[llvm-exegesis] [NFC] Fixing typo.
[llvm-complete.git] / lib / Transforms / Scalar / LoopPredication.cpp
blobeef048ec36b9e6ff2b606f7a6b0a84a7c9f95a66
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
13 // for (i = 0; i < n; i++) {
14 // guard(i < len);
15 // ...
16 // }
18 // to
20 // for (i = 0; i < n; i++) {
21 // guard(n - 1 < len);
22 // ...
23 // }
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
29 // if (n - 1 < len)
30 // for (i = 0; i < n; i++) {
31 // ...
32 // }
33 // else
34 // deoptimize
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
49 // for (int i = b; i != e; i++)
50 // guard(i u< len)
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
55 // if (B(0)) {
56 // do {
57 // I = PHI(0, I.INC)
58 // I.INC = I + Step
59 // guard(G(I));
60 // } while (B(I));
61 // }
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
67 // if (B(0)) {
68 // do {
69 // I = PHI(0, I.INC)
70 // I.INC = I + Step
71 // guard(G(0) && M);
72 // } while (B(I));
73 // }
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
77 // Informal proof that the transformation above is correct:
79 // By the definition of guards we can rewrite the guard condition to:
80 // G(I) && G(0) && M
82 // Let's prove that for each iteration of the loop:
83 // G(0) && M => G(I)
84 // And the condition above can be simplified to G(Start) && M.
86 // Induction base.
87 // G(0) && M => G(0)
89 // Induction step. Assuming G(0) && M => G(I) on the subsequent
90 // iteration:
92 // B(I) is true because it's the backedge condition.
93 // G(I) is true because the backedge is guarded by this condition.
95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 // * The loop has a single latch with the condition of the form:
103 // B(X) = latchStart + X <pred> latchLimit,
104 // where <pred> is u<, u<=, s<, or s<=.
105 // * The guard condition is of the form
106 // G(X) = guardStart + X u< guardLimit
108 // For the ult latch comparison case M is:
109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 // guardStart + X + 1 u< guardLimit
112 // The only way the antecedent can be true and the consequent can be false is
113 // if
114 // X == guardLimit - 1 - guardStart
115 // (and guardLimit is non-zero, but we won't use this latter fact).
116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 // latchStart + guardLimit - 1 - guardStart u< latchLimit
118 // and its negation is
119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit
121 // In other words, if
122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 // then:
124 // (the ranges below are written in ConstantRange notation, where [A, B) is the
125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
127 // forall X . guardStart + X u< guardLimit &&
128 // latchStart + X u< latchLimit =>
129 // guardStart + X + 1 u< guardLimit
130 // == forall X . guardStart + X u< guardLimit &&
131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 // guardStart + X + 1 u< guardLimit
133 // == forall X . (guardStart + X) in [0, guardLimit) &&
134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 // (guardStart + X + 1) in [0, guardLimit)
136 // == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 // X in [-latchStart, guardLimit - 1 - guardStart) =>
138 // X in [-guardStart - 1, guardLimit - guardStart - 1)
139 // == true
141 // So the widened condition is:
142 // guardStart u< guardLimit &&
143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 // Similarly for ule condition the widened condition is:
145 // guardStart u< guardLimit &&
146 // latchStart + guardLimit - 1 - guardStart u> latchLimit
147 // For slt condition the widened condition is:
148 // guardStart u< guardLimit &&
149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 // For sle condition the widened condition is:
151 // guardStart u< guardLimit &&
152 // latchStart + guardLimit - 1 - guardStart s> latchLimit
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 // * The loop has a single latch with the condition of the form:
157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 // * The guard condition is of the form
159 // G(X) = X - 1 u< guardLimit
161 // For the ugt latch comparison case M is:
162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
164 // The only way the antecedent can be true and the consequent can be false is if
165 // X == 1.
166 // If X == 1 then the second half of the antecedent is
167 // 1 u> latchLimit, and its negation is latchLimit u>= 1.
169 // So the widened condition is:
170 // guardStart u< guardLimit && latchLimit u>= 1.
171 // Similarly for sgt condition the widened condition is:
172 // guardStart u< guardLimit && latchLimit s>= 1.
173 // For uge condition the widened condition is:
174 // guardStart u< guardLimit && latchLimit u> 1.
