1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass implements a simple loop unroller. It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/CodeMetrics.h"
27 #include "llvm/Analysis/LoopAnalysisManager.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/LoopPass.h"
30 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/ScalarEvolution.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DiagnosticInfo.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Transforms/Scalar.h"
54 #include "llvm/Transforms/Scalar/LoopPassManager.h"
55 #include "llvm/Transforms/Utils.h"
56 #include "llvm/Transforms/Utils/LoopSimplify.h"
57 #include "llvm/Transforms/Utils/LoopUtils.h"
58 #include "llvm/Transforms/Utils/UnrollLoop.h"
69 #define DEBUG_TYPE "loop-unroll"
71 static cl::opt
<unsigned>
72 UnrollThreshold("unroll-threshold", cl::Hidden
,
73 cl::desc("The cost threshold for loop unrolling"));
75 static cl::opt
<unsigned> UnrollPartialThreshold(
76 "unroll-partial-threshold", cl::Hidden
,
77 cl::desc("The cost threshold for partial loop unrolling"));
79 static cl::opt
<unsigned> UnrollMaxPercentThresholdBoost(
80 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden
,
81 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
82 "to the threshold when aggressively unrolling a loop due to the "
83 "dynamic cost savings. If completely unrolling a loop will reduce "
84 "the total runtime from X to Y, we boost the loop unroll "
85 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
86 "X/Y). This limit avoids excessive code bloat."));
88 static cl::opt
<unsigned> UnrollMaxIterationsCountToAnalyze(
89 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden
,
90 cl::desc("Don't allow loop unrolling to simulate more than this number of"
91 "iterations when checking full unroll profitability"));
93 static cl::opt
<unsigned> UnrollCount(
94 "unroll-count", cl::Hidden
,
95 cl::desc("Use this unroll count for all loops including those with "
96 "unroll_count pragma values, for testing purposes"));
98 static cl::opt
<unsigned> UnrollMaxCount(
99 "unroll-max-count", cl::Hidden
,
100 cl::desc("Set the max unroll count for partial and runtime unrolling, for"
101 "testing purposes"));
103 static cl::opt
<unsigned> UnrollFullMaxCount(
104 "unroll-full-max-count", cl::Hidden
,
106 "Set the max unroll count for full unrolling, for testing purposes"));
108 static cl::opt
<unsigned> UnrollPeelCount(
109 "unroll-peel-count", cl::Hidden
,
110 cl::desc("Set the unroll peeling count, for testing purposes"));
113 UnrollAllowPartial("unroll-allow-partial", cl::Hidden
,
114 cl::desc("Allows loops to be partially unrolled until "
115 "-unroll-threshold loop size is reached."));
117 static cl::opt
<bool> UnrollAllowRemainder(
118 "unroll-allow-remainder", cl::Hidden
,
119 cl::desc("Allow generation of a loop remainder (extra iterations) "
120 "when unrolling a loop."));
123 UnrollRuntime("unroll-runtime", cl::ZeroOrMore
, cl::Hidden
,
124 cl::desc("Unroll loops with run-time trip counts"));
126 static cl::opt
<unsigned> UnrollMaxUpperBound(
127 "unroll-max-upperbound", cl::init(8), cl::Hidden
,
129 "The max of trip count upper bound that is considered in unrolling"));
131 static cl::opt
<unsigned> PragmaUnrollThreshold(
132 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden
,
133 cl::desc("Unrolled size limit for loops with an unroll(full) or "
134 "unroll_count pragma."));
136 static cl::opt
<unsigned> FlatLoopTripCountThreshold(
137 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden
,
138 cl::desc("If the runtime tripcount for the loop is lower than the "
139 "threshold, the loop is considered as flat and will be less "
140 "aggressively unrolled."));
143 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden
,
144 cl::desc("Allows loops to be peeled when the dynamic "
145 "trip count is known to be low."));
147 static cl::opt
<bool> UnrollUnrollRemainder(
148 "unroll-remainder", cl::Hidden
,
149 cl::desc("Allow the loop remainder to be unrolled."));
151 // This option isn't ever intended to be enabled, it serves to allow
152 // experiments to check the assumptions about when this kind of revisit is
154 static cl::opt
<bool> UnrollRevisitChildLoops(
155 "unroll-revisit-child-loops", cl::Hidden
,
156 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
157 "This shouldn't typically be needed as child loops (or their "
158 "clones) were already visited."));
160 /// A magic value for use with the Threshold parameter to indicate
161 /// that the loop unroll should be performed regardless of how much
162 /// code expansion would result.
163 static const unsigned NoThreshold
= std::numeric_limits
<unsigned>::max();
165 /// Gather the various unrolling parameters based on the defaults, compiler
166 /// flags, TTI overrides and user specified parameters.
167 TargetTransformInfo::UnrollingPreferences
llvm::gatherUnrollingPreferences(
168 Loop
*L
, ScalarEvolution
&SE
, const TargetTransformInfo
&TTI
, int OptLevel
,
169 Optional
<unsigned> UserThreshold
, Optional
<unsigned> UserCount
,
170 Optional
<bool> UserAllowPartial
, Optional
<bool> UserRuntime
,
171 Optional
<bool> UserUpperBound
, Optional
<bool> UserAllowPeeling
) {
172 TargetTransformInfo::UnrollingPreferences UP
;
174 // Set up the defaults
175 UP
.Threshold
= OptLevel
> 2 ? 300 : 150;
176 UP
.MaxPercentThresholdBoost
= 400;
177 UP
.OptSizeThreshold
= 0;
178 UP
.PartialThreshold
= 150;
179 UP
.PartialOptSizeThreshold
= 0;
182 UP
.DefaultUnrollRuntimeCount
= 8;
183 UP
.MaxCount
= std::numeric_limits
<unsigned>::max();
184 UP
.FullUnrollMaxCount
= std::numeric_limits
<unsigned>::max();
188 UP
.AllowRemainder
= true;
189 UP
.UnrollRemainder
= false;
190 UP
.AllowExpensiveTripCount
= false;
192 UP
.UpperBound
= false;
193 UP
.AllowPeeling
= true;
194 UP
.UnrollAndJam
= false;
195 UP
.UnrollAndJamInnerLoopThreshold
= 60;
197 // Override with any target specific settings
198 TTI
.getUnrollingPreferences(L
, SE
, UP
);
200 // Apply size attributes
201 if (L
->getHeader()->getParent()->optForSize()) {
202 UP
.Threshold
= UP
.OptSizeThreshold
;
203 UP
.PartialThreshold
= UP
.PartialOptSizeThreshold
;
206 // Apply any user values specified by cl::opt
207 if (UnrollThreshold
.getNumOccurrences() > 0)
208 UP
.Threshold
= UnrollThreshold
;
209 if (UnrollPartialThreshold
.getNumOccurrences() > 0)
210 UP
.PartialThreshold
= UnrollPartialThreshold
;
211 if (UnrollMaxPercentThresholdBoost
.getNumOccurrences() > 0)
212 UP
.MaxPercentThresholdBoost
= UnrollMaxPercentThresholdBoost
;
213 if (UnrollMaxCount
.getNumOccurrences() > 0)
214 UP
.MaxCount
= UnrollMaxCount
;
215 if (UnrollFullMaxCount
.getNumOccurrences() > 0)
216 UP
.FullUnrollMaxCount
= UnrollFullMaxCount
;
217 if (UnrollPeelCount
.getNumOccurrences() > 0)
218 UP
.PeelCount
= UnrollPeelCount
;
219 if (UnrollAllowPartial
.getNumOccurrences() > 0)
220 UP
.Partial
= UnrollAllowPartial
;
221 if (UnrollAllowRemainder
.getNumOccurrences() > 0)
222 UP
.AllowRemainder
= UnrollAllowRemainder
;
223 if (UnrollRuntime
.getNumOccurrences() > 0)
224 UP
.Runtime
= UnrollRuntime
;
225 if (UnrollMaxUpperBound
== 0)
226 UP
.UpperBound
= false;
227 if (UnrollAllowPeeling
.getNumOccurrences() > 0)
228 UP
.AllowPeeling
= UnrollAllowPeeling
;
229 if (UnrollUnrollRemainder
.getNumOccurrences() > 0)
230 UP
.UnrollRemainder
= UnrollUnrollRemainder
;
232 // Apply user values provided by argument
233 if (UserThreshold
.hasValue()) {
234 UP
.Threshold
= *UserThreshold
;
235 UP
.PartialThreshold
= *UserThreshold
;
237 if (UserCount
.hasValue())
238 UP
.Count
= *UserCount
;
239 if (UserAllowPartial
.hasValue())
240 UP
.Partial
= *UserAllowPartial
;
241 if (UserRuntime
.hasValue())
242 UP
.Runtime
= *UserRuntime
;
243 if (UserUpperBound
.hasValue())
244 UP
.UpperBound
= *UserUpperBound
;
245 if (UserAllowPeeling
.hasValue())
246 UP
.AllowPeeling
= *UserAllowPeeling
;
253 /// A struct to densely store the state of an instruction after unrolling at
256 /// This is designed to work like a tuple of <Instruction *, int> for the
257 /// purposes of hashing and lookup, but to be able to associate two boolean
258 /// states with each key.
