1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
23 // %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 // %i.next = add %i, 1
26 // %c = icmp eq %i.next, %n
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
35 // TODO: More sophistication in the way Formulae are generated and filtered.
37 // TODO: Handle multiple loops at a time.
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 // smaller encoding (on x86 at least).
45 // TODO: When a negated register is used by an add (such as in a list of
46 // multiple base registers, or as the increment expression in an addrec),
47 // we may not actually need both reg and (-1 * reg) in registers; the
48 // negation can be implemented by using a sub instead of an add. The
49 // lack of support for taking this into consideration when making
50 // register pressure decisions is partly worked around by the "Special"
53 //===----------------------------------------------------------------------===//
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopAnalysisManager.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Analysis/LoopPass.h"
72 #include "llvm/Analysis/ScalarEvolution.h"
73 #include "llvm/Analysis/ScalarEvolutionExpander.h"
74 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
75 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
76 #include "llvm/Analysis/TargetTransformInfo.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include "llvm/Config/llvm-config.h"
79 #include "llvm/IR/BasicBlock.h"
80 #include "llvm/IR/Constant.h"
81 #include "llvm/IR/Constants.h"
82 #include "llvm/IR/DerivedTypes.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/GlobalValue.h"
85 #include "llvm/IR/IRBuilder.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/OperandTraits.h"
93 #include "llvm/IR/Operator.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/IR/ValueHandle.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Transforms/Scalar.h"
109 #include "llvm/Transforms/Utils.h"
110 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
121 using namespace llvm
;
123 #define DEBUG_TYPE "loop-reduce"
125 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
126 /// bail out. This threshold is far beyond the number of users that LSR can
127 /// conceivably solve, so it should not affect generated code, but catches the
128 /// worst cases before LSR burns too much compile time and stack space.
129 static const unsigned MaxIVUsers
= 200;
131 // Temporary flag to cleanup congruent phis after LSR phi expansion.
132 // It's currently disabled until we can determine whether it's truly useful or
133 // not. The flag should be removed after the v3.0 release.
134 // This is now needed for ivchains.
135 static cl::opt
<bool> EnablePhiElim(
136 "enable-lsr-phielim", cl::Hidden
, cl::init(true),
137 cl::desc("Enable LSR phi elimination"));
139 // The flag adds instruction count to solutions cost comparision.
140 static cl::opt
<bool> InsnsCost(
141 "lsr-insns-cost", cl::Hidden
, cl::init(true),
142 cl::desc("Add instruction count to a LSR cost model"));
144 // Flag to choose how to narrow complex lsr solution
145 static cl::opt
<bool> LSRExpNarrow(
146 "lsr-exp-narrow", cl::Hidden
, cl::init(false),
147 cl::desc("Narrow LSR complex solution using"
148 " expectation of registers number"));
150 // Flag to narrow search space by filtering non-optimal formulae with
151 // the same ScaledReg and Scale.
152 static cl::opt
<bool> FilterSameScaledReg(
153 "lsr-filter-same-scaled-reg", cl::Hidden
, cl::init(true),
154 cl::desc("Narrow LSR search space by filtering non-optimal formulae"
155 " with the same ScaledReg and Scale"));
157 static cl::opt
<bool> EnableBackedgeIndexing(
158 "lsr-backedge-indexing", cl::Hidden
, cl::init(true),
159 cl::desc("Enable the generation of cross iteration indexed memops"));
161 static cl::opt
<unsigned> ComplexityLimit(
162 "lsr-complexity-limit", cl::Hidden
,
163 cl::init(std::numeric_limits
<uint16_t>::max()),
164 cl::desc("LSR search space complexity limit"));
167 // Stress test IV chain generation.
168 static cl::opt
<bool> StressIVChain(
169 "stress-ivchain", cl::Hidden
, cl::init(false),
170 cl::desc("Stress test LSR IV chains"));
172 static bool StressIVChain
= false;
178 /// Used in situations where the accessed memory type is unknown.
179 static const unsigned UnknownAddressSpace
=
180 std::numeric_limits
<unsigned>::max();
182 Type
*MemTy
= nullptr;
183 unsigned AddrSpace
= UnknownAddressSpace
;
185 MemAccessTy() = default;
186 MemAccessTy(Type
*Ty
, unsigned AS
) : MemTy(Ty
), AddrSpace(AS
) {}
188 bool operator==(MemAccessTy Other
) const {
189 return MemTy
== Other
.MemTy
&& AddrSpace
== Other
.AddrSpace
;
192 bool operator!=(MemAccessTy Other
) const { return !(*this == Other
); }
194 static MemAccessTy
getUnknown(LLVMContext
&Ctx
,
195 unsigned AS
= UnknownAddressSpace
) {
196 return MemAccessTy(Type::getVoidTy(Ctx
), AS
);
199 Type
*getType() { return MemTy
; }
202 /// This class holds data which is used to order reuse candidates.
205 /// This represents the set of LSRUse indices which reference
206 /// a particular register.
207 SmallBitVector UsedByIndices
;
209 void print(raw_ostream
&OS
) const;
213 } // end anonymous namespace
215 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
216 void RegSortData::print(raw_ostream
&OS
) const {
217 OS
<< "[NumUses=" << UsedByIndices
.count() << ']';
220 LLVM_DUMP_METHOD
void RegSortData::dump() const {
221 print(errs()); errs() << '\n';
227 /// Map register candidates to information about how they are used.
228 class RegUseTracker
{
229 using RegUsesTy
= DenseMap
<const SCEV
*, RegSortData
>;
231 RegUsesTy RegUsesMap
;
232 SmallVector
<const SCEV
*, 16> RegSequence
;
235 void countRegister(const SCEV
*Reg
, size_t LUIdx
);
236 void dropRegister(const SCEV
*Reg
, size_t LUIdx
);
237 void swapAndDropUse(size_t LUIdx
, size_t LastLUIdx
);
239 bool isRegUsedByUsesOtherThan(const SCEV
*Reg
, size_t LUIdx
) const;
241 const SmallBitVector
&getUsedByIndices(const SCEV
*Reg
) const;
245 using iterator
= SmallVectorImpl
<const SCEV
*>::iterator
;
246 using const_iterator
= SmallVectorImpl
<const SCEV
*>::const_iterator
;
248 iterator
begin() { return RegSequence
.begin(); }
249 iterator
end() { return RegSequence
.end(); }
250 const_iterator
begin() const { return RegSequence
.begin(); }
251 const_iterator
end() const { return RegSequence
.end(); }
254 } // end anonymous namespace
257 RegUseTracker::countRegister(const SCEV
*Reg
, size_t LUIdx
) {
258 std::pair
<RegUsesTy::iterator
, bool> Pair
=
259 RegUsesMap
.insert(std::make_pair(Reg
, RegSortData()));
260 RegSortData
&RSD
= Pair
.first
->second
;
262 RegSequence
.push_back(Reg
);
263 RSD
.UsedByIndices
.resize(std::max(RSD
.UsedByIndices
.size(), LUIdx
+ 1));
264 RSD
.UsedByIndices
.set(LUIdx
);
268 RegUseTracker::dropRegister(const SCEV
*Reg
, size_t LUIdx
) {
269 RegUsesTy::iterator It
= RegUsesMap
.find(Reg
);
270 assert(It
!= RegUsesMap
.end());
271 RegSortData
&RSD
= It
->second
;
272 assert(RSD
.UsedByIndices
.size() > LUIdx
);
273 RSD
.UsedByIndices
.reset(LUIdx
);
277 RegUseTracker::swapAndDropUse(size_t LUIdx
, size_t LastLUIdx
) {
278 assert(LUIdx
<= LastLUIdx
);
280 // Update RegUses. The data structure is not optimized for this purpose;
281 // we must iterate through it and update each of the bit vectors.
282 for (auto &Pair
: RegUsesMap
) {
283 SmallBitVector
&UsedByIndices
= Pair
.second
.UsedByIndices
;
284 if (LUIdx
< UsedByIndices
.size())
285 UsedByIndices
[LUIdx
] =
286 LastLUIdx
< UsedByIndices
.size() ? UsedByIndices
[LastLUIdx
] : false;
287 UsedByIndices
.resize(std::min(UsedByIndices
.size(), LastLUIdx
));
292 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV
*Reg
, size_t LUIdx
) const {
293 RegUsesTy::const_iterator I
= RegUsesMap
.find(Reg
);
294 if (I
== RegUsesMap
.end())
296 const SmallBitVector
&UsedByIndices
= I
->second
.UsedByIndices
;
297 int i
= UsedByIndices
.find_first();
298 if (i
== -1) return false;
299 if ((size_t)i
!= LUIdx
) return true;
300 return UsedByIndices
.find_next(i
) != -1;
303 const SmallBitVector
&RegUseTracker::getUsedByIndices(const SCEV
*Reg
) const {
304 RegUsesTy::const_iterator I
= RegUsesMap
.find(Reg
);
305 assert(I
!= RegUsesMap
.end() && "Unknown register!");
306 return I
->second
.UsedByIndices
;
309 void RegUseTracker::clear() {
316 /// This class holds information that describes a formula for computing
317 /// satisfying a use. It may include broken-out immediates and scaled registers.
319 /// Global base address used for complex addressing.
320 GlobalValue
*BaseGV
= nullptr;
322 /// Base offset for complex addressing.
323 int64_t BaseOffset
= 0;
325 /// Whether any complex addressing has a base register.
326 bool HasBaseReg
= false;
328 /// The scale of any complex addressing.
331 /// The list of "base" registers for this use. When this is non-empty. The
332 /// canonical representation of a formula is
333 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
334 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
335 /// 3. The reg containing recurrent expr related with currect loop in the
336 /// formula should be put in the ScaledReg.
337 /// #1 enforces that the scaled register is always used when at least two
338 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
339 /// #2 enforces that 1 * reg is reg.
340 /// #3 ensures invariant regs with respect to current loop can be combined
341 /// together in LSR codegen.
342 /// This invariant can be temporarily broken while building a formula.
343 /// However, every formula inserted into the LSRInstance must be in canonical
345 SmallVector
<const SCEV
*, 4> BaseRegs
;
347 /// The 'scaled' register for this use. This should be non-null when Scale is
349 const SCEV
*ScaledReg
= nullptr;
351 /// An additional constant offset which added near the use. This requires a
352 /// temporary register, but the offset itself can live in an add immediate
353 /// field rather than a register.
354 int64_t UnfoldedOffset
= 0;
358 void initialMatch(const SCEV
*S
, Loop
*L
, ScalarEvolution
&SE
);
360 bool isCanonical(const Loop
&L
) const;
362 void canonicalize(const Loop
&L
);
366 bool hasZeroEnd() const;
368 size_t getNumRegs() const;
369 Type
*getType() const;
371 void deleteBaseReg(const SCEV
*&S
);
373 bool referencesReg(const SCEV
*S
) const;
374 bool hasRegsUsedByUsesOtherThan(size_t LUIdx
,
375 const RegUseTracker
&RegUses
) const;
377 void print(raw_ostream
&OS
) const;
381 } // end anonymous namespace
383 /// Recursion helper for initialMatch.
384 static void DoInitialMatch(const SCEV
*S
, Loop
*L
,
385 SmallVectorImpl
<const SCEV
*> &Good
,
386 SmallVectorImpl
<const SCEV
*> &Bad
,
387 ScalarEvolution
&SE
) {
388 // Collect expressions which properly dominate the loop header.
389 if (SE
.properlyDominates(S
, L
->getHeader())) {
394 // Look at add operands.
395 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
396 for (const SCEV
*S
: Add
->operands())
397 DoInitialMatch(S
, L
, Good
, Bad
, SE
);
401 // Look at addrec operands.
402 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
))
403 if (!AR
->getStart()->isZero() && AR
->isAffine()) {
404 DoInitialMatch(AR
->getStart(), L
, Good
, Bad
, SE
);
405 DoInitialMatch(SE
.getAddRecExpr(SE
.getConstant(AR
->getType(), 0),
406 AR
->getStepRecurrence(SE
),
407 // FIXME: AR->getNoWrapFlags()
408 AR
->getLoop(), SCEV::FlagAnyWrap
),
413 // Handle a multiplication by -1 (negation) if it didn't fold.
414 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
))
415 if (Mul
->getOperand(0)->isAllOnesValue()) {
416 SmallVector
<const SCEV
*, 4> Ops(Mul
->op_begin()+1, Mul
->op_end());
417 const SCEV
*NewMul
= SE
.getMulExpr(Ops
);
419 SmallVector
<const SCEV
*, 4> MyGood
;
420 SmallVector
<const SCEV
*, 4> MyBad
;
421 DoInitialMatch(NewMul
, L
, MyGood
, MyBad
, SE
);
422 const SCEV
*NegOne
= SE
.getSCEV(ConstantInt::getAllOnesValue(
423 SE
.getEffectiveSCEVType(NewMul
->getType())));
424 for (const SCEV
*S
: MyGood
)
425 Good
.push_back(SE
.getMulExpr(NegOne
, S
));
426 for (const SCEV
*S
: MyBad
)
427 Bad
.push_back(SE
.getMulExpr(NegOne
, S
));
431 // Ok, we can't do anything interesting. Just stuff the whole thing into a
432 // register and hope for the best.
436 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
437 /// all loop-invariant and loop-computable values in a single base register.
438 void Formula::initialMatch(const SCEV
*S
, Loop
*L
, ScalarEvolution
&SE
) {
439 SmallVector
<const SCEV
*, 4> Good
;
440 SmallVector
<const SCEV
*, 4> Bad
;
441 DoInitialMatch(S
, L
, Good
, Bad
, SE
);
443 const SCEV
*Sum
= SE
.getAddExpr(Good
);
445 BaseRegs
.push_back(Sum
);
449 const SCEV
*Sum
= SE
.getAddExpr(Bad
);
451 BaseRegs
.push_back(Sum
);
457 /// Check whether or not this formula satisfies the canonical
459 /// \see Formula::BaseRegs.
460 bool Formula::isCanonical(const Loop
&L
) const {
462 return BaseRegs
.size() <= 1;
467 if (Scale
== 1 && BaseRegs
.empty())
470 const SCEVAddRecExpr
*SAR
= dyn_cast
<const SCEVAddRecExpr
>(ScaledReg
);
471 if (SAR
&& SAR
->getLoop() == &L
)
474 // If ScaledReg is not a recurrent expr, or it is but its loop is not current
475 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
476 // loop, we want to swap the reg in BaseRegs with ScaledReg.
478 find_if(make_range(BaseRegs
.begin(), BaseRegs
.end()), [&](const SCEV
*S
) {
479 return isa
<const SCEVAddRecExpr
>(S
) &&
480 (cast
<SCEVAddRecExpr
>(S
)->getLoop() == &L
);
482 return I
== BaseRegs
.end();
485 /// Helper method to morph a formula into its canonical representation.
486 /// \see Formula::BaseRegs.
487 /// Every formula having more than one base register, must use the ScaledReg
488 /// field. Otherwise, we would have to do special cases everywhere in LSR
489 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
490 /// On the other hand, 1*reg should be canonicalized into reg.
491 void Formula::canonicalize(const Loop
&L
) {
494 // So far we did not need this case. This is easy to implement but it is
495 // useless to maintain dead code. Beside it could hurt compile time.
496 assert(!BaseRegs
.empty() && "1*reg => reg, should not be needed.");
498 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
500 ScaledReg
= BaseRegs
.back();
505 // If ScaledReg is an invariant with respect to L, find the reg from
506 // BaseRegs containing the recurrent expr related with Loop L. Swap the
507 // reg with ScaledReg.
508 const SCEVAddRecExpr
*SAR
= dyn_cast
<const SCEVAddRecExpr
>(ScaledReg
);
509 if (!SAR
|| SAR
->getLoop() != &L
) {
510 auto I
= find_if(make_range(BaseRegs
.begin(), BaseRegs
.end()),
512 return isa
<const SCEVAddRecExpr
>(S
) &&
513 (cast
<SCEVAddRecExpr
>(S
)->getLoop() == &L
);
515 if (I
!= BaseRegs
.end())
516 std::swap(ScaledReg
, *I
);
520 /// Get rid of the scale in the formula.
521 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
522 /// \return true if it was possible to get rid of the scale, false otherwise.
523 /// \note After this operation the formula may not be in the canonical form.
524 bool Formula::unscale() {
528 BaseRegs
.push_back(ScaledReg
);
533 bool Formula::hasZeroEnd() const {
534 if (UnfoldedOffset
|| BaseOffset
)
536 if (BaseRegs
.size() != 1 || ScaledReg
)
541 /// Return the total number of register operands used by this formula. This does
542 /// not include register uses implied by non-constant addrec strides.
543 size_t Formula::getNumRegs() const {
544 return !!ScaledReg
+ BaseRegs
.size();
547 /// Return the type of this formula, if it has one, or null otherwise. This type
548 /// is meaningless except for the bit size.
549 Type
*Formula::getType() const {
550 return !BaseRegs
.empty() ? BaseRegs
.front()->getType() :
551 ScaledReg
? ScaledReg
->getType() :
552 BaseGV
? BaseGV
->getType() :
556 /// Delete the given base reg from the BaseRegs list.
557 void Formula::deleteBaseReg(const SCEV
*&S
) {
558 if (&S
!= &BaseRegs
.back())
559 std::swap(S
, BaseRegs
.back());
563 /// Test if this formula references the given register.
564 bool Formula::referencesReg(const SCEV
*S
) const {
565 return S
== ScaledReg
|| is_contained(BaseRegs
, S
);
568 /// Test whether this formula uses registers which are used by uses other than
569 /// the use with the given index.
570 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx
,
571 const RegUseTracker
&RegUses
) const {
573 if (RegUses
.isRegUsedByUsesOtherThan(ScaledReg
, LUIdx
))
575 for (const SCEV
*BaseReg
: BaseRegs
)
576 if (RegUses
.isRegUsedByUsesOtherThan(BaseReg
, LUIdx
))
581 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
582 void Formula::print(raw_ostream
&OS
) const {
585 if (!First
) OS
<< " + "; else First
= false;
586 BaseGV
->printAsOperand(OS
, /*PrintType=*/false);
588 if (BaseOffset
!= 0) {
589 if (!First
) OS
<< " + "; else First
= false;
592 for (const SCEV
*BaseReg
: BaseRegs
) {
593 if (!First
) OS
<< " + "; else First
= false;
594 OS
<< "reg(" << *BaseReg
<< ')';
596 if (HasBaseReg
&& BaseRegs
.empty()) {
597 if (!First
) OS
<< " + "; else First
= false;
598 OS
<< "**error: HasBaseReg**";
599 } else if (!HasBaseReg
&& !BaseRegs
.empty()) {
600 if (!First
) OS
<< " + "; else First
= false;
601 OS
<< "**error: !HasBaseReg**";
604 if (!First
) OS
<< " + "; else First
= false;
605 OS
<< Scale
<< "*reg(";
612 if (UnfoldedOffset
!= 0) {
613 if (!First
) OS
<< " + ";
614 OS
<< "imm(" << UnfoldedOffset
<< ')';
618 LLVM_DUMP_METHOD
void Formula::dump() const {
619 print(errs()); errs() << '\n';
623 /// Return true if the given addrec can be sign-extended without changing its
625 static bool isAddRecSExtable(const SCEVAddRecExpr
*AR
, ScalarEvolution
&SE
) {
627 IntegerType::get(SE
.getContext(), SE
.getTypeSizeInBits(AR
->getType()) + 1);
628 return isa
<SCEVAddRecExpr
>(SE
.getSignExtendExpr(AR
, WideTy
));
631 /// Return true if the given add can be sign-extended without changing its
633 static bool isAddSExtable(const SCEVAddExpr
*A
, ScalarEvolution
&SE
) {
635 IntegerType::get(SE
.getContext(), SE
.getTypeSizeInBits(A
->getType()) + 1);
636 return isa
<SCEVAddExpr
>(SE
.getSignExtendExpr(A
, WideTy
));
639 /// Return true if the given mul can be sign-extended without changing its
641 static bool isMulSExtable(const SCEVMulExpr
*M
, ScalarEvolution
&SE
) {
643 IntegerType::get(SE
.getContext(),
644 SE
.getTypeSizeInBits(M
->getType()) * M
->getNumOperands());
645 return isa
<SCEVMulExpr
>(SE
.getSignExtendExpr(M
, WideTy
));
648 /// Return an expression for LHS /s RHS, if it can be determined and if the
649 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
650 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
651 /// the multiplication may overflow, which is useful when the result will be
652 /// used in a context where the most significant bits are ignored.
653 static const SCEV
*getExactSDiv(const SCEV
*LHS
, const SCEV
*RHS
,
655 bool IgnoreSignificantBits
= false) {
656 // Handle the trivial case, which works for any SCEV type.
658 return SE
.getConstant(LHS
->getType(), 1);
660 // Handle a few RHS special cases.
661 const SCEVConstant
*RC
= dyn_cast
<SCEVConstant
>(RHS
);
663 const APInt
&RA
= RC
->getAPInt();
664 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
666 if (RA
.isAllOnesValue())
667 return SE
.getMulExpr(LHS
, RC
);
668 // Handle x /s 1 as x.
673 // Check for a division of a constant by a constant.
674 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(LHS
)) {
677 const APInt
&LA
= C
->getAPInt();
678 const APInt
&RA
= RC
->getAPInt();
679 if (LA
.srem(RA
) != 0)
681 return SE
.getConstant(LA
.sdiv(RA
));
684 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
685 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LHS
)) {
686 if ((IgnoreSignificantBits
|| isAddRecSExtable(AR
, SE
)) && AR
->isAffine()) {
687 const SCEV
*Step
= getExactSDiv(AR
->getStepRecurrence(SE
), RHS
, SE
,
688 IgnoreSignificantBits
);
689 if (!Step
) return nullptr;
690 const SCEV
*Start
= getExactSDiv(AR
->getStart(), RHS
, SE
,
691 IgnoreSignificantBits
);
692 if (!Start
) return nullptr;
693 // FlagNW is independent of the start value, step direction, and is
694 // preserved with smaller magnitude steps.
695 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
696 return SE
.getAddRecExpr(Start
, Step
, AR
->getLoop(), SCEV::FlagAnyWrap
);
701 // Distribute the sdiv over add operands, if the add doesn't overflow.
702 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(LHS
)) {
703 if (IgnoreSignificantBits
|| isAddSExtable(Add
, SE
)) {
704 SmallVector
<const SCEV
*, 8> Ops
;
705 for (const SCEV
*S
: Add
->operands()) {
706 const SCEV
*Op
= getExactSDiv(S
, RHS
, SE
, IgnoreSignificantBits
);
707 if (!Op
) return nullptr;
710 return SE
.getAddExpr(Ops
);
715 // Check for a multiply operand that we can pull RHS out of.
716 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(LHS
)) {
717 if (IgnoreSignificantBits
|| isMulSExtable(Mul
, SE
)) {
718 SmallVector
<const SCEV
*, 4> Ops
;
720 for (const SCEV
*S
: Mul
->operands()) {
722 if (const SCEV
*Q
= getExactSDiv(S
, RHS
, SE
,
723 IgnoreSignificantBits
)) {
729 return Found
? SE
.getMulExpr(Ops
) : nullptr;
734 // Otherwise we don't know.
738 /// If S involves the addition of a constant integer value, return that integer
739 /// value, and mutate S to point to a new SCEV with that value excluded.
740 static int64_t ExtractImmediate(const SCEV
*&S
, ScalarEvolution
&SE
) {
741 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
)) {
742 if (C
->getAPInt().getMinSignedBits() <= 64) {
743 S
= SE
.getConstant(C
->getType(), 0);
744 return C
->getValue()->getSExtValue();
746 } else if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
747 SmallVector
<const SCEV
*, 8> NewOps(Add
->op_begin(), Add
->op_end());
748 int64_t Result
= ExtractImmediate(NewOps
.front(), SE
);
750 S
= SE
.getAddExpr(NewOps
);
752 } else if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
753 SmallVector
<const SCEV
*, 8> NewOps(AR
->op_begin(), AR
->op_end());
754 int64_t Result
= ExtractImmediate(NewOps
.front(), SE
);
756 S
= SE
.getAddRecExpr(NewOps
, AR
->getLoop(),
757 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
764 /// If S involves the addition of a GlobalValue address, return that symbol, and
765 /// mutate S to point to a new SCEV with that value excluded.
766 static GlobalValue
*ExtractSymbol(const SCEV
*&S
, ScalarEvolution
&SE
) {
767 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
768 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(U
->getValue())) {
769 S
= SE
.getConstant(GV
->getType(), 0);
772 } else if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
773 SmallVector
<const SCEV
*, 8> NewOps(Add
->op_begin(), Add
->op_end());
774 GlobalValue
*Result
= ExtractSymbol(NewOps
.back(), SE
);
776 S
= SE
.getAddExpr(NewOps
);
778 } else if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
779 SmallVector
<const SCEV
*, 8> NewOps(AR
->op_begin(), AR
->op_end());
780 GlobalValue
*Result
= ExtractSymbol(NewOps
.front(), SE
);
782 S
= SE
.getAddRecExpr(NewOps
, AR
->getLoop(),
783 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
790 /// Returns true if the specified instruction is using the specified value as an
792 static bool isAddressUse(const TargetTransformInfo
&TTI
,
793 Instruction
*Inst
, Value
*OperandVal
) {
794 bool isAddress
= isa
<LoadInst
>(Inst
);
795 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
796 if (SI
->getPointerOperand() == OperandVal
)
798 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
799 // Addressing modes can also be folded into prefetches and a variety
801 switch (II
->getIntrinsicID()) {
802 case Intrinsic::memset
:
803 case Intrinsic::prefetch
:
804 if (II
->getArgOperand(0) == OperandVal
)
807 case Intrinsic::memmove
:
808 case Intrinsic::memcpy
:
809 if (II
->getArgOperand(0) == OperandVal
||
810 II
->getArgOperand(1) == OperandVal
)
814 MemIntrinsicInfo IntrInfo
;
815 if (TTI
.getTgtMemIntrinsic(II
, IntrInfo
)) {
816 if (IntrInfo
.PtrVal
== OperandVal
)
821 } else if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(Inst
)) {
822 if (RMW
->getPointerOperand() == OperandVal
)
824 } else if (AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(Inst
)) {
825 if (CmpX
->getPointerOperand() == OperandVal
)
831 /// Return the type of the memory being accessed.
832 static MemAccessTy
getAccessType(const TargetTransformInfo
&TTI
,
833 Instruction
*Inst
, Value
*OperandVal
) {
834 MemAccessTy
AccessTy(Inst
->getType(), MemAccessTy::UnknownAddressSpace
);
835 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
836 AccessTy
.MemTy
= SI
->getOperand(0)->getType();
837 AccessTy
.AddrSpace
= SI
->getPointerAddressSpace();
838 } else if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(Inst
)) {
839 AccessTy
.AddrSpace
= LI
->getPointerAddressSpace();
840 } else if (const AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(Inst
)) {
841 AccessTy
.AddrSpace
= RMW
->getPointerAddressSpace();
842 } else if (const AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(Inst
)) {
843 AccessTy
.AddrSpace
= CmpX
->getPointerAddressSpace();
844 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
845 switch (II
->getIntrinsicID()) {
846 case Intrinsic::prefetch
:
847 case Intrinsic::memset
:
848 AccessTy
.AddrSpace
= II
->getArgOperand(0)->getType()->getPointerAddressSpace();
849 AccessTy
.MemTy
= OperandVal
->getType();
851 case Intrinsic::memmove
:
852 case Intrinsic::memcpy
:
853 AccessTy
.AddrSpace
= OperandVal
->getType()->getPointerAddressSpace();
854 AccessTy
.MemTy
= OperandVal
->getType();
857 MemIntrinsicInfo IntrInfo
;
858 if (TTI
.getTgtMemIntrinsic(II
, IntrInfo
) && IntrInfo
.PtrVal
) {
860 = IntrInfo
.PtrVal
->getType()->getPointerAddressSpace();
868 // All pointers have the same requirements, so canonicalize them to an
869 // arbitrary pointer type to minimize variation.
