor appeared multiple times
608 // and the CFG edge wasn't really removed.
609 if (Succ
!= PreferredSucc
->BB
) {
610 LLVM_DEBUG(dbgs() << "ADCE: (Post)DomTree edge enqueued for deletion"
611 << BB
->getName() << " -> " << Succ
->getName()
613 DeletedEdges
.push_back({DominatorTree::Delete
, BB
, Succ
});
617 DomTreeUpdater(DT
, &PDT
, DomTreeUpdater::UpdateStrategy::Eager
)
618 .applyUpdates(DeletedEdges
);
620 NumBranchesRemoved
+= 1;
624 // reverse top-sort order
625 void AggressiveDeadCodeElimination::computeReversePostOrder() {
626 // This provides a post-order numbering of the reverse control flow graph
627 // Note that it is incomplete in the presence of infinite loops but we don't
628 // need numbers blocks which don't reach the end of the functions since
629 // all branches in those blocks are forced live.
631 // For each block without successors, extend the DFS from the block
632 // backward through the graph
633 SmallPtrSet
<BasicBlock
*, 16> Visited
;
634 unsigned PostOrder
= 0;
636 if (succ_begin(&BB
) != succ_end(&BB
))
638 for (BasicBlock
*Block
: inverse_post_order_ext(&BB
,Visited
))
639 BlockInfo
[Block
].PostOrder
= PostOrder
++;
643 void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock
*BB
,
644 BasicBlock
*Target
) {
645 Instruction
*PredTerm
= BB
->getTerminator();
646 // Collect the live debug info scopes attached to this instruction.
647 if (const DILocation
*DL
= PredTerm
->getDebugLoc())
648 collectLiveScopes(*DL
);
650 // Just mark live an existing unconditional branch
651 if (isUnconditionalBranch(PredTerm
)) {
652 PredTerm
->setSuccessor(0, Target
);
653 InstInfo
[PredTerm
].Live
= true;
656 LLVM_DEBUG(dbgs() << "making unconditional " << BB
->getName() << '\n');
657 NumBranchesRemoved
+= 1;
658 IRBuilder
<> Builder(PredTerm
);
659 auto *NewTerm
= Builder
.CreateBr(Target
);
660 InstInfo
[NewTerm
].Live
= true;
661 if (const DILocation
*DL
= PredTerm
->getDebugLoc())
662 NewTerm
->setDebugLoc(DL
);
664 InstInfo
.erase(PredTerm
);
665 PredTerm
->eraseFromParent();
668 //===----------------------------------------------------------------------===//
670 // Pass Manager integration code
672 //===----------------------------------------------------------------------===//
673 PreservedAnalyses
ADCEPass::run(Function
&F
, FunctionAnalysisManager
&FAM
) {
674 // ADCE does not need DominatorTree, but require DominatorTree here
675 // to update analysis if it is already available.
676 auto *DT
= FAM
.getCachedResult
<DominatorTreeAnalysis
>(F
);
677 auto &PDT
= FAM
.getResult
<PostDominatorTreeAnalysis
>(F
);
678 if (!AggressiveDeadCodeElimination(F
, DT
, PDT
).performDeadCodeElimination())
679 return PreservedAnalyses::all();
681 PreservedAnalyses PA
;
682 PA
.preserveSet
<CFGAnalyses
>();
683 PA
.preserve
<GlobalsAA
>();
684 PA
.preserve
<DominatorTreeAnalysis
>();
685 PA
.preserve
<PostDominatorTreeAnalysis
>();
691 struct ADCELegacyPass
: public FunctionPass
{
692 static char ID
; // Pass identification, replacement for typeid
694 ADCELegacyPass() : FunctionPass(ID
) {
695 initializeADCELegacyPassPass(*PassRegistry::getPassRegistry());
698 bool runOnFunction(Function
&F
) override
{
702 // ADCE does not need DominatorTree, but require DominatorTree here
703 // to update analysis if it is already available.
704 auto *DTWP
= getAnalysisIfAvailable
<DominatorTreeWrapperPass
>();
705 auto *DT
= DTWP
? &DTWP
->getDomTree() : nullptr;
706 auto &PDT
= getAnalysis
<PostDominatorTreeWrapperPass
>().getPostDomTree();
707 return AggressiveDeadCodeElimination(F
, DT
, PDT
)
708 .performDeadCodeElimination();
711 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
712 AU
.addRequired
<PostDominatorTreeWrapperPass
>();
713 if (!RemoveControlFlowFlag
)
714 AU
.setPreservesCFG();
716 AU
.addPreserved
<DominatorTreeWrapperPass
>();
717 AU
.addPreserved
<PostDominatorTreeWrapperPass
>();
719 AU
.addPreserved
<GlobalsAAWrapperPass
>();
723 } // end anonymous namespace
725 char ADCELegacyPass::ID
= 0;
727 INITIALIZE_PASS_BEGIN(ADCELegacyPass
, "adce",
728 "Aggressive Dead Code Elimination", false, false)
729 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass
)
730 INITIALIZE_PASS_END(ADCELegacyPass
, "adce", "Aggressive Dead Code Elimination",
733 FunctionPass
*llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); }