259 struct UnrolledInstState
{
263 unsigned IsCounted
: 1;
266 /// Hashing and equality testing for a set of the instruction states.
267 struct UnrolledInstStateKeyInfo
{
268 using PtrInfo
= DenseMapInfo
<Instruction
*>;
269 using PairInfo
= DenseMapInfo
<std::pair
<Instruction
*, int>>;
271 static inline UnrolledInstState
getEmptyKey() {
272 return {PtrInfo::getEmptyKey(), 0, 0, 0};
275 static inline UnrolledInstState
getTombstoneKey() {
276 return {PtrInfo::getTombstoneKey(), 0, 0, 0};
279 static inline unsigned getHashValue(const UnrolledInstState
&S
) {
280 return PairInfo::getHashValue({S
.I
, S
.Iteration
});
283 static inline bool isEqual(const UnrolledInstState
&LHS
,
284 const UnrolledInstState
&RHS
) {
285 return PairInfo::isEqual({LHS
.I
, LHS
.Iteration
}, {RHS
.I
, RHS
.Iteration
});
289 struct EstimatedUnrollCost
{
290 /// The estimated cost after unrolling.
291 unsigned UnrolledCost
;
293 /// The estimated dynamic cost of executing the instructions in the
295 unsigned RolledDynamicCost
;
298 } // end anonymous namespace
300 /// Figure out if the loop is worth full unrolling.
302 /// Complete loop unrolling can make some loads constant, and we need to know
303 /// if that would expose any further optimization opportunities. This routine
304 /// estimates this optimization. It computes cost of unrolled loop
305 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
306 /// dynamic cost we mean that we won't count costs of blocks that are known not
307 /// to be executed (i.e. if we have a branch in the loop and we know that at the
308 /// given iteration its condition would be resolved to true, we won't add up the
309 /// cost of the 'false'-block).
310 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
311 /// the analysis failed (no benefits expected from the unrolling, or the loop is
312 /// too big to analyze), the returned value is None.
313 static Optional
<EstimatedUnrollCost
> analyzeLoopUnrollCost(
314 const Loop
*L
, unsigned TripCount
, DominatorTree
&DT
, ScalarEvolution
&SE
,
315 const SmallPtrSetImpl
<const Value
*> &EphValues
,
316 const TargetTransformInfo
&TTI
, unsigned MaxUnrolledLoopSize
) {
317 // We want to be able to scale offsets by the trip count and add more offsets
318 // to them without checking for overflows, and we already don't want to
319 // analyze *massive* trip counts, so we force the max to be reasonably small.
320 assert(UnrollMaxIterationsCountToAnalyze
<
321 (unsigned)(std::numeric_limits
<int>::max() / 2) &&
322 "The unroll iterations max is too large!");
324 // Only analyze inner loops. We can't properly estimate cost of nested loops
325 // and we won't visit inner loops again anyway.
329 // Don't simulate loops with a big or unknown tripcount
330 if (!UnrollMaxIterationsCountToAnalyze
|| !TripCount
||
331 TripCount
> UnrollMaxIterationsCountToAnalyze
)
334 SmallSetVector
<BasicBlock
*, 16> BBWorklist
;
335 SmallSetVector
<std::pair
<BasicBlock
*, BasicBlock
*>, 4> ExitWorklist
;
336 DenseMap
<Value
*, Constant
*> SimplifiedValues
;
337 SmallVector
<std::pair
<Value
*, Constant
*>, 4> SimplifiedInputValues
;
339 // The estimated cost of the unrolled form of the loop. We try to estimate
340 // this by simplifying as much as we can while computing the estimate.
341 unsigned UnrolledCost
= 0;
343 // We also track the estimated dynamic (that is, actually executed) cost in
344 // the rolled form. This helps identify cases when the savings from unrolling
345 // aren't just exposing dead control flows, but actual reduced dynamic
346 // instructions due to the simplifications which we expect to occur after
348 unsigned RolledDynamicCost
= 0;
350 // We track the simplification of each instruction in each iteration. We use
351 // this to recursively merge costs into the unrolled cost on-demand so that
352 // we don't count the cost of any dead code. This is essentially a map from
353 // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
354 DenseSet
<UnrolledInstState
, UnrolledInstStateKeyInfo
> InstCostMap
;
356 // A small worklist used to accumulate cost of instructions from each
357 // observable and reached root in the loop.
358 SmallVector
<Instruction
*, 16> CostWorklist
;
360 // PHI-used worklist used between iterations while accumulating cost.
361 SmallVector
<Instruction
*, 4> PHIUsedList
;
363 // Helper function to accumulate cost for instructions in the loop.
364 auto AddCostRecursively
= [&](Instruction
&RootI
, int Iteration
) {
365 assert(Iteration
>= 0 && "Cannot have a negative iteration!");
366 assert(CostWorklist
.empty() && "Must start with an empty cost list");
367 assert(PHIUsedList
.empty() && "Must start with an empty phi used list");
368 CostWorklist
.push_back(&RootI
);
369 for (;; --Iteration
) {
371 Instruction
*I
= CostWorklist
.pop_back_val();
373 // InstCostMap only uses I and Iteration as a key, the other two values
374 // don't matter here.
375 auto CostIter
= InstCostMap
.find({I
, Iteration
, 0, 0});
376 if (CostIter
== InstCostMap
.end())
377 // If an input to a PHI node comes from a dead path through the loop
378 // we may have no cost data for it here. What that actually means is
381 auto &Cost
= *CostIter
;
383 // Already counted this instruction.
