[llvm-exegesis] [NFC] Fixing typo.
[llvm-complete.git] / lib / Transforms / Scalar / NewGVN.cpp
bloba77df095cc4a4da1909ff5fc7093186f6c88579a
1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
18 /// Karthik Gargi.
19 ///
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block. This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number). Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly. In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes. The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen. The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
38 ///
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
46 ///
47 /// We also do not perform elimination by using any published algorithm. All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
52 //===----------------------------------------------------------------------===//
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/SparseBitVector.h"
68 #include "llvm/ADT/Statistic.h"
69 #include "llvm/ADT/iterator_range.h"
70 #include "llvm/Analysis/AliasAnalysis.h"
71 #include "llvm/Analysis/AssumptionCache.h"
72 #include "llvm/Analysis/CFGPrinter.h"
73 #include "llvm/Analysis/ConstantFolding.h"
74 #include "llvm/Analysis/GlobalsModRef.h"
75 #include "llvm/Analysis/InstructionSimplify.h"
76 #include "llvm/Analysis/MemoryBuiltins.h"
77 #include "llvm/Analysis/MemorySSA.h"
78 #include "llvm/Analysis/TargetLibraryInfo.h"
79 #include "llvm/Transforms/Utils/Local.h"
80 #include "llvm/IR/Argument.h"
81 #include "llvm/IR/BasicBlock.h"
82 #include "llvm/IR/Constant.h"
83 #include "llvm/IR/Constants.h"
84 #include "llvm/IR/Dominators.h"
85 #include "llvm/IR/Function.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/Use.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/Pass.h"
97 #include "llvm/Support/Allocator.h"
98 #include "llvm/Support/ArrayRecycler.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CommandLine.h"
101 #include "llvm/Support/Debug.h"
102 #include "llvm/Support/DebugCounter.h"
103 #include "llvm/Support/ErrorHandling.h"
104 #include "llvm/Support/PointerLikeTypeTraits.h"
105 #include "llvm/Support/raw_ostream.h"
106 #include "llvm/Transforms/Scalar.h"
107 #include "llvm/Transforms/Scalar/GVNExpression.h"
108 #include "llvm/Transforms/Utils/PredicateInfo.h"
109 #include "llvm/Transforms/Utils/VNCoercion.h"
110 #include <algorithm>
111 #include <cassert>
112 #include <cstdint>
113 #include <iterator>
114 #include <map>
115 #include <memory>
116 #include <set>
117 #include <string>
118 #include <tuple>
119 #include <utility>
120 #include <vector>
122 using namespace llvm;
123 using namespace llvm::GVNExpression;
124 using namespace llvm::VNCoercion;
126 #define DEBUG_TYPE "newgvn"
128 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
129 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
130 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
131 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
132 STATISTIC(NumGVNMaxIterations,
133 "Maximum Number of iterations it took to converge GVN");
134 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
135 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
136 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
137 "Number of avoided sorted leader changes");
138 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
139 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
140 STATISTIC(NumGVNPHIOfOpsEliminations,
141 "Number of things eliminated using PHI of ops");
142 DEBUG_COUNTER(VNCounter, "newgvn-vn",
143 "Controls which instructions are value numbered");
144 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
145 "Controls which instructions we create phi of ops for");
146 // Currently store defining access refinement is too slow due to basicaa being
147 // egregiously slow. This flag lets us keep it working while we work on this
148 // issue.
149 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
150 cl::init(false), cl::Hidden);
152 /// Currently, the generation "phi of ops" can result in correctness issues.
153 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
154 cl::Hidden);
156 //===----------------------------------------------------------------------===//
157 // GVN Pass
158 //===----------------------------------------------------------------------===//
160 // Anchor methods.
161 namespace llvm {
162 namespace GVNExpression {
164 Expression::~Expression() = default;
165 BasicExpression::~BasicExpression() = default;
166 CallExpression::~CallExpression() = default;
167 LoadExpression::~LoadExpression() = default;
168 StoreExpression::~StoreExpression() = default;
169 AggregateValueExpression::~AggregateValueExpression() = default;
170 PHIExpression::~PHIExpression() = default;
172 } // end namespace GVNExpression
173 } // end namespace llvm
175 namespace {
177 // Tarjan's SCC finding algorithm with Nuutila's improvements
178 // SCCIterator is actually fairly complex for the simple thing we want.
179 // It also wants to hand us SCC's that are unrelated to the phi node we ask
180 // about, and have us process them there or risk redoing work.
181 // Graph traits over a filter iterator also doesn't work that well here.
182 // This SCC finder is specialized to walk use-def chains, and only follows
183 // instructions,
184 // not generic values (arguments, etc).
185 struct TarjanSCC {
186 TarjanSCC() : Components(1) {}
188 void Start(const Instruction *Start) {
189 if (Root.lookup(Start) == 0)
190 FindSCC(Start);
193 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
194 unsigned ComponentID = ValueToComponent.lookup(V);
196 assert(ComponentID > 0 &&
197 "Asking for a component for a value we never processed");
198 return Components[ComponentID];
201 private:
202 void FindSCC(const Instruction *I) {
203 Root[I] = ++DFSNum;
204 // Store the DFS Number we had before it possibly gets incremented.
205 unsigned int OurDFS = DFSNum;
206 for (auto &Op : I->operands()) {
207 if (auto *InstOp = dyn_cast<Instruction>(Op)) {
208 if (Root.lookup(Op) == 0)
209 FindSCC(InstOp);
210 if (!InComponent.count(Op))
211 Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
214 // See if we really were the root of a component, by seeing if we still have
215 // our DFSNumber. If we do, we are the root of the component, and we have
216 // completed a component. If we do not, we are not the root of a component,
217 // and belong on the component stack.
218 if (Root.lookup(I) == OurDFS) {
219 unsigned ComponentID = Components.size();
220 Components.resize(Components.size() + 1);
221 auto &Component = Components.back();
222 Component.insert(I);
223 LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
224 InComponent.insert(I);
225 ValueToComponent[I] = ComponentID;
226 // Pop a component off the stack and label it.
227 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
228 auto *Member = Stack.back();
229 LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
230 Component.insert(Member);
231 InComponent.insert(Member);
232 ValueToComponent[Member] = ComponentID;
233 Stack.pop_back();
235 } else {
236 // Part of a component, push to stack
237 Stack.push_back(I);
241 unsigned int DFSNum = 1;
242 SmallPtrSet<const Value *, 8> InComponent;
243 DenseMap<const Value *, unsigned int> Root;
244 SmallVector<const Value *, 8> Stack;
246 // Store the components as vector of ptr sets, because we need the topo order
247 // of SCC's, but not individual member order
248 SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
250 DenseMap<const Value *, unsigned> ValueToComponent;
253 // Congruence classes represent the set of expressions/instructions
254 // that are all the same *during some scope in the function*.
255 // That is, because of the way we perform equality propagation, and
256 // because of memory value numbering, it is not correct to assume
257 // you can willy-nilly replace any member with any other at any
258 // point in the function.
260 // For any Value in the Member set, it is valid to replace any dominated member
261 // with that Value.
263 // Every congruence class has a leader, and the leader is used to symbolize
264 // instructions in a canonical way (IE every operand of an instruction that is a
265 // member of the same congruence class will always be replaced with leader
266 // during symbolization). To simplify symbolization, we keep the leader as a
267 // constant if class can be proved to be a constant value. Otherwise, the
268 // leader is the member of the value set with the smallest DFS number. Each
269 // congruence class also has a defining expression, though the expression may be
270 // null. If it exists, it can be used for forward propagation and reassociation
271 // of values.
273 // For memory, we also track a representative MemoryAccess, and a set of memory
274 // members for MemoryPhis (which have no real instructions). Note that for
275 // memory, it seems tempting to try to split the memory members into a
276 // MemoryCongruenceClass or something. Unfortunately, this does not work
277 // easily. The value numbering of a given memory expression depends on the
278 // leader of the memory congruence class, and the leader of memory congruence
279 // class depends on the value numbering of a given memory expression. This
280 // leads to wasted propagation, and in some cases, missed optimization. For
281 // example: If we had value numbered two stores together before, but now do not,
282 // we move them to a new value congruence class. This in turn will move at one
283 // of the memorydefs to a new memory congruence class. Which in turn, affects
284 // the value numbering of the stores we just value numbered (because the memory
285 // congruence class is part of the value number). So while theoretically
286 // possible to split them up, it turns out to be *incredibly* complicated to get
287 // it to work right, because of the interdependency. While structurally
288 // slightly messier, it is algorithmically much simpler and faster to do what we
289 // do here, and track them both at once in the same class.
290 // Note: The default iterators for this class iterate over values
291 class CongruenceClass {
292 public:
293 using MemberType = Value;
294 using MemberSet = SmallPtrSet<MemberType *, 4>;
295 using MemoryMemberType = MemoryPhi;
296 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
298 explicit CongruenceClass(unsigned ID) : ID(ID) {}
299 CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
300 : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
302 unsigned getID() const { return ID; }
304 // True if this class has no members left. This is mainly used for assertion
305 // purposes, and for skipping empty classes.
306 bool isDead() const {
307 // If it's both dead from a value perspective, and dead from a memory
308 // perspective, it's really dead.
309 return empty() && memory_empty();
312 // Leader functions
313 Value *getLeader() const { return RepLeader; }
314 void setLeader(Value *Leader) { RepLeader = Leader; }
315 const std::pair<Value *, unsigned int> &getNextLeader() const {
316 return NextLeader;
318 void resetNextLeader() { NextLeader = {nullptr, ~0}; }
319 void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
320 if (LeaderPair.second < NextLeader.second)
321 NextLeader = LeaderPair;
324 Value *getStoredValue() const { return RepStoredValue; }
325 void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
326 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
327 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
329 // Forward propagation info
330 const Expression *getDefiningExpr() const { return DefiningExpr; }
332 // Value member set
333 bool empty() const { return Members.empty(); }
334 unsigned size() const { return Members.size(); }
335 MemberSet::const_iterator begin() const { return Members.begin(); }
336 MemberSet::const_iterator end() const { return Members.end(); }
337 void insert(MemberType *M) { Members.insert(M); }
338 void erase(MemberType *M) { Members.erase(M); }
339 void swap(MemberSet &Other) { Members.swap(Other); }
341 // Memory member set
342 bool memory_empty() const { return MemoryMembers.empty(); }
343 unsigned memory_size() const { return MemoryMembers.size(); }
344 MemoryMemberSet::const_iterator memory_begin() const {
345 return MemoryMembers.begin();
347 MemoryMemberSet::const_iterator memory_end() const {
348 return MemoryMembers.end();
350 iterator_range<MemoryMemberSet::const_iterator> memory() const {
351 return make_range(memory_begin(), memory_end());
354 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
355 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
357 // Store count
358 unsigned getStoreCount() const { return StoreCount; }
359 void incStoreCount() { ++StoreCount; }
360 void decStoreCount() {
361 assert(StoreCount != 0 && "Store count went negative");
362 --StoreCount;
365 // True if this class has no memory members.
366 bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
368 // Return true if two congruence classes are equivalent to each other. This
369 // means that every field but the ID number and the dead field are equivalent.
370 bool isEquivalentTo(const CongruenceClass *Other) const {
371 if (!Other)
372 return false;
373 if (this == Other)
374 return true;
376 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
377 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
378 Other->RepMemoryAccess))
379 return false;
380 if (DefiningExpr != Other->DefiningExpr)
381 if (!DefiningExpr || !Other->DefiningExpr ||
382 *DefiningExpr != *Other->DefiningExpr)
383 return false;
385 if (Members.size() != Other->Members.size())
386 return false;
388 return all_of(Members,
389 [&](const Value *V) { return Other->Members.count(V); });
392 private:
393 unsigned ID;
395 // Representative leader.
396 Value *RepLeader = nullptr;
398 // The most dominating leader after our current leader, because the member set
399 // is not sorted and is expensive to keep sorted all the time.
400 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
402 // If this is represented by a store, the value of the store.
403 Value *RepStoredValue = nullptr;
405 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
406 // access.
407 const MemoryAccess *RepMemoryAccess = nullptr;
409 // Defining Expression.
410 const Expression *DefiningExpr = nullptr;
412 // Actual members of this class.
413 MemberSet Members;
415 // This is the set of MemoryPhis that exist in the class. MemoryDefs and
416 // MemoryUses have real instructions representing them, so we only need to
417 // track MemoryPhis here.
418 MemoryMemberSet MemoryMembers;
420 // Number of stores in this congruence class.
421 // This is used so we can detect store equivalence changes properly.
422 int StoreCount = 0;
425 } // end anonymous namespace
427 namespace llvm {
429 struct ExactEqualsExpression {
430 const Expression &E;
432 explicit ExactEqualsExpression(const Expression &E) : E(E) {}
434 hash_code getComputedHash() const { return E.getComputedHash(); }
436 bool operator==(const Expression &Other) const {
437 return E.exactlyEquals(Other);
441 template <> struct DenseMapInfo<const Expression *> {
442 static const Expression *getEmptyKey() {
443 auto Val = static_cast<uintptr_t>(-1);
444 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
445 return reinterpret_cast<const Expression *>(Val);
448 static const Expression *getTombstoneKey() {
449 auto Val = static_cast<uintptr_t>(~1U);
450 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
451 return reinterpret_cast<const Expression *>(Val);
454 static unsigned getHashValue(const Expression *E) {
455 return E->getComputedHash();
458 static unsigned getHashValue(const ExactEqualsExpression &E) {
459 return E.getComputedHash();
462 static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
463 if (RHS == getTombstoneKey() || RHS == getEmptyKey())
464 return false;
465 return LHS == *RHS;
468 static bool isEqual(const Expression *LHS, const Expression *RHS) {
469 if (LHS == RHS)
470 return true;
471 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
472 LHS == getEmptyKey() || RHS == getEmptyKey())
473 return false;
474 // Compare hashes before equality. This is *not* what the hashtable does,
475 // since it is computing it modulo the number of buckets, whereas we are
476 // using the full hash keyspace. Since the hashes are precomputed, this
477 // check is *much* faster than equality.
478 if (LHS->getComputedHash() != RHS->getComputedHash())
479 return false;
480 return *LHS == *RHS;
484 } // end namespace llvm
486 namespace {
488 class NewGVN {
489 Function &F;
490 DominatorTree *DT;
491 const TargetLibraryInfo *TLI;
492 AliasAnalysis *AA;
493 MemorySSA *MSSA;
494 MemorySSAWalker *MSSAWalker;
495 const DataLayout &DL;
496 std::unique_ptr<PredicateInfo> PredInfo;
498 // These are the only two things the create* functions should have
499 // side-effects on due to allocating memory.
500 mutable BumpPtrAllocator ExpressionAllocator;
501 mutable ArrayRecycler<Value *> ArgRecycler;
502 mutable TarjanSCC SCCFinder;
503 const SimplifyQuery SQ;
505 // Number of function arguments, used by ranking
506 unsigned int NumFuncArgs;
508 // RPOOrdering of basic blocks
509 DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
511 // Congruence class info.
513 // This class is called INITIAL in the paper. It is the class everything
514 // startsout in, and represents any value. Being an optimistic analysis,
515 // anything in the TOP class has the value TOP, which is indeterminate and
516 // equivalent to everything.
517 CongruenceClass *TOPClass;
518 std::vector<CongruenceClass *> CongruenceClasses;
519 unsigned NextCongruenceNum;
521 // Value Mappings.
522 DenseMap<Value *, CongruenceClass *> ValueToClass;
523 DenseMap<Value *, const Expression *> ValueToExpression;
525 // Value PHI handling, used to make equivalence between phi(op, op) and
526 // op(phi, phi).
527 // These mappings just store various data that would normally be part of the
528 // IR.
529 SmallPtrSet<const Instruction *, 8> PHINodeUses;
531 DenseMap<const Value *, bool> OpSafeForPHIOfOps;
533 // Map a temporary instruction we created to a parent block.
534 DenseMap<const Value *, BasicBlock *> TempToBlock;
536 // Map between the already in-program instructions and the temporary phis we
537 // created that they are known equivalent to.
538 DenseMap<const Value *, PHINode *> RealToTemp;
540 // In order to know when we should re-process instructions that have
541 // phi-of-ops, we track the set of expressions that they needed as
542 // leaders. When we discover new leaders for those expressions, we process the
543 // associated phi-of-op instructions again in case they have changed. The
544 // other way they may change is if they had leaders, and those leaders
545 // disappear. However, at the point they have leaders, there are uses of the
546 // relevant operands in the created phi node, and so they will get reprocessed
547 // through the normal user marking we perform.
548 mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
549 DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
550 ExpressionToPhiOfOps;
552 // Map from temporary operation to MemoryAccess.
553 DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
555 // Set of all temporary instructions we created.
556 // Note: This will include instructions that were just created during value
557 // numbering. The way to test if something is using them is to check
558 // RealToTemp.
559 DenseSet<Instruction *> AllTempInstructions;
561 // This is the set of instructions to revisit on a reachability change. At
562 // the end of the main iteration loop it will contain at least all the phi of
563 // ops instructions that will be changed to phis, as well as regular phis.
564 // During the iteration loop, it may contain other things, such as phi of ops
565 // instructions that used edge reachability to reach a result, and so need to
566 // be revisited when the edge changes, independent of whether the phi they
567 // depended on changes.
568 DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
570 // Mapping from predicate info we used to the instructions we used it with.
571 // In order to correctly ensure propagation, we must keep track of what
572 // comparisons we used, so that when the values of the comparisons change, we
573 // propagate the information to the places we used the comparison.
574 mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
575 PredicateToUsers;
577 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for
578 // stores, we no longer can rely solely on the def-use chains of MemorySSA.
579 mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
580 MemoryToUsers;
582 // A table storing which memorydefs/phis represent a memory state provably
583 // equivalent to another memory state.
584 // We could use the congruence class machinery, but the MemoryAccess's are
585 // abstract memory states, so they can only ever be equivalent to each other,
586 // and not to constants, etc.
587 DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
589 // We could, if we wanted, build MemoryPhiExpressions and
590 // MemoryVariableExpressions, etc, and value number them the same way we value
591 // number phi expressions. For the moment, this seems like overkill. They
592 // can only exist in one of three states: they can be TOP (equal to
593 // everything), Equivalent to something else, or unique. Because we do not
594 // create expressions for them, we need to simulate leader change not just
595 // when they change class, but when they change state. Note: We can do the
596 // same thing for phis, and avoid having phi expressions if we wanted, We
597 // should eventually unify in one direction or the other, so this is a little
598 // bit of an experiment in which turns out easier to maintain.