870 if (PointerType
*PTy
= dyn_cast
<PointerType
>(AccessTy
.MemTy
))
871 AccessTy
.MemTy
= PointerType::get(IntegerType::get(PTy
->getContext(), 1),
872 PTy
->getAddressSpace());
877 /// Return true if this AddRec is already a phi in its loop.
878 static bool isExistingPhi(const SCEVAddRecExpr
*AR
, ScalarEvolution
&SE
) {
879 for (PHINode
&PN
: AR
->getLoop()->getHeader()->phis()) {
880 if (SE
.isSCEVable(PN
.getType()) &&
881 (SE
.getEffectiveSCEVType(PN
.getType()) ==
882 SE
.getEffectiveSCEVType(AR
->getType())) &&
883 SE
.getSCEV(&PN
) == AR
)
889 /// Check if expanding this expression is likely to incur significant cost. This
890 /// is tricky because SCEV doesn't track which expressions are actually computed
891 /// by the current IR.
893 /// We currently allow expansion of IV increments that involve adds,
894 /// multiplication by constants, and AddRecs from existing phis.
896 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
897 /// obvious multiple of the UDivExpr.
898 static bool isHighCostExpansion(const SCEV
*S
,
899 SmallPtrSetImpl
<const SCEV
*> &Processed
,
900 ScalarEvolution
&SE
) {
901 // Zero/One operand expressions
902 switch (S
->getSCEVType()) {
907 return isHighCostExpansion(cast
<SCEVTruncateExpr
>(S
)->getOperand(),
910 return isHighCostExpansion(cast
<SCEVZeroExtendExpr
>(S
)->getOperand(),
913 return isHighCostExpansion(cast
<SCEVSignExtendExpr
>(S
)->getOperand(),
917 if (!Processed
.insert(S
).second
)
920 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
921 for (const SCEV
*S
: Add
->operands()) {
922 if (isHighCostExpansion(S
, Processed
, SE
))
928 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
929 if (Mul
->getNumOperands() == 2) {
930 // Multiplication by a constant is ok
931 if (isa
<SCEVConstant
>(Mul
->getOperand(0)))
932 return isHighCostExpansion(Mul
->getOperand(1), Processed
, SE
);
934 // If we have the value of one operand, check if an existing
935 // multiplication already generates this expression.
936 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(Mul
->getOperand(1))) {
937 Value
*UVal
= U
->getValue();
938 for (User
*UR
: UVal
->users()) {
939 // If U is a constant, it may be used by a ConstantExpr.
940 Instruction
*UI
= dyn_cast
<Instruction
>(UR
);
941 if (UI
&& UI
->getOpcode() == Instruction::Mul
&&
942 SE
.isSCEVable(UI
->getType())) {
943 return SE
.getSCEV(UI
) == Mul
;
950 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
951 if (isExistingPhi(AR
, SE
))
955 // Fow now, consider any other type of expression (div/mul/min/max) high cost.
959 /// If any of the instructions in the specified set are trivially dead, delete
960 /// them and see if this makes any of their operands subsequently dead.
962 DeleteTriviallyDeadInstructions(SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) {
963 bool Changed
= false;
965 while (!DeadInsts
.empty()) {
966 Value
*V
= DeadInsts
.pop_back_val();
967 Instruction
*I
= dyn_cast_or_null
<Instruction
>(V
);
969 if (!I
|| !isInstructionTriviallyDead(I
))
972 for (Use
&O
: I
->operands())
973 if (Instruction
*U
= dyn_cast
<Instruction
>(O
)) {
976 DeadInsts
.emplace_back(U
);
979 I
->eraseFromParent();
990 } // end anonymous namespace
992 /// Check if the addressing mode defined by \p F is completely
993 /// folded in \p LU at isel time.
994 /// This includes address-mode folding and special icmp tricks.
995 /// This function returns true if \p LU can accommodate what \p F
996 /// defines and up to 1 base + 1 scaled + offset.
997 /// In other words, if \p F has several base registers, this function may
998 /// still return true. Therefore, users still need to account for
999 /// additional base registers and/or unfolded offsets to derive an
1000 /// accurate cost model.
1001 static bool isAMCompletelyFolded(const TargetTransformInfo
&TTI
,
1002 const LSRUse
&LU
, const Formula
&F
);
1004 // Get the cost of the scaling factor used in F for LU.
1005 static unsigned getScalingFactorCost(const TargetTransformInfo
&TTI
,
1006 const LSRUse
&LU
, const Formula
&F
,
1011 /// This class is used to measure and compare candidate formulae.
1013 TargetTransformInfo::LSRCost C
;
1027 bool isLess(Cost
&Other
, const TargetTransformInfo
&TTI
);
1032 // Once any of the metrics loses, they must all remain losers.
1034 return ((C
.Insns
| C
.NumRegs
| C
.AddRecCost
| C
.NumIVMuls
| C
.NumBaseAdds
1035 | C
.ImmCost
| C
.SetupCost
| C
.ScaleCost
) != ~0u)
1036 || ((C
.Insns
& C
.NumRegs
& C
.AddRecCost
& C
.NumIVMuls
& C
.NumBaseAdds
1037 & C
.ImmCost
& C
.SetupCost
& C
.ScaleCost
) == ~0u);
1042 assert(isValid() && "invalid cost");
1043 return C
.NumRegs
== ~0u;
1046 void RateFormula(const TargetTransformInfo
&TTI
,
1048 SmallPtrSetImpl
<const SCEV
*> &Regs
,
1049 const DenseSet
<const SCEV
*> &VisitedRegs
,
1051 ScalarEvolution
&SE
, DominatorTree
&DT
,
1053 SmallPtrSetImpl
<const SCEV
*> *LoserRegs
= nullptr);
1055 void print(raw_ostream
&OS
) const;
1059 void RateRegister(const Formula
&F
, const SCEV
*Reg
,
1060 SmallPtrSetImpl
<const SCEV
*> &Regs
,
1062 ScalarEvolution
&SE
, DominatorTree
&DT
,
1063 const TargetTransformInfo
&TTI
);
1064 void RatePrimaryRegister(const Formula
&F
, const SCEV
*Reg
,
1065 SmallPtrSetImpl
<const SCEV
*> &Regs
,
1067 ScalarEvolution
&SE
, DominatorTree
&DT
,
1068 SmallPtrSetImpl
<const SCEV
*> *LoserRegs
,
1069 const TargetTransformInfo
&TTI
);
1072 /// An operand value in an instruction which is to be replaced with some
1073 /// equivalent, possibly strength-reduced, replacement.
1075 /// The instruction which will be updated.
1076 Instruction
*UserInst
= nullptr;
1078 /// The operand of the instruction which will be replaced. The operand may be
1079 /// used more than once; every instance will be replaced.
1080 Value
*OperandValToReplace
= nullptr;
1082 /// If this user is to use the post-incremented value of an induction
1083 /// variable, this set is non-empty and holds the loops associated with the
1084 /// induction variable.
1085 PostIncLoopSet PostIncLoops
;
1087 /// A constant offset to be added to the LSRUse expression. This allows
1088 /// multiple fixups to share the same LSRUse with different offsets, for
1089 /// example in an unrolled loop.
1092 LSRFixup() = default;
1094 bool isUseFullyOutsideLoop(const Loop
*L
) const;
1096 void print(raw_ostream
&OS
) const;
1100 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1101 /// SmallVectors of const SCEV*.
1102 struct UniquifierDenseMapInfo
{
1103 static SmallVector
<const SCEV
*, 4> getEmptyKey() {
1104 SmallVector
<const SCEV
*, 4> V
;
1105 V
.push_back(reinterpret_cast<const SCEV
*>(-1));
1109 static SmallVector
<const SCEV
*, 4> getTombstoneKey() {
1110 SmallVector
<const SCEV
*, 4> V
;
1111 V
.push_back(reinterpret_cast<const SCEV
*>(-2));
1115 static unsigned getHashValue(const SmallVector
<const SCEV
*, 4> &V
) {
1116 return static_cast<unsigned>(hash_combine_range(V
.begin(), V
.end()));
1119 static bool isEqual(const SmallVector
<const SCEV
*, 4> &LHS
,
1120 const SmallVector
<const SCEV
*, 4> &RHS
) {
1125 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1126 /// as uses invented by LSR itself. It includes information about what kinds of
1127 /// things can be folded into the user, information about the user itself, and
1128 /// information about how the use may be satisfied. TODO: Represent multiple
1129 /// users of the same expression in common?
1131 DenseSet
<SmallVector
<const SCEV
*, 4>, UniquifierDenseMapInfo
> Uniquifier
;
1134 /// An enum for a kind of use, indicating what types of scaled and immediate
1135 /// operands it might support.
1137 Basic
, ///< A normal use, with no folding.
1138 Special
, ///< A special case of basic, allowing -1 scales.
1139 Address
, ///< An address use; folding according to TargetLowering
1140 ICmpZero
///< An equality icmp with both operands folded into one.
1141 // TODO: Add a generic icmp too?
1144 using SCEVUseKindPair
= PointerIntPair
<const SCEV
*, 2, KindType
>;
1147 MemAccessTy AccessTy
;
1149 /// The list of operands which are to be replaced.
1150 SmallVector
<LSRFixup
, 8> Fixups
;
1152 /// Keep track of the min and max offsets of the fixups.
1153 int64_t MinOffset
= std::numeric_limits
<int64_t>::max();
1154 int64_t MaxOffset
= std::numeric_limits
<int64_t>::min();
1156 /// This records whether all of the fixups using this LSRUse are outside of
1157 /// the loop, in which case some special-case heuristics may be used.
1158 bool AllFixupsOutsideLoop
= true;
1160 /// RigidFormula is set to true to guarantee that this use will be associated
1161 /// with a single formula--the one that initially matched. Some SCEV
1162 /// expressions cannot be expanded. This allows LSR to consider the registers
1163 /// used by those expressions without the need to expand them later after
1164 /// changing the formula.
1165 bool RigidFormula
= false;
1167 /// This records the widest use type for any fixup using this
1168 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1169 /// fixup widths to be equivalent, because the narrower one may be relying on
1170 /// the implicit truncation to truncate away bogus bits.
1171 Type
*WidestFixupType
= nullptr;
1173 /// A list of ways to build a value that can satisfy this user. After the
1174 /// list is populated, one of these is selected heuristically and used to
1175 /// formulate a replacement for OperandValToReplace in UserInst.
1176 SmallVector
<Formula
, 12> Formulae
;
1178 /// The set of register candidates used by all formulae in this LSRUse.
1179 SmallPtrSet
<const SCEV
*, 4> Regs
;
1181 LSRUse(KindType K
, MemAccessTy AT
) : Kind(K
), AccessTy(AT
) {}
1183 LSRFixup
&getNewFixup() {
1184 Fixups
.push_back(LSRFixup());
1185 return Fixups
.back();
1188 void pushFixup(LSRFixup
&f
) {
1189 Fixups
.push_back(f
);
1190 if (f
.Offset
> MaxOffset
)
1191 MaxOffset
= f
.Offset
;
1192 if (f
.Offset
< MinOffset
)
1193 MinOffset
= f
.Offset
;
1196 bool HasFormulaWithSameRegs(const Formula
&F
) const;
1197 float getNotSelectedProbability(const SCEV
*Reg
) const;
1198 bool InsertFormula(const Formula
&F
, const Loop
&L
);
1199 void DeleteFormula(Formula
&F
);
1200 void RecomputeRegs(size_t LUIdx
, RegUseTracker
&Reguses
);
1202 void print(raw_ostream
&OS
) const;
1206 } // end anonymous namespace
1208 static bool isAMCompletelyFolded(const TargetTransformInfo
&TTI
,
1209 LSRUse::KindType Kind
, MemAccessTy AccessTy
,
1210 GlobalValue
*BaseGV
, int64_t BaseOffset
,
1211 bool HasBaseReg
, int64_t Scale
,
1212 Instruction
*Fixup
= nullptr);
1214 /// Tally up interesting quantities from the given register.
1215 void Cost::RateRegister(const Formula
&F
, const SCEV
*Reg
,
1216 SmallPtrSetImpl
<const SCEV
*> &Regs
,
1218 ScalarEvolution
&SE
, DominatorTree
&DT
,
1219 const TargetTransformInfo
&TTI
) {
1220 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Reg
)) {
1221 // If this is an addrec for another loop, it should be an invariant
1222 // with respect to L since L is the innermost loop (at least
1223 // for now LSR only handles innermost loops).
1224 if (AR
->getLoop() != L
) {
1225 // If the AddRec exists, consider it's register free and leave it alone.
1226 if (isExistingPhi(AR
, SE
))
1229 // It is bad to allow LSR for current loop to add induction variables
1230 // for its sibling loops.
1231 if (!AR
->getLoop()->contains(L
)) {
1236 // Otherwise, it will be an invariant with respect to Loop L.
1241 unsigned LoopCost
= 1;
1242 if (TTI
.isIndexedLoadLegal(TTI
.MIM_PostInc
, AR
->getType()) ||
1243 TTI
.isIndexedStoreLegal(TTI
.MIM_PostInc
, AR
->getType())) {
1245 // If the step size matches the base offset, we could use pre-indexed
1247 if (TTI
.shouldFavorBackedgeIndex(L
)) {
1248 if (auto *Step
= dyn_cast
<SCEVConstant
>(AR
->getStepRecurrence(SE
)))
1249 if (Step
->getAPInt() == F
.BaseOffset
)
1253 if (TTI
.shouldFavorPostInc()) {
1254 const SCEV
*LoopStep
= AR
->getStepRecurrence(SE
);
1255 if (isa
<SCEVConstant
>(LoopStep
)) {
1256 const SCEV
*LoopStart
= AR
->getStart();
1257 if (!isa
<SCEVConstant
>(LoopStart
) &&
1258 SE
.isLoopInvariant(LoopStart
, L
))
1263 C
.AddRecCost
+= LoopCost
;
1265 // Add the step value register, if it needs one.
1266 // TODO: The non-affine case isn't precisely modeled here.
1267 if (!AR
->isAffine() || !isa
<SCEVConstant
>(AR
->getOperand(1))) {
1268 if (!Regs
.count(AR
->getOperand(1))) {
1269 RateRegister(F
, AR
->getOperand(1), Regs
, L
, SE
, DT
, TTI
);
1277 // Rough heuristic; favor registers which don't require extra setup
1278 // instructions in the preheader.
1279 if (!isa
<SCEVUnknown
>(Reg
) &&
1280 !isa
<SCEVConstant
>(Reg
) &&
1281 !(isa
<SCEVAddRecExpr
>(Reg
) &&
1282 (isa
<SCEVUnknown
>(cast
<SCEVAddRecExpr
>(Reg
)->getStart()) ||
1283 isa
<SCEVConstant
>(cast
<SCEVAddRecExpr
>(Reg
)->getStart()))))
1286 C
.NumIVMuls
+= isa
<SCEVMulExpr
>(Reg
) &&
1287 SE
.hasComputableLoopEvolution(Reg
, L
);
1290 /// Record this register in the set. If we haven't seen it before, rate
1291 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1292 /// one of those regs an instant loser.
1293 void Cost::RatePrimaryRegister(const Formula
&F
, const SCEV
*Reg
,
1294 SmallPtrSetImpl
<const SCEV
*> &Regs
,
1296 ScalarEvolution
&SE
, DominatorTree
&DT
,
1297 SmallPtrSetImpl
<const SCEV
*> *LoserRegs
,
1298 const TargetTransformInfo
&TTI
) {
1299 if (LoserRegs
&& LoserRegs
->count(Reg
)) {
1303 if (Regs
.insert(Reg
).second
) {
1304 RateRegister(F
, Reg
, Regs
, L
, SE
, DT
, TTI
);
1305 if (LoserRegs
&& isLoser())
1306 LoserRegs
->insert(Reg
);
1310 void Cost::RateFormula(const TargetTransformInfo
&TTI
,
1312 SmallPtrSetImpl
<const SCEV
*> &Regs
,
1313 const DenseSet
<const SCEV
*> &VisitedRegs
,
1315 ScalarEvolution
&SE
, DominatorTree
&DT
,
1317 SmallPtrSetImpl
<const SCEV
*> *LoserRegs
) {
1318 assert(F
.isCanonical(*L
) && "Cost is accurate only for canonical formula");
1319 // Tally up the registers.
1320 unsigned PrevAddRecCost
= C
.AddRecCost
;
1321 unsigned PrevNumRegs
= C
.NumRegs
;
1322 unsigned PrevNumBaseAdds
= C
.NumBaseAdds
;
1323 if (const SCEV
*ScaledReg
= F
.ScaledReg
) {
1324 if (VisitedRegs
.count(ScaledReg
)) {
1328 RatePrimaryRegister(F
, ScaledReg
, Regs
, L
, SE
, DT
, LoserRegs
, TTI
);
1332 for (const SCEV
*BaseReg
: F
.BaseRegs
) {
1333 if (VisitedRegs
.count(BaseReg
)) {
1337 RatePrimaryRegister(F
, BaseReg
, Regs
, L
, SE
, DT
, LoserRegs
, TTI
);
1342 // Determine how many (unfolded) adds we'll need inside the loop.
1343 size_t NumBaseParts
= F
.getNumRegs();
1344 if (NumBaseParts
> 1)
1345 // Do not count the base and a possible second register if the target
1346 // allows to fold 2 registers.
1348 NumBaseParts
- (1 + (F
.Scale
&& isAMCompletelyFolded(TTI
, LU
, F
)));
1349 C
.NumBaseAdds
+= (F
.UnfoldedOffset
!= 0);
1351 // Accumulate non-free scaling amounts.
1352 C
.ScaleCost
+= getScalingFactorCost(TTI
, LU
, F
, *L
);
1354 // Tally up the non-zero immediates.
1355 for (const LSRFixup
&Fixup
: LU
.Fixups
) {
1356 int64_t O
= Fixup
.Offset
;
1357 int64_t Offset
= (uint64_t)O
+ F
.BaseOffset
;
1359 C
.ImmCost
+= 64; // Handle symbolic values conservatively.
1360 // TODO: This should probably be the pointer size.
1361 else if (Offset
!= 0)
1362 C
.ImmCost
+= APInt(64, Offset
, true).getMinSignedBits();
1364 // Check with target if this offset with this instruction is
1365 // specifically not supported.
1366 if (LU
.Kind
== LSRUse::Address
&& Offset
!= 0 &&
1367 !isAMCompletelyFolded(TTI
, LSRUse::Address
, LU
.AccessTy
, F
.BaseGV
,
1368 Offset
, F
.HasBaseReg
, F
.Scale
, Fixup
.UserInst
))
1372 // If we don't count instruction cost exit here.
1374 assert(isValid() && "invalid cost");
1378 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1379 // additional instruction (at least fill).
1380 unsigned TTIRegNum
= TTI
.getNumberOfRegisters(false) - 1;
1381 if (C
.NumRegs
> TTIRegNum
) {
1382 // Cost already exceeded TTIRegNum, then only newly added register can add
1383 // new instructions.
1384 if (PrevNumRegs
> TTIRegNum
)
1385 C
.Insns
+= (C
.NumRegs
- PrevNumRegs
);
1387 C
.Insns
+= (C
.NumRegs
- TTIRegNum
);
1390 // If ICmpZero formula ends with not 0, it could not be replaced by
1391 // just add or sub. We'll need to compare final result of AddRec.
1392 // That means we'll need an additional instruction. But if the target can
1393 // macro-fuse a compare with a branch, don't count this extra instruction.
1394 // For -10 + {0, +, 1}:
1400 if (LU
.Kind
== LSRUse::ICmpZero
&& !F
.hasZeroEnd() && !TTI
.canMacroFuseCmp())
1402 // Each new AddRec adds 1 instruction to calculation.
1403 C
.Insns
+= (C
.AddRecCost
- PrevAddRecCost
);
1405 // BaseAdds adds instructions for unfolded registers.
1406 if (LU
.Kind
!= LSRUse::ICmpZero
)
1407 C
.Insns
+= C
.NumBaseAdds
- PrevNumBaseAdds
;
1408 assert(isValid() && "invalid cost");
1411 /// Set this cost to a losing value.
1413 C
.Insns
= std::numeric_limits
<unsigned>::max();
1414 C
.NumRegs
= std::numeric_limits
<unsigned>::max();
1415 C
.AddRecCost
= std::numeric_limits
<unsigned>::max();
1416 C
.NumIVMuls
= std::numeric_limits
<unsigned>::max();
1417 C
.NumBaseAdds
= std::numeric_limits
<unsigned>::max();
1418 C
.ImmCost
= std::numeric_limits
<unsigned>::max();
1419 C
.SetupCost
= std::numeric_limits
<unsigned>::max();
1420 C
.ScaleCost
= std::numeric_limits
<unsigned>::max();
1423 /// Choose the lower cost.
1424 bool Cost::isLess(Cost
&Other
, const TargetTransformInfo
&TTI
) {
1425 if (InsnsCost
.getNumOccurrences() > 0 && InsnsCost
&&
1426 C
.Insns
!= Other
.C
.Insns
)
1427 return C
.Insns
< Other
.C
.Insns
;
1428 return TTI
.isLSRCostLess(C
, Other
.C
);
1431 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1432 void Cost::print(raw_ostream
&OS
) const {
1434 OS
<< C
.Insns
<< " instruction" << (C
.Insns
== 1 ? " " : "s ");
1435 OS
<< C
.NumRegs
<< " reg" << (C
.NumRegs
== 1 ? "" : "s");
1436 if (C
.AddRecCost
!= 0)
1437 OS
<< ", with addrec cost " << C
.AddRecCost
;
1438 if (C
.NumIVMuls
!= 0)
1439 OS
<< ", plus " << C
.NumIVMuls
<< " IV mul"
1440 << (C
.NumIVMuls
== 1 ? "" : "s");
1441 if (C
.NumBaseAdds
!= 0)
1442 OS
<< ", plus " << C
.NumBaseAdds
<< " base add"
1443 << (C
.NumBaseAdds
== 1 ? "" : "s");
1444 if (C
.ScaleCost
!= 0)
1445 OS
<< ", plus " << C
.ScaleCost
<< " scale cost";
1447 OS
<< ", plus " << C
.ImmCost
<< " imm cost";
1448 if (C
.SetupCost
!= 0)
1449 OS
<< ", plus " << C
.SetupCost
<< " setup cost";
1452 LLVM_DUMP_METHOD
void Cost::dump() const {
1453 print(errs()); errs() << '\n';
1457 /// Test whether this fixup always uses its value outside of the given loop.
1458 bool LSRFixup::isUseFullyOutsideLoop(const Loop
*L
) const {
1459 // PHI nodes use their value in their incoming blocks.
1460 if (const PHINode
*PN
= dyn_cast
<PHINode
>(UserInst
)) {
1461 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
1462 if (PN
->getIncomingValue(i
) == OperandValToReplace
&&
1463 L
->contains(PN
->getIncomingBlock(i
)))
1468 return !L
->contains(UserInst
);
1471 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1472 void LSRFixup::print(raw_ostream
&OS
) const {
1474 // Store is common and interesting enough to be worth special-casing.
1475 if (StoreInst
*Store
= dyn_cast
<StoreInst
>(UserInst
)) {
1477 Store
->getOperand(0)->printAsOperand(OS
, /*PrintType=*/false);
1478 } else if (UserInst
->getType()->isVoidTy())
1479 OS
<< UserInst
->getOpcodeName();
1481 UserInst
->printAsOperand(OS
, /*PrintType=*/false);
1483 OS
<< ", OperandValToReplace=";
1484 OperandValToReplace
->printAsOperand(OS
, /*PrintType=*/false);
1486 for (const Loop
*PIL
: PostIncLoops
) {
1487 OS
<< ", PostIncLoop=";
1488 PIL
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
1492 OS
<< ", Offset=" << Offset
;
1495 LLVM_DUMP_METHOD
void LSRFixup::dump() const {
1496 print(errs()); errs() << '\n';
1500 /// Test whether this use as a formula which has the same registers as the given
1502 bool LSRUse::HasFormulaWithSameRegs(const Formula
&F
) const {
1503 SmallVector
<const SCEV
*, 4> Key
= F
.BaseRegs
;
1504 if (F
.ScaledReg
) Key
.push_back(F
.ScaledReg
);
1505 // Unstable sort by host order ok, because this is only used for uniquifying.
1507 return Uniquifier
.count(Key
);
1510 /// The function returns a probability of selecting formula without Reg.
1511 float LSRUse::getNotSelectedProbability(const SCEV
*Reg
) const {
1513 for (const Formula
&F
: Formulae
)
1514 if (F
.referencesReg(Reg
))
1516 return ((float)(Formulae
.size() - FNum
)) / Formulae
.size();
1519 /// If the given formula has not yet been inserted, add it to the list, and
1520 /// return true. Return false otherwise. The formula must be in canonical form.
1521 bool LSRUse::InsertFormula(const Formula
&F
, const Loop
&L
) {
1522 assert(F
.isCanonical(L
) && "Invalid canonical representation");
1524 if (!Formulae
.empty() && RigidFormula
)
1527 SmallVector
<const SCEV
*, 4> Key
= F
.BaseRegs
;
1528 if (F
.ScaledReg
) Key
.push_back(F
.ScaledReg
);
1529 // Unstable sort by host order ok, because this is only used for uniquifying.
1532 if (!Uniquifier
.insert(Key
).second
)
1535 // Using a register to hold the value of 0 is not profitable.
1536 assert((!F
.ScaledReg
|| !F
.ScaledReg
->isZero()) &&
1537 "Zero allocated in a scaled register!");
1539 for (const SCEV
*BaseReg
: F
.BaseRegs
)
1540 assert(!BaseReg
->isZero() && "Zero allocated in a base register!");
1543 // Add the formula to the list.
1544 Formulae
.push_back(F
);
1546 // Record registers now being used by this use.
1547 Regs
.insert(F
.BaseRegs
.begin(), F
.BaseRegs
.end());
1549 Regs
.insert(F
.ScaledReg
);
1554 /// Remove the given formula from this use's list.
1555 void LSRUse::DeleteFormula(Formula
&F
) {
1556 if (&F
!= &Formulae
.back())
1557 std::swap(F
, Formulae
.back());
1558 Formulae
.pop_back();
1561 /// Recompute the Regs field, and update RegUses.
1562 void LSRUse::RecomputeRegs(size_t LUIdx
, RegUseTracker
&RegUses
) {
1563 // Now that we've filtered out some formulae, recompute the Regs set.
1564 SmallPtrSet
<const SCEV
*, 4> OldRegs
= std::move(Regs
);
1566 for (const Formula
&F
: Formulae
) {
1567 if (F
.ScaledReg
) Regs
.insert(F
.ScaledReg
);
1568 Regs
.insert(F
.BaseRegs
.begin(), F
.BaseRegs
.end());
1571 // Update the RegTracker.