386 // Mark that we are counting the cost of this instruction now.
387 Cost
.IsCounted
= true;
389 // If this is a PHI node in the loop header, just add it to the PHI set.
390 if (auto *PhiI
= dyn_cast
<PHINode
>(I
))
391 if (PhiI
->getParent() == L
->getHeader()) {
392 assert(Cost
.IsFree
&& "Loop PHIs shouldn't be evaluated as they "
393 "inherently simplify during unrolling.");
397 // Push the incoming value from the backedge into the PHI used list
398 // if it is an in-loop instruction. We'll use this to populate the
399 // cost worklist for the next iteration (as we count backwards).
400 if (auto *OpI
= dyn_cast
<Instruction
>(
401 PhiI
->getIncomingValueForBlock(L
->getLoopLatch())))
402 if (L
->contains(OpI
))
403 PHIUsedList
.push_back(OpI
);
407 // First accumulate the cost of this instruction.
409 UnrolledCost
+= TTI
.getUserCost(I
);
410 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
411 << Iteration
<< "): ");
412 LLVM_DEBUG(I
->dump());
415 // We must count the cost of every operand which is not free,
416 // recursively. If we reach a loop PHI node, simply add it to the set
417 // to be considered on the next iteration (backwards!).
418 for (Value
*Op
: I
->operands()) {
419 // Check whether this operand is free due to being a constant or
421 auto *OpI
= dyn_cast
<Instruction
>(Op
);
422 if (!OpI
|| !L
->contains(OpI
))
425 // Otherwise accumulate its cost.
426 CostWorklist
.push_back(OpI
);
428 } while (!CostWorklist
.empty());
430 if (PHIUsedList
.empty())
431 // We've exhausted the search.
434 assert(Iteration
> 0 &&
435 "Cannot track PHI-used values past the first iteration!");
436 CostWorklist
.append(PHIUsedList
.begin(), PHIUsedList
.end());
441 // Ensure that we don't violate the loop structure invariants relied on by
443 assert(L
->isLoopSimplifyForm() && "Must put loop into normal form first.");
444 assert(L
->isLCSSAForm(DT
) &&
445 "Must have loops in LCSSA form to track live-out values.");
447 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
449 // Simulate execution of each iteration of the loop counting instructions,
450 // which would be simplified.
451 // Since the same load will take different values on different iterations,
452 // we literally have to go through all loop's iterations.
453 for (unsigned Iteration
= 0; Iteration
< TripCount
; ++Iteration
) {
454 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration
<< "\n");
456 // Prepare for the iteration by collecting any simplified entry or backedge
458 for (Instruction
&I
: *L
->getHeader()) {
459 auto *PHI
= dyn_cast
<PHINode
>(&I
);
463 // The loop header PHI nodes must have exactly two input: one from the
464 // loop preheader and one from the loop latch.
466 PHI
->getNumIncomingValues() == 2 &&
467 "Must have an incoming value only for the preheader and the latch.");
469 Value
*V
= PHI
->getIncomingValueForBlock(
470 Iteration
== 0 ? L
->getLoopPreheader() : L
->getLoopLatch());
471 Constant
*C
= dyn_cast
<Constant
>(V
);
472 if (Iteration
!= 0 && !C
)
473 C
= SimplifiedValues
.lookup(V
);
475 SimplifiedInputValues
.push_back({PHI
, C
});
478 // Now clear and re-populate the map for the next iteration.
479 SimplifiedValues
.clear();
480 while (!SimplifiedInputValues
.empty())
481 SimplifiedValues
.insert(SimplifiedInputValues
.pop_back_val());
483 UnrolledInstAnalyzer
Analyzer(Iteration
, SimplifiedValues
, SE
, L
);
486 BBWorklist
.insert(L
->getHeader());
487 // Note that we *must not* cache the size, this loop grows the worklist.
488 for (unsigned Idx
= 0; Idx
!= BBWorklist
.size(); ++Idx
) {
489 BasicBlock
*BB
= BBWorklist
[Idx
];
491 // Visit all instructions in the given basic block and try to simplify
492 // it. We don't change the actual IR, just count optimization
494 for (Instruction
&I
: *BB
) {
495 // These won't get into the final code - don't even try calculating the
497 if (isa
<DbgInfoIntrinsic
>(I
) || EphValues
.count(&I
))
500 // Track this instruction's expected baseline cost when executing the
502 RolledDynamicCost
+= TTI
.getUserCost(&I
);
504 // Visit the instruction to analyze its loop cost after unrolling,
505 // and if the visitor returns true, mark the instruction as free after
506 // unrolling and continue.
507 bool IsFree
= Analyzer
.visit(I
);
508 bool Inserted
= InstCostMap
.insert({&I
, (int)Iteration
,
510 /*IsCounted*/ false}).second
;
512 assert(Inserted
&& "Cannot have a state for an unvisited instruction!");
517 // Can't properly model a cost of a call.
518 // FIXME: With a proper cost model we should be able to do it.
519 if (auto *CI
= dyn_cast
<CallInst
>(&I
)) {
520 const Function
*Callee
= CI
->getCalledFunction();
521 if (!Callee
|| TTI
.isLoweredToCall(Callee
)) {
522 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
527 // If the instruction might have a side-effect recursively account for
528 // the cost of it and all the instructions leading up to it.
529 if (I
.mayHaveSideEffects())
530 AddCostRecursively(I
, Iteration
);
532 // If unrolled body turns out to be too big, bail out.
533 if (UnrolledCost
> MaxUnrolledLoopSize
) {
534 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
535 << " UnrolledCost: " << UnrolledCost
536 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
542 Instruction
*TI
= BB
->getTerminator();
544 // Add in the live successors by first checking whether we have terminator
545 // that may be simplified based on the values simplified by this call.
546 BasicBlock
*KnownSucc
= nullptr;
547 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
548 if (BI
->isConditional()) {
549 if (Constant
*SimpleCond
=
550 SimplifiedValues
.lookup(BI
->getCondition())) {
551 // Just take the first successor if condition is undef
552 if (isa
<UndefValue
>(SimpleCond
))
553 KnownSucc
= BI
->getSuccessor(0);
554 else if (ConstantInt
*SimpleCondVal
=
555 dyn_cast
<ConstantInt
>(SimpleCond
))
556 KnownSucc
= BI
->getSuccessor(SimpleCondVal
->isZero() ? 1 : 0);
559 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
560 if (Constant
*SimpleCond
=
561 SimplifiedValues
.lookup(SI
->getCondition())) {
562 // Just take the first successor if condition is undef
563 if (isa
<UndefValue
>(SimpleCond
))
564 KnownSucc
= SI
->getSuccessor(0);
565 else if (ConstantInt
*SimpleCondVal
=
566 dyn_cast
<ConstantInt
>(SimpleCond
))
567 KnownSucc
= SI
->findCaseValue(SimpleCondVal
)->getCaseSuccessor();
571 if (L
->contains(KnownSucc
))
572 BBWorklist
.insert(KnownSucc
);
574 ExitWorklist
.insert({BB
, KnownSucc
});
578 // Add BB's successors to the worklist.
579 for (BasicBlock
*Succ
: successors(BB
))
580 if (L
->contains(Succ
))
581 BBWorklist
.insert(Succ
);
583 ExitWorklist
.insert({BB
, Succ
});
584 AddCostRecursively(*TI
, Iteration
);
587 // If we found no optimization opportunities on the first iteration, we
588 // won't find them on later ones too.
