[llvm-exegesis] [NFC] Fixing typo.
[llvm-complete.git] / lib / Transforms / Scalar / LoopUnrollPass.cpp
blob55d45904138d75eff0e9788b553301d332f8c4aa
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller. It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/CodeMetrics.h"
27 #include "llvm/Analysis/LoopAnalysisManager.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/LoopPass.h"
30 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/ScalarEvolution.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DiagnosticInfo.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Transforms/Scalar.h"
54 #include "llvm/Transforms/Scalar/LoopPassManager.h"
55 #include "llvm/Transforms/Utils.h"
56 #include "llvm/Transforms/Utils/LoopSimplify.h"
57 #include "llvm/Transforms/Utils/LoopUtils.h"
58 #include "llvm/Transforms/Utils/UnrollLoop.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <limits>
63 #include <string>
64 #include <tuple>
65 #include <utility>
67 using namespace llvm;
69 #define DEBUG_TYPE "loop-unroll"
71 static cl::opt<unsigned>
72 UnrollThreshold("unroll-threshold", cl::Hidden,
73 cl::desc("The cost threshold for loop unrolling"));
75 static cl::opt<unsigned> UnrollPartialThreshold(
76 "unroll-partial-threshold", cl::Hidden,
77 cl::desc("The cost threshold for partial loop unrolling"));
79 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
80 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
81 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
82 "to the threshold when aggressively unrolling a loop due to the "
83 "dynamic cost savings. If completely unrolling a loop will reduce "
84 "the total runtime from X to Y, we boost the loop unroll "
85 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
86 "X/Y). This limit avoids excessive code bloat."));
88 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
89 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
90 cl::desc("Don't allow loop unrolling to simulate more than this number of"
91 "iterations when checking full unroll profitability"));
93 static cl::opt<unsigned> UnrollCount(
94 "unroll-count", cl::Hidden,
95 cl::desc("Use this unroll count for all loops including those with "
96 "unroll_count pragma values, for testing purposes"));
98 static cl::opt<unsigned> UnrollMaxCount(
99 "unroll-max-count", cl::Hidden,
100 cl::desc("Set the max unroll count for partial and runtime unrolling, for"
101 "testing purposes"));
103 static cl::opt<unsigned> UnrollFullMaxCount(
104 "unroll-full-max-count", cl::Hidden,
105 cl::desc(
106 "Set the max unroll count for full unrolling, for testing purposes"));
108 static cl::opt<unsigned> UnrollPeelCount(
109 "unroll-peel-count", cl::Hidden,
110 cl::desc("Set the unroll peeling count, for testing purposes"));
112 static cl::opt<bool>
113 UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
114 cl::desc("Allows loops to be partially unrolled until "
115 "-unroll-threshold loop size is reached."));
117 static cl::opt<bool> UnrollAllowRemainder(
118 "unroll-allow-remainder", cl::Hidden,
119 cl::desc("Allow generation of a loop remainder (extra iterations) "
120 "when unrolling a loop."));
122 static cl::opt<bool>
123 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
124 cl::desc("Unroll loops with run-time trip counts"));
126 static cl::opt<unsigned> UnrollMaxUpperBound(
127 "unroll-max-upperbound", cl::init(8), cl::Hidden,
128 cl::desc(
129 "The max of trip count upper bound that is considered in unrolling"));
131 static cl::opt<unsigned> PragmaUnrollThreshold(
132 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
133 cl::desc("Unrolled size limit for loops with an unroll(full) or "
134 "unroll_count pragma."));
136 static cl::opt<unsigned> FlatLoopTripCountThreshold(
137 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
138 cl::desc("If the runtime tripcount for the loop is lower than the "
139 "threshold, the loop is considered as flat and will be less "
140 "aggressively unrolled."));
142 static cl::opt<bool>
143 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
144 cl::desc("Allows loops to be peeled when the dynamic "
145 "trip count is known to be low."));
147 static cl::opt<bool> UnrollUnrollRemainder(
148 "unroll-remainder", cl::Hidden,
149 cl::desc("Allow the loop remainder to be unrolled."));
151 // This option isn't ever intended to be enabled, it serves to allow
152 // experiments to check the assumptions about when this kind of revisit is
153 // necessary.
154 static cl::opt<bool> UnrollRevisitChildLoops(
155 "unroll-revisit-child-loops", cl::Hidden,
156 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
157 "This shouldn't typically be needed as child loops (or their "
158 "clones) were already visited."));
160 /// A magic value for use with the Threshold parameter to indicate
161 /// that the loop unroll should be performed regardless of how much
162 /// code expansion would result.
163 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
165 /// Gather the various unrolling parameters based on the defaults, compiler
166 /// flags, TTI overrides and user specified parameters.
167 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
168 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, int OptLevel,
169 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
170 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
171 Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) {
172 TargetTransformInfo::UnrollingPreferences UP;
174 // Set up the defaults
175 UP.Threshold = OptLevel > 2 ? 300 : 150;
176 UP.MaxPercentThresholdBoost = 400;
177 UP.OptSizeThreshold = 0;
178 UP.PartialThreshold = 150;
179 UP.PartialOptSizeThreshold = 0;
180 UP.Count = 0;
181 UP.PeelCount = 0;
182 UP.DefaultUnrollRuntimeCount = 8;
183 UP.MaxCount = std::numeric_limits<unsigned>::max();
184 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
185 UP.BEInsns = 2;
186 UP.Partial = false;
187 UP.Runtime = false;
188 UP.AllowRemainder = true;
189 UP.UnrollRemainder = false;
190 UP.AllowExpensiveTripCount = false;
191 UP.Force = false;
192 UP.UpperBound = false;
193 UP.AllowPeeling = true;
194 UP.UnrollAndJam = false;
195 UP.UnrollAndJamInnerLoopThreshold = 60;
197 // Override with any target specific settings
198 TTI.getUnrollingPreferences(L, SE, UP);
200 // Apply size attributes
201 if (L->getHeader()->getParent()->optForSize()) {
202 UP.Threshold = UP.OptSizeThreshold;
203 UP.PartialThreshold = UP.PartialOptSizeThreshold;
206 // Apply any user values specified by cl::opt
207 if (UnrollThreshold.getNumOccurrences() > 0)
208 UP.Threshold = UnrollThreshold;
209 if (UnrollPartialThreshold.getNumOccurrences() > 0)
210 UP.PartialThreshold = UnrollPartialThreshold;
211 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
212 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
213 if (UnrollMaxCount.getNumOccurrences() > 0)
214 UP.MaxCount = UnrollMaxCount;
215 if (UnrollFullMaxCount.getNumOccurrences() > 0)
216 UP.FullUnrollMaxCount = UnrollFullMaxCount;
217 if (UnrollPeelCount.getNumOccurrences() > 0)
218 UP.PeelCount = UnrollPeelCount;
219 if (UnrollAllowPartial.getNumOccurrences() > 0)
220 UP.Partial = UnrollAllowPartial;
221 if (UnrollAllowRemainder.getNumOccurrences() > 0)
222 UP.AllowRemainder = UnrollAllowRemainder;
223 if (UnrollRuntime.getNumOccurrences() > 0)
224 UP.Runtime = UnrollRuntime;
225 if (UnrollMaxUpperBound == 0)
226 UP.UpperBound = false;
227 if (UnrollAllowPeeling.getNumOccurrences() > 0)
228 UP.AllowPeeling = UnrollAllowPeeling;
229 if (UnrollUnrollRemainder.getNumOccurrences() > 0)
230 UP.UnrollRemainder = UnrollUnrollRemainder;
232 // Apply user values provided by argument
233 if (UserThreshold.hasValue()) {
234 UP.Threshold = *UserThreshold;
235 UP.PartialThreshold = *UserThreshold;
237 if (UserCount.hasValue())
238 UP.Count = *UserCount;
239 if (UserAllowPartial.hasValue())
240 UP.Partial = *UserAllowPartial;
241 if (UserRuntime.hasValue())
242 UP.Runtime = *UserRuntime;
243 if (UserUpperBound.hasValue())
244 UP.UpperBound = *UserUpperBound;
245 if (UserAllowPeeling.hasValue())
246 UP.AllowPeeling = *UserAllowPeeling;
248 return UP;
251 namespace {
253 /// A struct to densely store the state of an instruction after unrolling at
254 /// each iteration.
256 /// This is designed to work like a tuple of <Instruction *, int> for the
257 /// purposes of hashing and lookup, but to be able to associate two boolean
258 /// states with each key.
259 struct UnrolledInstState {
260 Instruction *I;
261 int Iteration : 30;
262 unsigned IsFree : 1;
263 unsigned IsCounted : 1;
266 /// Hashing and equality testing for a set of the instruction states.
267 struct UnrolledInstStateKeyInfo {
268 using PtrInfo = DenseMapInfo<Instruction *>;
269 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
271 static inline UnrolledInstState getEmptyKey() {
272 return {PtrInfo::getEmptyKey(), 0, 0, 0};
275 static inline UnrolledInstState getTombstoneKey() {
276 return {PtrInfo::getTombstoneKey(), 0, 0, 0};
279 static inline unsigned getHashValue(const UnrolledInstState &S) {
280 return PairInfo::getHashValue({S.I, S.Iteration});
283 static inline bool isEqual(const UnrolledInstState &LHS,
284 const UnrolledInstState &RHS) {
285 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
289 struct EstimatedUnrollCost {
290 /// The estimated cost after unrolling.
291 unsigned UnrolledCost;
293 /// The estimated dynamic cost of executing the instructions in the
294 /// rolled form.
295 unsigned RolledDynamicCost;
298 } // end anonymous namespace
300 /// Figure out if the loop is worth full unrolling.
302 /// Complete loop unrolling can make some loads constant, and we need to know
303 /// if that would expose any further optimization opportunities. This routine
304 /// estimates this optimization. It computes cost of unrolled loop
305 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
306 /// dynamic cost we mean that we won't count costs of blocks that are known not
307 /// to be executed (i.e. if we have a branch in the loop and we know that at the
308 /// given iteration its condition would be resolved to true, we won't add up the
309 /// cost of the 'false'-block).
310 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
311 /// the analysis failed (no benefits expected from the unrolling, or the loop is
312 /// too big to analyze), the returned value is None.
313 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
314 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
315 const SmallPtrSetImpl<const Value *> &EphValues,
316 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) {
317 // We want to be able to scale offsets by the trip count and add more offsets
318 // to them without checking for overflows, and we already don't want to
319 // analyze *massive* trip counts, so we force the max to be reasonably small.
320 assert(UnrollMaxIterationsCountToAnalyze <
321 (unsigned)(std::numeric_limits<int>::max() / 2) &&
322 "The unroll iterations max is too large!");
324 // Only analyze inner loops. We can't properly estimate cost of nested loops
325 // and we won't visit inner loops again anyway.
326 if (!L->empty())
327 return None;
329 // Don't simulate loops with a big or unknown tripcount
330 if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
331 TripCount > UnrollMaxIterationsCountToAnalyze)
332 return None;
334 SmallSetVector<BasicBlock *, 16> BBWorklist;
335 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
336 DenseMap<Value *, Constant *> SimplifiedValues;
337 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
339 // The estimated cost of the unrolled form of the loop. We try to estimate
340 // this by simplifying as much as we can while computing the estimate.
341 unsigned UnrolledCost = 0;
343 // We also track the estimated dynamic (that is, actually executed) cost in
344 // the rolled form. This helps identify cases when the savings from unrolling
345 // aren't just exposing dead control flows, but actual reduced dynamic
346 // instructions due to the simplifications which we expect to occur after
347 // unrolling.
348 unsigned RolledDynamicCost = 0;
350 // We track the simplification of each instruction in each iteration. We use
351 // this to recursively merge costs into the unrolled cost on-demand so that
352 // we don't count the cost of any dead code. This is essentially a map from
353 // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
354 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
356 // A small worklist used to accumulate cost of instructions from each
357 // observable and reached root in the loop.
358 SmallVector<Instruction *, 16> CostWorklist;
360 // PHI-used worklist used between iterations while accumulating cost.
361 SmallVector<Instruction *, 4> PHIUsedList;
363 // Helper function to accumulate cost for instructions in the loop.
364 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
365 assert(Iteration >= 0 && "Cannot have a negative iteration!");
366 assert(CostWorklist.empty() && "Must start with an empty cost list");
367 assert(PHIUsedList.empty() && "Must start with an empty phi used list");
368 CostWorklist.push_back(&RootI);
369 for (;; --Iteration) {
370 do {
371 Instruction *I = CostWorklist.pop_back_val();
373 // InstCostMap only uses I and Iteration as a key, the other two values
374 // don't matter here.
375 auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
376 if (CostIter == InstCostMap.end())
377 // If an input to a PHI node comes from a dead path through the loop
378 // we may have no cost data for it here. What that actually means is
379 // that it is free.
380 continue;
381 auto &Cost = *CostIter;
382 if (Cost.IsCounted)
383 // Already counted this instruction.
384 continue;
386 // Mark that we are counting the cost of this instruction now.
387 Cost.IsCounted = true;
389 // If this is a PHI node in the loop header, just add it to the PHI set.
390 if (auto *PhiI = dyn_cast<PHINode>(I))
391 if (PhiI->getParent() == L->getHeader()) {
392 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
393 "inherently simplify during unrolling.");
394 if (Iteration == 0)
395 continue;
397 // Push the incoming value from the backedge into the PHI used list
398 // if it is an in-loop instruction. We'll use this to populate the
399 // cost worklist for the next iteration (as we count backwards).
400 if (auto *OpI = dyn_cast<Instruction>(
401 PhiI->getIncomingValueForBlock(L->getLoopLatch())))
402 if (L->contains(OpI))
403 PHIUsedList.push_back(OpI);
404 continue;
407 // First accumulate the cost of this instruction.
408 if (!Cost.IsFree) {
409 UnrolledCost += TTI.getUserCost(I);
410 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
411 << Iteration << "): ");
412 LLVM_DEBUG(I->dump());
415 // We must count the cost of every operand which is not free,
416 // recursively. If we reach a loop PHI node, simply add it to the set
417 // to be considered on the next iteration (backwards!).
418 for (Value *Op : I->operands()) {
419 // Check whether this operand is free due to being a constant or
420 // outside the loop.
421 auto *OpI = dyn_cast<Instruction>(Op);
422 if (!OpI || !L->contains(OpI))
423 continue;
425 // Otherwise accumulate its cost.
426 CostWorklist.push_back(OpI);
428 } while (!CostWorklist.empty());
430 if (PHIUsedList.empty())
431 // We've exhausted the search.
432 break;
434 assert(Iteration > 0 &&
435 "Cannot track PHI-used values past the first iteration!");
436 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
437 PHIUsedList.clear();
441 // Ensure that we don't violate the loop structure invariants relied on by
442 // this analysis.
443 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
444 assert(L->isLCSSAForm(DT) &&
445 "Must have loops in LCSSA form to track live-out values.");
447 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
449 // Simulate execution of each iteration of the loop counting instructions,
450 // which would be simplified.
451 // Since the same load will take different values on different iterations,
452 // we literally have to go through all loop's iterations.
453 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
454 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
456 // Prepare for the iteration by collecting any simplified entry or backedge
457 // inputs.
458 for (Instruction &I : *L->getHeader()) {
459 auto *PHI = dyn_cast<PHINode>(&I);
460 if (!PHI)
461 break;
463 // The loop header PHI nodes must have exactly two input: one from the
464 // loop preheader and one from the loop latch.
465 assert(
466 PHI->getNumIncomingValues() == 2 &&
467 "Must have an incoming value only for the preheader and the latch.");
469 Value *V = PHI->getIncomingValueForBlock(
470 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
471 Constant *C = dyn_cast<Constant>(V);
472 if (Iteration != 0 && !C)
473 C = SimplifiedValues.lookup(V);
474 if (C)
475 SimplifiedInputValues.push_back({PHI, C});
478 // Now clear and re-populate the map for the next iteration.
479 SimplifiedValues.clear();
480 while (!SimplifiedInputValues.empty())
481 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
483 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
485 BBWorklist.clear();
486 BBWorklist.insert(L->getHeader());
487 // Note that we *must not* cache the size, this loop grows the worklist.
488 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
489 BasicBlock *BB = BBWorklist[Idx];
491 // Visit all instructions in the given basic block and try to simplify
492 // it. We don't change the actual IR, just count optimization
493 // opportunities.
494 for (Instruction &I : *BB) {
495 // These won't get into the final code - don't even try calculating the
496 // cost for them.
497 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
498 continue;
500 // Track this instruction's expected baseline cost when executing the
501 // rolled loop form.
502 RolledDynamicCost += TTI.getUserCost(&I);
504 // Visit the instruction to analyze its loop cost after unrolling,
505 // and if the visitor returns true, mark the instruction as free after
506 // unrolling and continue.
507 bool IsFree = Analyzer.visit(I);
508 bool Inserted = InstCostMap.insert({&I, (int)Iteration,
509 (unsigned)IsFree,
510 /*IsCounted*/ false}).second;
511 (void)Inserted;
512 assert(Inserted && "Cannot have a state for an unvisited instruction!");
514 if (IsFree)
515 continue;
517 // Can't properly model a cost of a call.
518 // FIXME: With a proper cost model we should be able to do it.
519 if (auto *CI = dyn_cast<CallInst>(&I)) {
520 const Function *Callee = CI->getCalledFunction();
521 if (!Callee || TTI.isLoweredToCall(Callee)) {
522 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
523 return None;
527 // If the instruction might have a side-effect recursively account for
528 // the cost of it and all the instructions leading up to it.
529 if (I.mayHaveSideEffects())
530 AddCostRecursively(I, Iteration);
532 // If unrolled body turns out to be too big, bail out.
533 if (UnrolledCost > MaxUnrolledLoopSize) {
534 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
535 << " UnrolledCost: " << UnrolledCost
536 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
537 << "\n");
538 return None;
542 Instruction *TI = BB->getTerminator();
544 // Add in the live successors by first checking whether we have terminator
545 // that may be simplified based on the values simplified by this call.
546 BasicBlock *KnownSucc = nullptr;
547 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
548 if (BI->isConditional()) {
549 if (Constant *SimpleCond =
550 SimplifiedValues.lookup(BI->getCondition())) {
551 // Just take the first successor if condition is undef
552 if (isa<UndefValue>(SimpleCond))
553 KnownSucc = BI->getSuccessor(0);
554 else if (ConstantInt *SimpleCondVal =
555 dyn_cast<ConstantInt>(SimpleCond))
556 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
559 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
560 if (Constant *SimpleCond =
561 SimplifiedValues.lookup(SI->getCondition())) {
562 // Just take the first successor if condition is undef
563 if (isa<UndefValue>(SimpleCond))
564 KnownSucc = SI->getSuccessor(0);
565 else if (ConstantInt *SimpleCondVal =
566 dyn_cast<ConstantInt>(SimpleCond))
567 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
570 if (KnownSucc) {
571 if (L->contains(KnownSucc))
572 BBWorklist.insert(KnownSucc);
573 else
574 ExitWorklist.insert({BB, KnownSucc});
575 continue;
578 // Add BB's successors to the worklist.
579 for (BasicBlock *Succ : successors(BB))
580 if (L->contains(Succ))
581 BBWorklist.insert(Succ);
582 else
583 ExitWorklist.insert({BB, Succ});
584 AddCostRecursively(*TI, Iteration);
587 // If we found no optimization opportunities on the first iteration, we
588 // won't find them on later ones too.
589 if (UnrolledCost == RolledDynamicCost) {
590 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n"
591 << " UnrolledCost: " << UnrolledCost << "\n");
592 return None;
596 while (!ExitWorklist.empty()) {
597 BasicBlock *ExitingBB, *ExitBB;
598 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
600 for (Instruction &I : *ExitBB) {
601 auto *PN = dyn_cast<PHINode>(&I);
602 if (!PN)
603 break;
605 Value *Op = PN->getIncomingValueForBlock(ExitingBB);
606 if (auto *OpI = dyn_cast<Instruction>(Op))
607 if (L->contains(OpI))
608 AddCostRecursively(*OpI, TripCount - 1);
612 LLVM_DEBUG(dbgs() << "Analysis finished:\n"
613 << "UnrolledCost: " << UnrolledCost << ", "
614 << "RolledDynamicCost: " << RolledDynamicCost << "\n");
615 return {{UnrolledCost, RolledDynamicCost}};
618 /// ApproximateLoopSize - Approximate the size of the loop.
619 unsigned llvm::ApproximateLoopSize(
620 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
621 const TargetTransformInfo &TTI,
622 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
623 CodeMetrics Metrics;
624 for (BasicBlock *BB : L->blocks())
625 Metrics.analyzeBasicBlock(BB, TTI, EphValues);
626 NumCalls = Metrics.NumInlineCandidates;
627 NotDuplicatable = Metrics.notDuplicatable;
628 Convergent = Metrics.convergent;
630 unsigned LoopSize = Metrics.NumInsts;
632 // Don't allow an estimate of size zero. This would allows unrolling of loops
633 // with huge iteration counts, which is a compile time problem even if it's
634 // not a problem for code quality. Also, the code using this size may assume
635 // that each loop has at least three instructions (likely a conditional
636 // branch, a comparison feeding that branch, and some kind of loop increment
637 // feeding that comparison instruction).
638 LoopSize = std::max(LoopSize, BEInsns + 1);
640 return LoopSize;
643 // Returns the loop hint metadata node with the given name (for example,
644 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
645 // returned.
646 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
647 if (MDNode *LoopID = L->getLoopID())
648 return GetUnrollMetadata(LoopID, Name);
649 return nullptr;
652 // Returns true if the loop has an unroll(full) pragma.
653 static bool HasUnrollFullPragma(const Loop *L) {
654 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
657 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
658 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
659 static bool HasUnrollEnablePragma(const Loop *L) {
660 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
663 // Returns true if the loop has an runtime unroll(disable) pragma.
664 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
665 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
668 // If loop has an unroll_count pragma return the (necessarily
669 // positive) value from the pragma. Otherwise return 0.
670 static unsigned UnrollCountPragmaValue(const Loop *L) {
671 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
672 if (MD) {
673 assert(MD->getNumOperands() == 2 &&
674 "Unroll count hint metadata should have two operands.");
675 unsigned Count =
676 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
677 assert(Count >= 1 && "Unroll count must be positive.");
678 return Count;
680 return 0;
683 // Computes the boosting factor for complete unrolling.
684 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
685 // be beneficial to fully unroll the loop even if unrolledcost is large. We
686 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
687 // the unroll threshold.
688 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
689 unsigned MaxPercentThresholdBoost) {
690 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
691 return 100;
692 else if (Cost.UnrolledCost != 0)
693 // The boosting factor is RolledDynamicCost / UnrolledCost
694 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
695 MaxPercentThresholdBoost);
696 else
697 return MaxPercentThresholdBoost;
700 // Returns loop size estimation for unrolled loop.
701 static uint64_t getUnrolledLoopSize(
702 unsigned LoopSize,
703 TargetTransformInfo::UnrollingPreferences &UP) {
704 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
705 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
708 // Returns true if unroll count was set explicitly.
709 // Calculates unroll count and writes it to UP.Count.
710 // Unless IgnoreUser is true, will also use metadata and command-line options
711 // that are specific to to the LoopUnroll pass (which, for instance, are
712 // irrelevant for the LoopUnrollAndJam pass).
713 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
714 // many LoopUnroll-specific options. The shared functionality should be
715 // refactored into it own function.
716 bool llvm::computeUnrollCount(
717 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
718 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
719 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
720 unsigned &TripMultiple, unsigned LoopSize,
721 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
723 // Check for explicit Count.
724 // 1st priority is unroll count set by "unroll-count" option.
725 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
726 if (UserUnrollCount) {
727 UP.Count = UnrollCount;
728 UP.AllowExpensiveTripCount = true;
729 UP.Force = true;
730 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
731 return true;
734 // 2nd priority is unroll count set by pragma.
735 unsigned PragmaCount = UnrollCountPragmaValue(L);
736 if (PragmaCount > 0) {
737 UP.Count = PragmaCount;
738 UP.Runtime = true;
739 UP.AllowExpensiveTripCount = true;
740 UP.Force = true;
741 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
742 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
743 return true;
745 bool PragmaFullUnroll = HasUnrollFullPragma(L);
746 if (PragmaFullUnroll && TripCount != 0) {
747 UP.Count = TripCount;
748 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
749 return false;
752 bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
753 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
754 PragmaEnableUnroll || UserUnrollCount;
756 if (ExplicitUnroll && TripCount != 0) {
757 // If the loop has an unrolling pragma, we want to be more aggressive with
758 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
759 // value which is larger than the default limits.
760 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
761 UP.PartialThreshold =
762 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
765 // 3rd priority is full unroll count.
766 // Full unroll makes sense only when TripCount or its upper bound could be
767 // statically calculated.
768 // Also we need to check if we exceed FullUnrollMaxCount.
769 // If using the upper bound to unroll, TripMultiple should be set to 1 because
770 // we do not know when loop may exit.
771 // MaxTripCount and ExactTripCount cannot both be non zero since we only
772 // compute the former when the latter is zero.
773 unsigned ExactTripCount = TripCount;
774 assert((ExactTripCount == 0 || MaxTripCount == 0) &&
775 "ExtractTripCount and MaxTripCount cannot both be non zero.");
776 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount;
777 UP.Count = FullUnrollTripCount;
778 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
779 // When computing the unrolled size, note that BEInsns are not replicated
780 // like the rest of the loop body.
781 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
782 UseUpperBound = (MaxTripCount == FullUnrollTripCount);
783 TripCount = FullUnrollTripCount;
784 TripMultiple = UP.UpperBound ? 1 : TripMultiple;
785 return ExplicitUnroll;
786 } else {
787 // The loop isn't that small, but we still can fully unroll it if that
788 // helps to remove a significant number of instructions.
789 // To check that, run additional analysis on the loop.
790 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
791 L, FullUnrollTripCount, DT, SE, EphValues, TTI,
792 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) {
793 unsigned Boost =
794 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
795 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
796 UseUpperBound = (MaxTripCount == FullUnrollTripCount);
797 TripCount = FullUnrollTripCount;
798 TripMultiple = UP.UpperBound ? 1 : TripMultiple;
799 return ExplicitUnroll;
805 // 4th priority is loop peeling.
806 computePeelCount(L, LoopSize, UP, TripCount, SE);
807 if (UP.PeelCount) {
808 UP.Runtime = false;
809 UP.Count = 1;
810 return ExplicitUnroll;
813 // 5th priority is partial unrolling.
814 // Try partial unroll only when TripCount could be statically calculated.
815 if (TripCount) {
816 UP.Partial |= ExplicitUnroll;
817 if (!UP.Partial) {
818 LLVM_DEBUG(dbgs() << " will not try to unroll partially because "
819 << "-unroll-allow-partial not given\n");
820 UP.Count = 0;
821 return false;
823 if (UP.Count == 0)
824 UP.Count = TripCount;
825 if (UP.PartialThreshold != NoThreshold) {
826 // Reduce unroll count to be modulo of TripCount for partial unrolling.
827 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
828 UP.Count =
829 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
830 (LoopSize - UP.BEInsns);
831 if (UP.Count > UP.MaxCount)
832 UP.Count = UP.MaxCount;
833 while (UP.Count != 0 && TripCount % UP.Count != 0)
834 UP.Count--;
835 if (UP.AllowRemainder && UP.Count <= 1) {
836 // If there is no Count that is modulo of TripCount, set Count to
837 // largest power-of-two factor that satisfies the threshold limit.
838 // As we'll create fixup loop, do the type of unrolling only if
839 // remainder loop is allowed.
840 UP.Count = UP.DefaultUnrollRuntimeCount;
841 while (UP.Count != 0 &&
842 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
843 UP.Count >>= 1;
845 if (UP.Count < 2) {
846 if (PragmaEnableUnroll)
847 ORE->emit([&]() {
848 return OptimizationRemarkMissed(DEBUG_TYPE,
849 "UnrollAsDirectedTooLarge",
850 L->getStartLoc(), L->getHeader())
851 << "Unable to unroll loop as directed by unroll(enable) "
852 "pragma "
853 "because unrolled size is too large.";
855 UP.Count = 0;
857 } else {
858 UP.Count = TripCount;
860 if (UP.Count > UP.MaxCount)
861 UP.Count = UP.MaxCount;
862 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
863 UP.Count != TripCount)
864 ORE->emit([&]() {
865 return OptimizationRemarkMissed(DEBUG_TYPE,
866 "FullUnrollAsDirectedTooLarge",
867 L->getStartLoc(), L->getHeader())
868 << "Unable to fully unroll loop as directed by unroll pragma "
869 "because "
870 "unrolled size is too large.";
872 return ExplicitUnroll;
874 assert(TripCount == 0 &&
875 "All cases when TripCount is constant should be covered here.");
876 if (PragmaFullUnroll)
877 ORE->emit([&]() {
878 return OptimizationRemarkMissed(
879 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
880 L->getStartLoc(), L->getHeader())
881 << "Unable to fully unroll loop as directed by unroll(full) "
882 "pragma "
883 "because loop has a runtime trip count.";
886 // 6th priority is runtime unrolling.
887 // Don't unroll a runtime trip count loop when it is disabled.
888 if (HasRuntimeUnrollDisablePragma(L)) {
889 UP.Count = 0;
890 return false;
893 // Check if the runtime trip count is too small when profile is available.
894 if (L->getHeader()->getParent()->hasProfileData()) {
895 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
896 if (*ProfileTripCount < FlatLoopTripCountThreshold)
897 return false;
898 else
899 UP.AllowExpensiveTripCount = true;
903 // Reduce count based on the type of unrolling and the threshold values.
904 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
905 if (!UP.Runtime) {
906 LLVM_DEBUG(
907 dbgs() << " will not try to unroll loop with runtime trip count "
908 << "-unroll-runtime not given\n");
909 UP.Count = 0;
910 return false;
912 if (UP.Count == 0)
913 UP.Count = UP.DefaultUnrollRuntimeCount;
915 // Reduce unroll count to be the largest power-of-two factor of
916 // the original count which satisfies the threshold limit.
917 while (UP.Count != 0 &&
918 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
919 UP.Count >>= 1;
921 #ifndef NDEBUG
922 unsigned OrigCount = UP.Count;
923 #endif
925 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
926 while (UP.Count != 0 && TripMultiple % UP.Count != 0)
927 UP.Count >>= 1;
928 LLVM_DEBUG(
929 dbgs() << "Remainder loop is restricted (that could architecture "
930 "specific or because the loop contains a convergent "
931 "instruction), so unroll count must divide the trip "
932 "multiple, "
933 << TripMultiple << ". Reducing unroll count from " << OrigCount
934 << " to " << UP.Count << ".\n");
936 using namespace ore;
938 if (PragmaCount > 0 && !UP.AllowRemainder)
939 ORE->emit([&]() {
940 return OptimizationRemarkMissed(DEBUG_TYPE,
941 "DifferentUnrollCountFromDirected",
942 L->getStartLoc(), L->getHeader())
943 << "Unable to unroll loop the number of times directed by "
944 "unroll_count pragma because remainder loop is restricted "
945 "(that could architecture specific or because the loop "
946 "contains a convergent instruction) and so must have an "
947 "unroll "
948 "count that divides the loop trip multiple of "
949 << NV("TripMultiple", TripMultiple) << ". Unrolling instead "
950 << NV("UnrollCount", UP.Count) << " time(s).";
954 if (UP.Count > UP.MaxCount)
955 UP.Count = UP.MaxCount;
956 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count
957 << "\n");
958 if (UP.Count < 2)
959 UP.Count = 0;
960 return ExplicitUnroll;
963 static LoopUnrollResult tryToUnrollLoop(
964 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
965 const TargetTransformInfo &TTI, AssumptionCache &AC,
966 OptimizationRemarkEmitter &ORE, bool PreserveLCSSA, int OptLevel,
967 bool OnlyWhenForced, Optional<unsigned> ProvidedCount,
968 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
969 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
970 Optional<bool> ProvidedAllowPeeling) {
971 LLVM_DEBUG(dbgs() << "Loop Unroll: F["
972 << L->getHeader()->getParent()->getName() << "] Loop %"
973 << L->getHeader()->getName() << "\n");
974 TransformationMode TM = hasUnrollTransformation(L);
975 if (TM & TM_Disable)
976 return LoopUnrollResult::Unmodified;
977 if (!L->isLoopSimplifyForm()) {
978 LLVM_DEBUG(
979 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
980 return LoopUnrollResult::Unmodified;
983 // When automtatic unrolling is disabled, do not unroll unless overridden for
984 // this loop.
985 if (OnlyWhenForced && !(TM & TM_Enable))
986 return LoopUnrollResult::Unmodified;
988 unsigned NumInlineCandidates;
989 bool NotDuplicatable;
990 bool Convergent;
991 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
992 L, SE, TTI, OptLevel, ProvidedThreshold, ProvidedCount,
993 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
994 ProvidedAllowPeeling);
995 // Exit early if unrolling is disabled.
996 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0))
997 return LoopUnrollResult::Unmodified;
999 SmallPtrSet<const Value *, 32> EphValues;
1000 CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1002 unsigned LoopSize =
1003 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1004 TTI, EphValues, UP.BEInsns);
1005 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
1006 if (NotDuplicatable) {
1007 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
1008 << " instructions.\n");
1009 return LoopUnrollResult::Unmodified;
1011 if (NumInlineCandidates != 0) {
1012 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
1013 return LoopUnrollResult::Unmodified;
1016 // Find trip count and trip multiple if count is not available
1017 unsigned TripCount = 0;
1018 unsigned MaxTripCount = 0;
1019 unsigned TripMultiple = 1;
1020 // If there are multiple exiting blocks but one of them is the latch, use the
1021 // latch for the trip count estimation. Otherwise insist on a single exiting
1022 // block for the trip count estimation.
1023 BasicBlock *ExitingBlock = L->getLoopLatch();
1024 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1025 ExitingBlock = L->getExitingBlock();
1026 if (ExitingBlock) {
1027 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
1028 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1031 // If the loop contains a convergent operation, the prelude we'd add
1032 // to do the first few instructions before we hit the unrolled loop
1033 // is unsafe -- it adds a control-flow dependency to the convergent
1034 // operation. Therefore restrict remainder loop (try unrollig without).
1036 // TODO: This is quite conservative. In practice, convergent_op()
1037 // is likely to be called unconditionally in the loop. In this
1038 // case, the program would be ill-formed (on most architectures)
1039 // unless n were the same on all threads in a thread group.
1040 // Assuming n is the same on all threads, any kind of unrolling is
1041 // safe. But currently llvm's notion of convergence isn't powerful
1042 // enough to express this.
1043 if (Convergent)
1044 UP.AllowRemainder = false;
1046 // Try to find the trip count upper bound if we cannot find the exact trip
1047 // count.
1048 bool MaxOrZero = false;
1049 if (!TripCount) {
1050 MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1051 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1052 // We can unroll by the upper bound amount if it's generally allowed or if
1053 // we know that the loop is executed either the upper bound or zero times.
1054 // (MaxOrZero unrolling keeps only the first loop test, so the number of
1055 // loop tests remains the same compared to the non-unrolled version, whereas
1056 // the generic upper bound unrolling keeps all but the last loop test so the
1057 // number of loop tests goes up which may end up being worse on targets with
1058 // constrained branch predictor resources so is controlled by an option.)
1059 // In addition we only unroll small upper bounds.
1060 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) {
1061 MaxTripCount = 0;
1065 // computeUnrollCount() decides whether it is beneficial to use upper bound to
1066 // fully unroll the loop.
1067 bool UseUpperBound = false;
1068 bool IsCountSetExplicitly = computeUnrollCount(
1069 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount,
1070 TripMultiple, LoopSize, UP, UseUpperBound);
1071 if (!UP.Count)
1072 return LoopUnrollResult::Unmodified;
1073 // Unroll factor (Count) must be less or equal to TripCount.
1074 if (TripCount && UP.Count > TripCount)
1075 UP.Count = TripCount;
1077 // Save loop properties before it is transformed.
1078 MDNode *OrigLoopID = L->getLoopID();
1080 // Unroll the loop.
1081 Loop *RemainderLoop = nullptr;
1082 LoopUnrollResult UnrollResult = UnrollLoop(
1083 L, UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1084 UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder,
1085 LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop);
1086 if (UnrollResult == LoopUnrollResult::Unmodified)
1087 return LoopUnrollResult::Unmodified;
1089 if (RemainderLoop) {
1090 Optional<MDNode *> RemainderLoopID =
1091 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1092 LLVMLoopUnrollFollowupRemainder});
1093 if (RemainderLoopID.hasValue())
1094 RemainderLoop->setLoopID(RemainderLoopID.getValue());
1097 if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1098 Optional<MDNode *> NewLoopID =
1099 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1100 LLVMLoopUnrollFollowupUnrolled});
1101 if (NewLoopID.hasValue()) {
1102 L->setLoopID(NewLoopID.getValue());
1104 // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1105 // explicitly.
1106 return UnrollResult;
1110 // If loop has an unroll count pragma or unrolled by explicitly set count
1111 // mark loop as unrolled to prevent unrolling beyond that requested.
1112 // If the loop was peeled, we already "used up" the profile information
1113 // we had, so we don't want to unroll or peel again.
1114 if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
1115 (IsCountSetExplicitly || UP.PeelCount))
1116 L->setLoopAlreadyUnrolled();
1118 return UnrollResult;
1121 namespace {
1123 class LoopUnroll : public LoopPass {
1124 public:
1125 static char ID; // Pass ID, replacement for typeid
1127 int OptLevel;
1129 /// If false, use a cost model to determine whether unrolling of a loop is
1130 /// profitable. If true, only loops that explicitly request unrolling via
1131 /// metadata are considered. All other loops are skipped.
1132 bool OnlyWhenForced;
1134 Optional<unsigned> ProvidedCount;
1135 Optional<unsigned> ProvidedThreshold;
1136 Optional<bool> ProvidedAllowPartial;
1137 Optional<bool> ProvidedRuntime;
1138 Optional<bool> ProvidedUpperBound;
1139 Optional<bool> ProvidedAllowPeeling;
1141 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1142 Optional<unsigned> Threshold = None,
1143 Optional<unsigned> Count = None,
1144 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1145 Optional<bool> UpperBound = None,
1146 Optional<bool> AllowPeeling = None)
1147 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1148 ProvidedCount(std::move(Count)), ProvidedThreshold(Threshold),
1149 ProvidedAllowPartial(AllowPartial), ProvidedRuntime(Runtime),
1150 ProvidedUpperBound(UpperBound), ProvidedAllowPeeling(AllowPeeling) {
1151 initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1154 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1155 if (skipLoop(L))
1156 return false;
1158 Function &F = *L->getHeader()->getParent();
1160 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1161 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1162 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1163 const TargetTransformInfo &TTI =
1164 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1165 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1166 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1167 // pass. Function analyses need to be preserved across loop transformations
1168 // but ORE cannot be preserved (see comment before the pass definition).
1169 OptimizationRemarkEmitter ORE(&F);
1170 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1172 LoopUnrollResult Result = tryToUnrollLoop(
1173 L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, OptLevel, OnlyWhenForced,
1174 ProvidedCount, ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime,
1175 ProvidedUpperBound, ProvidedAllowPeeling);
1177 if (Result == LoopUnrollResult::FullyUnrolled)
1178 LPM.markLoopAsDeleted(*L);
1180 return Result != LoopUnrollResult::Unmodified;
1183 /// This transformation requires natural loop information & requires that
1184 /// loop preheaders be inserted into the CFG...
1185 void getAnalysisUsage(AnalysisUsage &AU) const override {
1186 AU.addRequired<AssumptionCacheTracker>();
1187 AU.addRequired<TargetTransformInfoWrapperPass>();
1188 // FIXME: Loop passes are required to preserve domtree, and for now we just
1189 // recreate dom info if anything gets unrolled.
1190 getLoopAnalysisUsage(AU);
1194 } // end anonymous namespace
1196 char LoopUnroll::ID = 0;
1198 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1199 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1200 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1201 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1202 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1204 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1205 int Threshold, int Count, int AllowPartial,
1206 int Runtime, int UpperBound,
1207 int AllowPeeling) {
1208 // TODO: It would make more sense for this function to take the optionals
1209 // directly, but that's dangerous since it would silently break out of tree
1210 // callers.
1211 return new LoopUnroll(
1212 OptLevel, OnlyWhenForced,
1213 Threshold == -1 ? None : Optional<unsigned>(Threshold),
1214 Count == -1 ? None : Optional<unsigned>(Count),
1215 AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1216 Runtime == -1 ? None : Optional<bool>(Runtime),
1217 UpperBound == -1 ? None : Optional<bool>(UpperBound),
1218 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1221 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced) {
1222 return createLoopUnrollPass(OptLevel, OnlyWhenForced, -1, -1, 0, 0, 0, 0);
1225 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1226 LoopStandardAnalysisResults &AR,
1227 LPMUpdater &Updater) {
1228 const auto &FAM =
1229 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
1230 Function *F = L.getHeader()->getParent();
1232 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
1233 // FIXME: This should probably be optional rather than required.
1234 if (!ORE)
1235 report_fatal_error(
1236 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
1237 "cached at a higher level");
1239 // Keep track of the previous loop structure so we can identify new loops
1240 // created by unrolling.
1241 Loop *ParentL = L.getParentLoop();
1242 SmallPtrSet<Loop *, 4> OldLoops;
1243 if (ParentL)
1244 OldLoops.insert(ParentL->begin(), ParentL->end());
1245 else
1246 OldLoops.insert(AR.LI.begin(), AR.LI.end());
1248 std::string LoopName = L.getName();
1250 bool Changed =
1251 tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE,
1252 /*PreserveLCSSA*/ true, OptLevel, OnlyWhenForced,
1253 /*Count*/ None,
1254 /*Threshold*/ None, /*AllowPartial*/ false,
1255 /*Runtime*/ false, /*UpperBound*/ false,
1256 /*AllowPeeling*/ false) != LoopUnrollResult::Unmodified;
1257 if (!Changed)
1258 return PreservedAnalyses::all();
1260 // The parent must not be damaged by unrolling!
1261 #ifndef NDEBUG
1262 if (ParentL)
1263 ParentL->verifyLoop();
1264 #endif
1266 // Unrolling can do several things to introduce new loops into a loop nest:
1267 // - Full unrolling clones child loops within the current loop but then
1268 // removes the current loop making all of the children appear to be new
1269 // sibling loops.
1271 // When a new loop appears as a sibling loop after fully unrolling,
1272 // its nesting structure has fundamentally changed and we want to revisit
1273 // it to reflect that.
1275 // When unrolling has removed the current loop, we need to tell the
1276 // infrastructure that it is gone.
1278 // Finally, we support a debugging/testing mode where we revisit child loops
1279 // as well. These are not expected to require further optimizations as either
1280 // they or the loop they were cloned from have been directly visited already.
1281 // But the debugging mode allows us to check this assumption.
1282 bool IsCurrentLoopValid = false;
1283 SmallVector<Loop *, 4> SibLoops;
1284 if (ParentL)
1285 SibLoops.append(ParentL->begin(), ParentL->end());
1286 else
1287 SibLoops.append(AR.LI.begin(), AR.LI.end());
1288 erase_if(SibLoops, [&](Loop *SibLoop) {
1289 if (SibLoop == &L) {
1290 IsCurrentLoopValid = true;
1291 return true;
1294 // Otherwise erase the loop from the list if it was in the old loops.
1295 return OldLoops.count(SibLoop) != 0;
1297 Updater.addSiblingLoops(SibLoops);
1299 if (!IsCurrentLoopValid) {
1300 Updater.markLoopAsDeleted(L, LoopName);
1301 } else {
1302 // We can only walk child loops if the current loop remained valid.
1303 if (UnrollRevisitChildLoops) {
1304 // Walk *all* of the child loops.
1305 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1306 Updater.addChildLoops(ChildLoops);
1310 return getLoopPassPreservedAnalyses();
1313 template <typename RangeT>
1314 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) {
1315 SmallVector<Loop *, 8> Worklist;
1316 // We use an internal worklist to build up the preorder traversal without
1317 // recursion.
1318 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1320 for (Loop *RootL : Loops) {
1321 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1322 assert(PreOrderWorklist.empty() &&
1323 "Must start with an empty preorder walk worklist.");
1324 PreOrderWorklist.push_back(RootL);
1325 do {
1326 Loop *L = PreOrderWorklist.pop_back_val();
1327 PreOrderWorklist.append(L->begin(), L->end());
1328 PreOrderLoops.push_back(L);
1329 } while (!PreOrderWorklist.empty());
1331 Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end());
1332 PreOrderLoops.clear();
1334 return Worklist;
1337 PreservedAnalyses LoopUnrollPass::run(Function &F,
1338 FunctionAnalysisManager &AM) {
1339 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1340 auto &LI = AM.getResult<LoopAnalysis>(F);
1341 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1342 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1343 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1344 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1346 LoopAnalysisManager *LAM = nullptr;
1347 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1348 LAM = &LAMProxy->getManager();
1350 const ModuleAnalysisManager &MAM =
1351 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
1352 ProfileSummaryInfo *PSI =
1353 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1355 bool Changed = false;
1357 // The unroller requires loops to be in simplified form, and also needs LCSSA.
1358 // Since simplification may add new inner loops, it has to run before the
1359 // legality and profitability checks. This means running the loop unroller
1360 // will simplify all loops, regardless of whether anything end up being
1361 // unrolled.
1362 for (auto &L : LI) {
1363 Changed |= simplifyLoop(L, &DT, &LI, &SE, &AC, false /* PreserveLCSSA */);
1364 Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1367 SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI);
1369 while (!Worklist.empty()) {
1370 // Because the LoopInfo stores the loops in RPO, we walk the worklist
1371 // from back to front so that we work forward across the CFG, which
1372 // for unrolling is only needed to get optimization remarks emitted in
1373 // a forward order.
1374 Loop &L = *Worklist.pop_back_val();
1375 #ifndef NDEBUG
1376 Loop *ParentL = L.getParentLoop();
1377 #endif
1379 // Check if the profile summary indicates that the profiled application
1380 // has a huge working set size, in which case we disable peeling to avoid
1381 // bloating it further.
1382 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1383 if (PSI && PSI->hasHugeWorkingSetSize())
1384 LocalAllowPeeling = false;
1385 std::string LoopName = L.getName();
1386 // The API here is quite complex to call and we allow to select some
1387 // flavors of unrolling during construction time (by setting UnrollOpts).
1388 LoopUnrollResult Result = tryToUnrollLoop(
1389 &L, DT, &LI, SE, TTI, AC, ORE,
1390 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1391 /*Count*/ None,
1392 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
1393 UnrollOpts.AllowUpperBound, LocalAllowPeeling);
1394 Changed |= Result != LoopUnrollResult::Unmodified;
1396 // The parent must not be damaged by unrolling!
1397 #ifndef NDEBUG
1398 if (Result != LoopUnrollResult::Unmodified && ParentL)
1399 ParentL->verifyLoop();
1400 #endif
1402 // Clear any cached analysis results for L if we removed it completely.
1403 if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1404 LAM->clear(L, LoopName);
1407 if (!Changed)
1408 return PreservedAnalyses::all();
1410 return getLoopPassPreservedAnalyses();