1572 for (const SCEV
*S
: OldRegs
)
1574 RegUses
.dropRegister(S
, LUIdx
);
1577 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1578 void LSRUse::print(raw_ostream
&OS
) const {
1579 OS
<< "LSR Use: Kind=";
1581 case Basic
: OS
<< "Basic"; break;
1582 case Special
: OS
<< "Special"; break;
1583 case ICmpZero
: OS
<< "ICmpZero"; break;
1585 OS
<< "Address of ";
1586 if (AccessTy
.MemTy
->isPointerTy())
1587 OS
<< "pointer"; // the full pointer type could be really verbose
1589 OS
<< *AccessTy
.MemTy
;
1592 OS
<< " in addrspace(" << AccessTy
.AddrSpace
<< ')';
1595 OS
<< ", Offsets={";
1596 bool NeedComma
= false;
1597 for (const LSRFixup
&Fixup
: Fixups
) {
1598 if (NeedComma
) OS
<< ',';
1604 if (AllFixupsOutsideLoop
)
1605 OS
<< ", all-fixups-outside-loop";
1607 if (WidestFixupType
)
1608 OS
<< ", widest fixup type: " << *WidestFixupType
;
1611 LLVM_DUMP_METHOD
void LSRUse::dump() const {
1612 print(errs()); errs() << '\n';
1616 static bool isAMCompletelyFolded(const TargetTransformInfo
&TTI
,
1617 LSRUse::KindType Kind
, MemAccessTy AccessTy
,
1618 GlobalValue
*BaseGV
, int64_t BaseOffset
,
1619 bool HasBaseReg
, int64_t Scale
,
1620 Instruction
*Fixup
/*= nullptr*/) {
1622 case LSRUse::Address
:
1623 return TTI
.isLegalAddressingMode(AccessTy
.MemTy
, BaseGV
, BaseOffset
,
1624 HasBaseReg
, Scale
, AccessTy
.AddrSpace
, Fixup
);
1626 case LSRUse::ICmpZero
:
1627 // There's not even a target hook for querying whether it would be legal to
1628 // fold a GV into an ICmp.
1632 // ICmp only has two operands; don't allow more than two non-trivial parts.
1633 if (Scale
!= 0 && HasBaseReg
&& BaseOffset
!= 0)
1636 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1637 // putting the scaled register in the other operand of the icmp.
1638 if (Scale
!= 0 && Scale
!= -1)
1641 // If we have low-level target information, ask the target if it can fold an
1642 // integer immediate on an icmp.
1643 if (BaseOffset
!= 0) {
1645 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1646 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1647 // Offs is the ICmp immediate.
1649 // The cast does the right thing with
1650 // std::numeric_limits<int64_t>::min().
1651 BaseOffset
= -(uint64_t)BaseOffset
;
1652 return TTI
.isLegalICmpImmediate(BaseOffset
);
1655 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1659 // Only handle single-register values.
1660 return !BaseGV
&& Scale
== 0 && BaseOffset
== 0;
1662 case LSRUse::Special
:
1663 // Special case Basic to handle -1 scales.
1664 return !BaseGV
&& (Scale
== 0 || Scale
== -1) && BaseOffset
== 0;
1667 llvm_unreachable("Invalid LSRUse Kind!");
1670 static bool isAMCompletelyFolded(const TargetTransformInfo
&TTI
,
1671 int64_t MinOffset
, int64_t MaxOffset
,
1672 LSRUse::KindType Kind
, MemAccessTy AccessTy
,
1673 GlobalValue
*BaseGV
, int64_t BaseOffset
,
1674 bool HasBaseReg
, int64_t Scale
) {
1675 // Check for overflow.
1676 if (((int64_t)((uint64_t)BaseOffset
+ MinOffset
) > BaseOffset
) !=
1679 MinOffset
= (uint64_t)BaseOffset
+ MinOffset
;
1680 if (((int64_t)((uint64_t)BaseOffset
+ MaxOffset
) > BaseOffset
) !=
1683 MaxOffset
= (uint64_t)BaseOffset
+ MaxOffset
;
1685 return isAMCompletelyFolded(TTI
, Kind
, AccessTy
, BaseGV
, MinOffset
,
1686 HasBaseReg
, Scale
) &&
1687 isAMCompletelyFolded(TTI
, Kind
, AccessTy
, BaseGV
, MaxOffset
,
1691 static bool isAMCompletelyFolded(const TargetTransformInfo
&TTI
,
1692 int64_t MinOffset
, int64_t MaxOffset
,
1693 LSRUse::KindType Kind
, MemAccessTy AccessTy
,
1694 const Formula
&F
, const Loop
&L
) {
1695 // For the purpose of isAMCompletelyFolded either having a canonical formula
1696 // or a scale not equal to zero is correct.
1697 // Problems may arise from non canonical formulae having a scale == 0.
1698 // Strictly speaking it would best to just rely on canonical formulae.
1699 // However, when we generate the scaled formulae, we first check that the
1700 // scaling factor is profitable before computing the actual ScaledReg for
1701 // compile time sake.
1702 assert((F
.isCanonical(L
) || F
.Scale
!= 0));
1703 return isAMCompletelyFolded(TTI
, MinOffset
, MaxOffset
, Kind
, AccessTy
,
1704 F
.BaseGV
, F
.BaseOffset
, F
.HasBaseReg
, F
.Scale
);
1707 /// Test whether we know how to expand the current formula.
1708 static bool isLegalUse(const TargetTransformInfo
&TTI
, int64_t MinOffset
,
1709 int64_t MaxOffset
, LSRUse::KindType Kind
,
1710 MemAccessTy AccessTy
, GlobalValue
*BaseGV
,
1711 int64_t BaseOffset
, bool HasBaseReg
, int64_t Scale
) {
1712 // We know how to expand completely foldable formulae.
1713 return isAMCompletelyFolded(TTI
, MinOffset
, MaxOffset
, Kind
, AccessTy
, BaseGV
,
1714 BaseOffset
, HasBaseReg
, Scale
) ||
1715 // Or formulae that use a base register produced by a sum of base
1718 isAMCompletelyFolded(TTI
, MinOffset
, MaxOffset
, Kind
, AccessTy
,
1719 BaseGV
, BaseOffset
, true, 0));
1722 static bool isLegalUse(const TargetTransformInfo
&TTI
, int64_t MinOffset
,
1723 int64_t MaxOffset
, LSRUse::KindType Kind
,
1724 MemAccessTy AccessTy
, const Formula
&F
) {
1725 return isLegalUse(TTI
, MinOffset
, MaxOffset
, Kind
, AccessTy
, F
.BaseGV
,
1726 F
.BaseOffset
, F
.HasBaseReg
, F
.Scale
);
1729 static bool isAMCompletelyFolded(const TargetTransformInfo
&TTI
,
1730 const LSRUse
&LU
, const Formula
&F
) {
1731 // Target may want to look at the user instructions.
1732 if (LU
.Kind
== LSRUse::Address
&& TTI
.LSRWithInstrQueries()) {
1733 for (const LSRFixup
&Fixup
: LU
.Fixups
)
1734 if (!isAMCompletelyFolded(TTI
, LSRUse::Address
, LU
.AccessTy
, F
.BaseGV
,
1735 (F
.BaseOffset
+ Fixup
.Offset
), F
.HasBaseReg
,
1736 F
.Scale
, Fixup
.UserInst
))
1741 return isAMCompletelyFolded(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
,
1742 LU
.AccessTy
, F
.BaseGV
, F
.BaseOffset
, F
.HasBaseReg
,
1746 static unsigned getScalingFactorCost(const TargetTransformInfo
&TTI
,
1747 const LSRUse
&LU
, const Formula
&F
,
1752 // If the use is not completely folded in that instruction, we will have to
1753 // pay an extra cost only for scale != 1.
1754 if (!isAMCompletelyFolded(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
,
1756 return F
.Scale
!= 1;
1759 case LSRUse::Address
: {
1760 // Check the scaling factor cost with both the min and max offsets.
1761 int ScaleCostMinOffset
= TTI
.getScalingFactorCost(
1762 LU
.AccessTy
.MemTy
, F
.BaseGV
, F
.BaseOffset
+ LU
.MinOffset
, F
.HasBaseReg
,
1763 F
.Scale
, LU
.AccessTy
.AddrSpace
);
1764 int ScaleCostMaxOffset
= TTI
.getScalingFactorCost(
1765 LU
.AccessTy
.MemTy
, F
.BaseGV
, F
.BaseOffset
+ LU
.MaxOffset
, F
.HasBaseReg
,
1766 F
.Scale
, LU
.AccessTy
.AddrSpace
);
1768 assert(ScaleCostMinOffset
>= 0 && ScaleCostMaxOffset
>= 0 &&
1769 "Legal addressing mode has an illegal cost!");
1770 return std::max(ScaleCostMinOffset
, ScaleCostMaxOffset
);
1772 case LSRUse::ICmpZero
:
1774 case LSRUse::Special
:
1775 // The use is completely folded, i.e., everything is folded into the
1780 llvm_unreachable("Invalid LSRUse Kind!");
1783 static bool isAlwaysFoldable(const TargetTransformInfo
&TTI
,
1784 LSRUse::KindType Kind
, MemAccessTy AccessTy
,
1785 GlobalValue
*BaseGV
, int64_t BaseOffset
,
1787 // Fast-path: zero is always foldable.
1788 if (BaseOffset
== 0 && !BaseGV
) return true;
1790 // Conservatively, create an address with an immediate and a
1791 // base and a scale.
1792 int64_t Scale
= Kind
== LSRUse::ICmpZero
? -1 : 1;
1794 // Canonicalize a scale of 1 to a base register if the formula doesn't
1795 // already have a base register.
1796 if (!HasBaseReg
&& Scale
== 1) {
1801 return isAMCompletelyFolded(TTI
, Kind
, AccessTy
, BaseGV
, BaseOffset
,
1805 static bool isAlwaysFoldable(const TargetTransformInfo
&TTI
,
1806 ScalarEvolution
&SE
, int64_t MinOffset
,
1807 int64_t MaxOffset
, LSRUse::KindType Kind
,
1808 MemAccessTy AccessTy
, const SCEV
*S
,
1810 // Fast-path: zero is always foldable.
1811 if (S
->isZero()) return true;
1813 // Conservatively, create an address with an immediate and a
1814 // base and a scale.
1815 int64_t BaseOffset
= ExtractImmediate(S
, SE
);
1816 GlobalValue
*BaseGV
= ExtractSymbol(S
, SE
);
1818 // If there's anything else involved, it's not foldable.
1819 if (!S
->isZero()) return false;
1821 // Fast-path: zero is always foldable.
1822 if (BaseOffset
== 0 && !BaseGV
) return true;
1824 // Conservatively, create an address with an immediate and a
1825 // base and a scale.
1826 int64_t Scale
= Kind
== LSRUse::ICmpZero
? -1 : 1;
1828 return isAMCompletelyFolded(TTI
, MinOffset
, MaxOffset
, Kind
, AccessTy
, BaseGV
,
1829 BaseOffset
, HasBaseReg
, Scale
);
1834 /// An individual increment in a Chain of IV increments. Relate an IV user to
1835 /// an expression that computes the IV it uses from the IV used by the previous
1836 /// link in the Chain.
1838 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1839 /// original IVOperand. The head of the chain's IVOperand is only valid during
1840 /// chain collection, before LSR replaces IV users. During chain generation,
1841 /// IncExpr can be used to find the new IVOperand that computes the same
1844 Instruction
*UserInst
;
1846 const SCEV
*IncExpr
;
1848 IVInc(Instruction
*U
, Value
*O
, const SCEV
*E
)
1849 : UserInst(U
), IVOperand(O
), IncExpr(E
) {}
1852 // The list of IV increments in program order. We typically add the head of a
1853 // chain without finding subsequent links.
1855 SmallVector
<IVInc
, 1> Incs
;
1856 const SCEV
*ExprBase
= nullptr;
1858 IVChain() = default;
1859 IVChain(const IVInc
&Head
, const SCEV
*Base
)
1860 : Incs(1, Head
), ExprBase(Base
) {}
1862 using const_iterator
= SmallVectorImpl
<IVInc
>::const_iterator
;
1864 // Return the first increment in the chain.
1865 const_iterator
begin() const {
1866 assert(!Incs
.empty());
1867 return std::next(Incs
.begin());
1869 const_iterator
end() const {
1873 // Returns true if this chain contains any increments.
1874 bool hasIncs() const { return Incs
.size() >= 2; }
1876 // Add an IVInc to the end of this chain.
1877 void add(const IVInc
&X
) { Incs
.push_back(X
); }
1879 // Returns the last UserInst in the chain.
1880 Instruction
*tailUserInst() const { return Incs
.back().UserInst
; }
1882 // Returns true if IncExpr can be profitably added to this chain.
1883 bool isProfitableIncrement(const SCEV
*OperExpr
,
1884 const SCEV
*IncExpr
,
1888 /// Helper for CollectChains to track multiple IV increment uses. Distinguish
1889 /// between FarUsers that definitely cross IV increments and NearUsers that may
1890 /// be used between IV increments.
1892 SmallPtrSet
<Instruction
*, 4> FarUsers
;
1893 SmallPtrSet
<Instruction
*, 4> NearUsers
;
1896 /// This class holds state for the main loop strength reduction logic.
1899 ScalarEvolution
&SE
;
1902 const TargetTransformInfo
&TTI
;
1904 bool FavorBackedgeIndex
= false;
1905 bool Changed
= false;
1907 /// This is the insert position that the current loop's induction variable
1908 /// increment should be placed. In simple loops, this is the latch block's
1909 /// terminator. But in more complicated cases, this is a position which will
1910 /// dominate all the in-loop post-increment users.
1911 Instruction
*IVIncInsertPos
= nullptr;
1913 /// Interesting factors between use strides.
1915 /// We explicitly use a SetVector which contains a SmallSet, instead of the
1916 /// default, a SmallDenseSet, because we need to use the full range of
1917 /// int64_ts, and there's currently no good way of doing that with
1919 SetVector
<int64_t, SmallVector
<int64_t, 8>, SmallSet
<int64_t, 8>> Factors
;
1921 /// Interesting use types, to facilitate truncation reuse.
1922 SmallSetVector
<Type
*, 4> Types
;
1924 /// The list of interesting uses.
1925 SmallVector
<LSRUse
, 16> Uses
;
1927 /// Track which uses use which register candidates.
1928 RegUseTracker RegUses
;
1930 // Limit the number of chains to avoid quadratic behavior. We don't expect to
1931 // have more than a few IV increment chains in a loop. Missing a Chain falls
1932 // back to normal LSR behavior for those uses.
1933 static const unsigned MaxChains
= 8;
1935 /// IV users can form a chain of IV increments.
1936 SmallVector
<IVChain
, MaxChains
> IVChainVec
;
1938 /// IV users that belong to profitable IVChains.
1939 SmallPtrSet
<Use
*, MaxChains
> IVIncSet
;
1941 void OptimizeShadowIV();
1942 bool FindIVUserForCond(ICmpInst
*Cond
, IVStrideUse
*&CondUse
);
1943 ICmpInst
*OptimizeMax(ICmpInst
*Cond
, IVStrideUse
* &CondUse
);
1944 void OptimizeLoopTermCond();
1946 void ChainInstruction(Instruction
*UserInst
, Instruction
*IVOper
,
1947 SmallVectorImpl
<ChainUsers
> &ChainUsersVec
);
1948 void FinalizeChain(IVChain
&Chain
);
1949 void CollectChains();
1950 void GenerateIVChain(const IVChain
&Chain
, SCEVExpander
&Rewriter
,
1951 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
);
1953 void CollectInterestingTypesAndFactors();
1954 void CollectFixupsAndInitialFormulae();
1956 // Support for sharing of LSRUses between LSRFixups.
1957 using UseMapTy
= DenseMap
<LSRUse::SCEVUseKindPair
, size_t>;
1960 bool reconcileNewOffset(LSRUse
&LU
, int64_t NewOffset
, bool HasBaseReg
,
1961 LSRUse::KindType Kind
, MemAccessTy AccessTy
);
1963 std::pair
<size_t, int64_t> getUse(const SCEV
*&Expr
, LSRUse::KindType Kind
,
1964 MemAccessTy AccessTy
);
1966 void DeleteUse(LSRUse
&LU
, size_t LUIdx
);
1968 LSRUse
*FindUseWithSimilarFormula(const Formula
&F
, const LSRUse
&OrigLU
);
1970 void InsertInitialFormula(const SCEV
*S
, LSRUse
&LU
, size_t LUIdx
);
1971 void InsertSupplementalFormula(const SCEV
*S
, LSRUse
&LU
, size_t LUIdx
);
1972 void CountRegisters(const Formula
&F
, size_t LUIdx
);
1973 bool InsertFormula(LSRUse
&LU
, unsigned LUIdx
, const Formula
&F
);
1975 void CollectLoopInvariantFixupsAndFormulae();
1977 void GenerateReassociations(LSRUse
&LU
, unsigned LUIdx
, Formula Base
,
1978 unsigned Depth
= 0);
1980 void GenerateReassociationsImpl(LSRUse
&LU
, unsigned LUIdx
,
1981 const Formula
&Base
, unsigned Depth
,
1982 size_t Idx
, bool IsScaledReg
= false);
1983 void GenerateCombinations(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1984 void GenerateSymbolicOffsetsImpl(LSRUse
&LU
, unsigned LUIdx
,
1985 const Formula
&Base
, size_t Idx
,
1986 bool IsScaledReg
= false);
1987 void GenerateSymbolicOffsets(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1988 void GenerateConstantOffsetsImpl(LSRUse
&LU
, unsigned LUIdx
,
1989 const Formula
&Base
,
1990 const SmallVectorImpl
<int64_t> &Worklist
,
1991 size_t Idx
, bool IsScaledReg
= false);
1992 void GenerateConstantOffsets(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1993 void GenerateICmpZeroScales(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1994 void GenerateScales(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1995 void GenerateTruncates(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1996 void GenerateCrossUseConstantOffsets();
1997 void GenerateAllReuseFormulae();
1999 void FilterOutUndesirableDedicatedRegisters();
2001 size_t EstimateSearchSpaceComplexity() const;
2002 void NarrowSearchSpaceByDetectingSupersets();
2003 void NarrowSearchSpaceByCollapsingUnrolledCode();
2004 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2005 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2006 void NarrowSearchSpaceByDeletingCostlyFormulas();
2007 void NarrowSearchSpaceByPickingWinnerRegs();
2008 void NarrowSearchSpaceUsingHeuristics();
2010 void SolveRecurse(SmallVectorImpl
<const Formula
*> &Solution
,
2012 SmallVectorImpl
<const Formula
*> &Workspace
,
2013 const Cost
&CurCost
,
2014 const SmallPtrSet
<const SCEV
*, 16> &CurRegs
,
2015 DenseSet
<const SCEV
*> &VisitedRegs
) const;
2016 void Solve(SmallVectorImpl
<const Formula
*> &Solution
) const;
2018 BasicBlock::iterator
2019 HoistInsertPosition(BasicBlock::iterator IP
,
2020 const SmallVectorImpl
<Instruction
*> &Inputs
) const;
2021 BasicBlock::iterator
2022 AdjustInsertPositionForExpand(BasicBlock::iterator IP
,
2025 SCEVExpander
&Rewriter
) const;
2027 Value
*Expand(const LSRUse
&LU
, const LSRFixup
&LF
, const Formula
&F
,
2028 BasicBlock::iterator IP
, SCEVExpander
&Rewriter
,
2029 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) const;
2030 void RewriteForPHI(PHINode
*PN
, const LSRUse
&LU
, const LSRFixup
&LF
,
2031 const Formula
&F
, SCEVExpander
&Rewriter
,
2032 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) const;
2033 void Rewrite(const LSRUse
&LU
, const LSRFixup
&LF
, const Formula
&F
,
2034 SCEVExpander
&Rewriter
,
2035 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) const;
2036 void ImplementSolution(const SmallVectorImpl
<const Formula
*> &Solution
);
2039 LSRInstance(Loop
*L
, IVUsers
&IU
, ScalarEvolution
&SE
, DominatorTree
&DT
,
2040 LoopInfo
&LI
, const TargetTransformInfo
&TTI
);
2042 bool getChanged() const { return Changed
; }
2044 void print_factors_and_types(raw_ostream
&OS
) const;
2045 void print_fixups(raw_ostream
&OS
) const;
2046 void print_uses(raw_ostream
&OS
) const;
2047 void print(raw_ostream
&OS
) const;
2051 } // end anonymous namespace
2053 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2054 /// the cast operation.
2055 void LSRInstance::OptimizeShadowIV() {
2056 const SCEV
*BackedgeTakenCount
= SE
.getBackedgeTakenCount(L
);
2057 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
2060 for (IVUsers::const_iterator UI
= IU
.begin(), E
= IU
.end();
2061 UI
!= E
; /* empty */) {
2062 IVUsers::const_iterator CandidateUI
= UI
;
2064 Instruction
*ShadowUse
= CandidateUI
->getUser();
2065 Type
*DestTy
= nullptr;
2066 bool IsSigned
= false;
2068 /* If shadow use is a int->float cast then insert a second IV
2069 to eliminate this cast.
2071 for (unsigned i = 0; i < n; ++i)
2077 for (unsigned i = 0; i < n; ++i, ++d)
2080 if (UIToFPInst
*UCast
= dyn_cast
<UIToFPInst
>(CandidateUI
->getUser())) {
2082 DestTy
= UCast
->getDestTy();
2084 else if (SIToFPInst
*SCast
= dyn_cast
<SIToFPInst
>(CandidateUI
->getUser())) {
2086 DestTy
= SCast
->getDestTy();
2088 if (!DestTy
) continue;
2090 // If target does not support DestTy natively then do not apply
2091 // this transformation.
2092 if (!TTI
.isTypeLegal(DestTy
)) continue;
2094 PHINode
*PH
= dyn_cast
<PHINode
>(ShadowUse
->getOperand(0));
2096 if (PH
->getNumIncomingValues() != 2) continue;
2098 // If the calculation in integers overflows, the result in FP type will
2099 // differ. So we only can do this transformation if we are guaranteed to not
2100 // deal with overflowing values
2101 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(SE
.getSCEV(PH
));
2103 if (IsSigned
&& !AR
->hasNoSignedWrap()) continue;
2104 if (!IsSigned
&& !AR
->hasNoUnsignedWrap()) continue;
2106 Type
*SrcTy
= PH
->getType();
2107 int Mantissa
= DestTy
->getFPMantissaWidth();
2108 if (Mantissa
== -1) continue;
2109 if ((int)SE
.getTypeSizeInBits(SrcTy
) > Mantissa
)
2112 unsigned Entry
, Latch
;
2113 if (PH
->getIncomingBlock(0) == L
->getLoopPreheader()) {
2121 ConstantInt
*Init
= dyn_cast
<ConstantInt
>(PH
->getIncomingValue(Entry
));
2122 if (!Init
) continue;
2123 Constant
*NewInit
= ConstantFP::get(DestTy
, IsSigned
?
2124 (double)Init
->getSExtValue() :
2125 (double)Init
->getZExtValue());
2127 BinaryOperator
*Incr
=
2128 dyn_cast
<BinaryOperator
>(PH
->getIncomingValue(Latch
));
2129 if (!Incr
) continue;
2130 if (Incr
->getOpcode() != Instruction::Add
2131 && Incr
->getOpcode() != Instruction::Sub
)
2134 /* Initialize new IV, double d = 0.0 in above example. */
2135 ConstantInt
*C
= nullptr;
2136 if (Incr
->getOperand(0) == PH
)
2137 C
= dyn_cast
<ConstantInt
>(Incr
->getOperand(1));
2138 else if (Incr
->getOperand(1) == PH
)
2139 C
= dyn_cast
<ConstantInt
>(Incr
->getOperand(0));
2145 // Ignore negative constants, as the code below doesn't handle them
2146 // correctly. TODO: Remove this restriction.
2147 if (!C
->getValue().isStrictlyPositive()) continue;
2149 /* Add new PHINode. */
2150 PHINode
*NewPH
= PHINode::Create(DestTy
, 2, "IV.S.", PH
);
2152 /* create new increment. '++d' in above example. */
2153 Constant
*CFP
= ConstantFP::get(DestTy
, C
->getZExtValue());
2154 BinaryOperator
*NewIncr
=
2155 BinaryOperator::Create(Incr
->getOpcode() == Instruction::Add
?
2156 Instruction::FAdd
: Instruction::FSub
,
2157 NewPH
, CFP
, "IV.S.next.", Incr
);
2159 NewPH
->addIncoming(NewInit
, PH
->getIncomingBlock(Entry
));
2160 NewPH
->addIncoming(NewIncr
, PH
->getIncomingBlock(Latch
));
2162 /* Remove cast operation */
2163 ShadowUse
->replaceAllUsesWith(NewPH
);
2164 ShadowUse
->eraseFromParent();
2170 /// If Cond has an operand that is an expression of an IV, set the IV user and
2171 /// stride information and return true, otherwise return false.
2172 bool LSRInstance::FindIVUserForCond(ICmpInst
*Cond
, IVStrideUse
*&CondUse
) {
2173 for (IVStrideUse
&U
: IU
)
2174 if (U
.getUser() == Cond
) {
2175 // NOTE: we could handle setcc instructions with multiple uses here, but
2176 // InstCombine does it as well for simple uses, it's not clear that it
2177 // occurs enough in real life to handle.
2184 /// Rewrite the loop's terminating condition if it uses a max computation.
2186 /// This is a narrow solution to a specific, but acute, problem. For loops
2192 /// } while (++i < n);
2194 /// the trip count isn't just 'n', because 'n' might not be positive. And
2195 /// unfortunately this can come up even for loops where the user didn't use
2196 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2197 /// will commonly be lowered like this:
2203 /// } while (++i < n);
2206 /// and then it's possible for subsequent optimization to obscure the if
2207 /// test in such a way that indvars can't find it.
2209 /// When indvars can't find the if test in loops like this, it creates a
2210 /// max expression, which allows it to give the loop a canonical
2211 /// induction variable:
2214 /// max = n < 1 ? 1 : n;
2217 /// } while (++i != max);
2219 /// Canonical induction variables are necessary because the loop passes
2220 /// are designed around them. The most obvious example of this is the
2221 /// LoopInfo analysis, which doesn't remember trip count values. It
2222 /// expects to be able to rediscover the trip count each time it is
2223 /// needed, and it does this using a simple analysis that only succeeds if
2224 /// the loop has a canonical induction variable.
2226 /// However, when it comes time to generate code, the maximum operation
2227 /// can be quite costly, especially if it's inside of an outer loop.
2229 /// This function solves this problem by detecting this type of loop and
2230 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2231 /// the instructions for the maximum computation.
2232 ICmpInst
*LSRInstance::OptimizeMax(ICmpInst
*Cond
, IVStrideUse
* &CondUse
) {
2233 // Check that the loop matches the pattern we're looking for.
2234 if (Cond
->getPredicate() != CmpInst::ICMP_EQ
&&
2235 Cond
->getPredicate() != CmpInst::ICMP_NE
)
2238 SelectInst
*Sel
= dyn_cast
<SelectInst
>(Cond
->getOperand(1));
2239 if (!Sel
|| !Sel
->hasOneUse()) return Cond
;
2241 const SCEV
*BackedgeTakenCount
= SE
.getBackedgeTakenCount(L
);
2242 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
2244 const SCEV
*One
= SE
.getConstant(BackedgeTakenCount
->getType(), 1);
2246 // Add one to the backedge-taken count to get the trip count.
2247 const SCEV
*IterationCount
= SE
.getAddExpr(One
, BackedgeTakenCount
);
2248 if (IterationCount
!= SE
.getSCEV(Sel
)) return Cond
;
2250 // Check for a max calculation that matches the pattern. There's no check
2251 // for ICMP_ULE here because the comparison would be with zero, which
2252 // isn't interesting.
2253 CmpInst::Predicate Pred
= ICmpInst::BAD_ICMP_PREDICATE
;
2254 const SCEVNAryExpr
*Max
= nullptr;
2255 if (const SCEVSMaxExpr
*S
= dyn_cast
<SCEVSMaxExpr
>(BackedgeTakenCount
)) {
2256 Pred
= ICmpInst::ICMP_SLE
;
2258 } else if (const SCEVSMaxExpr
*S
= dyn_cast
<SCEVSMaxExpr
>(IterationCount
)) {
2259 Pred
= ICmpInst::ICMP_SLT
;
2261 } else if (const SCEVUMaxExpr
*U
= dyn_cast
<SCEVUMaxExpr
>(IterationCount
)) {
2262 Pred
= ICmpInst::ICMP_ULT
;
2269 // To handle a max with more than two operands, this optimization would
2270 // require additional checking and setup.
