[llvm-exegesis] [NFC] Fixing typo.
[llvm-complete.git] / lib / Transforms / Scalar / MergeICmps.cpp
blob9a57ed6c6dc6605fedb84be3f476971450eb3dfa
1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass turns chains of integer comparisons into memcmp (the memcmp is
10 // later typically inlined as a chain of efficient hardware comparisons). This
11 // typically benefits c++ member or nonmember operator==().
13 // The basic idea is to replace a longer chain of integer comparisons loaded
14 // from contiguous memory locations into a shorter chain of larger integer
15 // comparisons. Benefits are double:
16 // - There are less jumps, and therefore less opportunities for mispredictions
17 // and I-cache misses.
18 // - Code size is smaller, both because jumps are removed and because the
19 // encoding of a 2*n byte compare is smaller than that of two n-byte
20 // compares.
22 // Example:
24 // struct S {
25 // int a;
26 // char b;
27 // char c;
28 // uint16_t d;
29 // bool operator==(const S& o) const {
30 // return a == o.a && b == o.b && c == o.c && d == o.d;
31 // }
32 // };
34 // Is optimized as :
36 // bool S::operator==(const S& o) const {
37 // return memcmp(this, &o, 8) == 0;
38 // }
40 // Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp.
42 //===----------------------------------------------------------------------===//
44 #include "llvm/Analysis/Loads.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Transforms/Scalar.h"
51 #include "llvm/Transforms/Utils/BuildLibCalls.h"
52 #include <algorithm>
53 #include <numeric>
54 #include <utility>
55 #include <vector>
57 using namespace llvm;
59 namespace {
61 #define DEBUG_TYPE "mergeicmps"
63 // Returns true if the instruction is a simple load or a simple store
64 static bool isSimpleLoadOrStore(const Instruction *I) {
65 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
66 return LI->isSimple();
67 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
68 return SI->isSimple();
69 return false;
72 // A BCE atom "Binary Compare Expression Atom" represents an integer load
73 // that is a constant offset from a base value, e.g. `a` or `o.c` in the example
74 // at the top.
75 struct BCEAtom {
76 BCEAtom() = default;
77 BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset)
78 : GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {}
80 // We want to order BCEAtoms by (Base, Offset). However we cannot use
81 // the pointer values for Base because these are non-deterministic.
82 // To make sure that the sort order is stable, we first assign to each atom
83 // base value an index based on its order of appearance in the chain of
84 // comparisons. We call this index `BaseOrdering`. For example, for:
85 // b[3] == c[2] && a[1] == d[1] && b[4] == c[3]
86 // | block 1 | | block 2 | | block 3 |
87 // b gets assigned index 0 and a index 1, because b appears as LHS in block 1,
88 // which is before block 2.
89 // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable.
90 bool operator<(const BCEAtom &O) const {
91 return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset);
94 GetElementPtrInst *GEP = nullptr;
95 LoadInst *LoadI = nullptr;
96 unsigned BaseId = 0;
97 APInt Offset;
100 // A class that assigns increasing ids to values in the order in which they are
101 // seen. See comment in `BCEAtom::operator<()``.
102 class BaseIdentifier {
103 public:
104 // Returns the id for value `Base`, after assigning one if `Base` has not been
105 // seen before.
106 int getBaseId(const Value *Base) {
107 assert(Base && "invalid base");
108 const auto Insertion = BaseToIndex.try_emplace(Base, Order);
109 if (Insertion.second)
110 ++Order;
111 return Insertion.first->second;
114 private:
115 unsigned Order = 1;
116 DenseMap<const Value*, int> BaseToIndex;
119 // If this value is a load from a constant offset w.r.t. a base address, and
120 // there are no other users of the load or address, returns the base address and
121 // the offset.
122 BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) {
123 auto *const LoadI = dyn_cast<LoadInst>(Val);
124 if (!LoadI)
125 return {};
126 LLVM_DEBUG(dbgs() << "load\n");
127 if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
128 LLVM_DEBUG(dbgs() << "used outside of block\n");
129 return {};
131 // Do not optimize atomic loads to non-atomic memcmp
132 if (!LoadI->isSimple()) {
133 LLVM_DEBUG(dbgs() << "volatile or atomic\n");
134 return {};
136 Value *const Addr = LoadI->getOperand(0);
137 auto *const GEP = dyn_cast<GetElementPtrInst>(Addr);
138 if (!GEP)
139 return {};
140 LLVM_DEBUG(dbgs() << "GEP\n");
141 if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) {
142 LLVM_DEBUG(dbgs() << "used outside of block\n");
143 return {};
145 const auto &DL = GEP->getModule()->getDataLayout();
146 if (!isDereferenceablePointer(GEP, DL)) {
147 LLVM_DEBUG(dbgs() << "not dereferenceable\n");
148 // We need to make sure that we can do comparison in any order, so we
149 // require memory to be unconditionnally dereferencable.
150 return {};
152 APInt Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
153 if (!GEP->accumulateConstantOffset(DL, Offset))
154 return {};
155 return BCEAtom(GEP, LoadI, BaseId.getBaseId(GEP->getPointerOperand()),
156 Offset);
159 // A basic block with a comparison between two BCE atoms, e.g. `a == o.a` in the
160 // example at the top.
161 // The block might do extra work besides the atom comparison, in which case
162 // doesOtherWork() returns true. Under some conditions, the block can be
163 // split into the atom comparison part and the "other work" part
164 // (see canSplit()).
165 // Note: the terminology is misleading: the comparison is symmetric, so there
166 // is no real {l/r}hs. What we want though is to have the same base on the
167 // left (resp. right), so that we can detect consecutive loads. To ensure this
168 // we put the smallest atom on the left.
169 class BCECmpBlock {
170 public:
171 BCECmpBlock() {}
173 BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits)
174 : Lhs_(L), Rhs_(R), SizeBits_(SizeBits) {
175 if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_);
178 bool IsValid() const { return Lhs_.BaseId != 0 && Rhs_.BaseId != 0; }
180 // Assert the block is consistent: If valid, it should also have
181 // non-null members besides Lhs_ and Rhs_.
182 void AssertConsistent() const {
183 if (IsValid()) {
184 assert(BB);
185 assert(CmpI);
186 assert(BranchI);
190 const BCEAtom &Lhs() const { return Lhs_; }
191 const BCEAtom &Rhs() const { return Rhs_; }
192 int SizeBits() const { return SizeBits_; }
194 // Returns true if the block does other works besides comparison.
195 bool doesOtherWork() const;
197 // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp
198 // instructions in the block.
199 bool canSplit(AliasAnalysis *AA) const;
201 // Return true if this all the relevant instructions in the BCE-cmp-block can
202 // be sunk below this instruction. By doing this, we know we can separate the
203 // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the
204 // block.
205 bool canSinkBCECmpInst(const Instruction *, DenseSet<Instruction *> &,
206 AliasAnalysis *AA) const;
208 // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block
209 // instructions. Split the old block and move all non-BCE-cmp-insts into the
210 // new parent block.
211 void split(BasicBlock *NewParent, AliasAnalysis *AA) const;
213 // The basic block where this comparison happens.
214 BasicBlock *BB = nullptr;
215 // The ICMP for this comparison.
216 ICmpInst *CmpI = nullptr;
217 // The terminating branch.
218 BranchInst *BranchI = nullptr;
219 // The block requires splitting.
220 bool RequireSplit = false;
222 private:
223 BCEAtom Lhs_;
224 BCEAtom Rhs_;
225 int SizeBits_ = 0;
228 bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst,
229 DenseSet<Instruction *> &BlockInsts,
230 AliasAnalysis *AA) const {
231 // If this instruction has side effects and its in middle of the BCE cmp block
232 // instructions, then bail for now.
