1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass reassociates commutative expressions in an order that is designed
10 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 // For example: 4 + (x + 5) -> x + (4 + 5)
14 // In the implementation of this algorithm, constants are assigned rank = 0,
15 // function arguments are rank = 1, and other values are assigned ranks
16 // corresponding to the reverse post order traversal of current function
17 // (starting at 2), which effectively gives values in deep loops higher rank
18 // than values not in loops.
20 //===----------------------------------------------------------------------===//
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/IR/PatternMatch.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/IR/ValueHandle.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
64 using namespace reassociate
;
65 using namespace PatternMatch
;
67 #define DEBUG_TYPE "reassociate"
69 STATISTIC(NumChanged
, "Number of insts reassociated");
70 STATISTIC(NumAnnihil
, "Number of expr tree annihilated");
71 STATISTIC(NumFactor
, "Number of multiplies factored");
74 /// Print out the expression identified in the Ops list.
75 static void PrintOps(Instruction
*I
, const SmallVectorImpl
<ValueEntry
> &Ops
) {
76 Module
*M
= I
->getModule();
77 dbgs() << Instruction::getOpcodeName(I
->getOpcode()) << " "
78 << *Ops
[0].Op
->getType() << '\t';
79 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
81 Ops
[i
].Op
->printAsOperand(dbgs(), false, M
);
82 dbgs() << ", #" << Ops
[i
].Rank
<< "] ";
87 /// Utility class representing a non-constant Xor-operand. We classify
88 /// non-constant Xor-Operands into two categories:
89 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
91 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
93 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
94 /// operand as "E | 0"
95 class llvm::reassociate::XorOpnd
{
99 bool isInvalid() const { return SymbolicPart
== nullptr; }
100 bool isOrExpr() const { return isOr
; }
101 Value
*getValue() const { return OrigVal
; }
102 Value
*getSymbolicPart() const { return SymbolicPart
; }
103 unsigned getSymbolicRank() const { return SymbolicRank
; }
104 const APInt
&getConstPart() const { return ConstPart
; }
106 void Invalidate() { SymbolicPart
= OrigVal
= nullptr; }
107 void setSymbolicRank(unsigned R
) { SymbolicRank
= R
; }
113 unsigned SymbolicRank
;
117 XorOpnd::XorOpnd(Value
*V
) {
118 assert(!isa
<ConstantInt
>(V
) && "No ConstantInt");
120 Instruction
*I
= dyn_cast
<Instruction
>(V
);
123 if (I
&& (I
->getOpcode() == Instruction::Or
||
124 I
->getOpcode() == Instruction::And
)) {
125 Value
*V0
= I
->getOperand(0);
126 Value
*V1
= I
->getOperand(1);
128 if (match(V0
, m_APInt(C
)))
131 if (match(V1
, m_APInt(C
))) {
134 isOr
= (I
->getOpcode() == Instruction::Or
);
139 // view the operand as "V | 0"
141 ConstPart
= APInt::getNullValue(V
->getType()->getScalarSizeInBits());
145 /// Return true if V is an instruction of the specified opcode and if it
146 /// only has one use.
147 static BinaryOperator
*isReassociableOp(Value
*V
, unsigned Opcode
) {
148 auto *I
= dyn_cast
<Instruction
>(V
);
149 if (I
&& I
->hasOneUse() && I
->getOpcode() == Opcode
)
150 if (!isa
<FPMathOperator
>(I
) || I
->isFast())
151 return cast
<BinaryOperator
>(I
);
155 static BinaryOperator
*isReassociableOp(Value
*V
, unsigned Opcode1
,
157 auto *I
= dyn_cast
<Instruction
>(V
);
158 if (I
&& I
->hasOneUse() &&
159 (I
->getOpcode() == Opcode1
|| I
->getOpcode() == Opcode2
))
160 if (!isa
<FPMathOperator
>(I
) || I
->isFast())
161 return cast
<BinaryOperator
>(I
);
165 void ReassociatePass::BuildRankMap(Function
&F
,
166 ReversePostOrderTraversal
<Function
*> &RPOT
) {
169 // Assign distinct ranks to function arguments.
170 for (auto &Arg
: F
.args()) {
171 ValueRankMap
[&Arg
] = ++Rank
;
172 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg
.getName() << "] = " << Rank
176 // Traverse basic blocks in ReversePostOrder
177 for (BasicBlock
*BB
: RPOT
) {
178 unsigned BBRank
= RankMap
[BB
] = ++Rank
<< 16;
180 // Walk the basic block, adding precomputed ranks for any instructions that
181 // we cannot move. This ensures that the ranks for these instructions are
182 // all different in the block.
183 for (Instruction
&I
: *BB
)
184 if (mayBeMemoryDependent(I
))
185 ValueRankMap
[&I
] = ++BBRank
;
189 unsigned ReassociatePass::getRank(Value
*V
) {
190 Instruction
*I
= dyn_cast
<Instruction
>(V
);
192 if (isa
<Argument
>(V
)) return ValueRankMap
[V
]; // Function argument.
193 return 0; // Otherwise it's a global or constant, rank 0.
196 if (unsigned Rank
= ValueRankMap
[I
])
197 return Rank
; // Rank already known?
199 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
200 // we can reassociate expressions for code motion! Since we do not recurse
201 // for PHI nodes, we cannot have infinite recursion here, because there
202 // cannot be loops in the value graph that do not go through PHI nodes.
203 unsigned Rank
= 0, MaxRank
= RankMap
[I
->getParent()];
204 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
&& Rank
!= MaxRank
; ++i
)
205 Rank
= std::max(Rank
, getRank(I
->getOperand(i
)));
207 // If this is a 'not' or 'neg' instruction, do not count it for rank. This
208 // assures us that X and ~X will have the same rank.
209 if (!match(I
, m_Not(m_Value())) && !match(I
, m_Neg(m_Value())) &&
210 !match(I
, m_FNeg(m_Value())))
213 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V
->getName() << "] = " << Rank
216 return ValueRankMap
[I
] = Rank
;
219 // Canonicalize constants to RHS. Otherwise, sort the operands by rank.
220 void ReassociatePass::canonicalizeOperands(Instruction
*I
) {
221 assert(isa
<BinaryOperator
>(I
) && "Expected binary operator.");
222 assert(I
->isCommutative() && "Expected commutative operator.");
224 Value
*LHS
= I
->getOperand(0);
225 Value
*RHS
= I
->getOperand(1);
226 if (LHS
== RHS
|| isa
<Constant
>(RHS
))
228 if (isa
<Constant
>(LHS
) || getRank(RHS
) < getRank(LHS
))
229 cast
<BinaryOperator
>(I
)->swapOperands();
232 static BinaryOperator
*CreateAdd(Value
*S1
, Value
*S2
, const Twine
&Name
,
233 Instruction
*InsertBefore
, Value
*FlagsOp
) {
234 if (S1
->getType()->isIntOrIntVectorTy())
235 return BinaryOperator::CreateAdd(S1
, S2
, Name
, InsertBefore
);
237 BinaryOperator
*Res
=
238 BinaryOperator::CreateFAdd(S1
, S2
, Name
, InsertBefore
);
239 Res
->setFastMathFlags(cast
<FPMathOperator
>(FlagsOp
)->getFastMathFlags());
244 static BinaryOperator
*CreateMul(Value
*S1
, Value
*S2
, const Twine
&Name
,
245 Instruction
*InsertBefore
, Value
*FlagsOp
) {
246 if (S1
->getType()->isIntOrIntVectorTy())
247 return BinaryOperator::CreateMul(S1
, S2
, Name
, InsertBefore
);
249 BinaryOperator
*Res
=
250 BinaryOperator::CreateFMul(S1
, S2
, Name
, InsertBefore
);
251 Res
->setFastMathFlags(cast
<FPMathOperator
>(FlagsOp
)->getFastMathFlags());
256 static BinaryOperator
*CreateNeg(Value
*S1
, const Twine
&Name
,
257 Instruction
*InsertBefore
, Value
*FlagsOp
) {
258 if (S1
->getType()->isIntOrIntVectorTy())
259 return BinaryOperator::CreateNeg(S1
, Name
, InsertBefore
);
261 BinaryOperator
*Res
= BinaryOperator::CreateFNeg(S1
, Name
, InsertBefore
);
262 Res
->setFastMathFlags(cast
<FPMathOperator
>(FlagsOp
)->getFastMathFlags());
267 /// Replace 0-X with X*-1.
268 static BinaryOperator
*LowerNegateToMultiply(Instruction
*Neg
) {
269 Type
*Ty
= Neg
->getType();
270 Constant
*NegOne
= Ty
->isIntOrIntVectorTy() ?
271 ConstantInt::getAllOnesValue(Ty
) : ConstantFP::get(Ty
, -1.0);
273 BinaryOperator
*Res
= CreateMul(Neg
->getOperand(1), NegOne
, "", Neg
, Neg
);
274 Neg
->setOperand(1, Constant::getNullValue(Ty
)); // Drop use of op.
276 Neg
->replaceAllUsesWith(Res
);
277 Res
->setDebugLoc(Neg
->getDebugLoc());
281 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
282 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
283 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
284 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
285 /// even x in Bitwidth-bit arithmetic.