589 if (UnrolledCost
== RolledDynamicCost
) {
590 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n"
591 << " UnrolledCost: " << UnrolledCost
<< "\n");
596 while (!ExitWorklist
.empty()) {
597 BasicBlock
*ExitingBB
, *ExitBB
;
598 std::tie(ExitingBB
, ExitBB
) = ExitWorklist
.pop_back_val();
600 for (Instruction
&I
: *ExitBB
) {
601 auto *PN
= dyn_cast
<PHINode
>(&I
);
605 Value
*Op
= PN
->getIncomingValueForBlock(ExitingBB
);
606 if (auto *OpI
= dyn_cast
<Instruction
>(Op
))
607 if (L
->contains(OpI
))
608 AddCostRecursively(*OpI
, TripCount
- 1);
612 LLVM_DEBUG(dbgs() << "Analysis finished:\n"
613 << "UnrolledCost: " << UnrolledCost
<< ", "
614 << "RolledDynamicCost: " << RolledDynamicCost
<< "\n");
615 return {{UnrolledCost
, RolledDynamicCost
}};
618 /// ApproximateLoopSize - Approximate the size of the loop.
619 unsigned llvm::ApproximateLoopSize(
620 const Loop
*L
, unsigned &NumCalls
, bool &NotDuplicatable
, bool &Convergent
,
621 const TargetTransformInfo
&TTI
,
622 const SmallPtrSetImpl
<const Value
*> &EphValues
, unsigned BEInsns
) {
624 for (BasicBlock
*BB
: L
->blocks())
625 Metrics
.analyzeBasicBlock(BB
, TTI
, EphValues
);
626 NumCalls
= Metrics
.NumInlineCandidates
;
627 NotDuplicatable
= Metrics
.notDuplicatable
;
628 Convergent
= Metrics
.convergent
;
630 unsigned LoopSize
= Metrics
.NumInsts
;
632 // Don't allow an estimate of size zero. This would allows unrolling of loops
633 // with huge iteration counts, which is a compile time problem even if it's
634 // not a problem for code quality. Also, the code using this size may assume
635 // that each loop has at least three instructions (likely a conditional
636 // branch, a comparison feeding that branch, and some kind of loop increment
637 // feeding that comparison instruction).
638 LoopSize
= std::max(LoopSize
, BEInsns
+ 1);
643 // Returns the loop hint metadata node with the given name (for example,
644 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
646 static MDNode
*GetUnrollMetadataForLoop(const Loop
*L
, StringRef Name
) {
647 if (MDNode
*LoopID
= L
->getLoopID())
648 return GetUnrollMetadata(LoopID
, Name
);
652 // Returns true if the loop has an unroll(full) pragma.
653 static bool HasUnrollFullPragma(const Loop
*L
) {
654 return GetUnrollMetadataForLoop(L
, "llvm.loop.unroll.full");
657 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
658 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
659 static bool HasUnrollEnablePragma(const Loop
*L
) {
660 return GetUnrollMetadataForLoop(L
, "llvm.loop.unroll.enable");
663 // Returns true if the loop has an runtime unroll(disable) pragma.
664 static bool HasRuntimeUnrollDisablePragma(const Loop
*L
) {
665 return GetUnrollMetadataForLoop(L
, "llvm.loop.unroll.runtime.disable");
668 // If loop has an unroll_count pragma return the (necessarily
669 // positive) value from the pragma. Otherwise return 0.
670 static unsigned UnrollCountPragmaValue(const Loop
*L
) {
671 MDNode
*MD
= GetUnrollMetadataForLoop(L
, "llvm.loop.unroll.count");
673 assert(MD
->getNumOperands() == 2 &&
674 "Unroll count hint metadata should have two operands.");
676 mdconst::extract
<ConstantInt
>(MD
->getOperand(1))->getZExtValue();
677 assert(Count
>= 1 && "Unroll count must be positive.");
683 // Computes the boosting factor for complete unrolling.
684 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
685 // be beneficial to fully unroll the loop even if unrolledcost is large. We
686 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
687 // the unroll threshold.
688 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost
&Cost
,
689 unsigned MaxPercentThresholdBoost
) {
690 if (Cost
.RolledDynamicCost
>= std::numeric_limits
<unsigned>::max() / 100)
692 else if (Cost
.UnrolledCost
!= 0)
693 // The boosting factor is RolledDynamicCost / UnrolledCost
694 return std::min(100 * Cost
.RolledDynamicCost
/ Cost
.UnrolledCost
,
695 MaxPercentThresholdBoost
);
697 return MaxPercentThresholdBoost
;
700 // Returns loop size estimation for unrolled loop.
701 static uint64_t getUnrolledLoopSize(
703 TargetTransformInfo::UnrollingPreferences
&UP
) {
704 assert(LoopSize
>= UP
.BEInsns
&& "LoopSize should not be less than BEInsns!");
705 return (uint64_t)(LoopSize
- UP
.BEInsns
) * UP
.Count
+ UP
.BEInsns
;
708 // Returns true if unroll count was set explicitly.
709 // Calculates unroll count and writes it to UP.Count.
710 // Unless IgnoreUser is true, will also use metadata and command-line options
711 // that are specific to to the LoopUnroll pass (which, for instance, are
712 // irrelevant for the LoopUnrollAndJam pass).
713 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
714 // many LoopUnroll-specific options. The shared functionality should be
715 // refactored into it own function.
716 bool llvm::computeUnrollCount(
717 Loop
*L
, const TargetTransformInfo
&TTI
, DominatorTree
&DT
, LoopInfo
*LI
,
718 ScalarEvolution
&SE
, const SmallPtrSetImpl
<const Value
*> &EphValues
,
719 OptimizationRemarkEmitter
*ORE
, unsigned &TripCount
, unsigned MaxTripCount
,
720 unsigned &TripMultiple
, unsigned LoopSize
,
721 TargetTransformInfo::UnrollingPreferences
&UP
, bool &UseUpperBound
) {
723 // Check for explicit Count.
724 // 1st priority is unroll count set by "unroll-count" option.
725 bool UserUnrollCount
= UnrollCount
.getNumOccurrences() > 0;
726 if (UserUnrollCount
) {
727 UP
.Count
= UnrollCount
;
728 UP
.AllowExpensiveTripCount
= true;
730 if (UP
.AllowRemainder
&& getUnrolledLoopSize(LoopSize
, UP
) < UP
.Threshold
)
734 // 2nd priority is unroll count set by pragma.
735 unsigned PragmaCount
= UnrollCountPragmaValue(L
);
736 if (PragmaCount
> 0) {
737 UP
.Count
= PragmaCount
;
739 UP
.AllowExpensiveTripCount
= true;
741 if ((UP
.AllowRemainder
|| (TripMultiple
% PragmaCount
== 0)) &&
742 getUnrolledLoopSize(LoopSize
, UP
) < PragmaUnrollThreshold
)
745 bool PragmaFullUnroll
= HasUnrollFullPragma(L
);
746 if (PragmaFullUnroll
&& TripCount
!= 0) {
747 UP
.Count
= TripCount
;
748 if (getUnrolledLoopSize(LoopSize
, UP
) < PragmaUnrollThreshold
)
752 bool PragmaEnableUnroll
= HasUnrollEnablePragma(L
);
753 bool ExplicitUnroll
= PragmaCount
> 0 || PragmaFullUnroll
||
754 PragmaEnableUnroll
|| UserUnrollCount
;
756 if (ExplicitUnroll
&& TripCount
!= 0) {
757 // If the loop has an unrolling pragma, we want to be more aggressive with
758 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
759 // value which is larger than the default limits.