2271 if (Max
->getNumOperands() != 2)
2274 const SCEV
*MaxLHS
= Max
->getOperand(0);
2275 const SCEV
*MaxRHS
= Max
->getOperand(1);
2277 // ScalarEvolution canonicalizes constants to the left. For < and >, look
2278 // for a comparison with 1. For <= and >=, a comparison with zero.
2280 (ICmpInst::isTrueWhenEqual(Pred
) ? !MaxLHS
->isZero() : (MaxLHS
!= One
)))
2283 // Check the relevant induction variable for conformance to
2285 const SCEV
*IV
= SE
.getSCEV(Cond
->getOperand(0));
2286 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(IV
);
2287 if (!AR
|| !AR
->isAffine() ||
2288 AR
->getStart() != One
||
2289 AR
->getStepRecurrence(SE
) != One
)
2292 assert(AR
->getLoop() == L
&&
2293 "Loop condition operand is an addrec in a different loop!");
2295 // Check the right operand of the select, and remember it, as it will
2296 // be used in the new comparison instruction.
2297 Value
*NewRHS
= nullptr;
2298 if (ICmpInst::isTrueWhenEqual(Pred
)) {
2299 // Look for n+1, and grab n.
2300 if (AddOperator
*BO
= dyn_cast
<AddOperator
>(Sel
->getOperand(1)))
2301 if (ConstantInt
*BO1
= dyn_cast
<ConstantInt
>(BO
->getOperand(1)))
2302 if (BO1
->isOne() && SE
.getSCEV(BO
->getOperand(0)) == MaxRHS
)
2303 NewRHS
= BO
->getOperand(0);
2304 if (AddOperator
*BO
= dyn_cast
<AddOperator
>(Sel
->getOperand(2)))
2305 if (ConstantInt
*BO1
= dyn_cast
<ConstantInt
>(BO
->getOperand(1)))
2306 if (BO1
->isOne() && SE
.getSCEV(BO
->getOperand(0)) == MaxRHS
)
2307 NewRHS
= BO
->getOperand(0);
2310 } else if (SE
.getSCEV(Sel
->getOperand(1)) == MaxRHS
)
2311 NewRHS
= Sel
->getOperand(1);
2312 else if (SE
.getSCEV(Sel
->getOperand(2)) == MaxRHS
)
2313 NewRHS
= Sel
->getOperand(2);
2314 else if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(MaxRHS
))
2315 NewRHS
= SU
->getValue();
2317 // Max doesn't match expected pattern.
2320 // Determine the new comparison opcode. It may be signed or unsigned,
2321 // and the original comparison may be either equality or inequality.
2322 if (Cond
->getPredicate() == CmpInst::ICMP_EQ
)
2323 Pred
= CmpInst::getInversePredicate(Pred
);
2325 // Ok, everything looks ok to change the condition into an SLT or SGE and
2326 // delete the max calculation.
2328 new ICmpInst(Cond
, Pred
, Cond
->getOperand(0), NewRHS
, "scmp");
2330 // Delete the max calculation instructions.
2331 Cond
->replaceAllUsesWith(NewCond
);
2332 CondUse
->setUser(NewCond
);
2333 Instruction
*Cmp
= cast
<Instruction
>(Sel
->getOperand(0));
2334 Cond
->eraseFromParent();
2335 Sel
->eraseFromParent();
2336 if (Cmp
->use_empty())
2337 Cmp
->eraseFromParent();
2341 /// Change loop terminating condition to use the postinc iv when possible.
2343 LSRInstance::OptimizeLoopTermCond() {
2344 SmallPtrSet
<Instruction
*, 4> PostIncs
;
2346 // We need a different set of heuristics for rotated and non-rotated loops.
2347 // If a loop is rotated then the latch is also the backedge, so inserting
2348 // post-inc expressions just before the latch is ideal. To reduce live ranges
2349 // it also makes sense to rewrite terminating conditions to use post-inc
2352 // If the loop is not rotated then the latch is not a backedge; the latch
2353 // check is done in the loop head. Adding post-inc expressions before the
2354 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2355 // in the loop body. In this case we do *not* want to use post-inc expressions
2356 // in the latch check, and we want to insert post-inc expressions before
2358 BasicBlock
*LatchBlock
= L
->getLoopLatch();
2359 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
2360 L
->getExitingBlocks(ExitingBlocks
);
2361 if (llvm::all_of(ExitingBlocks
, [&LatchBlock
](const BasicBlock
*BB
) {
2362 return LatchBlock
!= BB
;
2364 // The backedge doesn't exit the loop; treat this as a head-tested loop.
2365 IVIncInsertPos
= LatchBlock
->getTerminator();
2369 // Otherwise treat this as a rotated loop.
2370 for (BasicBlock
*ExitingBlock
: ExitingBlocks
) {
2371 // Get the terminating condition for the loop if possible. If we
2372 // can, we want to change it to use a post-incremented version of its
2373 // induction variable, to allow coalescing the live ranges for the IV into
2374 // one register value.
2376 BranchInst
*TermBr
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
2379 // FIXME: Overly conservative, termination condition could be an 'or' etc..
2380 if (TermBr
->isUnconditional() || !isa
<ICmpInst
>(TermBr
->getCondition()))
2383 // Search IVUsesByStride to find Cond's IVUse if there is one.
2384 IVStrideUse
*CondUse
= nullptr;
2385 ICmpInst
*Cond
= cast
<ICmpInst
>(TermBr
->getCondition());
2386 if (!FindIVUserForCond(Cond
, CondUse
))
2389 // If the trip count is computed in terms of a max (due to ScalarEvolution
2390 // being unable to find a sufficient guard, for example), change the loop
2391 // comparison to use SLT or ULT instead of NE.
2392 // One consequence of doing this now is that it disrupts the count-down
2393 // optimization. That's not always a bad thing though, because in such
2394 // cases it may still be worthwhile to avoid a max.
2395 Cond
= OptimizeMax(Cond
, CondUse
);
2397 // If this exiting block dominates the latch block, it may also use
2398 // the post-inc value if it won't be shared with other uses.
2399 // Check for dominance.
2400 if (!DT
.dominates(ExitingBlock
, LatchBlock
))
2403 // Conservatively avoid trying to use the post-inc value in non-latch
2404 // exits if there may be pre-inc users in intervening blocks.
2405 if (LatchBlock
!= ExitingBlock
)
2406 for (IVUsers::const_iterator UI
= IU
.begin(), E
= IU
.end(); UI
!= E
; ++UI
)
2407 // Test if the use is reachable from the exiting block. This dominator
2408 // query is a conservative approximation of reachability.
2409 if (&*UI
!= CondUse
&&
2410 !DT
.properlyDominates(UI
->getUser()->getParent(), ExitingBlock
)) {
2411 // Conservatively assume there may be reuse if the quotient of their
2412 // strides could be a legal scale.
2413 const SCEV
*A
= IU
.getStride(*CondUse
, L
);
2414 const SCEV
*B
= IU
.getStride(*UI
, L
);
2415 if (!A
|| !B
) continue;
2416 if (SE
.getTypeSizeInBits(A
->getType()) !=
2417 SE
.getTypeSizeInBits(B
->getType())) {
2418 if (SE
.getTypeSizeInBits(A
->getType()) >
2419 SE
.getTypeSizeInBits(B
->getType()))
2420 B
= SE
.getSignExtendExpr(B
, A
->getType());
2422 A
= SE
.getSignExtendExpr(A
, B
->getType());
2424 if (const SCEVConstant
*D
=
2425 dyn_cast_or_null
<SCEVConstant
>(getExactSDiv(B
, A
, SE
))) {
2426 const ConstantInt
*C
= D
->getValue();
2427 // Stride of one or negative one can have reuse with non-addresses.
2428 if (C
->isOne() || C
->isMinusOne())
2429 goto decline_post_inc
;
2430 // Avoid weird situations.
2431 if (C
->getValue().getMinSignedBits() >= 64 ||
2432 C
->getValue().isMinSignedValue())
2433 goto decline_post_inc
;
2434 // Check for possible scaled-address reuse.
2435 if (isAddressUse(TTI
, UI
->getUser(), UI
->getOperandValToReplace())) {
2436 MemAccessTy AccessTy
= getAccessType(
2437 TTI
, UI
->getUser(), UI
->getOperandValToReplace());
2438 int64_t Scale
= C
->getSExtValue();
2439 if (TTI
.isLegalAddressingMode(AccessTy
.MemTy
, /*BaseGV=*/nullptr,
2441 /*HasBaseReg=*/false, Scale
,
2442 AccessTy
.AddrSpace
))
2443 goto decline_post_inc
;
2445 if (TTI
.isLegalAddressingMode(AccessTy
.MemTy
, /*BaseGV=*/nullptr,
2447 /*HasBaseReg=*/false, Scale
,
2448 AccessTy
.AddrSpace
))
2449 goto decline_post_inc
;
2454 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
2457 // It's possible for the setcc instruction to be anywhere in the loop, and
2458 // possible for it to have multiple users. If it is not immediately before
2459 // the exiting block branch, move it.
2460 if (&*++BasicBlock::iterator(Cond
) != TermBr
) {
2461 if (Cond
->hasOneUse()) {
2462 Cond
->moveBefore(TermBr
);
2464 // Clone the terminating condition and insert into the loopend.
2465 ICmpInst
*OldCond
= Cond
;
2466 Cond
= cast
<ICmpInst
>(Cond
->clone());
2467 Cond
->setName(L
->getHeader()->getName() + ".termcond");
2468 ExitingBlock
->getInstList().insert(TermBr
->getIterator(), Cond
);
2470 // Clone the IVUse, as the old use still exists!
2471 CondUse
= &IU
.AddUser(Cond
, CondUse
->getOperandValToReplace());
2472 TermBr
->replaceUsesOfWith(OldCond
, Cond
);
2476 // If we get to here, we know that we can transform the setcc instruction to
2477 // use the post-incremented version of the IV, allowing us to coalesce the
2478 // live ranges for the IV correctly.
2479 CondUse
->transformToPostInc(L
);
2482 PostIncs
.insert(Cond
);
2486 // Determine an insertion point for the loop induction variable increment. It
2487 // must dominate all the post-inc comparisons we just set up, and it must
2488 // dominate the loop latch edge.
2489 IVIncInsertPos
= L
->getLoopLatch()->getTerminator();
2490 for (Instruction
*Inst
: PostIncs
) {
2492 DT
.findNearestCommonDominator(IVIncInsertPos
->getParent(),
2494 if (BB
== Inst
->getParent())
2495 IVIncInsertPos
= Inst
;
2496 else if (BB
!= IVIncInsertPos
->getParent())
2497 IVIncInsertPos
= BB
->getTerminator();
2501 /// Determine if the given use can accommodate a fixup at the given offset and
2502 /// other details. If so, update the use and return true.
2503 bool LSRInstance::reconcileNewOffset(LSRUse
&LU
, int64_t NewOffset
,
2504 bool HasBaseReg
, LSRUse::KindType Kind
,
2505 MemAccessTy AccessTy
) {
2506 int64_t NewMinOffset
= LU
.MinOffset
;
2507 int64_t NewMaxOffset
= LU
.MaxOffset
;
2508 MemAccessTy NewAccessTy
= AccessTy
;
2510 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2511 // something conservative, however this can pessimize in the case that one of
2512 // the uses will have all its uses outside the loop, for example.
2513 if (LU
.Kind
!= Kind
)
2516 // Check for a mismatched access type, and fall back conservatively as needed.
2517 // TODO: Be less conservative when the type is similar and can use the same
2518 // addressing modes.
2519 if (Kind
== LSRUse::Address
) {
2520 if (AccessTy
.MemTy
!= LU
.AccessTy
.MemTy
) {
2521 NewAccessTy
= MemAccessTy::getUnknown(AccessTy
.MemTy
->getContext(),
2522 AccessTy
.AddrSpace
);
2526 // Conservatively assume HasBaseReg is true for now.
2527 if (NewOffset
< LU
.MinOffset
) {
2528 if (!isAlwaysFoldable(TTI
, Kind
, NewAccessTy
, /*BaseGV=*/nullptr,
2529 LU
.MaxOffset
- NewOffset
, HasBaseReg
))
2531 NewMinOffset
= NewOffset
;
2532 } else if (NewOffset
> LU
.MaxOffset
) {
2533 if (!isAlwaysFoldable(TTI
, Kind
, NewAccessTy
, /*BaseGV=*/nullptr,
2534 NewOffset
- LU
.MinOffset
, HasBaseReg
))
2536 NewMaxOffset
= NewOffset
;
2540 LU
.MinOffset
= NewMinOffset
;
2541 LU
.MaxOffset
= NewMaxOffset
;
2542 LU
.AccessTy
= NewAccessTy
;
2546 /// Return an LSRUse index and an offset value for a fixup which needs the given
2547 /// expression, with the given kind and optional access type. Either reuse an
2548 /// existing use or create a new one, as needed.
2549 std::pair
<size_t, int64_t> LSRInstance::getUse(const SCEV
*&Expr
,
2550 LSRUse::KindType Kind
,
2551 MemAccessTy AccessTy
) {
2552 const SCEV
*Copy
= Expr
;
2553 int64_t Offset
= ExtractImmediate(Expr
, SE
);
2555 // Basic uses can't accept any offset, for example.
2556 if (!isAlwaysFoldable(TTI
, Kind
, AccessTy
, /*BaseGV=*/ nullptr,
2557 Offset
, /*HasBaseReg=*/ true)) {
2562 std::pair
<UseMapTy::iterator
, bool> P
=
2563 UseMap
.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr
, Kind
), 0));
2565 // A use already existed with this base.
2566 size_t LUIdx
= P
.first
->second
;
2567 LSRUse
&LU
= Uses
[LUIdx
];
2568 if (reconcileNewOffset(LU
, Offset
, /*HasBaseReg=*/true, Kind
, AccessTy
))
2570 return std::make_pair(LUIdx
, Offset
);
2573 // Create a new use.
2574 size_t LUIdx
= Uses
.size();
2575 P
.first
->second
= LUIdx
;
2576 Uses
.push_back(LSRUse(Kind
, AccessTy
));
2577 LSRUse
&LU
= Uses
[LUIdx
];
2579 LU
.MinOffset
= Offset
;
2580 LU
.MaxOffset
= Offset
;
2581 return std::make_pair(LUIdx
, Offset
);
2584 /// Delete the given use from the Uses list.
2585 void LSRInstance::DeleteUse(LSRUse
&LU
, size_t LUIdx
) {
2586 if (&LU
!= &Uses
.back())
2587 std::swap(LU
, Uses
.back());
2591 RegUses
.swapAndDropUse(LUIdx
, Uses
.size());
2594 /// Look for a use distinct from OrigLU which is has a formula that has the same
2595 /// registers as the given formula.
2597 LSRInstance::FindUseWithSimilarFormula(const Formula
&OrigF
,
2598 const LSRUse
&OrigLU
) {
2599 // Search all uses for the formula. This could be more clever.
2600 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
2601 LSRUse
&LU
= Uses
[LUIdx
];
2602 // Check whether this use is close enough to OrigLU, to see whether it's
2603 // worthwhile looking through its formulae.
2604 // Ignore ICmpZero uses because they may contain formulae generated by
2605 // GenerateICmpZeroScales, in which case adding fixup offsets may
2607 if (&LU
!= &OrigLU
&&
2608 LU
.Kind
!= LSRUse::ICmpZero
&&
2609 LU
.Kind
== OrigLU
.Kind
&& OrigLU
.AccessTy
== LU
.AccessTy
&&
2610 LU
.WidestFixupType
== OrigLU
.WidestFixupType
&&
2611 LU
.HasFormulaWithSameRegs(OrigF
)) {
2612 // Scan through this use's formulae.
2613 for (const Formula
&F
: LU
.Formulae
) {
2614 // Check to see if this formula has the same registers and symbols
2616 if (F
.BaseRegs
== OrigF
.BaseRegs
&&
2617 F
.ScaledReg
== OrigF
.ScaledReg
&&
2618 F
.BaseGV
== OrigF
.BaseGV
&&
2619 F
.Scale
== OrigF
.Scale
&&
2620 F
.UnfoldedOffset
== OrigF
.UnfoldedOffset
) {
2621 if (F
.BaseOffset
== 0)
2623 // This is the formula where all the registers and symbols matched;
2624 // there aren't going to be any others. Since we declined it, we
2625 // can skip the rest of the formulae and proceed to the next LSRUse.
2632 // Nothing looked good.
2636 void LSRInstance::CollectInterestingTypesAndFactors() {
2637 SmallSetVector
<const SCEV
*, 4> Strides
;
2639 // Collect interesting types and strides.
2640 SmallVector
<const SCEV
*, 4> Worklist
;
2641 for (const IVStrideUse
&U
: IU
) {
2642 const SCEV
*Expr
= IU
.getExpr(U
);
2644 // Collect interesting types.
2645 Types
.insert(SE
.getEffectiveSCEVType(Expr
->getType()));
2647 // Add strides for mentioned loops.
2648 Worklist
.push_back(Expr
);
2650 const SCEV
*S
= Worklist
.pop_back_val();
2651 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
2652 if (AR
->getLoop() == L
)
2653 Strides
.insert(AR
->getStepRecurrence(SE
));
2654 Worklist
.push_back(AR
->getStart());
2655 } else if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
2656 Worklist
.append(Add
->op_begin(), Add
->op_end());
2658 } while (!Worklist
.empty());
2661 // Compute interesting factors from the set of interesting strides.
2662 for (SmallSetVector
<const SCEV
*, 4>::const_iterator
2663 I
= Strides
.begin(), E
= Strides
.end(); I
!= E
; ++I
)
2664 for (SmallSetVector
<const SCEV
*, 4>::const_iterator NewStrideIter
=
2665 std::next(I
); NewStrideIter
!= E
; ++NewStrideIter
) {
2666 const SCEV
*OldStride
= *I
;
2667 const SCEV
*NewStride
= *NewStrideIter
;
2669 if (SE
.getTypeSizeInBits(OldStride
->getType()) !=
2670 SE
.getTypeSizeInBits(NewStride
->getType())) {
2671 if (SE
.getTypeSizeInBits(OldStride
->getType()) >
2672 SE
.getTypeSizeInBits(NewStride
->getType()))
2673 NewStride
= SE
.getSignExtendExpr(NewStride
, OldStride
->getType());
2675 OldStride
= SE
.getSignExtendExpr(OldStride
, NewStride
->getType());
2677 if (const SCEVConstant
*Factor
=
2678 dyn_cast_or_null
<SCEVConstant
>(getExactSDiv(NewStride
, OldStride
,
2680 if (Factor
->getAPInt().getMinSignedBits() <= 64)
2681 Factors
.insert(Factor
->getAPInt().getSExtValue());
2682 } else if (const SCEVConstant
*Factor
=
2683 dyn_cast_or_null
<SCEVConstant
>(getExactSDiv(OldStride
,
2686 if (Factor
->getAPInt().getMinSignedBits() <= 64)
2687 Factors
.insert(Factor
->getAPInt().getSExtValue());
2691 // If all uses use the same type, don't bother looking for truncation-based
2693 if (Types
.size() == 1)
2696 LLVM_DEBUG(print_factors_and_types(dbgs()));
2699 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2700 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2701 /// IVStrideUses, we could partially skip this.
2702 static User::op_iterator
2703 findIVOperand(User::op_iterator OI
, User::op_iterator OE
,
2704 Loop
*L
, ScalarEvolution
&SE
) {
2705 for(; OI
!= OE
; ++OI
) {
2706 if (Instruction
*Oper
= dyn_cast
<Instruction
>(*OI
)) {
2707 if (!SE
.isSCEVable(Oper
->getType()))
2710 if (const SCEVAddRecExpr
*AR
=
2711 dyn_cast
<SCEVAddRecExpr
>(SE
.getSCEV(Oper
))) {
2712 if (AR
->getLoop() == L
)
2720 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2721 /// a convenient helper.
2722 static Value
*getWideOperand(Value
*Oper
) {
2723 if (TruncInst
*Trunc
= dyn_cast
<TruncInst
>(Oper
))
2724 return Trunc
->getOperand(0);
2728 /// Return true if we allow an IV chain to include both types.
2729 static bool isCompatibleIVType(Value
*LVal
, Value
*RVal
) {
2730 Type
*LType
= LVal
->getType();
2731 Type
*RType
= RVal
->getType();
2732 return (LType
== RType
) || (LType
->isPointerTy() && RType
->isPointerTy() &&
2733 // Different address spaces means (possibly)
2734 // different types of the pointer implementation,
2735 // e.g. i16 vs i32 so disallow that.
2736 (LType
->getPointerAddressSpace() ==
2737 RType
->getPointerAddressSpace()));
2740 /// Return an approximation of this SCEV expression's "base", or NULL for any
2741 /// constant. Returning the expression itself is conservative. Returning a
2742 /// deeper subexpression is more precise and valid as long as it isn't less
2743 /// complex than another subexpression. For expressions involving multiple
2744 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2745 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2748 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2749 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2750 static const SCEV
*getExprBase(const SCEV
*S
) {
2751 switch (S
->getSCEVType()) {
2752 default: // uncluding scUnknown.
2757 return getExprBase(cast
<SCEVTruncateExpr
>(S
)->getOperand());
2759 return getExprBase(cast
<SCEVZeroExtendExpr
>(S
)->getOperand());
2761 return getExprBase(cast
<SCEVSignExtendExpr
>(S
)->getOperand());
2763 // Skip over scaled operands (scMulExpr) to follow add operands as long as
2764 // there's nothing more complex.
2765 // FIXME: not sure if we want to recognize negation.
2766 const SCEVAddExpr
*Add
= cast
<SCEVAddExpr
>(S
);
2767 for (std::reverse_iterator
<SCEVAddExpr::op_iterator
> I(Add
->op_end()),
2768 E(Add
->op_begin()); I
!= E
; ++I
) {
2769 const SCEV
*SubExpr
= *I
;
2770 if (SubExpr
->getSCEVType() == scAddExpr
)
2771 return getExprBase(SubExpr
);
2773 if (SubExpr
->getSCEVType() != scMulExpr
)
2776 return S
; // all operands are scaled, be conservative.
2779 return getExprBase(cast
<SCEVAddRecExpr
>(S
)->getStart());
2783 /// Return true if the chain increment is profitable to expand into a loop
2784 /// invariant value, which may require its own register. A profitable chain
2785 /// increment will be an offset relative to the same base. We allow such offsets
2786 /// to potentially be used as chain increment as long as it's not obviously
2787 /// expensive to expand using real instructions.
2788 bool IVChain::isProfitableIncrement(const SCEV
*OperExpr
,
2789 const SCEV
*IncExpr
,
2790 ScalarEvolution
&SE
) {
2791 // Aggressively form chains when -stress-ivchain.
2795 // Do not replace a constant offset from IV head with a nonconstant IV
2797 if (!isa
<SCEVConstant
>(IncExpr
)) {
2798 const SCEV
*HeadExpr
= SE
.getSCEV(getWideOperand(Incs
[0].IVOperand
));
2799 if (isa
<SCEVConstant
>(SE
.getMinusSCEV(OperExpr
, HeadExpr
)))
2803 SmallPtrSet
<const SCEV
*, 8> Processed
;
2804 return !isHighCostExpansion(IncExpr
, Processed
, SE
);
2807 /// Return true if the number of registers needed for the chain is estimated to
2808 /// be less than the number required for the individual IV users. First prohibit
2809 /// any IV users that keep the IV live across increments (the Users set should
2810 /// be empty). Next count the number and type of increments in the chain.
2812 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2813 /// effectively use postinc addressing modes. Only consider it profitable it the
2814 /// increments can be computed in fewer registers when chained.
2816 /// TODO: Consider IVInc free if it's already used in another chains.
2818 isProfitableChain(IVChain
&Chain
, SmallPtrSetImpl
<Instruction
*> &Users
,
2819 ScalarEvolution
&SE
) {
2823 if (!Chain
.hasIncs())
2826 if (!Users
.empty()) {
2827 LLVM_DEBUG(dbgs() << "Chain: " << *Chain
.Incs
[0].UserInst
<< " users:\n";
2828 for (Instruction
*Inst
2829 : Users
) { dbgs() << " " << *Inst
<< "\n"; });
2832 assert(!Chain
.Incs
.empty() && "empty IV chains are not allowed");
2834 // The chain itself may require a register, so intialize cost to 1.
2837 // A complete chain likely eliminates the need for keeping the original IV in
2838 // a register. LSR does not currently know how to form a complete chain unless
2839 // the header phi already exists.
2840 if (isa
<PHINode
>(Chain
.tailUserInst())
2841 && SE
.getSCEV(Chain
.tailUserInst()) == Chain
.Incs
[0].IncExpr
) {
2844 const SCEV
*LastIncExpr
= nullptr;
2845 unsigned NumConstIncrements
= 0;
2846 unsigned NumVarIncrements
= 0;
2847 unsigned NumReusedIncrements
= 0;
2848 for (const IVInc
&Inc
: Chain
) {
2849 if (Inc
.IncExpr
->isZero())
2852 // Incrementing by zero or some constant is neutral. We assume constants can
2853 // be folded into an addressing mode or an add's immediate operand.
2854 if (isa
<SCEVConstant
>(Inc
.IncExpr
)) {
2855 ++NumConstIncrements
;
2859 if (Inc
.IncExpr
== LastIncExpr
)
2860 ++NumReusedIncrements
;
2864 LastIncExpr
= Inc
.IncExpr
;
2866 // An IV chain with a single increment is handled by LSR's postinc
2867 // uses. However, a chain with multiple increments requires keeping the IV's
2868 // value live longer than it needs to be if chained.
2869 if (NumConstIncrements
> 1)
2872 // Materializing increment expressions in the preheader that didn't exist in
2873 // the original code may cost a register. For example, sign-extended array
2874 // indices can produce ridiculous increments like this:
2875 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2876 cost
+= NumVarIncrements
;
2878 // Reusing variable increments likely saves a register to hold the multiple of
2880 cost
-= NumReusedIncrements
;
2882 LLVM_DEBUG(dbgs() << "Chain: " << *Chain
.Incs
[0].UserInst
<< " Cost: " << cost
2888 /// Add this IV user to an existing chain or make it the head of a new chain.
2889 void LSRInstance::ChainInstruction(Instruction
*UserInst
, Instruction
*IVOper
,
2890 SmallVectorImpl
<ChainUsers
> &ChainUsersVec
) {
2891 // When IVs are used as types of varying widths, they are generally converted
2892 // to a wider type with some uses remaining narrow under a (free) trunc.
2893 Value
*const NextIV
= getWideOperand(IVOper
);
2894 const SCEV
*const OperExpr
= SE
.getSCEV(NextIV
);
2895 const SCEV
*const OperExprBase
= getExprBase(OperExpr
);
2897 // Visit all existing chains. Check if its IVOper can be computed as a
2898 // profitable loop invariant increment from the last link in the Chain.
2899 unsigned ChainIdx
= 0, NChains
= IVChainVec
.size();
2900 const SCEV
*LastIncExpr
= nullptr;
2901 for (; ChainIdx
< NChains
; ++ChainIdx
) {
2902 IVChain
&Chain
= IVChainVec
[ChainIdx
];
2904 // Prune the solution space aggressively by checking that both IV operands
2905 // are expressions that operate on the same unscaled SCEVUnknown. This
2906 // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2907 // first avoids creating extra SCEV expressions.
2908 if (!StressIVChain
&& Chain
.ExprBase
!= OperExprBase
)
2911 Value
*PrevIV
= getWideOperand(Chain
.Incs
.back().IVOperand
);
2912 if (!isCompatibleIVType(PrevIV
, NextIV
))
2915 // A phi node terminates a chain.