175 // For sge condition the widened condition is:
176 // guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/BranchProbabilityInfo.h"
182 #include "llvm/Analysis/GuardUtils.h"
183 #include "llvm/Analysis/LoopInfo.h"
184 #include "llvm/Analysis/LoopPass.h"
185 #include "llvm/Analysis/ScalarEvolution.h"
186 #include "llvm/Analysis/ScalarEvolutionExpander.h"
187 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
188 #include "llvm/IR/Function.h"
189 #include "llvm/IR/GlobalValue.h"
190 #include "llvm/IR/IntrinsicInst.h"
191 #include "llvm/IR/Module.h"
192 #include "llvm/IR/PatternMatch.h"
193 #include "llvm/Pass.h"
194 #include "llvm/Support/Debug.h"
195 #include "llvm/Transforms/Scalar.h"
196 #include "llvm/Transforms/Utils/LoopUtils.h"
198 #define DEBUG_TYPE "loop-predication"
200 STATISTIC(TotalConsidered, "Number of guards considered");
201 STATISTIC(TotalWidened, "Number of checks widened");
203 using namespace llvm;
205 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
206 cl::Hidden, cl::init(true));
208 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
209 cl::Hidden, cl::init(true));
211 static cl::opt<bool>
212 SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
213 cl::Hidden, cl::init(false));
215 // This is the scale factor for the latch probability. We use this during
216 // profitability analysis to find other exiting blocks that have a much higher
217 // probability of exiting the loop instead of loop exiting via latch.
218 // This value should be greater than 1 for a sane profitability check.
219 static cl::opt<float> LatchExitProbabilityScale(
220 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
221 cl::desc("scale factor for the latch probability. Value should be greater "
222 "than 1. Lower values are ignored"));
224 static cl::opt<bool> PredicateWidenableBranchGuards(
225 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
226 cl::desc("Whether or not we should predicate guards "
227 "expressed as widenable branches to deoptimize blocks"),
228 cl::init(true));
230 namespace {
231 class LoopPredication {
232 /// Represents an induction variable check:
233 /// icmp Pred, <induction variable>, <loop invariant limit>
234 struct LoopICmp {
235 ICmpInst::Predicate Pred;
236 const SCEVAddRecExpr *IV;
237 const SCEV *Limit;
238 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
239 const SCEV *Limit)
240 : Pred(Pred), IV(IV), Limit(Limit) {}
241 LoopICmp() {}
242 void dump() {
243 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
244 << ", Limit = " << *Limit << "\n";
248 ScalarEvolution *SE;
249 BranchProbabilityInfo *BPI;
251 Loop *L;
252 const DataLayout *DL;
253 BasicBlock *Preheader;
254 LoopICmp LatchCheck;
256 bool isSupportedStep(const SCEV* Step);
257 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
258 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
259 ICI->getOperand(1));
261 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
262 Value *RHS);
264 Optional<LoopICmp> parseLoopLatchICmp();
266 bool CanExpand(const SCEV* S);
267 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
268 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
269 Instruction *InsertAt);
271 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
272 IRBuilder<> &Builder);
273 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
274 LoopICmp RangeCheck,
275 SCEVExpander &Expander,
276 IRBuilder<> &Builder);
277 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
278 LoopICmp RangeCheck,
279 SCEVExpander &Expander,
280 IRBuilder<> &Builder);
281 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
282 SCEVExpander &Expander, IRBuilder<> &Builder);
283 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
284 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
285 // If the loop always exits through another block in the loop, we should not
286 // predicate based on the latch check. For example, the latch check can be a
287 // very coarse grained check and there can be more fine grained exit checks
288 // within the loop. We identify such unprofitable loops through BPI.
289 bool isLoopProfitableToPredicate();
291 // When the IV type is wider than the range operand type, we can still do loop
292 // predication, by generating SCEVs for the range and latch that are of the
293 // same type. We achieve this by generating a SCEV truncate expression for the
294 // latch IV. This is done iff truncation of the IV is a safe operation,
295 // without loss of information.
296 // Another way to achieve this is by generating a wider type SCEV for the
297 // range check operand, however, this needs a more involved check that
298 // operands do not overflow. This can lead to loss of information when the
299 // range operand is of the form: add i32 %offset, %iv. We need to prove that
300 // sext(x + y) is same as sext(x) + sext(y).
301 // This function returns true if we can safely represent the IV type in
302 // the RangeCheckType without loss of information.
303 bool isSafeToTruncateWideIVType(Type *RangeCheckType);
304 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
305 // so.
