1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
13 // for (i = 0; i < n; i++) {
20 // for (i = 0; i < n; i++) {
21 // guard(n - 1 < len);
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
30 // for (i = 0; i < n; i++) {
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
49 // for (int i = b; i != e; i++)
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
77 // Informal proof that the transformation above is correct:
79 // By the definition of guards we can rewrite the guard condition to:
82 // Let's prove that for each iteration of the loop:
84 // And the condition above can be simplified to G(Start) && M.
89 // Induction step. Assuming G(0) && M => G(I) on the subsequent
92 // B(I) is true because it's the backedge condition.
93 // G(I) is true because the backedge is guarded by this condition.
95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
97 // Note that we can use anything stronger than M, i.e. any condition which
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
102 // * The loop has a single latch with the condition of the form:
103 // B(X) = latchStart + X <pred> latchLimit,
104 // where <pred> is u<, u<=, s<, or s<=.
105 // * The guard condition is of the form
106 // G(X) = guardStart + X u< guardLimit
108 // For the ult latch comparison case M is:
109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 // guardStart + X + 1 u< guardLimit
112 // The only way the antecedent can be true and the consequent can be false is
114 // X == guardLimit - 1 - guardStart
115 // (and guardLimit is non-zero, but we won't use this latter fact).
116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 // latchStart + guardLimit - 1 - guardStart u< latchLimit
118 // and its negation is
119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit
121 // In other words, if
122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart
124 // (the ranges below are written in ConstantRange notation, where [A, B) is the
125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
127 // forall X . guardStart + X u< guardLimit &&
128 // latchStart + X u< latchLimit =>
129 // guardStart + X + 1 u< guardLimit
130 // == forall X . guardStart + X u< guardLimit &&
131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 // guardStart + X + 1 u< guardLimit
133 // == forall X . (guardStart + X) in [0, guardLimit) &&
134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 // (guardStart + X + 1) in [0, guardLimit)
136 // == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 // X in [-latchStart, guardLimit - 1 - guardStart) =>
138 // X in [-guardStart - 1, guardLimit - guardStart - 1)
141 // So the widened condition is:
142 // guardStart u< guardLimit &&
143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 // Similarly for ule condition the widened condition is:
145 // guardStart u< guardLimit &&
146 // latchStart + guardLimit - 1 - guardStart u> latchLimit
147 // For slt condition the widened condition is:
148 // guardStart u< guardLimit &&
149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 // For sle condition the widened condition is:
151 // guardStart u< guardLimit &&
152 // latchStart + guardLimit - 1 - guardStart s> latchLimit
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
156 // * The loop has a single latch with the condition of the form:
157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 // * The guard condition is of the form
159 // G(X) = X - 1 u< guardLimit
161 // For the ugt latch comparison case M is:
162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
164 // The only way the antecedent can be true and the consequent can be false is if
166 // If X == 1 then the second half of the antecedent is
167 // 1 u> latchLimit, and its negation is latchLimit u>= 1.
169 // So the widened condition is:
170 // guardStart u< guardLimit && latchLimit u>= 1.
171 // Similarly for sgt condition the widened condition is:
172 // guardStart u< guardLimit && latchLimit s>= 1.
173 // For uge condition the widened condition is:
174 // guardStart u< guardLimit && latchLimit u> 1.
175 // For sge condition the widened condition is:
176 // guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/BranchProbabilityInfo.h"
182 #include "llvm/Analysis/GuardUtils.h"
183 #include "llvm/Analysis/LoopInfo.h"
184 #include "llvm/Analysis/LoopPass.h"
185 #include "llvm/Analysis/ScalarEvolution.h"
186 #include "llvm/Analysis/ScalarEvolutionExpander.h"
187 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
188 #include "llvm/IR/Function.h"
189 #include "llvm/IR/GlobalValue.h"
190 #include "llvm/IR/IntrinsicInst.h"
191 #include "llvm/IR/Module.h"
192 #include "llvm/IR/PatternMatch.h"
193 #include "llvm/Pass.h"
194 #include "llvm/Support/Debug.h"
195 #include "llvm/Transforms/Scalar.h"
196 #include "llvm/Transforms/Utils/LoopUtils.h"
198 #define DEBUG_TYPE "loop-predication"
200 STATISTIC(TotalConsidered
, "Number of guards considered");
201 STATISTIC(TotalWidened
, "Number of checks widened");
203 using namespace llvm
;
205 static cl::opt
<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
206 cl::Hidden
, cl::init(true));
208 static cl::opt
<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
209 cl::Hidden
, cl::init(true));
212 SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
213 cl::Hidden
, cl::init(false));
215 // This is the scale factor for the latch probability. We use this during
216 // profitability analysis to find other exiting blocks that have a much higher
217 // probability of exiting the loop instead of loop exiting via latch.