286 static unsigned CarmichaelShift(unsigned Bitwidth
) {
292 /// Add the extra weight 'RHS' to the existing weight 'LHS',
293 /// reducing the combined weight using any special properties of the operation.
294 /// The existing weight LHS represents the computation X op X op ... op X where
295 /// X occurs LHS times. The combined weight represents X op X op ... op X with
296 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined
297 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
298 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
299 static void IncorporateWeight(APInt
&LHS
, const APInt
&RHS
, unsigned Opcode
) {
300 // If we were working with infinite precision arithmetic then the combined
301 // weight would be LHS + RHS. But we are using finite precision arithmetic,
302 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
303 // for nilpotent operations and addition, but not for idempotent operations
304 // and multiplication), so it is important to correctly reduce the combined
305 // weight back into range if wrapping would be wrong.
307 // If RHS is zero then the weight didn't change.
308 if (RHS
.isMinValue())
310 // If LHS is zero then the combined weight is RHS.
311 if (LHS
.isMinValue()) {
315 // From this point on we know that neither LHS nor RHS is zero.
317 if (Instruction::isIdempotent(Opcode
)) {
318 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
319 // weight of 1. Keeping weights at zero or one also means that wrapping is
321 assert(LHS
== 1 && RHS
== 1 && "Weights not reduced!");
322 return; // Return a weight of 1.
324 if (Instruction::isNilpotent(Opcode
)) {
325 // Nilpotent means X op X === 0, so reduce weights modulo 2.
326 assert(LHS
== 1 && RHS
== 1 && "Weights not reduced!");
327 LHS
= 0; // 1 + 1 === 0 modulo 2.
330 if (Opcode
== Instruction::Add
|| Opcode
== Instruction::FAdd
) {
331 // TODO: Reduce the weight by exploiting nsw/nuw?
336 assert((Opcode
== Instruction::Mul
|| Opcode
== Instruction::FMul
) &&
337 "Unknown associative operation!");
338 unsigned Bitwidth
= LHS
.getBitWidth();
339 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
340 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
341 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
342 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
343 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
344 // which by a happy accident means that they can always be represented using
346 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
347 // the Carmichael number).
349 /// CM - The value of Carmichael's lambda function.
350 APInt CM
= APInt::getOneBitSet(Bitwidth
, CarmichaelShift(Bitwidth
));
351 // Any weight W >= Threshold can be replaced with W - CM.
352 APInt Threshold
= CM
+ Bitwidth
;
353 assert(LHS
.ult(Threshold
) && RHS
.ult(Threshold
) && "Weights not reduced!");
354 // For Bitwidth 4 or more the following sum does not overflow.
356 while (LHS
.uge(Threshold
))
359 // To avoid problems with overflow do everything the same as above but using
361 unsigned CM
= 1U << CarmichaelShift(Bitwidth
);
362 unsigned Threshold
= CM
+ Bitwidth
;
363 assert(LHS
.getZExtValue() < Threshold
&& RHS
.getZExtValue() < Threshold
&&
364 "Weights not reduced!");
365 unsigned Total
= LHS
.getZExtValue() + RHS
.getZExtValue();
366 while (Total
>= Threshold
)
372 using RepeatedValue
= std::pair
<Value
*, APInt
>;
374 /// Given an associative binary expression, return the leaf
375 /// nodes in Ops along with their weights (how many times the leaf occurs). The
376 /// original expression is the same as
377 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
379 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
383 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
385 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
387 /// This routine may modify the function, in which case it returns 'true'. The
388 /// changes it makes may well be destructive, changing the value computed by 'I'
389 /// to something completely different. Thus if the routine returns 'true' then
390 /// you MUST either replace I with a new expression computed from the Ops array,
391 /// or use RewriteExprTree to put the values back in.
393 /// A leaf node is either not a binary operation of the same kind as the root
394 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
395 /// opcode), or is the same kind of binary operator but has a use which either
396 /// does not belong to the expression, or does belong to the expression but is
397 /// a leaf node. Every leaf node has at least one use that is a non-leaf node
398 /// of the expression, while for non-leaf nodes (except for the root 'I') every
399 /// use is a non-leaf node of the expression.
402 /// expression graph node names
412 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
413 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
415 /// The expression is maximal: if some instruction is a binary operator of the
416 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
417 /// then the instruction also belongs to the expression, is not a leaf node of
418 /// it, and its operands also belong to the expression (but may be leaf nodes).
420 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
421 /// order to ensure that every non-root node in the expression has *exactly one*
422 /// use by a non-leaf node of the expression. This destruction means that the
423 /// caller MUST either replace 'I' with a new expression or use something like
424 /// RewriteExprTree to put the values back in if the routine indicates that it
425 /// made a change by returning 'true'.