306 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
308 public:
309 LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI)
310 : SE(SE), BPI(BPI){};
311 bool runOnLoop(Loop *L);
314 class LoopPredicationLegacyPass : public LoopPass {
315 public:
316 static char ID;
317 LoopPredicationLegacyPass() : LoopPass(ID) {
318 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
321 void getAnalysisUsage(AnalysisUsage &AU) const override {
322 AU.addRequired<BranchProbabilityInfoWrapperPass>();
323 getLoopAnalysisUsage(AU);
326 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
327 if (skipLoop(L))
328 return false;
329 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
330 BranchProbabilityInfo &BPI =
331 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
332 LoopPredication LP(SE, &BPI);
333 return LP.runOnLoop(L);
337 char LoopPredicationLegacyPass::ID = 0;
338 } // end namespace llvm
340 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
341 "Loop predication", false, false)
342 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
343 INITIALIZE_PASS_DEPENDENCY(LoopPass)
344 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
345 "Loop predication", false, false)
347 Pass *llvm::createLoopPredicationPass() {
348 return new LoopPredicationLegacyPass();
351 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
352 LoopStandardAnalysisResults &AR,
353 LPMUpdater &U) {
354 const auto &FAM =
355 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
356 Function *F = L.getHeader()->getParent();
357 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
358 LoopPredication LP(&AR.SE, BPI);
359 if (!LP.runOnLoop(&L))
360 return PreservedAnalyses::all();
362 return getLoopPassPreservedAnalyses();
365 Optional<LoopPredication::LoopICmp>
366 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
367 Value *RHS) {
368 const SCEV *LHSS = SE->getSCEV(LHS);
369 if (isa<SCEVCouldNotCompute>(LHSS))
370 return None;
371 const SCEV *RHSS = SE->getSCEV(RHS);
372 if (isa<SCEVCouldNotCompute>(RHSS))
373 return None;
375 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
376 if (SE->isLoopInvariant(LHSS, L)) {
377 std::swap(LHS, RHS);
378 std::swap(LHSS, RHSS);
379 Pred = ICmpInst::getSwappedPredicate(Pred);
382 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
383 if (!AR || AR->getLoop() != L)
384 return None;
386 return LoopICmp(Pred, AR, RHSS);
389 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
390 IRBuilder<> &Builder,
391 ICmpInst::Predicate Pred, const SCEV *LHS,
392 const SCEV *RHS, Instruction *InsertAt) {
393 // TODO: we can check isLoopEntryGuardedByCond before emitting the check
395 Type *Ty = LHS->getType();
396 assert(Ty == RHS->getType() && "expandCheck operands have different types?");
398 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
399 return Builder.getTrue();
401 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
402 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
403 return Builder.CreateICmp(Pred, LHSV, RHSV);
406 Optional<LoopPredication::LoopICmp>
407 LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
409 auto *LatchType = LatchCheck.IV->getType();
410 if (RangeCheckType == LatchType)
411 return LatchCheck;
412 // For now, bail out if latch type is narrower than range type.
413 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
414 return None;
415 if (!isSafeToTruncateWideIVType(RangeCheckType))
416 return None;
417 // We can now safely identify the truncated version of the IV and limit for
418 // RangeCheckType.
419 LoopICmp NewLatchCheck;
420 NewLatchCheck.Pred = LatchCheck.Pred;
421 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
422 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
423 if (!NewLatchCheck.IV)
424 return None;
425 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
426 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
427 << "can be represented as range check type:"
428 << *RangeCheckType << "\n");
429 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
430 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
431 return NewLatchCheck;
434 bool LoopPredication::isSupportedStep(const SCEV* Step) {
435 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
438 bool LoopPredication::CanExpand(const SCEV* S) {
439 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
442 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
443 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
444 SCEVExpander &Expander, IRBuilder<> &Builder) {
445 auto *Ty = RangeCheck.IV->getType();
446 // Generate the widened condition for the forward loop:
447 // guardStart u< guardLimit &&
448 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
449 // where <pred> depends on the latch condition predicate. See the file
450 // header comment for the reasoning.