218 // This value should be greater than 1 for a sane profitability check.
219 static cl::opt
<float> LatchExitProbabilityScale(
220 "loop-predication-latch-probability-scale", cl::Hidden
, cl::init(2.0),
221 cl::desc("scale factor for the latch probability. Value should be greater "
222 "than 1. Lower values are ignored"));
224 static cl::opt
<bool> PredicateWidenableBranchGuards(
225 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden
,
226 cl::desc("Whether or not we should predicate guards "
227 "expressed as widenable branches to deoptimize blocks"),
231 class LoopPredication
{
232 /// Represents an induction variable check:
233 /// icmp Pred, <induction variable>, <loop invariant limit>
235 ICmpInst::Predicate Pred
;
236 const SCEVAddRecExpr
*IV
;
238 LoopICmp(ICmpInst::Predicate Pred
, const SCEVAddRecExpr
*IV
,
240 : Pred(Pred
), IV(IV
), Limit(Limit
) {}
243 dbgs() << "LoopICmp Pred = " << Pred
<< ", IV = " << *IV
244 << ", Limit = " << *Limit
<< "\n";
249 BranchProbabilityInfo
*BPI
;
252 const DataLayout
*DL
;
253 BasicBlock
*Preheader
;
256 bool isSupportedStep(const SCEV
* Step
);
257 Optional
<LoopICmp
> parseLoopICmp(ICmpInst
*ICI
) {
258 return parseLoopICmp(ICI
->getPredicate(), ICI
->getOperand(0),
261 Optional
<LoopICmp
> parseLoopICmp(ICmpInst::Predicate Pred
, Value
*LHS
,
264 Optional
<LoopICmp
> parseLoopLatchICmp();
266 bool CanExpand(const SCEV
* S
);
267 Value
*expandCheck(SCEVExpander
&Expander
, IRBuilder
<> &Builder
,
268 ICmpInst::Predicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
,
269 Instruction
*InsertAt
);
271 Optional
<Value
*> widenICmpRangeCheck(ICmpInst
*ICI
, SCEVExpander
&Expander
,
272 IRBuilder
<> &Builder
);
273 Optional
<Value
*> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck
,
275 SCEVExpander
&Expander
,
276 IRBuilder
<> &Builder
);
277 Optional
<Value
*> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck
,
279 SCEVExpander
&Expander
,
280 IRBuilder
<> &Builder
);
281 unsigned collectChecks(SmallVectorImpl
<Value
*> &Checks
, Value
*Condition
,
282 SCEVExpander
&Expander
, IRBuilder
<> &Builder
);
283 bool widenGuardConditions(IntrinsicInst
*II
, SCEVExpander
&Expander
);
284 bool widenWidenableBranchGuardConditions(BranchInst
*Guard
, SCEVExpander
&Expander
);
285 // If the loop always exits through another block in the loop, we should not
286 // predicate based on the latch check. For example, the latch check can be a
287 // very coarse grained check and there can be more fine grained exit checks
288 // within the loop. We identify such unprofitable loops through BPI.
289 bool isLoopProfitableToPredicate();
291 // When the IV type is wider than the range operand type, we can still do loop
292 // predication, by generating SCEVs for the range and latch that are of the
293 // same type. We achieve this by generating a SCEV truncate expression for the
294 // latch IV. This is done iff truncation of the IV is a safe operation,
295 // without loss of information.