2916 if (isa
<PHINode
>(UserInst
) && isa
<PHINode
>(Chain
.tailUserInst()))
2919 // The increment must be loop-invariant so it can be kept in a register.
2920 const SCEV
*PrevExpr
= SE
.getSCEV(PrevIV
);
2921 const SCEV
*IncExpr
= SE
.getMinusSCEV(OperExpr
, PrevExpr
);
2922 if (!SE
.isLoopInvariant(IncExpr
, L
))
2925 if (Chain
.isProfitableIncrement(OperExpr
, IncExpr
, SE
)) {
2926 LastIncExpr
= IncExpr
;
2930 // If we haven't found a chain, create a new one, unless we hit the max. Don't
2931 // bother for phi nodes, because they must be last in the chain.
2932 if (ChainIdx
== NChains
) {
2933 if (isa
<PHINode
>(UserInst
))
2935 if (NChains
>= MaxChains
&& !StressIVChain
) {
2936 LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2939 LastIncExpr
= OperExpr
;
2940 // IVUsers may have skipped over sign/zero extensions. We don't currently
2941 // attempt to form chains involving extensions unless they can be hoisted
2942 // into this loop's AddRec.
2943 if (!isa
<SCEVAddRecExpr
>(LastIncExpr
))
2946 IVChainVec
.push_back(IVChain(IVInc(UserInst
, IVOper
, LastIncExpr
),
2948 ChainUsersVec
.resize(NChains
);
2949 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx
<< " Head: (" << *UserInst
2950 << ") IV=" << *LastIncExpr
<< "\n");
2952 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx
<< " Inc: (" << *UserInst
2953 << ") IV+" << *LastIncExpr
<< "\n");
2954 // Add this IV user to the end of the chain.
2955 IVChainVec
[ChainIdx
].add(IVInc(UserInst
, IVOper
, LastIncExpr
));
2957 IVChain
&Chain
= IVChainVec
[ChainIdx
];
2959 SmallPtrSet
<Instruction
*,4> &NearUsers
= ChainUsersVec
[ChainIdx
].NearUsers
;
2960 // This chain's NearUsers become FarUsers.
2961 if (!LastIncExpr
->isZero()) {
2962 ChainUsersVec
[ChainIdx
].FarUsers
.insert(NearUsers
.begin(),
2967 // All other uses of IVOperand become near uses of the chain.
2968 // We currently ignore intermediate values within SCEV expressions, assuming
2969 // they will eventually be used be the current chain, or can be computed
2970 // from one of the chain increments. To be more precise we could
2971 // transitively follow its user and only add leaf IV users to the set.
2972 for (User
*U
: IVOper
->users()) {
2973 Instruction
*OtherUse
= dyn_cast
<Instruction
>(U
);
2976 // Uses in the chain will no longer be uses if the chain is formed.
2977 // Include the head of the chain in this iteration (not Chain.begin()).
2978 IVChain::const_iterator IncIter
= Chain
.Incs
.begin();
2979 IVChain::const_iterator IncEnd
= Chain
.Incs
.end();
2980 for( ; IncIter
!= IncEnd
; ++IncIter
) {
2981 if (IncIter
->UserInst
== OtherUse
)
2984 if (IncIter
!= IncEnd
)
2987 if (SE
.isSCEVable(OtherUse
->getType())
2988 && !isa
<SCEVUnknown
>(SE
.getSCEV(OtherUse
))
2989 && IU
.isIVUserOrOperand(OtherUse
)) {
2992 NearUsers
.insert(OtherUse
);
2995 // Since this user is part of the chain, it's no longer considered a use
2997 ChainUsersVec
[ChainIdx
].FarUsers
.erase(UserInst
);
3000 /// Populate the vector of Chains.
3002 /// This decreases ILP at the architecture level. Targets with ample registers,
3003 /// multiple memory ports, and no register renaming probably don't want
3004 /// this. However, such targets should probably disable LSR altogether.
3006 /// The job of LSR is to make a reasonable choice of induction variables across
3007 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3008 /// ILP *within the loop* if the target wants it.
3010 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3011 /// will not reorder memory operations, it will recognize this as a chain, but
3012 /// will generate redundant IV increments. Ideally this would be corrected later
3013 /// by a smart scheduler:
3019 /// TODO: Walk the entire domtree within this loop, not just the path to the
3020 /// loop latch. This will discover chains on side paths, but requires
3021 /// maintaining multiple copies of the Chains state.
3022 void LSRInstance::CollectChains() {
3023 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3024 SmallVector
<ChainUsers
, 8> ChainUsersVec
;
3026 SmallVector
<BasicBlock
*,8> LatchPath
;
3027 BasicBlock
*LoopHeader
= L
->getHeader();
3028 for (DomTreeNode
*Rung
= DT
.getNode(L
->getLoopLatch());
3029 Rung
->getBlock() != LoopHeader
; Rung
= Rung
->getIDom()) {
3030 LatchPath
.push_back(Rung
->getBlock());
3032 LatchPath
.push_back(LoopHeader
);
3034 // Walk the instruction stream from the loop header to the loop latch.
3035 for (BasicBlock
*BB
: reverse(LatchPath
)) {
3036 for (Instruction
&I
: *BB
) {
3037 // Skip instructions that weren't seen by IVUsers analysis.
3038 if (isa
<PHINode
>(I
) || !IU
.isIVUserOrOperand(&I
))
3041 // Ignore users that are part of a SCEV expression. This way we only
3042 // consider leaf IV Users. This effectively rediscovers a portion of
3043 // IVUsers analysis but in program order this time.
3044 if (SE
.isSCEVable(I
.getType()) && !isa
<SCEVUnknown
>(SE
.getSCEV(&I
)))
3047 // Remove this instruction from any NearUsers set it may be in.
3048 for (unsigned ChainIdx
= 0, NChains
= IVChainVec
.size();
3049 ChainIdx
< NChains
; ++ChainIdx
) {
3050 ChainUsersVec
[ChainIdx
].NearUsers
.erase(&I
);
3052 // Search for operands that can be chained.
3053 SmallPtrSet
<Instruction
*, 4> UniqueOperands
;
3054 User::op_iterator IVOpEnd
= I
.op_end();
3055 User::op_iterator IVOpIter
= findIVOperand(I
.op_begin(), IVOpEnd
, L
, SE
);
3056 while (IVOpIter
!= IVOpEnd
) {
3057 Instruction
*IVOpInst
= cast
<Instruction
>(*IVOpIter
);
3058 if (UniqueOperands
.insert(IVOpInst
).second
)
3059 ChainInstruction(&I
, IVOpInst
, ChainUsersVec
);
3060 IVOpIter
= findIVOperand(std::next(IVOpIter
), IVOpEnd
, L
, SE
);
3062 } // Continue walking down the instructions.
3063 } // Continue walking down the domtree.
3064 // Visit phi backedges to determine if the chain can generate the IV postinc.
3065 for (PHINode
&PN
: L
->getHeader()->phis()) {
3066 if (!SE
.isSCEVable(PN
.getType()))
3070 dyn_cast
<Instruction
>(PN
.getIncomingValueForBlock(L
->getLoopLatch()));
3072 ChainInstruction(&PN
, IncV
, ChainUsersVec
);
3074 // Remove any unprofitable chains.
3075 unsigned ChainIdx
= 0;
3076 for (unsigned UsersIdx
= 0, NChains
= IVChainVec
.size();
3077 UsersIdx
< NChains
; ++UsersIdx
) {
3078 if (!isProfitableChain(IVChainVec
[UsersIdx
],
3079 ChainUsersVec
[UsersIdx
].FarUsers
, SE
))
3081 // Preserve the chain at UsesIdx.
3082 if (ChainIdx
!= UsersIdx
)
3083 IVChainVec
[ChainIdx
] = IVChainVec
[UsersIdx
];
3084 FinalizeChain(IVChainVec
[ChainIdx
]);
3087 IVChainVec
.resize(ChainIdx
);
3090 void LSRInstance::FinalizeChain(IVChain
&Chain
) {
3091 assert(!Chain
.Incs
.empty() && "empty IV chains are not allowed");
3092 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain
.Incs
[0].UserInst
<< "\n");
3094 for (const IVInc
&Inc
: Chain
) {
3095 LLVM_DEBUG(dbgs() << " Inc: " << *Inc
.UserInst
<< "\n");
3096 auto UseI
= find(Inc
.UserInst
->operands(), Inc
.IVOperand
);
3097 assert(UseI
!= Inc
.UserInst
->op_end() && "cannot find IV operand");
3098 IVIncSet
.insert(UseI
);
3102 /// Return true if the IVInc can be folded into an addressing mode.
3103 static bool canFoldIVIncExpr(const SCEV
*IncExpr
, Instruction
*UserInst
,
3104 Value
*Operand
, const TargetTransformInfo
&TTI
) {
3105 const SCEVConstant
*IncConst
= dyn_cast
<SCEVConstant
>(IncExpr
);
3106 if (!IncConst
|| !isAddressUse(TTI
, UserInst
, Operand
))
3109 if (IncConst
->getAPInt().getMinSignedBits() > 64)
3112 MemAccessTy AccessTy
= getAccessType(TTI
, UserInst
, Operand
);
3113 int64_t IncOffset
= IncConst
->getValue()->getSExtValue();
3114 if (!isAlwaysFoldable(TTI
, LSRUse::Address
, AccessTy
, /*BaseGV=*/nullptr,
3115 IncOffset
, /*HaseBaseReg=*/false))
3121 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3122 /// user's operand from the previous IV user's operand.
3123 void LSRInstance::GenerateIVChain(const IVChain
&Chain
, SCEVExpander
&Rewriter
,
3124 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) {
3125 // Find the new IVOperand for the head of the chain. It may have been replaced
3127 const IVInc
&Head
= Chain
.Incs
[0];
3128 User::op_iterator IVOpEnd
= Head
.UserInst
->op_end();
3129 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3130 User::op_iterator IVOpIter
= findIVOperand(Head
.UserInst
->op_begin(),
3132 Value
*IVSrc
= nullptr;
3133 while (IVOpIter
!= IVOpEnd
) {
3134 IVSrc
= getWideOperand(*IVOpIter
);
3136 // If this operand computes the expression that the chain needs, we may use
3137 // it. (Check this after setting IVSrc which is used below.)
3139 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3140 // narrow for the chain, so we can no longer use it. We do allow using a
3141 // wider phi, assuming the LSR checked for free truncation. In that case we
3142 // should already have a truncate on this operand such that
3143 // getSCEV(IVSrc) == IncExpr.
3144 if (SE
.getSCEV(*IVOpIter
) == Head
.IncExpr
3145 || SE
.getSCEV(IVSrc
) == Head
.IncExpr
) {
3148 IVOpIter
= findIVOperand(std::next(IVOpIter
), IVOpEnd
, L
, SE
);
3150 if (IVOpIter
== IVOpEnd
) {
3151 // Gracefully give up on this chain.
3152 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head
.UserInst
<< "\n");
3156 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc
<< "\n");
3157 Type
*IVTy
= IVSrc
->getType();
3158 Type
*IntTy
= SE
.getEffectiveSCEVType(IVTy
);
3159 const SCEV
*LeftOverExpr
= nullptr;
3160 for (const IVInc
&Inc
: Chain
) {
3161 Instruction
*InsertPt
= Inc
.UserInst
;
3162 if (isa
<PHINode
>(InsertPt
))
3163 InsertPt
= L
->getLoopLatch()->getTerminator();
3165 // IVOper will replace the current IV User's operand. IVSrc is the IV
3166 // value currently held in a register.
3167 Value
*IVOper
= IVSrc
;
3168 if (!Inc
.IncExpr
->isZero()) {
3169 // IncExpr was the result of subtraction of two narrow values, so must
3171 const SCEV
*IncExpr
= SE
.getNoopOrSignExtend(Inc
.IncExpr
, IntTy
);
3172 LeftOverExpr
= LeftOverExpr
?
3173 SE
.getAddExpr(LeftOverExpr
, IncExpr
) : IncExpr
;
3175 if (LeftOverExpr
&& !LeftOverExpr
->isZero()) {
3176 // Expand the IV increment.
3177 Rewriter
.clearPostInc();
3178 Value
*IncV
= Rewriter
.expandCodeFor(LeftOverExpr
, IntTy
, InsertPt
);
3179 const SCEV
*IVOperExpr
= SE
.getAddExpr(SE
.getUnknown(IVSrc
),
3180 SE
.getUnknown(IncV
));
3181 IVOper
= Rewriter
.expandCodeFor(IVOperExpr
, IVTy
, InsertPt
);
3183 // If an IV increment can't be folded, use it as the next IV value.
3184 if (!canFoldIVIncExpr(LeftOverExpr
, Inc
.UserInst
, Inc
.IVOperand
, TTI
)) {
3185 assert(IVTy
== IVOper
->getType() && "inconsistent IV increment type");
3187 LeftOverExpr
= nullptr;
3190 Type
*OperTy
= Inc
.IVOperand
->getType();
3191 if (IVTy
!= OperTy
) {
3192 assert(SE
.getTypeSizeInBits(IVTy
) >= SE
.getTypeSizeInBits(OperTy
) &&
3193 "cannot extend a chained IV");
3194 IRBuilder
<> Builder(InsertPt
);
3195 IVOper
= Builder
.CreateTruncOrBitCast(IVOper
, OperTy
, "lsr.chain");
3197 Inc
.UserInst
->replaceUsesOfWith(Inc
.IVOperand
, IVOper
);
3198 DeadInsts
.emplace_back(Inc
.IVOperand
);
3200 // If LSR created a new, wider phi, we may also replace its postinc. We only
3201 // do this if we also found a wide value for the head of the chain.
3202 if (isa
<PHINode
>(Chain
.tailUserInst())) {
3203 for (PHINode
&Phi
: L
->getHeader()->phis()) {
3204 if (!isCompatibleIVType(&Phi
, IVSrc
))
3206 Instruction
*PostIncV
= dyn_cast
<Instruction
>(
3207 Phi
.getIncomingValueForBlock(L
->getLoopLatch()));
3208 if (!PostIncV
|| (SE
.getSCEV(PostIncV
) != SE
.getSCEV(IVSrc
)))
3210 Value
*IVOper
= IVSrc
;
3211 Type
*PostIncTy
= PostIncV
->getType();
3212 if (IVTy
!= PostIncTy
) {
3213 assert(PostIncTy
->isPointerTy() && "mixing int/ptr IV types");
3214 IRBuilder
<> Builder(L
->getLoopLatch()->getTerminator());
3215 Builder
.SetCurrentDebugLocation(PostIncV
->getDebugLoc());
3216 IVOper
= Builder
.CreatePointerCast(IVSrc
, PostIncTy
, "lsr.chain");
3218 Phi
.replaceUsesOfWith(PostIncV
, IVOper
);
3219 DeadInsts
.emplace_back(PostIncV
);
3224 void LSRInstance::CollectFixupsAndInitialFormulae() {
3225 for (const IVStrideUse
&U
: IU
) {
3226 Instruction
*UserInst
= U
.getUser();
3227 // Skip IV users that are part of profitable IV Chains.
3228 User::op_iterator UseI
=
3229 find(UserInst
->operands(), U
.getOperandValToReplace());
3230 assert(UseI
!= UserInst
->op_end() && "cannot find IV operand");
3231 if (IVIncSet
.count(UseI
)) {
3232 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI
<< '\n');
3236 LSRUse::KindType Kind
= LSRUse::Basic
;
3237 MemAccessTy AccessTy
;
3238 if (isAddressUse(TTI
, UserInst
, U
.getOperandValToReplace())) {
3239 Kind
= LSRUse::Address
;
3240 AccessTy
= getAccessType(TTI
, UserInst
, U
.getOperandValToReplace());
3243 const SCEV
*S
= IU
.getExpr(U
);
3244 PostIncLoopSet TmpPostIncLoops
= U
.getPostIncLoops();
3246 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3247 // (N - i == 0), and this allows (N - i) to be the expression that we work
3248 // with rather than just N or i, so we can consider the register
3249 // requirements for both N and i at the same time. Limiting this code to
3250 // equality icmps is not a problem because all interesting loops use
3251 // equality icmps, thanks to IndVarSimplify.
3252 if (ICmpInst
*CI
= dyn_cast
<ICmpInst
>(UserInst
))
3253 if (CI
->isEquality()) {
3254 // Swap the operands if needed to put the OperandValToReplace on the
3255 // left, for consistency.
3256 Value
*NV
= CI
->getOperand(1);
3257 if (NV
== U
.getOperandValToReplace()) {
3258 CI
->setOperand(1, CI
->getOperand(0));
3259 CI
->setOperand(0, NV
);
3260 NV
= CI
->getOperand(1);
3264 // x == y --> x - y == 0
3265 const SCEV
*N
= SE
.getSCEV(NV
);
3266 if (SE
.isLoopInvariant(N
, L
) && isSafeToExpand(N
, SE
)) {
3267 // S is normalized, so normalize N before folding it into S
3268 // to keep the result normalized.
3269 N
= normalizeForPostIncUse(N
, TmpPostIncLoops
, SE
);
3270 Kind
= LSRUse::ICmpZero
;
3271 S
= SE
.getMinusSCEV(N
, S
);
3274 // -1 and the negations of all interesting strides (except the negation
3275 // of -1) are now also interesting.
3276 for (size_t i
= 0, e
= Factors
.size(); i
!= e
; ++i
)
3277 if (Factors
[i
] != -1)
3278 Factors
.insert(-(uint64_t)Factors
[i
]);
3282 // Get or create an LSRUse.
3283 std::pair
<size_t, int64_t> P
= getUse(S
, Kind
, AccessTy
);
3284 size_t LUIdx
= P
.first
;
3285 int64_t Offset
= P
.second
;
3286 LSRUse
&LU
= Uses
[LUIdx
];
3288 // Record the fixup.
3289 LSRFixup
&LF
= LU
.getNewFixup();
3290 LF
.UserInst
= UserInst
;
3291 LF
.OperandValToReplace
= U
.getOperandValToReplace();
3292 LF
.PostIncLoops
= TmpPostIncLoops
;
3294 LU
.AllFixupsOutsideLoop
&= LF
.isUseFullyOutsideLoop(L
);
3296 if (!LU
.WidestFixupType
||
3297 SE
.getTypeSizeInBits(LU
.WidestFixupType
) <
3298 SE
.getTypeSizeInBits(LF
.OperandValToReplace
->getType()))
3299 LU
.WidestFixupType
= LF
.OperandValToReplace
->getType();
3301 // If this is the first use of this LSRUse, give it a formula.
3302 if (LU
.Formulae
.empty()) {
3303 InsertInitialFormula(S
, LU
, LUIdx
);
3304 CountRegisters(LU
.Formulae
.back(), LUIdx
);
3308 LLVM_DEBUG(print_fixups(dbgs()));
3311 /// Insert a formula for the given expression into the given use, separating out
3312 /// loop-variant portions from loop-invariant and loop-computable portions.
3314 LSRInstance::InsertInitialFormula(const SCEV
*S
, LSRUse
&LU
, size_t LUIdx
) {
3315 // Mark uses whose expressions cannot be expanded.
3316 if (!isSafeToExpand(S
, SE
))
3317 LU
.RigidFormula
= true;
3320 F
.initialMatch(S
, L
, SE
);
3321 bool Inserted
= InsertFormula(LU
, LUIdx
, F
);
3322 assert(Inserted
&& "Initial formula already exists!"); (void)Inserted
;
3325 /// Insert a simple single-register formula for the given expression into the
3328 LSRInstance::InsertSupplementalFormula(const SCEV
*S
,
3329 LSRUse
&LU
, size_t LUIdx
) {
3331 F
.BaseRegs
.push_back(S
);
3332 F
.HasBaseReg
= true;
3333 bool Inserted
= InsertFormula(LU
, LUIdx
, F
);
3334 assert(Inserted
&& "Supplemental formula already exists!"); (void)Inserted
;
3337 /// Note which registers are used by the given formula, updating RegUses.
3338 void LSRInstance::CountRegisters(const Formula
&F
, size_t LUIdx
) {
3340 RegUses
.countRegister(F
.ScaledReg
, LUIdx
);
3341 for (const SCEV
*BaseReg
: F
.BaseRegs
)
3342 RegUses
.countRegister(BaseReg
, LUIdx
);
3345 /// If the given formula has not yet been inserted, add it to the list, and
3346 /// return true. Return false otherwise.
3347 bool LSRInstance::InsertFormula(LSRUse
&LU
, unsigned LUIdx
, const Formula
&F
) {
3348 // Do not insert formula that we will not be able to expand.
3349 assert(isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
, LU
.AccessTy
, F
) &&
3350 "Formula is illegal");
3352 if (!LU
.InsertFormula(F
, *L
))
3355 CountRegisters(F
, LUIdx
);
3359 /// Check for other uses of loop-invariant values which we're tracking. These
3360 /// other uses will pin these values in registers, making them less profitable
3361 /// for elimination.
3362 /// TODO: This currently misses non-constant addrec step registers.
3363 /// TODO: Should this give more weight to users inside the loop?
3365 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3366 SmallVector
<const SCEV
*, 8> Worklist(RegUses
.begin(), RegUses
.end());
3367 SmallPtrSet
<const SCEV
*, 32> Visited
;
3369 while (!Worklist
.empty()) {
3370 const SCEV
*S
= Worklist
.pop_back_val();
3372 // Don't process the same SCEV twice
3373 if (!Visited
.insert(S
).second
)
3376 if (const SCEVNAryExpr
*N
= dyn_cast
<SCEVNAryExpr
>(S
))
3377 Worklist
.append(N
->op_begin(), N
->op_end());
3378 else if (const SCEVCastExpr
*C
= dyn_cast
<SCEVCastExpr
>(S
))
3379 Worklist
.push_back(C
->getOperand());
3380 else if (const SCEVUDivExpr
*D
= dyn_cast
<SCEVUDivExpr
>(S
)) {
3381 Worklist
.push_back(D
->getLHS());
3382 Worklist
.push_back(D
->getRHS());
3383 } else if (const SCEVUnknown
*US
= dyn_cast
<SCEVUnknown
>(S
)) {
3384 const Value
*V
= US
->getValue();
3385 if (const Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
3386 // Look for instructions defined outside the loop.
3387 if (L
->contains(Inst
)) continue;
3388 } else if (isa
<UndefValue
>(V
))
3389 // Undef doesn't have a live range, so it doesn't matter.
3391 for (const Use
&U
: V
->uses()) {
3392 const Instruction
*UserInst
= dyn_cast
<Instruction
>(U
.getUser());
3393 // Ignore non-instructions.
3396 // Ignore instructions in other functions (as can happen with
3398 if (UserInst
->getParent()->getParent() != L
->getHeader()->getParent())
3400 // Ignore instructions not dominated by the loop.
3401 const BasicBlock
*UseBB
= !isa
<PHINode
>(UserInst
) ?
3402 UserInst
->getParent() :
3403 cast
<PHINode
>(UserInst
)->getIncomingBlock(
3404 PHINode::getIncomingValueNumForOperand(U
.getOperandNo()));
3405 if (!DT
.dominates(L
->getHeader(), UseBB
))
3407 // Don't bother if the instruction is in a BB which ends in an EHPad.
3408 if (UseBB
->getTerminator()->isEHPad())
3410 // Don't bother rewriting PHIs in catchswitch blocks.
3411 if (isa
<CatchSwitchInst
>(UserInst
->getParent()->getTerminator()))
3413 // Ignore uses which are part of other SCEV expressions, to avoid
3414 // analyzing them multiple times.
3415 if (SE
.isSCEVable(UserInst
->getType())) {
3416 const SCEV
*UserS
= SE
.getSCEV(const_cast<Instruction
*>(UserInst
));
3417 // If the user is a no-op, look through to its uses.
3418 if (!isa
<SCEVUnknown
>(UserS
))
3422 SE
.getUnknown(const_cast<Instruction
*>(UserInst
)));
3426 // Ignore icmp instructions which are already being analyzed.
3427 if (const ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(UserInst
)) {
3428 unsigned OtherIdx
= !U
.getOperandNo();
3429 Value
*OtherOp
= const_cast<Value
*>(ICI
->getOperand(OtherIdx
));
3430 if (SE
.hasComputableLoopEvolution(SE
.getSCEV(OtherOp
), L
))
3434 std::pair
<size_t, int64_t> P
= getUse(
3435 S
, LSRUse::Basic
, MemAccessTy());
3436 size_t LUIdx
= P
.first
;
3437 int64_t Offset
= P
.second
;
3438 LSRUse
&LU
= Uses
[LUIdx
];
3439 LSRFixup
&LF
= LU
.getNewFixup();
3440 LF
.UserInst
= const_cast<Instruction
*>(UserInst
);
3441 LF
.OperandValToReplace
= U
;
3443 LU
.AllFixupsOutsideLoop
&= LF
.isUseFullyOutsideLoop(L
);
3444 if (!LU
.WidestFixupType
||
3445 SE
.getTypeSizeInBits(LU
.WidestFixupType
) <
3446 SE
.getTypeSizeInBits(LF
.OperandValToReplace
->getType()))
3447 LU
.WidestFixupType
= LF
.OperandValToReplace
->getType();
3448 InsertSupplementalFormula(US
, LU
, LUIdx
);
3449 CountRegisters(LU
.Formulae
.back(), Uses
.size() - 1);
3456 /// Split S into subexpressions which can be pulled out into separate
3457 /// registers. If C is non-null, multiply each subexpression by C.
3459 /// Return remainder expression after factoring the subexpressions captured by
3460 /// Ops. If Ops is complete, return NULL.
3461 static const SCEV
*CollectSubexprs(const SCEV
*S
, const SCEVConstant
*C
,
3462 SmallVectorImpl
<const SCEV
*> &Ops
,
3464 ScalarEvolution
&SE
,
3465 unsigned Depth
= 0) {
3466 // Arbitrarily cap recursion to protect compile time.
3470 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
3471 // Break out add operands.
3472 for (const SCEV
*S
: Add
->operands()) {
3473 const SCEV
*Remainder
= CollectSubexprs(S
, C
, Ops
, L
, SE
, Depth
+1);
3475 Ops
.push_back(C
? SE
.getMulExpr(C
, Remainder
) : Remainder
);
3478 } else if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
3479 // Split a non-zero base out of an addrec.
3480 if (AR
->getStart()->isZero() || !AR
->isAffine())
3483 const SCEV
*Remainder
= CollectSubexprs(AR
->getStart(),
3484 C
, Ops
, L
, SE
, Depth
+1);
3485 // Split the non-zero AddRec unless it is part of a nested recurrence that
3486 // does not pertain to this loop.
3487 if (Remainder
&& (AR
->getLoop() == L
|| !isa
<SCEVAddRecExpr
>(Remainder
))) {
3488 Ops
.push_back(C
? SE
.getMulExpr(C
, Remainder
) : Remainder
);
3489 Remainder
= nullptr;
3491 if (Remainder
!= AR
->getStart()) {
3493 Remainder
= SE
.getConstant(AR
->getType(), 0);
3494 return SE
.getAddRecExpr(Remainder
,
3495 AR
->getStepRecurrence(SE
),
3497 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3500 } else if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
3501 // Break (C * (a + b + c)) into C*a + C*b + C*c.
3502 if (Mul
->getNumOperands() != 2)
3504 if (const SCEVConstant
*Op0
=
3505 dyn_cast
<SCEVConstant
>(Mul
->getOperand(0))) {
3506 C
= C
? cast
<SCEVConstant
>(SE
.getMulExpr(C
, Op0
)) : Op0
;
3507 const SCEV
*Remainder
=
3508 CollectSubexprs(Mul
->getOperand(1), C
, Ops
, L
, SE
, Depth
+1);
3510 Ops
.push_back(SE
.getMulExpr(C
, Remainder
));
3517 /// Return true if the SCEV represents a value that may end up as a
3518 /// post-increment operation.