760 UP
.Threshold
= std::max
<unsigned>(UP
.Threshold
, PragmaUnrollThreshold
);
761 UP
.PartialThreshold
=
762 std::max
<unsigned>(UP
.PartialThreshold
, PragmaUnrollThreshold
);
765 // 3rd priority is full unroll count.
766 // Full unroll makes sense only when TripCount or its upper bound could be
767 // statically calculated.
768 // Also we need to check if we exceed FullUnrollMaxCount.
769 // If using the upper bound to unroll, TripMultiple should be set to 1 because
770 // we do not know when loop may exit.
771 // MaxTripCount and ExactTripCount cannot both be non zero since we only
772 // compute the former when the latter is zero.
773 unsigned ExactTripCount
= TripCount
;
774 assert((ExactTripCount
== 0 || MaxTripCount
== 0) &&
775 "ExtractTripCount and MaxTripCount cannot both be non zero.");
776 unsigned FullUnrollTripCount
= ExactTripCount
? ExactTripCount
: MaxTripCount
;
777 UP
.Count
= FullUnrollTripCount
;
778 if (FullUnrollTripCount
&& FullUnrollTripCount
<= UP
.FullUnrollMaxCount
) {
779 // When computing the unrolled size, note that BEInsns are not replicated
780 // like the rest of the loop body.
781 if (getUnrolledLoopSize(LoopSize
, UP
) < UP
.Threshold
) {
782 UseUpperBound
= (MaxTripCount
== FullUnrollTripCount
);
783 TripCount
= FullUnrollTripCount
;
784 TripMultiple
= UP
.UpperBound
? 1 : TripMultiple
;
785 return ExplicitUnroll
;
787 // The loop isn't that small, but we still can fully unroll it if that
788 // helps to remove a significant number of instructions.
789 // To check that, run additional analysis on the loop.
790 if (Optional
<EstimatedUnrollCost
> Cost
= analyzeLoopUnrollCost(
791 L
, FullUnrollTripCount
, DT
, SE
, EphValues
, TTI
,
792 UP
.Threshold
* UP
.MaxPercentThresholdBoost
/ 100)) {
794 getFullUnrollBoostingFactor(*Cost
, UP
.MaxPercentThresholdBoost
);
795 if (Cost
->UnrolledCost
< UP
.Threshold
* Boost
/ 100) {
796 UseUpperBound
= (MaxTripCount
== FullUnrollTripCount
);
797 TripCount
= FullUnrollTripCount
;
798 TripMultiple
= UP
.UpperBound
? 1 : TripMultiple
;
799 return ExplicitUnroll
;
805 // 4th priority is loop peeling.
806 computePeelCount(L
, LoopSize
, UP
, TripCount
, SE
);
810 return ExplicitUnroll
;
813 // 5th priority is partial unrolling.
814 // Try partial unroll only when TripCount could be statically calculated.
816 UP
.Partial
|= ExplicitUnroll
;
818 LLVM_DEBUG(dbgs() << " will not try to unroll partially because "
819 << "-unroll-allow-partial not given\n");
824 UP
.Count
= TripCount
;
825 if (UP
.PartialThreshold
!= NoThreshold
) {
826 // Reduce unroll count to be modulo of TripCount for partial unrolling.
827 if (getUnrolledLoopSize(LoopSize
, UP
) > UP
.PartialThreshold
)
829 (std::max(UP
.PartialThreshold
, UP
.BEInsns
+ 1) - UP
.BEInsns
) /
830 (LoopSize
- UP
.BEInsns
);
831 if (UP
.Count
> UP
.MaxCount
)
832 UP
.Count
= UP
.MaxCount
;
833 while (UP
.Count
!= 0 && TripCount
% UP
.Count
!= 0)
835 if (UP
.AllowRemainder
&& UP
.Count
<= 1) {
836 // If there is no Count that is modulo of TripCount, set Count to
837 // largest power-of-two factor that satisfies the threshold limit.
838 // As we'll create fixup loop, do the type of unrolling only if
839 // remainder loop is allowed.
840 UP
.Count
= UP
.DefaultUnrollRuntimeCount
;
841 while (UP
.Count
!= 0 &&
842 getUnrolledLoopSize(LoopSize
, UP
) > UP
.PartialThreshold
)
846 if (PragmaEnableUnroll
)
848 return OptimizationRemarkMissed(DEBUG_TYPE
,
849 "UnrollAsDirectedTooLarge",
850 L
->getStartLoc(), L
->getHeader())
851 << "Unable to unroll loop as directed by unroll(enable) "
853 "because unrolled size is too large.";
858 UP
.Count
= TripCount
;
860 if (UP
.Count
> UP
.MaxCount
)
861 UP
.Count
= UP
.MaxCount
;
862 if ((PragmaFullUnroll
|| PragmaEnableUnroll
) && TripCount
&&
863 UP
.Count
!= TripCount
)
865 return OptimizationRemarkMissed(DEBUG_TYPE
,
866 "FullUnrollAsDirectedTooLarge",
867 L
->getStartLoc(), L
->getHeader())
868 << "Unable to fully unroll loop as directed by unroll pragma "
870 "unrolled size is too large.";
872 return ExplicitUnroll
;
874 assert(TripCount
== 0 &&
875 "All cases when TripCount is constant should be covered here.");
876 if (PragmaFullUnroll
)
878 return OptimizationRemarkMissed(
879 DEBUG_TYPE
, "CantFullUnrollAsDirectedRuntimeTripCount",
880 L
->getStartLoc(), L
->getHeader())
881 << "Unable to fully unroll loop as directed by unroll(full) "
883 "because loop has a runtime trip count.";
886 // 6th priority is runtime unrolling.
887 // Don't unroll a runtime trip count loop when it is disabled.
888 if (HasRuntimeUnrollDisablePragma(L
)) {
893 // Check if the runtime trip count is too small when profile is available.
894 if (L
->getHeader()->getParent()->hasProfileData()) {
895 if (auto ProfileTripCount
= getLoopEstimatedTripCount(L
)) {
896 if (*ProfileTripCount
< FlatLoopTripCountThreshold
)
899 UP
.AllowExpensiveTripCount
= true;
903 // Reduce count based on the type of unrolling and the threshold values.
904 UP
.Runtime
|= PragmaEnableUnroll
|| PragmaCount
> 0 || UserUnrollCount
;
907 dbgs() << " will not try to unroll loop with runtime trip count "
908 << "-unroll-runtime not given\n");
913 UP
.Count
= UP
.DefaultUnrollRuntimeCount
;
915 // Reduce unroll count to be the largest power-of-two factor of
916 // the original count which satisfies the threshold limit.