599 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
600 DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
602 enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
603 mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
605 // Expression to class mapping.
606 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
607 ExpressionClassMap ExpressionToClass;
609 // We have a single expression that represents currently DeadExpressions.
610 // For dead expressions we can prove will stay dead, we mark them with
611 // DFS number zero. However, it's possible in the case of phi nodes
612 // for us to assume/prove all arguments are dead during fixpointing.
613 // We use DeadExpression for that case.
614 DeadExpression *SingletonDeadExpression = nullptr;
616 // Which values have changed as a result of leader changes.
617 SmallPtrSet<Value *, 8> LeaderChanges;
619 // Reachability info.
620 using BlockEdge = BasicBlockEdge;
621 DenseSet<BlockEdge> ReachableEdges;
622 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
624 // This is a bitvector because, on larger functions, we may have
625 // thousands of touched instructions at once (entire blocks,
626 // instructions with hundreds of uses, etc). Even with optimization
627 // for when we mark whole blocks as touched, when this was a
628 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
629 // the time in GVN just managing this list. The bitvector, on the
630 // other hand, efficiently supports test/set/clear of both
631 // individual and ranges, as well as "find next element" This
632 // enables us to use it as a worklist with essentially 0 cost.
633 BitVector TouchedInstructions;
635 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
637 #ifndef NDEBUG
638 // Debugging for how many times each block and instruction got processed.
639 DenseMap<const Value *, unsigned> ProcessedCount;
640 #endif
642 // DFS info.
643 // This contains a mapping from Instructions to DFS numbers.
644 // The numbering starts at 1. An instruction with DFS number zero
645 // means that the instruction is dead.
646 DenseMap<const Value *, unsigned> InstrDFS;
648 // This contains the mapping DFS numbers to instructions.
649 SmallVector<Value *, 32> DFSToInstr;
651 // Deletion info.
652 SmallPtrSet<Instruction *, 8> InstructionsToErase;
654 public:
655 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
656 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
657 const DataLayout &DL)
658 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), DL(DL),
659 PredInfo(make_unique<PredicateInfo>(F, *DT, *AC)),
660 SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false) {}
662 bool runGVN();
664 private:
665 // Expression handling.
666 const Expression *createExpression(Instruction *) const;
667 const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
668 Instruction *) const;
670 // Our canonical form for phi arguments is a pair of incoming value, incoming
671 // basic block.
672 using ValPair = std::pair<Value *, BasicBlock *>;
674 PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
675 BasicBlock *, bool &HasBackEdge,
676 bool &OriginalOpsConstant) const;
677 const DeadExpression *createDeadExpression() const;
678 const VariableExpression *createVariableExpression(Value *) const;
679 const ConstantExpression *createConstantExpression(Constant *) const;
680 const Expression *createVariableOrConstant(Value *V) const;
681 const UnknownExpression *createUnknownExpression(Instruction *) const;
682 const StoreExpression *createStoreExpression(StoreInst *,
683 const MemoryAccess *) const;
684 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
685 const MemoryAccess *) const;
686 const CallExpression *createCallExpression(CallInst *,
687 const MemoryAccess *) const;
688 const AggregateValueExpression *
689 createAggregateValueExpression(Instruction *) const;
690 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
692 // Congruence class handling.
693 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
694 auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
695 CongruenceClasses.emplace_back(result);
696 return result;
699 CongruenceClass *createMemoryClass(MemoryAccess *MA) {
700 auto *CC = createCongruenceClass(nullptr, nullptr);
701 CC->setMemoryLeader(MA);
702 return CC;
705 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
706 auto *CC = getMemoryClass(MA);
707 if (CC->getMemoryLeader() != MA)
708 CC = createMemoryClass(MA);
709 return CC;
712 CongruenceClass *createSingletonCongruenceClass(Value *Member) {
713 CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
714 CClass->insert(Member);
715 ValueToClass[Member] = CClass;
716 return CClass;
719 void initializeCongruenceClasses(Function &F);
720 const Expression *makePossiblePHIOfOps(Instruction *,
721 SmallPtrSetImpl<Value *> &);
722 Value *findLeaderForInst(Instruction *ValueOp,
723 SmallPtrSetImpl<Value *> &Visited,
724 MemoryAccess *MemAccess, Instruction *OrigInst,
725 BasicBlock *PredBB);
726 bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock,
727 SmallPtrSetImpl<const Value *> &Visited,
728 SmallVectorImpl<Instruction *> &Worklist);
729 bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
730 SmallPtrSetImpl<const Value *> &);
731 void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
732 void removePhiOfOps(Instruction *I, PHINode *PHITemp);
734 // Value number an Instruction or MemoryPhi.
735 void valueNumberMemoryPhi(MemoryPhi *);
736 void valueNumberInstruction(Instruction *);
738 // Symbolic evaluation.
739 const Expression *checkSimplificationResults(Expression *, Instruction *,
740 Value *) const;
741 const Expression *performSymbolicEvaluation(Value *,
742 SmallPtrSetImpl<Value *> &) const;
743 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
744 Instruction *,
745 MemoryAccess *) const;
746 const Expression *performSymbolicLoadEvaluation(Instruction *) const;
747 const Expression *performSymbolicStoreEvaluation(Instruction *) const;
748 const Expression *performSymbolicCallEvaluation(Instruction *) const;
749 void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
750 const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
751 Instruction *I,
752 BasicBlock *PHIBlock) const;
753 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
754 const Expression *performSymbolicCmpEvaluation(Instruction *) const;
755 const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const;
757 // Congruence finding.
758 bool someEquivalentDominates(const Instruction *, const Instruction *) const;
759 Value *lookupOperandLeader(Value *) const;
760 CongruenceClass *getClassForExpression(const Expression *E) const;
761 void performCongruenceFinding(Instruction *, const Expression *);
762 void moveValueToNewCongruenceClass(Instruction *, const Expression *,
763 CongruenceClass *, CongruenceClass *);
764 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
765 CongruenceClass *, CongruenceClass *);
766 Value *getNextValueLeader(CongruenceClass *) const;
767 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
768 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
769 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
770 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
771 bool isMemoryAccessTOP(const MemoryAccess *) const;
773 // Ranking
774 unsigned int getRank(const Value *) const;
775 bool shouldSwapOperands(const Value *, const Value *) const;
777 // Reachability handling.
778 void updateReachableEdge(BasicBlock *, BasicBlock *);
779 void processOutgoingEdges(Instruction *, BasicBlock *);
780 Value *findConditionEquivalence(Value *) const;
782 // Elimination.
783 struct ValueDFS;
784 void convertClassToDFSOrdered(const CongruenceClass &,
785 SmallVectorImpl<ValueDFS> &,
786 DenseMap<const Value *, unsigned int> &,
787 SmallPtrSetImpl<Instruction *> &) const;
788 void convertClassToLoadsAndStores(const CongruenceClass &,
789 SmallVectorImpl<ValueDFS> &) const;
791 bool eliminateInstructions(Function &);
792 void replaceInstruction(Instruction *, Value *);
793 void markInstructionForDeletion(Instruction *);
794 void deleteInstructionsInBlock(BasicBlock *);
795 Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
796 const BasicBlock *) const;
798 // New instruction creation.
799 void handleNewInstruction(Instruction *) {}
801 // Various instruction touch utilities
802 template <typename Map, typename KeyType, typename Func>
803 void for_each_found(Map &, const KeyType &, Func);
804 template <typename Map, typename KeyType>
805 void touchAndErase(Map &, const KeyType &);
806 void markUsersTouched(Value *);
807 void markMemoryUsersTouched(const MemoryAccess *);
808 void markMemoryDefTouched(const MemoryAccess *);
809 void markPredicateUsersTouched(Instruction *);
810 void markValueLeaderChangeTouched(CongruenceClass *CC);
811 void markMemoryLeaderChangeTouched(CongruenceClass *CC);
812 void markPhiOfOpsChanged(const Expression *E);
813 void addPredicateUsers(const PredicateBase *, Instruction *) const;
814 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
815 void addAdditionalUsers(Value *To, Value *User) const;
817 // Main loop of value numbering
818 void iterateTouchedInstructions();
820 // Utilities.
821 void cleanupTables();
822 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
823 void updateProcessedCount(const Value *V);
824 void verifyMemoryCongruency() const;
825 void verifyIterationSettled(Function &F);
826 void verifyStoreExpressions() const;
827 bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
828 const MemoryAccess *, const MemoryAccess *) const;
829 BasicBlock *getBlockForValue(Value *V) const;
830 void deleteExpression(const Expression *E) const;
831 MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
832 MemoryAccess *getDefiningAccess(const MemoryAccess *) const;
833 MemoryPhi *getMemoryAccess(const BasicBlock *) const;
834 template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
836 unsigned InstrToDFSNum(const Value *V) const {
837 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
838 return InstrDFS.lookup(V);
841 unsigned InstrToDFSNum(const MemoryAccess *MA) const {
842 return MemoryToDFSNum(MA);
845 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
847 // Given a MemoryAccess, return the relevant instruction DFS number. Note:
848 // This deliberately takes a value so it can be used with Use's, which will
849 // auto-convert to Value's but not to MemoryAccess's.
850 unsigned MemoryToDFSNum(const Value *MA) const {
851 assert(isa<MemoryAccess>(MA) &&
852 "This should not be used with instructions");
853 return isa<MemoryUseOrDef>(MA)
854 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
855 : InstrDFS.lookup(MA);
858 bool isCycleFree(const Instruction *) const;
859 bool isBackedge(BasicBlock *From, BasicBlock *To) const;
861 // Debug counter info. When verifying, we have to reset the value numbering
862 // debug counter to the same state it started in to get the same results.
863 int64_t StartingVNCounter;
866 } // end anonymous namespace
868 template <typename T>
869 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
870 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
871 return false;
872 return LHS.MemoryExpression::equals(RHS);
875 bool LoadExpression::equals(const Expression &Other) const {
876 return equalsLoadStoreHelper(*this, Other);
879 bool StoreExpression::equals(const Expression &Other) const {
880 if (!equalsLoadStoreHelper(*this, Other))
881 return false;
882 // Make sure that store vs store includes the value operand.
883 if (const auto *S = dyn_cast<StoreExpression>(&Other))
884 if (getStoredValue() != S->getStoredValue())
885 return false;
886 return true;
889 // Determine if the edge From->To is a backedge
890 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
891 return From == To ||
892 RPOOrdering.lookup(DT->getNode(From)) >=
893 RPOOrdering.lookup(DT->getNode(To));
896 #ifndef NDEBUG
897 static std::string getBlockName(const BasicBlock *B) {
898 return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
900 #endif
902 // Get a MemoryAccess for an instruction, fake or real.
903 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
904 auto *Result = MSSA->getMemoryAccess(I);
905 return Result ? Result : TempToMemory.lookup(I);
908 // Get a MemoryPhi for a basic block. These are all real.
909 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
910 return MSSA->getMemoryAccess(BB);
913 // Get the basic block from an instruction/memory value.
914 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
915 if (auto *I = dyn_cast<Instruction>(V)) {
916 auto *Parent = I->getParent();
917 if (Parent)
918 return Parent;
919 Parent = TempToBlock.lookup(V);
920 assert(Parent && "Every fake instruction should have a block");
921 return Parent;
924 auto *MP = dyn_cast<MemoryPhi>(V);
925 assert(MP && "Should have been an instruction or a MemoryPhi");
926 return MP->getBlock();
929 // Delete a definitely dead expression, so it can be reused by the expression
930 // allocator. Some of these are not in creation functions, so we have to accept
931 // const versions.
932 void NewGVN::deleteExpression(const Expression *E) const {
933 assert(isa<BasicExpression>(E));
934 auto *BE = cast<BasicExpression>(E);
935 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
936 ExpressionAllocator.Deallocate(E);
939 // If V is a predicateinfo copy, get the thing it is a copy of.
940 static Value *getCopyOf(const Value *V) {
941 if (auto *II = dyn_cast<IntrinsicInst>(V))
942 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
943 return II->getOperand(0);
944 return nullptr;
947 // Return true if V is really PN, even accounting for predicateinfo copies.
948 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
949 return V == PN || getCopyOf(V) == PN;
952 static bool isCopyOfAPHI(const Value *V) {
953 auto *CO = getCopyOf(V);
954 return CO && isa<PHINode>(CO);
957 // Sort PHI Operands into a canonical order. What we use here is an RPO
958 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
959 // blocks.
960 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
961 llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
962 return BlockInstRange.lookup(P1.second).first <
963 BlockInstRange.lookup(P2.second).first;
967 // Return true if V is a value that will always be available (IE can
968 // be placed anywhere) in the function. We don't do globals here
969 // because they are often worse to put in place.
970 static bool alwaysAvailable(Value *V) {
971 return isa<Constant>(V) || isa<Argument>(V);
974 // Create a PHIExpression from an array of {incoming edge, value} pairs. I is
975 // the original instruction we are creating a PHIExpression for (but may not be
976 // a phi node). We require, as an invariant, that all the PHIOperands in the
977 // same block are sorted the same way. sortPHIOps will sort them into a
978 // canonical order.
979 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
980 const Instruction *I,
981 BasicBlock *PHIBlock,
982 bool &HasBackedge,
983 bool &OriginalOpsConstant) const {
984 unsigned NumOps = PHIOperands.size();
985 auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
987 E->allocateOperands(ArgRecycler, ExpressionAllocator);
988 E->setType(PHIOperands.begin()->first->getType());
989 E->setOpcode(Instruction::PHI);
991 // Filter out unreachable phi operands.
992 auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
993 auto *BB = P.second;
994 if (auto *PHIOp = dyn_cast<PHINode>(I))
995 if (isCopyOfPHI(P.first, PHIOp))
996 return false;
997 if (!ReachableEdges.count({BB, PHIBlock}))
998 return false;
999 // Things in TOPClass are equivalent to everything.
1000 if (ValueToClass.lookup(P.first) == TOPClass)
1001 return false;
1002 OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1003 HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1004 return lookupOperandLeader(P.first) != I;
1006 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1007 [&](const ValPair &P) -> Value * {
1008 return lookupOperandLeader(P.first);
1010 return E;
1013 // Set basic expression info (Arguments, type, opcode) for Expression
1014 // E from Instruction I in block B.
1015 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1016 bool AllConstant = true;
1017 if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1018 E->setType(GEP->getSourceElementType());
1019 else
1020 E->setType(I->getType());
1021 E->setOpcode(I->getOpcode());
1022 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1024 // Transform the operand array into an operand leader array, and keep track of
1025 // whether all members are constant.
1026 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1027 auto Operand = lookupOperandLeader(O);
1028 AllConstant = AllConstant && isa<Constant>(Operand);
1029 return Operand;
1032 return AllConstant;
1035 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1036 Value *Arg1, Value *Arg2,
1037 Instruction *I) const {
1038 auto *E = new (ExpressionAllocator) BasicExpression(2);
1040 E->setType(T);
1041 E->setOpcode(Opcode);
1042 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1043 if (Instruction::isCommutative(Opcode)) {
1044 // Ensure that commutative instructions that only differ by a permutation
1045 // of their operands get the same value number by sorting the operand value
1046 // numbers. Since all commutative instructions have two operands it is more
1047 // efficient to sort by hand rather than using, say, std::sort.
1048 if (shouldSwapOperands(Arg1, Arg2))
1049 std::swap(Arg1, Arg2);
1051 E->op_push_back(lookupOperandLeader(Arg1));
1052 E->op_push_back(lookupOperandLeader(Arg2));
1054 Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
1055 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1056 return SimplifiedE;
1057 return E;
1060 // Take a Value returned by simplification of Expression E/Instruction
1061 // I, and see if it resulted in a simpler expression. If so, return
1062 // that expression.
1063 const Expression *NewGVN::checkSimplificationResults(Expression *E,
1064 Instruction *I,
1065 Value *V) const {
1066 if (!V)
1067 return nullptr;
1068 if (auto *C = dyn_cast<Constant>(V)) {
1069 if (I)
1070 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1071 << " constant " << *C << "\n");
1072 NumGVNOpsSimplified++;
1073 assert(isa<BasicExpression>(E) &&
1074 "We should always have had a basic expression here");
1075 deleteExpression(E);
1076 return createConstantExpression(C);
1077 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1078 if (I)
1079 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1080 << " variable " << *V << "\n");
1081 deleteExpression(E);
1082 return createVariableExpression(V);
1085 CongruenceClass *CC = ValueToClass.lookup(V);
1086 if (CC) {
1087 if (CC->getLeader() && CC->getLeader() != I) {
1088 // If we simplified to something else, we need to communicate
1089 // that we're users of the value we simplified to.
1090 if (I != V) {
1091 // Don't add temporary instructions to the user lists.
1092 if (!AllTempInstructions.count(I))
1093 addAdditionalUsers(V, I);
1095 return createVariableOrConstant(CC->getLeader());
1097 if (CC->getDefiningExpr()) {
1098 // If we simplified to something else, we need to communicate
1099 // that we're users of the value we simplified to.
1100 if (I != V) {
1101 // Don't add temporary instructions to the user lists.
1102 if (!AllTempInstructions.count(I))
1103 addAdditionalUsers(V, I);
1106 if (I)
1107 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1108 << " expression " << *CC->getDefiningExpr() << "\n");
1109 NumGVNOpsSimplified++;
1110 deleteExpression(E);
1111 return CC->getDefiningExpr();
1115 return nullptr;
1118 // Create a value expression from the instruction I, replacing operands with
1119 // their leaders.
1121 const Expression *NewGVN::createExpression(Instruction *I) const {
1122 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1124 bool AllConstant = setBasicExpressionInfo(I, E);
1126 if (I->isCommutative()) {
1127 // Ensure that commutative instructions that only differ by a permutation
1128 // of their operands get the same value number by sorting the operand value
1129 // numbers. Since all commutative instructions have two operands it is more
1130 // efficient to sort by hand rather than using, say, std::sort.
1131 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1132 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1133 E->swapOperands(0, 1);
1135 // Perform simplification.
1136 if (auto *CI = dyn_cast<CmpInst>(I)) {
1137 // Sort the operand value numbers so x<y and y>x get the same value
1138 // number.