3519 static bool mayUsePostIncMode(const TargetTransformInfo
&TTI
,
3520 LSRUse
&LU
, const SCEV
*S
, const Loop
*L
,
3521 ScalarEvolution
&SE
) {
3522 if (LU
.Kind
!= LSRUse::Address
||
3523 !LU
.AccessTy
.getType()->isIntOrIntVectorTy())
3525 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
);
3528 const SCEV
*LoopStep
= AR
->getStepRecurrence(SE
);
3529 if (!isa
<SCEVConstant
>(LoopStep
))
3531 if (LU
.AccessTy
.getType()->getScalarSizeInBits() !=
3532 LoopStep
->getType()->getScalarSizeInBits())
3534 // Check if a post-indexed load/store can be used.
3535 if (TTI
.isIndexedLoadLegal(TTI
.MIM_PostInc
, AR
->getType()) ||
3536 TTI
.isIndexedStoreLegal(TTI
.MIM_PostInc
, AR
->getType())) {
3537 const SCEV
*LoopStart
= AR
->getStart();
3538 if (!isa
<SCEVConstant
>(LoopStart
) && SE
.isLoopInvariant(LoopStart
, L
))
3544 /// Helper function for LSRInstance::GenerateReassociations.
3545 void LSRInstance::GenerateReassociationsImpl(LSRUse
&LU
, unsigned LUIdx
,
3546 const Formula
&Base
,
3547 unsigned Depth
, size_t Idx
,
3549 const SCEV
*BaseReg
= IsScaledReg
? Base
.ScaledReg
: Base
.BaseRegs
[Idx
];
3550 // Don't generate reassociations for the base register of a value that
3551 // may generate a post-increment operator. The reason is that the
3552 // reassociations cause extra base+register formula to be created,
3553 // and possibly chosen, but the post-increment is more efficient.
3554 if (TTI
.shouldFavorPostInc() && mayUsePostIncMode(TTI
, LU
, BaseReg
, L
, SE
))
3556 SmallVector
<const SCEV
*, 8> AddOps
;
3557 const SCEV
*Remainder
= CollectSubexprs(BaseReg
, nullptr, AddOps
, L
, SE
);
3559 AddOps
.push_back(Remainder
);
3561 if (AddOps
.size() == 1)
3564 for (SmallVectorImpl
<const SCEV
*>::const_iterator J
= AddOps
.begin(),
3567 // Loop-variant "unknown" values are uninteresting; we won't be able to
3568 // do anything meaningful with them.
3569 if (isa
<SCEVUnknown
>(*J
) && !SE
.isLoopInvariant(*J
, L
))
3572 // Don't pull a constant into a register if the constant could be folded
3573 // into an immediate field.
3574 if (isAlwaysFoldable(TTI
, SE
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
,
3575 LU
.AccessTy
, *J
, Base
.getNumRegs() > 1))
3578 // Collect all operands except *J.
3579 SmallVector
<const SCEV
*, 8> InnerAddOps(
3580 ((const SmallVector
<const SCEV
*, 8> &)AddOps
).begin(), J
);
3581 InnerAddOps
.append(std::next(J
),
3582 ((const SmallVector
<const SCEV
*, 8> &)AddOps
).end());
3584 // Don't leave just a constant behind in a register if the constant could
3585 // be folded into an immediate field.
3586 if (InnerAddOps
.size() == 1 &&
3587 isAlwaysFoldable(TTI
, SE
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
,
3588 LU
.AccessTy
, InnerAddOps
[0], Base
.getNumRegs() > 1))
3591 const SCEV
*InnerSum
= SE
.getAddExpr(InnerAddOps
);
3592 if (InnerSum
->isZero())
3596 // Add the remaining pieces of the add back into the new formula.
3597 const SCEVConstant
*InnerSumSC
= dyn_cast
<SCEVConstant
>(InnerSum
);
3598 if (InnerSumSC
&& SE
.getTypeSizeInBits(InnerSumSC
->getType()) <= 64 &&
3599 TTI
.isLegalAddImmediate((uint64_t)F
.UnfoldedOffset
+
3600 InnerSumSC
->getValue()->getZExtValue())) {
3602 (uint64_t)F
.UnfoldedOffset
+ InnerSumSC
->getValue()->getZExtValue();
3604 F
.ScaledReg
= nullptr;
3606 F
.BaseRegs
.erase(F
.BaseRegs
.begin() + Idx
);
3607 } else if (IsScaledReg
)
3608 F
.ScaledReg
= InnerSum
;
3610 F
.BaseRegs
[Idx
] = InnerSum
;
3612 // Add J as its own register, or an unfolded immediate.
3613 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(*J
);
3614 if (SC
&& SE
.getTypeSizeInBits(SC
->getType()) <= 64 &&
3615 TTI
.isLegalAddImmediate((uint64_t)F
.UnfoldedOffset
+
3616 SC
->getValue()->getZExtValue()))
3618 (uint64_t)F
.UnfoldedOffset
+ SC
->getValue()->getZExtValue();
3620 F
.BaseRegs
.push_back(*J
);
3621 // We may have changed the number of register in base regs, adjust the
3622 // formula accordingly.
3625 if (InsertFormula(LU
, LUIdx
, F
))
3626 // If that formula hadn't been seen before, recurse to find more like
3628 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3629 // Because just Depth is not enough to bound compile time.
3630 // This means that every time AddOps.size() is greater 16^x we will add
3632 GenerateReassociations(LU
, LUIdx
, LU
.Formulae
.back(),
3633 Depth
+ 1 + (Log2_32(AddOps
.size()) >> 2));
3637 /// Split out subexpressions from adds and the bases of addrecs.
3638 void LSRInstance::GenerateReassociations(LSRUse
&LU
, unsigned LUIdx
,
3639 Formula Base
, unsigned Depth
) {
3640 assert(Base
.isCanonical(*L
) && "Input must be in the canonical form");
3641 // Arbitrarily cap recursion to protect compile time.
3645 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
)
3646 GenerateReassociationsImpl(LU
, LUIdx
, Base
, Depth
, i
);
3648 if (Base
.Scale
== 1)
3649 GenerateReassociationsImpl(LU
, LUIdx
, Base
, Depth
,
3650 /* Idx */ -1, /* IsScaledReg */ true);
3653 /// Generate a formula consisting of all of the loop-dominating registers added
3654 /// into a single register.
3655 void LSRInstance::GenerateCombinations(LSRUse
&LU
, unsigned LUIdx
,
3657 // This method is only interesting on a plurality of registers.
3658 if (Base
.BaseRegs
.size() + (Base
.Scale
== 1) +
3659 (Base
.UnfoldedOffset
!= 0) <= 1)
3662 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3663 // processing the formula.
3665 SmallVector
<const SCEV
*, 4> Ops
;
3666 Formula NewBase
= Base
;
3667 NewBase
.BaseRegs
.clear();
3668 Type
*CombinedIntegerType
= nullptr;
3669 for (const SCEV
*BaseReg
: Base
.BaseRegs
) {
3670 if (SE
.properlyDominates(BaseReg
, L
->getHeader()) &&
3671 !SE
.hasComputableLoopEvolution(BaseReg
, L
)) {
3672 if (!CombinedIntegerType
)
3673 CombinedIntegerType
= SE
.getEffectiveSCEVType(BaseReg
->getType());
3674 Ops
.push_back(BaseReg
);
3677 NewBase
.BaseRegs
.push_back(BaseReg
);
3680 // If no register is relevant, we're done.
3681 if (Ops
.size() == 0)
3684 // Utility function for generating the required variants of the combined
3686 auto GenerateFormula
= [&](const SCEV
*Sum
) {
3687 Formula F
= NewBase
;
3689 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3690 // opportunity to fold something. For now, just ignore such cases
3691 // rather than proceed with zero in a register.
3695 F
.BaseRegs
.push_back(Sum
);
3697 (void)InsertFormula(LU
, LUIdx
, F
);
3700 // If we collected at least two registers, generate a formula combining them.
3701 if (Ops
.size() > 1) {
3702 SmallVector
<const SCEV
*, 4> OpsCopy(Ops
); // Don't let SE modify Ops.
3703 GenerateFormula(SE
.getAddExpr(OpsCopy
));
3706 // If we have an unfolded offset, generate a formula combining it with the
3707 // registers collected.
3708 if (NewBase
.UnfoldedOffset
) {
3709 assert(CombinedIntegerType
&& "Missing a type for the unfolded offset");
3710 Ops
.push_back(SE
.getConstant(CombinedIntegerType
, NewBase
.UnfoldedOffset
,
3712 NewBase
.UnfoldedOffset
= 0;
3713 GenerateFormula(SE
.getAddExpr(Ops
));
3717 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3718 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse
&LU
, unsigned LUIdx
,
3719 const Formula
&Base
, size_t Idx
,
3721 const SCEV
*G
= IsScaledReg
? Base
.ScaledReg
: Base
.BaseRegs
[Idx
];
3722 GlobalValue
*GV
= ExtractSymbol(G
, SE
);
3723 if (G
->isZero() || !GV
)
3727 if (!isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
, LU
.AccessTy
, F
))
3732 F
.BaseRegs
[Idx
] = G
;
3733 (void)InsertFormula(LU
, LUIdx
, F
);
3736 /// Generate reuse formulae using symbolic offsets.
3737 void LSRInstance::GenerateSymbolicOffsets(LSRUse
&LU
, unsigned LUIdx
,
3739 // We can't add a symbolic offset if the address already contains one.
3740 if (Base
.BaseGV
) return;
3742 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
)
3743 GenerateSymbolicOffsetsImpl(LU
, LUIdx
, Base
, i
);
3744 if (Base
.Scale
== 1)
3745 GenerateSymbolicOffsetsImpl(LU
, LUIdx
, Base
, /* Idx */ -1,
3746 /* IsScaledReg */ true);
3749 /// Helper function for LSRInstance::GenerateConstantOffsets.
3750 void LSRInstance::GenerateConstantOffsetsImpl(
3751 LSRUse
&LU
, unsigned LUIdx
, const Formula
&Base
,
3752 const SmallVectorImpl
<int64_t> &Worklist
, size_t Idx
, bool IsScaledReg
) {
3754 auto GenerateOffset
= [&](const SCEV
*G
, int64_t Offset
) {
3756 F
.BaseOffset
= (uint64_t)Base
.BaseOffset
- Offset
;
3758 if (isLegalUse(TTI
, LU
.MinOffset
- Offset
, LU
.MaxOffset
- Offset
, LU
.Kind
,
3760 // Add the offset to the base register.
3761 const SCEV
*NewG
= SE
.getAddExpr(SE
.getConstant(G
->getType(), Offset
), G
);
3762 // If it cancelled out, drop the base register, otherwise update it.
3763 if (NewG
->isZero()) {
3766 F
.ScaledReg
= nullptr;
3768 F
.deleteBaseReg(F
.BaseRegs
[Idx
]);
3770 } else if (IsScaledReg
)
3773 F
.BaseRegs
[Idx
] = NewG
;
3775 (void)InsertFormula(LU
, LUIdx
, F
);
3779 const SCEV
*G
= IsScaledReg
? Base
.ScaledReg
: Base
.BaseRegs
[Idx
];
3781 // With constant offsets and constant steps, we can generate pre-inc
3782 // accesses by having the offset equal the step. So, for access #0 with a
3783 // step of 8, we generate a G - 8 base which would require the first access
3784 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3785 // for itself and hopefully becomes the base for other accesses. This means
3786 // means that a single pre-indexed access can be generated to become the new
3787 // base pointer for each iteration of the loop, resulting in no extra add/sub
3788 // instructions for pointer updating.
3789 if (FavorBackedgeIndex
&& LU
.Kind
== LSRUse::Address
) {
3790 if (auto *GAR
= dyn_cast
<SCEVAddRecExpr
>(G
)) {
3792 dyn_cast
<SCEVConstant
>(GAR
->getStepRecurrence(SE
))) {
3793 const APInt
&StepInt
= StepRec
->getAPInt();
3794 int64_t Step
= StepInt
.isNegative() ?
3795 StepInt
.getSExtValue() : StepInt
.getZExtValue();
3797 for (int64_t Offset
: Worklist
) {
3799 GenerateOffset(G
, Offset
);
3804 for (int64_t Offset
: Worklist
)
3805 GenerateOffset(G
, Offset
);
3807 int64_t Imm
= ExtractImmediate(G
, SE
);
3808 if (G
->isZero() || Imm
== 0)
3811 F
.BaseOffset
= (uint64_t)F
.BaseOffset
+ Imm
;
3812 if (!isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
, LU
.AccessTy
, F
))
3817 F
.BaseRegs
[Idx
] = G
;
3818 (void)InsertFormula(LU
, LUIdx
, F
);
3821 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3822 void LSRInstance::GenerateConstantOffsets(LSRUse
&LU
, unsigned LUIdx
,
3824 // TODO: For now, just add the min and max offset, because it usually isn't
3825 // worthwhile looking at everything inbetween.
3826 SmallVector
<int64_t, 2> Worklist
;
3827 Worklist
.push_back(LU
.MinOffset
);
3828 if (LU
.MaxOffset
!= LU
.MinOffset
)
3829 Worklist
.push_back(LU
.MaxOffset
);
3831 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
)
3832 GenerateConstantOffsetsImpl(LU
, LUIdx
, Base
, Worklist
, i
);
3833 if (Base
.Scale
== 1)
3834 GenerateConstantOffsetsImpl(LU
, LUIdx
, Base
, Worklist
, /* Idx */ -1,
3835 /* IsScaledReg */ true);
3838 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3839 /// == y -> x*c == y*c.
3840 void LSRInstance::GenerateICmpZeroScales(LSRUse
&LU
, unsigned LUIdx
,
3842 if (LU
.Kind
!= LSRUse::ICmpZero
) return;
3844 // Determine the integer type for the base formula.
3845 Type
*IntTy
= Base
.getType();
3847 if (SE
.getTypeSizeInBits(IntTy
) > 64) return;
3849 // Don't do this if there is more than one offset.
3850 if (LU
.MinOffset
!= LU
.MaxOffset
) return;
3852 // Check if transformation is valid. It is illegal to multiply pointer.
3853 if (Base
.ScaledReg
&& Base
.ScaledReg
->getType()->isPointerTy())
3855 for (const SCEV
*BaseReg
: Base
.BaseRegs
)
3856 if (BaseReg
->getType()->isPointerTy())
3858 assert(!Base
.BaseGV
&& "ICmpZero use is not legal!");
3860 // Check each interesting stride.
3861 for (int64_t Factor
: Factors
) {
3862 // Check that the multiplication doesn't overflow.
3863 if (Base
.BaseOffset
== std::numeric_limits
<int64_t>::min() && Factor
== -1)
3865 int64_t NewBaseOffset
= (uint64_t)Base
.BaseOffset
* Factor
;
3866 if (NewBaseOffset
/ Factor
!= Base
.BaseOffset
)
3868 // If the offset will be truncated at this use, check that it is in bounds.
3869 if (!IntTy
->isPointerTy() &&
3870 !ConstantInt::isValueValidForType(IntTy
, NewBaseOffset
))
3873 // Check that multiplying with the use offset doesn't overflow.
3874 int64_t Offset
= LU
.MinOffset
;
3875 if (Offset
== std::numeric_limits
<int64_t>::min() && Factor
== -1)
3877 Offset
= (uint64_t)Offset
* Factor
;
3878 if (Offset
/ Factor
!= LU
.MinOffset
)
3880 // If the offset will be truncated at this use, check that it is in bounds.
3881 if (!IntTy
->isPointerTy() &&
3882 !ConstantInt::isValueValidForType(IntTy
, Offset
))
3886 F
.BaseOffset
= NewBaseOffset
;
3888 // Check that this scale is legal.
3889 if (!isLegalUse(TTI
, Offset
, Offset
, LU
.Kind
, LU
.AccessTy
, F
))
3892 // Compensate for the use having MinOffset built into it.
3893 F
.BaseOffset
= (uint64_t)F
.BaseOffset
+ Offset
- LU
.MinOffset
;
3895 const SCEV
*FactorS
= SE
.getConstant(IntTy
, Factor
);
3897 // Check that multiplying with each base register doesn't overflow.
3898 for (size_t i
= 0, e
= F
.BaseRegs
.size(); i
!= e
; ++i
) {
3899 F
.BaseRegs
[i
] = SE
.getMulExpr(F
.BaseRegs
[i
], FactorS
);
3900 if (getExactSDiv(F
.BaseRegs
[i
], FactorS
, SE
) != Base
.BaseRegs
[i
])
3904 // Check that multiplying with the scaled register doesn't overflow.
3906 F
.ScaledReg
= SE
.getMulExpr(F
.ScaledReg
, FactorS
);
3907 if (getExactSDiv(F
.ScaledReg
, FactorS
, SE
) != Base
.ScaledReg
)
3911 // Check that multiplying with the unfolded offset doesn't overflow.
3912 if (F
.UnfoldedOffset
!= 0) {
3913 if (F
.UnfoldedOffset
== std::numeric_limits
<int64_t>::min() &&
3916 F
.UnfoldedOffset
= (uint64_t)F
.UnfoldedOffset
* Factor
;
3917 if (F
.UnfoldedOffset
/ Factor
!= Base
.UnfoldedOffset
)
3919 // If the offset will be truncated, check that it is in bounds.
3920 if (!IntTy
->isPointerTy() &&
3921 !ConstantInt::isValueValidForType(IntTy
, F
.UnfoldedOffset
))
3925 // If we make it here and it's legal, add it.
3926 (void)InsertFormula(LU
, LUIdx
, F
);
3931 /// Generate stride factor reuse formulae by making use of scaled-offset address
3932 /// modes, for example.
3933 void LSRInstance::GenerateScales(LSRUse
&LU
, unsigned LUIdx
, Formula Base
) {
3934 // Determine the integer type for the base formula.
3935 Type
*IntTy
= Base
.getType();
3938 // If this Formula already has a scaled register, we can't add another one.
3939 // Try to unscale the formula to generate a better scale.
3940 if (Base
.Scale
!= 0 && !Base
.unscale())
3943 assert(Base
.Scale
== 0 && "unscale did not did its job!");
3945 // Check each interesting stride.
3946 for (int64_t Factor
: Factors
) {
3947 Base
.Scale
= Factor
;
3948 Base
.HasBaseReg
= Base
.BaseRegs
.size() > 1;
3949 // Check whether this scale is going to be legal.
3950 if (!isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
, LU
.AccessTy
,
3952 // As a special-case, handle special out-of-loop Basic users specially.
3953 // TODO: Reconsider this special case.
3954 if (LU
.Kind
== LSRUse::Basic
&&
3955 isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LSRUse::Special
,
3956 LU
.AccessTy
, Base
) &&
3957 LU
.AllFixupsOutsideLoop
)
3958 LU
.Kind
= LSRUse::Special
;
3962 // For an ICmpZero, negating a solitary base register won't lead to
3964 if (LU
.Kind
== LSRUse::ICmpZero
&&
3965 !Base
.HasBaseReg
&& Base
.BaseOffset
== 0 && !Base
.BaseGV
)
3967 // For each addrec base reg, if its loop is current loop, apply the scale.
3968 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
) {
3969 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Base
.BaseRegs
[i
]);
3970 if (AR
&& (AR
->getLoop() == L
|| LU
.AllFixupsOutsideLoop
)) {
3971 const SCEV
*FactorS
= SE
.getConstant(IntTy
, Factor
);
3972 if (FactorS
->isZero())
3974 // Divide out the factor, ignoring high bits, since we'll be
3975 // scaling the value back up in the end.
3976 if (const SCEV
*Quotient
= getExactSDiv(AR
, FactorS
, SE
, true)) {
3977 // TODO: This could be optimized to avoid all the copying.
3979 F
.ScaledReg
= Quotient
;
3980 F
.deleteBaseReg(F
.BaseRegs
[i
]);
3981 // The canonical representation of 1*reg is reg, which is already in
3982 // Base. In that case, do not try to insert the formula, it will be
3984 if (F
.Scale
== 1 && (F
.BaseRegs
.empty() ||
3985 (AR
->getLoop() != L
&& LU
.AllFixupsOutsideLoop
)))
3987 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
3988 // non canonical Formula with ScaledReg's loop not being L.
3989 if (F
.Scale
== 1 && LU
.AllFixupsOutsideLoop
)
3991 (void)InsertFormula(LU
, LUIdx
, F
);
3998 /// Generate reuse formulae from different IV types.
3999 void LSRInstance::GenerateTruncates(LSRUse
&LU
, unsigned LUIdx
, Formula Base
) {
4000 // Don't bother truncating symbolic values.
4001 if (Base
.BaseGV
) return;
4003 // Determine the integer type for the base formula.
4004 Type
*DstTy
= Base
.getType();
4006 DstTy
= SE
.getEffectiveSCEVType(DstTy
);
4008 for (Type
*SrcTy
: Types
) {
4009 if (SrcTy
!= DstTy
&& TTI
.isTruncateFree(SrcTy
, DstTy
)) {
4012 // Sometimes SCEV is able to prove zero during ext transform. It may
4013 // happen if SCEV did not do all possible transforms while creating the
4014 // initial node (maybe due to depth limitations), but it can do them while
4017 const SCEV
*NewScaledReg
= SE
.getAnyExtendExpr(F
.ScaledReg
, SrcTy
);
4018 if (NewScaledReg
->isZero())
4020 F
.ScaledReg
= NewScaledReg
;
4022 bool HasZeroBaseReg
= false;
4023 for (const SCEV
*&BaseReg
: F
.BaseRegs
) {
4024 const SCEV
*NewBaseReg
= SE
.getAnyExtendExpr(BaseReg
, SrcTy
);
4025 if (NewBaseReg
->isZero()) {
4026 HasZeroBaseReg
= true;
4029 BaseReg
= NewBaseReg
;
4034 // TODO: This assumes we've done basic processing on all uses and
4035 // have an idea what the register usage is.
4036 if (!F
.hasRegsUsedByUsesOtherThan(LUIdx
, RegUses
))
4040 (void)InsertFormula(LU
, LUIdx
, F
);
4047 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4048 /// modifications so that the search phase doesn't have to worry about the data
4049 /// structures moving underneath it.
4053 const SCEV
*OrigReg
;
4055 WorkItem(size_t LI
, int64_t I
, const SCEV
*R
)
4056 : LUIdx(LI
), Imm(I
), OrigReg(R
) {}
4058 void print(raw_ostream
&OS
) const;
4062 } // end anonymous namespace
4064 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4065 void WorkItem::print(raw_ostream
&OS
) const {
4066 OS
<< "in formulae referencing " << *OrigReg
<< " in use " << LUIdx
4067 << " , add offset " << Imm
;
4070 LLVM_DUMP_METHOD
void WorkItem::dump() const {
4071 print(errs()); errs() << '\n';
4075 /// Look for registers which are a constant distance apart and try to form reuse
4076 /// opportunities between them.
4077 void LSRInstance::GenerateCrossUseConstantOffsets() {
4078 // Group the registers by their value without any added constant offset.
4079 using ImmMapTy
= std::map
<int64_t, const SCEV
*>;
4081 DenseMap
<const SCEV
*, ImmMapTy
> Map
;
4082 DenseMap
<const SCEV
*, SmallBitVector
> UsedByIndicesMap
;
4083 SmallVector
<const SCEV
*, 8> Sequence
;
4084 for (const SCEV
*Use
: RegUses
) {
4085 const SCEV
*Reg
= Use
; // Make a copy for ExtractImmediate to modify.
4086 int64_t Imm
= ExtractImmediate(Reg
, SE
);
4087 auto Pair
= Map
.insert(std::make_pair(Reg
, ImmMapTy()));
4089 Sequence
.push_back(Reg
);
4090 Pair
.first
->second
.insert(std::make_pair(Imm
, Use
));
4091 UsedByIndicesMap
[Reg
] |= RegUses
.getUsedByIndices(Use
);
4094 // Now examine each set of registers with the same base value. Build up
4095 // a list of work to do and do the work in a separate step so that we're
4096 // not adding formulae and register counts while we're searching.
4097 SmallVector
<WorkItem
, 32> WorkItems
;
4098 SmallSet
<std::pair
<size_t, int64_t>, 32> UniqueItems
;
4099 for (const SCEV
*Reg
: Sequence
) {
4100 const ImmMapTy
&Imms
= Map
.find(Reg
)->second
;
4102 // It's not worthwhile looking for reuse if there's only one offset.
4103 if (Imms
.size() == 1)
4106 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg
<< ':';
4107 for (const auto &Entry
4109 << ' ' << Entry
.first
;
4112 // Examine each offset.
4113 for (ImmMapTy::const_iterator J
= Imms
.begin(), JE
= Imms
.end();
4115 const SCEV
*OrigReg
= J
->second
;
4117 int64_t JImm
= J
->first
;
4118 const SmallBitVector
&UsedByIndices
= RegUses
.getUsedByIndices(OrigReg
);
4120 if (!isa
<SCEVConstant
>(OrigReg
) &&
4121 UsedByIndicesMap
[Reg
].count() == 1) {
4122 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4127 // Conservatively examine offsets between this orig reg a few selected
4129 ImmMapTy::const_iterator OtherImms
[] = {
4130 Imms
.begin(), std::prev(Imms
.end()),
4131 Imms
.lower_bound((Imms
.begin()->first
+ std::prev(Imms
.end())->first
) /
4134 for (size_t i
= 0, e
= array_lengthof(OtherImms
); i
!= e
; ++i
) {
4135 ImmMapTy::const_iterator M
= OtherImms
[i
];
4136 if (M
== J
|| M
== JE
) continue;
4138 // Compute the difference between the two.
4139 int64_t Imm
= (uint64_t)JImm
- M
->first
;
4140 for (unsigned LUIdx
: UsedByIndices
.set_bits())
4141 // Make a memo of this use, offset, and register tuple.
4142 if (UniqueItems
.insert(std::make_pair(LUIdx
, Imm
)).second
)
4143 WorkItems
.push_back(WorkItem(LUIdx
, Imm
, OrigReg
));
4150 UsedByIndicesMap
.clear();
4151 UniqueItems
.clear();
4153 // Now iterate through the worklist and add new formulae.
4154 for (const WorkItem
&WI
: WorkItems
) {
4155 size_t LUIdx
= WI
.LUIdx
;
4156 LSRUse
&LU
= Uses
[LUIdx
];
4157 int64_t Imm
= WI
.Imm
;
4158 const SCEV
*OrigReg
= WI
.OrigReg
;
4160 Type
*IntTy
= SE
.getEffectiveSCEVType(OrigReg
->getType());
4161 const SCEV
*NegImmS
= SE
.getSCEV(ConstantInt::get(IntTy
, -(uint64_t)Imm
));
4162 unsigned BitWidth
= SE
.getTypeSizeInBits(IntTy
);
4164 // TODO: Use a more targeted data structure.
4165 for (size_t L
= 0, LE
= LU
.Formulae
.size(); L
!= LE
; ++L
) {
4166 Formula F
= LU
.Formulae
[L
];
4167 // FIXME: The code for the scaled and unscaled registers looks
4168 // very similar but slightly different. Investigate if they
4169 // could be merged. That way, we would not have to unscale the
4172 // Use the immediate in the scaled register.
4173 if (F
.ScaledReg
== OrigReg
) {
4174 int64_t Offset
= (uint64_t)F
.BaseOffset
+ Imm
* (uint64_t)F
.Scale
;
4175 // Don't create 50 + reg(-50).
4176 if (F
.referencesReg(SE
.getSCEV(
4177 ConstantInt::get(IntTy
, -(uint64_t)Offset
))))
4180 NewF
.BaseOffset
= Offset
;
4181 if (!isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
, LU
.AccessTy
,
4184 NewF
.ScaledReg
= SE
.getAddExpr(NegImmS
, NewF
.ScaledReg
);
4186 // If the new scale is a constant in a register, and adding the constant
4187 // value to the immediate would produce a value closer to zero than the
4188 // immediate itself, then the formula isn't worthwhile.