917 while (UP
.Count
!= 0 &&
918 getUnrolledLoopSize(LoopSize
, UP
) > UP
.PartialThreshold
)
922 unsigned OrigCount
= UP
.Count
;
925 if (!UP
.AllowRemainder
&& UP
.Count
!= 0 && (TripMultiple
% UP
.Count
) != 0) {
926 while (UP
.Count
!= 0 && TripMultiple
% UP
.Count
!= 0)
929 dbgs() << "Remainder loop is restricted (that could architecture "
930 "specific or because the loop contains a convergent "
931 "instruction), so unroll count must divide the trip "
933 << TripMultiple
<< ". Reducing unroll count from " << OrigCount
934 << " to " << UP
.Count
<< ".\n");
938 if (PragmaCount
> 0 && !UP
.AllowRemainder
)
940 return OptimizationRemarkMissed(DEBUG_TYPE
,
941 "DifferentUnrollCountFromDirected",
942 L
->getStartLoc(), L
->getHeader())
943 << "Unable to unroll loop the number of times directed by "
944 "unroll_count pragma because remainder loop is restricted "
945 "(that could architecture specific or because the loop "
946 "contains a convergent instruction) and so must have an "
948 "count that divides the loop trip multiple of "
949 << NV("TripMultiple", TripMultiple
) << ". Unrolling instead "
950 << NV("UnrollCount", UP
.Count
) << " time(s).";
954 if (UP
.Count
> UP
.MaxCount
)
955 UP
.Count
= UP
.MaxCount
;
956 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP
.Count
960 return ExplicitUnroll
;
963 static LoopUnrollResult
tryToUnrollLoop(
964 Loop
*L
, DominatorTree
&DT
, LoopInfo
*LI
, ScalarEvolution
&SE
,
965 const TargetTransformInfo
&TTI
, AssumptionCache
&AC
,
966 OptimizationRemarkEmitter
&ORE
, bool PreserveLCSSA
, int OptLevel
,
967 bool OnlyWhenForced
, Optional
<unsigned> ProvidedCount
,
968 Optional
<unsigned> ProvidedThreshold
, Optional
<bool> ProvidedAllowPartial
,
969 Optional
<bool> ProvidedRuntime
, Optional
<bool> ProvidedUpperBound
,
970 Optional
<bool> ProvidedAllowPeeling
) {
971 LLVM_DEBUG(dbgs() << "Loop Unroll: F["
972 << L
->getHeader()->getParent()->getName() << "] Loop %"
973 << L
->getHeader()->getName() << "\n");
974 TransformationMode TM
= hasUnrollTransformation(L
);
976 return LoopUnrollResult::Unmodified
;
977 if (!L
->isLoopSimplifyForm()) {
979 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
980 return LoopUnrollResult::Unmodified
;
983 // When automtatic unrolling is disabled, do not unroll unless overridden for
985 if (OnlyWhenForced
&& !(TM
& TM_Enable
))
986 return LoopUnrollResult::Unmodified
;
988 unsigned NumInlineCandidates
;
989 bool NotDuplicatable
;
991 TargetTransformInfo::UnrollingPreferences UP
= gatherUnrollingPreferences(
992 L
, SE
, TTI
, OptLevel
, ProvidedThreshold
, ProvidedCount
,
993 ProvidedAllowPartial
, ProvidedRuntime
, ProvidedUpperBound
,
994 ProvidedAllowPeeling
);
995 // Exit early if unrolling is disabled.
996 if (UP
.Threshold
== 0 && (!UP
.Partial
|| UP
.PartialThreshold
== 0))
997 return LoopUnrollResult::Unmodified
;
999 SmallPtrSet
<const Value
*, 32> EphValues
;
1000 CodeMetrics::collectEphemeralValues(L
, &AC
, EphValues
);
1003 ApproximateLoopSize(L
, NumInlineCandidates
, NotDuplicatable
, Convergent
,
1004 TTI
, EphValues
, UP
.BEInsns
);
1005 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize
<< "\n");
1006 if (NotDuplicatable
) {
1007 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
1008 << " instructions.\n");
1009 return LoopUnrollResult::Unmodified
;
1011 if (NumInlineCandidates
!= 0) {
1012 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
1013 return LoopUnrollResult::Unmodified
;
1016 // Find trip count and trip multiple if count is not available
1017 unsigned TripCount
= 0;
1018 unsigned MaxTripCount
= 0;
1019 unsigned TripMultiple
= 1;
1020 // If there are multiple exiting blocks but one of them is the latch, use the
1021 // latch for the trip count estimation. Otherwise insist on a single exiting
1022 // block for the trip count estimation.
1023 BasicBlock
*ExitingBlock
= L
->getLoopLatch();
1024 if (!ExitingBlock
|| !L
->isLoopExiting(ExitingBlock
))
1025 ExitingBlock
= L
->getExitingBlock();
1027 TripCount
= SE
.getSmallConstantTripCount(L
, ExitingBlock
);
1028 TripMultiple
= SE
.getSmallConstantTripMultiple(L
, ExitingBlock
);
1031 // If the loop contains a convergent operation, the prelude we'd add
1032 // to do the first few instructions before we hit the unrolled loop
1033 // is unsafe -- it adds a control-flow dependency to the convergent
1034 // operation. Therefore restrict remainder loop (try unrollig without).
1036 // TODO: This is quite conservative. In practice, convergent_op()
1037 // is likely to be called unconditionally in the loop. In this
1038 // case, the program would be ill-formed (on most architectures)
1039 // unless n were the same on all threads in a thread group.
1040 // Assuming n is the same on all threads, any kind of unrolling is
1041 // safe. But currently llvm's notion of convergence isn't powerful
1042 // enough to express this.
1044 UP
.AllowRemainder
= false;
1046 // Try to find the trip count upper bound if we cannot find the exact trip
1048 bool MaxOrZero
= false;
1050 MaxTripCount
= SE
.getSmallConstantMaxTripCount(L
);
1051 MaxOrZero
= SE
.isBackedgeTakenCountMaxOrZero(L
);
1052 // We can unroll by the upper bound amount if it's generally allowed or if
1053 // we know that the loop is executed either the upper bound or zero times.
1054 // (MaxOrZero unrolling keeps only the first loop test, so the number of
1055 // loop tests remains the same compared to the non-unrolled version, whereas
1056 // the generic upper bound unrolling keeps all but the last loop test so the
1057 // number of loop tests goes up which may end up being worse on targets with
1058 // constrained branch predictor resources so is controlled by an option.)
1059 // In addition we only unroll small upper bounds.
1060 if (!(UP
.UpperBound
|| MaxOrZero
) || MaxTripCount
> UnrollMaxUpperBound
) {
1065 // computeUnrollCount() decides whether it is beneficial to use upper bound to
1066 // fully unroll the loop.
1067 bool UseUpperBound
= false;
1068 bool IsCountSetExplicitly
= computeUnrollCount(
1069 L
, TTI
, DT
, LI
, SE
, EphValues
, &ORE
, TripCount
, MaxTripCount
,
1070 TripMultiple
, LoopSize
, UP
, UseUpperBound
);
1072 return LoopUnrollResult::Unmodified
;
1073 // Unroll factor (Count) must be less or equal to TripCount.
1074 if (TripCount
&& UP
.Count
> TripCount
)
1075 UP
.Count
= TripCount
;
1077 // Save loop properties before it is transformed.