296 // Another way to achieve this is by generating a wider type SCEV for the
297 // range check operand, however, this needs a more involved check that
298 // operands do not overflow. This can lead to loss of information when the
299 // range operand is of the form: add i32 %offset, %iv. We need to prove that
300 // sext(x + y) is same as sext(x) + sext(y).
301 // This function returns true if we can safely represent the IV type in
302 // the RangeCheckType without loss of information.
303 bool isSafeToTruncateWideIVType(Type
*RangeCheckType
);
304 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
306 Optional
<LoopICmp
> generateLoopLatchCheck(Type
*RangeCheckType
);
309 LoopPredication(ScalarEvolution
*SE
, BranchProbabilityInfo
*BPI
)
310 : SE(SE
), BPI(BPI
){};
311 bool runOnLoop(Loop
*L
);
314 class LoopPredicationLegacyPass
: public LoopPass
{
317 LoopPredicationLegacyPass() : LoopPass(ID
) {
318 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
321 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
322 AU
.addRequired
<BranchProbabilityInfoWrapperPass
>();
323 getLoopAnalysisUsage(AU
);
326 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
{
329 auto *SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
330 BranchProbabilityInfo
&BPI
=
331 getAnalysis
<BranchProbabilityInfoWrapperPass
>().getBPI();
332 LoopPredication
LP(SE
, &BPI
);
333 return LP
.runOnLoop(L
);
337 char LoopPredicationLegacyPass::ID
= 0;
338 } // end namespace llvm
340 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass
, "loop-predication",
341 "Loop predication", false, false)
342 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass
)
343 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
344 INITIALIZE_PASS_END(LoopPredicationLegacyPass
, "loop-predication",
345 "Loop predication", false, false)
347 Pass
*llvm::createLoopPredicationPass() {
348 return new LoopPredicationLegacyPass();
351 PreservedAnalyses
LoopPredicationPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
352 LoopStandardAnalysisResults
&AR
,
355 AM
.getResult
<FunctionAnalysisManagerLoopProxy
>(L
, AR
).getManager();
356 Function
*F
= L
.getHeader()->getParent();
357 auto *BPI
= FAM
.getCachedResult
<BranchProbabilityAnalysis
>(*F
);
358 LoopPredication
LP(&AR
.SE
, BPI
);
359 if (!LP
.runOnLoop(&L
))
360 return PreservedAnalyses::all();
362 return getLoopPassPreservedAnalyses();
365 Optional
<LoopPredication::LoopICmp
>
366 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred
, Value
*LHS
,
368 const SCEV
*LHSS
= SE
->getSCEV(LHS
);
369 if (isa
<SCEVCouldNotCompute
>(LHSS
))
371 const SCEV
*RHSS
= SE
->getSCEV(RHS
);
372 if (isa
<SCEVCouldNotCompute
>(RHSS
))
375 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
376 if (SE
->isLoopInvariant(LHSS
, L
)) {
378 std::swap(LHSS
, RHSS
);
379 Pred
= ICmpInst::getSwappedPredicate(Pred
);
382 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LHSS
);
383 if (!AR
|| AR
->getLoop() != L
)
386 return LoopICmp(Pred
, AR
, RHSS
);
389 Value
*LoopPredication::expandCheck(SCEVExpander
&Expander
,
390 IRBuilder
<> &Builder
,
391 ICmpInst::Predicate Pred
, const SCEV
*LHS
,
392 const SCEV
*RHS
, Instruction
*InsertAt
) {
393 // TODO: we can check isLoopEntryGuardedByCond before emitting the check
395 Type
*Ty
= LHS
->getType();
396 assert(Ty
== RHS
->getType() && "expandCheck operands have different types?");
398 if (SE
->isLoopEntryGuardedByCond(L
, Pred
, LHS
, RHS
))
399 return Builder
.getTrue();
401 Value
*LHSV
= Expander
.expandCodeFor(LHS
, Ty
, InsertAt
);
402 Value
*RHSV
= Expander
.expandCodeFor(RHS
, Ty
, InsertAt
);
403 return Builder
.CreateICmp(Pred
, LHSV
, RHSV
);
406 Optional
<LoopPredication::LoopICmp
>
407 LoopPredication::generateLoopLatchCheck(Type
*RangeCheckType
) {
409 auto *LatchType
= LatchCheck
.IV
->getType();
410 if (RangeCheckType
== LatchType
)
412 // For now, bail out if latch type is narrower than range type.