4189 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(NewF
.ScaledReg
))
4190 if (C
->getValue()->isNegative() != (NewF
.BaseOffset
< 0) &&
4191 (C
->getAPInt().abs() * APInt(BitWidth
, F
.Scale
))
4192 .ule(std::abs(NewF
.BaseOffset
)))
4196 NewF
.canonicalize(*this->L
);
4197 (void)InsertFormula(LU
, LUIdx
, NewF
);
4199 // Use the immediate in a base register.
4200 for (size_t N
= 0, NE
= F
.BaseRegs
.size(); N
!= NE
; ++N
) {
4201 const SCEV
*BaseReg
= F
.BaseRegs
[N
];
4202 if (BaseReg
!= OrigReg
)
4205 NewF
.BaseOffset
= (uint64_t)NewF
.BaseOffset
+ Imm
;
4206 if (!isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
,
4207 LU
.Kind
, LU
.AccessTy
, NewF
)) {
4208 if (TTI
.shouldFavorPostInc() &&
4209 mayUsePostIncMode(TTI
, LU
, OrigReg
, this->L
, SE
))
4211 if (!TTI
.isLegalAddImmediate((uint64_t)NewF
.UnfoldedOffset
+ Imm
))
4214 NewF
.UnfoldedOffset
= (uint64_t)NewF
.UnfoldedOffset
+ Imm
;
4216 NewF
.BaseRegs
[N
] = SE
.getAddExpr(NegImmS
, BaseReg
);
4218 // If the new formula has a constant in a register, and adding the
4219 // constant value to the immediate would produce a value closer to
4220 // zero than the immediate itself, then the formula isn't worthwhile.
4221 for (const SCEV
*NewReg
: NewF
.BaseRegs
)
4222 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(NewReg
))
4223 if ((C
->getAPInt() + NewF
.BaseOffset
)
4225 .slt(std::abs(NewF
.BaseOffset
)) &&
4226 (C
->getAPInt() + NewF
.BaseOffset
).countTrailingZeros() >=
4227 countTrailingZeros
<uint64_t>(NewF
.BaseOffset
))
4231 NewF
.canonicalize(*this->L
);
4232 (void)InsertFormula(LU
, LUIdx
, NewF
);
4241 /// Generate formulae for each use.
4243 LSRInstance::GenerateAllReuseFormulae() {
4244 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4245 // queries are more precise.
4246 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4247 LSRUse
&LU
= Uses
[LUIdx
];
4248 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4249 GenerateReassociations(LU
, LUIdx
, LU
.Formulae
[i
]);
4250 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4251 GenerateCombinations(LU
, LUIdx
, LU
.Formulae
[i
]);
4253 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4254 LSRUse
&LU
= Uses
[LUIdx
];
4255 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4256 GenerateSymbolicOffsets(LU
, LUIdx
, LU
.Formulae
[i
]);
4257 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4258 GenerateConstantOffsets(LU
, LUIdx
, LU
.Formulae
[i
]);
4259 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4260 GenerateICmpZeroScales(LU
, LUIdx
, LU
.Formulae
[i
]);
4261 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4262 GenerateScales(LU
, LUIdx
, LU
.Formulae
[i
]);
4264 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4265 LSRUse
&LU
= Uses
[LUIdx
];
4266 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4267 GenerateTruncates(LU
, LUIdx
, LU
.Formulae
[i
]);
4270 GenerateCrossUseConstantOffsets();
4272 LLVM_DEBUG(dbgs() << "\n"
4273 "After generating reuse formulae:\n";
4274 print_uses(dbgs()));
4277 /// If there are multiple formulae with the same set of registers used
4278 /// by other uses, pick the best one and delete the others.
4279 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4280 DenseSet
<const SCEV
*> VisitedRegs
;
4281 SmallPtrSet
<const SCEV
*, 16> Regs
;
4282 SmallPtrSet
<const SCEV
*, 16> LoserRegs
;
4284 bool ChangedFormulae
= false;
4287 // Collect the best formula for each unique set of shared registers. This
4288 // is reset for each use.
4289 using BestFormulaeTy
=
4290 DenseMap
<SmallVector
<const SCEV
*, 4>, size_t, UniquifierDenseMapInfo
>;
4292 BestFormulaeTy BestFormulae
;
4294 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4295 LSRUse
&LU
= Uses
[LUIdx
];
4296 LLVM_DEBUG(dbgs() << "Filtering for use "; LU
.print(dbgs());
4300 for (size_t FIdx
= 0, NumForms
= LU
.Formulae
.size();
4301 FIdx
!= NumForms
; ++FIdx
) {
4302 Formula
&F
= LU
.Formulae
[FIdx
];
4304 // Some formulas are instant losers. For example, they may depend on
4305 // nonexistent AddRecs from other loops. These need to be filtered
4306 // immediately, otherwise heuristics could choose them over others leading
4307 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4308 // avoids the need to recompute this information across formulae using the
4309 // same bad AddRec. Passing LoserRegs is also essential unless we remove
4310 // the corresponding bad register from the Regs set.
4313 CostF
.RateFormula(TTI
, F
, Regs
, VisitedRegs
, L
, SE
, DT
, LU
, &LoserRegs
);
4314 if (CostF
.isLoser()) {
4315 // During initial formula generation, undesirable formulae are generated
4316 // by uses within other loops that have some non-trivial address mode or
4317 // use the postinc form of the IV. LSR needs to provide these formulae
4318 // as the basis of rediscovering the desired formula that uses an AddRec
4319 // corresponding to the existing phi. Once all formulae have been
4320 // generated, these initial losers may be pruned.
4321 LLVM_DEBUG(dbgs() << " Filtering loser "; F
.print(dbgs());
4325 SmallVector
<const SCEV
*, 4> Key
;
4326 for (const SCEV
*Reg
: F
.BaseRegs
) {
4327 if (RegUses
.isRegUsedByUsesOtherThan(Reg
, LUIdx
))
4331 RegUses
.isRegUsedByUsesOtherThan(F
.ScaledReg
, LUIdx
))
4332 Key
.push_back(F
.ScaledReg
);
4333 // Unstable sort by host order ok, because this is only used for
4337 std::pair
<BestFormulaeTy::const_iterator
, bool> P
=
4338 BestFormulae
.insert(std::make_pair(Key
, FIdx
));
4342 Formula
&Best
= LU
.Formulae
[P
.first
->second
];
4346 CostBest
.RateFormula(TTI
, Best
, Regs
, VisitedRegs
, L
, SE
, DT
, LU
);
4347 if (CostF
.isLess(CostBest
, TTI
))
4349 LLVM_DEBUG(dbgs() << " Filtering out formula "; F
.print(dbgs());
4351 " in favor of formula ";
4352 Best
.print(dbgs()); dbgs() << '\n');
4355 ChangedFormulae
= true;
4357 LU
.DeleteFormula(F
);
4363 // Now that we've filtered out some formulae, recompute the Regs set.
4365 LU
.RecomputeRegs(LUIdx
, RegUses
);
4367 // Reset this to prepare for the next use.
4368 BestFormulae
.clear();
4371 LLVM_DEBUG(if (ChangedFormulae
) {
4373 "After filtering out undesirable candidates:\n";
4378 /// Estimate the worst-case number of solutions the solver might have to
4379 /// consider. It almost never considers this many solutions because it prune the
4380 /// search space, but the pruning isn't always sufficient.
4381 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4383 for (const LSRUse
&LU
: Uses
) {
4384 size_t FSize
= LU
.Formulae
.size();
4385 if (FSize
>= ComplexityLimit
) {
4386 Power
= ComplexityLimit
;
4390 if (Power
>= ComplexityLimit
)
4396 /// When one formula uses a superset of the registers of another formula, it
4397 /// won't help reduce register pressure (though it may not necessarily hurt
4398 /// register pressure); remove it to simplify the system.
4399 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4400 if (EstimateSearchSpaceComplexity() >= ComplexityLimit
) {
4401 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4403 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4404 "which use a superset of registers used by other "
4407 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4408 LSRUse
&LU
= Uses
[LUIdx
];
4410 for (size_t i
= 0, e
= LU
.Formulae
.size(); i
!= e
; ++i
) {
4411 Formula
&F
= LU
.Formulae
[i
];
4412 // Look for a formula with a constant or GV in a register. If the use
4413 // also has a formula with that same value in an immediate field,
4414 // delete the one that uses a register.
4415 for (SmallVectorImpl
<const SCEV
*>::const_iterator
4416 I
= F
.BaseRegs
.begin(), E
= F
.BaseRegs
.end(); I
!= E
; ++I
) {
4417 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(*I
)) {
4419 NewF
.BaseOffset
+= C
->getValue()->getSExtValue();
4420 NewF
.BaseRegs
.erase(NewF
.BaseRegs
.begin() +
4421 (I
- F
.BaseRegs
.begin()));
4422 if (LU
.HasFormulaWithSameRegs(NewF
)) {
4423 LLVM_DEBUG(dbgs() << " Deleting "; F
.print(dbgs());
4425 LU
.DeleteFormula(F
);
4431 } else if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(*I
)) {
4432 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(U
->getValue()))
4436 NewF
.BaseRegs
.erase(NewF
.BaseRegs
.begin() +
4437 (I
- F
.BaseRegs
.begin()));
4438 if (LU
.HasFormulaWithSameRegs(NewF
)) {
4439 LLVM_DEBUG(dbgs() << " Deleting "; F
.print(dbgs());
4441 LU
.DeleteFormula(F
);
4452 LU
.RecomputeRegs(LUIdx
, RegUses
);
4455 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4459 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4460 /// allocate a single register for them.
4461 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4462 if (EstimateSearchSpaceComplexity() < ComplexityLimit
)
4466 dbgs() << "The search space is too complex.\n"
4467 "Narrowing the search space by assuming that uses separated "
4468 "by a constant offset will use the same registers.\n");
4470 // This is especially useful for unrolled loops.
4472 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4473 LSRUse
&LU
= Uses
[LUIdx
];
4474 for (const Formula
&F
: LU
.Formulae
) {
4475 if (F
.BaseOffset
== 0 || (F
.Scale
!= 0 && F
.Scale
!= 1))
4478 LSRUse
*LUThatHas
= FindUseWithSimilarFormula(F
, LU
);
4482 if (!reconcileNewOffset(*LUThatHas
, F
.BaseOffset
, /*HasBaseReg=*/ false,
4483 LU
.Kind
, LU
.AccessTy
))
4486 LLVM_DEBUG(dbgs() << " Deleting use "; LU
.print(dbgs()); dbgs() << '\n');
4488 LUThatHas
->AllFixupsOutsideLoop
&= LU
.AllFixupsOutsideLoop
;
4490 // Transfer the fixups of LU to LUThatHas.
4491 for (LSRFixup
&Fixup
: LU
.Fixups
) {
4492 Fixup
.Offset
+= F
.BaseOffset
;
4493 LUThatHas
->pushFixup(Fixup
);
4494 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup
.Offset
<< '\n');
4497 // Delete formulae from the new use which are no longer legal.
4499 for (size_t i
= 0, e
= LUThatHas
->Formulae
.size(); i
!= e
; ++i
) {
4500 Formula
&F
= LUThatHas
->Formulae
[i
];
4501 if (!isLegalUse(TTI
, LUThatHas
->MinOffset
, LUThatHas
->MaxOffset
,
4502 LUThatHas
->Kind
, LUThatHas
->AccessTy
, F
)) {
4503 LLVM_DEBUG(dbgs() << " Deleting "; F
.print(dbgs()); dbgs() << '\n');
4504 LUThatHas
->DeleteFormula(F
);
4512 LUThatHas
->RecomputeRegs(LUThatHas
- &Uses
.front(), RegUses
);
4514 // Delete the old use.
4515 DeleteUse(LU
, LUIdx
);
4522 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4525 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4526 /// we've done more filtering, as it may be able to find more formulae to
4528 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4529 if (EstimateSearchSpaceComplexity() >= ComplexityLimit
) {
4530 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4532 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4533 "undesirable dedicated registers.\n");
4535 FilterOutUndesirableDedicatedRegisters();
4537 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4541 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4542 /// Pick the best one and delete the others.
4543 /// This narrowing heuristic is to keep as many formulae with different
4544 /// Scale and ScaledReg pair as possible while narrowing the search space.
4545 /// The benefit is that it is more likely to find out a better solution
4546 /// from a formulae set with more Scale and ScaledReg variations than
4547 /// a formulae set with the same Scale and ScaledReg. The picking winner
4548 /// reg heuristic will often keep the formulae with the same Scale and
4549 /// ScaledReg and filter others, and we want to avoid that if possible.
4550 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4551 if (EstimateSearchSpaceComplexity() < ComplexityLimit
)
4555 dbgs() << "The search space is too complex.\n"
4556 "Narrowing the search space by choosing the best Formula "
4557 "from the Formulae with the same Scale and ScaledReg.\n");
4559 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4560 using BestFormulaeTy
= DenseMap
<std::pair
<const SCEV
*, int64_t>, size_t>;
4562 BestFormulaeTy BestFormulae
;
4564 bool ChangedFormulae
= false;
4566 DenseSet
<const SCEV
*> VisitedRegs
;
4567 SmallPtrSet
<const SCEV
*, 16> Regs
;
4569 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4570 LSRUse
&LU
= Uses
[LUIdx
];
4571 LLVM_DEBUG(dbgs() << "Filtering for use "; LU
.print(dbgs());
4574 // Return true if Formula FA is better than Formula FB.
4575 auto IsBetterThan
= [&](Formula
&FA
, Formula
&FB
) {
4576 // First we will try to choose the Formula with fewer new registers.
4577 // For a register used by current Formula, the more the register is
4578 // shared among LSRUses, the less we increase the register number
4579 // counter of the formula.
4580 size_t FARegNum
= 0;
4581 for (const SCEV
*Reg
: FA
.BaseRegs
) {
4582 const SmallBitVector
&UsedByIndices
= RegUses
.getUsedByIndices(Reg
);
4583 FARegNum
+= (NumUses
- UsedByIndices
.count() + 1);
4585 size_t FBRegNum
= 0;
4586 for (const SCEV
*Reg
: FB
.BaseRegs
) {
4587 const SmallBitVector
&UsedByIndices
= RegUses
.getUsedByIndices(Reg
);
4588 FBRegNum
+= (NumUses
- UsedByIndices
.count() + 1);
4590 if (FARegNum
!= FBRegNum
)
4591 return FARegNum
< FBRegNum
;
4593 // If the new register numbers are the same, choose the Formula with
4595 Cost CostFA
, CostFB
;
4597 CostFA
.RateFormula(TTI
, FA
, Regs
, VisitedRegs
, L
, SE
, DT
, LU
);
4599 CostFB
.RateFormula(TTI
, FB
, Regs
, VisitedRegs
, L
, SE
, DT
, LU
);
4600 return CostFA
.isLess(CostFB
, TTI
);
4604 for (size_t FIdx
= 0, NumForms
= LU
.Formulae
.size(); FIdx
!= NumForms
;
4606 Formula
&F
= LU
.Formulae
[FIdx
];
4609 auto P
= BestFormulae
.insert({{F
.ScaledReg
, F
.Scale
}, FIdx
});
4613 Formula
&Best
= LU
.Formulae
[P
.first
->second
];
4614 if (IsBetterThan(F
, Best
))
4616 LLVM_DEBUG(dbgs() << " Filtering out formula "; F
.print(dbgs());
4618 " in favor of formula ";
4619 Best
.print(dbgs()); dbgs() << '\n');
4621 ChangedFormulae
= true;
4623 LU
.DeleteFormula(F
);
4629 LU
.RecomputeRegs(LUIdx
, RegUses
);
4631 // Reset this to prepare for the next use.
4632 BestFormulae
.clear();
4635 LLVM_DEBUG(if (ChangedFormulae
) {
4637 "After filtering out undesirable candidates:\n";
4642 /// The function delete formulas with high registers number expectation.
4643 /// Assuming we don't know the value of each formula (already delete
4644 /// all inefficient), generate probability of not selecting for each
4648 /// reg(a) + reg({0,+,1})
4649 /// reg(a) + reg({-1,+,1}) + 1
4652 /// reg(b) + reg({0,+,1})
4653 /// reg(b) + reg({-1,+,1}) + 1
4656 /// reg(c) + reg(b) + reg({0,+,1})
4657 /// reg(c) + reg({b,+,1})
4659 /// Probability of not selecting
4661 /// reg(a) (1/3) * 1 * 1
4662 /// reg(b) 1 * (1/3) * (1/2)
4663 /// reg({0,+,1}) (2/3) * (2/3) * (1/2)
4664 /// reg({-1,+,1}) (2/3) * (2/3) * 1
4665 /// reg({a,+,1}) (2/3) * 1 * 1
4666 /// reg({b,+,1}) 1 * (2/3) * (2/3)
4667 /// reg(c) 1 * 1 * 0
4669 /// Now count registers number mathematical expectation for each formula:
4670 /// Note that for each use we exclude probability if not selecting for the use.
4671 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4672 /// probabilty 1/3 of not selecting for Use1).
4674 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted
4675 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted
4678 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted
4679 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted
4680 /// reg({b,+,1}) 2/3
4682 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4683 /// reg(c) + reg({b,+,1}) 1 + 2/3
4684 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4685 if (EstimateSearchSpaceComplexity() < ComplexityLimit
)
4687 // Ok, we have too many of formulae on our hands to conveniently handle.
4688 // Use a rough heuristic to thin out the list.
4690 // Set of Regs wich will be 100% used in final solution.
4691 // Used in each formula of a solution (in example above this is reg(c)).
4692 // We can skip them in calculations.
4693 SmallPtrSet
<const SCEV
*, 4> UniqRegs
;
4694 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4696 // Map each register to probability of not selecting
4697 DenseMap
<const SCEV
*, float> RegNumMap
;
4698 for (const SCEV
*Reg
: RegUses
) {
4699 if (UniqRegs
.count(Reg
))
4702 for (const LSRUse
&LU
: Uses
) {
4703 if (!LU
.Regs
.count(Reg
))
4705 float P
= LU
.getNotSelectedProbability(Reg
);
4709 UniqRegs
.insert(Reg
);
4711 RegNumMap
.insert(std::make_pair(Reg
, PNotSel
));
4715 dbgs() << "Narrowing the search space by deleting costly formulas\n");
4717 // Delete formulas where registers number expectation is high.
4718 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4719 LSRUse
&LU
= Uses
[LUIdx
];
4720 // If nothing to delete - continue.
4721 if (LU
.Formulae
.size() < 2)
4723 // This is temporary solution to test performance. Float should be
4724 // replaced with round independent type (based on integers) to avoid
4725 // different results for different target builds.
4726 float FMinRegNum
= LU
.Formulae
[0].getNumRegs();
4727 float FMinARegNum
= LU
.Formulae
[0].getNumRegs();
4729 for (size_t i
= 0, e
= LU
.Formulae
.size(); i
!= e
; ++i
) {
4730 Formula
&F
= LU
.Formulae
[i
];
4733 for (const SCEV
*BaseReg
: F
.BaseRegs
) {
4734 if (UniqRegs
.count(BaseReg
))
4736 FRegNum
+= RegNumMap
[BaseReg
] / LU
.getNotSelectedProbability(BaseReg
);
4737 if (isa
<SCEVAddRecExpr
>(BaseReg
))
4739 RegNumMap
[BaseReg
] / LU
.getNotSelectedProbability(BaseReg
);
4741 if (const SCEV
*ScaledReg
= F
.ScaledReg
) {
4742 if (!UniqRegs
.count(ScaledReg
)) {
4744 RegNumMap
[ScaledReg
] / LU
.getNotSelectedProbability(ScaledReg
);
4745 if (isa
<SCEVAddRecExpr
>(ScaledReg
))
4747 RegNumMap
[ScaledReg
] / LU
.getNotSelectedProbability(ScaledReg
);
4750 if (FMinRegNum
> FRegNum
||
4751 (FMinRegNum
== FRegNum
&& FMinARegNum
> FARegNum
)) {
4752 FMinRegNum
= FRegNum
;
4753 FMinARegNum
= FARegNum
;
4757 LLVM_DEBUG(dbgs() << " The formula "; LU
.Formulae
[MinIdx
].print(dbgs());
4758 dbgs() << " with min reg num " << FMinRegNum
<< '\n');
4760 std::swap(LU
.Formulae
[MinIdx
], LU
.Formulae
[0]);
4761 while (LU
.Formulae
.size() != 1) {
4762 LLVM_DEBUG(dbgs() << " Deleting "; LU
.Formulae
.back().print(dbgs());
4764 LU
.Formulae
.pop_back();
4766 LU
.RecomputeRegs(LUIdx
, RegUses
);
4767 assert(LU
.Formulae
.size() == 1 && "Should be exactly 1 min regs formula");
4768 Formula
&F
= LU
.Formulae
[0];
4769 LLVM_DEBUG(dbgs() << " Leaving only "; F
.print(dbgs()); dbgs() << '\n');
4770 // When we choose the formula, the regs become unique.
4771 UniqRegs
.insert(F
.BaseRegs
.begin(), F
.BaseRegs
.end());
4773 UniqRegs
.insert(F
.ScaledReg
);
4775 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4778 /// Pick a register which seems likely to be profitable, and then in any use
4779 /// which has any reference to that register, delete all formulae which do not
4780 /// reference that register.
4781 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4782 // With all other options exhausted, loop until the system is simple
4783 // enough to handle.
4784 SmallPtrSet
<const SCEV
*, 4> Taken
;
4785 while (EstimateSearchSpaceComplexity() >= ComplexityLimit
) {
4786 // Ok, we have too many of formulae on our hands to conveniently handle.
4787 // Use a rough heuristic to thin out the list.
4788 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4790 // Pick the register which is used by the most LSRUses, which is likely
4791 // to be a good reuse register candidate.
4792 const SCEV
*Best
= nullptr;
4793 unsigned BestNum
= 0;
4794 for (const SCEV
*Reg
: RegUses
) {
4795 if (Taken
.count(Reg
))
4799 BestNum
= RegUses
.getUsedByIndices(Reg
).count();
4801 unsigned Count
= RegUses
.getUsedByIndices(Reg
).count();
4802 if (Count
> BestNum
) {
4809 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4810 << " will yield profitable reuse.\n");
4813 // In any use with formulae which references this register, delete formulae
4814 // which don't reference it.
4815 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4816 LSRUse
&LU
= Uses
[LUIdx
];
4817 if (!LU
.Regs
.count(Best
)) continue;
4820 for (size_t i
= 0, e
= LU
.Formulae
.size(); i
!= e
; ++i
) {
4821 Formula
&F
= LU
.Formulae
[i
];
4822 if (!F
.referencesReg(Best
)) {
4823 LLVM_DEBUG(dbgs() << " Deleting "; F
.print(dbgs()); dbgs() << '\n');
4824 LU
.DeleteFormula(F
);
4828 assert(e
!= 0 && "Use has no formulae left! Is Regs inconsistent?");
4834 LU
.RecomputeRegs(LUIdx
, RegUses
);
4837 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4841 /// If there are an extraordinary number of formulae to choose from, use some
4842 /// rough heuristics to prune down the number of formulae. This keeps the main
4843 /// solver from taking an extraordinary amount of time in some worst-case
4845 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4846 NarrowSearchSpaceByDetectingSupersets();
4847 NarrowSearchSpaceByCollapsingUnrolledCode();
4848 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4849 if (FilterSameScaledReg
)
4850 NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4852 NarrowSearchSpaceByDeletingCostlyFormulas();
4854 NarrowSearchSpaceByPickingWinnerRegs();
4857 /// This is the recursive solver.
4858 void LSRInstance::SolveRecurse(SmallVectorImpl
<const Formula
*> &Solution
,
4860 SmallVectorImpl
<const Formula
*> &Workspace
,
4861 const Cost
&CurCost
,
4862 const SmallPtrSet
<const SCEV
*, 16> &CurRegs
,
4863 DenseSet
<const SCEV
*> &VisitedRegs
) const {
4866 // - use more aggressive filtering
4867 // - sort the formula so that the most profitable solutions are found first
4868 // - sort the uses too
4870 // - don't compute a cost, and then compare. compare while computing a cost
4872 // - track register sets with SmallBitVector
4874 const LSRUse
&LU
= Uses
[Workspace
.size()];
4876 // If this use references any register that's already a part of the
4877 // in-progress solution, consider it a requirement that a formula must
4878 // reference that register in order to be considered. This prunes out
4879 // unprofitable searching.
4880 SmallSetVector
<const SCEV
*, 4> ReqRegs
;
4881 for (const SCEV
*S
: CurRegs
)
4882 if (LU
.Regs
.count(S
))
4885 SmallPtrSet
<const SCEV
*, 16> NewRegs
;
4887 for (const Formula
&F
: LU
.Formulae
) {
4888 // Ignore formulae which may not be ideal in terms of register reuse of
4889 // ReqRegs. The formula should use all required registers before
4890 // introducing new ones.
4891 int NumReqRegsToFind
= std::min(F
.getNumRegs(), ReqRegs
.size());
4892 for (const SCEV
*Reg
: ReqRegs
) {
4893 if ((F
.ScaledReg
&& F
.ScaledReg
== Reg
) ||
4894 is_contained(F
.BaseRegs
, Reg
)) {
4896 if (NumReqRegsToFind
== 0)
4900 if (NumReqRegsToFind
!= 0) {
4901 // If none of the formulae satisfied the required registers, then we could
4902 // clear ReqRegs and try again. Currently, we simply give up in this case.
4906 // Evaluate the cost of the current formula. If it's already worse than
4907 // the current best, prune the search at that point.
4910 NewCost
.RateFormula(TTI
, F
, NewRegs
, VisitedRegs
, L
, SE
, DT
, LU
);
4911 if (NewCost
.isLess(SolutionCost
, TTI
)) {
4912 Workspace
.push_back(&F
);
4913 if (Workspace
.size() != Uses
.size()) {
4914 SolveRecurse(Solution
, SolutionCost
, Workspace
, NewCost
,
4915 NewRegs
, VisitedRegs
);
4916 if (F
.getNumRegs() == 1 && Workspace
.size() == 1)
4917 VisitedRegs
.insert(F
.ScaledReg
? F
.ScaledReg
: F
.BaseRegs
[0]);
4919 LLVM_DEBUG(dbgs() << "New best at "; NewCost
.print(dbgs());
4920 dbgs() << ".\n Regs:"; for (const SCEV
*S
4925 SolutionCost
= NewCost
;
4926 Solution
= Workspace
;
4928 Workspace
.pop_back();
4933 /// Choose one formula from each use. Return the results in the given Solution
4935 void LSRInstance::Solve(SmallVectorImpl
<const Formula
*> &Solution
) const {
4936 SmallVector
<const Formula
*, 8> Workspace
;
4938 SolutionCost
.Lose();
4940 SmallPtrSet
<const SCEV
*, 16> CurRegs
;
4941 DenseSet
<const SCEV
*> VisitedRegs
;
4942 Workspace
.reserve(Uses
.size());
4944 // SolveRecurse does all the work.
4945 SolveRecurse(Solution
, SolutionCost
, Workspace
, CurCost
,
4946 CurRegs
, VisitedRegs
);
4947 if (Solution
.empty()) {
4948 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4952 // Ok, we've now made all our decisions.
4953 LLVM_DEBUG(dbgs() << "\n"
4954 "The chosen solution requires ";
4955 SolutionCost
.print(dbgs()); dbgs() << ":\n";
4956 for (size_t i
= 0, e
= Uses
.size(); i
!= e
; ++i
) {
4958 Uses
[i
].print(dbgs());
4961 Solution
[i
]->print(dbgs());
4965 assert(Solution
.size() == Uses
.size() && "Malformed solution!");
4968 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4969 /// we can go while still being dominated by the input positions. This helps
4970 /// canonicalize the insert position, which encourages sharing.