1139 CmpInst::Predicate Predicate = CI->getPredicate();
1140 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1141 E->swapOperands(0, 1);
1142 Predicate = CmpInst::getSwappedPredicate(Predicate);
1144 E->setOpcode((CI->getOpcode() << 8) | Predicate);
1145 // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
1146 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1147 "Wrong types on cmp instruction");
1148 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1149 E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1150 Value *V =
1151 SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
1152 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1153 return SimplifiedE;
1154 } else if (isa<SelectInst>(I)) {
1155 if (isa<Constant>(E->getOperand(0)) ||
1156 E->getOperand(1) == E->getOperand(2)) {
1157 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1158 E->getOperand(2)->getType() == I->getOperand(2)->getType());
1159 Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
1160 E->getOperand(2), SQ);
1161 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1162 return SimplifiedE;
1164 } else if (I->isBinaryOp()) {
1165 Value *V =
1166 SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
1167 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1168 return SimplifiedE;
1169 } else if (auto *BI = dyn_cast<BitCastInst>(I)) {
1170 Value *V =
1171 SimplifyCastInst(BI->getOpcode(), BI->getOperand(0), BI->getType(), SQ);
1172 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1173 return SimplifiedE;
1174 } else if (isa<GetElementPtrInst>(I)) {
1175 Value *V = SimplifyGEPInst(
1176 E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
1177 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1178 return SimplifiedE;
1179 } else if (AllConstant) {
1180 // We don't bother trying to simplify unless all of the operands
1181 // were constant.
1182 // TODO: There are a lot of Simplify*'s we could call here, if we
1183 // wanted to. The original motivating case for this code was a
1184 // zext i1 false to i8, which we don't have an interface to
1185 // simplify (IE there is no SimplifyZExt).
1187 SmallVector<Constant *, 8> C;
1188 for (Value *Arg : E->operands())
1189 C.emplace_back(cast<Constant>(Arg));
1191 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1192 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1193 return SimplifiedE;
1195 return E;
1198 const AggregateValueExpression *
1199 NewGVN::createAggregateValueExpression(Instruction *I) const {
1200 if (auto *II = dyn_cast<InsertValueInst>(I)) {
1201 auto *E = new (ExpressionAllocator)
1202 AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1203 setBasicExpressionInfo(I, E);
1204 E->allocateIntOperands(ExpressionAllocator);
1205 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1206 return E;
1207 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1208 auto *E = new (ExpressionAllocator)
1209 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1210 setBasicExpressionInfo(EI, E);
1211 E->allocateIntOperands(ExpressionAllocator);
1212 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1213 return E;
1215 llvm_unreachable("Unhandled type of aggregate value operation");
1218 const DeadExpression *NewGVN::createDeadExpression() const {
1219 // DeadExpression has no arguments and all DeadExpression's are the same,
1220 // so we only need one of them.
1221 return SingletonDeadExpression;
1224 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1225 auto *E = new (ExpressionAllocator) VariableExpression(V);
1226 E->setOpcode(V->getValueID());
1227 return E;
1230 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1231 if (auto *C = dyn_cast<Constant>(V))
1232 return createConstantExpression(C);
1233 return createVariableExpression(V);
1236 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1237 auto *E = new (ExpressionAllocator) ConstantExpression(C);
1238 E->setOpcode(C->getValueID());
1239 return E;
1242 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1243 auto *E = new (ExpressionAllocator) UnknownExpression(I);
1244 E->setOpcode(I->getOpcode());
1245 return E;
1248 const CallExpression *
1249 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1250 // FIXME: Add operand bundles for calls.
1251 auto *E =
1252 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1253 setBasicExpressionInfo(CI, E);
1254 return E;
1257 // Return true if some equivalent of instruction Inst dominates instruction U.
1258 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1259 const Instruction *U) const {
1260 auto *CC = ValueToClass.lookup(Inst);
1261 // This must be an instruction because we are only called from phi nodes
1262 // in the case that the value it needs to check against is an instruction.
1264 // The most likely candidates for dominance are the leader and the next leader.
1265 // The leader or nextleader will dominate in all cases where there is an
1266 // equivalent that is higher up in the dom tree.
1267 // We can't *only* check them, however, because the
1268 // dominator tree could have an infinite number of non-dominating siblings
1269 // with instructions that are in the right congruence class.
1270 // A
1271 // B C D E F G
1272 // |
1273 // H
1274 // Instruction U could be in H, with equivalents in every other sibling.
1275 // Depending on the rpo order picked, the leader could be the equivalent in
1276 // any of these siblings.
1277 if (!CC)
1278 return false;
1279 if (alwaysAvailable(CC->getLeader()))
1280 return true;
1281 if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1282 return true;
1283 if (CC->getNextLeader().first &&
1284 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1285 return true;
1286 return llvm::any_of(*CC, [&](const Value *Member) {
1287 return Member != CC->getLeader() &&
1288 DT->dominates(cast<Instruction>(Member), U);
1292 // See if we have a congruence class and leader for this operand, and if so,
1293 // return it. Otherwise, return the operand itself.
1294 Value *NewGVN::lookupOperandLeader(Value *V) const {
1295 CongruenceClass *CC = ValueToClass.lookup(V);
1296 if (CC) {
1297 // Everything in TOP is represented by undef, as it can be any value.
1298 // We do have to make sure we get the type right though, so we can't set the
1299 // RepLeader to undef.
1300 if (CC == TOPClass)
1301 return UndefValue::get(V->getType());
1302 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1305 return V;
1308 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1309 auto *CC = getMemoryClass(MA);
1310 assert(CC->getMemoryLeader() &&
1311 "Every MemoryAccess should be mapped to a congruence class with a "
1312 "representative memory access");
1313 return CC->getMemoryLeader();
1316 // Return true if the MemoryAccess is really equivalent to everything. This is
1317 // equivalent to the lattice value "TOP" in most lattices. This is the initial
1318 // state of all MemoryAccesses.
1319 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1320 return getMemoryClass(MA) == TOPClass;
1323 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1324 LoadInst *LI,
1325 const MemoryAccess *MA) const {
1326 auto *E =
1327 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1328 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1329 E->setType(LoadType);
1331 // Give store and loads same opcode so they value number together.
1332 E->setOpcode(0);
1333 E->op_push_back(PointerOp);
1334 if (LI)
1335 E->setAlignment(LI->getAlignment());
1337 // TODO: Value number heap versions. We may be able to discover
1338 // things alias analysis can't on it's own (IE that a store and a
1339 // load have the same value, and thus, it isn't clobbering the load).
1340 return E;
1343 const StoreExpression *
1344 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1345 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1346 auto *E = new (ExpressionAllocator)
1347 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1348 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1349 E->setType(SI->getValueOperand()->getType());
1351 // Give store and loads same opcode so they value number together.
1352 E->setOpcode(0);
1353 E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1355 // TODO: Value number heap versions. We may be able to discover
1356 // things alias analysis can't on it's own (IE that a store and a
1357 // load have the same value, and thus, it isn't clobbering the load).
1358 return E;
1361 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1362 // Unlike loads, we never try to eliminate stores, so we do not check if they
1363 // are simple and avoid value numbering them.
1364 auto *SI = cast<StoreInst>(I);
1365 auto *StoreAccess = getMemoryAccess(SI);
1366 // Get the expression, if any, for the RHS of the MemoryDef.
1367 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1368 if (EnableStoreRefinement)
1369 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1370 // If we bypassed the use-def chains, make sure we add a use.
1371 StoreRHS = lookupMemoryLeader(StoreRHS);
1372 if (StoreRHS != StoreAccess->getDefiningAccess())
1373 addMemoryUsers(StoreRHS, StoreAccess);
1374 // If we are defined by ourselves, use the live on entry def.
1375 if (StoreRHS == StoreAccess)
1376 StoreRHS = MSSA->getLiveOnEntryDef();
1378 if (SI->isSimple()) {
1379 // See if we are defined by a previous store expression, it already has a
1380 // value, and it's the same value as our current store. FIXME: Right now, we
1381 // only do this for simple stores, we should expand to cover memcpys, etc.
1382 const auto *LastStore = createStoreExpression(SI, StoreRHS);
1383 const auto *LastCC = ExpressionToClass.lookup(LastStore);
1384 // We really want to check whether the expression we matched was a store. No
1385 // easy way to do that. However, we can check that the class we found has a
1386 // store, which, assuming the value numbering state is not corrupt, is
1387 // sufficient, because we must also be equivalent to that store's expression
1388 // for it to be in the same class as the load.
1389 if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1390 return LastStore;
1391 // Also check if our value operand is defined by a load of the same memory
1392 // location, and the memory state is the same as it was then (otherwise, it
1393 // could have been overwritten later. See test32 in
1394 // transforms/DeadStoreElimination/simple.ll).
1395 if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1396 if ((lookupOperandLeader(LI->getPointerOperand()) ==
1397 LastStore->getOperand(0)) &&
1398 (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1399 StoreRHS))
1400 return LastStore;
1401 deleteExpression(LastStore);
1404 // If the store is not equivalent to anything, value number it as a store that
1405 // produces a unique memory state (instead of using it's MemoryUse, we use
1406 // it's MemoryDef).
1407 return createStoreExpression(SI, StoreAccess);
1410 // See if we can extract the value of a loaded pointer from a load, a store, or
1411 // a memory instruction.
1412 const Expression *
1413 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1414 LoadInst *LI, Instruction *DepInst,
1415 MemoryAccess *DefiningAccess) const {
1416 assert((!LI || LI->isSimple()) && "Not a simple load");
1417 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1418 // Can't forward from non-atomic to atomic without violating memory model.
1419 // Also don't need to coerce if they are the same type, we will just
1420 // propagate.
1421 if (LI->isAtomic() > DepSI->isAtomic() ||
1422 LoadType == DepSI->getValueOperand()->getType())
1423 return nullptr;
1424 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1425 if (Offset >= 0) {
1426 if (auto *C = dyn_cast<Constant>(
1427 lookupOperandLeader(DepSI->getValueOperand()))) {
1428 LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1429 << " to constant " << *C << "\n");
1430 return createConstantExpression(
1431 getConstantStoreValueForLoad(C, Offset, LoadType, DL));
1434 } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1435 // Can't forward from non-atomic to atomic without violating memory model.
1436 if (LI->isAtomic() > DepLI->isAtomic())
1437 return nullptr;
1438 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1439 if (Offset >= 0) {
1440 // We can coerce a constant load into a load.
1441 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1442 if (auto *PossibleConstant =
1443 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1444 LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1445 << " to constant " << *PossibleConstant << "\n");
1446 return createConstantExpression(PossibleConstant);
1449 } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1450 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1451 if (Offset >= 0) {
1452 if (auto *PossibleConstant =
1453 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1454 LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1455 << " to constant " << *PossibleConstant << "\n");
1456 return createConstantExpression(PossibleConstant);
1461 // All of the below are only true if the loaded pointer is produced
1462 // by the dependent instruction.
1463 if (LoadPtr != lookupOperandLeader(DepInst) &&
1464 !AA->isMustAlias(LoadPtr, DepInst))
1465 return nullptr;
1466 // If this load really doesn't depend on anything, then we must be loading an
1467 // undef value. This can happen when loading for a fresh allocation with no
1468 // intervening stores, for example. Note that this is only true in the case
1469 // that the result of the allocation is pointer equal to the load ptr.
1470 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1471 return createConstantExpression(UndefValue::get(LoadType));
1473 // If this load occurs either right after a lifetime begin,
1474 // then the loaded value is undefined.
1475 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1476 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1477 return createConstantExpression(UndefValue::get(LoadType));
1479 // If this load follows a calloc (which zero initializes memory),
1480 // then the loaded value is zero
1481 else if (isCallocLikeFn(DepInst, TLI)) {
1482 return createConstantExpression(Constant::getNullValue(LoadType));
1485 return nullptr;
1488 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1489 auto *LI = cast<LoadInst>(I);
1491 // We can eliminate in favor of non-simple loads, but we won't be able to
1492 // eliminate the loads themselves.
1493 if (!LI->isSimple())
1494 return nullptr;
1496 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1497 // Load of undef is undef.
1498 if (isa<UndefValue>(LoadAddressLeader))
1499 return createConstantExpression(UndefValue::get(LI->getType()));
1500 MemoryAccess *OriginalAccess = getMemoryAccess(I);
1501 MemoryAccess *DefiningAccess =
1502 MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1504 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1505 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1506 Instruction *DefiningInst = MD->getMemoryInst();
1507 // If the defining instruction is not reachable, replace with undef.
1508 if (!ReachableBlocks.count(DefiningInst->getParent()))
1509 return createConstantExpression(UndefValue::get(LI->getType()));
1510 // This will handle stores and memory insts. We only do if it the
1511 // defining access has a different type, or it is a pointer produced by
1512 // certain memory operations that cause the memory to have a fixed value
1513 // (IE things like calloc).
1514 if (const auto *CoercionResult =
1515 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1516 DefiningInst, DefiningAccess))
1517 return CoercionResult;
1521 const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1522 DefiningAccess);
1523 // If our MemoryLeader is not our defining access, add a use to the
1524 // MemoryLeader, so that we get reprocessed when it changes.
1525 if (LE->getMemoryLeader() != DefiningAccess)
1526 addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1527 return LE;
1530 const Expression *
1531 NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
1532 auto *PI = PredInfo->getPredicateInfoFor(I);
1533 if (!PI)
1534 return nullptr;
1536 LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1538 auto *PWC = dyn_cast<PredicateWithCondition>(PI);
1539 if (!PWC)
1540 return nullptr;
1542 auto *CopyOf = I->getOperand(0);
1543 auto *Cond = PWC->Condition;
1545 // If this a copy of the condition, it must be either true or false depending
1546 // on the predicate info type and edge.
1547 if (CopyOf == Cond) {
1548 // We should not need to add predicate users because the predicate info is
1549 // already a use of this operand.
1550 if (isa<PredicateAssume>(PI))
1551 return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1552 if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1553 if (PBranch->TrueEdge)
1554 return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1555 return createConstantExpression(ConstantInt::getFalse(Cond->getType()));
1557 if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI))
1558 return createConstantExpression(cast<Constant>(PSwitch->CaseValue));
1561 // Not a copy of the condition, so see what the predicates tell us about this
1562 // value. First, though, we check to make sure the value is actually a copy
1563 // of one of the condition operands. It's possible, in certain cases, for it
1564 // to be a copy of a predicateinfo copy. In particular, if two branch
1565 // operations use the same condition, and one branch dominates the other, we
1566 // will end up with a copy of a copy. This is currently a small deficiency in
1567 // predicateinfo. What will end up happening here is that we will value
1568 // number both copies the same anyway.
1570 // Everything below relies on the condition being a comparison.
1571 auto *Cmp = dyn_cast<CmpInst>(Cond);
1572 if (!Cmp)
1573 return nullptr;
1575 if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) {
1576 LLVM_DEBUG(dbgs() << "Copy is not of any condition operands!\n");
1577 return nullptr;
1579 Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0));
1580 Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1));
1581 bool SwappedOps = false;
1582 // Sort the ops.
1583 if (shouldSwapOperands(FirstOp, SecondOp)) {
1584 std::swap(FirstOp, SecondOp);
1585 SwappedOps = true;
1587 CmpInst::Predicate Predicate =
1588 SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate();
1590 if (isa<PredicateAssume>(PI)) {
1591 // If we assume the operands are equal, then they are equal.
1592 if (Predicate == CmpInst::ICMP_EQ) {
1593 addPredicateUsers(PI, I);
1594 addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1596 return createVariableOrConstant(FirstOp);
1599 if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1600 // If we are *not* a copy of the comparison, we may equal to the other
1601 // operand when the predicate implies something about equality of
1602 // operations. In particular, if the comparison is true/false when the
1603 // operands are equal, and we are on the right edge, we know this operation
1604 // is equal to something.
1605 if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) ||
1606 (!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) {
1607 addPredicateUsers(PI, I);
1608 addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1610 return createVariableOrConstant(FirstOp);
1612 // Handle the special case of floating point.
1613 if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) ||
1614 (!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) &&
1615 isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) {
1616 addPredicateUsers(PI, I);
1617 addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1619 return createConstantExpression(cast<Constant>(FirstOp));
1622 return nullptr;
1625 // Evaluate read only and pure calls, and create an expression result.
1626 const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1627 auto *CI = cast<CallInst>(I);
1628 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1629 // Intrinsics with the returned attribute are copies of arguments.
1630 if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1631 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1632 if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
1633 return Result;
1634 return createVariableOrConstant(ReturnedValue);
1637 if (AA->doesNotAccessMemory(CI)) {
1638 return createCallExpression(CI, TOPClass->getMemoryLeader());
1639 } else if (AA->onlyReadsMemory(CI)) {
1640 MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(CI);
1641 return createCallExpression(CI, DefiningAccess);
1643 return nullptr;
1646 // Retrieve the memory class for a given MemoryAccess.
1647 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1648 auto *Result = MemoryAccessToClass.lookup(MA);
1649 assert(Result && "Should have found memory class");
1650 return Result;
1653 // Update the MemoryAccess equivalence table to say that From is equal to To,
1654 // and return true if this is different from what already existed in the table.
1655 bool NewGVN::setMemoryClass(const MemoryAccess *From,
1656 CongruenceClass *NewClass) {
1657 assert(NewClass &&
1658 "Every MemoryAccess should be getting mapped to a non-null class");
1659 LLVM_DEBUG(dbgs() << "Setting " << *From);
1660 LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1661 LLVM_DEBUG(dbgs() << NewClass->getID()
1662 << " with current MemoryAccess leader ");
1663 LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1665 auto LookupResult = MemoryAccessToClass.find(From);
1666 bool Changed = false;
1667 // If it's already in the table, see if the value changed.
1668 if (LookupResult != MemoryAccessToClass.end()) {
1669 auto *OldClass = LookupResult->second;
1670 if (OldClass != NewClass) {
1671 // If this is a phi, we have to handle memory member updates.
1672 if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1673 OldClass->memory_erase(MP);
1674 NewClass->memory_insert(MP);
1675 // This may have killed the class if it had no non-memory members
1676 if (OldClass->getMemoryLeader() == From) {
1677 if (OldClass->definesNoMemory()) {
1678 OldClass->setMemoryLeader(nullptr);
1679 } else {
1680 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1681 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1682 << OldClass->getID() << " to "
1683 << *OldClass->getMemoryLeader()
1684 << " due to removal of a memory member " << *From
1685 << "\n");
1686 markMemoryLeaderChangeTouched(OldClass);
1690 // It wasn't equivalent before, and now it is.