413 if (DL
->getTypeSizeInBits(LatchType
) < DL
->getTypeSizeInBits(RangeCheckType
))
415 if (!isSafeToTruncateWideIVType(RangeCheckType
))
417 // We can now safely identify the truncated version of the IV and limit for
419 LoopICmp NewLatchCheck
;
420 NewLatchCheck
.Pred
= LatchCheck
.Pred
;
421 NewLatchCheck
.IV
= dyn_cast
<SCEVAddRecExpr
>(
422 SE
->getTruncateExpr(LatchCheck
.IV
, RangeCheckType
));
423 if (!NewLatchCheck
.IV
)
425 NewLatchCheck
.Limit
= SE
->getTruncateExpr(LatchCheck
.Limit
, RangeCheckType
);
426 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
427 << "can be represented as range check type:"
428 << *RangeCheckType
<< "\n");
429 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck
.IV
<< "\n");
430 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck
.Limit
<< "\n");
431 return NewLatchCheck
;
434 bool LoopPredication::isSupportedStep(const SCEV
* Step
) {
435 return Step
->isOne() || (Step
->isAllOnesValue() && EnableCountDownLoop
);
438 bool LoopPredication::CanExpand(const SCEV
* S
) {
439 return SE
->isLoopInvariant(S
, L
) && isSafeToExpand(S
, *SE
);
442 Optional
<Value
*> LoopPredication::widenICmpRangeCheckIncrementingLoop(
443 LoopPredication::LoopICmp LatchCheck
, LoopPredication::LoopICmp RangeCheck
,
444 SCEVExpander
&Expander
, IRBuilder
<> &Builder
) {
445 auto *Ty
= RangeCheck
.IV
->getType();
446 // Generate the widened condition for the forward loop:
447 // guardStart u< guardLimit &&
448 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
449 // where <pred> depends on the latch condition predicate. See the file
450 // header comment for the reasoning.
451 // guardLimit - guardStart + latchStart - 1
452 const SCEV
*GuardStart
= RangeCheck
.IV
->getStart();
453 const SCEV
*GuardLimit
= RangeCheck
.Limit
;
454 const SCEV
*LatchStart
= LatchCheck
.IV
->getStart();
455 const SCEV
*LatchLimit
= LatchCheck
.Limit
;
457 // guardLimit - guardStart + latchStart - 1
459 SE
->getAddExpr(SE
->getMinusSCEV(GuardLimit
, GuardStart
),
460 SE
->getMinusSCEV(LatchStart
, SE
->getOne(Ty
)));
461 if (!CanExpand(GuardStart
) || !CanExpand(GuardLimit
) ||
462 !CanExpand(LatchLimit
) || !CanExpand(RHS
)) {
463 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
466 auto LimitCheckPred
=
467 ICmpInst::getFlippedStrictnessPredicate(LatchCheck
.Pred
);
469 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit
<< "\n");
470 LLVM_DEBUG(dbgs() << "RHS: " << *RHS
<< "\n");
471 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred
<< "\n");
473 Instruction
*InsertAt
= Preheader
->getTerminator();
475 expandCheck(Expander
, Builder
, LimitCheckPred
, LatchLimit
, RHS
, InsertAt
);
476 auto *FirstIterationCheck
= expandCheck(Expander
, Builder
, RangeCheck
.Pred
,
477 GuardStart
, GuardLimit
, InsertAt
);
478 return Builder
.CreateAnd(FirstIterationCheck
, LimitCheck
);
481 Optional
<Value
*> LoopPredication::widenICmpRangeCheckDecrementingLoop(
482 LoopPredication::LoopICmp LatchCheck
, LoopPredication::LoopICmp RangeCheck
,
483 SCEVExpander
&Expander
, IRBuilder
<> &Builder
) {
484 auto *Ty
= RangeCheck
.IV
->getType();
485 const SCEV
*GuardStart
= RangeCheck
.IV
->getStart();
486 const SCEV
*GuardLimit
= RangeCheck
.Limit
;
487 const SCEV
*LatchLimit
= LatchCheck
.Limit
;
488 if (!CanExpand(GuardStart
) || !CanExpand(GuardLimit
) ||
489 !CanExpand(LatchLimit
)) {
490 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
493 // The decrement of the latch check IV should be the same as the
495 auto *PostDecLatchCheckIV
= LatchCheck
.IV
->getPostIncExpr(*SE
);
496 if (RangeCheck
.IV
!= PostDecLatchCheckIV
) {
497 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
498 << *PostDecLatchCheckIV
499 << " and RangeCheckIV: " << *RangeCheck
.IV
<< "\n");
503 // Generate the widened condition for CountDownLoop:
504 // guardStart u< guardLimit &&
505 // latchLimit <pred> 1.