4971 BasicBlock::iterator
4972 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP
,
4973 const SmallVectorImpl
<Instruction
*> &Inputs
)
4975 Instruction
*Tentative
= &*IP
;
4977 bool AllDominate
= true;
4978 Instruction
*BetterPos
= nullptr;
4979 // Don't bother attempting to insert before a catchswitch, their basic block
4980 // cannot have other non-PHI instructions.
4981 if (isa
<CatchSwitchInst
>(Tentative
))
4984 for (Instruction
*Inst
: Inputs
) {
4985 if (Inst
== Tentative
|| !DT
.dominates(Inst
, Tentative
)) {
4986 AllDominate
= false;
4989 // Attempt to find an insert position in the middle of the block,
4990 // instead of at the end, so that it can be used for other expansions.
4991 if (Tentative
->getParent() == Inst
->getParent() &&
4992 (!BetterPos
|| !DT
.dominates(Inst
, BetterPos
)))
4993 BetterPos
= &*std::next(BasicBlock::iterator(Inst
));
4998 IP
= BetterPos
->getIterator();
5000 IP
= Tentative
->getIterator();
5002 const Loop
*IPLoop
= LI
.getLoopFor(IP
->getParent());
5003 unsigned IPLoopDepth
= IPLoop
? IPLoop
->getLoopDepth() : 0;
5006 for (DomTreeNode
*Rung
= DT
.getNode(IP
->getParent()); ; ) {
5007 if (!Rung
) return IP
;
5008 Rung
= Rung
->getIDom();
5009 if (!Rung
) return IP
;
5010 IDom
= Rung
->getBlock();
5012 // Don't climb into a loop though.
5013 const Loop
*IDomLoop
= LI
.getLoopFor(IDom
);
5014 unsigned IDomDepth
= IDomLoop
? IDomLoop
->getLoopDepth() : 0;
5015 if (IDomDepth
<= IPLoopDepth
&&
5016 (IDomDepth
!= IPLoopDepth
|| IDomLoop
== IPLoop
))
5020 Tentative
= IDom
->getTerminator();
5026 /// Determine an input position which will be dominated by the operands and
5027 /// which will dominate the result.
5028 BasicBlock::iterator
5029 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP
,
5032 SCEVExpander
&Rewriter
) const {
5033 // Collect some instructions which must be dominated by the
5034 // expanding replacement. These must be dominated by any operands that
5035 // will be required in the expansion.
5036 SmallVector
<Instruction
*, 4> Inputs
;
5037 if (Instruction
*I
= dyn_cast
<Instruction
>(LF
.OperandValToReplace
))
5038 Inputs
.push_back(I
);
5039 if (LU
.Kind
== LSRUse::ICmpZero
)
5040 if (Instruction
*I
=
5041 dyn_cast
<Instruction
>(cast
<ICmpInst
>(LF
.UserInst
)->getOperand(1)))
5042 Inputs
.push_back(I
);
5043 if (LF
.PostIncLoops
.count(L
)) {
5044 if (LF
.isUseFullyOutsideLoop(L
))
5045 Inputs
.push_back(L
->getLoopLatch()->getTerminator());
5047 Inputs
.push_back(IVIncInsertPos
);
5049 // The expansion must also be dominated by the increment positions of any
5050 // loops it for which it is using post-inc mode.
5051 for (const Loop
*PIL
: LF
.PostIncLoops
) {
5052 if (PIL
== L
) continue;
5054 // Be dominated by the loop exit.
5055 SmallVector
<BasicBlock
*, 4> ExitingBlocks
;
5056 PIL
->getExitingBlocks(ExitingBlocks
);
5057 if (!ExitingBlocks
.empty()) {
5058 BasicBlock
*BB
= ExitingBlocks
[0];
5059 for (unsigned i
= 1, e
= ExitingBlocks
.size(); i
!= e
; ++i
)
5060 BB
= DT
.findNearestCommonDominator(BB
, ExitingBlocks
[i
]);
5061 Inputs
.push_back(BB
->getTerminator());
5065 assert(!isa
<PHINode
>(LowestIP
) && !LowestIP
->isEHPad()
5066 && !isa
<DbgInfoIntrinsic
>(LowestIP
) &&
5067 "Insertion point must be a normal instruction");
5069 // Then, climb up the immediate dominator tree as far as we can go while
5070 // still being dominated by the input positions.
5071 BasicBlock::iterator IP
= HoistInsertPosition(LowestIP
, Inputs
);
5073 // Don't insert instructions before PHI nodes.
5074 while (isa
<PHINode
>(IP
)) ++IP
;
5076 // Ignore landingpad instructions.
5077 while (IP
->isEHPad()) ++IP
;
5079 // Ignore debug intrinsics.
5080 while (isa
<DbgInfoIntrinsic
>(IP
)) ++IP
;
5082 // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5083 // IP consistent across expansions and allows the previously inserted
5084 // instructions to be reused by subsequent expansion.
5085 while (Rewriter
.isInsertedInstruction(&*IP
) && IP
!= LowestIP
)
5091 /// Emit instructions for the leading candidate expression for this LSRUse (this
5092 /// is called "expanding").
5093 Value
*LSRInstance::Expand(const LSRUse
&LU
, const LSRFixup
&LF
,
5094 const Formula
&F
, BasicBlock::iterator IP
,
5095 SCEVExpander
&Rewriter
,
5096 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) const {
5097 if (LU
.RigidFormula
)
5098 return LF
.OperandValToReplace
;
5100 // Determine an input position which will be dominated by the operands and
5101 // which will dominate the result.
5102 IP
= AdjustInsertPositionForExpand(IP
, LF
, LU
, Rewriter
);
5103 Rewriter
.setInsertPoint(&*IP
);
5105 // Inform the Rewriter if we have a post-increment use, so that it can
5106 // perform an advantageous expansion.
5107 Rewriter
.setPostInc(LF
.PostIncLoops
);
5109 // This is the type that the user actually needs.
5110 Type
*OpTy
= LF
.OperandValToReplace
->getType();
5111 // This will be the type that we'll initially expand to.
5112 Type
*Ty
= F
.getType();
5114 // No type known; just expand directly to the ultimate type.
5116 else if (SE
.getEffectiveSCEVType(Ty
) == SE
.getEffectiveSCEVType(OpTy
))
5117 // Expand directly to the ultimate type if it's the right size.
5119 // This is the type to do integer arithmetic in.
5120 Type
*IntTy
= SE
.getEffectiveSCEVType(Ty
);
5122 // Build up a list of operands to add together to form the full base.
5123 SmallVector
<const SCEV
*, 8> Ops
;
5125 // Expand the BaseRegs portion.
5126 for (const SCEV
*Reg
: F
.BaseRegs
) {
5127 assert(!Reg
->isZero() && "Zero allocated in a base register!");
5129 // If we're expanding for a post-inc user, make the post-inc adjustment.
5130 Reg
= denormalizeForPostIncUse(Reg
, LF
.PostIncLoops
, SE
);
5131 Ops
.push_back(SE
.getUnknown(Rewriter
.expandCodeFor(Reg
, nullptr)));
5134 // Expand the ScaledReg portion.
5135 Value
*ICmpScaledV
= nullptr;
5137 const SCEV
*ScaledS
= F
.ScaledReg
;
5139 // If we're expanding for a post-inc user, make the post-inc adjustment.
5140 PostIncLoopSet
&Loops
= const_cast<PostIncLoopSet
&>(LF
.PostIncLoops
);
5141 ScaledS
= denormalizeForPostIncUse(ScaledS
, Loops
, SE
);
5143 if (LU
.Kind
== LSRUse::ICmpZero
) {
5144 // Expand ScaleReg as if it was part of the base regs.
5147 SE
.getUnknown(Rewriter
.expandCodeFor(ScaledS
, nullptr)));
5149 // An interesting way of "folding" with an icmp is to use a negated
5150 // scale, which we'll implement by inserting it into the other operand
5152 assert(F
.Scale
== -1 &&
5153 "The only scale supported by ICmpZero uses is -1!");
5154 ICmpScaledV
= Rewriter
.expandCodeFor(ScaledS
, nullptr);
5157 // Otherwise just expand the scaled register and an explicit scale,
5158 // which is expected to be matched as part of the address.
5160 // Flush the operand list to suppress SCEVExpander hoisting address modes.
5161 // Unless the addressing mode will not be folded.
5162 if (!Ops
.empty() && LU
.Kind
== LSRUse::Address
&&
5163 isAMCompletelyFolded(TTI
, LU
, F
)) {
5164 Value
*FullV
= Rewriter
.expandCodeFor(SE
.getAddExpr(Ops
), nullptr);
5166 Ops
.push_back(SE
.getUnknown(FullV
));
5168 ScaledS
= SE
.getUnknown(Rewriter
.expandCodeFor(ScaledS
, nullptr));
5171 SE
.getMulExpr(ScaledS
, SE
.getConstant(ScaledS
->getType(), F
.Scale
));
5172 Ops
.push_back(ScaledS
);
5176 // Expand the GV portion.
5178 // Flush the operand list to suppress SCEVExpander hoisting.
5180 Value
*FullV
= Rewriter
.expandCodeFor(SE
.getAddExpr(Ops
), Ty
);
5182 Ops
.push_back(SE
.getUnknown(FullV
));
5184 Ops
.push_back(SE
.getUnknown(F
.BaseGV
));
5187 // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5188 // unfolded offsets. LSR assumes they both live next to their uses.
5190 Value
*FullV
= Rewriter
.expandCodeFor(SE
.getAddExpr(Ops
), Ty
);
5192 Ops
.push_back(SE
.getUnknown(FullV
));
5195 // Expand the immediate portion.
5196 int64_t Offset
= (uint64_t)F
.BaseOffset
+ LF
.Offset
;
5198 if (LU
.Kind
== LSRUse::ICmpZero
) {
5199 // The other interesting way of "folding" with an ICmpZero is to use a
5200 // negated immediate.
5202 ICmpScaledV
= ConstantInt::get(IntTy
, -(uint64_t)Offset
);
5204 Ops
.push_back(SE
.getUnknown(ICmpScaledV
));
5205 ICmpScaledV
= ConstantInt::get(IntTy
, Offset
);
5208 // Just add the immediate values. These again are expected to be matched
5209 // as part of the address.
5210 Ops
.push_back(SE
.getUnknown(ConstantInt::getSigned(IntTy
, Offset
)));
5214 // Expand the unfolded offset portion.
5215 int64_t UnfoldedOffset
= F
.UnfoldedOffset
;
5216 if (UnfoldedOffset
!= 0) {
5217 // Just add the immediate values.
5218 Ops
.push_back(SE
.getUnknown(ConstantInt::getSigned(IntTy
,
5222 // Emit instructions summing all the operands.
5223 const SCEV
*FullS
= Ops
.empty() ?
5224 SE
.getConstant(IntTy
, 0) :
5226 Value
*FullV
= Rewriter
.expandCodeFor(FullS
, Ty
);
5228 // We're done expanding now, so reset the rewriter.
5229 Rewriter
.clearPostInc();
5231 // An ICmpZero Formula represents an ICmp which we're handling as a
5232 // comparison against zero. Now that we've expanded an expression for that
5233 // form, update the ICmp's other operand.
5234 if (LU
.Kind
== LSRUse::ICmpZero
) {
5235 ICmpInst
*CI
= cast
<ICmpInst
>(LF
.UserInst
);
5236 DeadInsts
.emplace_back(CI
->getOperand(1));
5237 assert(!F
.BaseGV
&& "ICmp does not support folding a global value and "
5238 "a scale at the same time!");
5239 if (F
.Scale
== -1) {
5240 if (ICmpScaledV
->getType() != OpTy
) {
5242 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV
, false,
5244 ICmpScaledV
, OpTy
, "tmp", CI
);
5247 CI
->setOperand(1, ICmpScaledV
);
5249 // A scale of 1 means that the scale has been expanded as part of the
5251 assert((F
.Scale
== 0 || F
.Scale
== 1) &&
5252 "ICmp does not support folding a global value and "
5253 "a scale at the same time!");
5254 Constant
*C
= ConstantInt::getSigned(SE
.getEffectiveSCEVType(OpTy
),
5256 if (C
->getType() != OpTy
)
5257 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
5261 CI
->setOperand(1, C
);
5268 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5269 /// effectively happens in their predecessor blocks, so the expression may need
5270 /// to be expanded in multiple places.
5271 void LSRInstance::RewriteForPHI(
5272 PHINode
*PN
, const LSRUse
&LU
, const LSRFixup
&LF
, const Formula
&F
,
5273 SCEVExpander
&Rewriter
, SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) const {
5274 DenseMap
<BasicBlock
*, Value
*> Inserted
;
5275 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
5276 if (PN
->getIncomingValue(i
) == LF
.OperandValToReplace
) {
5277 BasicBlock
*BB
= PN
->getIncomingBlock(i
);
5279 // If this is a critical edge, split the edge so that we do not insert
5280 // the code on all predecessor/successor paths. We do this unless this
5281 // is the canonical backedge for this loop, which complicates post-inc
5283 if (e
!= 1 && BB
->getTerminator()->getNumSuccessors() > 1 &&
5284 !isa
<IndirectBrInst
>(BB
->getTerminator()) &&
5285 !isa
<CatchSwitchInst
>(BB
->getTerminator())) {
5286 BasicBlock
*Parent
= PN
->getParent();
5287 Loop
*PNLoop
= LI
.getLoopFor(Parent
);
5288 if (!PNLoop
|| Parent
!= PNLoop
->getHeader()) {
5289 // Split the critical edge.
5290 BasicBlock
*NewBB
= nullptr;
5291 if (!Parent
->isLandingPad()) {
5292 NewBB
= SplitCriticalEdge(BB
, Parent
,
5293 CriticalEdgeSplittingOptions(&DT
, &LI
)
5294 .setMergeIdenticalEdges()
5295 .setKeepOneInputPHIs());
5297 SmallVector
<BasicBlock
*, 2> NewBBs
;
5298 SplitLandingPadPredecessors(Parent
, BB
, "", "", NewBBs
, &DT
, &LI
);
5301 // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5302 // phi predecessors are identical. The simple thing to do is skip
5303 // splitting in this case rather than complicate the API.
5305 // If PN is outside of the loop and BB is in the loop, we want to
5306 // move the block to be immediately before the PHI block, not
5307 // immediately after BB.
5308 if (L
->contains(BB
) && !L
->contains(PN
))
5309 NewBB
->moveBefore(PN
->getParent());
5311 // Splitting the edge can reduce the number of PHI entries we have.
5312 e
= PN
->getNumIncomingValues();
5314 i
= PN
->getBasicBlockIndex(BB
);
5319 std::pair
<DenseMap
<BasicBlock
*, Value
*>::iterator
, bool> Pair
=
5320 Inserted
.insert(std::make_pair(BB
, static_cast<Value
*>(nullptr)));
5322 PN
->setIncomingValue(i
, Pair
.first
->second
);
5324 Value
*FullV
= Expand(LU
, LF
, F
, BB
->getTerminator()->getIterator(),
5325 Rewriter
, DeadInsts
);
5327 // If this is reuse-by-noop-cast, insert the noop cast.
5328 Type
*OpTy
= LF
.OperandValToReplace
->getType();
5329 if (FullV
->getType() != OpTy
)
5331 CastInst::Create(CastInst::getCastOpcode(FullV
, false,
5333 FullV
, LF
.OperandValToReplace
->getType(),
5334 "tmp", BB
->getTerminator());
5336 PN
->setIncomingValue(i
, FullV
);
5337 Pair
.first
->second
= FullV
;
5342 /// Emit instructions for the leading candidate expression for this LSRUse (this
5343 /// is called "expanding"), and update the UserInst to reference the newly
5345 void LSRInstance::Rewrite(const LSRUse
&LU
, const LSRFixup
&LF
,
5346 const Formula
&F
, SCEVExpander
&Rewriter
,
5347 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) const {
5348 // First, find an insertion point that dominates UserInst. For PHI nodes,
5349 // find the nearest block which dominates all the relevant uses.
5350 if (PHINode
*PN
= dyn_cast
<PHINode
>(LF
.UserInst
)) {
5351 RewriteForPHI(PN
, LU
, LF
, F
, Rewriter
, DeadInsts
);
5354 Expand(LU
, LF
, F
, LF
.UserInst
->getIterator(), Rewriter
, DeadInsts
);
5356 // If this is reuse-by-noop-cast, insert the noop cast.
5357 Type
*OpTy
= LF
.OperandValToReplace
->getType();
5358 if (FullV
->getType() != OpTy
) {
5360 CastInst::Create(CastInst::getCastOpcode(FullV
, false, OpTy
, false),
5361 FullV
, OpTy
, "tmp", LF
.UserInst
);
5365 // Update the user. ICmpZero is handled specially here (for now) because
5366 // Expand may have updated one of the operands of the icmp already, and
5367 // its new value may happen to be equal to LF.OperandValToReplace, in
5368 // which case doing replaceUsesOfWith leads to replacing both operands
5369 // with the same value. TODO: Reorganize this.
5370 if (LU
.Kind
== LSRUse::ICmpZero
)
5371 LF
.UserInst
->setOperand(0, FullV
);
5373 LF
.UserInst
->replaceUsesOfWith(LF
.OperandValToReplace
, FullV
);
5376 DeadInsts
.emplace_back(LF
.OperandValToReplace
);
5379 /// Rewrite all the fixup locations with new values, following the chosen
5381 void LSRInstance::ImplementSolution(
5382 const SmallVectorImpl
<const Formula
*> &Solution
) {
5383 // Keep track of instructions we may have made dead, so that
5384 // we can remove them after we are done working.
5385 SmallVector
<WeakTrackingVH
, 16> DeadInsts
;
5387 SCEVExpander
Rewriter(SE
, L
->getHeader()->getModule()->getDataLayout(),
5390 Rewriter
.setDebugType(DEBUG_TYPE
);
5392 Rewriter
.disableCanonicalMode();
5393 Rewriter
.enableLSRMode();
5394 Rewriter
.setIVIncInsertPos(L
, IVIncInsertPos
);
5396 // Mark phi nodes that terminate chains so the expander tries to reuse them.
5397 for (const IVChain
&Chain
: IVChainVec
) {
5398 if (PHINode
*PN
= dyn_cast
<PHINode
>(Chain
.tailUserInst()))
5399 Rewriter
.setChainedPhi(PN
);
5402 // Expand the new value definitions and update the users.
5403 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
)
5404 for (const LSRFixup
&Fixup
: Uses
[LUIdx
].Fixups
) {
5405 Rewrite(Uses
[LUIdx
], Fixup
, *Solution
[LUIdx
], Rewriter
, DeadInsts
);
5409 for (const IVChain
&Chain
: IVChainVec
) {
5410 GenerateIVChain(Chain
, Rewriter
, DeadInsts
);
5413 // Clean up after ourselves. This must be done before deleting any
5417 Changed
|= DeleteTriviallyDeadInstructions(DeadInsts
);
5420 LSRInstance::LSRInstance(Loop
*L
, IVUsers
&IU
, ScalarEvolution
&SE
,
5421 DominatorTree
&DT
, LoopInfo
&LI
,
5422 const TargetTransformInfo
&TTI
)
5423 : IU(IU
), SE(SE
), DT(DT
), LI(LI
), TTI(TTI
), L(L
),
5424 FavorBackedgeIndex(EnableBackedgeIndexing
&&
5425 TTI
.shouldFavorBackedgeIndex(L
)) {
5426 // If LoopSimplify form is not available, stay out of trouble.
5427 if (!L
->isLoopSimplifyForm())
5430 // If there's no interesting work to be done, bail early.
5431 if (IU
.empty()) return;
5433 // If there's too much analysis to be done, bail early. We won't be able to
5434 // model the problem anyway.
5435 unsigned NumUsers
= 0;
5436 for (const IVStrideUse
&U
: IU
) {
5437 if (++NumUsers
> MaxIVUsers
) {
5439 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5443 // Bail out if we have a PHI on an EHPad that gets a value from a
5444 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is
5445 // no good place to stick any instructions.
5446 if (auto *PN
= dyn_cast
<PHINode
>(U
.getUser())) {
5447 auto *FirstNonPHI
= PN
->getParent()->getFirstNonPHI();
5448 if (isa
<FuncletPadInst
>(FirstNonPHI
) ||
5449 isa
<CatchSwitchInst
>(FirstNonPHI
))
5450 for (BasicBlock
*PredBB
: PN
->blocks())
5451 if (isa
<CatchSwitchInst
>(PredBB
->getFirstNonPHI()))
5457 // All dominating loops must have preheaders, or SCEVExpander may not be able
5458 // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5460 // IVUsers analysis should only create users that are dominated by simple loop
5461 // headers. Since this loop should dominate all of its users, its user list
5462 // should be empty if this loop itself is not within a simple loop nest.
5463 for (DomTreeNode
*Rung
= DT
.getNode(L
->getLoopPreheader());
5464 Rung
; Rung
= Rung
->getIDom()) {
5465 BasicBlock
*BB
= Rung
->getBlock();
5466 const Loop
*DomLoop
= LI
.getLoopFor(BB
);
5467 if (DomLoop
&& DomLoop
->getHeader() == BB
) {
5468 assert(DomLoop
->getLoopPreheader() && "LSR needs a simplified loop nest");
5473 LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5474 L
->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5477 // First, perform some low-level loop optimizations.
5479 OptimizeLoopTermCond();
5481 // If loop preparation eliminates all interesting IV users, bail.
5482 if (IU
.empty()) return;
5484 // Skip nested loops until we can model them better with formulae.
5486 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L
<< "\n");
5490 // Start collecting data and preparing for the solver.
5492 CollectInterestingTypesAndFactors();
5493 CollectFixupsAndInitialFormulae();
5494 CollectLoopInvariantFixupsAndFormulae();
5499 LLVM_DEBUG(dbgs() << "LSR found " << Uses
.size() << " uses:\n";
5500 print_uses(dbgs()));
5502 // Now use the reuse data to generate a bunch of interesting ways
5503 // to formulate the values needed for the uses.
5504 GenerateAllReuseFormulae();
5506 FilterOutUndesirableDedicatedRegisters();
5507 NarrowSearchSpaceUsingHeuristics();
5509 SmallVector
<const Formula
*, 8> Solution
;
5512 // Release memory that is no longer needed.
5517 if (Solution
.empty())
5521 // Formulae should be legal.
5522 for (const LSRUse
&LU
: Uses
) {
5523 for (const Formula
&F
: LU
.Formulae
)
5524 assert(isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
, LU
.AccessTy
,
5525 F
) && "Illegal formula generated!");
5529 // Now that we've decided what we want, make it so.
5530 ImplementSolution(Solution
);
5533 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5534 void LSRInstance::print_factors_and_types(raw_ostream
&OS
) const {
5535 if (Factors
.empty() && Types
.empty()) return;
5537 OS
<< "LSR has identified the following interesting factors and types: ";
5540 for (int64_t Factor
: Factors
) {
5541 if (!First
) OS
<< ", ";
5543 OS
<< '*' << Factor
;
5546 for (Type
*Ty
: Types
) {
5547 if (!First
) OS
<< ", ";
5549 OS
<< '(' << *Ty
<< ')';
5554 void LSRInstance::print_fixups(raw_ostream
&OS
) const {
5555 OS
<< "LSR is examining the following fixup sites:\n";
5556 for (const LSRUse
&LU
: Uses
)
5557 for (const LSRFixup
&LF
: LU
.Fixups
) {
5564 void LSRInstance::print_uses(raw_ostream
&OS
) const {
5565 OS
<< "LSR is examining the following uses:\n";
5566 for (const LSRUse
&LU
: Uses
) {
5570 for (const Formula
&F
: LU
.Formulae
) {
5578 void LSRInstance::print(raw_ostream
&OS
) const {
5579 print_factors_and_types(OS
);
5584 LLVM_DUMP_METHOD
void LSRInstance::dump() const {
5585 print(errs()); errs() << '\n';
5591 class LoopStrengthReduce
: public LoopPass
{
5593 static char ID
; // Pass ID, replacement for typeid
5595 LoopStrengthReduce();
5598 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
;
5599 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
5602 } // end anonymous namespace
5604 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID
) {
5605 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5608 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage
&AU
) const {
5609 // We split critical edges, so we change the CFG. However, we do update
5610 // many analyses if they are around.
5611 AU
.addPreservedID(LoopSimplifyID
);
5613 AU
.addRequired
<LoopInfoWrapperPass
>();
5614 AU
.addPreserved
<LoopInfoWrapperPass
>();
5615 AU
.addRequiredID(LoopSimplifyID
);
5616 AU
.addRequired
<DominatorTreeWrapperPass
>();
5617 AU
.addPreserved
<DominatorTreeWrapperPass
>();
5618 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
5619 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
5620 // Requiring LoopSimplify a second time here prevents IVUsers from running
5621 // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5622 AU
.addRequiredID(LoopSimplifyID
);
5623 AU
.addRequired
<IVUsersWrapperPass
>();
5624 AU
.addPreserved
<IVUsersWrapperPass
>();
5625 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
5628 static bool ReduceLoopStrength(Loop
*L
, IVUsers
&IU
, ScalarEvolution
&SE
,
5629 DominatorTree
&DT
, LoopInfo
&LI
,
5630 const TargetTransformInfo
&TTI
) {
5631 bool Changed
= false;
5633 // Run the main LSR transformation.
5634 Changed
|= LSRInstance(L
, IU
, SE
, DT
, LI
, TTI
).getChanged();
5636 // Remove any extra phis created by processing inner loops.
5637 Changed
|= DeleteDeadPHIs(L
->getHeader());
5638 if (EnablePhiElim
&& L
->isLoopSimplifyForm()) {
5639 SmallVector
<WeakTrackingVH
, 16> DeadInsts
;
5640 const DataLayout
&DL
= L
->getHeader()->getModule()->getDataLayout();
5641 SCEVExpander
Rewriter(SE
, DL
, "lsr");
5643 Rewriter
.setDebugType(DEBUG_TYPE
);
5645 unsigned numFolded
= Rewriter
.replaceCongruentIVs(L
, &DT
, DeadInsts
, &TTI
);
5648 DeleteTriviallyDeadInstructions(DeadInsts
);
5649 DeleteDeadPHIs(L
->getHeader());
5655 bool LoopStrengthReduce::runOnLoop(Loop
*L
, LPPassManager
& /*LPM*/) {
5659 auto &IU
= getAnalysis
<IVUsersWrapperPass
>().getIU();
5660 auto &SE
= getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
5661 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
5662 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
5663 const auto &TTI
= getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(
5664 *L
->getHeader()->getParent());
5665 return ReduceLoopStrength(L
, IU
, SE
, DT
, LI
, TTI
);
5668 PreservedAnalyses
LoopStrengthReducePass::run(Loop
&L
, LoopAnalysisManager
&AM
,
5669 LoopStandardAnalysisResults
&AR
,
5671 if (!ReduceLoopStrength(&L
, AM
.getResult
<IVUsersAnalysis
>(L
, AR
), AR
.SE
,
5672 AR
.DT
, AR
.LI
, AR
.TTI
))
5673 return PreservedAnalyses::all();
5675 return getLoopPassPreservedAnalyses();
5678 char LoopStrengthReduce::ID
= 0;
5680 INITIALIZE_PASS_BEGIN(LoopStrengthReduce
, "loop-reduce",
5681 "Loop Strength Reduction", false, false)
5682 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
5683 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
5684 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
5685 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass
)
5686 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
5687 INITIALIZE_PASS_DEPENDENCY(LoopSimplify
)
5688 INITIALIZE_PASS_END(LoopStrengthReduce
, "loop-reduce",
5689 "Loop Strength Reduction", false, false)
5691 Pass
*llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }