1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block. This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number). Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly. In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes. The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen. The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
47 /// We also do not perform elimination by using any published algorithm. All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
52 //===----------------------------------------------------------------------===//
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/SparseBitVector.h"
68 #include "llvm/ADT/Statistic.h"
69 #include "llvm/ADT/iterator_range.h"
70 #include "llvm/Analysis/AliasAnalysis.h"
71 #include "llvm/Analysis/AssumptionCache.h"
72 #include "llvm/Analysis/CFGPrinter.h"
73 #include "llvm/Analysis/ConstantFolding.h"
74 #include "llvm/Analysis/GlobalsModRef.h"
75 #include "llvm/Analysis/InstructionSimplify.h"
76 #include "llvm/Analysis/MemoryBuiltins.h"
77 #include "llvm/Analysis/MemorySSA.h"
78 #include "llvm/Analysis/TargetLibraryInfo.h"
79 #include "llvm/Transforms/Utils/Local.h"
80 #include "llvm/IR/Argument.h"
81 #include "llvm/IR/BasicBlock.h"
82 #include "llvm/IR/Constant.h"
83 #include "llvm/IR/Constants.h"
84 #include "llvm/IR/Dominators.h"
85 #include "llvm/IR/Function.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/Use.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/Pass.h"
97 #include "llvm/Support/Allocator.h"
98 #include "llvm/Support/ArrayRecycler.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CommandLine.h"
101 #include "llvm/Support/Debug.h"
102 #include "llvm/Support/DebugCounter.h"
103 #include "llvm/Support/ErrorHandling.h"
104 #include "llvm/Support/PointerLikeTypeTraits.h"
105 #include "llvm/Support/raw_ostream.h"
106 #include "llvm/Transforms/Scalar.h"
107 #include "llvm/Transforms/Scalar/GVNExpression.h"
108 #include "llvm/Transforms/Utils/PredicateInfo.h"
109 #include "llvm/Transforms/Utils/VNCoercion.h"
122 using namespace llvm
;
123 using namespace llvm::GVNExpression
;
124 using namespace llvm::VNCoercion
;
126 #define DEBUG_TYPE "newgvn"
128 STATISTIC(NumGVNInstrDeleted
, "Number of instructions deleted");
129 STATISTIC(NumGVNBlocksDeleted
, "Number of blocks deleted");
130 STATISTIC(NumGVNOpsSimplified
, "Number of Expressions simplified");
131 STATISTIC(NumGVNPhisAllSame
, "Number of PHIs whos arguments are all the same");
132 STATISTIC(NumGVNMaxIterations
,
133 "Maximum Number of iterations it took to converge GVN");
134 STATISTIC(NumGVNLeaderChanges
, "Number of leader changes");
135 STATISTIC(NumGVNSortedLeaderChanges
, "Number of sorted leader changes");
136 STATISTIC(NumGVNAvoidedSortedLeaderChanges
,
137 "Number of avoided sorted leader changes");
138 STATISTIC(NumGVNDeadStores
, "Number of redundant/dead stores eliminated");
139 STATISTIC(NumGVNPHIOfOpsCreated
, "Number of PHI of ops created");
140 STATISTIC(NumGVNPHIOfOpsEliminations
,
141 "Number of things eliminated using PHI of ops");
142 DEBUG_COUNTER(VNCounter
, "newgvn-vn",
143 "Controls which instructions are value numbered");
144 DEBUG_COUNTER(PHIOfOpsCounter
, "newgvn-phi",
145 "Controls which instructions we create phi of ops for");
146 // Currently store defining access refinement is too slow due to basicaa being
147 // egregiously slow. This flag lets us keep it working while we work on this
149 static cl::opt
<bool> EnableStoreRefinement("enable-store-refinement",
150 cl::init(false), cl::Hidden
);
152 /// Currently, the generation "phi of ops" can result in correctness issues.
153 static cl::opt
<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
156 //===----------------------------------------------------------------------===//
158 //===----------------------------------------------------------------------===//
162 namespace GVNExpression
{
164 Expression::~Expression() = default;
165 BasicExpression::~BasicExpression() = default;
166 CallExpression::~CallExpression() = default;
167 LoadExpression::~LoadExpression() = default;
168 StoreExpression::~StoreExpression() = default;
169 AggregateValueExpression::~AggregateValueExpression() = default;
170 PHIExpression::~PHIExpression() = default;
172 } // end namespace GVNExpression
173 } // end namespace llvm
177 // Tarjan's SCC finding algorithm with Nuutila's improvements
178 // SCCIterator is actually fairly complex for the simple thing we want.
179 // It also wants to hand us SCC's that are unrelated to the phi node we ask
180 // about, and have us process them there or risk redoing work.
181 // Graph traits over a filter iterator also doesn't work that well here.
182 // This SCC finder is specialized to walk use-def chains, and only follows
184 // not generic values (arguments, etc).
186 TarjanSCC() : Components(1) {}
188 void Start(const Instruction
*Start
) {
189 if (Root
.lookup(Start
) == 0)
193 const SmallPtrSetImpl
<const Value
*> &getComponentFor(const Value
*V
) const {
194 unsigned ComponentID
= ValueToComponent
.lookup(V
);
196 assert(ComponentID
> 0 &&
197 "Asking for a component for a value we never processed");
198 return Components
[ComponentID
];
202 void FindSCC(const Instruction
*I
) {
204 // Store the DFS Number we had before it possibly gets incremented.
205 unsigned int OurDFS
= DFSNum
;
206 for (auto &Op
: I
->operands()) {
207 if (auto *InstOp
= dyn_cast
<Instruction
>(Op
)) {
208 if (Root
.lookup(Op
) == 0)
210 if (!InComponent
.count(Op
))
211 Root
[I
] = std::min(Root
.lookup(I
), Root
.lookup(Op
));
214 // See if we really were the root of a component, by seeing if we still have
215 // our DFSNumber. If we do, we are the root of the component, and we have
216 // completed a component. If we do not, we are not the root of a component,
217 // and belong on the component stack.
218 if (Root
.lookup(I
) == OurDFS
) {
219 unsigned ComponentID
= Components
.size();
220 Components
.resize(Components
.size() + 1);
221 auto &Component
= Components
.back();
223 LLVM_DEBUG(dbgs() << "Component root is " << *I
<< "\n");
224 InComponent
.insert(I
);
225 ValueToComponent
[I
] = ComponentID
;
226 // Pop a component off the stack and label it.
227 while (!Stack
.empty() && Root
.lookup(Stack
.back()) >= OurDFS
) {
228 auto *Member
= Stack
.back();
229 LLVM_DEBUG(dbgs() << "Component member is " << *Member
<< "\n");
230 Component
.insert(Member
);
231 InComponent
.insert(Member
);
232 ValueToComponent
[Member
] = ComponentID
;
236 // Part of a component, push to stack
241 unsigned int DFSNum
= 1;
242 SmallPtrSet
<const Value
*, 8> InComponent
;
243 DenseMap
<const Value
*, unsigned int> Root
;
244 SmallVector
<const Value
*, 8> Stack
;
246 // Store the components as vector of ptr sets, because we need the topo order
247 // of SCC's, but not individual member order
248 SmallVector
<SmallPtrSet
<const Value
*, 8>, 8> Components
;
250 DenseMap
<const Value
*, unsigned> ValueToComponent
;
253 // Congruence classes represent the set of expressions/instructions
254 // that are all the same *during some scope in the function*.
255 // That is, because of the way we perform equality propagation, and
256 // because of memory value numbering, it is not correct to assume
257 // you can willy-nilly replace any member with any other at any
258 // point in the function.
260 // For any Value in the Member set, it is valid to replace any dominated member
263 // Every congruence class has a leader, and the leader is used to symbolize
264 // instructions in a canonical way (IE every operand of an instruction that is a
265 // member of the same congruence class will always be replaced with leader
266 // during symbolization). To simplify symbolization, we keep the leader as a
267 // constant if class can be proved to be a constant value. Otherwise, the
268 // leader is the member of the value set with the smallest DFS number. Each
269 // congruence class also has a defining expression, though the expression may be
270 // null. If it exists, it can be used for forward propagation and reassociation
273 // For memory, we also track a representative MemoryAccess, and a set of memory
274 // members for MemoryPhis (which have no real instructions). Note that for
275 // memory, it seems tempting to try to split the memory members into a
276 // MemoryCongruenceClass or something. Unfortunately, this does not work
277 // easily. The value numbering of a given memory expression depends on the
278 // leader of the memory congruence class, and the leader of memory congruence
279 // class depends on the value numbering of a given memory expression. This
280 // leads to wasted propagation, and in some cases, missed optimization. For
281 // example: If we had value numbered two stores together before, but now do not,
282 // we move them to a new value congruence class. This in turn will move at one
283 // of the memorydefs to a new memory congruence class. Which in turn, affects
284 // the value numbering of the stores we just value numbered (because the memory
285 // congruence class is part of the value number). So while theoretically
286 // possible to split them up, it turns out to be *incredibly* complicated to get
287 // it to work right, because of the interdependency. While structurally
288 // slightly messier, it is algorithmically much simpler and faster to do what we
289 // do here, and track them both at once in the same class.
290 // Note: The default iterators for this class iterate over values
291 class CongruenceClass
{
293 using MemberType
= Value
;
294 using MemberSet
= SmallPtrSet
<MemberType
*, 4>;
295 using MemoryMemberType
= MemoryPhi
;
296 using MemoryMemberSet
= SmallPtrSet
<const MemoryMemberType
*, 2>;
298 explicit CongruenceClass(unsigned ID
) : ID(ID
) {}
299 CongruenceClass(unsigned ID
, Value
*Leader
, const Expression
*E
)
300 : ID(ID
), RepLeader(Leader
), DefiningExpr(E
) {}
302 unsigned getID() const { return ID
; }
304 // True if this class has no members left. This is mainly used for assertion
305 // purposes, and for skipping empty classes.
306 bool isDead() const {
307 // If it's both dead from a value perspective, and dead from a memory
308 // perspective, it's really dead.
309 return empty() && memory_empty();
313 Value
*getLeader() const { return RepLeader
; }
314 void setLeader(Value
*Leader
) { RepLeader
= Leader
; }
315 const std::pair
<Value
*, unsigned int> &getNextLeader() const {
318 void resetNextLeader() { NextLeader
= {nullptr, ~0}; }
319 void addPossibleNextLeader(std::pair
<Value
*, unsigned int> LeaderPair
) {
320 if (LeaderPair
.second
< NextLeader
.second
)
321 NextLeader
= LeaderPair
;
324 Value
*getStoredValue() const { return RepStoredValue
; }
325 void setStoredValue(Value
*Leader
) { RepStoredValue
= Leader
; }
326 const MemoryAccess
*getMemoryLeader() const { return RepMemoryAccess
; }
327 void setMemoryLeader(const MemoryAccess
*Leader
) { RepMemoryAccess
= Leader
; }
329 // Forward propagation info
330 const Expression
*getDefiningExpr() const { return DefiningExpr
; }
333 bool empty() const { return Members
.empty(); }
334 unsigned size() const { return Members
.size(); }
335 MemberSet::const_iterator
begin() const { return Members
.begin(); }
336 MemberSet::const_iterator
end() const { return Members
.end(); }
337 void insert(MemberType
*M
) { Members
.insert(M
); }
338 void erase(MemberType
*M
) { Members
.erase(M
); }
339 void swap(MemberSet
&Other
) { Members
.swap(Other
); }
342 bool memory_empty() const { return MemoryMembers
.empty(); }
343 unsigned memory_size() const { return MemoryMembers
.size(); }
344 MemoryMemberSet::const_iterator
memory_begin() const {
345 return MemoryMembers
.begin();
347 MemoryMemberSet::const_iterator
memory_end() const {
348 return MemoryMembers
.end();
350 iterator_range
<MemoryMemberSet::const_iterator
> memory() const {
351 return make_range(memory_begin(), memory_end());
354 void memory_insert(const MemoryMemberType
*M
) { MemoryMembers
.insert(M
); }
355 void memory_erase(const MemoryMemberType
*M
) { MemoryMembers
.erase(M
); }
358 unsigned getStoreCount() const { return StoreCount
; }
359 void incStoreCount() { ++StoreCount
; }
360 void decStoreCount() {
361 assert(StoreCount
!= 0 && "Store count went negative");
365 // True if this class has no memory members.
366 bool definesNoMemory() const { return StoreCount
== 0 && memory_empty(); }
368 // Return true if two congruence classes are equivalent to each other. This
369 // means that every field but the ID number and the dead field are equivalent.
370 bool isEquivalentTo(const CongruenceClass
*Other
) const {
376 if (std::tie(StoreCount
, RepLeader
, RepStoredValue
, RepMemoryAccess
) !=
377 std::tie(Other
->StoreCount
, Other
->RepLeader
, Other
->RepStoredValue
,
378 Other
->RepMemoryAccess
))
380 if (DefiningExpr
!= Other
->DefiningExpr
)
381 if (!DefiningExpr
|| !Other
->DefiningExpr
||
382 *DefiningExpr
!= *Other
->DefiningExpr
)
385 if (Members
.size() != Other
->Members
.size())
388 return all_of(Members
,
389 [&](const Value
*V
) { return Other
->Members
.count(V
); });
395 // Representative leader.
396 Value
*RepLeader
= nullptr;
398 // The most dominating leader after our current leader, because the member set
399 // is not sorted and is expensive to keep sorted all the time.
400 std::pair
<Value
*, unsigned int> NextLeader
= {nullptr, ~0U};
402 // If this is represented by a store, the value of the store.
403 Value
*RepStoredValue
= nullptr;
405 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
407 const MemoryAccess
*RepMemoryAccess
= nullptr;
409 // Defining Expression.
410 const Expression
*DefiningExpr
= nullptr;
412 // Actual members of this class.
415 // This is the set of MemoryPhis that exist in the class. MemoryDefs and
416 // MemoryUses have real instructions representing them, so we only need to
417 // track MemoryPhis here.
418 MemoryMemberSet MemoryMembers
;
420 // Number of stores in this congruence class.
421 // This is used so we can detect store equivalence changes properly.
425 } // end anonymous namespace
429 struct ExactEqualsExpression
{
432 explicit ExactEqualsExpression(const Expression
&E
) : E(E
) {}
434 hash_code
getComputedHash() const { return E
.getComputedHash(); }
436 bool operator==(const Expression
&Other
) const {
437 return E
.exactlyEquals(Other
);
441 template <> struct DenseMapInfo
<const Expression
*> {
442 static const Expression
*getEmptyKey() {
443 auto Val
= static_cast<uintptr_t>(-1);
444 Val
<<= PointerLikeTypeTraits
<const Expression
*>::NumLowBitsAvailable
;
445 return reinterpret_cast<const Expression
*>(Val
);
448 static const Expression
*getTombstoneKey() {
449 auto Val
= static_cast<uintptr_t>(~1U);
450 Val
<<= PointerLikeTypeTraits
<const Expression
*>::NumLowBitsAvailable
;
451 return reinterpret_cast<const Expression
*>(Val
);
454 static unsigned getHashValue(const Expression
*E
) {
455 return E
->getComputedHash();
458 static unsigned getHashValue(const ExactEqualsExpression
&E
) {
459 return E
.getComputedHash();
462 static bool isEqual(const ExactEqualsExpression
&LHS
, const Expression
*RHS
) {
463 if (RHS
== getTombstoneKey() || RHS
== getEmptyKey())
468 static bool isEqual(const Expression
*LHS
, const Expression
*RHS
) {
471 if (LHS
== getTombstoneKey() || RHS
== getTombstoneKey() ||
472 LHS
== getEmptyKey() || RHS
== getEmptyKey())
474 // Compare hashes before equality. This is *not* what the hashtable does,
475 // since it is computing it modulo the number of buckets, whereas we are
476 // using the full hash keyspace. Since the hashes are precomputed, this
477 // check is *much* faster than equality.
478 if (LHS
->getComputedHash() != RHS
->getComputedHash())
484 } // end namespace llvm
491 const TargetLibraryInfo
*TLI
;
494 MemorySSAWalker
*MSSAWalker
;
495 const DataLayout
&DL
;
496 std::unique_ptr
<PredicateInfo
> PredInfo
;
498 // These are the only two things the create* functions should have
499 // side-effects on due to allocating memory.
500 mutable BumpPtrAllocator ExpressionAllocator
;
501 mutable ArrayRecycler
<Value
*> ArgRecycler
;
502 mutable TarjanSCC SCCFinder
;
503 const SimplifyQuery SQ
;
505 // Number of function arguments, used by ranking
506 unsigned int NumFuncArgs
;
508 // RPOOrdering of basic blocks
509 DenseMap
<const DomTreeNode
*, unsigned> RPOOrdering
;
511 // Congruence class info.
513 // This class is called INITIAL in the paper. It is the class everything
514 // startsout in, and represents any value. Being an optimistic analysis,
515 // anything in the TOP class has the value TOP, which is indeterminate and
516 // equivalent to everything.
517 CongruenceClass
*TOPClass
;
518 std::vector
<CongruenceClass
*> CongruenceClasses
;
519 unsigned NextCongruenceNum
;
522 DenseMap
<Value
*, CongruenceClass
*> ValueToClass
;
523 DenseMap
<Value
*, const Expression
*> ValueToExpression
;
525 // Value PHI handling, used to make equivalence between phi(op, op) and
527 // These mappings just store various data that would normally be part of the
529 SmallPtrSet
<const Instruction
*, 8> PHINodeUses
;
531 DenseMap
<const Value
*, bool> OpSafeForPHIOfOps
;
533 // Map a temporary instruction we created to a parent block.
534 DenseMap
<const Value
*, BasicBlock
*> TempToBlock
;
536 // Map between the already in-program instructions and the temporary phis we
537 // created that they are known equivalent to.
538 DenseMap
<const Value
*, PHINode
*> RealToTemp
;
540 // In order to know when we should re-process instructions that have
541 // phi-of-ops, we track the set of expressions that they needed as
542 // leaders. When we discover new leaders for those expressions, we process the
543 // associated phi-of-op instructions again in case they have changed. The
544 // other way they may change is if they had leaders, and those leaders
545 // disappear. However, at the point they have leaders, there are uses of the
546 // relevant operands in the created phi node, and so they will get reprocessed
547 // through the normal user marking we perform.
548 mutable DenseMap
<const Value
*, SmallPtrSet
<Value
*, 2>> AdditionalUsers
;
549 DenseMap
<const Expression
*, SmallPtrSet
<Instruction
*, 2>>
550 ExpressionToPhiOfOps
;
552 // Map from temporary operation to MemoryAccess.
553 DenseMap
<const Instruction
*, MemoryUseOrDef
*> TempToMemory
;
555 // Set of all temporary instructions we created.
556 // Note: This will include instructions that were just created during value
557 // numbering. The way to test if something is using them is to check
559 DenseSet
<Instruction
*> AllTempInstructions
;
561 // This is the set of instructions to revisit on a reachability change. At
562 // the end of the main iteration loop it will contain at least all the phi of
563 // ops instructions that will be changed to phis, as well as regular phis.
564 // During the iteration loop, it may contain other things, such as phi of ops
565 // instructions that used edge reachability to reach a result, and so need to
566 // be revisited when the edge changes, independent of whether the phi they
567 // depended on changes.
568 DenseMap
<BasicBlock
*, SparseBitVector
<>> RevisitOnReachabilityChange
;
570 // Mapping from predicate info we used to the instructions we used it with.
571 // In order to correctly ensure propagation, we must keep track of what
572 // comparisons we used, so that when the values of the comparisons change, we
573 // propagate the information to the places we used the comparison.
574 mutable DenseMap
<const Value
*, SmallPtrSet
<Instruction
*, 2>>
577 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for
578 // stores, we no longer can rely solely on the def-use chains of MemorySSA.
579 mutable DenseMap
<const MemoryAccess
*, SmallPtrSet
<MemoryAccess
*, 2>>
582 // A table storing which memorydefs/phis represent a memory state provably
583 // equivalent to another memory state.
584 // We could use the congruence class machinery, but the MemoryAccess's are
585 // abstract memory states, so they can only ever be equivalent to each other,
586 // and not to constants, etc.
587 DenseMap
<const MemoryAccess
*, CongruenceClass
*> MemoryAccessToClass
;
589 // We could, if we wanted, build MemoryPhiExpressions and
590 // MemoryVariableExpressions, etc, and value number them the same way we value
591 // number phi expressions. For the moment, this seems like overkill. They
592 // can only exist in one of three states: they can be TOP (equal to
593 // everything), Equivalent to something else, or unique. Because we do not
594 // create expressions for them, we need to simulate leader change not just
595 // when they change class, but when they change state. Note: We can do the
596 // same thing for phis, and avoid having phi expressions if we wanted, We
597 // should eventually unify in one direction or the other, so this is a little
598 // bit of an experiment in which turns out easier to maintain.
599 enum MemoryPhiState
{ MPS_Invalid
, MPS_TOP
, MPS_Equivalent
, MPS_Unique
};
600 DenseMap
<const MemoryPhi
*, MemoryPhiState
> MemoryPhiState
;
602 enum InstCycleState
{ ICS_Unknown
, ICS_CycleFree
, ICS_Cycle
};
603 mutable DenseMap
<const Instruction
*, InstCycleState
> InstCycleState
;
605 // Expression to class mapping.
606 using ExpressionClassMap
= DenseMap
<const Expression
*, CongruenceClass
*>;
607 ExpressionClassMap ExpressionToClass
;
609 // We have a single expression that represents currently DeadExpressions.
610 // For dead expressions we can prove will stay dead, we mark them with
611 // DFS number zero. However, it's possible in the case of phi nodes
612 // for us to assume/prove all arguments are dead during fixpointing.
613 // We use DeadExpression for that case.
614 DeadExpression
*SingletonDeadExpression
= nullptr;
616 // Which values have changed as a result of leader changes.
617 SmallPtrSet
<Value
*, 8> LeaderChanges
;
619 // Reachability info.
620 using BlockEdge
= BasicBlockEdge
;
621 DenseSet
<BlockEdge
> ReachableEdges
;
622 SmallPtrSet
<const BasicBlock
*, 8> ReachableBlocks
;
624 // This is a bitvector because, on larger functions, we may have
625 // thousands of touched instructions at once (entire blocks,
626 // instructions with hundreds of uses, etc). Even with optimization
627 // for when we mark whole blocks as touched, when this was a
628 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
629 // the time in GVN just managing this list. The bitvector, on the
630 // other hand, efficiently supports test/set/clear of both
631 // individual and ranges, as well as "find next element" This
632 // enables us to use it as a worklist with essentially 0 cost.
633 BitVector TouchedInstructions
;
635 DenseMap
<const BasicBlock
*, std::pair
<unsigned, unsigned>> BlockInstRange
;
638 // Debugging for how many times each block and instruction got processed.
639 DenseMap
<const Value
*, unsigned> ProcessedCount
;
643 // This contains a mapping from Instructions to DFS numbers.
644 // The numbering starts at 1. An instruction with DFS number zero
645 // means that the instruction is dead.
646 DenseMap
<const Value
*, unsigned> InstrDFS
;
648 // This contains the mapping DFS numbers to instructions.
649 SmallVector
<Value
*, 32> DFSToInstr
;
652 SmallPtrSet
<Instruction
*, 8> InstructionsToErase
;
655 NewGVN(Function
&F
, DominatorTree
*DT
, AssumptionCache
*AC
,
656 TargetLibraryInfo
*TLI
, AliasAnalysis
*AA
, MemorySSA
*MSSA
,
657 const DataLayout
&DL
)
658 : F(F
), DT(DT
), TLI(TLI
), AA(AA
), MSSA(MSSA
), DL(DL
),
659 PredInfo(make_unique
<PredicateInfo
>(F
, *DT
, *AC
)),
660 SQ(DL
, TLI
, DT
, AC
, /*CtxI=*/nullptr, /*UseInstrInfo=*/false) {}
665 // Expression handling.
666 const Expression
*createExpression(Instruction
*) const;
667 const Expression
*createBinaryExpression(unsigned, Type
*, Value
*, Value
*,
668 Instruction
*) const;
670 // Our canonical form for phi arguments is a pair of incoming value, incoming
672 using ValPair
= std::pair
<Value
*, BasicBlock
*>;
674 PHIExpression
*createPHIExpression(ArrayRef
<ValPair
>, const Instruction
*,
675 BasicBlock
*, bool &HasBackEdge
,
676 bool &OriginalOpsConstant
) const;
677 const DeadExpression
*createDeadExpression() const;
678 const VariableExpression
*createVariableExpression(Value
*) const;
679 const ConstantExpression
*createConstantExpression(Constant
*) const;
680 const Expression
*createVariableOrConstant(Value
*V
) const;
681 const UnknownExpression
*createUnknownExpression(Instruction
*) const;
682 const StoreExpression
*createStoreExpression(StoreInst
*,
683 const MemoryAccess
*) const;
684 LoadExpression
*createLoadExpression(Type
*, Value
*, LoadInst
*,
685 const MemoryAccess
*) const;
686 const CallExpression
*createCallExpression(CallInst
*,
687 const MemoryAccess
*) const;
688 const AggregateValueExpression
*
689 createAggregateValueExpression(Instruction
*) const;
690 bool setBasicExpressionInfo(Instruction
*, BasicExpression
*) const;
692 // Congruence class handling.
693 CongruenceClass
*createCongruenceClass(Value
*Leader
, const Expression
*E
) {
694 auto *result
= new CongruenceClass(NextCongruenceNum
++, Leader
, E
);
695 CongruenceClasses
.emplace_back(result
);
699 CongruenceClass
*createMemoryClass(MemoryAccess
*MA
) {
700 auto *CC
= createCongruenceClass(nullptr, nullptr);
701 CC
->setMemoryLeader(MA
);
705 CongruenceClass
*ensureLeaderOfMemoryClass(MemoryAccess
*MA
) {
706 auto *CC
= getMemoryClass(MA
);
707 if (CC
->getMemoryLeader() != MA
)
708 CC
= createMemoryClass(MA
);
712 CongruenceClass
*createSingletonCongruenceClass(Value
*Member
) {
713 CongruenceClass
*CClass
= createCongruenceClass(Member
, nullptr);
714 CClass
->insert(Member
);
715 ValueToClass
[Member
] = CClass
;
719 void initializeCongruenceClasses(Function
&F
);
720 const Expression
*makePossiblePHIOfOps(Instruction
*,
721 SmallPtrSetImpl
<Value
*> &);
722 Value
*findLeaderForInst(Instruction
*ValueOp
,
723 SmallPtrSetImpl
<Value
*> &Visited
,
724 MemoryAccess
*MemAccess
, Instruction
*OrigInst
,
726 bool OpIsSafeForPHIOfOpsHelper(Value
*V
, const BasicBlock
*PHIBlock
,
727 SmallPtrSetImpl
<const Value
*> &Visited
,
728 SmallVectorImpl
<Instruction
*> &Worklist
);
729 bool OpIsSafeForPHIOfOps(Value
*Op
, const BasicBlock
*PHIBlock
,
730 SmallPtrSetImpl
<const Value
*> &);
731 void addPhiOfOps(PHINode
*Op
, BasicBlock
*BB
, Instruction
*ExistingValue
);
732 void removePhiOfOps(Instruction
*I
, PHINode
*PHITemp
);
734 // Value number an Instruction or MemoryPhi.
735 void valueNumberMemoryPhi(MemoryPhi
*);
736 void valueNumberInstruction(Instruction
*);
738 // Symbolic evaluation.
739 const Expression
*checkSimplificationResults(Expression
*, Instruction
*,
741 const Expression
*performSymbolicEvaluation(Value
*,
742 SmallPtrSetImpl
<Value
*> &) const;
743 const Expression
*performSymbolicLoadCoercion(Type
*, Value
*, LoadInst
*,
745 MemoryAccess
*) const;
746 const Expression
*performSymbolicLoadEvaluation(Instruction
*) const;
747 const Expression
*performSymbolicStoreEvaluation(Instruction
*) const;
748 const Expression
*performSymbolicCallEvaluation(Instruction
*) const;
749 void sortPHIOps(MutableArrayRef
<ValPair
> Ops
) const;
750 const Expression
*performSymbolicPHIEvaluation(ArrayRef
<ValPair
>,
752 BasicBlock
*PHIBlock
) const;
753 const Expression
*performSymbolicAggrValueEvaluation(Instruction
*) const;
754 const Expression
*performSymbolicCmpEvaluation(Instruction
*) const;
755 const Expression
*performSymbolicPredicateInfoEvaluation(Instruction
*) const;
757 // Congruence finding.
758 bool someEquivalentDominates(const Instruction
*, const Instruction
*) const;
759 Value
*lookupOperandLeader(Value
*) const;
760 CongruenceClass
*getClassForExpression(const Expression
*E
) const;
761 void performCongruenceFinding(Instruction
*, const Expression
*);
762 void moveValueToNewCongruenceClass(Instruction
*, const Expression
*,
763 CongruenceClass
*, CongruenceClass
*);
764 void moveMemoryToNewCongruenceClass(Instruction
*, MemoryAccess
*,
765 CongruenceClass
*, CongruenceClass
*);
766 Value
*getNextValueLeader(CongruenceClass
*) const;
767 const MemoryAccess
*getNextMemoryLeader(CongruenceClass
*) const;
768 bool setMemoryClass(const MemoryAccess
*From
, CongruenceClass
*To
);
769 CongruenceClass
*getMemoryClass(const MemoryAccess
*MA
) const;
770 const MemoryAccess
*lookupMemoryLeader(const MemoryAccess
*) const;
771 bool isMemoryAccessTOP(const MemoryAccess
*) const;
774 unsigned int getRank(const Value
*) const;
775 bool shouldSwapOperands(const Value
*, const Value
*) const;
777 // Reachability handling.
778 void updateReachableEdge(BasicBlock
*, BasicBlock
*);
779 void processOutgoingEdges(Instruction
*, BasicBlock
*);
780 Value
*findConditionEquivalence(Value
*) const;
784 void convertClassToDFSOrdered(const CongruenceClass
&,
785 SmallVectorImpl
<ValueDFS
> &,
786 DenseMap
<const Value
*, unsigned int> &,
787 SmallPtrSetImpl
<Instruction
*> &) const;
788 void convertClassToLoadsAndStores(const CongruenceClass
&,
789 SmallVectorImpl
<ValueDFS
> &) const;
791 bool eliminateInstructions(Function
&);
792 void replaceInstruction(Instruction
*, Value
*);
793 void markInstructionForDeletion(Instruction
*);
794 void deleteInstructionsInBlock(BasicBlock
*);
795 Value
*findPHIOfOpsLeader(const Expression
*, const Instruction
*,
796 const BasicBlock
*) const;
798 // New instruction creation.
799 void handleNewInstruction(Instruction
*) {}
801 // Various instruction touch utilities
802 template <typename Map
, typename KeyType
, typename Func
>
803 void for_each_found(Map
&, const KeyType
&, Func
);
804 template <typename Map
, typename KeyType
>
805 void touchAndErase(Map
&, const KeyType
&);
806 void markUsersTouched(Value
*);
807 void markMemoryUsersTouched(const MemoryAccess
*);
808 void markMemoryDefTouched(const MemoryAccess
*);
809 void markPredicateUsersTouched(Instruction
*);
810 void markValueLeaderChangeTouched(CongruenceClass
*CC
);
811 void markMemoryLeaderChangeTouched(CongruenceClass
*CC
);
812 void markPhiOfOpsChanged(const Expression
*E
);
813 void addPredicateUsers(const PredicateBase
*, Instruction
*) const;
814 void addMemoryUsers(const MemoryAccess
*To
, MemoryAccess
*U
) const;
815 void addAdditionalUsers(Value
*To
, Value
*User
) const;
817 // Main loop of value numbering
818 void iterateTouchedInstructions();
821 void cleanupTables();
822 std::pair
<unsigned, unsigned> assignDFSNumbers(BasicBlock
*, unsigned);
823 void updateProcessedCount(const Value
*V
);
824 void verifyMemoryCongruency() const;
825 void verifyIterationSettled(Function
&F
);
826 void verifyStoreExpressions() const;
827 bool singleReachablePHIPath(SmallPtrSet
<const MemoryAccess
*, 8> &,
828 const MemoryAccess
*, const MemoryAccess
*) const;
829 BasicBlock
*getBlockForValue(Value
*V
) const;
830 void deleteExpression(const Expression
*E
) const;
831 MemoryUseOrDef
*getMemoryAccess(const Instruction
*) const;
832 MemoryAccess
*getDefiningAccess(const MemoryAccess
*) const;
833 MemoryPhi
*getMemoryAccess(const BasicBlock
*) const;
834 template <class T
, class Range
> T
*getMinDFSOfRange(const Range
&) const;
836 unsigned InstrToDFSNum(const Value
*V
) const {
837 assert(isa
<Instruction
>(V
) && "This should not be used for MemoryAccesses");
838 return InstrDFS
.lookup(V
);
841 unsigned InstrToDFSNum(const MemoryAccess
*MA
) const {
842 return MemoryToDFSNum(MA
);
845 Value
*InstrFromDFSNum(unsigned DFSNum
) { return DFSToInstr
[DFSNum
]; }
847 // Given a MemoryAccess, return the relevant instruction DFS number. Note:
848 // This deliberately takes a value so it can be used with Use's, which will
849 // auto-convert to Value's but not to MemoryAccess's.
850 unsigned MemoryToDFSNum(const Value
*MA
) const {
851 assert(isa
<MemoryAccess
>(MA
) &&
852 "This should not be used with instructions");
853 return isa
<MemoryUseOrDef
>(MA
)
854 ? InstrToDFSNum(cast
<MemoryUseOrDef
>(MA
)->getMemoryInst())
855 : InstrDFS
.lookup(MA
);
858 bool isCycleFree(const Instruction
*) const;
859 bool isBackedge(BasicBlock
*From
, BasicBlock
*To
) const;
861 // Debug counter info. When verifying, we have to reset the value numbering
862 // debug counter to the same state it started in to get the same results.
863 int64_t StartingVNCounter
;
866 } // end anonymous namespace
868 template <typename T
>
869 static bool equalsLoadStoreHelper(const T
&LHS
, const Expression
&RHS
) {
870 if (!isa
<LoadExpression
>(RHS
) && !isa
<StoreExpression
>(RHS
))
872 return LHS
.MemoryExpression::equals(RHS
);
875 bool LoadExpression::equals(const Expression
&Other
) const {
876 return equalsLoadStoreHelper(*this, Other
);
879 bool StoreExpression::equals(const Expression
&Other
) const {
880 if (!equalsLoadStoreHelper(*this, Other
))
882 // Make sure that store vs store includes the value operand.
883 if (const auto *S
= dyn_cast
<StoreExpression
>(&Other
))
884 if (getStoredValue() != S
->getStoredValue())
889 // Determine if the edge From->To is a backedge
890 bool NewGVN::isBackedge(BasicBlock
*From
, BasicBlock
*To
) const {
892 RPOOrdering
.lookup(DT
->getNode(From
)) >=
893 RPOOrdering
.lookup(DT
->getNode(To
));
897 static std::string
getBlockName(const BasicBlock
*B
) {
898 return DOTGraphTraits
<const Function
*>::getSimpleNodeLabel(B
, nullptr);
902 // Get a MemoryAccess for an instruction, fake or real.
903 MemoryUseOrDef
*NewGVN::getMemoryAccess(const Instruction
*I
) const {
904 auto *Result
= MSSA
->getMemoryAccess(I
);
905 return Result
? Result
: TempToMemory
.lookup(I
);
908 // Get a MemoryPhi for a basic block. These are all real.
909 MemoryPhi
*NewGVN::getMemoryAccess(const BasicBlock
*BB
) const {
910 return MSSA
->getMemoryAccess(BB
);
913 // Get the basic block from an instruction/memory value.
914 BasicBlock
*NewGVN::getBlockForValue(Value
*V
) const {
915 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
916 auto *Parent
= I
->getParent();
919 Parent
= TempToBlock
.lookup(V
);
920 assert(Parent
&& "Every fake instruction should have a block");
924 auto *MP
= dyn_cast
<MemoryPhi
>(V
);
925 assert(MP
&& "Should have been an instruction or a MemoryPhi");
926 return MP
->getBlock();
929 // Delete a definitely dead expression, so it can be reused by the expression
930 // allocator. Some of these are not in creation functions, so we have to accept
932 void NewGVN::deleteExpression(const Expression
*E
) const {
933 assert(isa
<BasicExpression
>(E
));
934 auto *BE
= cast
<BasicExpression
>(E
);
935 const_cast<BasicExpression
*>(BE
)->deallocateOperands(ArgRecycler
);
936 ExpressionAllocator
.Deallocate(E
);
939 // If V is a predicateinfo copy, get the thing it is a copy of.
940 static Value
*getCopyOf(const Value
*V
) {
941 if (auto *II
= dyn_cast
<IntrinsicInst
>(V
))
942 if (II
->getIntrinsicID() == Intrinsic::ssa_copy
)
943 return II
->getOperand(0);
947 // Return true if V is really PN, even accounting for predicateinfo copies.
948 static bool isCopyOfPHI(const Value
*V
, const PHINode
*PN
) {
949 return V
== PN
|| getCopyOf(V
) == PN
;
952 static bool isCopyOfAPHI(const Value
*V
) {
953 auto *CO
= getCopyOf(V
);
954 return CO
&& isa
<PHINode
>(CO
);
957 // Sort PHI Operands into a canonical order. What we use here is an RPO
958 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
960 void NewGVN::sortPHIOps(MutableArrayRef
<ValPair
> Ops
) const {
961 llvm::sort(Ops
, [&](const ValPair
&P1
, const ValPair
&P2
) {
962 return BlockInstRange
.lookup(P1
.second
).first
<
963 BlockInstRange
.lookup(P2
.second
).first
;
967 // Return true if V is a value that will always be available (IE can
968 // be placed anywhere) in the function. We don't do globals here
969 // because they are often worse to put in place.
970 static bool alwaysAvailable(Value
*V
) {
971 return isa
<Constant
>(V
) || isa
<Argument
>(V
);
974 // Create a PHIExpression from an array of {incoming edge, value} pairs. I is
975 // the original instruction we are creating a PHIExpression for (but may not be
976 // a phi node). We require, as an invariant, that all the PHIOperands in the
977 // same block are sorted the same way. sortPHIOps will sort them into a
979 PHIExpression
*NewGVN::createPHIExpression(ArrayRef
<ValPair
> PHIOperands
,
980 const Instruction
*I
,
981 BasicBlock
*PHIBlock
,
983 bool &OriginalOpsConstant
) const {
984 unsigned NumOps
= PHIOperands
.size();
985 auto *E
= new (ExpressionAllocator
) PHIExpression(NumOps
, PHIBlock
);
987 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
988 E
->setType(PHIOperands
.begin()->first
->getType());
989 E
->setOpcode(Instruction::PHI
);
991 // Filter out unreachable phi operands.
992 auto Filtered
= make_filter_range(PHIOperands
, [&](const ValPair
&P
) {
994 if (auto *PHIOp
= dyn_cast
<PHINode
>(I
))
995 if (isCopyOfPHI(P
.first
, PHIOp
))
997 if (!ReachableEdges
.count({BB
, PHIBlock
}))
999 // Things in TOPClass are equivalent to everything.
1000 if (ValueToClass
.lookup(P
.first
) == TOPClass
)
1002 OriginalOpsConstant
= OriginalOpsConstant
&& isa
<Constant
>(P
.first
);
1003 HasBackedge
= HasBackedge
|| isBackedge(BB
, PHIBlock
);
1004 return lookupOperandLeader(P
.first
) != I
;
1006 std::transform(Filtered
.begin(), Filtered
.end(), op_inserter(E
),
1007 [&](const ValPair
&P
) -> Value
* {
1008 return lookupOperandLeader(P
.first
);
1013 // Set basic expression info (Arguments, type, opcode) for Expression
1014 // E from Instruction I in block B.
1015 bool NewGVN::setBasicExpressionInfo(Instruction
*I
, BasicExpression
*E
) const {
1016 bool AllConstant
= true;
1017 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(I
))
1018 E
->setType(GEP
->getSourceElementType());
1020 E
->setType(I
->getType());
1021 E
->setOpcode(I
->getOpcode());
1022 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
1024 // Transform the operand array into an operand leader array, and keep track of
1025 // whether all members are constant.
1026 std::transform(I
->op_begin(), I
->op_end(), op_inserter(E
), [&](Value
*O
) {
1027 auto Operand
= lookupOperandLeader(O
);
1028 AllConstant
= AllConstant
&& isa
<Constant
>(Operand
);
1035 const Expression
*NewGVN::createBinaryExpression(unsigned Opcode
, Type
*T
,
1036 Value
*Arg1
, Value
*Arg2
,
1037 Instruction
*I
) const {
1038 auto *E
= new (ExpressionAllocator
) BasicExpression(2);
1041 E
->setOpcode(Opcode
);
1042 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
1043 if (Instruction::isCommutative(Opcode
)) {
1044 // Ensure that commutative instructions that only differ by a permutation
1045 // of their operands get the same value number by sorting the operand value
1046 // numbers. Since all commutative instructions have two operands it is more
1047 // efficient to sort by hand rather than using, say, std::sort.
1048 if (shouldSwapOperands(Arg1
, Arg2
))
1049 std::swap(Arg1
, Arg2
);
1051 E
->op_push_back(lookupOperandLeader(Arg1
));
1052 E
->op_push_back(lookupOperandLeader(Arg2
));
1054 Value
*V
= SimplifyBinOp(Opcode
, E
->getOperand(0), E
->getOperand(1), SQ
);
1055 if (const Expression
*SimplifiedE
= checkSimplificationResults(E
, I
, V
))
1060 // Take a Value returned by simplification of Expression E/Instruction
1061 // I, and see if it resulted in a simpler expression. If so, return
1063 const Expression
*NewGVN::checkSimplificationResults(Expression
*E
,
1068 if (auto *C
= dyn_cast
<Constant
>(V
)) {
1070 LLVM_DEBUG(dbgs() << "Simplified " << *I
<< " to "
1071 << " constant " << *C
<< "\n");
1072 NumGVNOpsSimplified
++;
1073 assert(isa
<BasicExpression
>(E
) &&
1074 "We should always have had a basic expression here");
1075 deleteExpression(E
);
1076 return createConstantExpression(C
);
1077 } else if (isa
<Argument
>(V
) || isa
<GlobalVariable
>(V
)) {
1079 LLVM_DEBUG(dbgs() << "Simplified " << *I
<< " to "
1080 << " variable " << *V
<< "\n");
1081 deleteExpression(E
);
1082 return createVariableExpression(V
);
1085 CongruenceClass
*CC
= ValueToClass
.lookup(V
);
1087 if (CC
->getLeader() && CC
->getLeader() != I
) {
1088 // If we simplified to something else, we need to communicate
1089 // that we're users of the value we simplified to.
1091 // Don't add temporary instructions to the user lists.
1092 if (!AllTempInstructions
.count(I
))
1093 addAdditionalUsers(V
, I
);
1095 return createVariableOrConstant(CC
->getLeader());
1097 if (CC
->getDefiningExpr()) {
1098 // If we simplified to something else, we need to communicate
1099 // that we're users of the value we simplified to.
1101 // Don't add temporary instructions to the user lists.
1102 if (!AllTempInstructions
.count(I
))
1103 addAdditionalUsers(V
, I
);
1107 LLVM_DEBUG(dbgs() << "Simplified " << *I
<< " to "
1108 << " expression " << *CC
->getDefiningExpr() << "\n");
1109 NumGVNOpsSimplified
++;
1110 deleteExpression(E
);
1111 return CC
->getDefiningExpr();
1118 // Create a value expression from the instruction I, replacing operands with
1121 const Expression
*NewGVN::createExpression(Instruction
*I
) const {
1122 auto *E
= new (ExpressionAllocator
) BasicExpression(I
->getNumOperands());
1124 bool AllConstant
= setBasicExpressionInfo(I
, E
);
1126 if (I
->isCommutative()) {
1127 // Ensure that commutative instructions that only differ by a permutation
1128 // of their operands get the same value number by sorting the operand value
1129 // numbers. Since all commutative instructions have two operands it is more
1130 // efficient to sort by hand rather than using, say, std::sort.
1131 assert(I
->getNumOperands() == 2 && "Unsupported commutative instruction!");
1132 if (shouldSwapOperands(E
->getOperand(0), E
->getOperand(1)))
1133 E
->swapOperands(0, 1);
1135 // Perform simplification.
1136 if (auto *CI
= dyn_cast
<CmpInst
>(I
)) {
1137 // Sort the operand value numbers so x<y and y>x get the same value
1139 CmpInst::Predicate Predicate
= CI
->getPredicate();
1140 if (shouldSwapOperands(E
->getOperand(0), E
->getOperand(1))) {
1141 E
->swapOperands(0, 1);
1142 Predicate
= CmpInst::getSwappedPredicate(Predicate
);
1144 E
->setOpcode((CI
->getOpcode() << 8) | Predicate
);
1145 // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
1146 assert(I
->getOperand(0)->getType() == I
->getOperand(1)->getType() &&
1147 "Wrong types on cmp instruction");
1148 assert((E
->getOperand(0)->getType() == I
->getOperand(0)->getType() &&
1149 E
->getOperand(1)->getType() == I
->getOperand(1)->getType()));
1151 SimplifyCmpInst(Predicate
, E
->getOperand(0), E
->getOperand(1), SQ
);
1152 if (const Expression
*SimplifiedE
= checkSimplificationResults(E
, I
, V
))
1154 } else if (isa
<SelectInst
>(I
)) {
1155 if (isa
<Constant
>(E
->getOperand(0)) ||
1156 E
->getOperand(1) == E
->getOperand(2)) {
1157 assert(E
->getOperand(1)->getType() == I
->getOperand(1)->getType() &&
1158 E
->getOperand(2)->getType() == I
->getOperand(2)->getType());
1159 Value
*V
= SimplifySelectInst(E
->getOperand(0), E
->getOperand(1),
1160 E
->getOperand(2), SQ
);
1161 if (const Expression
*SimplifiedE
= checkSimplificationResults(E
, I
, V
))
1164 } else if (I
->isBinaryOp()) {
1166 SimplifyBinOp(E
->getOpcode(), E
->getOperand(0), E
->getOperand(1), SQ
);
1167 if (const Expression
*SimplifiedE
= checkSimplificationResults(E
, I
, V
))
1169 } else if (auto *BI
= dyn_cast
<BitCastInst
>(I
)) {
1171 SimplifyCastInst(BI
->getOpcode(), BI
->getOperand(0), BI
->getType(), SQ
);
1172 if (const Expression
*SimplifiedE
= checkSimplificationResults(E
, I
, V
))
1174 } else if (isa
<GetElementPtrInst
>(I
)) {
1175 Value
*V
= SimplifyGEPInst(
1176 E
->getType(), ArrayRef
<Value
*>(E
->op_begin(), E
->op_end()), SQ
);
1177 if (const Expression
*SimplifiedE
= checkSimplificationResults(E
, I
, V
))
1179 } else if (AllConstant
) {
1180 // We don't bother trying to simplify unless all of the operands
1182 // TODO: There are a lot of Simplify*'s we could call here, if we
1183 // wanted to. The original motivating case for this code was a
1184 // zext i1 false to i8, which we don't have an interface to
1185 // simplify (IE there is no SimplifyZExt).
1187 SmallVector
<Constant
*, 8> C
;
1188 for (Value
*Arg
: E
->operands())
1189 C
.emplace_back(cast
<Constant
>(Arg
));
1191 if (Value
*V
= ConstantFoldInstOperands(I
, C
, DL
, TLI
))
1192 if (const Expression
*SimplifiedE
= checkSimplificationResults(E
, I
, V
))
1198 const AggregateValueExpression
*
1199 NewGVN::createAggregateValueExpression(Instruction
*I
) const {
1200 if (auto *II
= dyn_cast
<InsertValueInst
>(I
)) {
1201 auto *E
= new (ExpressionAllocator
)
1202 AggregateValueExpression(I
->getNumOperands(), II
->getNumIndices());
1203 setBasicExpressionInfo(I
, E
);
1204 E
->allocateIntOperands(ExpressionAllocator
);
1205 std::copy(II
->idx_begin(), II
->idx_end(), int_op_inserter(E
));
1207 } else if (auto *EI
= dyn_cast
<ExtractValueInst
>(I
)) {
1208 auto *E
= new (ExpressionAllocator
)
1209 AggregateValueExpression(I
->getNumOperands(), EI
->getNumIndices());
1210 setBasicExpressionInfo(EI
, E
);
1211 E
->allocateIntOperands(ExpressionAllocator
);
1212 std::copy(EI
->idx_begin(), EI
->idx_end(), int_op_inserter(E
));
1215 llvm_unreachable("Unhandled type of aggregate value operation");
1218 const DeadExpression
*NewGVN::createDeadExpression() const {
1219 // DeadExpression has no arguments and all DeadExpression's are the same,
1220 // so we only need one of them.
1221 return SingletonDeadExpression
;
1224 const VariableExpression
*NewGVN::createVariableExpression(Value
*V
) const {
1225 auto *E
= new (ExpressionAllocator
) VariableExpression(V
);
1226 E
->setOpcode(V
->getValueID());
1230 const Expression
*NewGVN::createVariableOrConstant(Value
*V
) const {
1231 if (auto *C
= dyn_cast
<Constant
>(V
))
1232 return createConstantExpression(C
);
1233 return createVariableExpression(V
);
1236 const ConstantExpression
*NewGVN::createConstantExpression(Constant
*C
) const {
1237 auto *E
= new (ExpressionAllocator
) ConstantExpression(C
);
1238 E
->setOpcode(C
->getValueID());
1242 const UnknownExpression
*NewGVN::createUnknownExpression(Instruction
*I
) const {
1243 auto *E
= new (ExpressionAllocator
) UnknownExpression(I
);
1244 E
->setOpcode(I
->getOpcode());
1248 const CallExpression
*
1249 NewGVN::createCallExpression(CallInst
*CI
, const MemoryAccess
*MA
) const {
1250 // FIXME: Add operand bundles for calls.
1252 new (ExpressionAllocator
) CallExpression(CI
->getNumOperands(), CI
, MA
);
1253 setBasicExpressionInfo(CI
, E
);
1257 // Return true if some equivalent of instruction Inst dominates instruction U.
1258 bool NewGVN::someEquivalentDominates(const Instruction
*Inst
,
1259 const Instruction
*U
) const {
1260 auto *CC
= ValueToClass
.lookup(Inst
);
1261 // This must be an instruction because we are only called from phi nodes
1262 // in the case that the value it needs to check against is an instruction.
1264 // The most likely candidates for dominance are the leader and the next leader.
1265 // The leader or nextleader will dominate in all cases where there is an
1266 // equivalent that is higher up in the dom tree.
1267 // We can't *only* check them, however, because the
1268 // dominator tree could have an infinite number of non-dominating siblings
1269 // with instructions that are in the right congruence class.
1274 // Instruction U could be in H, with equivalents in every other sibling.
1275 // Depending on the rpo order picked, the leader could be the equivalent in
1276 // any of these siblings.
1279 if (alwaysAvailable(CC
->getLeader()))
1281 if (DT
->dominates(cast
<Instruction
>(CC
->getLeader()), U
))
1283 if (CC
->getNextLeader().first
&&
1284 DT
->dominates(cast
<Instruction
>(CC
->getNextLeader().first
), U
))
1286 return llvm::any_of(*CC
, [&](const Value
*Member
) {
1287 return Member
!= CC
->getLeader() &&
1288 DT
->dominates(cast
<Instruction
>(Member
), U
);
1292 // See if we have a congruence class and leader for this operand, and if so,
1293 // return it. Otherwise, return the operand itself.
1294 Value
*NewGVN::lookupOperandLeader(Value
*V
) const {
1295 CongruenceClass
*CC
= ValueToClass
.lookup(V
);
1297 // Everything in TOP is represented by undef, as it can be any value.
1298 // We do have to make sure we get the type right though, so we can't set the
1299 // RepLeader to undef.
1301 return UndefValue::get(V
->getType());
1302 return CC
->getStoredValue() ? CC
->getStoredValue() : CC
->getLeader();
1308 const MemoryAccess
*NewGVN::lookupMemoryLeader(const MemoryAccess
*MA
) const {
1309 auto *CC
= getMemoryClass(MA
);
1310 assert(CC
->getMemoryLeader() &&
1311 "Every MemoryAccess should be mapped to a congruence class with a "
1312 "representative memory access");
1313 return CC
->getMemoryLeader();
1316 // Return true if the MemoryAccess is really equivalent to everything. This is
1317 // equivalent to the lattice value "TOP" in most lattices. This is the initial
1318 // state of all MemoryAccesses.
1319 bool NewGVN::isMemoryAccessTOP(const MemoryAccess
*MA
) const {
1320 return getMemoryClass(MA
) == TOPClass
;
1323 LoadExpression
*NewGVN::createLoadExpression(Type
*LoadType
, Value
*PointerOp
,
1325 const MemoryAccess
*MA
) const {
1327 new (ExpressionAllocator
) LoadExpression(1, LI
, lookupMemoryLeader(MA
));
1328 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
1329 E
->setType(LoadType
);
1331 // Give store and loads same opcode so they value number together.
1333 E
->op_push_back(PointerOp
);
1335 E
->setAlignment(LI
->getAlignment());
1337 // TODO: Value number heap versions. We may be able to discover
1338 // things alias analysis can't on it's own (IE that a store and a
1339 // load have the same value, and thus, it isn't clobbering the load).
1343 const StoreExpression
*
1344 NewGVN::createStoreExpression(StoreInst
*SI
, const MemoryAccess
*MA
) const {
1345 auto *StoredValueLeader
= lookupOperandLeader(SI
->getValueOperand());
1346 auto *E
= new (ExpressionAllocator
)
1347 StoreExpression(SI
->getNumOperands(), SI
, StoredValueLeader
, MA
);
1348 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
1349 E
->setType(SI
->getValueOperand()->getType());
1351 // Give store and loads same opcode so they value number together.
1353 E
->op_push_back(lookupOperandLeader(SI
->getPointerOperand()));
1355 // TODO: Value number heap versions. We may be able to discover
1356 // things alias analysis can't on it's own (IE that a store and a
1357 // load have the same value, and thus, it isn't clobbering the load).
1361 const Expression
*NewGVN::performSymbolicStoreEvaluation(Instruction
*I
) const {
1362 // Unlike loads, we never try to eliminate stores, so we do not check if they
1363 // are simple and avoid value numbering them.
1364 auto *SI
= cast
<StoreInst
>(I
);
1365 auto *StoreAccess
= getMemoryAccess(SI
);
1366 // Get the expression, if any, for the RHS of the MemoryDef.
1367 const MemoryAccess
*StoreRHS
= StoreAccess
->getDefiningAccess();
1368 if (EnableStoreRefinement
)
1369 StoreRHS
= MSSAWalker
->getClobberingMemoryAccess(StoreAccess
);
1370 // If we bypassed the use-def chains, make sure we add a use.
1371 StoreRHS
= lookupMemoryLeader(StoreRHS
);
1372 if (StoreRHS
!= StoreAccess
->getDefiningAccess())
1373 addMemoryUsers(StoreRHS
, StoreAccess
);
1374 // If we are defined by ourselves, use the live on entry def.
1375 if (StoreRHS
== StoreAccess
)
1376 StoreRHS
= MSSA
->getLiveOnEntryDef();
1378 if (SI
->isSimple()) {
1379 // See if we are defined by a previous store expression, it already has a
1380 // value, and it's the same value as our current store. FIXME: Right now, we
1381 // only do this for simple stores, we should expand to cover memcpys, etc.
1382 const auto *LastStore
= createStoreExpression(SI
, StoreRHS
);
1383 const auto *LastCC
= ExpressionToClass
.lookup(LastStore
);
1384 // We really want to check whether the expression we matched was a store. No
1385 // easy way to do that. However, we can check that the class we found has a
1386 // store, which, assuming the value numbering state is not corrupt, is
1387 // sufficient, because we must also be equivalent to that store's expression
1388 // for it to be in the same class as the load.
1389 if (LastCC
&& LastCC
->getStoredValue() == LastStore
->getStoredValue())
1391 // Also check if our value operand is defined by a load of the same memory
1392 // location, and the memory state is the same as it was then (otherwise, it
1393 // could have been overwritten later. See test32 in
1394 // transforms/DeadStoreElimination/simple.ll).
1395 if (auto *LI
= dyn_cast
<LoadInst
>(LastStore
->getStoredValue()))
1396 if ((lookupOperandLeader(LI
->getPointerOperand()) ==
1397 LastStore
->getOperand(0)) &&
1398 (lookupMemoryLeader(getMemoryAccess(LI
)->getDefiningAccess()) ==
1401 deleteExpression(LastStore
);
1404 // If the store is not equivalent to anything, value number it as a store that
1405 // produces a unique memory state (instead of using it's MemoryUse, we use
1407 return createStoreExpression(SI
, StoreAccess
);
1410 // See if we can extract the value of a loaded pointer from a load, a store, or
1411 // a memory instruction.
1413 NewGVN::performSymbolicLoadCoercion(Type
*LoadType
, Value
*LoadPtr
,
1414 LoadInst
*LI
, Instruction
*DepInst
,
1415 MemoryAccess
*DefiningAccess
) const {
1416 assert((!LI
|| LI
->isSimple()) && "Not a simple load");
1417 if (auto *DepSI
= dyn_cast
<StoreInst
>(DepInst
)) {
1418 // Can't forward from non-atomic to atomic without violating memory model.
1419 // Also don't need to coerce if they are the same type, we will just
1421 if (LI
->isAtomic() > DepSI
->isAtomic() ||
1422 LoadType
== DepSI
->getValueOperand()->getType())
1424 int Offset
= analyzeLoadFromClobberingStore(LoadType
, LoadPtr
, DepSI
, DL
);
1426 if (auto *C
= dyn_cast
<Constant
>(
1427 lookupOperandLeader(DepSI
->getValueOperand()))) {
1428 LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1429 << " to constant " << *C
<< "\n");
1430 return createConstantExpression(
1431 getConstantStoreValueForLoad(C
, Offset
, LoadType
, DL
));
1434 } else if (auto *DepLI
= dyn_cast
<LoadInst
>(DepInst
)) {
1435 // Can't forward from non-atomic to atomic without violating memory model.
1436 if (LI
->isAtomic() > DepLI
->isAtomic())
1438 int Offset
= analyzeLoadFromClobberingLoad(LoadType
, LoadPtr
, DepLI
, DL
);
1440 // We can coerce a constant load into a load.
1441 if (auto *C
= dyn_cast
<Constant
>(lookupOperandLeader(DepLI
)))
1442 if (auto *PossibleConstant
=
1443 getConstantLoadValueForLoad(C
, Offset
, LoadType
, DL
)) {
1444 LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1445 << " to constant " << *PossibleConstant
<< "\n");
1446 return createConstantExpression(PossibleConstant
);
1449 } else if (auto *DepMI
= dyn_cast
<MemIntrinsic
>(DepInst
)) {
1450 int Offset
= analyzeLoadFromClobberingMemInst(LoadType
, LoadPtr
, DepMI
, DL
);
1452 if (auto *PossibleConstant
=
1453 getConstantMemInstValueForLoad(DepMI
, Offset
, LoadType
, DL
)) {
1454 LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1455 << " to constant " << *PossibleConstant
<< "\n");
1456 return createConstantExpression(PossibleConstant
);
1461 // All of the below are only true if the loaded pointer is produced
1462 // by the dependent instruction.
1463 if (LoadPtr
!= lookupOperandLeader(DepInst
) &&
1464 !AA
->isMustAlias(LoadPtr
, DepInst
))
1466 // If this load really doesn't depend on anything, then we must be loading an
1467 // undef value. This can happen when loading for a fresh allocation with no
1468 // intervening stores, for example. Note that this is only true in the case
1469 // that the result of the allocation is pointer equal to the load ptr.
1470 if (isa
<AllocaInst
>(DepInst
) || isMallocLikeFn(DepInst
, TLI
)) {
1471 return createConstantExpression(UndefValue::get(LoadType
));
1473 // If this load occurs either right after a lifetime begin,
1474 // then the loaded value is undefined.
1475 else if (auto *II
= dyn_cast
<IntrinsicInst
>(DepInst
)) {
1476 if (II
->getIntrinsicID() == Intrinsic::lifetime_start
)
1477 return createConstantExpression(UndefValue::get(LoadType
));
1479 // If this load follows a calloc (which zero initializes memory),
1480 // then the loaded value is zero
1481 else if (isCallocLikeFn(DepInst
, TLI
)) {
1482 return createConstantExpression(Constant::getNullValue(LoadType
));
1488 const Expression
*NewGVN::performSymbolicLoadEvaluation(Instruction
*I
) const {
1489 auto *LI
= cast
<LoadInst
>(I
);
1491 // We can eliminate in favor of non-simple loads, but we won't be able to
1492 // eliminate the loads themselves.
1493 if (!LI
->isSimple())
1496 Value
*LoadAddressLeader
= lookupOperandLeader(LI
->getPointerOperand());
1497 // Load of undef is undef.
1498 if (isa
<UndefValue
>(LoadAddressLeader
))
1499 return createConstantExpression(UndefValue::get(LI
->getType()));
1500 MemoryAccess
*OriginalAccess
= getMemoryAccess(I
);
1501 MemoryAccess
*DefiningAccess
=
1502 MSSAWalker
->getClobberingMemoryAccess(OriginalAccess
);
1504 if (!MSSA
->isLiveOnEntryDef(DefiningAccess
)) {
1505 if (auto *MD
= dyn_cast
<MemoryDef
>(DefiningAccess
)) {
1506 Instruction
*DefiningInst
= MD
->getMemoryInst();
1507 // If the defining instruction is not reachable, replace with undef.
1508 if (!ReachableBlocks
.count(DefiningInst
->getParent()))
1509 return createConstantExpression(UndefValue::get(LI
->getType()));
1510 // This will handle stores and memory insts. We only do if it the
1511 // defining access has a different type, or it is a pointer produced by
1512 // certain memory operations that cause the memory to have a fixed value
1513 // (IE things like calloc).
1514 if (const auto *CoercionResult
=
1515 performSymbolicLoadCoercion(LI
->getType(), LoadAddressLeader
, LI
,
1516 DefiningInst
, DefiningAccess
))
1517 return CoercionResult
;
1521 const auto *LE
= createLoadExpression(LI
->getType(), LoadAddressLeader
, LI
,
1523 // If our MemoryLeader is not our defining access, add a use to the
1524 // MemoryLeader, so that we get reprocessed when it changes.
1525 if (LE
->getMemoryLeader() != DefiningAccess
)
1526 addMemoryUsers(LE
->getMemoryLeader(), OriginalAccess
);
1531 NewGVN::performSymbolicPredicateInfoEvaluation(Instruction
*I
) const {
1532 auto *PI
= PredInfo
->getPredicateInfoFor(I
);
1536 LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1538 auto *PWC
= dyn_cast
<PredicateWithCondition
>(PI
);
1542 auto *CopyOf
= I
->getOperand(0);
1543 auto *Cond
= PWC
->Condition
;
1545 // If this a copy of the condition, it must be either true or false depending
1546 // on the predicate info type and edge.
1547 if (CopyOf
== Cond
) {
1548 // We should not need to add predicate users because the predicate info is
1549 // already a use of this operand.
1550 if (isa
<PredicateAssume
>(PI
))
1551 return createConstantExpression(ConstantInt::getTrue(Cond
->getType()));
1552 if (auto *PBranch
= dyn_cast
<PredicateBranch
>(PI
)) {
1553 if (PBranch
->TrueEdge
)
1554 return createConstantExpression(ConstantInt::getTrue(Cond
->getType()));
1555 return createConstantExpression(ConstantInt::getFalse(Cond
->getType()));
1557 if (auto *PSwitch
= dyn_cast
<PredicateSwitch
>(PI
))
1558 return createConstantExpression(cast
<Constant
>(PSwitch
->CaseValue
));
1561 // Not a copy of the condition, so see what the predicates tell us about this
1562 // value. First, though, we check to make sure the value is actually a copy
1563 // of one of the condition operands. It's possible, in certain cases, for it
1564 // to be a copy of a predicateinfo copy. In particular, if two branch
1565 // operations use the same condition, and one branch dominates the other, we
1566 // will end up with a copy of a copy. This is currently a small deficiency in
1567 // predicateinfo. What will end up happening here is that we will value
1568 // number both copies the same anyway.
1570 // Everything below relies on the condition being a comparison.
1571 auto *Cmp
= dyn_cast
<CmpInst
>(Cond
);
1575 if (CopyOf
!= Cmp
->getOperand(0) && CopyOf
!= Cmp
->getOperand(1)) {
1576 LLVM_DEBUG(dbgs() << "Copy is not of any condition operands!\n");
1579 Value
*FirstOp
= lookupOperandLeader(Cmp
->getOperand(0));
1580 Value
*SecondOp
= lookupOperandLeader(Cmp
->getOperand(1));
1581 bool SwappedOps
= false;
1583 if (shouldSwapOperands(FirstOp
, SecondOp
)) {
1584 std::swap(FirstOp
, SecondOp
);
1587 CmpInst::Predicate Predicate
=
1588 SwappedOps
? Cmp
->getSwappedPredicate() : Cmp
->getPredicate();
1590 if (isa
<PredicateAssume
>(PI
)) {
1591 // If we assume the operands are equal, then they are equal.
1592 if (Predicate
== CmpInst::ICMP_EQ
) {
1593 addPredicateUsers(PI
, I
);
1594 addAdditionalUsers(SwappedOps
? Cmp
->getOperand(1) : Cmp
->getOperand(0),
1596 return createVariableOrConstant(FirstOp
);
1599 if (const auto *PBranch
= dyn_cast
<PredicateBranch
>(PI
)) {
1600 // If we are *not* a copy of the comparison, we may equal to the other
1601 // operand when the predicate implies something about equality of
1602 // operations. In particular, if the comparison is true/false when the
1603 // operands are equal, and we are on the right edge, we know this operation
1604 // is equal to something.
1605 if ((PBranch
->TrueEdge
&& Predicate
== CmpInst::ICMP_EQ
) ||
1606 (!PBranch
->TrueEdge
&& Predicate
== CmpInst::ICMP_NE
)) {
1607 addPredicateUsers(PI
, I
);
1608 addAdditionalUsers(SwappedOps
? Cmp
->getOperand(1) : Cmp
->getOperand(0),
1610 return createVariableOrConstant(FirstOp
);
1612 // Handle the special case of floating point.
1613 if (((PBranch
->TrueEdge
&& Predicate
== CmpInst::FCMP_OEQ
) ||
1614 (!PBranch
->TrueEdge
&& Predicate
== CmpInst::FCMP_UNE
)) &&
1615 isa
<ConstantFP
>(FirstOp
) && !cast
<ConstantFP
>(FirstOp
)->isZero()) {
1616 addPredicateUsers(PI
, I
);
1617 addAdditionalUsers(SwappedOps
? Cmp
->getOperand(1) : Cmp
->getOperand(0),
1619 return createConstantExpression(cast
<Constant
>(FirstOp
));
1625 // Evaluate read only and pure calls, and create an expression result.
1626 const Expression
*NewGVN::performSymbolicCallEvaluation(Instruction
*I
) const {
1627 auto *CI
= cast
<CallInst
>(I
);
1628 if (auto *II
= dyn_cast
<IntrinsicInst
>(I
)) {
1629 // Intrinsics with the returned attribute are copies of arguments.
1630 if (auto *ReturnedValue
= II
->getReturnedArgOperand()) {
1631 if (II
->getIntrinsicID() == Intrinsic::ssa_copy
)
1632 if (const auto *Result
= performSymbolicPredicateInfoEvaluation(I
))
1634 return createVariableOrConstant(ReturnedValue
);
1637 if (AA
->doesNotAccessMemory(CI
)) {
1638 return createCallExpression(CI
, TOPClass
->getMemoryLeader());
1639 } else if (AA
->onlyReadsMemory(CI
)) {
1640 MemoryAccess
*DefiningAccess
= MSSAWalker
->getClobberingMemoryAccess(CI
);
1641 return createCallExpression(CI
, DefiningAccess
);
1646 // Retrieve the memory class for a given MemoryAccess.
1647 CongruenceClass
*NewGVN::getMemoryClass(const MemoryAccess
*MA
) const {
1648 auto *Result
= MemoryAccessToClass
.lookup(MA
);
1649 assert(Result
&& "Should have found memory class");
1653 // Update the MemoryAccess equivalence table to say that From is equal to To,
1654 // and return true if this is different from what already existed in the table.
1655 bool NewGVN::setMemoryClass(const MemoryAccess
*From
,
1656 CongruenceClass
*NewClass
) {
1658 "Every MemoryAccess should be getting mapped to a non-null class");
1659 LLVM_DEBUG(dbgs() << "Setting " << *From
);
1660 LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1661 LLVM_DEBUG(dbgs() << NewClass
->getID()
1662 << " with current MemoryAccess leader ");
1663 LLVM_DEBUG(dbgs() << *NewClass
->getMemoryLeader() << "\n");
1665 auto LookupResult
= MemoryAccessToClass
.find(From
);
1666 bool Changed
= false;
1667 // If it's already in the table, see if the value changed.
1668 if (LookupResult
!= MemoryAccessToClass
.end()) {
1669 auto *OldClass
= LookupResult
->second
;
1670 if (OldClass
!= NewClass
) {
1671 // If this is a phi, we have to handle memory member updates.
1672 if (auto *MP
= dyn_cast
<MemoryPhi
>(From
)) {
1673 OldClass
->memory_erase(MP
);
1674 NewClass
->memory_insert(MP
);
1675 // This may have killed the class if it had no non-memory members
1676 if (OldClass
->getMemoryLeader() == From
) {
1677 if (OldClass
->definesNoMemory()) {
1678 OldClass
->setMemoryLeader(nullptr);
1680 OldClass
->setMemoryLeader(getNextMemoryLeader(OldClass
));
1681 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1682 << OldClass
->getID() << " to "
1683 << *OldClass
->getMemoryLeader()
1684 << " due to removal of a memory member " << *From
1686 markMemoryLeaderChangeTouched(OldClass
);
1690 // It wasn't equivalent before, and now it is.
1691 LookupResult
->second
= NewClass
;
1699 // Determine if a instruction is cycle-free. That means the values in the
1700 // instruction don't depend on any expressions that can change value as a result
1701 // of the instruction. For example, a non-cycle free instruction would be v =
1703 bool NewGVN::isCycleFree(const Instruction
*I
) const {
1704 // In order to compute cycle-freeness, we do SCC finding on the instruction,
1705 // and see what kind of SCC it ends up in. If it is a singleton, it is
1706 // cycle-free. If it is not in a singleton, it is only cycle free if the
1707 // other members are all phi nodes (as they do not compute anything, they are
1709 auto ICS
= InstCycleState
.lookup(I
);
1710 if (ICS
== ICS_Unknown
) {
1712 auto &SCC
= SCCFinder
.getComponentFor(I
);
1713 // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1714 if (SCC
.size() == 1)
1715 InstCycleState
.insert({I
, ICS_CycleFree
});
1717 bool AllPhis
= llvm::all_of(SCC
, [](const Value
*V
) {
1718 return isa
<PHINode
>(V
) || isCopyOfAPHI(V
);
1720 ICS
= AllPhis
? ICS_CycleFree
: ICS_Cycle
;
1721 for (auto *Member
: SCC
)
1722 if (auto *MemberPhi
= dyn_cast
<PHINode
>(Member
))
1723 InstCycleState
.insert({MemberPhi
, ICS
});
1726 if (ICS
== ICS_Cycle
)
1731 // Evaluate PHI nodes symbolically and create an expression result.
1733 NewGVN::performSymbolicPHIEvaluation(ArrayRef
<ValPair
> PHIOps
,
1735 BasicBlock
*PHIBlock
) const {
1736 // True if one of the incoming phi edges is a backedge.
1737 bool HasBackedge
= false;
1738 // All constant tracks the state of whether all the *original* phi operands
1739 // This is really shorthand for "this phi cannot cycle due to forward
1740 // change in value of the phi is guaranteed not to later change the value of
1741 // the phi. IE it can't be v = phi(undef, v+1)
1742 bool OriginalOpsConstant
= true;
1743 auto *E
= cast
<PHIExpression
>(createPHIExpression(
1744 PHIOps
, I
, PHIBlock
, HasBackedge
, OriginalOpsConstant
));
1745 // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1746 // See if all arguments are the same.
1747 // We track if any were undef because they need special handling.
1748 bool HasUndef
= false;
1749 auto Filtered
= make_filter_range(E
->operands(), [&](Value
*Arg
) {
1750 if (isa
<UndefValue
>(Arg
)) {
1756 // If we are left with no operands, it's dead.
1757 if (empty(Filtered
)) {
1758 // If it has undef at this point, it means there are no-non-undef arguments,
1759 // and thus, the value of the phi node must be undef.
1762 dbgs() << "PHI Node " << *I
1763 << " has no non-undef arguments, valuing it as undef\n");
1764 return createConstantExpression(UndefValue::get(I
->getType()));
1767 LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I
<< " are live\n");
1768 deleteExpression(E
);
1769 return createDeadExpression();
1771 Value
*AllSameValue
= *(Filtered
.begin());
1773 // Can't use std::equal here, sadly, because filter.begin moves.
1774 if (llvm::all_of(Filtered
, [&](Value
*Arg
) { return Arg
== AllSameValue
; })) {
1775 // In LLVM's non-standard representation of phi nodes, it's possible to have
1776 // phi nodes with cycles (IE dependent on other phis that are .... dependent
1777 // on the original phi node), especially in weird CFG's where some arguments
1778 // are unreachable, or uninitialized along certain paths. This can cause
1779 // infinite loops during evaluation. We work around this by not trying to
1780 // really evaluate them independently, but instead using a variable
1781 // expression to say if one is equivalent to the other.
1782 // We also special case undef, so that if we have an undef, we can't use the
1783 // common value unless it dominates the phi block.
1785 // If we have undef and at least one other value, this is really a
1786 // multivalued phi, and we need to know if it's cycle free in order to
1787 // evaluate whether we can ignore the undef. The other parts of this are
1788 // just shortcuts. If there is no backedge, or all operands are
1789 // constants, it also must be cycle free.
1790 if (HasBackedge
&& !OriginalOpsConstant
&&
1791 !isa
<UndefValue
>(AllSameValue
) && !isCycleFree(I
))
1794 // Only have to check for instructions
1795 if (auto *AllSameInst
= dyn_cast
<Instruction
>(AllSameValue
))
1796 if (!someEquivalentDominates(AllSameInst
, I
))
1799 // Can't simplify to something that comes later in the iteration.
1800 // Otherwise, when and if it changes congruence class, we will never catch
1801 // up. We will always be a class behind it.
1802 if (isa
<Instruction
>(AllSameValue
) &&
1803 InstrToDFSNum(AllSameValue
) > InstrToDFSNum(I
))
1805 NumGVNPhisAllSame
++;
1806 LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I
<< " to " << *AllSameValue
1808 deleteExpression(E
);
1809 return createVariableOrConstant(AllSameValue
);
1815 NewGVN::performSymbolicAggrValueEvaluation(Instruction
*I
) const {
1816 if (auto *EI
= dyn_cast
<ExtractValueInst
>(I
)) {
1817 auto *II
= dyn_cast
<IntrinsicInst
>(EI
->getAggregateOperand());
1818 if (II
&& EI
->getNumIndices() == 1 && *EI
->idx_begin() == 0) {
1819 unsigned Opcode
= 0;
1820 // EI might be an extract from one of our recognised intrinsics. If it
1821 // is we'll synthesize a semantically equivalent expression instead on
1822 // an extract value expression.
1823 switch (II
->getIntrinsicID()) {
1824 case Intrinsic::sadd_with_overflow
:
1825 case Intrinsic::uadd_with_overflow
:
1826 Opcode
= Instruction::Add
;
1828 case Intrinsic::ssub_with_overflow
:
1829 case Intrinsic::usub_with_overflow
:
1830 Opcode
= Instruction::Sub
;
1832 case Intrinsic::smul_with_overflow
:
1833 case Intrinsic::umul_with_overflow
:
1834 Opcode
= Instruction::Mul
;
1841 // Intrinsic recognized. Grab its args to finish building the
1843 assert(II
->getNumArgOperands() == 2 &&
1844 "Expect two args for recognised intrinsics.");
1845 return createBinaryExpression(Opcode
, EI
->getType(),
1846 II
->getArgOperand(0),
1847 II
->getArgOperand(1), I
);
1852 return createAggregateValueExpression(I
);
1855 const Expression
*NewGVN::performSymbolicCmpEvaluation(Instruction
*I
) const {
1856 assert(isa
<CmpInst
>(I
) && "Expected a cmp instruction.");
1858 auto *CI
= cast
<CmpInst
>(I
);
1859 // See if our operands are equal to those of a previous predicate, and if so,
1860 // if it implies true or false.
1861 auto Op0
= lookupOperandLeader(CI
->getOperand(0));
1862 auto Op1
= lookupOperandLeader(CI
->getOperand(1));
1863 auto OurPredicate
= CI
->getPredicate();
1864 if (shouldSwapOperands(Op0
, Op1
)) {
1865 std::swap(Op0
, Op1
);
1866 OurPredicate
= CI
->getSwappedPredicate();
1869 // Avoid processing the same info twice.
1870 const PredicateBase
*LastPredInfo
= nullptr;
1871 // See if we know something about the comparison itself, like it is the target
1873 auto *CmpPI
= PredInfo
->getPredicateInfoFor(I
);
1874 if (dyn_cast_or_null
<PredicateAssume
>(CmpPI
))
1875 return createConstantExpression(ConstantInt::getTrue(CI
->getType()));
1878 // This condition does not depend on predicates, no need to add users
1879 if (CI
->isTrueWhenEqual())
1880 return createConstantExpression(ConstantInt::getTrue(CI
->getType()));
1881 else if (CI
->isFalseWhenEqual())
1882 return createConstantExpression(ConstantInt::getFalse(CI
->getType()));
1885 // NOTE: Because we are comparing both operands here and below, and using
1886 // previous comparisons, we rely on fact that predicateinfo knows to mark
1887 // comparisons that use renamed operands as users of the earlier comparisons.
1888 // It is *not* enough to just mark predicateinfo renamed operands as users of
1889 // the earlier comparisons, because the *other* operand may have changed in a
1890 // previous iteration.
1893 // %b.0 = ssa.copy(%b)
1895 // icmp slt %c, %b.0
1897 // %c and %a may start out equal, and thus, the code below will say the second
1898 // %icmp is false. c may become equal to something else, and in that case the
1899 // %second icmp *must* be reexamined, but would not if only the renamed
1900 // %operands are considered users of the icmp.
1902 // *Currently* we only check one level of comparisons back, and only mark one
1903 // level back as touched when changes happen. If you modify this code to look
1904 // back farther through comparisons, you *must* mark the appropriate
1905 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
1906 // we know something just from the operands themselves
1908 // See if our operands have predicate info, so that we may be able to derive
1909 // something from a previous comparison.
1910 for (const auto &Op
: CI
->operands()) {
1911 auto *PI
= PredInfo
->getPredicateInfoFor(Op
);
1912 if (const auto *PBranch
= dyn_cast_or_null
<PredicateBranch
>(PI
)) {
1913 if (PI
== LastPredInfo
)
1916 // In phi of ops cases, we may have predicate info that we are evaluating
1917 // in a different context.
1918 if (!DT
->dominates(PBranch
->To
, getBlockForValue(I
)))
1920 // TODO: Along the false edge, we may know more things too, like
1922 // same operands is false.
1923 // TODO: We only handle actual comparison conditions below, not
1925 auto *BranchCond
= dyn_cast
<CmpInst
>(PBranch
->Condition
);
1928 auto *BranchOp0
= lookupOperandLeader(BranchCond
->getOperand(0));
1929 auto *BranchOp1
= lookupOperandLeader(BranchCond
->getOperand(1));
1930 auto BranchPredicate
= BranchCond
->getPredicate();
1931 if (shouldSwapOperands(BranchOp0
, BranchOp1
)) {
1932 std::swap(BranchOp0
, BranchOp1
);
1933 BranchPredicate
= BranchCond
->getSwappedPredicate();
1935 if (BranchOp0
== Op0
&& BranchOp1
== Op1
) {
1936 if (PBranch
->TrueEdge
) {
1937 // If we know the previous predicate is true and we are in the true
1938 // edge then we may be implied true or false.
1939 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate
,
1941 addPredicateUsers(PI
, I
);
1942 return createConstantExpression(
1943 ConstantInt::getTrue(CI
->getType()));
1946 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate
,
1948 addPredicateUsers(PI
, I
);
1949 return createConstantExpression(
1950 ConstantInt::getFalse(CI
->getType()));
1953 // Just handle the ne and eq cases, where if we have the same
1954 // operands, we may know something.
1955 if (BranchPredicate
== OurPredicate
) {
1956 addPredicateUsers(PI
, I
);
1957 // Same predicate, same ops,we know it was false, so this is false.
1958 return createConstantExpression(
1959 ConstantInt::getFalse(CI
->getType()));
1960 } else if (BranchPredicate
==
1961 CmpInst::getInversePredicate(OurPredicate
)) {
1962 addPredicateUsers(PI
, I
);
1963 // Inverse predicate, we know the other was false, so this is true.
1964 return createConstantExpression(
1965 ConstantInt::getTrue(CI
->getType()));
1971 // Create expression will take care of simplifyCmpInst
1972 return createExpression(I
);
1975 // Substitute and symbolize the value before value numbering.
1977 NewGVN::performSymbolicEvaluation(Value
*V
,
1978 SmallPtrSetImpl
<Value
*> &Visited
) const {
1979 const Expression
*E
= nullptr;
1980 if (auto *C
= dyn_cast
<Constant
>(V
))
1981 E
= createConstantExpression(C
);
1982 else if (isa
<Argument
>(V
) || isa
<GlobalVariable
>(V
)) {
1983 E
= createVariableExpression(V
);
1985 // TODO: memory intrinsics.
1986 // TODO: Some day, we should do the forward propagation and reassociation
1987 // parts of the algorithm.
1988 auto *I
= cast
<Instruction
>(V
);
1989 switch (I
->getOpcode()) {
1990 case Instruction::ExtractValue
:
1991 case Instruction::InsertValue
:
1992 E
= performSymbolicAggrValueEvaluation(I
);
1994 case Instruction::PHI
: {
1995 SmallVector
<ValPair
, 3> Ops
;
1996 auto *PN
= cast
<PHINode
>(I
);
1997 for (unsigned i
= 0; i
< PN
->getNumOperands(); ++i
)
1998 Ops
.push_back({PN
->getIncomingValue(i
), PN
->getIncomingBlock(i
)});
1999 // Sort to ensure the invariant createPHIExpression requires is met.
2001 E
= performSymbolicPHIEvaluation(Ops
, I
, getBlockForValue(I
));
2003 case Instruction::Call
:
2004 E
= performSymbolicCallEvaluation(I
);
2006 case Instruction::Store
:
2007 E
= performSymbolicStoreEvaluation(I
);
2009 case Instruction::Load
:
2010 E
= performSymbolicLoadEvaluation(I
);
2012 case Instruction::BitCast
:
2013 E
= createExpression(I
);
2015 case Instruction::ICmp
:
2016 case Instruction::FCmp
:
2017 E
= performSymbolicCmpEvaluation(I
);
2019 case Instruction::Add
:
2020 case Instruction::FAdd
:
2021 case Instruction::Sub
:
2022 case Instruction::FSub
:
2023 case Instruction::Mul
:
2024 case Instruction::FMul
:
2025 case Instruction::UDiv
:
2026 case Instruction::SDiv
:
2027 case Instruction::FDiv
:
2028 case Instruction::URem
:
2029 case Instruction::SRem
:
2030 case Instruction::FRem
:
2031 case Instruction::Shl
:
2032 case Instruction::LShr
:
2033 case Instruction::AShr
:
2034 case Instruction::And
:
2035 case Instruction::Or
:
2036 case Instruction::Xor
:
2037 case Instruction::Trunc
:
2038 case Instruction::ZExt
:
2039 case Instruction::SExt
:
2040 case Instruction::FPToUI
:
2041 case Instruction::FPToSI
:
2042 case Instruction::UIToFP
:
2043 case Instruction::SIToFP
:
2044 case Instruction::FPTrunc
:
2045 case Instruction::FPExt
:
2046 case Instruction::PtrToInt
:
2047 case Instruction::IntToPtr
:
2048 case Instruction::Select
:
2049 case Instruction::ExtractElement
:
2050 case Instruction::InsertElement
:
2051 case Instruction::ShuffleVector
:
2052 case Instruction::GetElementPtr
:
2053 E
= createExpression(I
);
2062 // Look up a container in a map, and then call a function for each thing in the
2064 template <typename Map
, typename KeyType
, typename Func
>
2065 void NewGVN::for_each_found(Map
&M
, const KeyType
&Key
, Func F
) {
2066 const auto Result
= M
.find_as(Key
);
2067 if (Result
!= M
.end())
2068 for (typename
Map::mapped_type::value_type Mapped
: Result
->second
)
2072 // Look up a container of values/instructions in a map, and touch all the
2073 // instructions in the container. Then erase value from the map.
2074 template <typename Map
, typename KeyType
>
2075 void NewGVN::touchAndErase(Map
&M
, const KeyType
&Key
) {
2076 const auto Result
= M
.find_as(Key
);
2077 if (Result
!= M
.end()) {
2078 for (const typename
Map::mapped_type::value_type Mapped
: Result
->second
)
2079 TouchedInstructions
.set(InstrToDFSNum(Mapped
));
2084 void NewGVN::addAdditionalUsers(Value
*To
, Value
*User
) const {
2085 assert(User
&& To
!= User
);
2086 if (isa
<Instruction
>(To
))
2087 AdditionalUsers
[To
].insert(User
);
2090 void NewGVN::markUsersTouched(Value
*V
) {
2091 // Now mark the users as touched.
2092 for (auto *User
: V
->users()) {
2093 assert(isa
<Instruction
>(User
) && "Use of value not within an instruction?");
2094 TouchedInstructions
.set(InstrToDFSNum(User
));
2096 touchAndErase(AdditionalUsers
, V
);
2099 void NewGVN::addMemoryUsers(const MemoryAccess
*To
, MemoryAccess
*U
) const {
2100 LLVM_DEBUG(dbgs() << "Adding memory user " << *U
<< " to " << *To
<< "\n");
2101 MemoryToUsers
[To
].insert(U
);
2104 void NewGVN::markMemoryDefTouched(const MemoryAccess
*MA
) {
2105 TouchedInstructions
.set(MemoryToDFSNum(MA
));
2108 void NewGVN::markMemoryUsersTouched(const MemoryAccess
*MA
) {
2109 if (isa
<MemoryUse
>(MA
))
2111 for (auto U
: MA
->users())
2112 TouchedInstructions
.set(MemoryToDFSNum(U
));
2113 touchAndErase(MemoryToUsers
, MA
);
2116 // Add I to the set of users of a given predicate.
2117 void NewGVN::addPredicateUsers(const PredicateBase
*PB
, Instruction
*I
) const {
2118 // Don't add temporary instructions to the user lists.
2119 if (AllTempInstructions
.count(I
))
2122 if (auto *PBranch
= dyn_cast
<PredicateBranch
>(PB
))
2123 PredicateToUsers
[PBranch
->Condition
].insert(I
);
2124 else if (auto *PAssume
= dyn_cast
<PredicateBranch
>(PB
))
2125 PredicateToUsers
[PAssume
->Condition
].insert(I
);
2128 // Touch all the predicates that depend on this instruction.
2129 void NewGVN::markPredicateUsersTouched(Instruction
*I
) {
2130 touchAndErase(PredicateToUsers
, I
);
2133 // Mark users affected by a memory leader change.
2134 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass
*CC
) {
2135 for (auto M
: CC
->memory())
2136 markMemoryDefTouched(M
);
2139 // Touch the instructions that need to be updated after a congruence class has a
2140 // leader change, and mark changed values.
2141 void NewGVN::markValueLeaderChangeTouched(CongruenceClass
*CC
) {
2142 for (auto M
: *CC
) {
2143 if (auto *I
= dyn_cast
<Instruction
>(M
))
2144 TouchedInstructions
.set(InstrToDFSNum(I
));
2145 LeaderChanges
.insert(M
);
2149 // Give a range of things that have instruction DFS numbers, this will return
2150 // the member of the range with the smallest dfs number.
2151 template <class T
, class Range
>
2152 T
*NewGVN::getMinDFSOfRange(const Range
&R
) const {
2153 std::pair
<T
*, unsigned> MinDFS
= {nullptr, ~0U};
2154 for (const auto X
: R
) {
2155 auto DFSNum
= InstrToDFSNum(X
);
2156 if (DFSNum
< MinDFS
.second
)
2157 MinDFS
= {X
, DFSNum
};
2159 return MinDFS
.first
;
2162 // This function returns the MemoryAccess that should be the next leader of
2163 // congruence class CC, under the assumption that the current leader is going to
2165 const MemoryAccess
*NewGVN::getNextMemoryLeader(CongruenceClass
*CC
) const {
2166 // TODO: If this ends up to slow, we can maintain a next memory leader like we
2167 // do for regular leaders.
2168 // Make sure there will be a leader to find.
2169 assert(!CC
->definesNoMemory() && "Can't get next leader if there is none");
2170 if (CC
->getStoreCount() > 0) {
2171 if (auto *NL
= dyn_cast_or_null
<StoreInst
>(CC
->getNextLeader().first
))
2172 return getMemoryAccess(NL
);
2173 // Find the store with the minimum DFS number.
2174 auto *V
= getMinDFSOfRange
<Value
>(make_filter_range(
2175 *CC
, [&](const Value
*V
) { return isa
<StoreInst
>(V
); }));
2176 return getMemoryAccess(cast
<StoreInst
>(V
));
2178 assert(CC
->getStoreCount() == 0);
2180 // Given our assertion, hitting this part must mean
2181 // !OldClass->memory_empty()
2182 if (CC
->memory_size() == 1)
2183 return *CC
->memory_begin();
2184 return getMinDFSOfRange
<const MemoryPhi
>(CC
->memory());
2187 // This function returns the next value leader of a congruence class, under the
2188 // assumption that the current leader is going away. This should end up being
2189 // the next most dominating member.
2190 Value
*NewGVN::getNextValueLeader(CongruenceClass
*CC
) const {
2191 // We don't need to sort members if there is only 1, and we don't care about
2192 // sorting the TOP class because everything either gets out of it or is
2195 if (CC
->size() == 1 || CC
== TOPClass
) {
2196 return *(CC
->begin());
2197 } else if (CC
->getNextLeader().first
) {
2198 ++NumGVNAvoidedSortedLeaderChanges
;
2199 return CC
->getNextLeader().first
;
2201 ++NumGVNSortedLeaderChanges
;
2202 // NOTE: If this ends up to slow, we can maintain a dual structure for
2203 // member testing/insertion, or keep things mostly sorted, and sort only
2204 // here, or use SparseBitVector or ....
2205 return getMinDFSOfRange
<Value
>(*CC
);
2209 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2210 // the memory members, etc for the move.
2212 // The invariants of this function are:
2214 // - I must be moving to NewClass from OldClass
2215 // - The StoreCount of OldClass and NewClass is expected to have been updated
2216 // for I already if it is a store.
2217 // - The OldClass memory leader has not been updated yet if I was the leader.
2218 void NewGVN::moveMemoryToNewCongruenceClass(Instruction
*I
,
2219 MemoryAccess
*InstMA
,
2220 CongruenceClass
*OldClass
,
2221 CongruenceClass
*NewClass
) {
2222 // If the leader is I, and we had a representative MemoryAccess, it should
2223 // be the MemoryAccess of OldClass.
2224 assert((!InstMA
|| !OldClass
->getMemoryLeader() ||
2225 OldClass
->getLeader() != I
||
2226 MemoryAccessToClass
.lookup(OldClass
->getMemoryLeader()) ==
2227 MemoryAccessToClass
.lookup(InstMA
)) &&
2228 "Representative MemoryAccess mismatch");
2229 // First, see what happens to the new class
2230 if (!NewClass
->getMemoryLeader()) {
2231 // Should be a new class, or a store becoming a leader of a new class.
2232 assert(NewClass
->size() == 1 ||
2233 (isa
<StoreInst
>(I
) && NewClass
->getStoreCount() == 1));
2234 NewClass
->setMemoryLeader(InstMA
);
2235 // Mark it touched if we didn't just create a singleton
2236 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2237 << NewClass
->getID()
2238 << " due to new memory instruction becoming leader\n");
2239 markMemoryLeaderChangeTouched(NewClass
);
2241 setMemoryClass(InstMA
, NewClass
);
2242 // Now, fixup the old class if necessary
2243 if (OldClass
->getMemoryLeader() == InstMA
) {
2244 if (!OldClass
->definesNoMemory()) {
2245 OldClass
->setMemoryLeader(getNextMemoryLeader(OldClass
));
2246 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2247 << OldClass
->getID() << " to "
2248 << *OldClass
->getMemoryLeader()
2249 << " due to removal of old leader " << *InstMA
<< "\n");
2250 markMemoryLeaderChangeTouched(OldClass
);
2252 OldClass
->setMemoryLeader(nullptr);
2256 // Move a value, currently in OldClass, to be part of NewClass
2257 // Update OldClass and NewClass for the move (including changing leaders, etc).
2258 void NewGVN::moveValueToNewCongruenceClass(Instruction
*I
, const Expression
*E
,
2259 CongruenceClass
*OldClass
,
2260 CongruenceClass
*NewClass
) {
2261 if (I
== OldClass
->getNextLeader().first
)
2262 OldClass
->resetNextLeader();
2265 NewClass
->insert(I
);
2267 if (NewClass
->getLeader() != I
)
2268 NewClass
->addPossibleNextLeader({I
, InstrToDFSNum(I
)});
2269 // Handle our special casing of stores.
2270 if (auto *SI
= dyn_cast
<StoreInst
>(I
)) {
2271 OldClass
->decStoreCount();
2272 // Okay, so when do we want to make a store a leader of a class?
2273 // If we have a store defined by an earlier load, we want the earlier load
2274 // to lead the class.
2275 // If we have a store defined by something else, we want the store to lead
2276 // the class so everything else gets the "something else" as a value.
2277 // If we have a store as the single member of the class, we want the store
2279 if (NewClass
->getStoreCount() == 0 && !NewClass
->getStoredValue()) {
2280 // If it's a store expression we are using, it means we are not equivalent
2281 // to something earlier.
2282 if (auto *SE
= dyn_cast
<StoreExpression
>(E
)) {
2283 NewClass
->setStoredValue(SE
->getStoredValue());
2284 markValueLeaderChangeTouched(NewClass
);
2285 // Shift the new class leader to be the store
2286 LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2287 << NewClass
->getID() << " from "
2288 << *NewClass
->getLeader() << " to " << *SI
2289 << " because store joined class\n");
2290 // If we changed the leader, we have to mark it changed because we don't
2291 // know what it will do to symbolic evaluation.
2292 NewClass
->setLeader(SI
);
2294 // We rely on the code below handling the MemoryAccess change.
2296 NewClass
->incStoreCount();
2298 // True if there is no memory instructions left in a class that had memory
2299 // instructions before.
2301 // If it's not a memory use, set the MemoryAccess equivalence
2302 auto *InstMA
= dyn_cast_or_null
<MemoryDef
>(getMemoryAccess(I
));
2304 moveMemoryToNewCongruenceClass(I
, InstMA
, OldClass
, NewClass
);
2305 ValueToClass
[I
] = NewClass
;
2306 // See if we destroyed the class or need to swap leaders.
2307 if (OldClass
->empty() && OldClass
!= TOPClass
) {
2308 if (OldClass
->getDefiningExpr()) {
2309 LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass
->getDefiningExpr()
2310 << " from table\n");
2311 // We erase it as an exact expression to make sure we don't just erase an
2313 auto Iter
= ExpressionToClass
.find_as(
2314 ExactEqualsExpression(*OldClass
->getDefiningExpr()));
2315 if (Iter
!= ExpressionToClass
.end())
2316 ExpressionToClass
.erase(Iter
);
2317 #ifdef EXPENSIVE_CHECKS
2319 (*OldClass
->getDefiningExpr() != *E
|| ExpressionToClass
.lookup(E
)) &&
2320 "We erased the expression we just inserted, which should not happen");
2323 } else if (OldClass
->getLeader() == I
) {
2324 // When the leader changes, the value numbering of
2325 // everything may change due to symbolization changes, so we need to
2327 LLVM_DEBUG(dbgs() << "Value class leader change for class "
2328 << OldClass
->getID() << "\n");
2329 ++NumGVNLeaderChanges
;
2330 // Destroy the stored value if there are no more stores to represent it.
2331 // Note that this is basically clean up for the expression removal that
2332 // happens below. If we remove stores from a class, we may leave it as a
2333 // class of equivalent memory phis.
2334 if (OldClass
->getStoreCount() == 0) {
2335 if (OldClass
->getStoredValue())
2336 OldClass
->setStoredValue(nullptr);
2338 OldClass
->setLeader(getNextValueLeader(OldClass
));
2339 OldClass
->resetNextLeader();
2340 markValueLeaderChangeTouched(OldClass
);
2344 // For a given expression, mark the phi of ops instructions that could have
2345 // changed as a result.
2346 void NewGVN::markPhiOfOpsChanged(const Expression
*E
) {
2347 touchAndErase(ExpressionToPhiOfOps
, E
);
2350 // Perform congruence finding on a given value numbering expression.
2351 void NewGVN::performCongruenceFinding(Instruction
*I
, const Expression
*E
) {
2352 // This is guaranteed to return something, since it will at least find
2355 CongruenceClass
*IClass
= ValueToClass
.lookup(I
);
2356 assert(IClass
&& "Should have found a IClass");
2357 // Dead classes should have been eliminated from the mapping.
2358 assert(!IClass
->isDead() && "Found a dead class");
2360 CongruenceClass
*EClass
= nullptr;
2361 if (const auto *VE
= dyn_cast
<VariableExpression
>(E
)) {
2362 EClass
= ValueToClass
.lookup(VE
->getVariableValue());
2363 } else if (isa
<DeadExpression
>(E
)) {
2367 auto lookupResult
= ExpressionToClass
.insert({E
, nullptr});
2369 // If it's not in the value table, create a new congruence class.
2370 if (lookupResult
.second
) {
2371 CongruenceClass
*NewClass
= createCongruenceClass(nullptr, E
);
2372 auto place
= lookupResult
.first
;
2373 place
->second
= NewClass
;
2375 // Constants and variables should always be made the leader.
2376 if (const auto *CE
= dyn_cast
<ConstantExpression
>(E
)) {
2377 NewClass
->setLeader(CE
->getConstantValue());
2378 } else if (const auto *SE
= dyn_cast
<StoreExpression
>(E
)) {
2379 StoreInst
*SI
= SE
->getStoreInst();
2380 NewClass
->setLeader(SI
);
2381 NewClass
->setStoredValue(SE
->getStoredValue());
2382 // The RepMemoryAccess field will be filled in properly by the
2383 // moveValueToNewCongruenceClass call.
2385 NewClass
->setLeader(I
);
2387 assert(!isa
<VariableExpression
>(E
) &&
2388 "VariableExpression should have been handled already");
2391 LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2392 << " using expression " << *E
<< " at "
2393 << NewClass
->getID() << " and leader "
2394 << *(NewClass
->getLeader()));
2395 if (NewClass
->getStoredValue())
2396 LLVM_DEBUG(dbgs() << " and stored value "
2397 << *(NewClass
->getStoredValue()));
2398 LLVM_DEBUG(dbgs() << "\n");
2400 EClass
= lookupResult
.first
->second
;
2401 if (isa
<ConstantExpression
>(E
))
2402 assert((isa
<Constant
>(EClass
->getLeader()) ||
2403 (EClass
->getStoredValue() &&
2404 isa
<Constant
>(EClass
->getStoredValue()))) &&
2405 "Any class with a constant expression should have a "
2408 assert(EClass
&& "Somehow don't have an eclass");
2410 assert(!EClass
->isDead() && "We accidentally looked up a dead class");
2413 bool ClassChanged
= IClass
!= EClass
;
2414 bool LeaderChanged
= LeaderChanges
.erase(I
);
2415 if (ClassChanged
|| LeaderChanged
) {
2416 LLVM_DEBUG(dbgs() << "New class " << EClass
->getID() << " for expression "
2419 moveValueToNewCongruenceClass(I
, E
, IClass
, EClass
);
2420 markPhiOfOpsChanged(E
);
2423 markUsersTouched(I
);
2424 if (MemoryAccess
*MA
= getMemoryAccess(I
))
2425 markMemoryUsersTouched(MA
);
2426 if (auto *CI
= dyn_cast
<CmpInst
>(I
))
2427 markPredicateUsersTouched(CI
);
2429 // If we changed the class of the store, we want to ensure nothing finds the
2430 // old store expression. In particular, loads do not compare against stored
2431 // value, so they will find old store expressions (and associated class
2432 // mappings) if we leave them in the table.
2433 if (ClassChanged
&& isa
<StoreInst
>(I
)) {
2434 auto *OldE
= ValueToExpression
.lookup(I
);
2435 // It could just be that the old class died. We don't want to erase it if we
2436 // just moved classes.
2437 if (OldE
&& isa
<StoreExpression
>(OldE
) && *E
!= *OldE
) {
2438 // Erase this as an exact expression to ensure we don't erase expressions
2439 // equivalent to it.
2440 auto Iter
= ExpressionToClass
.find_as(ExactEqualsExpression(*OldE
));
2441 if (Iter
!= ExpressionToClass
.end())
2442 ExpressionToClass
.erase(Iter
);
2445 ValueToExpression
[I
] = E
;
2448 // Process the fact that Edge (from, to) is reachable, including marking
2449 // any newly reachable blocks and instructions for processing.
2450 void NewGVN::updateReachableEdge(BasicBlock
*From
, BasicBlock
*To
) {
2451 // Check if the Edge was reachable before.
2452 if (ReachableEdges
.insert({From
, To
}).second
) {
2453 // If this block wasn't reachable before, all instructions are touched.
2454 if (ReachableBlocks
.insert(To
).second
) {
2455 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To
)
2456 << " marked reachable\n");
2457 const auto &InstRange
= BlockInstRange
.lookup(To
);
2458 TouchedInstructions
.set(InstRange
.first
, InstRange
.second
);
2460 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To
)
2461 << " was reachable, but new edge {"
2462 << getBlockName(From
) << "," << getBlockName(To
)
2463 << "} to it found\n");
2465 // We've made an edge reachable to an existing block, which may
2466 // impact predicates. Otherwise, only mark the phi nodes as touched, as
2467 // they are the only thing that depend on new edges. Anything using their
2468 // values will get propagated to if necessary.
2469 if (MemoryAccess
*MemPhi
= getMemoryAccess(To
))
2470 TouchedInstructions
.set(InstrToDFSNum(MemPhi
));
2472 // FIXME: We should just add a union op on a Bitvector and
2473 // SparseBitVector. We can do it word by word faster than we are doing it
2475 for (auto InstNum
: RevisitOnReachabilityChange
[To
])
2476 TouchedInstructions
.set(InstNum
);
2481 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2482 // see if we know some constant value for it already.
2483 Value
*NewGVN::findConditionEquivalence(Value
*Cond
) const {
2484 auto Result
= lookupOperandLeader(Cond
);
2485 return isa
<Constant
>(Result
) ? Result
: nullptr;
2488 // Process the outgoing edges of a block for reachability.
2489 void NewGVN::processOutgoingEdges(Instruction
*TI
, BasicBlock
*B
) {
2490 // Evaluate reachability of terminator instruction.
2492 if ((BR
= dyn_cast
<BranchInst
>(TI
)) && BR
->isConditional()) {
2493 Value
*Cond
= BR
->getCondition();
2494 Value
*CondEvaluated
= findConditionEquivalence(Cond
);
2495 if (!CondEvaluated
) {
2496 if (auto *I
= dyn_cast
<Instruction
>(Cond
)) {
2497 const Expression
*E
= createExpression(I
);
2498 if (const auto *CE
= dyn_cast
<ConstantExpression
>(E
)) {
2499 CondEvaluated
= CE
->getConstantValue();
2501 } else if (isa
<ConstantInt
>(Cond
)) {
2502 CondEvaluated
= Cond
;
2506 BasicBlock
*TrueSucc
= BR
->getSuccessor(0);
2507 BasicBlock
*FalseSucc
= BR
->getSuccessor(1);
2508 if (CondEvaluated
&& (CI
= dyn_cast
<ConstantInt
>(CondEvaluated
))) {
2510 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2511 << " evaluated to true\n");
2512 updateReachableEdge(B
, TrueSucc
);
2513 } else if (CI
->isZero()) {
2514 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2515 << " evaluated to false\n");
2516 updateReachableEdge(B
, FalseSucc
);
2519 updateReachableEdge(B
, TrueSucc
);
2520 updateReachableEdge(B
, FalseSucc
);
2522 } else if (auto *SI
= dyn_cast
<SwitchInst
>(TI
)) {
2523 // For switches, propagate the case values into the case
2526 // Remember how many outgoing edges there are to every successor.
2527 SmallDenseMap
<BasicBlock
*, unsigned, 16> SwitchEdges
;
2529 Value
*SwitchCond
= SI
->getCondition();
2530 Value
*CondEvaluated
= findConditionEquivalence(SwitchCond
);
2531 // See if we were able to turn this switch statement into a constant.
2532 if (CondEvaluated
&& isa
<ConstantInt
>(CondEvaluated
)) {
2533 auto *CondVal
= cast
<ConstantInt
>(CondEvaluated
);
2534 // We should be able to get case value for this.
2535 auto Case
= *SI
->findCaseValue(CondVal
);
2536 if (Case
.getCaseSuccessor() == SI
->getDefaultDest()) {
2537 // We proved the value is outside of the range of the case.
2538 // We can't do anything other than mark the default dest as reachable,
2540 updateReachableEdge(B
, SI
->getDefaultDest());
2543 // Now get where it goes and mark it reachable.
2544 BasicBlock
*TargetBlock
= Case
.getCaseSuccessor();
2545 updateReachableEdge(B
, TargetBlock
);
2547 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
!= e
; ++i
) {
2548 BasicBlock
*TargetBlock
= SI
->getSuccessor(i
);
2549 ++SwitchEdges
[TargetBlock
];
2550 updateReachableEdge(B
, TargetBlock
);
2554 // Otherwise this is either unconditional, or a type we have no
2555 // idea about. Just mark successors as reachable.
2556 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
2557 BasicBlock
*TargetBlock
= TI
->getSuccessor(i
);
2558 updateReachableEdge(B
, TargetBlock
);
2561 // This also may be a memory defining terminator, in which case, set it
2562 // equivalent only to itself.
2564 auto *MA
= getMemoryAccess(TI
);
2565 if (MA
&& !isa
<MemoryUse
>(MA
)) {
2566 auto *CC
= ensureLeaderOfMemoryClass(MA
);
2567 if (setMemoryClass(MA
, CC
))
2568 markMemoryUsersTouched(MA
);
2573 // Remove the PHI of Ops PHI for I
2574 void NewGVN::removePhiOfOps(Instruction
*I
, PHINode
*PHITemp
) {
2575 InstrDFS
.erase(PHITemp
);
2576 // It's still a temp instruction. We keep it in the array so it gets erased.
2577 // However, it's no longer used by I, or in the block
2578 TempToBlock
.erase(PHITemp
);
2579 RealToTemp
.erase(I
);
2580 // We don't remove the users from the phi node uses. This wastes a little
2581 // time, but such is life. We could use two sets to track which were there
2582 // are the start of NewGVN, and which were added, but right nowt he cost of
2583 // tracking is more than the cost of checking for more phi of ops.
2586 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
2587 void NewGVN::addPhiOfOps(PHINode
*Op
, BasicBlock
*BB
,
2588 Instruction
*ExistingValue
) {
2589 InstrDFS
[Op
] = InstrToDFSNum(ExistingValue
);
2590 AllTempInstructions
.insert(Op
);
2591 TempToBlock
[Op
] = BB
;
2592 RealToTemp
[ExistingValue
] = Op
;
2593 // Add all users to phi node use, as they are now uses of the phi of ops phis
2594 // and may themselves be phi of ops.
2595 for (auto *U
: ExistingValue
->users())
2596 if (auto *UI
= dyn_cast
<Instruction
>(U
))
2597 PHINodeUses
.insert(UI
);
2600 static bool okayForPHIOfOps(const Instruction
*I
) {
2601 if (!EnablePhiOfOps
)
2603 return isa
<BinaryOperator
>(I
) || isa
<SelectInst
>(I
) || isa
<CmpInst
>(I
) ||
2607 bool NewGVN::OpIsSafeForPHIOfOpsHelper(
2608 Value
*V
, const BasicBlock
*PHIBlock
,
2609 SmallPtrSetImpl
<const Value
*> &Visited
,
2610 SmallVectorImpl
<Instruction
*> &Worklist
) {
2612 if (!isa
<Instruction
>(V
))
2614 auto OISIt
= OpSafeForPHIOfOps
.find(V
);
2615 if (OISIt
!= OpSafeForPHIOfOps
.end())
2616 return OISIt
->second
;
2618 // Keep walking until we either dominate the phi block, or hit a phi, or run
2619 // out of things to check.
2620 if (DT
->properlyDominates(getBlockForValue(V
), PHIBlock
)) {
2621 OpSafeForPHIOfOps
.insert({V
, true});
2624 // PHI in the same block.
2625 if (isa
<PHINode
>(V
) && getBlockForValue(V
) == PHIBlock
) {
2626 OpSafeForPHIOfOps
.insert({V
, false});
2630 auto *OrigI
= cast
<Instruction
>(V
);
2631 for (auto *Op
: OrigI
->operand_values()) {
2632 if (!isa
<Instruction
>(Op
))
2634 // Stop now if we find an unsafe operand.
2635 auto OISIt
= OpSafeForPHIOfOps
.find(OrigI
);
2636 if (OISIt
!= OpSafeForPHIOfOps
.end()) {
2637 if (!OISIt
->second
) {
2638 OpSafeForPHIOfOps
.insert({V
, false});
2643 if (!Visited
.insert(Op
).second
)
2645 Worklist
.push_back(cast
<Instruction
>(Op
));
2650 // Return true if this operand will be safe to use for phi of ops.
2652 // The reason some operands are unsafe is that we are not trying to recursively
2653 // translate everything back through phi nodes. We actually expect some lookups
2654 // of expressions to fail. In particular, a lookup where the expression cannot
2655 // exist in the predecessor. This is true even if the expression, as shown, can
2656 // be determined to be constant.
2657 bool NewGVN::OpIsSafeForPHIOfOps(Value
*V
, const BasicBlock
*PHIBlock
,
2658 SmallPtrSetImpl
<const Value
*> &Visited
) {
2659 SmallVector
<Instruction
*, 4> Worklist
;
2660 if (!OpIsSafeForPHIOfOpsHelper(V
, PHIBlock
, Visited
, Worklist
))
2662 while (!Worklist
.empty()) {
2663 auto *I
= Worklist
.pop_back_val();
2664 if (!OpIsSafeForPHIOfOpsHelper(I
, PHIBlock
, Visited
, Worklist
))
2667 OpSafeForPHIOfOps
.insert({V
, true});
2671 // Try to find a leader for instruction TransInst, which is a phi translated
2672 // version of something in our original program. Visited is used to ensure we
2673 // don't infinite loop during translations of cycles. OrigInst is the
2674 // instruction in the original program, and PredBB is the predecessor we
2675 // translated it through.
2676 Value
*NewGVN::findLeaderForInst(Instruction
*TransInst
,
2677 SmallPtrSetImpl
<Value
*> &Visited
,
2678 MemoryAccess
*MemAccess
, Instruction
*OrigInst
,
2679 BasicBlock
*PredBB
) {
2680 unsigned IDFSNum
= InstrToDFSNum(OrigInst
);
2681 // Make sure it's marked as a temporary instruction.
2682 AllTempInstructions
.insert(TransInst
);
2683 // and make sure anything that tries to add it's DFS number is
2684 // redirected to the instruction we are making a phi of ops
2686 TempToBlock
.insert({TransInst
, PredBB
});
2687 InstrDFS
.insert({TransInst
, IDFSNum
});
2689 const Expression
*E
= performSymbolicEvaluation(TransInst
, Visited
);
2690 InstrDFS
.erase(TransInst
);
2691 AllTempInstructions
.erase(TransInst
);
2692 TempToBlock
.erase(TransInst
);
2694 TempToMemory
.erase(TransInst
);
2697 auto *FoundVal
= findPHIOfOpsLeader(E
, OrigInst
, PredBB
);
2699 ExpressionToPhiOfOps
[E
].insert(OrigInst
);
2700 LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2701 << " in block " << getBlockName(PredBB
) << "\n");
2704 if (auto *SI
= dyn_cast
<StoreInst
>(FoundVal
))
2705 FoundVal
= SI
->getValueOperand();
2709 // When we see an instruction that is an op of phis, generate the equivalent phi
2712 NewGVN::makePossiblePHIOfOps(Instruction
*I
,
2713 SmallPtrSetImpl
<Value
*> &Visited
) {
2714 if (!okayForPHIOfOps(I
))
2717 if (!Visited
.insert(I
).second
)
2719 // For now, we require the instruction be cycle free because we don't
2720 // *always* create a phi of ops for instructions that could be done as phi
2721 // of ops, we only do it if we think it is useful. If we did do it all the
2722 // time, we could remove the cycle free check.
2723 if (!isCycleFree(I
))
2726 SmallPtrSet
<const Value
*, 8> ProcessedPHIs
;
2727 // TODO: We don't do phi translation on memory accesses because it's
2728 // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2729 // which we don't have a good way of doing ATM.
2730 auto *MemAccess
= getMemoryAccess(I
);
2731 // If the memory operation is defined by a memory operation this block that
2732 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2733 // can't help, as it would still be killed by that memory operation.
2734 if (MemAccess
&& !isa
<MemoryPhi
>(MemAccess
->getDefiningAccess()) &&
2735 MemAccess
->getDefiningAccess()->getBlock() == I
->getParent())
2738 // Convert op of phis to phi of ops
2739 SmallPtrSet
<const Value
*, 10> VisitedOps
;
2740 SmallVector
<Value
*, 4> Ops(I
->operand_values());
2741 BasicBlock
*SamePHIBlock
= nullptr;
2742 PHINode
*OpPHI
= nullptr;
2743 if (!DebugCounter::shouldExecute(PHIOfOpsCounter
))
2745 for (auto *Op
: Ops
) {
2746 if (!isa
<PHINode
>(Op
)) {
2747 auto *ValuePHI
= RealToTemp
.lookup(Op
);
2750 LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2753 OpPHI
= cast
<PHINode
>(Op
);
2754 if (!SamePHIBlock
) {
2755 SamePHIBlock
= getBlockForValue(OpPHI
);
2756 } else if (SamePHIBlock
!= getBlockForValue(OpPHI
)) {
2759 << "PHIs for operands are not all in the same block, aborting\n");
2762 // No point in doing this for one-operand phis.
2763 if (OpPHI
->getNumOperands() == 1) {
2772 SmallVector
<ValPair
, 4> PHIOps
;
2773 SmallPtrSet
<Value
*, 4> Deps
;
2774 auto *PHIBlock
= getBlockForValue(OpPHI
);
2775 RevisitOnReachabilityChange
[PHIBlock
].reset(InstrToDFSNum(I
));
2776 for (unsigned PredNum
= 0; PredNum
< OpPHI
->getNumOperands(); ++PredNum
) {
2777 auto *PredBB
= OpPHI
->getIncomingBlock(PredNum
);
2778 Value
*FoundVal
= nullptr;
2779 SmallPtrSet
<Value
*, 4> CurrentDeps
;
2780 // We could just skip unreachable edges entirely but it's tricky to do
2781 // with rewriting existing phi nodes.
2782 if (ReachableEdges
.count({PredBB
, PHIBlock
})) {
2783 // Clone the instruction, create an expression from it that is
2784 // translated back into the predecessor, and see if we have a leader.
2785 Instruction
*ValueOp
= I
->clone();
2787 TempToMemory
.insert({ValueOp
, MemAccess
});
2788 bool SafeForPHIOfOps
= true;
2790 for (auto &Op
: ValueOp
->operands()) {
2791 auto *OrigOp
= &*Op
;
2792 // When these operand changes, it could change whether there is a
2793 // leader for us or not, so we have to add additional users.
2794 if (isa
<PHINode
>(Op
)) {
2795 Op
= Op
->DoPHITranslation(PHIBlock
, PredBB
);
2796 if (Op
!= OrigOp
&& Op
!= I
)
2797 CurrentDeps
.insert(Op
);
2798 } else if (auto *ValuePHI
= RealToTemp
.lookup(Op
)) {
2799 if (getBlockForValue(ValuePHI
) == PHIBlock
)
2800 Op
= ValuePHI
->getIncomingValueForBlock(PredBB
);
2802 // If we phi-translated the op, it must be safe.
2805 (Op
!= OrigOp
|| OpIsSafeForPHIOfOps(Op
, PHIBlock
, VisitedOps
));
2807 // FIXME: For those things that are not safe we could generate
2808 // expressions all the way down, and see if this comes out to a
2809 // constant. For anything where that is true, and unsafe, we should
2810 // have made a phi-of-ops (or value numbered it equivalent to something)
2811 // for the pieces already.
2812 FoundVal
= !SafeForPHIOfOps
? nullptr
2813 : findLeaderForInst(ValueOp
, Visited
,
2814 MemAccess
, I
, PredBB
);
2815 ValueOp
->deleteValue();
2817 // We failed to find a leader for the current ValueOp, but this might
2818 // change in case of the translated operands change.
2819 if (SafeForPHIOfOps
)
2820 for (auto Dep
: CurrentDeps
)
2821 addAdditionalUsers(Dep
, I
);
2825 Deps
.insert(CurrentDeps
.begin(), CurrentDeps
.end());
2827 LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2828 << getBlockName(PredBB
)
2829 << " because the block is unreachable\n");
2830 FoundVal
= UndefValue::get(I
->getType());
2831 RevisitOnReachabilityChange
[PHIBlock
].set(InstrToDFSNum(I
));
2834 PHIOps
.push_back({FoundVal
, PredBB
});
2835 LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal
<< " in "
2836 << getBlockName(PredBB
) << "\n");
2838 for (auto Dep
: Deps
)
2839 addAdditionalUsers(Dep
, I
);
2841 auto *E
= performSymbolicPHIEvaluation(PHIOps
, I
, PHIBlock
);
2842 if (isa
<ConstantExpression
>(E
) || isa
<VariableExpression
>(E
)) {
2845 << "Not creating real PHI of ops because it simplified to existing "
2846 "value or constant\n");
2849 auto *ValuePHI
= RealToTemp
.lookup(I
);
2850 bool NewPHI
= false;
2853 PHINode::Create(I
->getType(), OpPHI
->getNumOperands(), "phiofops");
2854 addPhiOfOps(ValuePHI
, PHIBlock
, I
);
2856 NumGVNPHIOfOpsCreated
++;
2859 for (auto PHIOp
: PHIOps
)
2860 ValuePHI
->addIncoming(PHIOp
.first
, PHIOp
.second
);
2862 TempToBlock
[ValuePHI
] = PHIBlock
;
2864 for (auto PHIOp
: PHIOps
) {
2865 ValuePHI
->setIncomingValue(i
, PHIOp
.first
);
2866 ValuePHI
->setIncomingBlock(i
, PHIOp
.second
);
2870 RevisitOnReachabilityChange
[PHIBlock
].set(InstrToDFSNum(I
));
2871 LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI
<< " for " << *I
2877 // The algorithm initially places the values of the routine in the TOP
2878 // congruence class. The leader of TOP is the undetermined value `undef`.
2879 // When the algorithm has finished, values still in TOP are unreachable.
2880 void NewGVN::initializeCongruenceClasses(Function
&F
) {
2881 NextCongruenceNum
= 0;
2883 // Note that even though we use the live on entry def as a representative
2884 // MemoryAccess, it is *not* the same as the actual live on entry def. We
2885 // have no real equivalemnt to undef for MemoryAccesses, and so we really
2886 // should be checking whether the MemoryAccess is top if we want to know if it
2887 // is equivalent to everything. Otherwise, what this really signifies is that
2888 // the access "it reaches all the way back to the beginning of the function"
2890 // Initialize all other instructions to be in TOP class.
2891 TOPClass
= createCongruenceClass(nullptr, nullptr);
2892 TOPClass
->setMemoryLeader(MSSA
->getLiveOnEntryDef());
2893 // The live on entry def gets put into it's own class
2894 MemoryAccessToClass
[MSSA
->getLiveOnEntryDef()] =
2895 createMemoryClass(MSSA
->getLiveOnEntryDef());
2897 for (auto DTN
: nodes(DT
)) {
2898 BasicBlock
*BB
= DTN
->getBlock();
2899 // All MemoryAccesses are equivalent to live on entry to start. They must
2900 // be initialized to something so that initial changes are noticed. For
2901 // the maximal answer, we initialize them all to be the same as
2903 auto *MemoryBlockDefs
= MSSA
->getBlockDefs(BB
);
2904 if (MemoryBlockDefs
)
2905 for (const auto &Def
: *MemoryBlockDefs
) {
2906 MemoryAccessToClass
[&Def
] = TOPClass
;
2907 auto *MD
= dyn_cast
<MemoryDef
>(&Def
);
2908 // Insert the memory phis into the member list.
2910 const MemoryPhi
*MP
= cast
<MemoryPhi
>(&Def
);
2911 TOPClass
->memory_insert(MP
);
2912 MemoryPhiState
.insert({MP
, MPS_TOP
});
2915 if (MD
&& isa
<StoreInst
>(MD
->getMemoryInst()))
2916 TOPClass
->incStoreCount();
2919 // FIXME: This is trying to discover which instructions are uses of phi
2920 // nodes. We should move this into one of the myriad of places that walk
2921 // all the operands already.
2922 for (auto &I
: *BB
) {
2923 if (isa
<PHINode
>(&I
))
2924 for (auto *U
: I
.users())
2925 if (auto *UInst
= dyn_cast
<Instruction
>(U
))
2926 if (InstrToDFSNum(UInst
) != 0 && okayForPHIOfOps(UInst
))
2927 PHINodeUses
.insert(UInst
);
2928 // Don't insert void terminators into the class. We don't value number
2929 // them, and they just end up sitting in TOP.
2930 if (I
.isTerminator() && I
.getType()->isVoidTy())
2932 TOPClass
->insert(&I
);
2933 ValueToClass
[&I
] = TOPClass
;
2937 // Initialize arguments to be in their own unique congruence classes
2938 for (auto &FA
: F
.args())
2939 createSingletonCongruenceClass(&FA
);
2942 void NewGVN::cleanupTables() {
2943 for (unsigned i
= 0, e
= CongruenceClasses
.size(); i
!= e
; ++i
) {
2944 LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses
[i
]->getID()
2945 << " has " << CongruenceClasses
[i
]->size()
2947 // Make sure we delete the congruence class (probably worth switching to
2948 // a unique_ptr at some point.
2949 delete CongruenceClasses
[i
];
2950 CongruenceClasses
[i
] = nullptr;
2953 // Destroy the value expressions
2954 SmallVector
<Instruction
*, 8> TempInst(AllTempInstructions
.begin(),
2955 AllTempInstructions
.end());
2956 AllTempInstructions
.clear();
2958 // We have to drop all references for everything first, so there are no uses
2959 // left as we delete them.
2960 for (auto *I
: TempInst
) {
2961 I
->dropAllReferences();
2964 while (!TempInst
.empty()) {
2965 auto *I
= TempInst
.back();
2966 TempInst
.pop_back();
2970 ValueToClass
.clear();
2971 ArgRecycler
.clear(ExpressionAllocator
);
2972 ExpressionAllocator
.Reset();
2973 CongruenceClasses
.clear();
2974 ExpressionToClass
.clear();
2975 ValueToExpression
.clear();
2977 AdditionalUsers
.clear();
2978 ExpressionToPhiOfOps
.clear();
2979 TempToBlock
.clear();
2980 TempToMemory
.clear();
2981 PHINodeUses
.clear();
2982 OpSafeForPHIOfOps
.clear();
2983 ReachableBlocks
.clear();
2984 ReachableEdges
.clear();
2986 ProcessedCount
.clear();
2989 InstructionsToErase
.clear();
2991 BlockInstRange
.clear();
2992 TouchedInstructions
.clear();
2993 MemoryAccessToClass
.clear();
2994 PredicateToUsers
.clear();
2995 MemoryToUsers
.clear();
2996 RevisitOnReachabilityChange
.clear();
2999 // Assign local DFS number mapping to instructions, and leave space for Value
3001 std::pair
<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock
*B
,
3003 unsigned End
= Start
;
3004 if (MemoryAccess
*MemPhi
= getMemoryAccess(B
)) {
3005 InstrDFS
[MemPhi
] = End
++;
3006 DFSToInstr
.emplace_back(MemPhi
);
3009 // Then the real block goes next.
3010 for (auto &I
: *B
) {
3011 // There's no need to call isInstructionTriviallyDead more than once on
3012 // an instruction. Therefore, once we know that an instruction is dead
3013 // we change its DFS number so that it doesn't get value numbered.
3014 if (isInstructionTriviallyDead(&I
, TLI
)) {
3016 LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I
<< "\n");
3017 markInstructionForDeletion(&I
);
3020 if (isa
<PHINode
>(&I
))
3021 RevisitOnReachabilityChange
[B
].set(End
);
3022 InstrDFS
[&I
] = End
++;
3023 DFSToInstr
.emplace_back(&I
);
3026 // All of the range functions taken half-open ranges (open on the end side).
3027 // So we do not subtract one from count, because at this point it is one
3028 // greater than the last instruction.
3029 return std::make_pair(Start
, End
);
3032 void NewGVN::updateProcessedCount(const Value
*V
) {
3034 if (ProcessedCount
.count(V
) == 0) {
3035 ProcessedCount
.insert({V
, 1});
3037 ++ProcessedCount
[V
];
3038 assert(ProcessedCount
[V
] < 100 &&
3039 "Seem to have processed the same Value a lot");
3044 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
3045 void NewGVN::valueNumberMemoryPhi(MemoryPhi
*MP
) {
3046 // If all the arguments are the same, the MemoryPhi has the same value as the
3047 // argument. Filter out unreachable blocks and self phis from our operands.
3048 // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3049 // self-phi checking.
3050 const BasicBlock
*PHIBlock
= MP
->getBlock();
3051 auto Filtered
= make_filter_range(MP
->operands(), [&](const Use
&U
) {
3052 return cast
<MemoryAccess
>(U
) != MP
&&
3053 !isMemoryAccessTOP(cast
<MemoryAccess
>(U
)) &&
3054 ReachableEdges
.count({MP
->getIncomingBlock(U
), PHIBlock
});
3056 // If all that is left is nothing, our memoryphi is undef. We keep it as
3057 // InitialClass. Note: The only case this should happen is if we have at
3058 // least one self-argument.
3059 if (Filtered
.begin() == Filtered
.end()) {
3060 if (setMemoryClass(MP
, TOPClass
))
3061 markMemoryUsersTouched(MP
);
3065 // Transform the remaining operands into operand leaders.
3066 // FIXME: mapped_iterator should have a range version.
3067 auto LookupFunc
= [&](const Use
&U
) {
3068 return lookupMemoryLeader(cast
<MemoryAccess
>(U
));
3070 auto MappedBegin
= map_iterator(Filtered
.begin(), LookupFunc
);
3071 auto MappedEnd
= map_iterator(Filtered
.end(), LookupFunc
);
3073 // and now check if all the elements are equal.
3074 // Sadly, we can't use std::equals since these are random access iterators.
3075 const auto *AllSameValue
= *MappedBegin
;
3077 bool AllEqual
= std::all_of(
3078 MappedBegin
, MappedEnd
,
3079 [&AllSameValue
](const MemoryAccess
*V
) { return V
== AllSameValue
; });
3082 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3085 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3086 // If it's equal to something, it's in that class. Otherwise, it has to be in
3087 // a class where it is the leader (other things may be equivalent to it, but
3088 // it needs to start off in its own class, which means it must have been the
3089 // leader, and it can't have stopped being the leader because it was never
3091 CongruenceClass
*CC
=
3092 AllEqual
? getMemoryClass(AllSameValue
) : ensureLeaderOfMemoryClass(MP
);
3093 auto OldState
= MemoryPhiState
.lookup(MP
);
3094 assert(OldState
!= MPS_Invalid
&& "Invalid memory phi state");
3095 auto NewState
= AllEqual
? MPS_Equivalent
: MPS_Unique
;
3096 MemoryPhiState
[MP
] = NewState
;
3097 if (setMemoryClass(MP
, CC
) || OldState
!= NewState
)
3098 markMemoryUsersTouched(MP
);
3101 // Value number a single instruction, symbolically evaluating, performing
3102 // congruence finding, and updating mappings.
3103 void NewGVN::valueNumberInstruction(Instruction
*I
) {
3104 LLVM_DEBUG(dbgs() << "Processing instruction " << *I
<< "\n");
3105 if (!I
->isTerminator()) {
3106 const Expression
*Symbolized
= nullptr;
3107 SmallPtrSet
<Value
*, 2> Visited
;
3108 if (DebugCounter::shouldExecute(VNCounter
)) {
3109 Symbolized
= performSymbolicEvaluation(I
, Visited
);
3110 // Make a phi of ops if necessary
3111 if (Symbolized
&& !isa
<ConstantExpression
>(Symbolized
) &&
3112 !isa
<VariableExpression
>(Symbolized
) && PHINodeUses
.count(I
)) {
3113 auto *PHIE
= makePossiblePHIOfOps(I
, Visited
);
3114 // If we created a phi of ops, use it.
3115 // If we couldn't create one, make sure we don't leave one lying around
3118 } else if (auto *Op
= RealToTemp
.lookup(I
)) {
3119 removePhiOfOps(I
, Op
);
3123 // Mark the instruction as unused so we don't value number it again.
3126 // If we couldn't come up with a symbolic expression, use the unknown
3128 if (Symbolized
== nullptr)
3129 Symbolized
= createUnknownExpression(I
);
3130 performCongruenceFinding(I
, Symbolized
);
3132 // Handle terminators that return values. All of them produce values we
3133 // don't currently understand. We don't place non-value producing
3134 // terminators in a class.
3135 if (!I
->getType()->isVoidTy()) {
3136 auto *Symbolized
= createUnknownExpression(I
);
3137 performCongruenceFinding(I
, Symbolized
);
3139 processOutgoingEdges(I
, I
->getParent());
3143 // Check if there is a path, using single or equal argument phi nodes, from
3145 bool NewGVN::singleReachablePHIPath(
3146 SmallPtrSet
<const MemoryAccess
*, 8> &Visited
, const MemoryAccess
*First
,
3147 const MemoryAccess
*Second
) const {
3148 if (First
== Second
)
3150 if (MSSA
->isLiveOnEntryDef(First
))
3153 // This is not perfect, but as we're just verifying here, we can live with
3154 // the loss of precision. The real solution would be that of doing strongly
3155 // connected component finding in this routine, and it's probably not worth
3156 // the complexity for the time being. So, we just keep a set of visited
3157 // MemoryAccess and return true when we hit a cycle.
3158 if (Visited
.count(First
))
3160 Visited
.insert(First
);
3162 const auto *EndDef
= First
;
3163 for (auto *ChainDef
: optimized_def_chain(First
)) {
3164 if (ChainDef
== Second
)
3166 if (MSSA
->isLiveOnEntryDef(ChainDef
))
3170 auto *MP
= cast
<MemoryPhi
>(EndDef
);
3171 auto ReachableOperandPred
= [&](const Use
&U
) {
3172 return ReachableEdges
.count({MP
->getIncomingBlock(U
), MP
->getBlock()});
3174 auto FilteredPhiArgs
=
3175 make_filter_range(MP
->operands(), ReachableOperandPred
);
3176 SmallVector
<const Value
*, 32> OperandList
;
3177 llvm::copy(FilteredPhiArgs
, std::back_inserter(OperandList
));
3178 bool Okay
= is_splat(OperandList
);
3180 return singleReachablePHIPath(Visited
, cast
<MemoryAccess
>(OperandList
[0]),
3185 // Verify the that the memory equivalence table makes sense relative to the
3186 // congruence classes. Note that this checking is not perfect, and is currently
3187 // subject to very rare false negatives. It is only useful for
3188 // testing/debugging.
3189 void NewGVN::verifyMemoryCongruency() const {
3191 // Verify that the memory table equivalence and memory member set match
3192 for (const auto *CC
: CongruenceClasses
) {
3193 if (CC
== TOPClass
|| CC
->isDead())
3195 if (CC
->getStoreCount() != 0) {
3196 assert((CC
->getStoredValue() || !isa
<StoreInst
>(CC
->getLeader())) &&
3197 "Any class with a store as a leader should have a "
3198 "representative stored value");
3199 assert(CC
->getMemoryLeader() &&
3200 "Any congruence class with a store should have a "
3201 "representative access");
3204 if (CC
->getMemoryLeader())
3205 assert(MemoryAccessToClass
.lookup(CC
->getMemoryLeader()) == CC
&&
3206 "Representative MemoryAccess does not appear to be reverse "
3208 for (auto M
: CC
->memory())
3209 assert(MemoryAccessToClass
.lookup(M
) == CC
&&
3210 "Memory member does not appear to be reverse mapped properly");
3213 // Anything equivalent in the MemoryAccess table should be in the same
3214 // congruence class.
3216 // Filter out the unreachable and trivially dead entries, because they may
3217 // never have been updated if the instructions were not processed.
3218 auto ReachableAccessPred
=
3219 [&](const std::pair
<const MemoryAccess
*, CongruenceClass
*> Pair
) {
3220 bool Result
= ReachableBlocks
.count(Pair
.first
->getBlock());
3221 if (!Result
|| MSSA
->isLiveOnEntryDef(Pair
.first
) ||
3222 MemoryToDFSNum(Pair
.first
) == 0)
3224 if (auto *MemDef
= dyn_cast
<MemoryDef
>(Pair
.first
))
3225 return !isInstructionTriviallyDead(MemDef
->getMemoryInst());
3227 // We could have phi nodes which operands are all trivially dead,
3228 // so we don't process them.
3229 if (auto *MemPHI
= dyn_cast
<MemoryPhi
>(Pair
.first
)) {
3230 for (auto &U
: MemPHI
->incoming_values()) {
3231 if (auto *I
= dyn_cast
<Instruction
>(&*U
)) {
3232 if (!isInstructionTriviallyDead(I
))
3242 auto Filtered
= make_filter_range(MemoryAccessToClass
, ReachableAccessPred
);
3243 for (auto KV
: Filtered
) {
3244 if (auto *FirstMUD
= dyn_cast
<MemoryUseOrDef
>(KV
.first
)) {
3245 auto *SecondMUD
= dyn_cast
<MemoryUseOrDef
>(KV
.second
->getMemoryLeader());
3246 if (FirstMUD
&& SecondMUD
) {
3247 SmallPtrSet
<const MemoryAccess
*, 8> VisitedMAS
;
3248 assert((singleReachablePHIPath(VisitedMAS
, FirstMUD
, SecondMUD
) ||
3249 ValueToClass
.lookup(FirstMUD
->getMemoryInst()) ==
3250 ValueToClass
.lookup(SecondMUD
->getMemoryInst())) &&
3251 "The instructions for these memory operations should have "
3252 "been in the same congruence class or reachable through"
3253 "a single argument phi");
3255 } else if (auto *FirstMP
= dyn_cast
<MemoryPhi
>(KV
.first
)) {
3256 // We can only sanely verify that MemoryDefs in the operand list all have
3258 auto ReachableOperandPred
= [&](const Use
&U
) {
3259 return ReachableEdges
.count(
3260 {FirstMP
->getIncomingBlock(U
), FirstMP
->getBlock()}) &&
3264 // All arguments should in the same class, ignoring unreachable arguments
3265 auto FilteredPhiArgs
=
3266 make_filter_range(FirstMP
->operands(), ReachableOperandPred
);
3267 SmallVector
<const CongruenceClass
*, 16> PhiOpClasses
;
3268 std::transform(FilteredPhiArgs
.begin(), FilteredPhiArgs
.end(),
3269 std::back_inserter(PhiOpClasses
), [&](const Use
&U
) {
3270 const MemoryDef
*MD
= cast
<MemoryDef
>(U
);
3271 return ValueToClass
.lookup(MD
->getMemoryInst());
3273 assert(is_splat(PhiOpClasses
) &&
3274 "All MemoryPhi arguments should be in the same class");
3280 // Verify that the sparse propagation we did actually found the maximal fixpoint
3281 // We do this by storing the value to class mapping, touching all instructions,
3282 // and redoing the iteration to see if anything changed.
3283 void NewGVN::verifyIterationSettled(Function
&F
) {
3285 LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3286 if (DebugCounter::isCounterSet(VNCounter
))
3287 DebugCounter::setCounterValue(VNCounter
, StartingVNCounter
);
3289 // Note that we have to store the actual classes, as we may change existing
3290 // classes during iteration. This is because our memory iteration propagation
3291 // is not perfect, and so may waste a little work. But it should generate
3292 // exactly the same congruence classes we have now, with different IDs.
3293 std::map
<const Value
*, CongruenceClass
> BeforeIteration
;
3295 for (auto &KV
: ValueToClass
) {
3296 if (auto *I
= dyn_cast
<Instruction
>(KV
.first
))
3297 // Skip unused/dead instructions.
3298 if (InstrToDFSNum(I
) == 0)
3300 BeforeIteration
.insert({KV
.first
, *KV
.second
});
3303 TouchedInstructions
.set();
3304 TouchedInstructions
.reset(0);
3305 iterateTouchedInstructions();
3306 DenseSet
<std::pair
<const CongruenceClass
*, const CongruenceClass
*>>
3308 for (const auto &KV
: ValueToClass
) {
3309 if (auto *I
= dyn_cast
<Instruction
>(KV
.first
))
3310 // Skip unused/dead instructions.
3311 if (InstrToDFSNum(I
) == 0)
3313 // We could sink these uses, but i think this adds a bit of clarity here as
3314 // to what we are comparing.
3315 auto *BeforeCC
= &BeforeIteration
.find(KV
.first
)->second
;
3316 auto *AfterCC
= KV
.second
;
3317 // Note that the classes can't change at this point, so we memoize the set
3319 if (!EqualClasses
.count({BeforeCC
, AfterCC
})) {
3320 assert(BeforeCC
->isEquivalentTo(AfterCC
) &&
3321 "Value number changed after main loop completed!");
3322 EqualClasses
.insert({BeforeCC
, AfterCC
});
3328 // Verify that for each store expression in the expression to class mapping,
3329 // only the latest appears, and multiple ones do not appear.
3330 // Because loads do not use the stored value when doing equality with stores,
3331 // if we don't erase the old store expressions from the table, a load can find
3332 // a no-longer valid StoreExpression.
3333 void NewGVN::verifyStoreExpressions() const {
3335 // This is the only use of this, and it's not worth defining a complicated
3336 // densemapinfo hash/equality function for it.
3338 std::pair
<const Value
*,
3339 std::tuple
<const Value
*, const CongruenceClass
*, Value
*>>>
3341 for (const auto &KV
: ExpressionToClass
) {
3342 if (auto *SE
= dyn_cast
<StoreExpression
>(KV
.first
)) {
3343 // Make sure a version that will conflict with loads is not already there
3344 auto Res
= StoreExpressionSet
.insert(
3345 {SE
->getOperand(0), std::make_tuple(SE
->getMemoryLeader(), KV
.second
,
3346 SE
->getStoredValue())});
3347 bool Okay
= Res
.second
;
3348 // It's okay to have the same expression already in there if it is
3349 // identical in nature.
3350 // This can happen when the leader of the stored value changes over time.
3352 Okay
= (std::get
<1>(Res
.first
->second
) == KV
.second
) &&
3353 (lookupOperandLeader(std::get
<2>(Res
.first
->second
)) ==
3354 lookupOperandLeader(SE
->getStoredValue()));
3355 assert(Okay
&& "Stored expression conflict exists in expression table");
3356 auto *ValueExpr
= ValueToExpression
.lookup(SE
->getStoreInst());
3357 assert(ValueExpr
&& ValueExpr
->equals(*SE
) &&
3358 "StoreExpression in ExpressionToClass is not latest "
3359 "StoreExpression for value");
3365 // This is the main value numbering loop, it iterates over the initial touched
3366 // instruction set, propagating value numbers, marking things touched, etc,
3367 // until the set of touched instructions is completely empty.
3368 void NewGVN::iterateTouchedInstructions() {
3369 unsigned int Iterations
= 0;
3370 // Figure out where touchedinstructions starts
3371 int FirstInstr
= TouchedInstructions
.find_first();
3372 // Nothing set, nothing to iterate, just return.
3373 if (FirstInstr
== -1)
3375 const BasicBlock
*LastBlock
= getBlockForValue(InstrFromDFSNum(FirstInstr
));
3376 while (TouchedInstructions
.any()) {
3378 // Walk through all the instructions in all the blocks in RPO.
3379 // TODO: As we hit a new block, we should push and pop equalities into a
3380 // table lookupOperandLeader can use, to catch things PredicateInfo
3381 // might miss, like edge-only equivalences.
3382 for (unsigned InstrNum
: TouchedInstructions
.set_bits()) {
3384 // This instruction was found to be dead. We don't bother looking
3386 if (InstrNum
== 0) {
3387 TouchedInstructions
.reset(InstrNum
);
3391 Value
*V
= InstrFromDFSNum(InstrNum
);
3392 const BasicBlock
*CurrBlock
= getBlockForValue(V
);
3394 // If we hit a new block, do reachability processing.
3395 if (CurrBlock
!= LastBlock
) {
3396 LastBlock
= CurrBlock
;
3397 bool BlockReachable
= ReachableBlocks
.count(CurrBlock
);
3398 const auto &CurrInstRange
= BlockInstRange
.lookup(CurrBlock
);
3400 // If it's not reachable, erase any touched instructions and move on.
3401 if (!BlockReachable
) {
3402 TouchedInstructions
.reset(CurrInstRange
.first
, CurrInstRange
.second
);
3403 LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3404 << getBlockName(CurrBlock
)
3405 << " because it is unreachable\n");
3408 updateProcessedCount(CurrBlock
);
3410 // Reset after processing (because we may mark ourselves as touched when
3411 // we propagate equalities).
3412 TouchedInstructions
.reset(InstrNum
);
3414 if (auto *MP
= dyn_cast
<MemoryPhi
>(V
)) {
3415 LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP
<< "\n");
3416 valueNumberMemoryPhi(MP
);
3417 } else if (auto *I
= dyn_cast
<Instruction
>(V
)) {
3418 valueNumberInstruction(I
);
3420 llvm_unreachable("Should have been a MemoryPhi or Instruction");
3422 updateProcessedCount(V
);
3425 NumGVNMaxIterations
= std::max(NumGVNMaxIterations
.getValue(), Iterations
);
3428 // This is the main transformation entry point.
3429 bool NewGVN::runGVN() {
3430 if (DebugCounter::isCounterSet(VNCounter
))
3431 StartingVNCounter
= DebugCounter::getCounterValue(VNCounter
);
3432 bool Changed
= false;
3433 NumFuncArgs
= F
.arg_size();
3434 MSSAWalker
= MSSA
->getWalker();
3435 SingletonDeadExpression
= new (ExpressionAllocator
) DeadExpression();
3437 // Count number of instructions for sizing of hash tables, and come
3438 // up with a global dfs numbering for instructions.
3439 unsigned ICount
= 1;
3440 // Add an empty instruction to account for the fact that we start at 1
3441 DFSToInstr
.emplace_back(nullptr);
3442 // Note: We want ideal RPO traversal of the blocks, which is not quite the
3443 // same as dominator tree order, particularly with regard whether backedges
3444 // get visited first or second, given a block with multiple successors.
3445 // If we visit in the wrong order, we will end up performing N times as many
3447 // The dominator tree does guarantee that, for a given dom tree node, it's
3448 // parent must occur before it in the RPO ordering. Thus, we only need to sort
3450 ReversePostOrderTraversal
<Function
*> RPOT(&F
);
3451 unsigned Counter
= 0;
3452 for (auto &B
: RPOT
) {
3453 auto *Node
= DT
->getNode(B
);
3454 assert(Node
&& "RPO and Dominator tree should have same reachability");
3455 RPOOrdering
[Node
] = ++Counter
;
3457 // Sort dominator tree children arrays into RPO.
3458 for (auto &B
: RPOT
) {
3459 auto *Node
= DT
->getNode(B
);
3460 if (Node
->getChildren().size() > 1)
3461 llvm::sort(Node
->begin(), Node
->end(),
3462 [&](const DomTreeNode
*A
, const DomTreeNode
*B
) {
3463 return RPOOrdering
[A
] < RPOOrdering
[B
];
3467 // Now a standard depth first ordering of the domtree is equivalent to RPO.
3468 for (auto DTN
: depth_first(DT
->getRootNode())) {
3469 BasicBlock
*B
= DTN
->getBlock();
3470 const auto &BlockRange
= assignDFSNumbers(B
, ICount
);
3471 BlockInstRange
.insert({B
, BlockRange
});
3472 ICount
+= BlockRange
.second
- BlockRange
.first
;
3474 initializeCongruenceClasses(F
);
3476 TouchedInstructions
.resize(ICount
);
3477 // Ensure we don't end up resizing the expressionToClass map, as
3478 // that can be quite expensive. At most, we have one expression per
3480 ExpressionToClass
.reserve(ICount
);
3482 // Initialize the touched instructions to include the entry block.
3483 const auto &InstRange
= BlockInstRange
.lookup(&F
.getEntryBlock());
3484 TouchedInstructions
.set(InstRange
.first
, InstRange
.second
);
3485 LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F
.getEntryBlock())
3486 << " marked reachable\n");
3487 ReachableBlocks
.insert(&F
.getEntryBlock());
3489 iterateTouchedInstructions();
3490 verifyMemoryCongruency();
3491 verifyIterationSettled(F
);
3492 verifyStoreExpressions();
3494 Changed
|= eliminateInstructions(F
);
3496 // Delete all instructions marked for deletion.
3497 for (Instruction
*ToErase
: InstructionsToErase
) {
3498 if (!ToErase
->use_empty())
3499 ToErase
->replaceAllUsesWith(UndefValue::get(ToErase
->getType()));
3501 assert(ToErase
->getParent() &&
3502 "BB containing ToErase deleted unexpectedly!");
3503 ToErase
->eraseFromParent();
3505 Changed
|= !InstructionsToErase
.empty();
3507 // Delete all unreachable blocks.
3508 auto UnreachableBlockPred
= [&](const BasicBlock
&BB
) {
3509 return !ReachableBlocks
.count(&BB
);
3512 for (auto &BB
: make_filter_range(F
, UnreachableBlockPred
)) {
3513 LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB
)
3514 << " is unreachable\n");
3515 deleteInstructionsInBlock(&BB
);
3523 struct NewGVN::ValueDFS
{
3528 // Only one of Def and U will be set.
3529 // The bool in the Def tells us whether the Def is the stored value of a
3531 PointerIntPair
<Value
*, 1, bool> Def
;
3534 bool operator<(const ValueDFS
&Other
) const {
3535 // It's not enough that any given field be less than - we have sets
3536 // of fields that need to be evaluated together to give a proper ordering.
3537 // For example, if you have;
3542 // We want the second to be less than the first, but if we just go field
3543 // by field, we will get to Val 0 < Val 50 and say the first is less than
3544 // the second. We only want it to be less than if the DFS orders are equal.
3546 // Each LLVM instruction only produces one value, and thus the lowest-level
3547 // differentiator that really matters for the stack (and what we use as as a
3548 // replacement) is the local dfs number.
3549 // Everything else in the structure is instruction level, and only affects
3550 // the order in which we will replace operands of a given instruction.
3552 // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3553 // the order of replacement of uses does not matter.
3557 // When you hit b, you will have two valuedfs with the same dfsin, out, and
3559 // The .val will be the same as well.
3560 // The .u's will be different.
3561 // You will replace both, and it does not matter what order you replace them
3562 // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3564 // Similarly for the case of same dfsin, dfsout, localnum, but different
3569 // in c, we will a valuedfs for a, and one for b,with everything the same
3571 // It does not matter what order we replace these operands in.
3572 // You will always end up with the same IR, and this is guaranteed.
3573 return std::tie(DFSIn
, DFSOut
, LocalNum
, Def
, U
) <
3574 std::tie(Other
.DFSIn
, Other
.DFSOut
, Other
.LocalNum
, Other
.Def
,
3579 // This function converts the set of members for a congruence class from values,
3580 // to sets of defs and uses with associated DFS info. The total number of
3581 // reachable uses for each value is stored in UseCount, and instructions that
3583 // dead (have no non-dead uses) are stored in ProbablyDead.
3584 void NewGVN::convertClassToDFSOrdered(
3585 const CongruenceClass
&Dense
, SmallVectorImpl
<ValueDFS
> &DFSOrderedSet
,
3586 DenseMap
<const Value
*, unsigned int> &UseCounts
,
3587 SmallPtrSetImpl
<Instruction
*> &ProbablyDead
) const {
3588 for (auto D
: Dense
) {
3589 // First add the value.
3590 BasicBlock
*BB
= getBlockForValue(D
);
3591 // Constants are handled prior to ever calling this function, so
3592 // we should only be left with instructions as members.
3593 assert(BB
&& "Should have figured out a basic block for value");
3595 DomTreeNode
*DomNode
= DT
->getNode(BB
);
3596 VDDef
.DFSIn
= DomNode
->getDFSNumIn();
3597 VDDef
.DFSOut
= DomNode
->getDFSNumOut();
3598 // If it's a store, use the leader of the value operand, if it's always
3599 // available, or the value operand. TODO: We could do dominance checks to
3600 // find a dominating leader, but not worth it ATM.
3601 if (auto *SI
= dyn_cast
<StoreInst
>(D
)) {
3602 auto Leader
= lookupOperandLeader(SI
->getValueOperand());
3603 if (alwaysAvailable(Leader
)) {
3604 VDDef
.Def
.setPointer(Leader
);
3606 VDDef
.Def
.setPointer(SI
->getValueOperand());
3607 VDDef
.Def
.setInt(true);
3610 VDDef
.Def
.setPointer(D
);
3612 assert(isa
<Instruction
>(D
) &&
3613 "The dense set member should always be an instruction");
3614 Instruction
*Def
= cast
<Instruction
>(D
);
3615 VDDef
.LocalNum
= InstrToDFSNum(D
);
3616 DFSOrderedSet
.push_back(VDDef
);
3617 // If there is a phi node equivalent, add it
3618 if (auto *PN
= RealToTemp
.lookup(Def
)) {
3620 dyn_cast_or_null
<PHIExpression
>(ValueToExpression
.lookup(Def
));
3622 VDDef
.Def
.setInt(false);
3623 VDDef
.Def
.setPointer(PN
);
3625 DFSOrderedSet
.push_back(VDDef
);
3629 unsigned int UseCount
= 0;
3630 // Now add the uses.
3631 for (auto &U
: Def
->uses()) {
3632 if (auto *I
= dyn_cast
<Instruction
>(U
.getUser())) {
3633 // Don't try to replace into dead uses
3634 if (InstructionsToErase
.count(I
))
3637 // Put the phi node uses in the incoming block.
3639 if (auto *P
= dyn_cast
<PHINode
>(I
)) {
3640 IBlock
= P
->getIncomingBlock(U
);
3641 // Make phi node users appear last in the incoming block
3643 VDUse
.LocalNum
= InstrDFS
.size() + 1;
3645 IBlock
= getBlockForValue(I
);
3646 VDUse
.LocalNum
= InstrToDFSNum(I
);
3649 // Skip uses in unreachable blocks, as we're going
3651 if (ReachableBlocks
.count(IBlock
) == 0)
3654 DomTreeNode
*DomNode
= DT
->getNode(IBlock
);
3655 VDUse
.DFSIn
= DomNode
->getDFSNumIn();
3656 VDUse
.DFSOut
= DomNode
->getDFSNumOut();
3659 DFSOrderedSet
.emplace_back(VDUse
);
3663 // If there are no uses, it's probably dead (but it may have side-effects,
3664 // so not definitely dead. Otherwise, store the number of uses so we can
3665 // track if it becomes dead later).
3667 ProbablyDead
.insert(Def
);
3669 UseCounts
[Def
] = UseCount
;
3673 // This function converts the set of members for a congruence class from values,
3674 // to the set of defs for loads and stores, with associated DFS info.
3675 void NewGVN::convertClassToLoadsAndStores(
3676 const CongruenceClass
&Dense
,
3677 SmallVectorImpl
<ValueDFS
> &LoadsAndStores
) const {
3678 for (auto D
: Dense
) {
3679 if (!isa
<LoadInst
>(D
) && !isa
<StoreInst
>(D
))
3682 BasicBlock
*BB
= getBlockForValue(D
);
3684 DomTreeNode
*DomNode
= DT
->getNode(BB
);
3685 VD
.DFSIn
= DomNode
->getDFSNumIn();
3686 VD
.DFSOut
= DomNode
->getDFSNumOut();
3687 VD
.Def
.setPointer(D
);
3689 // If it's an instruction, use the real local dfs number.
3690 if (auto *I
= dyn_cast
<Instruction
>(D
))
3691 VD
.LocalNum
= InstrToDFSNum(I
);
3693 llvm_unreachable("Should have been an instruction");
3695 LoadsAndStores
.emplace_back(VD
);
3699 static void patchAndReplaceAllUsesWith(Instruction
*I
, Value
*Repl
) {
3700 patchReplacementInstruction(I
, Repl
);
3701 I
->replaceAllUsesWith(Repl
);
3704 void NewGVN::deleteInstructionsInBlock(BasicBlock
*BB
) {
3705 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB
);
3706 ++NumGVNBlocksDeleted
;
3708 // Delete the instructions backwards, as it has a reduced likelihood of having
3709 // to update as many def-use and use-def chains. Start after the terminator.
3710 auto StartPoint
= BB
->rbegin();
3712 // Note that we explicitly recalculate BB->rend() on each iteration,
3713 // as it may change when we remove the first instruction.
3714 for (BasicBlock::reverse_iterator
I(StartPoint
); I
!= BB
->rend();) {
3715 Instruction
&Inst
= *I
++;
3716 if (!Inst
.use_empty())
3717 Inst
.replaceAllUsesWith(UndefValue::get(Inst
.getType()));
3718 if (isa
<LandingPadInst
>(Inst
))
3721 Inst
.eraseFromParent();
3722 ++NumGVNInstrDeleted
;
3724 // Now insert something that simplifycfg will turn into an unreachable.
3725 Type
*Int8Ty
= Type::getInt8Ty(BB
->getContext());
3726 new StoreInst(UndefValue::get(Int8Ty
),
3727 Constant::getNullValue(Int8Ty
->getPointerTo()),
3728 BB
->getTerminator());
3731 void NewGVN::markInstructionForDeletion(Instruction
*I
) {
3732 LLVM_DEBUG(dbgs() << "Marking " << *I
<< " for deletion\n");
3733 InstructionsToErase
.insert(I
);
3736 void NewGVN::replaceInstruction(Instruction
*I
, Value
*V
) {
3737 LLVM_DEBUG(dbgs() << "Replacing " << *I
<< " with " << *V
<< "\n");
3738 patchAndReplaceAllUsesWith(I
, V
);
3739 // We save the actual erasing to avoid invalidating memory
3740 // dependencies until we are done with everything.
3741 markInstructionForDeletion(I
);
3746 // This is a stack that contains both the value and dfs info of where
3747 // that value is valid.
3748 class ValueDFSStack
{
3750 Value
*back() const { return ValueStack
.back(); }
3751 std::pair
<int, int> dfs_back() const { return DFSStack
.back(); }
3753 void push_back(Value
*V
, int DFSIn
, int DFSOut
) {
3754 ValueStack
.emplace_back(V
);
3755 DFSStack
.emplace_back(DFSIn
, DFSOut
);
3758 bool empty() const { return DFSStack
.empty(); }
3760 bool isInScope(int DFSIn
, int DFSOut
) const {
3763 return DFSIn
>= DFSStack
.back().first
&& DFSOut
<= DFSStack
.back().second
;
3766 void popUntilDFSScope(int DFSIn
, int DFSOut
) {
3768 // These two should always be in sync at this point.
3769 assert(ValueStack
.size() == DFSStack
.size() &&
3770 "Mismatch between ValueStack and DFSStack");
3772 !DFSStack
.empty() &&
3773 !(DFSIn
>= DFSStack
.back().first
&& DFSOut
<= DFSStack
.back().second
)) {
3774 DFSStack
.pop_back();
3775 ValueStack
.pop_back();
3780 SmallVector
<Value
*, 8> ValueStack
;
3781 SmallVector
<std::pair
<int, int>, 8> DFSStack
;
3784 } // end anonymous namespace
3786 // Given an expression, get the congruence class for it.
3787 CongruenceClass
*NewGVN::getClassForExpression(const Expression
*E
) const {
3788 if (auto *VE
= dyn_cast
<VariableExpression
>(E
))
3789 return ValueToClass
.lookup(VE
->getVariableValue());
3790 else if (isa
<DeadExpression
>(E
))
3792 return ExpressionToClass
.lookup(E
);
3795 // Given a value and a basic block we are trying to see if it is available in,
3796 // see if the value has a leader available in that block.
3797 Value
*NewGVN::findPHIOfOpsLeader(const Expression
*E
,
3798 const Instruction
*OrigInst
,
3799 const BasicBlock
*BB
) const {
3800 // It would already be constant if we could make it constant
3801 if (auto *CE
= dyn_cast
<ConstantExpression
>(E
))
3802 return CE
->getConstantValue();
3803 if (auto *VE
= dyn_cast
<VariableExpression
>(E
)) {
3804 auto *V
= VE
->getVariableValue();
3805 if (alwaysAvailable(V
) || DT
->dominates(getBlockForValue(V
), BB
))
3806 return VE
->getVariableValue();
3809 auto *CC
= getClassForExpression(E
);
3812 if (alwaysAvailable(CC
->getLeader()))
3813 return CC
->getLeader();
3815 for (auto Member
: *CC
) {
3816 auto *MemberInst
= dyn_cast
<Instruction
>(Member
);
3817 if (MemberInst
== OrigInst
)
3819 // Anything that isn't an instruction is always available.
3822 if (DT
->dominates(getBlockForValue(MemberInst
), BB
))
3828 bool NewGVN::eliminateInstructions(Function
&F
) {
3829 // This is a non-standard eliminator. The normal way to eliminate is
3830 // to walk the dominator tree in order, keeping track of available
3831 // values, and eliminating them. However, this is mildly
3832 // pointless. It requires doing lookups on every instruction,
3833 // regardless of whether we will ever eliminate it. For
3834 // instructions part of most singleton congruence classes, we know we
3835 // will never eliminate them.
3837 // Instead, this eliminator looks at the congruence classes directly, sorts
3838 // them into a DFS ordering of the dominator tree, and then we just
3839 // perform elimination straight on the sets by walking the congruence
3840 // class member uses in order, and eliminate the ones dominated by the
3841 // last member. This is worst case O(E log E) where E = number of
3842 // instructions in a single congruence class. In theory, this is all
3843 // instructions. In practice, it is much faster, as most instructions are
3844 // either in singleton congruence classes or can't possibly be eliminated
3845 // anyway (if there are no overlapping DFS ranges in class).
3846 // When we find something not dominated, it becomes the new leader
3847 // for elimination purposes.
3848 // TODO: If we wanted to be faster, We could remove any members with no
3849 // overlapping ranges while sorting, as we will never eliminate anything
3850 // with those members, as they don't dominate anything else in our set.
3852 bool AnythingReplaced
= false;
3854 // Since we are going to walk the domtree anyway, and we can't guarantee the
3855 // DFS numbers are updated, we compute some ourselves.
3856 DT
->updateDFSNumbers();
3858 // Go through all of our phi nodes, and kill the arguments associated with
3859 // unreachable edges.
3860 auto ReplaceUnreachablePHIArgs
= [&](PHINode
*PHI
, BasicBlock
*BB
) {
3861 for (auto &Operand
: PHI
->incoming_values())
3862 if (!ReachableEdges
.count({PHI
->getIncomingBlock(Operand
), BB
})) {
3863 LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3865 << getBlockName(PHI
->getIncomingBlock(Operand
))
3866 << " with undef due to it being unreachable\n");
3867 Operand
.set(UndefValue::get(PHI
->getType()));
3870 // Replace unreachable phi arguments.
3871 // At this point, RevisitOnReachabilityChange only contains:
3874 // 2. Temporaries that will convert to PHIs
3875 // 3. Operations that are affected by an unreachable edge but do not fit into
3877 // So it is a slight overshoot of what we want. We could make it exact by
3878 // using two SparseBitVectors per block.
3879 DenseMap
<const BasicBlock
*, unsigned> ReachablePredCount
;
3880 for (auto &KV
: ReachableEdges
)
3881 ReachablePredCount
[KV
.getEnd()]++;
3882 for (auto &BBPair
: RevisitOnReachabilityChange
) {
3883 for (auto InstNum
: BBPair
.second
) {
3884 auto *Inst
= InstrFromDFSNum(InstNum
);
3885 auto *PHI
= dyn_cast
<PHINode
>(Inst
);
3886 PHI
= PHI
? PHI
: dyn_cast_or_null
<PHINode
>(RealToTemp
.lookup(Inst
));
3889 auto *BB
= BBPair
.first
;
3890 if (ReachablePredCount
.lookup(BB
) != PHI
->getNumIncomingValues())
3891 ReplaceUnreachablePHIArgs(PHI
, BB
);
3895 // Map to store the use counts
3896 DenseMap
<const Value
*, unsigned int> UseCounts
;
3897 for (auto *CC
: reverse(CongruenceClasses
)) {
3898 LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC
->getID()
3900 // Track the equivalent store info so we can decide whether to try
3901 // dead store elimination.
3902 SmallVector
<ValueDFS
, 8> PossibleDeadStores
;
3903 SmallPtrSet
<Instruction
*, 8> ProbablyDead
;
3904 if (CC
->isDead() || CC
->empty())
3906 // Everything still in the TOP class is unreachable or dead.
3907 if (CC
== TOPClass
) {
3908 for (auto M
: *CC
) {
3909 auto *VTE
= ValueToExpression
.lookup(M
);
3910 if (VTE
&& isa
<DeadExpression
>(VTE
))
3911 markInstructionForDeletion(cast
<Instruction
>(M
));
3912 assert((!ReachableBlocks
.count(cast
<Instruction
>(M
)->getParent()) ||
3913 InstructionsToErase
.count(cast
<Instruction
>(M
))) &&
3914 "Everything in TOP should be unreachable or dead at this "
3920 assert(CC
->getLeader() && "We should have had a leader");
3921 // If this is a leader that is always available, and it's a
3922 // constant or has no equivalences, just replace everything with
3923 // it. We then update the congruence class with whatever members
3926 CC
->getStoredValue() ? CC
->getStoredValue() : CC
->getLeader();
3927 if (alwaysAvailable(Leader
)) {
3928 CongruenceClass::MemberSet MembersLeft
;
3929 for (auto M
: *CC
) {
3931 // Void things have no uses we can replace.
3932 if (Member
== Leader
|| !isa
<Instruction
>(Member
) ||
3933 Member
->getType()->isVoidTy()) {
3934 MembersLeft
.insert(Member
);
3937 LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader
) << " for "
3938 << *Member
<< "\n");
3939 auto *I
= cast
<Instruction
>(Member
);
3940 assert(Leader
!= I
&& "About to accidentally remove our leader");
3941 replaceInstruction(I
, Leader
);
3942 AnythingReplaced
= true;
3944 CC
->swap(MembersLeft
);
3946 // If this is a singleton, we can skip it.
3947 if (CC
->size() != 1 || RealToTemp
.count(Leader
)) {
3948 // This is a stack because equality replacement/etc may place
3949 // constants in the middle of the member list, and we want to use
3950 // those constant values in preference to the current leader, over
3951 // the scope of those constants.
3952 ValueDFSStack EliminationStack
;
3954 // Convert the members to DFS ordered sets and then merge them.
3955 SmallVector
<ValueDFS
, 8> DFSOrderedSet
;
3956 convertClassToDFSOrdered(*CC
, DFSOrderedSet
, UseCounts
, ProbablyDead
);
3958 // Sort the whole thing.
3959 llvm::sort(DFSOrderedSet
);
3960 for (auto &VD
: DFSOrderedSet
) {
3961 int MemberDFSIn
= VD
.DFSIn
;
3962 int MemberDFSOut
= VD
.DFSOut
;
3963 Value
*Def
= VD
.Def
.getPointer();
3964 bool FromStore
= VD
.Def
.getInt();
3966 // We ignore void things because we can't get a value from them.
3967 if (Def
&& Def
->getType()->isVoidTy())
3969 auto *DefInst
= dyn_cast_or_null
<Instruction
>(Def
);
3970 if (DefInst
&& AllTempInstructions
.count(DefInst
)) {
3971 auto *PN
= cast
<PHINode
>(DefInst
);
3973 // If this is a value phi and that's the expression we used, insert
3974 // it into the program
3975 // remove from temp instruction list.
3976 AllTempInstructions
.erase(PN
);
3977 auto *DefBlock
= getBlockForValue(Def
);
3978 LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3980 << getBlockName(getBlockForValue(Def
)) << "\n");
3981 PN
->insertBefore(&DefBlock
->front());
3983 NumGVNPHIOfOpsEliminations
++;
3986 if (EliminationStack
.empty()) {
3987 LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
3989 LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3990 << EliminationStack
.dfs_back().first
<< ","
3991 << EliminationStack
.dfs_back().second
<< ")\n");
3994 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn
<< ","
3995 << MemberDFSOut
<< ")\n");
3996 // First, we see if we are out of scope or empty. If so,
3997 // and there equivalences, we try to replace the top of
3998 // stack with equivalences (if it's on the stack, it must
3999 // not have been eliminated yet).
4000 // Then we synchronize to our current scope, by
4001 // popping until we are back within a DFS scope that
4002 // dominates the current member.
4003 // Then, what happens depends on a few factors
4004 // If the stack is now empty, we need to push
4005 // If we have a constant or a local equivalence we want to
4006 // start using, we also push.
4007 // Otherwise, we walk along, processing members who are
4008 // dominated by this scope, and eliminate them.
4009 bool ShouldPush
= Def
&& EliminationStack
.empty();
4011 !EliminationStack
.isInScope(MemberDFSIn
, MemberDFSOut
);
4013 if (OutOfScope
|| ShouldPush
) {
4014 // Sync to our current scope.
4015 EliminationStack
.popUntilDFSScope(MemberDFSIn
, MemberDFSOut
);
4016 bool ShouldPush
= Def
&& EliminationStack
.empty();
4018 EliminationStack
.push_back(Def
, MemberDFSIn
, MemberDFSOut
);
4022 // Skip the Def's, we only want to eliminate on their uses. But mark
4023 // dominated defs as dead.
4025 // For anything in this case, what and how we value number
4026 // guarantees that any side-effets that would have occurred (ie
4027 // throwing, etc) can be proven to either still occur (because it's
4028 // dominated by something that has the same side-effects), or never
4029 // occur. Otherwise, we would not have been able to prove it value
4030 // equivalent to something else. For these things, we can just mark
4031 // it all dead. Note that this is different from the "ProbablyDead"
4032 // set, which may not be dominated by anything, and thus, are only
4033 // easy to prove dead if they are also side-effect free. Note that
4034 // because stores are put in terms of the stored value, we skip
4035 // stored values here. If the stored value is really dead, it will
4036 // still be marked for deletion when we process it in its own class.
4037 if (!EliminationStack
.empty() && Def
!= EliminationStack
.back() &&
4038 isa
<Instruction
>(Def
) && !FromStore
)
4039 markInstructionForDeletion(cast
<Instruction
>(Def
));
4042 // At this point, we know it is a Use we are trying to possibly
4045 assert(isa
<Instruction
>(U
->get()) &&
4046 "Current def should have been an instruction");
4047 assert(isa
<Instruction
>(U
->getUser()) &&
4048 "Current user should have been an instruction");
4050 // If the thing we are replacing into is already marked to be dead,
4051 // this use is dead. Note that this is true regardless of whether
4052 // we have anything dominating the use or not. We do this here
4053 // because we are already walking all the uses anyway.
4054 Instruction
*InstUse
= cast
<Instruction
>(U
->getUser());
4055 if (InstructionsToErase
.count(InstUse
)) {
4056 auto &UseCount
= UseCounts
[U
->get()];
4057 if (--UseCount
== 0) {
4058 ProbablyDead
.insert(cast
<Instruction
>(U
->get()));
4062 // If we get to this point, and the stack is empty we must have a use
4063 // with nothing we can use to eliminate this use, so just skip it.
4064 if (EliminationStack
.empty())
4067 Value
*DominatingLeader
= EliminationStack
.back();
4069 auto *II
= dyn_cast
<IntrinsicInst
>(DominatingLeader
);
4070 bool isSSACopy
= II
&& II
->getIntrinsicID() == Intrinsic::ssa_copy
;
4072 DominatingLeader
= II
->getOperand(0);
4074 // Don't replace our existing users with ourselves.
4075 if (U
->get() == DominatingLeader
)
4078 << "Found replacement " << *DominatingLeader
<< " for "
4079 << *U
->get() << " in " << *(U
->getUser()) << "\n");
4081 // If we replaced something in an instruction, handle the patching of
4082 // metadata. Skip this if we are replacing predicateinfo with its
4083 // original operand, as we already know we can just drop it.
4084 auto *ReplacedInst
= cast
<Instruction
>(U
->get());
4085 auto *PI
= PredInfo
->getPredicateInfoFor(ReplacedInst
);
4086 if (!PI
|| DominatingLeader
!= PI
->OriginalOp
)
4087 patchReplacementInstruction(ReplacedInst
, DominatingLeader
);
4088 U
->set(DominatingLeader
);
4089 // This is now a use of the dominating leader, which means if the
4090 // dominating leader was dead, it's now live!
4091 auto &LeaderUseCount
= UseCounts
[DominatingLeader
];
4092 // It's about to be alive again.
4093 if (LeaderUseCount
== 0 && isa
<Instruction
>(DominatingLeader
))
4094 ProbablyDead
.erase(cast
<Instruction
>(DominatingLeader
));
4095 // For copy instructions, we use their operand as a leader,
4096 // which means we remove a user of the copy and it may become dead.
4098 unsigned &IIUseCount
= UseCounts
[II
];
4099 if (--IIUseCount
== 0)
4100 ProbablyDead
.insert(II
);
4103 AnythingReplaced
= true;
4108 // At this point, anything still in the ProbablyDead set is actually dead if
4109 // would be trivially dead.
4110 for (auto *I
: ProbablyDead
)
4111 if (wouldInstructionBeTriviallyDead(I
))
4112 markInstructionForDeletion(I
);
4114 // Cleanup the congruence class.
4115 CongruenceClass::MemberSet MembersLeft
;
4116 for (auto *Member
: *CC
)
4117 if (!isa
<Instruction
>(Member
) ||
4118 !InstructionsToErase
.count(cast
<Instruction
>(Member
)))
4119 MembersLeft
.insert(Member
);
4120 CC
->swap(MembersLeft
);
4122 // If we have possible dead stores to look at, try to eliminate them.
4123 if (CC
->getStoreCount() > 0) {
4124 convertClassToLoadsAndStores(*CC
, PossibleDeadStores
);
4125 llvm::sort(PossibleDeadStores
);
4126 ValueDFSStack EliminationStack
;
4127 for (auto &VD
: PossibleDeadStores
) {
4128 int MemberDFSIn
= VD
.DFSIn
;
4129 int MemberDFSOut
= VD
.DFSOut
;
4130 Instruction
*Member
= cast
<Instruction
>(VD
.Def
.getPointer());
4131 if (EliminationStack
.empty() ||
4132 !EliminationStack
.isInScope(MemberDFSIn
, MemberDFSOut
)) {
4133 // Sync to our current scope.
4134 EliminationStack
.popUntilDFSScope(MemberDFSIn
, MemberDFSOut
);
4135 if (EliminationStack
.empty()) {
4136 EliminationStack
.push_back(Member
, MemberDFSIn
, MemberDFSOut
);
4140 // We already did load elimination, so nothing to do here.
4141 if (isa
<LoadInst
>(Member
))
4143 assert(!EliminationStack
.empty());
4144 Instruction
*Leader
= cast
<Instruction
>(EliminationStack
.back());
4146 assert(DT
->dominates(Leader
->getParent(), Member
->getParent()));
4147 // Member is dominater by Leader, and thus dead
4148 LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4149 << " that is dominated by " << *Leader
<< "\n");
4150 markInstructionForDeletion(Member
);
4156 return AnythingReplaced
;
4159 // This function provides global ranking of operations so that we can place them
4160 // in a canonical order. Note that rank alone is not necessarily enough for a
4161 // complete ordering, as constants all have the same rank. However, generally,
4162 // we will simplify an operation with all constants so that it doesn't matter
4163 // what order they appear in.
4164 unsigned int NewGVN::getRank(const Value
*V
) const {
4165 // Prefer constants to undef to anything else
4166 // Undef is a constant, have to check it first.
4167 // Prefer smaller constants to constantexprs
4168 if (isa
<ConstantExpr
>(V
))
4170 if (isa
<UndefValue
>(V
))
4172 if (isa
<Constant
>(V
))
4174 else if (auto *A
= dyn_cast
<Argument
>(V
))
4175 return 3 + A
->getArgNo();
4177 // Need to shift the instruction DFS by number of arguments + 3 to account for
4178 // the constant and argument ranking above.
4179 unsigned Result
= InstrToDFSNum(V
);
4181 return 4 + NumFuncArgs
+ Result
;
4182 // Unreachable or something else, just return a really large number.
4186 // This is a function that says whether two commutative operations should
4187 // have their order swapped when canonicalizing.
4188 bool NewGVN::shouldSwapOperands(const Value
*A
, const Value
*B
) const {
4189 // Because we only care about a total ordering, and don't rewrite expressions
4190 // in this order, we order by rank, which will give a strict weak ordering to
4191 // everything but constants, and then we order by pointer address.
4192 return std::make_pair(getRank(A
), A
) > std::make_pair(getRank(B
), B
);
4197 class NewGVNLegacyPass
: public FunctionPass
{
4199 // Pass identification, replacement for typeid.
4202 NewGVNLegacyPass() : FunctionPass(ID
) {
4203 initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4206 bool runOnFunction(Function
&F
) override
;
4209 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
4210 AU
.addRequired
<AssumptionCacheTracker
>();
4211 AU
.addRequired
<DominatorTreeWrapperPass
>();
4212 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
4213 AU
.addRequired
<MemorySSAWrapperPass
>();
4214 AU
.addRequired
<AAResultsWrapperPass
>();
4215 AU
.addPreserved
<DominatorTreeWrapperPass
>();
4216 AU
.addPreserved
<GlobalsAAWrapperPass
>();
4220 } // end anonymous namespace
4222 bool NewGVNLegacyPass::runOnFunction(Function
&F
) {
4223 if (skipFunction(F
))
4225 return NewGVN(F
, &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree(),
4226 &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
),
4227 &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(),
4228 &getAnalysis
<AAResultsWrapperPass
>().getAAResults(),
4229 &getAnalysis
<MemorySSAWrapperPass
>().getMSSA(),
4230 F
.getParent()->getDataLayout())
4234 char NewGVNLegacyPass::ID
= 0;
4236 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass
, "newgvn", "Global Value Numbering",
4238 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
4239 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass
)
4240 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
4241 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
4242 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
4243 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass
)
4244 INITIALIZE_PASS_END(NewGVNLegacyPass
, "newgvn", "Global Value Numbering", false,
4247 // createGVNPass - The public interface to this file.
4248 FunctionPass
*llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4250 PreservedAnalyses
NewGVNPass::run(Function
&F
, AnalysisManager
<Function
> &AM
) {
4251 // Apparently the order in which we get these results matter for
4252 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4253 // the same order here, just in case.
4254 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
4255 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
4256 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
4257 auto &AA
= AM
.getResult
<AAManager
>(F
);
4258 auto &MSSA
= AM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA();
4260 NewGVN(F
, &DT
, &AC
, &TLI
, &AA
, &MSSA
, F
.getParent()->getDataLayout())
4263 return PreservedAnalyses::all();
4264 PreservedAnalyses PA
;
4265 PA
.preserve
<DominatorTreeAnalysis
>();
4266 PA
.preserve
<GlobalsAA
>();