1691 LookupResult->second = NewClass;
1692 Changed = true;
1696 return Changed;
1699 // Determine if a instruction is cycle-free. That means the values in the
1700 // instruction don't depend on any expressions that can change value as a result
1701 // of the instruction. For example, a non-cycle free instruction would be v =
1702 // phi(0, v+1).
1703 bool NewGVN::isCycleFree(const Instruction *I) const {
1704 // In order to compute cycle-freeness, we do SCC finding on the instruction,
1705 // and see what kind of SCC it ends up in. If it is a singleton, it is
1706 // cycle-free. If it is not in a singleton, it is only cycle free if the
1707 // other members are all phi nodes (as they do not compute anything, they are
1708 // copies).
1709 auto ICS = InstCycleState.lookup(I);
1710 if (ICS == ICS_Unknown) {
1711 SCCFinder.Start(I);
1712 auto &SCC = SCCFinder.getComponentFor(I);
1713 // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1714 if (SCC.size() == 1)
1715 InstCycleState.insert({I, ICS_CycleFree});
1716 else {
1717 bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1718 return isa<PHINode>(V) || isCopyOfAPHI(V);
1720 ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1721 for (auto *Member : SCC)
1722 if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1723 InstCycleState.insert({MemberPhi, ICS});
1726 if (ICS == ICS_Cycle)
1727 return false;
1728 return true;
1731 // Evaluate PHI nodes symbolically and create an expression result.
1732 const Expression *
1733 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1734 Instruction *I,
1735 BasicBlock *PHIBlock) const {
1736 // True if one of the incoming phi edges is a backedge.
1737 bool HasBackedge = false;
1738 // All constant tracks the state of whether all the *original* phi operands
1739 // This is really shorthand for "this phi cannot cycle due to forward
1740 // change in value of the phi is guaranteed not to later change the value of
1741 // the phi. IE it can't be v = phi(undef, v+1)
1742 bool OriginalOpsConstant = true;
1743 auto *E = cast<PHIExpression>(createPHIExpression(
1744 PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1745 // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1746 // See if all arguments are the same.
1747 // We track if any were undef because they need special handling.
1748 bool HasUndef = false;
1749 auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1750 if (isa<UndefValue>(Arg)) {
1751 HasUndef = true;
1752 return false;
1754 return true;
1756 // If we are left with no operands, it's dead.
1757 if (empty(Filtered)) {
1758 // If it has undef at this point, it means there are no-non-undef arguments,
1759 // and thus, the value of the phi node must be undef.
1760 if (HasUndef) {
1761 LLVM_DEBUG(
1762 dbgs() << "PHI Node " << *I
1763 << " has no non-undef arguments, valuing it as undef\n");
1764 return createConstantExpression(UndefValue::get(I->getType()));
1767 LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1768 deleteExpression(E);
1769 return createDeadExpression();
1771 Value *AllSameValue = *(Filtered.begin());
1772 ++Filtered.begin();
1773 // Can't use std::equal here, sadly, because filter.begin moves.
1774 if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1775 // In LLVM's non-standard representation of phi nodes, it's possible to have
1776 // phi nodes with cycles (IE dependent on other phis that are .... dependent
1777 // on the original phi node), especially in weird CFG's where some arguments
1778 // are unreachable, or uninitialized along certain paths. This can cause
1779 // infinite loops during evaluation. We work around this by not trying to
1780 // really evaluate them independently, but instead using a variable
1781 // expression to say if one is equivalent to the other.
1782 // We also special case undef, so that if we have an undef, we can't use the
1783 // common value unless it dominates the phi block.
1784 if (HasUndef) {
1785 // If we have undef and at least one other value, this is really a
1786 // multivalued phi, and we need to know if it's cycle free in order to
1787 // evaluate whether we can ignore the undef. The other parts of this are
1788 // just shortcuts. If there is no backedge, or all operands are
1789 // constants, it also must be cycle free.
1790 if (HasBackedge && !OriginalOpsConstant &&
1791 !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1792 return E;
1794 // Only have to check for instructions
1795 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1796 if (!someEquivalentDominates(AllSameInst, I))
1797 return E;
1799 // Can't simplify to something that comes later in the iteration.
1800 // Otherwise, when and if it changes congruence class, we will never catch
1801 // up. We will always be a class behind it.
1802 if (isa<Instruction>(AllSameValue) &&
1803 InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1804 return E;
1805 NumGVNPhisAllSame++;
1806 LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1807 << "\n");
1808 deleteExpression(E);
1809 return createVariableOrConstant(AllSameValue);
1811 return E;
1814 const Expression *
1815 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1816 if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1817 auto *II = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
1818 if (II && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
1819 unsigned Opcode = 0;
1820 // EI might be an extract from one of our recognised intrinsics. If it
1821 // is we'll synthesize a semantically equivalent expression instead on
1822 // an extract value expression.
1823 switch (II->getIntrinsicID()) {
1824 case Intrinsic::sadd_with_overflow:
1825 case Intrinsic::uadd_with_overflow:
1826 Opcode = Instruction::Add;
1827 break;
1828 case Intrinsic::ssub_with_overflow:
1829 case Intrinsic::usub_with_overflow:
1830 Opcode = Instruction::Sub;
1831 break;
1832 case Intrinsic::smul_with_overflow:
1833 case Intrinsic::umul_with_overflow:
1834 Opcode = Instruction::Mul;
1835 break;
1836 default:
1837 break;
1840 if (Opcode != 0) {
1841 // Intrinsic recognized. Grab its args to finish building the
1842 // expression.
1843 assert(II->getNumArgOperands() == 2 &&
1844 "Expect two args for recognised intrinsics.");
1845 return createBinaryExpression(Opcode, EI->getType(),
1846 II->getArgOperand(0),
1847 II->getArgOperand(1), I);
1852 return createAggregateValueExpression(I);
1855 const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1856 assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1858 auto *CI = cast<CmpInst>(I);
1859 // See if our operands are equal to those of a previous predicate, and if so,
1860 // if it implies true or false.
1861 auto Op0 = lookupOperandLeader(CI->getOperand(0));
1862 auto Op1 = lookupOperandLeader(CI->getOperand(1));
1863 auto OurPredicate = CI->getPredicate();
1864 if (shouldSwapOperands(Op0, Op1)) {
1865 std::swap(Op0, Op1);
1866 OurPredicate = CI->getSwappedPredicate();
1869 // Avoid processing the same info twice.
1870 const PredicateBase *LastPredInfo = nullptr;
1871 // See if we know something about the comparison itself, like it is the target
1872 // of an assume.
1873 auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1874 if (dyn_cast_or_null<PredicateAssume>(CmpPI))
1875 return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1877 if (Op0 == Op1) {
1878 // This condition does not depend on predicates, no need to add users
1879 if (CI->isTrueWhenEqual())
1880 return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1881 else if (CI->isFalseWhenEqual())
1882 return createConstantExpression(ConstantInt::getFalse(CI->getType()));
1885 // NOTE: Because we are comparing both operands here and below, and using
1886 // previous comparisons, we rely on fact that predicateinfo knows to mark
1887 // comparisons that use renamed operands as users of the earlier comparisons.
1888 // It is *not* enough to just mark predicateinfo renamed operands as users of
1889 // the earlier comparisons, because the *other* operand may have changed in a
1890 // previous iteration.
1891 // Example:
1892 // icmp slt %a, %b
1893 // %b.0 = ssa.copy(%b)
1894 // false branch:
1895 // icmp slt %c, %b.0
1897 // %c and %a may start out equal, and thus, the code below will say the second
1898 // %icmp is false. c may become equal to something else, and in that case the
1899 // %second icmp *must* be reexamined, but would not if only the renamed
1900 // %operands are considered users of the icmp.
1902 // *Currently* we only check one level of comparisons back, and only mark one
1903 // level back as touched when changes happen. If you modify this code to look
1904 // back farther through comparisons, you *must* mark the appropriate
1905 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
1906 // we know something just from the operands themselves
1908 // See if our operands have predicate info, so that we may be able to derive
1909 // something from a previous comparison.
1910 for (const auto &Op : CI->operands()) {
1911 auto *PI = PredInfo->getPredicateInfoFor(Op);
1912 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1913 if (PI == LastPredInfo)
1914 continue;
1915 LastPredInfo = PI;
1916 // In phi of ops cases, we may have predicate info that we are evaluating
1917 // in a different context.
1918 if (!DT->dominates(PBranch->To, getBlockForValue(I)))
1919 continue;
1920 // TODO: Along the false edge, we may know more things too, like
1921 // icmp of
1922 // same operands is false.
1923 // TODO: We only handle actual comparison conditions below, not
1924 // and/or.
1925 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1926 if (!BranchCond)
1927 continue;
1928 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1929 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1930 auto BranchPredicate = BranchCond->getPredicate();
1931 if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1932 std::swap(BranchOp0, BranchOp1);
1933 BranchPredicate = BranchCond->getSwappedPredicate();
1935 if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1936 if (PBranch->TrueEdge) {
1937 // If we know the previous predicate is true and we are in the true
1938 // edge then we may be implied true or false.
1939 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1940 OurPredicate)) {
1941 addPredicateUsers(PI, I);
1942 return createConstantExpression(
1943 ConstantInt::getTrue(CI->getType()));
1946 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1947 OurPredicate)) {
1948 addPredicateUsers(PI, I);
1949 return createConstantExpression(
1950 ConstantInt::getFalse(CI->getType()));
1952 } else {
1953 // Just handle the ne and eq cases, where if we have the same
1954 // operands, we may know something.
1955 if (BranchPredicate == OurPredicate) {
1956 addPredicateUsers(PI, I);
1957 // Same predicate, same ops,we know it was false, so this is false.
1958 return createConstantExpression(
1959 ConstantInt::getFalse(CI->getType()));
1960 } else if (BranchPredicate ==
1961 CmpInst::getInversePredicate(OurPredicate)) {
1962 addPredicateUsers(PI, I);
1963 // Inverse predicate, we know the other was false, so this is true.
1964 return createConstantExpression(
1965 ConstantInt::getTrue(CI->getType()));
1971 // Create expression will take care of simplifyCmpInst
1972 return createExpression(I);
1975 // Substitute and symbolize the value before value numbering.
1976 const Expression *
1977 NewGVN::performSymbolicEvaluation(Value *V,
1978 SmallPtrSetImpl<Value *> &Visited) const {
1979 const Expression *E = nullptr;
1980 if (auto *C = dyn_cast<Constant>(V))
1981 E = createConstantExpression(C);
1982 else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1983 E = createVariableExpression(V);
1984 } else {
1985 // TODO: memory intrinsics.
1986 // TODO: Some day, we should do the forward propagation and reassociation
1987 // parts of the algorithm.
1988 auto *I = cast<Instruction>(V);
1989 switch (I->getOpcode()) {
1990 case Instruction::ExtractValue:
1991 case Instruction::InsertValue:
1992 E = performSymbolicAggrValueEvaluation(I);
1993 break;
1994 case Instruction::PHI: {
1995 SmallVector<ValPair, 3> Ops;
1996 auto *PN = cast<PHINode>(I);
1997 for (unsigned i = 0; i < PN->getNumOperands(); ++i)
1998 Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
1999 // Sort to ensure the invariant createPHIExpression requires is met.
2000 sortPHIOps(Ops);
2001 E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
2002 } break;
2003 case Instruction::Call:
2004 E = performSymbolicCallEvaluation(I);
2005 break;
2006 case Instruction::Store:
2007 E = performSymbolicStoreEvaluation(I);
2008 break;
2009 case Instruction::Load:
2010 E = performSymbolicLoadEvaluation(I);
2011 break;
2012 case Instruction::BitCast:
2013 E = createExpression(I);
2014 break;
2015 case Instruction::ICmp:
2016 case Instruction::FCmp:
2017 E = performSymbolicCmpEvaluation(I);
2018 break;
2019 case Instruction::Add:
2020 case Instruction::FAdd:
2021 case Instruction::Sub:
2022 case Instruction::FSub:
2023 case Instruction::Mul:
2024 case Instruction::FMul:
2025 case Instruction::UDiv:
2026 case Instruction::SDiv:
2027 case Instruction::FDiv:
2028 case Instruction::URem:
2029 case Instruction::SRem:
2030 case Instruction::FRem:
2031 case Instruction::Shl:
2032 case Instruction::LShr:
2033 case Instruction::AShr:
2034 case Instruction::And:
2035 case Instruction::Or:
2036 case Instruction::Xor:
2037 case Instruction::Trunc:
2038 case Instruction::ZExt:
2039 case Instruction::SExt:
2040 case Instruction::FPToUI:
2041 case Instruction::FPToSI:
2042 case Instruction::UIToFP:
2043 case Instruction::SIToFP:
2044 case Instruction::FPTrunc:
2045 case Instruction::FPExt:
2046 case Instruction::PtrToInt:
2047 case Instruction::IntToPtr:
2048 case Instruction::Select:
2049 case Instruction::ExtractElement:
2050 case Instruction::InsertElement:
2051 case Instruction::ShuffleVector:
2052 case Instruction::GetElementPtr:
2053 E = createExpression(I);
2054 break;
2055 default:
2056 return nullptr;
2059 return E;
2062 // Look up a container in a map, and then call a function for each thing in the
2063 // found container.
2064 template <typename Map, typename KeyType, typename Func>
2065 void NewGVN::for_each_found(Map &M, const KeyType &Key, Func F) {
2066 const auto Result = M.find_as(Key);
2067 if (Result != M.end())
2068 for (typename Map::mapped_type::value_type Mapped : Result->second)
2069 F(Mapped);
2072 // Look up a container of values/instructions in a map, and touch all the
2073 // instructions in the container. Then erase value from the map.
2074 template <typename Map, typename KeyType>
2075 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2076 const auto Result = M.find_as(Key);
2077 if (Result != M.end()) {
2078 for (const typename Map::mapped_type::value_type Mapped : Result->second)
2079 TouchedInstructions.set(InstrToDFSNum(Mapped));
2080 M.erase(Result);
2084 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2085 assert(User && To != User);
2086 if (isa<Instruction>(To))
2087 AdditionalUsers[To].insert(User);
2090 void NewGVN::markUsersTouched(Value *V) {
2091 // Now mark the users as touched.
2092 for (auto *User : V->users()) {
2093 assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2094 TouchedInstructions.set(InstrToDFSNum(User));
2096 touchAndErase(AdditionalUsers, V);
2099 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2100 LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2101 MemoryToUsers[To].insert(U);
2104 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2105 TouchedInstructions.set(MemoryToDFSNum(MA));
2108 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2109 if (isa<MemoryUse>(MA))
2110 return;
2111 for (auto U : MA->users())
2112 TouchedInstructions.set(MemoryToDFSNum(U));
2113 touchAndErase(MemoryToUsers, MA);
2116 // Add I to the set of users of a given predicate.
2117 void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const {
2118 // Don't add temporary instructions to the user lists.
2119 if (AllTempInstructions.count(I))
2120 return;
2122 if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
2123 PredicateToUsers[PBranch->Condition].insert(I);
2124 else if (auto *PAssume = dyn_cast<PredicateBranch>(PB))
2125 PredicateToUsers[PAssume->Condition].insert(I);
2128 // Touch all the predicates that depend on this instruction.
2129 void NewGVN::markPredicateUsersTouched(Instruction *I) {
2130 touchAndErase(PredicateToUsers, I);
2133 // Mark users affected by a memory leader change.
2134 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2135 for (auto M : CC->memory())
2136 markMemoryDefTouched(M);
2139 // Touch the instructions that need to be updated after a congruence class has a
2140 // leader change, and mark changed values.
2141 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2142 for (auto M : *CC) {
2143 if (auto *I = dyn_cast<Instruction>(M))
2144 TouchedInstructions.set(InstrToDFSNum(I));
2145 LeaderChanges.insert(M);
2149 // Give a range of things that have instruction DFS numbers, this will return
2150 // the member of the range with the smallest dfs number.
2151 template <class T, class Range>
2152 T *NewGVN::getMinDFSOfRange(const Range &R) const {
2153 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2154 for (const auto X : R) {
2155 auto DFSNum = InstrToDFSNum(X);
2156 if (DFSNum < MinDFS.second)
2157 MinDFS = {X, DFSNum};
2159 return MinDFS.first;
2162 // This function returns the MemoryAccess that should be the next leader of
2163 // congruence class CC, under the assumption that the current leader is going to
2164 // disappear.
2165 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2166 // TODO: If this ends up to slow, we can maintain a next memory leader like we
2167 // do for regular leaders.
2168 // Make sure there will be a leader to find.
2169 assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2170 if (CC->getStoreCount() > 0) {
2171 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2172 return getMemoryAccess(NL);
2173 // Find the store with the minimum DFS number.
2174 auto *V = getMinDFSOfRange<Value>(make_filter_range(
2175 *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2176 return getMemoryAccess(cast<StoreInst>(V));
2178 assert(CC->getStoreCount() == 0);
2180 // Given our assertion, hitting this part must mean
2181 // !OldClass->memory_empty()
2182 if (CC->memory_size() == 1)
2183 return *CC->memory_begin();
2184 return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2187 // This function returns the next value leader of a congruence class, under the
2188 // assumption that the current leader is going away. This should end up being
2189 // the next most dominating member.
2190 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2191 // We don't need to sort members if there is only 1, and we don't care about
2192 // sorting the TOP class because everything either gets out of it or is
2193 // unreachable.
2195 if (CC->size() == 1 || CC == TOPClass) {
2196 return *(CC->begin());
2197 } else if (CC->getNextLeader().first) {
2198 ++NumGVNAvoidedSortedLeaderChanges;
2199 return CC->getNextLeader().first;
2200 } else {
2201 ++NumGVNSortedLeaderChanges;
2202 // NOTE: If this ends up to slow, we can maintain a dual structure for
2203 // member testing/insertion, or keep things mostly sorted, and sort only
2204 // here, or use SparseBitVector or ....
2205 return getMinDFSOfRange<Value>(*CC);
2209 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2210 // the memory members, etc for the move.
2212 // The invariants of this function are:
2214 // - I must be moving to NewClass from OldClass
2215 // - The StoreCount of OldClass and NewClass is expected to have been updated
2216 // for I already if it is a store.
2217 // - The OldClass memory leader has not been updated yet if I was the leader.
2218 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2219 MemoryAccess *InstMA,
2220 CongruenceClass *OldClass,
2221 CongruenceClass *NewClass) {
2222 // If the leader is I, and we had a representative MemoryAccess, it should
2223 // be the MemoryAccess of OldClass.