233 if (Inst->mayHaveSideEffects()) {
234 // Bail if this is not a simple load or store
235 if (!isSimpleLoadOrStore(Inst))
236 return false;
237 // Disallow stores that might alias the BCE operands
238 MemoryLocation LLoc = MemoryLocation::get(Lhs_.LoadI);
239 MemoryLocation RLoc = MemoryLocation::get(Rhs_.LoadI);
240 if (isModSet(AA->getModRefInfo(Inst, LLoc)) ||
241 isModSet(AA->getModRefInfo(Inst, RLoc)))
242 return false;
244 // Make sure this instruction does not use any of the BCE cmp block
245 // instructions as operand.
246 for (auto BI : BlockInsts) {
247 if (is_contained(Inst->operands(), BI))
248 return false;
250 return true;
253 void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis *AA) const {
254 DenseSet<Instruction *> BlockInsts(
255 {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
256 llvm::SmallVector<Instruction *, 4> OtherInsts;
257 for (Instruction &Inst : *BB) {
258 if (BlockInsts.count(&Inst))
259 continue;
260 assert(canSinkBCECmpInst(&Inst, BlockInsts, AA) &&
261 "Split unsplittable block");
262 // This is a non-BCE-cmp-block instruction. And it can be separated
263 // from the BCE-cmp-block instruction.
264 OtherInsts.push_back(&Inst);
267 // Do the actual spliting.
268 for (Instruction *Inst : reverse(OtherInsts)) {
269 Inst->moveBefore(&*NewParent->begin());
273 bool BCECmpBlock::canSplit(AliasAnalysis *AA) const {
274 DenseSet<Instruction *> BlockInsts(
275 {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
276 for (Instruction &Inst : *BB) {
277 if (!BlockInsts.count(&Inst)) {
278 if (!canSinkBCECmpInst(&Inst, BlockInsts, AA))
279 return false;
282 return true;
285 bool BCECmpBlock::doesOtherWork() const {
286 AssertConsistent();
287 // All the instructions we care about in the BCE cmp block.
288 DenseSet<Instruction *> BlockInsts(
289 {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
290 // TODO(courbet): Can we allow some other things ? This is very conservative.
291 // We might be able to get away with anything does not have any side
292 // effects outside of the basic block.
293 // Note: The GEPs and/or loads are not necessarily in the same block.
294 for (const Instruction &Inst : *BB) {
295 if (!BlockInsts.count(&Inst))
296 return true;
298 return false;
301 // Visit the given comparison. If this is a comparison between two valid
302 // BCE atoms, returns the comparison.
303 BCECmpBlock visitICmp(const ICmpInst *const CmpI,
304 const ICmpInst::Predicate ExpectedPredicate,
305 BaseIdentifier &BaseId) {
306 // The comparison can only be used once:
307 // - For intermediate blocks, as a branch condition.
308 // - For the final block, as an incoming value for the Phi.
309 // If there are any other uses of the comparison, we cannot merge it with
310 // other comparisons as we would create an orphan use of the value.
311 if (!CmpI->hasOneUse()) {
312 LLVM_DEBUG(dbgs() << "cmp has several uses\n");
313 return {};
315 if (CmpI->getPredicate() != ExpectedPredicate)
316 return {};
317 LLVM_DEBUG(dbgs() << "cmp "
318 << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
319 << "\n");
320 auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId);
321 if (!Lhs.BaseId)
322 return {};
323 auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId);
324 if (!Rhs.BaseId)
325 return {};
326 const auto &DL = CmpI->getModule()->getDataLayout();
327 return BCECmpBlock(std::move(Lhs), std::move(Rhs),
328 DL.getTypeSizeInBits(CmpI->getOperand(0)->getType()));
331 // Visit the given comparison block. If this is a comparison between two valid
332 // BCE atoms, returns the comparison.