1078 MDNode
*OrigLoopID
= L
->getLoopID();
1081 Loop
*RemainderLoop
= nullptr;
1082 LoopUnrollResult UnrollResult
= UnrollLoop(
1083 L
, UP
.Count
, TripCount
, UP
.Force
, UP
.Runtime
, UP
.AllowExpensiveTripCount
,
1084 UseUpperBound
, MaxOrZero
, TripMultiple
, UP
.PeelCount
, UP
.UnrollRemainder
,
1085 LI
, &SE
, &DT
, &AC
, &ORE
, PreserveLCSSA
, &RemainderLoop
);
1086 if (UnrollResult
== LoopUnrollResult::Unmodified
)
1087 return LoopUnrollResult::Unmodified
;
1089 if (RemainderLoop
) {
1090 Optional
<MDNode
*> RemainderLoopID
=
1091 makeFollowupLoopID(OrigLoopID
, {LLVMLoopUnrollFollowupAll
,
1092 LLVMLoopUnrollFollowupRemainder
});
1093 if (RemainderLoopID
.hasValue())
1094 RemainderLoop
->setLoopID(RemainderLoopID
.getValue());
1097 if (UnrollResult
!= LoopUnrollResult::FullyUnrolled
) {
1098 Optional
<MDNode
*> NewLoopID
=
1099 makeFollowupLoopID(OrigLoopID
, {LLVMLoopUnrollFollowupAll
,
1100 LLVMLoopUnrollFollowupUnrolled
});
1101 if (NewLoopID
.hasValue()) {
1102 L
->setLoopID(NewLoopID
.getValue());
1104 // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1106 return UnrollResult
;
1110 // If loop has an unroll count pragma or unrolled by explicitly set count
1111 // mark loop as unrolled to prevent unrolling beyond that requested.
1112 // If the loop was peeled, we already "used up" the profile information
1113 // we had, so we don't want to unroll or peel again.
1114 if (UnrollResult
!= LoopUnrollResult::FullyUnrolled
&&
1115 (IsCountSetExplicitly
|| UP
.PeelCount
))
1116 L
->setLoopAlreadyUnrolled();
1118 return UnrollResult
;
1123 class LoopUnroll
: public LoopPass
{
1125 static char ID
; // Pass ID, replacement for typeid
1129 /// If false, use a cost model to determine whether unrolling of a loop is
1130 /// profitable. If true, only loops that explicitly request unrolling via
1131 /// metadata are considered. All other loops are skipped.
1132 bool OnlyWhenForced
;
1134 Optional
<unsigned> ProvidedCount
;
1135 Optional
<unsigned> ProvidedThreshold
;
1136 Optional
<bool> ProvidedAllowPartial
;
1137 Optional
<bool> ProvidedRuntime
;
1138 Optional
<bool> ProvidedUpperBound
;
1139 Optional
<bool> ProvidedAllowPeeling
;
1141 LoopUnroll(int OptLevel
= 2, bool OnlyWhenForced
= false,
1142 Optional
<unsigned> Threshold
= None
,
1143 Optional
<unsigned> Count
= None
,
1144 Optional
<bool> AllowPartial
= None
, Optional
<bool> Runtime
= None
,
1145 Optional
<bool> UpperBound
= None
,
1146 Optional
<bool> AllowPeeling
= None
)
1147 : LoopPass(ID
), OptLevel(OptLevel
), OnlyWhenForced(OnlyWhenForced
),
1148 ProvidedCount(std::move(Count
)), ProvidedThreshold(Threshold
),
1149 ProvidedAllowPartial(AllowPartial
), ProvidedRuntime(Runtime
),
1150 ProvidedUpperBound(UpperBound
), ProvidedAllowPeeling(AllowPeeling
) {
1151 initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1154 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
{
1158 Function
&F
= *L
->getHeader()->getParent();
1160 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
1161 LoopInfo
*LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
1162 ScalarEvolution
&SE
= getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
1163 const TargetTransformInfo
&TTI
=
1164 getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
1165 auto &AC
= getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
1166 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1167 // pass. Function analyses need to be preserved across loop transformations
1168 // but ORE cannot be preserved (see comment before the pass definition).
1169 OptimizationRemarkEmitter
ORE(&F
);
1170 bool PreserveLCSSA
= mustPreserveAnalysisID(LCSSAID
);
1172 LoopUnrollResult Result
= tryToUnrollLoop(
1173 L
, DT
, LI
, SE
, TTI
, AC
, ORE
, PreserveLCSSA
, OptLevel
, OnlyWhenForced
,
1174 ProvidedCount
, ProvidedThreshold
, ProvidedAllowPartial
, ProvidedRuntime
,
1175 ProvidedUpperBound
, ProvidedAllowPeeling
);
1177 if (Result
== LoopUnrollResult::FullyUnrolled
)
1178 LPM
.markLoopAsDeleted(*L
);
1180 return Result
!= LoopUnrollResult::Unmodified
;
1183 /// This transformation requires natural loop information & requires that
1184 /// loop preheaders be inserted into the CFG...
1185 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1186 AU
.addRequired
<AssumptionCacheTracker
>();
1187 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
1188 // FIXME: Loop passes are required to preserve domtree, and for now we just
1189 // recreate dom info if anything gets unrolled.
1190 getLoopAnalysisUsage(AU
);
1194 } // end anonymous namespace
1196 char LoopUnroll::ID
= 0;
1198 INITIALIZE_PASS_BEGIN(LoopUnroll
, "loop-unroll", "Unroll loops", false, false)
1199 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
1200 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
1201 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
1202 INITIALIZE_PASS_END(LoopUnroll
, "loop-unroll", "Unroll loops", false, false)
1204 Pass
*llvm::createLoopUnrollPass(int OptLevel
, bool OnlyWhenForced
,
1205 int Threshold
, int Count
, int AllowPartial
,
1206 int Runtime
, int UpperBound
,
1208 // TODO: It would make more sense for this function to take the optionals
1209 // directly, but that's dangerous since it would silently break out of tree
1211 return new LoopUnroll(
1212 OptLevel
, OnlyWhenForced
,
1213 Threshold
== -1 ? None
: Optional
<unsigned>(Threshold
),
1214 Count
== -1 ? None
: Optional
<unsigned>(Count
),
1215 AllowPartial
== -1 ? None
: Optional
<bool>(AllowPartial
),
1216 Runtime
== -1 ? None
: Optional
<bool>(Runtime
),
1217 UpperBound
== -1 ? None
: Optional
<bool>(UpperBound
),
1218 AllowPeeling
== -1 ? None
: Optional
<bool>(AllowPeeling
));
1221 Pass
*llvm::createSimpleLoopUnrollPass(int OptLevel
, bool OnlyWhenForced
) {
1222 return createLoopUnrollPass(OptLevel
, OnlyWhenForced
, -1, -1, 0, 0, 0, 0);
1225 PreservedAnalyses
LoopFullUnrollPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
1226 LoopStandardAnalysisResults
&AR
,
1227 LPMUpdater
&Updater
) {
1229 AM
.getResult
<FunctionAnalysisManagerLoopProxy
>(L
, AR
).getManager();
1230 Function
*F
= L
.getHeader()->getParent();
1232 auto *ORE
= FAM
.getCachedResult
<OptimizationRemarkEmitterAnalysis
>(*F
);
1233 // FIXME: This should probably be optional rather than required.
1236 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
1237 "cached at a higher level");
1239 // Keep track of the previous loop structure so we can identify new loops
1240 // created by unrolling.