2224 assert((!InstMA || !OldClass->getMemoryLeader() ||
2225 OldClass->getLeader() != I ||
2226 MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2227 MemoryAccessToClass.lookup(InstMA)) &&
2228 "Representative MemoryAccess mismatch");
2229 // First, see what happens to the new class
2230 if (!NewClass->getMemoryLeader()) {
2231 // Should be a new class, or a store becoming a leader of a new class.
2232 assert(NewClass->size() == 1 ||
2233 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2234 NewClass->setMemoryLeader(InstMA);
2235 // Mark it touched if we didn't just create a singleton
2236 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2237 << NewClass->getID()
2238 << " due to new memory instruction becoming leader\n");
2239 markMemoryLeaderChangeTouched(NewClass);
2241 setMemoryClass(InstMA, NewClass);
2242 // Now, fixup the old class if necessary
2243 if (OldClass->getMemoryLeader() == InstMA) {
2244 if (!OldClass->definesNoMemory()) {
2245 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2246 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2247 << OldClass->getID() << " to "
2248 << *OldClass->getMemoryLeader()
2249 << " due to removal of old leader " << *InstMA << "\n");
2250 markMemoryLeaderChangeTouched(OldClass);
2251 } else
2252 OldClass->setMemoryLeader(nullptr);
2256 // Move a value, currently in OldClass, to be part of NewClass
2257 // Update OldClass and NewClass for the move (including changing leaders, etc).
2258 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2259 CongruenceClass *OldClass,
2260 CongruenceClass *NewClass) {
2261 if (I == OldClass->getNextLeader().first)
2262 OldClass->resetNextLeader();
2264 OldClass->erase(I);
2265 NewClass->insert(I);
2267 if (NewClass->getLeader() != I)
2268 NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
2269 // Handle our special casing of stores.
2270 if (auto *SI = dyn_cast<StoreInst>(I)) {
2271 OldClass->decStoreCount();
2272 // Okay, so when do we want to make a store a leader of a class?
2273 // If we have a store defined by an earlier load, we want the earlier load
2274 // to lead the class.
2275 // If we have a store defined by something else, we want the store to lead
2276 // the class so everything else gets the "something else" as a value.
2277 // If we have a store as the single member of the class, we want the store
2278 // as the leader
2279 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2280 // If it's a store expression we are using, it means we are not equivalent
2281 // to something earlier.
2282 if (auto *SE = dyn_cast<StoreExpression>(E)) {
2283 NewClass->setStoredValue(SE->getStoredValue());
2284 markValueLeaderChangeTouched(NewClass);
2285 // Shift the new class leader to be the store
2286 LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2287 << NewClass->getID() << " from "
2288 << *NewClass->getLeader() << " to " << *SI
2289 << " because store joined class\n");
2290 // If we changed the leader, we have to mark it changed because we don't
2291 // know what it will do to symbolic evaluation.
2292 NewClass->setLeader(SI);
2294 // We rely on the code below handling the MemoryAccess change.
2296 NewClass->incStoreCount();
2298 // True if there is no memory instructions left in a class that had memory
2299 // instructions before.
2301 // If it's not a memory use, set the MemoryAccess equivalence
2302 auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2303 if (InstMA)
2304 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2305 ValueToClass[I] = NewClass;
2306 // See if we destroyed the class or need to swap leaders.
2307 if (OldClass->empty() && OldClass != TOPClass) {
2308 if (OldClass->getDefiningExpr()) {
2309 LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2310 << " from table\n");
2311 // We erase it as an exact expression to make sure we don't just erase an
2312 // equivalent one.
2313 auto Iter = ExpressionToClass.find_as(
2314 ExactEqualsExpression(*OldClass->getDefiningExpr()));
2315 if (Iter != ExpressionToClass.end())
2316 ExpressionToClass.erase(Iter);
2317 #ifdef EXPENSIVE_CHECKS
2318 assert(
2319 (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2320 "We erased the expression we just inserted, which should not happen");
2321 #endif
2323 } else if (OldClass->getLeader() == I) {
2324 // When the leader changes, the value numbering of
2325 // everything may change due to symbolization changes, so we need to
2326 // reprocess.
2327 LLVM_DEBUG(dbgs() << "Value class leader change for class "
2328 << OldClass->getID() << "\n");
2329 ++NumGVNLeaderChanges;
2330 // Destroy the stored value if there are no more stores to represent it.
2331 // Note that this is basically clean up for the expression removal that
2332 // happens below. If we remove stores from a class, we may leave it as a
2333 // class of equivalent memory phis.
2334 if (OldClass->getStoreCount() == 0) {
2335 if (OldClass->getStoredValue())
2336 OldClass->setStoredValue(nullptr);
2338 OldClass->setLeader(getNextValueLeader(OldClass));
2339 OldClass->resetNextLeader();
2340 markValueLeaderChangeTouched(OldClass);
2344 // For a given expression, mark the phi of ops instructions that could have
2345 // changed as a result.
2346 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2347 touchAndErase(ExpressionToPhiOfOps, E);
2350 // Perform congruence finding on a given value numbering expression.
2351 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2352 // This is guaranteed to return something, since it will at least find
2353 // TOP.
2355 CongruenceClass *IClass = ValueToClass.lookup(I);
2356 assert(IClass && "Should have found a IClass");
2357 // Dead classes should have been eliminated from the mapping.
2358 assert(!IClass->isDead() && "Found a dead class");
2360 CongruenceClass *EClass = nullptr;
2361 if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2362 EClass = ValueToClass.lookup(VE->getVariableValue());
2363 } else if (isa<DeadExpression>(E)) {
2364 EClass = TOPClass;
2366 if (!EClass) {
2367 auto lookupResult = ExpressionToClass.insert({E, nullptr});
2369 // If it's not in the value table, create a new congruence class.
2370 if (lookupResult.second) {
2371 CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2372 auto place = lookupResult.first;
2373 place->second = NewClass;
2375 // Constants and variables should always be made the leader.
2376 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2377 NewClass->setLeader(CE->getConstantValue());
2378 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2379 StoreInst *SI = SE->getStoreInst();
2380 NewClass->setLeader(SI);
2381 NewClass->setStoredValue(SE->getStoredValue());
2382 // The RepMemoryAccess field will be filled in properly by the
2383 // moveValueToNewCongruenceClass call.
2384 } else {
2385 NewClass->setLeader(I);
2387 assert(!isa<VariableExpression>(E) &&
2388 "VariableExpression should have been handled already");
2390 EClass = NewClass;
2391 LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2392 << " using expression " << *E << " at "
2393 << NewClass->getID() << " and leader "
2394 << *(NewClass->getLeader()));
2395 if (NewClass->getStoredValue())
2396 LLVM_DEBUG(dbgs() << " and stored value "
2397 << *(NewClass->getStoredValue()));
2398 LLVM_DEBUG(dbgs() << "\n");
2399 } else {
2400 EClass = lookupResult.first->second;
2401 if (isa<ConstantExpression>(E))
2402 assert((isa<Constant>(EClass->getLeader()) ||
2403 (EClass->getStoredValue() &&
2404 isa<Constant>(EClass->getStoredValue()))) &&
2405 "Any class with a constant expression should have a "
2406 "constant leader");
2408 assert(EClass && "Somehow don't have an eclass");
2410 assert(!EClass->isDead() && "We accidentally looked up a dead class");
2413 bool ClassChanged = IClass != EClass;
2414 bool LeaderChanged = LeaderChanges.erase(I);
2415 if (ClassChanged || LeaderChanged) {
2416 LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2417 << *E << "\n");
2418 if (ClassChanged) {
2419 moveValueToNewCongruenceClass(I, E, IClass, EClass);
2420 markPhiOfOpsChanged(E);
2423 markUsersTouched(I);
2424 if (MemoryAccess *MA = getMemoryAccess(I))
2425 markMemoryUsersTouched(MA);
2426 if (auto *CI = dyn_cast<CmpInst>(I))
2427 markPredicateUsersTouched(CI);
2429 // If we changed the class of the store, we want to ensure nothing finds the
2430 // old store expression. In particular, loads do not compare against stored
2431 // value, so they will find old store expressions (and associated class
2432 // mappings) if we leave them in the table.
2433 if (ClassChanged && isa<StoreInst>(I)) {
2434 auto *OldE = ValueToExpression.lookup(I);
2435 // It could just be that the old class died. We don't want to erase it if we
2436 // just moved classes.
2437 if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2438 // Erase this as an exact expression to ensure we don't erase expressions
2439 // equivalent to it.
2440 auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2441 if (Iter != ExpressionToClass.end())
2442 ExpressionToClass.erase(Iter);
2445 ValueToExpression[I] = E;
2448 // Process the fact that Edge (from, to) is reachable, including marking
2449 // any newly reachable blocks and instructions for processing.
2450 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2451 // Check if the Edge was reachable before.
2452 if (ReachableEdges.insert({From, To}).second) {
2453 // If this block wasn't reachable before, all instructions are touched.
2454 if (ReachableBlocks.insert(To).second) {
2455 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2456 << " marked reachable\n");
2457 const auto &InstRange = BlockInstRange.lookup(To);
2458 TouchedInstructions.set(InstRange.first, InstRange.second);
2459 } else {
2460 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2461 << " was reachable, but new edge {"
2462 << getBlockName(From) << "," << getBlockName(To)
2463 << "} to it found\n");
2465 // We've made an edge reachable to an existing block, which may
2466 // impact predicates. Otherwise, only mark the phi nodes as touched, as
2467 // they are the only thing that depend on new edges. Anything using their
2468 // values will get propagated to if necessary.
2469 if (MemoryAccess *MemPhi = getMemoryAccess(To))
2470 TouchedInstructions.set(InstrToDFSNum(MemPhi));
2472 // FIXME: We should just add a union op on a Bitvector and
2473 // SparseBitVector. We can do it word by word faster than we are doing it
2474 // here.
2475 for (auto InstNum : RevisitOnReachabilityChange[To])
2476 TouchedInstructions.set(InstNum);
2481 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2482 // see if we know some constant value for it already.
2483 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2484 auto Result = lookupOperandLeader(Cond);
2485 return isa<Constant>(Result) ? Result : nullptr;
2488 // Process the outgoing edges of a block for reachability.
2489 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
2490 // Evaluate reachability of terminator instruction.
2491 BranchInst *BR;
2492 if ((BR = dyn_cast<BranchInst>(TI)) && BR->isConditional()) {
2493 Value *Cond = BR->getCondition();
2494 Value *CondEvaluated = findConditionEquivalence(Cond);
2495 if (!CondEvaluated) {
2496 if (auto *I = dyn_cast<Instruction>(Cond)) {
2497 const Expression *E = createExpression(I);
2498 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2499 CondEvaluated = CE->getConstantValue();
2501 } else if (isa<ConstantInt>(Cond)) {
2502 CondEvaluated = Cond;
2505 ConstantInt *CI;
2506 BasicBlock *TrueSucc = BR->getSuccessor(0);
2507 BasicBlock *FalseSucc = BR->getSuccessor(1);
2508 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2509 if (CI->isOne()) {
2510 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2511 << " evaluated to true\n");
2512 updateReachableEdge(B, TrueSucc);
2513 } else if (CI->isZero()) {
2514 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2515 << " evaluated to false\n");
2516 updateReachableEdge(B, FalseSucc);
2518 } else {
2519 updateReachableEdge(B, TrueSucc);
2520 updateReachableEdge(B, FalseSucc);
2522 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2523 // For switches, propagate the case values into the case
2524 // destinations.
2526 // Remember how many outgoing edges there are to every successor.
2527 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2529 Value *SwitchCond = SI->getCondition();
2530 Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2531 // See if we were able to turn this switch statement into a constant.
2532 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2533 auto *CondVal = cast<ConstantInt>(CondEvaluated);
2534 // We should be able to get case value for this.
2535 auto Case = *SI->findCaseValue(CondVal);
2536 if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2537 // We proved the value is outside of the range of the case.
2538 // We can't do anything other than mark the default dest as reachable,
2539 // and go home.
2540 updateReachableEdge(B, SI->getDefaultDest());
2541 return;
2543 // Now get where it goes and mark it reachable.
2544 BasicBlock *TargetBlock = Case.getCaseSuccessor();
2545 updateReachableEdge(B, TargetBlock);
2546 } else {
2547 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2548 BasicBlock *TargetBlock = SI->getSuccessor(i);
2549 ++SwitchEdges[TargetBlock];
2550 updateReachableEdge(B, TargetBlock);
2553 } else {
2554 // Otherwise this is either unconditional, or a type we have no
2555 // idea about. Just mark successors as reachable.
2556 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2557 BasicBlock *TargetBlock = TI->getSuccessor(i);
2558 updateReachableEdge(B, TargetBlock);
2561 // This also may be a memory defining terminator, in which case, set it
2562 // equivalent only to itself.
2564 auto *MA = getMemoryAccess(TI);
2565 if (MA && !isa<MemoryUse>(MA)) {
2566 auto *CC = ensureLeaderOfMemoryClass(MA);
2567 if (setMemoryClass(MA, CC))
2568 markMemoryUsersTouched(MA);
2573 // Remove the PHI of Ops PHI for I
2574 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2575 InstrDFS.erase(PHITemp);
2576 // It's still a temp instruction. We keep it in the array so it gets erased.
2577 // However, it's no longer used by I, or in the block
2578 TempToBlock.erase(PHITemp);
2579 RealToTemp.erase(I);
2580 // We don't remove the users from the phi node uses. This wastes a little
2581 // time, but such is life. We could use two sets to track which were there
2582 // are the start of NewGVN, and which were added, but right nowt he cost of
2583 // tracking is more than the cost of checking for more phi of ops.
2586 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
2587 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2588 Instruction *ExistingValue) {
2589 InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2590 AllTempInstructions.insert(Op);
2591 TempToBlock[Op] = BB;
2592 RealToTemp[ExistingValue] = Op;
2593 // Add all users to phi node use, as they are now uses of the phi of ops phis
2594 // and may themselves be phi of ops.
2595 for (auto *U : ExistingValue->users())
2596 if (auto *UI = dyn_cast<Instruction>(U))
2597 PHINodeUses.insert(UI);
2600 static bool okayForPHIOfOps(const Instruction *I) {
2601 if (!EnablePhiOfOps)
2602 return false;
2603 return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2604 isa<LoadInst>(I);
2607 bool NewGVN::OpIsSafeForPHIOfOpsHelper(
2608 Value *V, const BasicBlock *PHIBlock,
2609 SmallPtrSetImpl<const Value *> &Visited,
2610 SmallVectorImpl<Instruction *> &Worklist) {
2612 if (!isa<Instruction>(V))
2613 return true;
2614 auto OISIt = OpSafeForPHIOfOps.find(V);
2615 if (OISIt != OpSafeForPHIOfOps.end())
2616 return OISIt->second;
2618 // Keep walking until we either dominate the phi block, or hit a phi, or run
2619 // out of things to check.
2620 if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) {
2621 OpSafeForPHIOfOps.insert({V, true});
2622 return true;
2624 // PHI in the same block.
2625 if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) {
2626 OpSafeForPHIOfOps.insert({V, false});
2627 return false;
2630 auto *OrigI = cast<Instruction>(V);
2631 for (auto *Op : OrigI->operand_values()) {
2632 if (!isa<Instruction>(Op))
2633 continue;
2634 // Stop now if we find an unsafe operand.
2635 auto OISIt = OpSafeForPHIOfOps.find(OrigI);
2636 if (OISIt != OpSafeForPHIOfOps.end()) {
2637 if (!OISIt->second) {
2638 OpSafeForPHIOfOps.insert({V, false});
2639 return false;
2641 continue;
2643 if (!Visited.insert(Op).second)
2644 continue;
2645 Worklist.push_back(cast<Instruction>(Op));
2647 return true;
2650 // Return true if this operand will be safe to use for phi of ops.
2652 // The reason some operands are unsafe is that we are not trying to recursively
2653 // translate everything back through phi nodes. We actually expect some lookups
2654 // of expressions to fail. In particular, a lookup where the expression cannot
2655 // exist in the predecessor. This is true even if the expression, as shown, can
2656 // be determined to be constant.
2657 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2658 SmallPtrSetImpl<const Value *> &Visited) {
2659 SmallVector<Instruction *, 4> Worklist;
2660 if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist))
2661 return false;
2662 while (!Worklist.empty()) {
2663 auto *I = Worklist.pop_back_val();
2664 if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist))
2665 return false;
2667 OpSafeForPHIOfOps.insert({V, true});
2668 return true;
2671 // Try to find a leader for instruction TransInst, which is a phi translated
2672 // version of something in our original program. Visited is used to ensure we
2673 // don't infinite loop during translations of cycles. OrigInst is the
2674 // instruction in the original program, and PredBB is the predecessor we
2675 // translated it through.
2676 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2677 SmallPtrSetImpl<Value *> &Visited,
2678 MemoryAccess *MemAccess, Instruction *OrigInst,
2679 BasicBlock *PredBB) {
2680 unsigned IDFSNum = InstrToDFSNum(OrigInst);
2681 // Make sure it's marked as a temporary instruction.
2682 AllTempInstructions.insert(TransInst);
2683 // and make sure anything that tries to add it's DFS number is
2684 // redirected to the instruction we are making a phi of ops
2685 // for.
2686 TempToBlock.insert({TransInst, PredBB});
2687 InstrDFS.insert({TransInst, IDFSNum});
2689 const Expression *E = performSymbolicEvaluation(TransInst, Visited);
2690 InstrDFS.erase(TransInst);
2691 AllTempInstructions.erase(TransInst);
2692 TempToBlock.erase(TransInst);
2693 if (MemAccess)
2694 TempToMemory.erase(TransInst);
2695 if (!E)
2696 return nullptr;
2697 auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2698 if (!FoundVal) {
2699 ExpressionToPhiOfOps[E].insert(OrigInst);
2700 LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2701 << " in block " << getBlockName(PredBB) << "\n");
2702 return nullptr;
2704 if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2705 FoundVal = SI->getValueOperand();
2706 return FoundVal;
2709 // When we see an instruction that is an op of phis, generate the equivalent phi
2710 // of ops form.
2711 const Expression *
2712 NewGVN::makePossiblePHIOfOps(Instruction *I,
2713 SmallPtrSetImpl<Value *> &Visited) {
2714 if (!okayForPHIOfOps(I))
2715 return nullptr;
2717 if (!Visited.insert(I).second)
2718 return nullptr;
2719 // For now, we require the instruction be cycle free because we don't
2720 // *always* create a phi of ops for instructions that could be done as phi
2721 // of ops, we only do it if we think it is useful. If we did do it all the
2722 // time, we could remove the cycle free check.