333 BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block,
334 const BasicBlock *const PhiBlock,
335 BaseIdentifier &BaseId) {
336 if (Block->empty()) return {};
337 auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
338 if (!BranchI) return {};
339 LLVM_DEBUG(dbgs() << "branch\n");
340 if (BranchI->isUnconditional()) {
341 // In this case, we expect an incoming value which is the result of the
342 // comparison. This is the last link in the chain of comparisons (note
343 // that this does not mean that this is the last incoming value, blocks
344 // can be reordered).
345 auto *const CmpI = dyn_cast<ICmpInst>(Val);
346 if (!CmpI) return {};
347 LLVM_DEBUG(dbgs() << "icmp\n");
348 auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ, BaseId);
349 Result.CmpI = CmpI;
350 Result.BranchI = BranchI;
351 return Result;
352 } else {
353 // In this case, we expect a constant incoming value (the comparison is
354 // chained).
355 const auto *const Const = dyn_cast<ConstantInt>(Val);
356 LLVM_DEBUG(dbgs() << "const\n");
357 if (!Const->isZero()) return {};
358 LLVM_DEBUG(dbgs() << "false\n");
359 auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition());
360 if (!CmpI) return {};
361 LLVM_DEBUG(dbgs() << "icmp\n");
362 assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
363 BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
364 auto Result = visitICmp(
365 CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
366 BaseId);
367 Result.CmpI = CmpI;
368 Result.BranchI = BranchI;
369 return Result;
371 return {};
374 static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons,
375 BCECmpBlock &Comparison) {
376 LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName()
377 << "': Found cmp of " << Comparison.SizeBits()
378 << " bits between " << Comparison.Lhs().BaseId << " + "
379 << Comparison.Lhs().Offset << " and "
380 << Comparison.Rhs().BaseId << " + "
381 << Comparison.Rhs().Offset << "\n");
382 LLVM_DEBUG(dbgs() << "\n");
383 Comparisons.push_back(Comparison);
386 // A chain of comparisons.
387 class BCECmpChain {
388 public:
389 BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
390 AliasAnalysis *AA);
392 int size() const { return Comparisons_.size(); }
394 #ifdef MERGEICMPS_DOT_ON
395 void dump() const;
396 #endif // MERGEICMPS_DOT_ON
398 bool simplify(const TargetLibraryInfo *const TLI, AliasAnalysis *AA);
400 private:
401 static bool IsContiguous(const BCECmpBlock &First,
402 const BCECmpBlock &Second) {
403 return First.Lhs().BaseId == Second.Lhs().BaseId &&
404 First.Rhs().BaseId == Second.Rhs().BaseId &&
405 First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
406 First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
409 // Merges the given comparison blocks into one memcmp block and update
410 // branches. Comparisons are assumed to be continguous. If NextBBInChain is
411 // null, the merged block will link to the phi block.
412 void mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
413 BasicBlock *const NextBBInChain, PHINode &Phi,
414 const TargetLibraryInfo *const TLI, AliasAnalysis *AA);
416 PHINode &Phi_;
417 std::vector<BCECmpBlock> Comparisons_;
418 // The original entry block (before sorting);
419 BasicBlock *EntryBlock_;
422 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
423 AliasAnalysis *AA)
424 : Phi_(Phi) {
425 assert(!Blocks.empty() && "a chain should have at least one block");
426 // Now look inside blocks to check for BCE comparisons.
427 std::vector<BCECmpBlock> Comparisons;
428 BaseIdentifier BaseId;
429 for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) {
430 BasicBlock *const Block = Blocks[BlockIdx];
431 assert(Block && "invalid block");
432 BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block),
433 Block, Phi.getParent(), BaseId);
434 Comparison.BB = Block;
435 if (!Comparison.IsValid()) {
436 LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n");
437 return;
439 if (Comparison.doesOtherWork()) {
440 LLVM_DEBUG(dbgs() << "block '" << Comparison.BB->getName()
441 << "' does extra work besides compare\n");
442 if (Comparisons.empty()) {
443 // This is the initial block in the chain, in case this block does other
444 // work, we can try to split the block and move the irrelevant
445 // instructions to the predecessor.
447 // If this is not the initial block in the chain, splitting it wont
448 // work.
450 // As once split, there will still be instructions before the BCE cmp
451 // instructions that do other work in program order, i.e. within the
452 // chain before sorting. Unless we can abort the chain at this point
453 // and start anew.
455 // NOTE: we only handle block with single predecessor for now.
456 if (Comparison.canSplit(AA)) {
457 LLVM_DEBUG(dbgs()
458 << "Split initial block '" << Comparison.BB->getName()
459 << "' that does extra work besides compare\n");
460 Comparison.RequireSplit = true;
461 enqueueBlock(Comparisons, Comparison);
462 } else {
463 LLVM_DEBUG(dbgs()
464 << "ignoring initial block '" << Comparison.BB->getName()
465 << "' that does extra work besides compare\n");
467 continue;
469 // TODO(courbet): Right now we abort the whole chain. We could be
470 // merging only the blocks that don't do other work and resume the
471 // chain from there. For example:
472 // if (a[0] == b[0]) { // bb1
473 // if (a[1] == b[1]) { // bb2
474 // some_value = 3; //bb3
475 // if (a[2] == b[2]) { //bb3
476 // do a ton of stuff //bb4
477 // }
478 // }
479 // }
481 // This is:
483 // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
484 // \ \ \ \
485 // ne ne ne \
486 // \ \ \ v
487 // +------------+-----------+----------> bb_phi
489 // We can only merge the first two comparisons, because bb3* does
490 // "other work" (setting some_value to 3).
491 // We could still merge bb1 and bb2 though.
492 return;
494 enqueueBlock(Comparisons, Comparison);
497 // It is possible we have no suitable comparison to merge.
498 if (Comparisons.empty()) {
499 LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n");
500 return;
502 EntryBlock_ = Comparisons[0].BB;
503 Comparisons_ = std::move(Comparisons);
504 #ifdef MERGEICMPS_DOT_ON
505 errs() << "BEFORE REORDERING:\n\n";
506 dump();
507 #endif // MERGEICMPS_DOT_ON
508 // Reorder blocks by LHS. We can do that without changing the
509 // semantics because we are only accessing dereferencable memory.
510 llvm::sort(Comparisons_,
511 [](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) {
512 return LhsBlock.Lhs() < RhsBlock.Lhs();
514 #ifdef MERGEICMPS_DOT_ON
515 errs() << "AFTER REORDERING:\n\n";
516 dump();
517 #endif // MERGEICMPS_DOT_ON
520 #ifdef MERGEICMPS_DOT_ON
521 void BCECmpChain::dump() const {
522 errs() << "digraph dag {\n";
523 errs() << " graph [bgcolor=transparent];\n";
524 errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n";
525 errs() << " edge [color=black];\n";
526 for (size_t I = 0; I < Comparisons_.size(); ++I) {
527 const auto &Comparison = Comparisons_[I];
528 errs() << " \"" << I << "\" [label=\"%"
529 << Comparison.Lhs().Base()->getName() << " + "
530 << Comparison.Lhs().Offset << " == %"
531 << Comparison.Rhs().Base()->getName() << " + "
532 << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8)
533 << " bytes)\"];\n";
534 const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB);
535 if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n";
536 errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n";
538 errs() << " \"Phi\" [label=\"Phi\"];\n";
539 errs() << "}\n\n";
541 #endif // MERGEICMPS_DOT_ON
543 bool BCECmpChain::simplify(const TargetLibraryInfo *const TLI,
544 AliasAnalysis *AA) {
545 // First pass to check if there is at least one merge. If not, we don't do
546 // anything and we keep analysis passes intact.
548 bool AtLeastOneMerged = false;
549 for (size_t I = 1; I < Comparisons_.size(); ++I) {
550 if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) {
551 AtLeastOneMerged = true;
552 break;
555 if (!AtLeastOneMerged) return false;
558 // Remove phi references to comparison blocks, they will be rebuilt as we
559 // merge the blocks.
560 for (const auto &Comparison : Comparisons_) {
561 Phi_.removeIncomingValue(Comparison.BB, false);
564 // If entry block is part of the chain, we need to make the first block
565 // of the chain the new entry block of the function.
566 BasicBlock *Entry = &Comparisons_[0].BB->getParent()->getEntryBlock();
567 for (size_t I = 1; I < Comparisons_.size(); ++I) {
568 if (Entry == Comparisons_[I].BB) {
569 BasicBlock *NEntryBB = BasicBlock::Create(Entry->getContext(), "",
570 Entry->getParent(), Entry);
571 BranchInst::Create(Entry, NEntryBB);
572 break;
576 // Point the predecessors of the chain to the first comparison block (which is
577 // the new entry point) and update the entry block of the chain.
578 if (EntryBlock_ != Comparisons_[0].BB) {
579 EntryBlock_->replaceAllUsesWith(Comparisons_[0].BB);
580 EntryBlock_ = Comparisons_[0].BB;
583 // Effectively merge blocks.
584 int NumMerged = 1;
585 for (size_t I = 1; I < Comparisons_.size(); ++I) {
586 if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) {
587 ++NumMerged;
588 } else {
589 // Merge all previous comparisons and start a new merge block.
590 mergeComparisons(
591 makeArrayRef(Comparisons_).slice(I - NumMerged, NumMerged),
592 Comparisons_[I].BB, Phi_, TLI, AA);
593 NumMerged = 1;
596 mergeComparisons(makeArrayRef(Comparisons_)
597 .slice(Comparisons_.size() - NumMerged, NumMerged),
598 nullptr, Phi_, TLI, AA);
600 return true;
603 void BCECmpChain::mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
604 BasicBlock *const NextBBInChain,
605 PHINode &Phi,
606 const TargetLibraryInfo *const TLI,
607 AliasAnalysis *AA) {
608 assert(!Comparisons.empty());
609 const auto &FirstComparison = *Comparisons.begin();
610 BasicBlock *const BB = FirstComparison.BB;
611 LLVMContext &Context = BB->getContext();
613 if (Comparisons.size() >= 2) {
614 // If there is one block that requires splitting, we do it now, i.e.
615 // just before we know we will collapse the chain. The instructions
616 // can be executed before any of the instructions in the chain.
617 auto C = std::find_if(Comparisons.begin(), Comparisons.end(),
618 [](const BCECmpBlock &B) { return B.RequireSplit; });
619 if (C != Comparisons.end())
620 C->split(EntryBlock_, AA);
622 LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons\n");
623 const auto TotalSize =
624 std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
625 [](int Size, const BCECmpBlock &C) {
626 return Size + C.SizeBits();
627 }) /
630 // Incoming edges do not need to be updated, and both GEPs are already
631 // computing the right address, we just need to:
632 // - replace the two loads and the icmp with the memcmp
633 // - update the branch
634 // - update the incoming values in the phi.
635 FirstComparison.BranchI->eraseFromParent();
636 FirstComparison.CmpI->eraseFromParent();
637 FirstComparison.Lhs().LoadI->eraseFromParent();
638 FirstComparison.Rhs().LoadI->eraseFromParent();
640 IRBuilder<> Builder(BB);
641 const auto &DL = Phi.getModule()->getDataLayout();
642 Value *const MemCmpCall = emitMemCmp(
643 FirstComparison.Lhs().GEP, FirstComparison.Rhs().GEP,
644 ConstantInt::get(DL.getIntPtrType(Context), TotalSize),
645 Builder, DL, TLI);
646 Value *const MemCmpIsZero = Builder.CreateICmpEQ(
647 MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0));
649 // Add a branch to the next basic block in the chain.
650 if (NextBBInChain) {
651 Builder.CreateCondBr(MemCmpIsZero, NextBBInChain, Phi.getParent());
652 Phi.addIncoming(ConstantInt::getFalse(Context), BB);
653 } else {
654 Builder.CreateBr(Phi.getParent());
655 Phi.addIncoming(MemCmpIsZero, BB);
658 // Delete merged blocks.
659 for (size_t I = 1; I < Comparisons.size(); ++I) {
660 BasicBlock *CBB = Comparisons[I].BB;
661 CBB->replaceAllUsesWith(BB);
662 CBB->eraseFromParent();
664 } else {
665 assert(Comparisons.size() == 1);
666 // There are no blocks to merge, but we still need to update the branches.
667 LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n");
668 if (NextBBInChain) {
669 if (FirstComparison.BranchI->isConditional()) {
670 LLVM_DEBUG(dbgs() << "conditional -> conditional\n");
671 // Just update the "true" target, the "false" target should already be
672 // the phi block.
673 assert(FirstComparison.BranchI->getSuccessor(1) == Phi.getParent());
674 FirstComparison.BranchI->setSuccessor(0, NextBBInChain);
675 Phi.addIncoming(ConstantInt::getFalse(Context), BB);
676 } else {
677 LLVM_DEBUG(dbgs() << "unconditional -> conditional\n");
678 // Replace the unconditional branch by a conditional one.
679 FirstComparison.BranchI->eraseFromParent();
680 IRBuilder<> Builder(BB);
681 Builder.CreateCondBr(FirstComparison.CmpI, NextBBInChain,
682 Phi.getParent());
683 Phi.addIncoming(FirstComparison.CmpI, BB);
685 } else {
686 if (FirstComparison.BranchI->isConditional()) {
687 LLVM_DEBUG(dbgs() << "conditional -> unconditional\n");
688 // Replace the conditional branch by an unconditional one.
689 FirstComparison.BranchI->eraseFromParent();
690 IRBuilder<> Builder(BB);
691 Builder.CreateBr(Phi.getParent());
692 Phi.addIncoming(FirstComparison.CmpI, BB);
693 } else {
694 LLVM_DEBUG(dbgs() << "unconditional -> unconditional\n");
695 Phi.addIncoming(FirstComparison.CmpI, BB);
701 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
702 BasicBlock *const LastBlock,
703 int NumBlocks) {
704 // Walk up from the last block to find other blocks.
705 std::vector<BasicBlock *> Blocks(NumBlocks);
706 assert(LastBlock && "invalid last block");
707 BasicBlock *CurBlock = LastBlock;
708 for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
709 if (CurBlock->hasAddressTaken()) {
710 // Somebody is jumping to the block through an address, all bets are
711 // off.
712 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
713 << " has its address taken\n");
714 return {};
716 Blocks[BlockIndex] = CurBlock;
717 auto *SinglePredecessor = CurBlock->getSinglePredecessor();
718 if (!SinglePredecessor) {
719 // The block has two or more predecessors.
720 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
721 << " has two or more predecessors\n");
722 return {};
724 if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
725 // The block does not link back to the phi.
726 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
727 << " does not link back to the phi\n");
728 return {};
730 CurBlock = SinglePredecessor;
732 Blocks[0] = CurBlock;
733 return Blocks;
736 bool processPhi(PHINode &Phi, const TargetLibraryInfo *const TLI,
737 AliasAnalysis *AA) {
738 LLVM_DEBUG(dbgs() << "processPhi()\n");
739 if (Phi.getNumIncomingValues() <= 1) {
740 LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n");
741 return false;
743 // We are looking for something that has the following structure:
744 // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
745 // \ \ \ \
746 // ne ne ne \
747 // \ \ \ v
748 // +------------+-----------+----------> bb_phi
750 // - The last basic block (bb4 here) must branch unconditionally to bb_phi.
751 // It's the only block that contributes a non-constant value to the Phi.
752 // - All other blocks (b1, b2, b3) must have exactly two successors, one of
753 // them being the phi block.
754 // - All intermediate blocks (bb2, bb3) must have only one predecessor.
755 // - Blocks cannot do other work besides the comparison, see doesOtherWork()
757 // The blocks are not necessarily ordered in the phi, so we start from the
758 // last block and reconstruct the order.
759 BasicBlock *LastBlock = nullptr;
760 for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
761 if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue;
762 if (LastBlock) {
763 // There are several non-constant values.
764 LLVM_DEBUG(dbgs() << "skip: several non-constant values\n");
765 return false;
767 if (!isa<ICmpInst>(Phi.getIncomingValue(I)) ||
768 cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() !=
769 Phi.getIncomingBlock(I)) {
770 // Non-constant incoming value is not from a cmp instruction or not
771 // produced by the last block. We could end up processing the value
772 // producing block more than once.
774 // This is an uncommon case, so we bail.
775 LLVM_DEBUG(
776 dbgs()
777 << "skip: non-constant value not from cmp or not from last block.\n");
778 return false;
780 LastBlock = Phi.getIncomingBlock(I);
782 if (!LastBlock) {
783 // There is no non-constant block.
784 LLVM_DEBUG(dbgs() << "skip: no non-constant block\n");
785 return false;
787 if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
788 LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n");
789 return false;
792 const auto Blocks =
793 getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
794 if (Blocks.empty()) return false;
795 BCECmpChain CmpChain(Blocks, Phi, AA);
797 if (CmpChain.size() < 2) {
798 LLVM_DEBUG(dbgs() << "skip: only one compare block\n");
799 return false;
802 return CmpChain.simplify(TLI, AA);
805 class MergeICmps : public FunctionPass {
806 public:
807 static char ID;
809 MergeICmps() : FunctionPass(ID) {
810 initializeMergeICmpsPass(*PassRegistry::getPassRegistry());
813 bool runOnFunction(Function &F) override {
814 if (skipFunction(F)) return false;
815 const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
816 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
817 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
818 auto PA = runImpl(F, &TLI, &TTI, AA);
819 return !PA.areAllPreserved();
822 private:
823 void getAnalysisUsage(AnalysisUsage &AU) const override {
824 AU.addRequired<TargetLibraryInfoWrapperPass>();
825 AU.addRequired<TargetTransformInfoWrapperPass>();
826 AU.addRequired<AAResultsWrapperPass>();
829 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
830 const TargetTransformInfo *TTI, AliasAnalysis *AA);
833 PreservedAnalyses MergeICmps::runImpl(Function &F, const TargetLibraryInfo *TLI,
834 const TargetTransformInfo *TTI,
835 AliasAnalysis *AA) {
836 LLVM_DEBUG(dbgs() << "MergeICmpsPass: " << F.getName() << "\n");
838 // We only try merging comparisons if the target wants to expand memcmp later.
839 // The rationale is to avoid turning small chains into memcmp calls.
840 if (!TTI->enableMemCmpExpansion(true)) return PreservedAnalyses::all();
842 // If we don't have memcmp avaiable we can't emit calls to it.
843 if (!TLI->has(LibFunc_memcmp))
844 return PreservedAnalyses::all();
846 bool MadeChange = false;
848 for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) {
849 // A Phi operation is always first in a basic block.
850 if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin()))
851 MadeChange |= processPhi(*Phi, TLI, AA);
854 if (MadeChange) return PreservedAnalyses::none();
855 return PreservedAnalyses::all();
858 } // namespace
860 char MergeICmps::ID = 0;
861 INITIALIZE_PASS_BEGIN(MergeICmps, "mergeicmps",
862 "Merge contiguous icmps into a memcmp", false, false)
863 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
864 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
865 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
866 INITIALIZE_PASS_END(MergeICmps, "mergeicmps",
867 "Merge contiguous icmps into a memcmp", false, false)
869 Pass *llvm::createMergeICmpsPass() { return new MergeICmps(); }