506 // See the header comment for reasoning of the checks.
507 Instruction
*InsertAt
= Preheader
->getTerminator();
508 auto LimitCheckPred
=
509 ICmpInst::getFlippedStrictnessPredicate(LatchCheck
.Pred
);
510 auto *FirstIterationCheck
= expandCheck(Expander
, Builder
, ICmpInst::ICMP_ULT
,
511 GuardStart
, GuardLimit
, InsertAt
);
512 auto *LimitCheck
= expandCheck(Expander
, Builder
, LimitCheckPred
, LatchLimit
,
513 SE
->getOne(Ty
), InsertAt
);
514 return Builder
.CreateAnd(FirstIterationCheck
, LimitCheck
);
517 /// If ICI can be widened to a loop invariant condition emits the loop
518 /// invariant condition in the loop preheader and return it, otherwise
520 Optional
<Value
*> LoopPredication::widenICmpRangeCheck(ICmpInst
*ICI
,
521 SCEVExpander
&Expander
,
522 IRBuilder
<> &Builder
) {
523 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
524 LLVM_DEBUG(ICI
->dump());
526 // parseLoopStructure guarantees that the latch condition is:
527 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
528 // We are looking for the range checks of the form:
530 auto RangeCheck
= parseLoopICmp(ICI
);
532 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
535 LLVM_DEBUG(dbgs() << "Guard check:\n");
536 LLVM_DEBUG(RangeCheck
->dump());
537 if (RangeCheck
->Pred
!= ICmpInst::ICMP_ULT
) {
538 LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
539 << RangeCheck
->Pred
<< ")!\n");
542 auto *RangeCheckIV
= RangeCheck
->IV
;
543 if (!RangeCheckIV
->isAffine()) {
544 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
547 auto *Step
= RangeCheckIV
->getStepRecurrence(*SE
);
548 // We cannot just compare with latch IV step because the latch and range IVs
549 // may have different types.
550 if (!isSupportedStep(Step
)) {
551 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
554 auto *Ty
= RangeCheckIV
->getType();
555 auto CurrLatchCheckOpt
= generateLoopLatchCheck(Ty
);
556 if (!CurrLatchCheckOpt
) {
557 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
558 "corresponding to range type: "
563 LoopICmp CurrLatchCheck
= *CurrLatchCheckOpt
;
564 // At this point, the range and latch step should have the same type, but need
565 // not have the same value (we support both 1 and -1 steps).
566 assert(Step
->getType() ==
567 CurrLatchCheck
.IV
->getStepRecurrence(*SE
)->getType() &&
568 "Range and latch steps should be of same type!");
569 if (Step
!= CurrLatchCheck
.IV
->getStepRecurrence(*SE
)) {
570 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
575 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck
, *RangeCheck
,
578 assert(Step
->isAllOnesValue() && "Step should be -1!");
579 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck
, *RangeCheck
,
584 unsigned LoopPredication::collectChecks(SmallVectorImpl
<Value
*> &Checks
,
586 SCEVExpander
&Expander
,
587 IRBuilder
<> &Builder
) {
588 unsigned NumWidened
= 0;
589 // The guard condition is expected to be in form of:
590 // cond1 && cond2 && cond3 ...
591 // Iterate over subconditions looking for icmp conditions which can be
592 // widened across loop iterations. Widening these conditions remember the
593 // resulting list of subconditions in Checks vector.
594 SmallVector
<Value
*, 4> Worklist(1, Condition
);
595 SmallPtrSet
<Value
*, 4> Visited
;
597 Value
*Condition
= Worklist
.pop_back_val();
598 if (!Visited
.insert(Condition
).second
)
602 using namespace llvm::PatternMatch
;
603 if (match(Condition
, m_And(m_Value(LHS
), m_Value(RHS
)))) {
604 Worklist
.push_back(LHS
);
605 Worklist
.push_back(RHS
);
609 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(Condition
)) {
610 if (auto NewRangeCheck
= widenICmpRangeCheck(ICI
, Expander
, Builder
)) {
611 Checks
.push_back(NewRangeCheck
.getValue());
617 // Save the condition as is if we can't widen it
618 Checks
.push_back(Condition
);
619 } while (!Worklist
.empty());
623 bool LoopPredication::widenGuardConditions(IntrinsicInst
*Guard
,
624 SCEVExpander
&Expander
) {
625 LLVM_DEBUG(dbgs() << "Processing guard:\n");
626 LLVM_DEBUG(Guard
->dump());
629 SmallVector
<Value
*, 4> Checks
;
630 IRBuilder
<> Builder(cast
<Instruction
>(Preheader
->getTerminator()));
631 unsigned NumWidened
= collectChecks(Checks
, Guard
->getOperand(0), Expander
,
636 TotalWidened
+= NumWidened
;
638 // Emit the new guard condition
639 Builder
.SetInsertPoint(Guard
);
640 Value
*LastCheck
= nullptr;
641 for (auto *Check
: Checks
)
645 LastCheck
= Builder
.CreateAnd(LastCheck
, Check
);
646 Guard
->setOperand(0, LastCheck
);
648 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened
<< "\n");
652 bool LoopPredication::widenWidenableBranchGuardConditions(
653 BranchInst
*Guard
, SCEVExpander
&Expander
) {
654 assert(isGuardAsWidenableBranch(Guard
) && "Must be!");
655 LLVM_DEBUG(dbgs() << "Processing guard:\n");
656 LLVM_DEBUG(Guard
->dump());
659 SmallVector
<Value
*, 4> Checks
;
660 IRBuilder
<> Builder(cast
<Instruction
>(Preheader
->getTerminator()));
661 Value
*Condition
= nullptr, *WidenableCondition
= nullptr;
662 BasicBlock
*GBB
= nullptr, *DBB
= nullptr;
663 parseWidenableBranch(Guard
, Condition
, WidenableCondition
, GBB
, DBB
);
664 unsigned NumWidened
= collectChecks(Checks
, Condition
, Expander
, Builder
);
668 TotalWidened
+= NumWidened
;
670 // Emit the new guard condition
671 Builder
.SetInsertPoint(Guard
);
672 Value
*LastCheck
= nullptr;
673 for (auto *Check
: Checks
)
677 LastCheck
= Builder
.CreateAnd(LastCheck
, Check
);
678 // Make sure that the check contains widenable condition and therefore can be
680 LastCheck
= Builder
.CreateAnd(LastCheck
, WidenableCondition
);
681 Guard
->setOperand(0, LastCheck
);
682 assert(isGuardAsWidenableBranch(Guard
) &&
683 "Stopped being a guard after transform?");
685 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened
<< "\n");
689 Optional
<LoopPredication::LoopICmp
> LoopPredication::parseLoopLatchICmp() {
690 using namespace PatternMatch
;
692 BasicBlock
*LoopLatch
= L
->getLoopLatch();
694 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
698 ICmpInst::Predicate Pred
;
700 BasicBlock
*TrueDest
, *FalseDest
;
702 if (!match(LoopLatch
->getTerminator(),
703 m_Br(m_ICmp(Pred
, m_Value(LHS
), m_Value(RHS
)), TrueDest
,
705 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
708 assert((TrueDest