1241 Loop
*ParentL
= L
.getParentLoop();
1242 SmallPtrSet
<Loop
*, 4> OldLoops
;
1244 OldLoops
.insert(ParentL
->begin(), ParentL
->end());
1246 OldLoops
.insert(AR
.LI
.begin(), AR
.LI
.end());
1248 std::string LoopName
= L
.getName();
1251 tryToUnrollLoop(&L
, AR
.DT
, &AR
.LI
, AR
.SE
, AR
.TTI
, AR
.AC
, *ORE
,
1252 /*PreserveLCSSA*/ true, OptLevel
, OnlyWhenForced
,
1254 /*Threshold*/ None
, /*AllowPartial*/ false,
1255 /*Runtime*/ false, /*UpperBound*/ false,
1256 /*AllowPeeling*/ false) != LoopUnrollResult::Unmodified
;
1258 return PreservedAnalyses::all();
1260 // The parent must not be damaged by unrolling!
1263 ParentL
->verifyLoop();
1266 // Unrolling can do several things to introduce new loops into a loop nest:
1267 // - Full unrolling clones child loops within the current loop but then
1268 // removes the current loop making all of the children appear to be new
1271 // When a new loop appears as a sibling loop after fully unrolling,
1272 // its nesting structure has fundamentally changed and we want to revisit
1273 // it to reflect that.
1275 // When unrolling has removed the current loop, we need to tell the
1276 // infrastructure that it is gone.
1278 // Finally, we support a debugging/testing mode where we revisit child loops
1279 // as well. These are not expected to require further optimizations as either
1280 // they or the loop they were cloned from have been directly visited already.
1281 // But the debugging mode allows us to check this assumption.
1282 bool IsCurrentLoopValid
= false;
1283 SmallVector
<Loop
*, 4> SibLoops
;
1285 SibLoops
.append(ParentL
->begin(), ParentL
->end());
1287 SibLoops
.append(AR
.LI
.begin(), AR
.LI
.end());
1288 erase_if(SibLoops
, [&](Loop
*SibLoop
) {
1289 if (SibLoop
== &L
) {
1290 IsCurrentLoopValid
= true;
1294 // Otherwise erase the loop from the list if it was in the old loops.
1295 return OldLoops
.count(SibLoop
) != 0;
1297 Updater
.addSiblingLoops(SibLoops
);
1299 if (!IsCurrentLoopValid
) {
1300 Updater
.markLoopAsDeleted(L
, LoopName
);
1302 // We can only walk child loops if the current loop remained valid.
1303 if (UnrollRevisitChildLoops
) {
1304 // Walk *all* of the child loops.
1305 SmallVector
<Loop
*, 4> ChildLoops(L
.begin(), L
.end());
1306 Updater
.addChildLoops(ChildLoops
);
1310 return getLoopPassPreservedAnalyses();
1313 template <typename RangeT
>
1314 static SmallVector
<Loop
*, 8> appendLoopsToWorklist(RangeT
&&Loops
) {
1315 SmallVector
<Loop
*, 8> Worklist
;
1316 // We use an internal worklist to build up the preorder traversal without
1318 SmallVector
<Loop
*, 4> PreOrderLoops
, PreOrderWorklist
;
1320 for (Loop
*RootL
: Loops
) {
1321 assert(PreOrderLoops
.empty() && "Must start with an empty preorder walk.");
1322 assert(PreOrderWorklist
.empty() &&
1323 "Must start with an empty preorder walk worklist.");
1324 PreOrderWorklist
.push_back(RootL
);
1326 Loop
*L
= PreOrderWorklist
.pop_back_val();
1327 PreOrderWorklist
.append(L
->begin(), L
->end());
1328 PreOrderLoops
.push_back(L
);
1329 } while (!PreOrderWorklist
.empty());
1331 Worklist
.append(PreOrderLoops
.begin(), PreOrderLoops
.end());
1332 PreOrderLoops
.clear();
1337 PreservedAnalyses
LoopUnrollPass::run(Function
&F
,
1338 FunctionAnalysisManager
&AM
) {
1339 auto &SE
= AM
.getResult
<ScalarEvolutionAnalysis
>(F
);
1340 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
1341 auto &TTI
= AM
.getResult
<TargetIRAnalysis
>(F
);
1342 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
1343 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
1344 auto &ORE
= AM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
1346 LoopAnalysisManager
*LAM
= nullptr;
1347 if (auto *LAMProxy
= AM
.getCachedResult
<LoopAnalysisManagerFunctionProxy
>(F
))
1348 LAM
= &LAMProxy
->getManager();
1350 const ModuleAnalysisManager
&MAM
=
1351 AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
).getManager();
1352 ProfileSummaryInfo
*PSI
=
1353 MAM
.getCachedResult
<ProfileSummaryAnalysis
>(*F
.getParent());
1355 bool Changed
= false;
1357 // The unroller requires loops to be in simplified form, and also needs LCSSA.
1358 // Since simplification may add new inner loops, it has to run before the
1359 // legality and profitability checks. This means running the loop unroller
1360 // will simplify all loops, regardless of whether anything end up being
1362 for (auto &L
: LI
) {
1363 Changed
|= simplifyLoop(L
, &DT
, &LI
, &SE
, &AC
, false /* PreserveLCSSA */);
1364 Changed
|= formLCSSARecursively(*L
, DT
, &LI
, &SE
);
1367 SmallVector
<Loop
*, 8> Worklist
= appendLoopsToWorklist(LI
);
1369 while (!Worklist
.empty()) {
1370 // Because the LoopInfo stores the loops in RPO, we walk the worklist
1371 // from back to front so that we work forward across the CFG, which
1372 // for unrolling is only needed to get optimization remarks emitted in
1374 Loop
&L
= *Worklist
.pop_back_val();
1376 Loop
*ParentL
= L
.getParentLoop();
1379 // Check if the profile summary indicates that the profiled application
1380 // has a huge working set size, in which case we disable peeling to avoid
1381 // bloating it further.
1382 Optional
<bool> LocalAllowPeeling
= UnrollOpts
.AllowPeeling
;
1383 if (PSI
&& PSI
->hasHugeWorkingSetSize())
1384 LocalAllowPeeling
= false;
1385 std::string LoopName
= L
.getName();
1386 // The API here is quite complex to call and we allow to select some
1387 // flavors of unrolling during construction time (by setting UnrollOpts).
1388 LoopUnrollResult Result
= tryToUnrollLoop(
1389 &L
, DT
, &LI
, SE
, TTI
, AC
, ORE
,
1390 /*PreserveLCSSA*/ true, UnrollOpts
.OptLevel
, UnrollOpts
.OnlyWhenForced
,
1392 /*Threshold*/ None
, UnrollOpts
.AllowPartial
, UnrollOpts
.AllowRuntime
,
1393 UnrollOpts
.AllowUpperBound
, LocalAllowPeeling
);
1394 Changed
|= Result
!= LoopUnrollResult::Unmodified
;
1396 // The parent must not be damaged by unrolling!
1398 if (Result
!= LoopUnrollResult::Unmodified
&& ParentL
)
1399 ParentL
->verifyLoop();
1402 // Clear any cached analysis results for L if we removed it completely.
1403 if (LAM
&& Result
== LoopUnrollResult::FullyUnrolled
)
1404 LAM
->clear(L
, LoopName
);
1408 return PreservedAnalyses::all();
1410 return getLoopPassPreservedAnalyses();