451 // guardLimit - guardStart + latchStart - 1
452 const SCEV *GuardStart = RangeCheck.IV->getStart();
453 const SCEV *GuardLimit = RangeCheck.Limit;
454 const SCEV *LatchStart = LatchCheck.IV->getStart();
455 const SCEV *LatchLimit = LatchCheck.Limit;
457 // guardLimit - guardStart + latchStart - 1
458 const SCEV *RHS =
459 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
460 SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
461 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
462 !CanExpand(LatchLimit) || !CanExpand(RHS)) {
463 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
464 return None;
466 auto LimitCheckPred =
467 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
469 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
470 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
471 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
473 Instruction *InsertAt = Preheader->getTerminator();
474 auto *LimitCheck =
475 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt);
476 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
477 GuardStart, GuardLimit, InsertAt);
478 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
481 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
482 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
483 SCEVExpander &Expander, IRBuilder<> &Builder) {
484 auto *Ty = RangeCheck.IV->getType();
485 const SCEV *GuardStart = RangeCheck.IV->getStart();
486 const SCEV *GuardLimit = RangeCheck.Limit;
487 const SCEV *LatchLimit = LatchCheck.Limit;
488 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
489 !CanExpand(LatchLimit)) {
490 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
491 return None;
493 // The decrement of the latch check IV should be the same as the
494 // rangeCheckIV.
495 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
496 if (RangeCheck.IV != PostDecLatchCheckIV) {
497 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
498 << *PostDecLatchCheckIV
499 << " and RangeCheckIV: " << *RangeCheck.IV << "\n");
500 return None;
503 // Generate the widened condition for CountDownLoop:
504 // guardStart u< guardLimit &&
505 // latchLimit <pred> 1.
506 // See the header comment for reasoning of the checks.
507 Instruction *InsertAt = Preheader->getTerminator();
508 auto LimitCheckPred =
509 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
510 auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT,
511 GuardStart, GuardLimit, InsertAt);
512 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit,
513 SE->getOne(Ty), InsertAt);
514 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
517 /// If ICI can be widened to a loop invariant condition emits the loop
518 /// invariant condition in the loop preheader and return it, otherwise
519 /// returns None.
520 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
521 SCEVExpander &Expander,
522 IRBuilder<> &Builder) {
523 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
524 LLVM_DEBUG(ICI->dump());
526 // parseLoopStructure guarantees that the latch condition is:
527 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
528 // We are looking for the range checks of the form:
529 // i u< guardLimit
530 auto RangeCheck = parseLoopICmp(ICI);
531 if (!RangeCheck) {
532 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
533 return None;
535 LLVM_DEBUG(dbgs() << "Guard check:\n");
536 LLVM_DEBUG(RangeCheck->dump());
537 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
538 LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
539 << RangeCheck->Pred << ")!\n");
540 return None;
542 auto *RangeCheckIV = RangeCheck->IV;
543 if (!RangeCheckIV->isAffine()) {
544 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
545 return None;
547 auto *Step = RangeCheckIV->getStepRecurrence(*SE);
548 // We cannot just compare with latch IV step because the latch and range IVs
549 // may have different types.
550 if (!isSupportedStep(Step)) {
551 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
552 return None;
554 auto *Ty = RangeCheckIV->getType();
555 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
556 if (!CurrLatchCheckOpt) {
557 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
558 "corresponding to range type: "
559 << *Ty << "\n");
560 return None;
563 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
564 // At this point, the range and latch step should have the same type, but need
565 // not have the same value (we support both 1 and -1 steps).
566 assert(Step->getType() ==
567 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
568 "Range and latch steps should be of same type!");
569 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
570 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
571 return None;
574 if (Step->isOne())
575 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
576 Expander, Builder);
577 else {
578 assert(Step->isAllOnesValue() && "Step should be -1!");
579 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
580 Expander, Builder);
584 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
585 Value *Condition,
586 SCEVExpander &Expander,
587 IRBuilder<> &Builder) {
588 unsigned NumWidened = 0;
589 // The guard condition is expected to be in form of:
590 // cond1 && cond2 && cond3 ...
591 // Iterate over subconditions looking for icmp conditions which can be
592 // widened across loop iterations. Widening these conditions remember the
593 // resulting list of subconditions in Checks vector.
594 SmallVector<Value *, 4> Worklist(1, Condition);
595 SmallPtrSet<Value *, 4> Visited;
596 do {
597 Value *Condition = Worklist.pop_back_val();
598 if (!Visited.insert(Condition).second)
599 continue;
601 Value *LHS, *RHS;
602 using namespace llvm::PatternMatch;
603 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
604 Worklist.push_back(LHS);
605 Worklist.push_back(RHS);
606 continue;
609 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
610 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
611 Checks.push_back(NewRangeCheck.getValue());
612 NumWidened++;
613 continue;
617 // Save the condition as is if we can't widen it
618 Checks.push_back(Condition);
619 } while (!Worklist.empty());
620 return NumWidened;
623 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
624 SCEVExpander &Expander) {
625 LLVM_DEBUG(dbgs() << "Processing guard:\n");
626 LLVM_DEBUG(Guard->dump());
628 TotalConsidered++;
629 SmallVector<Value *, 4> Checks;
630 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
631 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
632 Builder);
633 if (NumWidened == 0)
634 return false;
636 TotalWidened += NumWidened;
638 // Emit the new guard condition
639 Builder.SetInsertPoint(Guard);
640 Value *LastCheck = nullptr;
641 for (auto *Check : Checks)
642 if (!LastCheck)
643 LastCheck = Check;
644 else
645 LastCheck = Builder.CreateAnd(LastCheck, Check);
646 Guard->setOperand(0, LastCheck);
648 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
649 return true;
652 bool LoopPredication::widenWidenableBranchGuardConditions(
653 BranchInst *Guard, SCEVExpander &Expander) {
654 assert(isGuardAsWidenableBranch(Guard) && "Must be!");
655 LLVM_DEBUG(dbgs() << "Processing guard:\n");
656 LLVM_DEBUG(Guard->dump());
658 TotalConsidered++;
659 SmallVector<Value *, 4> Checks;
660 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
661 Value *Condition = nullptr, *WidenableCondition = nullptr;
662 BasicBlock *GBB = nullptr, *DBB = nullptr;
663 parseWidenableBranch(Guard, Condition, WidenableCondition, GBB, DBB);
664 unsigned NumWidened = collectChecks(Checks, Condition, Expander, Builder);
665 if (NumWidened == 0)
666 return false;
668 TotalWidened += NumWidened;
670 // Emit the new guard condition
671 Builder.SetInsertPoint(Guard);
672 Value *LastCheck = nullptr;
673 for (auto *Check : Checks)
674 if (!LastCheck)
675 LastCheck = Check;
676 else
677 LastCheck = Builder.CreateAnd(LastCheck, Check);
678 // Make sure that the check contains widenable condition and therefore can be
679 // further widened.
680 LastCheck = Builder.CreateAnd(LastCheck, WidenableCondition);
681 Guard->setOperand(0, LastCheck);
682 assert(isGuardAsWidenableBranch(Guard) &&
683 "Stopped being a guard after transform?");
685 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
686 return true;
689 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
690 using namespace PatternMatch;
692 BasicBlock *LoopLatch = L->getLoopLatch();
693 if (!LoopLatch) {
694 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
695 return None;
698 ICmpInst::Predicate Pred;
699 Value *LHS, *RHS;
700 BasicBlock *TrueDest, *FalseDest;
702 if (!match(LoopLatch->getTerminator(),
703 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
704 FalseDest))) {
705 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
706 return None;
708 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
709 "One of the latch's destinations must be the header");
710 if (TrueDest != L->getHeader())
711 Pred = ICmpInst::getInversePredicate(Pred);
713 auto Result = parseLoopICmp(Pred, LHS, RHS);
714 if (!Result) {
715 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
716 return None;
719 // Check affine first, so if it's not we don't try to compute the step
720 // recurrence.
721 if (!Result->IV->isAffine()) {
722 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
723 return None;
726 auto *Step = Result->IV->getStepRecurrence(*SE);
727 if (!isSupportedStep(Step)) {
728 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
729 return None;
732 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
733 if (Step->isOne()) {
734 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
735 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
736 } else {
737 assert(Step->isAllOnesValue() && "Step should be -1!");
738 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
739 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
743 if (IsUnsupportedPredicate(Step, Result->Pred)) {
744 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
745 << ")!\n");
746 return None;
748 return Result;
751 // Returns true if its safe to truncate the IV to RangeCheckType.
752 bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
753 if (!EnableIVTruncation)
754 return false;
755 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
756 DL->getTypeSizeInBits(RangeCheckType) &&
757 "Expected latch check IV type to be larger than range check operand "
758 "type!");
759 // The start and end values of the IV should be known. This is to guarantee
760 // that truncating the wide type will not lose information.
761 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
762 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
763 if (!Limit || !Start)
764 return false;
765 // This check makes sure that the IV does not change sign during loop
766 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
767 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
768 // IV wraps around, and the truncation of the IV would lose the range of
769 // iterations between 2^32 and 2^64.
770 bool Increasing;
771 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
772 return false;
773 // The active bits should be less than the bits in the RangeCheckType. This
774 // guarantees that truncating the latch check to RangeCheckType is a safe
775 // operation.
776 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
777 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
778 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
781 bool LoopPredication::isLoopProfitableToPredicate() {
782 if (SkipProfitabilityChecks || !BPI)
783 return true;
785 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
786 L->getExitEdges(ExitEdges);
787 // If there is only one exiting edge in the loop, it is always profitable to
788 // predicate the loop.
789 if (ExitEdges.size() == 1)
790 return true;
792 // Calculate the exiting probabilities of all exiting edges from the loop,
793 // starting with the LatchExitProbability.
794 // Heuristic for profitability: If any of the exiting blocks' probability of
795 // exiting the loop is larger than exiting through the latch block, it's not
796 // profitable to predicate the loop.
797 auto *LatchBlock = L->getLoopLatch();
798 assert(LatchBlock && "Should have a single latch at this point!");
799 auto *LatchTerm = LatchBlock->getTerminator();
800 assert(LatchTerm->getNumSuccessors() == 2 &&
801 "expected to be an exiting block with 2 succs!");
802 unsigned LatchBrExitIdx =
803 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
804 BranchProbability LatchExitProbability =
805 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
807 // Protect against degenerate inputs provided by the user. Providing a value
808 // less than one, can invert the definition of profitable loop predication.
809 float ScaleFactor = LatchExitProbabilityScale;
810 if (ScaleFactor < 1) {
811 LLVM_DEBUG(
812 dbgs()
813 << "Ignored user setting for loop-predication-latch-probability-scale: "
814 << LatchExitProbabilityScale << "\n");
815 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
816 ScaleFactor = 1.0;
818 const auto LatchProbabilityThreshold =
819 LatchExitProbability * ScaleFactor;
821 for (const auto &ExitEdge : ExitEdges) {
822 BranchProbability ExitingBlockProbability =
823 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
824 // Some exiting edge has higher probability than the latch exiting edge.
825 // No longer profitable to predicate.
826 if (ExitingBlockProbability > LatchProbabilityThreshold)
827 return false;
829 // Using BPI, we have concluded that the most probable way to exit from the
830 // loop is through the latch (or there's no profile information and all
831 // exits are equally likely).
832 return true;
835 bool LoopPredication::runOnLoop(Loop *Loop) {
836 L = Loop;
838 LLVM_DEBUG(dbgs() << "Analyzing ");
839 LLVM_DEBUG(L->dump());
841 Module *M = L->getHeader()->getModule();
843 // There is nothing to do if the module doesn't use guards
844 auto *GuardDecl =
845 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
846 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
847 auto *WCDecl = M->getFunction(
848 Intrinsic::getName(Intrinsic::experimental_widenable_condition));
849 bool HasWidenableConditions =
850 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
851 if (!HasIntrinsicGuards && !HasWidenableConditions)
852 return false;
854 DL = &M->getDataLayout();
856 Preheader = L->getLoopPreheader();
857 if (!Preheader)
858 return false;
860 auto LatchCheckOpt = parseLoopLatchICmp();
861 if (!LatchCheckOpt)
862 return false;
863 LatchCheck = *LatchCheckOpt;
865 LLVM_DEBUG(dbgs() << "Latch check:\n");
866 LLVM_DEBUG(LatchCheck.dump());
868 if (!isLoopProfitableToPredicate()) {
869 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
870 return false;
872 // Collect all the guards into a vector and process later, so as not
873 // to invalidate the instruction iterator.
874 SmallVector<IntrinsicInst *, 4> Guards;
875 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
876 for (const auto BB : L->blocks()) {
877 for (auto &I : *BB)
878 if (isGuard(&I))
879 Guards.push_back(cast<IntrinsicInst>(&I));
880 if (PredicateWidenableBranchGuards &&
881 isGuardAsWidenableBranch(BB->getTerminator()))
882 GuardsAsWidenableBranches.push_back(
883 cast<BranchInst>(BB->getTerminator()));
886 if (Guards.empty() && GuardsAsWidenableBranches.empty())
887 return false;
889 SCEVExpander Expander(*SE, *DL, "loop-predication");
891 bool Changed = false;
892 for (auto *Guard : Guards)
893 Changed |= widenGuardConditions(Guard, Expander);
894 for (auto *Guard : GuardsAsWidenableBranches)
895 Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
897 return Changed;