== L
->getHeader() || FalseDest
== L
->getHeader()) &&
709 "One of the latch's destinations must be the header");
710 if (TrueDest
!= L
->getHeader())
711 Pred
= ICmpInst::getInversePredicate(Pred
);
713 auto Result
= parseLoopICmp(Pred
, LHS
, RHS
);
715 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
719 // Check affine first, so if it's not we don't try to compute the step
721 if (!Result
->IV
->isAffine()) {
722 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
726 auto *Step
= Result
->IV
->getStepRecurrence(*SE
);
727 if (!isSupportedStep(Step
)) {
728 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step
<< ")!\n");
732 auto IsUnsupportedPredicate
= [](const SCEV
*Step
, ICmpInst::Predicate Pred
) {
734 return Pred
!= ICmpInst::ICMP_ULT
&& Pred
!= ICmpInst::ICMP_SLT
&&
735 Pred
!= ICmpInst::ICMP_ULE
&& Pred
!= ICmpInst::ICMP_SLE
;
737 assert(Step
->isAllOnesValue() && "Step should be -1!");
738 return Pred
!= ICmpInst::ICMP_UGT
&& Pred
!= ICmpInst::ICMP_SGT
&&
739 Pred
!= ICmpInst::ICMP_UGE
&& Pred
!= ICmpInst::ICMP_SGE
;
743 if (IsUnsupportedPredicate(Step
, Result
->Pred
)) {
744 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result
->Pred
751 // Returns true if its safe to truncate the IV to RangeCheckType.
752 bool LoopPredication::isSafeToTruncateWideIVType(Type
*RangeCheckType
) {
753 if (!EnableIVTruncation
)
755 assert(DL
->getTypeSizeInBits(LatchCheck
.IV
->getType()) >
756 DL
->getTypeSizeInBits(RangeCheckType
) &&
757 "Expected latch check IV type to be larger than range check operand "
759 // The start and end values of the IV should be known. This is to guarantee
760 // that truncating the wide type will not lose information.
761 auto *Limit
= dyn_cast
<SCEVConstant
>(LatchCheck
.Limit
);
762 auto *Start
= dyn_cast
<SCEVConstant
>(LatchCheck
.IV
->getStart());
763 if (!Limit
|| !Start
)
765 // This check makes sure that the IV does not change sign during loop
766 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
767 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
768 // IV wraps around, and the truncation of the IV would lose the range of
769 // iterations between 2^32 and 2^64.
771 if (!SE
->isMonotonicPredicate(LatchCheck
.IV
, LatchCheck
.Pred
, Increasing
))
773 // The active bits should be less than the bits in the RangeCheckType. This
774 // guarantees that truncating the latch check to RangeCheckType is a safe
776 auto RangeCheckTypeBitSize
= DL
->getTypeSizeInBits(RangeCheckType
);
777 return Start
->getAPInt().getActiveBits() < RangeCheckTypeBitSize
&&
778 Limit
->getAPInt().getActiveBits() < RangeCheckTypeBitSize
;
781 bool LoopPredication::isLoopProfitableToPredicate() {
782 if (SkipProfitabilityChecks
|| !BPI
)
785 SmallVector
<std::pair
<const BasicBlock
*, const BasicBlock
*>, 8> ExitEdges
;
786 L
->getExitEdges(ExitEdges
);
787 // If there is only one exiting edge in the loop, it is always profitable to
788 // predicate the loop.
789 if (ExitEdges
.size() == 1)
792 // Calculate the exiting probabilities of all exiting edges from the loop,
793 // starting with the LatchExitProbability.
794 // Heuristic for profitability: If any of the exiting blocks' probability of
795 // exiting the loop is larger than exiting through the latch block, it's not
796 // profitable to predicate the loop.