2723 if (!isCycleFree(I))
2724 return nullptr;
2726 SmallPtrSet<const Value *, 8> ProcessedPHIs;
2727 // TODO: We don't do phi translation on memory accesses because it's
2728 // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2729 // which we don't have a good way of doing ATM.
2730 auto *MemAccess = getMemoryAccess(I);
2731 // If the memory operation is defined by a memory operation this block that
2732 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2733 // can't help, as it would still be killed by that memory operation.
2734 if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2735 MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2736 return nullptr;
2738 // Convert op of phis to phi of ops
2739 SmallPtrSet<const Value *, 10> VisitedOps;
2740 SmallVector<Value *, 4> Ops(I->operand_values());
2741 BasicBlock *SamePHIBlock = nullptr;
2742 PHINode *OpPHI = nullptr;
2743 if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2744 return nullptr;
2745 for (auto *Op : Ops) {
2746 if (!isa<PHINode>(Op)) {
2747 auto *ValuePHI = RealToTemp.lookup(Op);
2748 if (!ValuePHI)
2749 continue;
2750 LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2751 Op = ValuePHI;
2753 OpPHI = cast<PHINode>(Op);
2754 if (!SamePHIBlock) {
2755 SamePHIBlock = getBlockForValue(OpPHI);
2756 } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2757 LLVM_DEBUG(
2758 dbgs()
2759 << "PHIs for operands are not all in the same block, aborting\n");
2760 return nullptr;
2762 // No point in doing this for one-operand phis.
2763 if (OpPHI->getNumOperands() == 1) {
2764 OpPHI = nullptr;
2765 continue;
2769 if (!OpPHI)
2770 return nullptr;
2772 SmallVector<ValPair, 4> PHIOps;
2773 SmallPtrSet<Value *, 4> Deps;
2774 auto *PHIBlock = getBlockForValue(OpPHI);
2775 RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2776 for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2777 auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2778 Value *FoundVal = nullptr;
2779 SmallPtrSet<Value *, 4> CurrentDeps;
2780 // We could just skip unreachable edges entirely but it's tricky to do
2781 // with rewriting existing phi nodes.
2782 if (ReachableEdges.count({PredBB, PHIBlock})) {
2783 // Clone the instruction, create an expression from it that is
2784 // translated back into the predecessor, and see if we have a leader.
2785 Instruction *ValueOp = I->clone();
2786 if (MemAccess)
2787 TempToMemory.insert({ValueOp, MemAccess});
2788 bool SafeForPHIOfOps = true;
2789 VisitedOps.clear();
2790 for (auto &Op : ValueOp->operands()) {
2791 auto *OrigOp = &*Op;
2792 // When these operand changes, it could change whether there is a
2793 // leader for us or not, so we have to add additional users.
2794 if (isa<PHINode>(Op)) {
2795 Op = Op->DoPHITranslation(PHIBlock, PredBB);
2796 if (Op != OrigOp && Op != I)
2797 CurrentDeps.insert(Op);
2798 } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2799 if (getBlockForValue(ValuePHI) == PHIBlock)
2800 Op = ValuePHI->getIncomingValueForBlock(PredBB);
2802 // If we phi-translated the op, it must be safe.
2803 SafeForPHIOfOps =
2804 SafeForPHIOfOps &&
2805 (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2807 // FIXME: For those things that are not safe we could generate
2808 // expressions all the way down, and see if this comes out to a
2809 // constant. For anything where that is true, and unsafe, we should
2810 // have made a phi-of-ops (or value numbered it equivalent to something)
2811 // for the pieces already.
2812 FoundVal = !SafeForPHIOfOps ? nullptr
2813 : findLeaderForInst(ValueOp, Visited,
2814 MemAccess, I, PredBB);
2815 ValueOp->deleteValue();
2816 if (!FoundVal) {
2817 // We failed to find a leader for the current ValueOp, but this might
2818 // change in case of the translated operands change.
2819 if (SafeForPHIOfOps)
2820 for (auto Dep : CurrentDeps)
2821 addAdditionalUsers(Dep, I);
2823 return nullptr;
2825 Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2826 } else {
2827 LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2828 << getBlockName(PredBB)
2829 << " because the block is unreachable\n");
2830 FoundVal = UndefValue::get(I->getType());
2831 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2834 PHIOps.push_back({FoundVal, PredBB});
2835 LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2836 << getBlockName(PredBB) << "\n");
2838 for (auto Dep : Deps)
2839 addAdditionalUsers(Dep, I);
2840 sortPHIOps(PHIOps);
2841 auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2842 if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2843 LLVM_DEBUG(
2844 dbgs()
2845 << "Not creating real PHI of ops because it simplified to existing "
2846 "value or constant\n");
2847 return E;
2849 auto *ValuePHI = RealToTemp.lookup(I);
2850 bool NewPHI = false;
2851 if (!ValuePHI) {
2852 ValuePHI =
2853 PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2854 addPhiOfOps(ValuePHI, PHIBlock, I);
2855 NewPHI = true;
2856 NumGVNPHIOfOpsCreated++;
2858 if (NewPHI) {
2859 for (auto PHIOp : PHIOps)
2860 ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2861 } else {
2862 TempToBlock[ValuePHI] = PHIBlock;
2863 unsigned int i = 0;
2864 for (auto PHIOp : PHIOps) {
2865 ValuePHI->setIncomingValue(i, PHIOp.first);
2866 ValuePHI->setIncomingBlock(i, PHIOp.second);
2867 ++i;
2870 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2871 LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2872 << "\n");
2874 return E;
2877 // The algorithm initially places the values of the routine in the TOP
2878 // congruence class. The leader of TOP is the undetermined value `undef`.
2879 // When the algorithm has finished, values still in TOP are unreachable.
2880 void NewGVN::initializeCongruenceClasses(Function &F) {
2881 NextCongruenceNum = 0;
2883 // Note that even though we use the live on entry def as a representative
2884 // MemoryAccess, it is *not* the same as the actual live on entry def. We
2885 // have no real equivalemnt to undef for MemoryAccesses, and so we really
2886 // should be checking whether the MemoryAccess is top if we want to know if it
2887 // is equivalent to everything. Otherwise, what this really signifies is that
2888 // the access "it reaches all the way back to the beginning of the function"
2890 // Initialize all other instructions to be in TOP class.
2891 TOPClass = createCongruenceClass(nullptr, nullptr);
2892 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2893 // The live on entry def gets put into it's own class
2894 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2895 createMemoryClass(MSSA->getLiveOnEntryDef());
2897 for (auto DTN : nodes(DT)) {
2898 BasicBlock *BB = DTN->getBlock();
2899 // All MemoryAccesses are equivalent to live on entry to start. They must
2900 // be initialized to something so that initial changes are noticed. For
2901 // the maximal answer, we initialize them all to be the same as
2902 // liveOnEntry.
2903 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2904 if (MemoryBlockDefs)
2905 for (const auto &Def : *MemoryBlockDefs) {
2906 MemoryAccessToClass[&Def] = TOPClass;
2907 auto *MD = dyn_cast<MemoryDef>(&Def);
2908 // Insert the memory phis into the member list.
2909 if (!MD) {
2910 const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2911 TOPClass->memory_insert(MP);
2912 MemoryPhiState.insert({MP, MPS_TOP});
2915 if (MD && isa<StoreInst>(MD->getMemoryInst()))
2916 TOPClass->incStoreCount();
2919 // FIXME: This is trying to discover which instructions are uses of phi
2920 // nodes. We should move this into one of the myriad of places that walk
2921 // all the operands already.
2922 for (auto &I : *BB) {
2923 if (isa<PHINode>(&I))
2924 for (auto *U : I.users())
2925 if (auto *UInst = dyn_cast<Instruction>(U))
2926 if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2927 PHINodeUses.insert(UInst);
2928 // Don't insert void terminators into the class. We don't value number
2929 // them, and they just end up sitting in TOP.
2930 if (I.isTerminator() && I.getType()->isVoidTy())
2931 continue;
2932 TOPClass->insert(&I);
2933 ValueToClass[&I] = TOPClass;
2937 // Initialize arguments to be in their own unique congruence classes
2938 for (auto &FA : F.args())
2939 createSingletonCongruenceClass(&FA);
2942 void NewGVN::cleanupTables() {
2943 for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
2944 LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
2945 << " has " << CongruenceClasses[i]->size()
2946 << " members\n");
2947 // Make sure we delete the congruence class (probably worth switching to
2948 // a unique_ptr at some point.
2949 delete CongruenceClasses[i];
2950 CongruenceClasses[i] = nullptr;
2953 // Destroy the value expressions
2954 SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2955 AllTempInstructions.end());
2956 AllTempInstructions.clear();
2958 // We have to drop all references for everything first, so there are no uses
2959 // left as we delete them.
2960 for (auto *I : TempInst) {
2961 I->dropAllReferences();
2964 while (!TempInst.empty()) {
2965 auto *I = TempInst.back();
2966 TempInst.pop_back();
2967 I->deleteValue();
2970 ValueToClass.clear();
2971 ArgRecycler.clear(ExpressionAllocator);
2972 ExpressionAllocator.Reset();
2973 CongruenceClasses.clear();
2974 ExpressionToClass.clear();
2975 ValueToExpression.clear();
2976 RealToTemp.clear();
2977 AdditionalUsers.clear();
2978 ExpressionToPhiOfOps.clear();
2979 TempToBlock.clear();
2980 TempToMemory.clear();
2981 PHINodeUses.clear();
2982 OpSafeForPHIOfOps.clear();
2983 ReachableBlocks.clear();
2984 ReachableEdges.clear();
2985 #ifndef NDEBUG
2986 ProcessedCount.clear();
2987 #endif
2988 InstrDFS.clear();
2989 InstructionsToErase.clear();
2990 DFSToInstr.clear();
2991 BlockInstRange.clear();
2992 TouchedInstructions.clear();
2993 MemoryAccessToClass.clear();
2994 PredicateToUsers.clear();
2995 MemoryToUsers.clear();
2996 RevisitOnReachabilityChange.clear();
2999 // Assign local DFS number mapping to instructions, and leave space for Value
3000 // PHI's.
3001 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
3002 unsigned Start) {
3003 unsigned End = Start;
3004 if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
3005 InstrDFS[MemPhi] = End++;
3006 DFSToInstr.emplace_back(MemPhi);
3009 // Then the real block goes next.
3010 for (auto &I : *B) {
3011 // There's no need to call isInstructionTriviallyDead more than once on
3012 // an instruction. Therefore, once we know that an instruction is dead
3013 // we change its DFS number so that it doesn't get value numbered.
3014 if (isInstructionTriviallyDead(&I, TLI)) {
3015 InstrDFS[&I] = 0;
3016 LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
3017 markInstructionForDeletion(&I);
3018 continue;
3020 if (isa<PHINode>(&I))
3021 RevisitOnReachabilityChange[B].set(End);
3022 InstrDFS[&I] = End++;
3023 DFSToInstr.emplace_back(&I);
3026 // All of the range functions taken half-open ranges (open on the end side).
3027 // So we do not subtract one from count, because at this point it is one
3028 // greater than the last instruction.
3029 return std::make_pair(Start, End);
3032 void NewGVN::updateProcessedCount(const Value *V) {
3033 #ifndef NDEBUG
3034 if (ProcessedCount.count(V) == 0) {
3035 ProcessedCount.insert({V, 1});
3036 } else {
3037 ++ProcessedCount[V];
3038 assert(ProcessedCount[V] < 100 &&
3039 "Seem to have processed the same Value a lot");
3041 #endif
3044 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
3045 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3046 // If all the arguments are the same, the MemoryPhi has the same value as the
3047 // argument. Filter out unreachable blocks and self phis from our operands.
3048 // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3049 // self-phi checking.
3050 const BasicBlock *PHIBlock = MP->getBlock();
3051 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3052 return cast<MemoryAccess>(U) != MP &&
3053 !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3054 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3056 // If all that is left is nothing, our memoryphi is undef. We keep it as
3057 // InitialClass. Note: The only case this should happen is if we have at
3058 // least one self-argument.
3059 if (Filtered.begin() == Filtered.end()) {
3060 if (setMemoryClass(MP, TOPClass))
3061 markMemoryUsersTouched(MP);
3062 return;
3065 // Transform the remaining operands into operand leaders.
3066 // FIXME: mapped_iterator should have a range version.
3067 auto LookupFunc = [&](const Use &U) {
3068 return lookupMemoryLeader(cast<MemoryAccess>(U));
3070 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3071 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3073 // and now check if all the elements are equal.
3074 // Sadly, we can't use std::equals since these are random access iterators.
3075 const auto *AllSameValue = *MappedBegin;
3076 ++MappedBegin;
3077 bool AllEqual = std::all_of(
3078 MappedBegin, MappedEnd,
3079 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3081 if (AllEqual)
3082 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3083 << "\n");
3084 else
3085 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3086 // If it's equal to something, it's in that class. Otherwise, it has to be in
3087 // a class where it is the leader (other things may be equivalent to it, but
3088 // it needs to start off in its own class, which means it must have been the
3089 // leader, and it can't have stopped being the leader because it was never
3090 // removed).
3091 CongruenceClass *CC =
3092 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3093 auto OldState = MemoryPhiState.lookup(MP);
3094 assert(OldState != MPS_Invalid && "Invalid memory phi state");
3095 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3096 MemoryPhiState[MP] = NewState;
3097 if (setMemoryClass(MP, CC) || OldState != NewState)
3098 markMemoryUsersTouched(MP);
3101 // Value number a single instruction, symbolically evaluating, performing
3102 // congruence finding, and updating mappings.
3103 void NewGVN::valueNumberInstruction(Instruction *I) {
3104 LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3105 if (!I->isTerminator()) {
3106 const Expression *Symbolized = nullptr;
3107 SmallPtrSet<Value *, 2> Visited;
3108 if (DebugCounter::shouldExecute(VNCounter)) {
3109 Symbolized = performSymbolicEvaluation(I, Visited);
3110 // Make a phi of ops if necessary
3111 if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3112 !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3113 auto *PHIE = makePossiblePHIOfOps(I, Visited);
3114 // If we created a phi of ops, use it.
3115 // If we couldn't create one, make sure we don't leave one lying around
3116 if (PHIE) {
3117 Symbolized = PHIE;
3118 } else if (auto *Op = RealToTemp.lookup(I)) {
3119 removePhiOfOps(I, Op);
3122 } else {
3123 // Mark the instruction as unused so we don't value number it again.
3124 InstrDFS[I] = 0;
3126 // If we couldn't come up with a symbolic expression, use the unknown
3127 // expression
3128 if (Symbolized == nullptr)
3129 Symbolized = createUnknownExpression(I);
3130 performCongruenceFinding(I, Symbolized);
3131 } else {
3132 // Handle terminators that return values. All of them produce values we
3133 // don't currently understand. We don't place non-value producing
3134 // terminators in a class.
3135 if (!I->getType()->isVoidTy()) {
3136 auto *Symbolized = createUnknownExpression(I);
3137 performCongruenceFinding(I, Symbolized);
3139 processOutgoingEdges(I, I->getParent());
3143 // Check if there is a path, using single or equal argument phi nodes, from
3144 // First to Second.
3145 bool NewGVN::singleReachablePHIPath(
3146 SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3147 const MemoryAccess *Second) const {
3148 if (First == Second)
3149 return true;
3150 if (MSSA->isLiveOnEntryDef(First))
3151 return false;
3153 // This is not perfect, but as we're just verifying here, we can live with
3154 // the loss of precision. The real solution would be that of doing strongly
3155 // connected component finding in this routine, and it's probably not worth
3156 // the complexity for the time being. So, we just keep a set of visited
3157 // MemoryAccess and return true when we hit a cycle.
3158 if (Visited.count(First))
3159 return true;
3160 Visited.insert(First);
3162 const auto *EndDef = First;
3163 for (auto *ChainDef : optimized_def_chain(First)) {
3164 if (ChainDef == Second)
3165 return true;
3166 if (MSSA->isLiveOnEntryDef(ChainDef))
3167 return false;
3168 EndDef = ChainDef;
3170 auto *MP = cast<MemoryPhi>(EndDef);
3171 auto ReachableOperandPred = [&](const Use &U) {
3172 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3174 auto FilteredPhiArgs =
3175 make_filter_range(MP->operands(), ReachableOperandPred);
3176 SmallVector<const Value *, 32> OperandList;
3177 llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
3178 bool Okay = is_splat(OperandList);
3179 if (Okay)
3180 return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3181 Second);
3182 return false;
3185 // Verify the that the memory equivalence table makes sense relative to the
3186 // congruence classes. Note that this checking is not perfect, and is currently
3187 // subject to very rare false negatives. It is only useful for
3188 // testing/debugging.
3189 void NewGVN::verifyMemoryCongruency() const {
3190 #ifndef NDEBUG
3191 // Verify that the memory table equivalence and memory member set match
3192 for (const auto *CC : CongruenceClasses) {
3193 if (CC == TOPClass || CC->isDead())
3194 continue;
3195 if (CC->getStoreCount() != 0) {
3196 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3197 "Any class with a store as a leader should have a "
3198 "representative stored value");
3199 assert(CC->getMemoryLeader() &&
3200 "Any congruence class with a store should have a "
3201 "representative access");
3204 if (CC->getMemoryLeader())
3205 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3206 "Representative MemoryAccess does not appear to be reverse "
3207 "mapped properly");
3208 for (auto M : CC->memory())
3209 assert(MemoryAccessToClass.lookup(M) == CC &&
3210 "Memory member does not appear to be reverse mapped properly");
3213 // Anything equivalent in the MemoryAccess table should be in the same
3214 // congruence class.
3216 // Filter out the unreachable and trivially dead entries, because they may
3217 // never have been updated if the instructions were not processed.
3218 auto ReachableAccessPred =
3219 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3220 bool Result = ReachableBlocks.count(Pair.first->getBlock());
3221 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3222 MemoryToDFSNum(Pair.first) == 0)
3223 return false;
3224 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3225 return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3227 // We could have phi nodes which operands are all trivially dead,
3228 // so we don't process them.
3229 if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3230 for (auto &U : MemPHI->incoming_values()) {
3231 if (auto *I = dyn_cast<Instruction>(&*U)) {
3232 if (!isInstructionTriviallyDead(I))
3233 return true;
3236 return false;
3239 return true;
3242 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3243 for (auto KV : Filtered) {
3244 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3245 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3246 if (FirstMUD && SecondMUD) {
3247 SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3248 assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3249 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3250 ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3251 "The instructions for these memory operations should have "
3252 "been in the same congruence class or reachable through"
3253 "a single argument phi");
3255 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3256 // We can only sanely verify that MemoryDefs in the operand list all have
3257 // the same class.
3258 auto ReachableOperandPred = [&](const Use &U) {
3259 return ReachableEdges.count(
3260 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3261 isa<MemoryDef>(U);
3264 // All arguments should in the same class, ignoring unreachable arguments
3265 auto FilteredPhiArgs =
3266 make_filter_range(FirstMP->operands(), ReachableOperandPred);
3267 SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3268 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3269 std::back_inserter(PhiOpClasses), [&](const Use &U) {
3270 const MemoryDef *MD = cast<MemoryDef>(U);
3271 return ValueToClass.lookup(MD->getMemoryInst());
3273 assert(is_splat(PhiOpClasses) &&
3274 "All MemoryPhi arguments should be in the same class");
3277 #endif
3280 // Verify that the sparse propagation we did actually found the maximal fixpoint
3281 // We do this by storing the value to class mapping, touching all instructions,
3282 // and redoing the iteration to see if anything changed.
3283 void NewGVN::verifyIterationSettled(Function &F) {
3284 #ifndef NDEBUG
3285 LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3286 if (DebugCounter::isCounterSet(VNCounter))
3287 DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
3289 // Note that we have to store the actual classes, as we may change existing
3290 // classes during iteration. This is because our memory iteration propagation
3291 // is not perfect, and so may waste a little work. But it should generate
3292 // exactly the same congruence classes we have now, with different IDs.
3293 std::map<const Value *, CongruenceClass> BeforeIteration;
3295 for (auto &KV : ValueToClass) {
3296 if (auto *I = dyn_cast<Instruction>(KV.first))
3297 // Skip unused/dead instructions.
3298 if (InstrToDFSNum(I) == 0)
3299 continue;
3300 BeforeIteration.insert({KV.first, *KV.second});
3303 TouchedInstructions.set();
3304 TouchedInstructions.reset(0);
3305 iterateTouchedInstructions();
3306 DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3307 EqualClasses;
3308 for (const auto &KV : ValueToClass) {
3309 if (auto *I = dyn_cast<Instruction>(KV.first))
3310 // Skip unused/dead instructions.
3311 if (InstrToDFSNum(I) == 0)
3312 continue;
3313 // We could sink these uses, but i think this adds a bit of clarity here as
3314 // to what we are comparing.
3315 auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3316 auto *AfterCC = KV.second;
3317 // Note that the classes can't change at this point, so we memoize the set
3318 // that are equal.
3319 if (!EqualClasses.count({BeforeCC, AfterCC})) {
3320 assert(BeforeCC->isEquivalentTo(AfterCC) &&
3321 "Value number changed after main loop completed!");
3322 EqualClasses.insert({BeforeCC, AfterCC});
3325 #endif
3328 // Verify that for each store expression in the expression to class mapping,
3329 // only the latest appears, and multiple ones do not appear.
3330 // Because loads do not use the stored value when doing equality with stores,
3331 // if we don't erase the old store expressions from the table, a load can find
3332 // a no-longer valid StoreExpression.
3333 void NewGVN::verifyStoreExpressions() const {
3334 #ifndef NDEBUG
3335 // This is the only use of this, and it's not worth defining a complicated
3336 // densemapinfo hash/equality function for it.
3337 std::set<
3338 std::pair<const Value *,
3339 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3340 StoreExpressionSet;
3341 for (const auto &KV : ExpressionToClass) {
3342 if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3343 // Make sure a version that will conflict with loads is not already there
3344 auto Res = StoreExpressionSet.insert(
3345 {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3346 SE->getStoredValue())});
3347 bool Okay = Res.second;
3348 // It's okay to have the same expression already in there if it is
3349 // identical in nature.
3350 // This can happen when the leader of the stored value changes over time.
3351 if (!Okay)
3352 Okay = (std::get<1>(Res.first->second) == KV.second) &&
3353 (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3354 lookupOperandLeader(SE->getStoredValue()));
3355 assert(Okay && "Stored expression conflict exists in expression table");
3356 auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3357 assert(ValueExpr && ValueExpr->equals(*SE) &&
3358 "StoreExpression in ExpressionToClass is not latest "
3359 "StoreExpression for value");
3362 #endif
3365 // This is the main value numbering loop, it iterates over the initial touched
3366 // instruction set, propagating value numbers, marking things touched, etc,
3367 // until the set of touched instructions is completely empty.
3368 void NewGVN::iterateTouchedInstructions() {
3369 unsigned int Iterations = 0;
3370 // Figure out where touchedinstructions starts
3371 int FirstInstr = TouchedInstructions.find_first();
3372 // Nothing set, nothing to iterate, just return.
3373 if (FirstInstr == -1)
3374 return;
3375 const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3376 while (TouchedInstructions.any()) {
3377 ++Iterations;
3378 // Walk through all the instructions in all the blocks in RPO.
3379 // TODO: As we hit a new block, we should push and pop equalities into a
3380 // table lookupOperandLeader can use, to catch things PredicateInfo
3381 // might miss, like edge-only equivalences.
3382 for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3384 // This instruction was found to be dead. We don't bother looking
3385 // at it again.
3386 if (InstrNum == 0) {
3387 TouchedInstructions.reset(InstrNum);
3388 continue;
3391 Value *V = InstrFromDFSNum(InstrNum);
3392 const BasicBlock *CurrBlock = getBlockForValue(V);
3394 // If we hit a new block, do reachability processing.
3395 if (CurrBlock != LastBlock) {
3396 LastBlock = CurrBlock;
3397 bool BlockReachable = ReachableBlocks.count(CurrBlock);
3398 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3400 // If it's not reachable, erase any touched instructions and move on.
3401 if (!BlockReachable) {
3402 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3403 LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3404 << getBlockName(CurrBlock)
3405 << " because it is unreachable\n");
3406 continue;
3408 updateProcessedCount(CurrBlock);
3410 // Reset after processing (because we may mark ourselves as touched when
3411 // we propagate equalities).
3412 TouchedInstructions.reset(InstrNum);
3414 if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3415 LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3416 valueNumberMemoryPhi(MP);
3417 } else if (auto *I = dyn_cast<Instruction>(V)) {
3418 valueNumberInstruction(I);
3419 } else {
3420 llvm_unreachable("Should have been a MemoryPhi or Instruction");
3422 updateProcessedCount(V);
3425 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3428 // This is the main transformation entry point.
3429 bool NewGVN::runGVN() {
3430 if (DebugCounter::isCounterSet(VNCounter))
3431 StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
3432 bool Changed = false;
3433 NumFuncArgs = F.arg_size();
3434 MSSAWalker = MSSA->getWalker();
3435 SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3437 // Count number of instructions for sizing of hash tables, and come
3438 // up with a global dfs numbering for instructions.
3439 unsigned ICount = 1;
3440 // Add an empty instruction to account for the fact that we start at 1
3441 DFSToInstr.emplace_back(nullptr);
3442 // Note: We want ideal RPO traversal of the blocks, which is not quite the
3443 // same as dominator tree order, particularly with regard whether backedges
3444 // get visited first or second, given a block with multiple successors.
3445 // If we visit in the wrong order, we will end up performing N times as many
3446 // iterations.
3447 // The dominator tree does guarantee that, for a given dom tree node, it's
3448 // parent must occur before it in the RPO ordering. Thus, we only need to sort
3449 // the siblings.
3450 ReversePostOrderTraversal<Function *> RPOT(&F);
3451 unsigned Counter = 0;
3452 for (auto &B : RPOT) {
3453 auto *Node = DT->getNode(B);
3454 assert(Node && "RPO and Dominator tree should have same reachability");
3455 RPOOrdering[Node] = ++Counter;
3457 // Sort dominator tree children arrays into RPO.
3458 for (auto &B : RPOT) {
3459 auto *Node = DT->getNode(B);
3460 if (Node->getChildren().size() > 1)
3461 llvm::sort(Node->begin(), Node->end(),
3462 [&](const DomTreeNode *A, const DomTreeNode *B) {
3463 return RPOOrdering[A] < RPOOrdering[B];
3467 // Now a standard depth first ordering of the domtree is equivalent to RPO.
3468 for (auto DTN : depth_first(DT->getRootNode())) {
3469 BasicBlock *B = DTN->getBlock();
3470 const auto &BlockRange = assignDFSNumbers(B, ICount);
3471 BlockInstRange.insert({B, BlockRange});
3472 ICount += BlockRange.second - BlockRange.first;
3474 initializeCongruenceClasses(F);
3476 TouchedInstructions.resize(ICount);
3477 // Ensure we don't end up resizing the expressionToClass map, as
3478 // that can be quite expensive. At most, we have one expression per
3479 // instruction.
3480 ExpressionToClass.reserve(ICount);
3482 // Initialize the touched instructions to include the entry block.
3483 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3484 TouchedInstructions.set(InstRange.first, InstRange.second);
3485 LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3486 << " marked reachable\n");
3487 ReachableBlocks.insert(&F.getEntryBlock());
3489 iterateTouchedInstructions();
3490 verifyMemoryCongruency();
3491 verifyIterationSettled(F);
3492 verifyStoreExpressions();
3494 Changed |= eliminateInstructions(F);
3496 // Delete all instructions marked for deletion.
3497 for (Instruction *ToErase : InstructionsToErase) {
3498 if (!ToErase->use_empty())
3499 ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
3501 assert(ToErase->getParent() &&
3502 "BB containing ToErase deleted unexpectedly!");
3503 ToErase->eraseFromParent();
3505 Changed |= !InstructionsToErase.empty();
3507 // Delete all unreachable blocks.
3508 auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3509 return !ReachableBlocks.count(&BB);
3512 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3513 LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3514 << " is unreachable\n");
3515 deleteInstructionsInBlock(&BB);
3516 Changed = true;
3519 cleanupTables();
3520 return Changed;
3523 struct NewGVN::ValueDFS {
3524 int DFSIn = 0;
3525 int DFSOut = 0;
3526 int LocalNum = 0;
3528 // Only one of Def and U will be set.
3529 // The bool in the Def tells us whether the Def is the stored value of a
3530 // store.
3531 PointerIntPair<Value *, 1, bool> Def;
3532 Use *U = nullptr;
3534 bool operator<(const ValueDFS &Other) const {
3535 // It's not enough that any given field be less than - we have sets
3536 // of fields that need to be evaluated together to give a proper ordering.
3537 // For example, if you have;
3538 // DFS (1, 3)
3539 // Val 0
3540 // DFS (1, 2)
3541 // Val 50
3542 // We want the second to be less than the first, but if we just go field
3543 // by field, we will get to Val 0 < Val 50 and say the first is less than
3544 // the second. We only want it to be less than if the DFS orders are equal.
3546 // Each LLVM instruction only produces one value, and thus the lowest-level
3547 // differentiator that really matters for the stack (and what we use as as a
3548 // replacement) is the local dfs number.
3549 // Everything else in the structure is instruction level, and only affects
3550 // the order in which we will replace operands of a given instruction.
3552 // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3553 // the order of replacement of uses does not matter.
3554 // IE given,
3555 // a = 5
3556 // b = a + a
3557 // When you hit b, you will have two valuedfs with the same dfsin, out, and
3558 // localnum.
3559 // The .val will be the same as well.
3560 // The .u's will be different.
3561 // You will replace both, and it does not matter what order you replace them
3562 // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3563 // operand 2).
3564 // Similarly for the case of same dfsin, dfsout, localnum, but different
3565 // .val's
3566 // a = 5
3567 // b = 6
3568 // c = a + b
3569 // in c, we will a valuedfs for a, and one for b,with everything the same
3570 // but .val and .u.
3571 // It does not matter what order we replace these operands in.
3572 // You will always end up with the same IR, and this is guaranteed.
3573 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3574 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3575 Other.U);
3579 // This function converts the set of members for a congruence class from values,
3580 // to sets of defs and uses with associated DFS info. The total number of
3581 // reachable uses for each value is stored in UseCount, and instructions that
3582 // seem
3583 // dead (have no non-dead uses) are stored in ProbablyDead.
3584 void NewGVN::convertClassToDFSOrdered(
3585 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3586 DenseMap<const Value *, unsigned int> &UseCounts,
3587 SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3588 for (auto D : Dense) {
3589 // First add the value.
3590 BasicBlock *BB = getBlockForValue(D);
3591 // Constants are handled prior to ever calling this function, so
3592 // we should only be left with instructions as members.
3593 assert(BB && "Should have figured out a basic block for value");
3594 ValueDFS VDDef;
3595 DomTreeNode *DomNode = DT->getNode(BB);
3596 VDDef.DFSIn = DomNode->getDFSNumIn();
3597 VDDef.DFSOut = DomNode->getDFSNumOut();
3598 // If it's a store, use the leader of the value operand, if it's always
3599 // available, or the value operand. TODO: We could do dominance checks to
3600 // find a dominating leader, but not worth it ATM.
3601 if (auto *SI = dyn_cast<StoreInst>(D)) {
3602 auto Leader = lookupOperandLeader(SI->getValueOperand());
3603 if (alwaysAvailable(Leader)) {
3604 VDDef.Def.setPointer(Leader);
3605 } else {
3606 VDDef.Def.setPointer(SI->getValueOperand());
3607 VDDef.Def.setInt(true);
3609 } else {
3610 VDDef.Def.setPointer(D);
3612 assert(isa<Instruction>(D) &&
3613 "The dense set member should always be an instruction");
3614 Instruction *Def = cast<Instruction>(D);
3615 VDDef.LocalNum = InstrToDFSNum(D);
3616 DFSOrderedSet.push_back(VDDef);
3617 // If there is a phi node equivalent, add it
3618 if (auto *PN = RealToTemp.lookup(Def)) {
3619 auto *PHIE =
3620 dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3621 if (PHIE) {
3622 VDDef.Def.setInt(false);
3623 VDDef.Def.setPointer(PN);
3624 VDDef.LocalNum = 0;
3625 DFSOrderedSet.push_back(VDDef);
3629 unsigned int UseCount = 0;
3630 // Now add the uses.
3631 for (auto &U : Def->uses()) {
3632 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3633 // Don't try to replace into dead uses
3634 if (InstructionsToErase.count(I))
3635 continue;
3636 ValueDFS VDUse;
3637 // Put the phi node uses in the incoming block.
3638 BasicBlock *IBlock;
3639 if (auto *P = dyn_cast<PHINode>(I)) {
3640 IBlock = P->getIncomingBlock(U);
3641 // Make phi node users appear last in the incoming block
3642 // they are from.
3643 VDUse.LocalNum = InstrDFS.size() + 1;
3644 } else {
3645 IBlock = getBlockForValue(I);
3646 VDUse.LocalNum = InstrToDFSNum(I);
3649 // Skip uses in unreachable blocks, as we're going
3650 // to delete them.
3651 if (ReachableBlocks.count(IBlock) == 0)
3652 continue;
3654 DomTreeNode *DomNode = DT->getNode(IBlock);
3655 VDUse.DFSIn = DomNode->getDFSNumIn();
3656 VDUse.DFSOut = DomNode->getDFSNumOut();
3657 VDUse.U = &U;
3658 ++UseCount;
3659 DFSOrderedSet.emplace_back(VDUse);
3663 // If there are no uses, it's probably dead (but it may have side-effects,
3664 // so not definitely dead. Otherwise, store the number of uses so we can
3665 // track if it becomes dead later).
3666 if (UseCount == 0)
3667 ProbablyDead.insert(Def);
3668 else
3669 UseCounts[Def] = UseCount;
3673 // This function converts the set of members for a congruence class from values,
3674 // to the set of defs for loads and stores, with associated DFS info.
3675 void NewGVN::convertClassToLoadsAndStores(
3676 const CongruenceClass &Dense,
3677 SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3678 for (auto D : Dense) {
3679 if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3680 continue;
3682 BasicBlock *BB = getBlockForValue(D);
3683 ValueDFS VD;
3684 DomTreeNode *DomNode = DT->getNode(BB);
3685 VD.DFSIn = DomNode->getDFSNumIn();
3686 VD.DFSOut = DomNode->getDFSNumOut();
3687 VD.Def.setPointer(D);
3689 // If it's an instruction, use the real local dfs number.
3690 if (auto *I = dyn_cast<Instruction>(D))
3691 VD.LocalNum = InstrToDFSNum(I);
3692 else
3693 llvm_unreachable("Should have been an instruction");
3695 LoadsAndStores.emplace_back(VD);
3699 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3700 patchReplacementInstruction(I, Repl);
3701 I->replaceAllUsesWith(Repl);
3704 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3705 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
3706 ++NumGVNBlocksDeleted;
3708 // Delete the instructions backwards, as it has a reduced likelihood of having
3709 // to update as many def-use and use-def chains. Start after the terminator.
3710 auto StartPoint = BB->rbegin();
3711 ++StartPoint;
3712 // Note that we explicitly recalculate BB->rend() on each iteration,
3713 // as it may change when we remove the first instruction.
3714 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3715 Instruction &Inst = *I++;
3716 if (!Inst.use_empty())
3717 Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
3718 if (isa<LandingPadInst>(Inst))
3719 continue;
3721 Inst.eraseFromParent();
3722 ++NumGVNInstrDeleted;
3724 // Now insert something that simplifycfg will turn into an unreachable.
3725 Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3726 new StoreInst(UndefValue::get(Int8Ty),
3727 Constant::getNullValue(Int8Ty->getPointerTo()),
3728 BB->getTerminator());
3731 void NewGVN::markInstructionForDeletion(Instruction *I) {
3732 LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3733 InstructionsToErase.insert(I);
3736 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3737 LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3738 patchAndReplaceAllUsesWith(I, V);
3739 // We save the actual erasing to avoid invalidating memory
3740 // dependencies until we are done with everything.
3741 markInstructionForDeletion(I);
3744 namespace {
3746 // This is a stack that contains both the value and dfs info of where
3747 // that value is valid.
3748 class ValueDFSStack {
3749 public:
3750 Value *back() const { return ValueStack.back(); }
3751 std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3753 void push_back(Value *V, int DFSIn, int DFSOut) {
3754 ValueStack.emplace_back(V);
3755 DFSStack.emplace_back(DFSIn, DFSOut);
3758 bool empty() const { return DFSStack.empty(); }
3760 bool isInScope(int DFSIn, int DFSOut) const {
3761 if (empty())
3762 return false;
3763 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3766 void popUntilDFSScope(int DFSIn, int DFSOut) {
3768 // These two should always be in sync at this point.
3769 assert(ValueStack.size() == DFSStack.size() &&
3770 "Mismatch between ValueStack and DFSStack");
3771 while (
3772 !DFSStack.empty() &&
3773 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3774 DFSStack.pop_back();
3775 ValueStack.pop_back();
3779 private:
3780 SmallVector<Value *, 8> ValueStack;
3781 SmallVector<std::pair<int, int>, 8> DFSStack;
3784 } // end anonymous namespace
3786 // Given an expression, get the congruence class for it.
3787 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3788 if (auto *VE = dyn_cast<VariableExpression>(E))
3789 return ValueToClass.lookup(VE->getVariableValue());
3790 else if (isa<DeadExpression>(E))
3791 return TOPClass;
3792 return ExpressionToClass.lookup(E);
3795 // Given a value and a basic block we are trying to see if it is available in,
3796 // see if the value has a leader available in that block.
3797 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3798 const Instruction *OrigInst,
3799 const BasicBlock *BB) const {
3800 // It would already be constant if we could make it constant
3801 if (auto *CE = dyn_cast<ConstantExpression>(E))
3802 return CE->getConstantValue();
3803 if (auto *VE = dyn_cast<VariableExpression>(E)) {
3804 auto *V = VE->getVariableValue();
3805 if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3806 return VE->getVariableValue();
3809 auto *CC = getClassForExpression(E);
3810 if (!CC)
3811 return nullptr;
3812 if (alwaysAvailable(CC->getLeader()))
3813 return CC->getLeader();
3815 for (auto Member : *CC) {
3816 auto *MemberInst = dyn_cast<Instruction>(Member);
3817 if (MemberInst == OrigInst)
3818 continue;
3819 // Anything that isn't an instruction is always available.
3820 if (!MemberInst)
3821 return Member;
3822 if (DT->dominates(getBlockForValue(MemberInst), BB))
3823 return Member;
3825 return nullptr;
3828 bool NewGVN::eliminateInstructions(Function &F) {
3829 // This is a non-standard eliminator. The normal way to eliminate is
3830 // to walk the dominator tree in order, keeping track of available
3831 // values, and eliminating them. However, this is mildly
3832 // pointless. It requires doing lookups on every instruction,
3833 // regardless of whether we will ever eliminate it. For
3834 // instructions part of most singleton congruence classes, we know we
3835 // will never eliminate them.
3837 // Instead, this eliminator looks at the congruence classes directly, sorts
3838 // them into a DFS ordering of the dominator tree, and then we just
3839 // perform elimination straight on the sets by walking the congruence
3840 // class member uses in order, and eliminate the ones dominated by the
3841 // last member. This is worst case O(E log E) where E = number of
3842 // instructions in a single congruence class. In theory, this is all
3843 // instructions. In practice, it is much faster, as most instructions are
3844 // either in singleton congruence classes or can't possibly be eliminated
3845 // anyway (if there are no overlapping DFS ranges in class).
3846 // When we find something not dominated, it becomes the new leader
3847 // for elimination purposes.
3848 // TODO: If we wanted to be faster, We could remove any members with no
3849 // overlapping ranges while sorting, as we will never eliminate anything
3850 // with those members, as they don't dominate anything else in our set.
3852 bool AnythingReplaced = false;
3854 // Since we are going to walk the domtree anyway, and we can't guarantee the
3855 // DFS numbers are updated, we compute some ourselves.
3856 DT->updateDFSNumbers();
3858 // Go through all of our phi nodes, and kill the arguments associated with
3859 // unreachable edges.
3860 auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3861 for (auto &Operand : PHI->incoming_values())
3862 if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3863 LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3864 << " for block "
3865 << getBlockName(PHI->getIncomingBlock(Operand))
3866 << " with undef due to it being unreachable\n");
3867 Operand.set(UndefValue::get(PHI->getType()));
3870 // Replace unreachable phi arguments.
3871 // At this point, RevisitOnReachabilityChange only contains:
3873 // 1. PHIs
3874 // 2. Temporaries that will convert to PHIs
3875 // 3. Operations that are affected by an unreachable edge but do not fit into
3876 // 1 or 2 (rare).
3877 // So it is a slight overshoot of what we want. We could make it exact by
3878 // using two SparseBitVectors per block.
3879 DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3880 for (auto &KV : ReachableEdges)
3881 ReachablePredCount[KV.getEnd()]++;
3882 for (auto &BBPair : RevisitOnReachabilityChange) {
3883 for (auto InstNum : BBPair.second) {
3884 auto *Inst = InstrFromDFSNum(InstNum);
3885 auto *PHI = dyn_cast<PHINode>(Inst);
3886 PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3887 if (!PHI)
3888 continue;
3889 auto *BB = BBPair.first;
3890 if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3891 ReplaceUnreachablePHIArgs(PHI, BB);
3895 // Map to store the use counts
3896 DenseMap<const Value *, unsigned int> UseCounts;
3897 for (auto *CC : reverse(CongruenceClasses)) {
3898 LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3899 << "\n");
3900 // Track the equivalent store info so we can decide whether to try
3901 // dead store elimination.
3902 SmallVector<ValueDFS, 8> PossibleDeadStores;
3903 SmallPtrSet<Instruction *, 8> ProbablyDead;
3904 if (CC->isDead() || CC->empty())
3905 continue;
3906 // Everything still in the TOP class is unreachable or dead.
3907 if (CC == TOPClass) {
3908 for (auto M : *CC) {
3909 auto *VTE = ValueToExpression.lookup(M);
3910 if (VTE && isa<DeadExpression>(VTE))
3911 markInstructionForDeletion(cast<Instruction>(M));
3912 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3913 InstructionsToErase.count(cast<Instruction>(M))) &&
3914 "Everything in TOP should be unreachable or dead at this "
3915 "point");
3917 continue;
3920 assert(CC->getLeader() && "We should have had a leader");
3921 // If this is a leader that is always available, and it's a
3922 // constant or has no equivalences, just replace everything with
3923 // it. We then update the congruence class with whatever members
3924 // are left.
3925 Value *Leader =
3926 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3927 if (alwaysAvailable(Leader)) {
3928 CongruenceClass::MemberSet MembersLeft;
3929 for (auto M : *CC) {
3930 Value *Member = M;
3931 // Void things have no uses we can replace.
3932 if (Member == Leader || !isa<Instruction>(Member) ||
3933 Member->getType()->isVoidTy()) {
3934 MembersLeft.insert(Member);
3935 continue;
3937 LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3938 << *Member << "\n");
3939 auto *I = cast<Instruction>(Member);
3940 assert(Leader != I && "About to accidentally remove our leader");
3941 replaceInstruction(I, Leader);
3942 AnythingReplaced = true;
3944 CC->swap(MembersLeft);
3945 } else {
3946 // If this is a singleton, we can skip it.
3947 if (CC->size() != 1 || RealToTemp.count(Leader)) {
3948 // This is a stack because equality replacement/etc may place
3949 // constants in the middle of the member list, and we want to use
3950 // those constant values in preference to the current leader, over
3951 // the scope of those constants.
3952 ValueDFSStack EliminationStack;
3954 // Convert the members to DFS ordered sets and then merge them.
3955 SmallVector<ValueDFS, 8> DFSOrderedSet;
3956 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3958 // Sort the whole thing.
3959 llvm::sort(DFSOrderedSet);
3960 for (auto &VD : DFSOrderedSet) {
3961 int MemberDFSIn = VD.DFSIn;
3962 int MemberDFSOut = VD.DFSOut;
3963 Value *Def = VD.Def.getPointer();
3964 bool FromStore = VD.Def.getInt();
3965 Use *U = VD.U;
3966 // We ignore void things because we can't get a value from them.
3967 if (Def && Def->getType()->isVoidTy())
3968 continue;
3969 auto *DefInst = dyn_cast_or_null<Instruction>(Def);
3970 if (DefInst && AllTempInstructions.count(DefInst)) {
3971 auto *PN = cast<PHINode>(DefInst);
3973 // If this is a value phi and that's the expression we used, insert
3974 // it into the program
3975 // remove from temp instruction list.
3976 AllTempInstructions.erase(PN);
3977 auto *DefBlock = getBlockForValue(Def);
3978 LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3979 << " into block "
3980 << getBlockName(getBlockForValue(Def)) << "\n");
3981 PN->insertBefore(&DefBlock->front());
3982 Def = PN;
3983 NumGVNPHIOfOpsEliminations++;
3986 if (EliminationStack.empty()) {
3987 LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
3988 } else {
3989 LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3990 << EliminationStack.dfs_back().first << ","
3991 << EliminationStack.dfs_back().second << ")\n");
3994 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
3995 << MemberDFSOut << ")\n");
3996 // First, we see if we are out of scope or empty. If so,
3997 // and there equivalences, we try to replace the top of
3998 // stack with equivalences (if it's on the stack, it must
3999 // not have been eliminated yet).
4000 // Then we synchronize to our current scope, by
4001 // popping until we are back within a DFS scope that
4002 // dominates the current member.
4003 // Then, what happens depends on a few factors
4004 // If the stack is now empty, we need to push
4005 // If we have a constant or a local equivalence we want to
4006 // start using, we also push.
4007 // Otherwise, we walk along, processing members who are
4008 // dominated by this scope, and eliminate them.
4009 bool ShouldPush = Def && EliminationStack.empty();
4010 bool OutOfScope =
4011 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
4013 if (OutOfScope || ShouldPush) {
4014 // Sync to our current scope.
4015 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4016 bool ShouldPush = Def && EliminationStack.empty();
4017 if (ShouldPush) {
4018 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
4022 // Skip the Def's, we only want to eliminate on their uses. But mark
4023 // dominated defs as dead.
4024 if (Def) {
4025 // For anything in this case, what and how we value number
4026 // guarantees that any side-effets that would have occurred (ie
4027 // throwing, etc) can be proven to either still occur (because it's
4028 // dominated by something that has the same side-effects), or never
4029 // occur. Otherwise, we would not have been able to prove it value
4030 // equivalent to something else. For these things, we can just mark
4031 // it all dead. Note that this is different from the "ProbablyDead"
4032 // set, which may not be dominated by anything, and thus, are only
4033 // easy to prove dead if they are also side-effect free. Note that
4034 // because stores are put in terms of the stored value, we skip
4035 // stored values here. If the stored value is really dead, it will
4036 // still be marked for deletion when we process it in its own class.
4037 if (!EliminationStack.empty() && Def != EliminationStack.back() &&
4038 isa<Instruction>(Def) && !FromStore)
4039 markInstructionForDeletion(cast<Instruction>(Def));
4040 continue;
4042 // At this point, we know it is a Use we are trying to possibly
4043 // replace.
4045 assert(isa<Instruction>(U->get()) &&
4046 "Current def should have been an instruction");
4047 assert(isa<Instruction>(U->getUser()) &&
4048 "Current user should have been an instruction");
4050 // If the thing we are replacing into is already marked to be dead,
4051 // this use is dead. Note that this is true regardless of whether
4052 // we have anything dominating the use or not. We do this here
4053 // because we are already walking all the uses anyway.
4054 Instruction *InstUse = cast<Instruction>(U->getUser());
4055 if (InstructionsToErase.count(InstUse)) {
4056 auto &UseCount = UseCounts[U->get()];
4057 if (--UseCount == 0) {
4058 ProbablyDead.insert(cast<Instruction>(U->get()));
4062 // If we get to this point, and the stack is empty we must have a use
4063 // with nothing we can use to eliminate this use, so just skip it.
4064 if (EliminationStack.empty())
4065 continue;
4067 Value *DominatingLeader = EliminationStack.back();
4069 auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4070 bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4071 if (isSSACopy)
4072 DominatingLeader = II->getOperand(0);
4074 // Don't replace our existing users with ourselves.
4075 if (U->get() == DominatingLeader)
4076 continue;
4077 LLVM_DEBUG(dbgs()
4078 << "Found replacement " << *DominatingLeader << " for "
4079 << *U->get() << " in " << *(U->getUser()) << "\n");
4081 // If we replaced something in an instruction, handle the patching of
4082 // metadata. Skip this if we are replacing predicateinfo with its
4083 // original operand, as we already know we can just drop it.
4084 auto *ReplacedInst = cast<Instruction>(U->get());
4085 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4086 if (!PI || DominatingLeader != PI->OriginalOp)
4087 patchReplacementInstruction(ReplacedInst, DominatingLeader);
4088 U->set(DominatingLeader);
4089 // This is now a use of the dominating leader, which means if the
4090 // dominating leader was dead, it's now live!
4091 auto &LeaderUseCount = UseCounts[DominatingLeader];
4092 // It's about to be alive again.
4093 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4094 ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4095 // For copy instructions, we use their operand as a leader,
4096 // which means we remove a user of the copy and it may become dead.
4097 if (isSSACopy) {
4098 unsigned &IIUseCount = UseCounts[II];
4099 if (--IIUseCount == 0)
4100 ProbablyDead.insert(II);
4102 ++LeaderUseCount;
4103 AnythingReplaced = true;
4108 // At this point, anything still in the ProbablyDead set is actually dead if
4109 // would be trivially dead.
4110 for (auto *I : ProbablyDead)
4111 if (wouldInstructionBeTriviallyDead(I))
4112 markInstructionForDeletion(I);
4114 // Cleanup the congruence class.
4115 CongruenceClass::MemberSet MembersLeft;
4116 for (auto *Member : *CC)
4117 if (!isa<Instruction>(Member) ||
4118 !InstructionsToErase.count(cast<Instruction>(Member)))
4119 MembersLeft.insert(Member);
4120 CC->swap(MembersLeft);
4122 // If we have possible dead stores to look at, try to eliminate them.
4123 if (CC->getStoreCount() > 0) {
4124 convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4125 llvm::sort(PossibleDeadStores);
4126 ValueDFSStack EliminationStack;
4127 for (auto &VD : PossibleDeadStores) {
4128 int MemberDFSIn = VD.DFSIn;
4129 int MemberDFSOut = VD.DFSOut;
4130 Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4131 if (EliminationStack.empty() ||
4132 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4133 // Sync to our current scope.
4134 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4135 if (EliminationStack.empty()) {
4136 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4137 continue;
4140 // We already did load elimination, so nothing to do here.
4141 if (isa<LoadInst>(Member))
4142 continue;
4143 assert(!EliminationStack.empty());
4144 Instruction *Leader = cast<Instruction>(EliminationStack.back());
4145 (void)Leader;
4146 assert(DT->dominates(Leader->getParent(), Member->getParent()));
4147 // Member is dominater by Leader, and thus dead
4148 LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4149 << " that is dominated by " << *Leader << "\n");
4150 markInstructionForDeletion(Member);
4151 CC->erase(Member);
4152 ++NumGVNDeadStores;
4156 return AnythingReplaced;
4159 // This function provides global ranking of operations so that we can place them
4160 // in a canonical order. Note that rank alone is not necessarily enough for a
4161 // complete ordering, as constants all have the same rank. However, generally,
4162 // we will simplify an operation with all constants so that it doesn't matter
4163 // what order they appear in.
4164 unsigned int NewGVN::getRank(const Value *V) const {
4165 // Prefer constants to undef to anything else
4166 // Undef is a constant, have to check it first.
4167 // Prefer smaller constants to constantexprs
4168 if (isa<ConstantExpr>(V))
4169 return 2;
4170 if (isa<UndefValue>(V))
4171 return 1;
4172 if (isa<Constant>(V))
4173 return 0;
4174 else if (auto *A = dyn_cast<Argument>(V))
4175 return 3 + A->getArgNo();
4177 // Need to shift the instruction DFS by number of arguments + 3 to account for
4178 // the constant and argument ranking above.
4179 unsigned Result = InstrToDFSNum(V);
4180 if (Result > 0)
4181 return 4 + NumFuncArgs + Result;
4182 // Unreachable or something else, just return a really large number.
4183 return ~0;
4186 // This is a function that says whether two commutative operations should
4187 // have their order swapped when canonicalizing.
4188 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4189 // Because we only care about a total ordering, and don't rewrite expressions
4190 // in this order, we order by rank, which will give a strict weak ordering to
4191 // everything but constants, and then we order by pointer address.
4192 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4195 namespace {
4197 class NewGVNLegacyPass : public FunctionPass {
4198 public:
4199 // Pass identification, replacement for typeid.
4200 static char ID;
4202 NewGVNLegacyPass() : FunctionPass(ID) {
4203 initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4206 bool runOnFunction(Function &F) override;
4208 private:
4209 void getAnalysisUsage(AnalysisUsage &AU) const override {
4210 AU.addRequired<AssumptionCacheTracker>();
4211 AU.addRequired<DominatorTreeWrapperPass>();
4212 AU.addRequired<TargetLibraryInfoWrapperPass>();
4213 AU.addRequired<MemorySSAWrapperPass>();
4214 AU.addRequired<AAResultsWrapperPass>();
4215 AU.addPreserved<DominatorTreeWrapperPass>();
4216 AU.addPreserved<GlobalsAAWrapperPass>();
4220 } // end anonymous namespace
4222 bool NewGVNLegacyPass::runOnFunction(Function &F) {
4223 if (skipFunction(F))
4224 return false;
4225 return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4226 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
4227 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
4228 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
4229 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
4230 F.getParent()->getDataLayout())
4231 .runGVN();
4234 char NewGVNLegacyPass::ID = 0;
4236 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
4237 false, false)
4238 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4239 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
4240 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4241 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4242 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4243 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4244 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
4245 false)
4247 // createGVNPass - The public interface to this file.
4248 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4250 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4251 // Apparently the order in which we get these results matter for
4252 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4253 // the same order here, just in case.
4254 auto &AC = AM.getResult<AssumptionAnalysis>(F);
4255 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4256 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4257 auto &AA = AM.getResult<AAManager>(F);
4258 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4259 bool Changed =
4260 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
4261 .runGVN();
4262 if (!Changed)
4263 return PreservedAnalyses::all();
4264 PreservedAnalyses PA;
4265 PA.preserve<DominatorTreeAnalysis>();
4266 PA.preserve<GlobalsAA>();
4267 return PA;