797 auto *LatchBlock
= L
->getLoopLatch();
798 assert(LatchBlock
&& "Should have a single latch at this point!");
799 auto *LatchTerm
= LatchBlock
->getTerminator();
800 assert(LatchTerm
->getNumSuccessors() == 2 &&
801 "expected to be an exiting block with 2 succs!");
802 unsigned LatchBrExitIdx
=
803 LatchTerm
->getSuccessor(0) == L
->getHeader() ? 1 : 0;
804 BranchProbability LatchExitProbability
=
805 BPI
->getEdgeProbability(LatchBlock
, LatchBrExitIdx
);
807 // Protect against degenerate inputs provided by the user. Providing a value
808 // less than one, can invert the definition of profitable loop predication.
809 float ScaleFactor
= LatchExitProbabilityScale
;
810 if (ScaleFactor
< 1) {
813 << "Ignored user setting for loop-predication-latch-probability-scale: "
814 << LatchExitProbabilityScale
<< "\n");
815 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
818 const auto LatchProbabilityThreshold
=
819 LatchExitProbability
* ScaleFactor
;
821 for (const auto &ExitEdge
: ExitEdges
) {
822 BranchProbability ExitingBlockProbability
=
823 BPI
->getEdgeProbability(ExitEdge
.first
, ExitEdge
.second
);
824 // Some exiting edge has higher probability than the latch exiting edge.
825 // No longer profitable to predicate.
826 if (ExitingBlockProbability
> LatchProbabilityThreshold
)
829 // Using BPI, we have concluded that the most probable way to exit from the
830 // loop is through the latch (or there's no profile information and all
831 // exits are equally likely).
835 bool LoopPredication::runOnLoop(Loop
*Loop
) {
838 LLVM_DEBUG(dbgs() << "Analyzing ");
839 LLVM_DEBUG(L
->dump());
841 Module
*M
= L
->getHeader()->getModule();
843 // There is nothing to do if the module doesn't use guards
845 M
->getFunction(Intrinsic::getName(Intrinsic::experimental_guard
));
846 bool HasIntrinsicGuards
= GuardDecl
&& !GuardDecl
->use_empty();
847 auto *WCDecl
= M
->getFunction(
848 Intrinsic::getName(Intrinsic::experimental_widenable_condition
));
849 bool HasWidenableConditions
=
850 PredicateWidenableBranchGuards
&& WCDecl
&& !WCDecl
->use_empty();
851 if (!HasIntrinsicGuards
&& !HasWidenableConditions
)
854 DL
= &M
->getDataLayout();
856 Preheader
= L
->getLoopPreheader();
860 auto LatchCheckOpt
= parseLoopLatchICmp();
863 LatchCheck
= *LatchCheckOpt
;
865 LLVM_DEBUG(dbgs() << "Latch check:\n");
866 LLVM_DEBUG(LatchCheck
.dump());
868 if (!isLoopProfitableToPredicate()) {
869 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
872 // Collect all the guards into a vector and process later, so as not
873 // to invalidate the instruction iterator.
874 SmallVector
<IntrinsicInst
*, 4> Guards
;
875 SmallVector
<BranchInst
*, 4> GuardsAsWidenableBranches
;
876 for (const auto BB
: L
->blocks()) {
879 Guards
.push_back(cast
<IntrinsicInst
>(&I
));
880 if (PredicateWidenableBranchGuards
&&
881 isGuardAsWidenableBranch(BB
->getTerminator()))
882 GuardsAsWidenableBranches
.push_back(
883 cast
<BranchInst
>(BB
->getTerminator()));
886 if (Guards
.empty() && GuardsAsWidenableBranches
.empty())
889 SCEVExpander
Expander(*SE
, *DL
, "loop-predication");
891 bool Changed
= false;
892 for (auto *Guard
: Guards
)
893 Changed
|= widenGuardConditions(Guard
, Expander
);
894 for (auto *Guard
: GuardsAsWidenableBranches
)
895 Changed
|= widenWidenableBranchGuardConditions(Guard
, Expander
);