427 /// In the above example either the right operand of A or the left operand of B
428 /// will be replaced by undef. If it is B's operand then this gives:
432 /// + + | A, B - operand of B replaced with undef
438 /// Note that such undef operands can only be reached by passing through 'I'.
439 /// For example, if you visit operands recursively starting from a leaf node
440 /// then you will never see such an undef operand unless you get back to 'I',
441 /// which requires passing through a phi node.
443 /// Note that this routine may also mutate binary operators of the wrong type
444 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
445 /// of the expression) if it can turn them into binary operators of the right
446 /// type and thus make the expression bigger.
447 static bool LinearizeExprTree(BinaryOperator
*I
,
448 SmallVectorImpl
<RepeatedValue
> &Ops
) {
449 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I
<< '\n');
450 unsigned Bitwidth
= I
->getType()->getScalarType()->getPrimitiveSizeInBits();
451 unsigned Opcode
= I
->getOpcode();
452 assert(I
->isAssociative() && I
->isCommutative() &&
453 "Expected an associative and commutative operation!");
455 // Visit all operands of the expression, keeping track of their weight (the
456 // number of paths from the expression root to the operand, or if you like
457 // the number of times that operand occurs in the linearized expression).
458 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
459 // while A has weight two.
461 // Worklist of non-leaf nodes (their operands are in the expression too) along
462 // with their weights, representing a certain number of paths to the operator.
463 // If an operator occurs in the worklist multiple times then we found multiple
464 // ways to get to it.
465 SmallVector
<std::pair
<BinaryOperator
*, APInt
>, 8> Worklist
; // (Op, Weight)
466 Worklist
.push_back(std::make_pair(I
, APInt(Bitwidth
, 1)));
467 bool Changed
= false;
469 // Leaves of the expression are values that either aren't the right kind of
470 // operation (eg: a constant, or a multiply in an add tree), or are, but have
471 // some uses that are not inside the expression. For example, in I = X + X,
472 // X = A + B, the value X has two uses (by I) that are in the expression. If
473 // X has any other uses, for example in a return instruction, then we consider
474 // X to be a leaf, and won't analyze it further. When we first visit a value,
475 // if it has more than one use then at first we conservatively consider it to
476 // be a leaf. Later, as the expression is explored, we may discover some more
477 // uses of the value from inside the expression. If all uses turn out to be
478 // from within the expression (and the value is a binary operator of the right
479 // kind) then the value is no longer considered to be a leaf, and its operands
482 // Leaves - Keeps track of the set of putative leaves as well as the number of
483 // paths to each leaf seen so far.
484 using LeafMap
= DenseMap
<Value
*, APInt
>;
485 LeafMap Leaves
; // Leaf -> Total weight so far.
486 SmallVector
<Value
*, 8> LeafOrder
; // Ensure deterministic leaf output order.
489 SmallPtrSet
<Value
*, 8> Visited
; // For sanity checking the iteration scheme.
491 while (!Worklist
.empty()) {
492 std::pair
<BinaryOperator
*, APInt
> P
= Worklist
.pop_back_val();
493 I
= P
.first
; // We examine the operands of this binary operator.
495 for (unsigned OpIdx
= 0; OpIdx
< 2; ++OpIdx
) { // Visit operands.
496 Value
*Op
= I
->getOperand(OpIdx
);
497 APInt Weight
= P
.second
; // Number of paths to this operand.
498 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op
<< " (" << Weight
<< ")\n");
499 assert(!Op
->use_empty() && "No uses, so how did we get to it?!");
501 // If this is a binary operation of the right kind with only one use then
502 // add its operands to the expression.
503 if (BinaryOperator
*BO
= isReassociableOp(Op
, Opcode
)) {
504 assert(Visited
.insert(Op
).second
&& "Not first visit!");
505 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op
<< " (" << Weight
<< ")\n");
506 Worklist
.push_back(std::make_pair(BO
, Weight
));
510 // Appears to be a leaf. Is the operand already in the set of leaves?
511 LeafMap::iterator It
= Leaves
.find(Op
);
512 if (It
== Leaves
.end()) {
513 // Not in the leaf map. Must be the first time we saw this operand.
514 assert(Visited
.insert(Op
).second
&& "Not first visit!");
515 if (!Op
->hasOneUse()) {
516 // This value has uses not accounted for by the expression, so it is
517 // not safe to modify. Mark it as being a leaf.
519 << "ADD USES LEAF: " << *Op
<< " (" << Weight
<< ")\n");
520 LeafOrder
.push_back(Op
);
524 // No uses outside the expression, try morphing it.
526 // Already in the leaf map.
527 assert(It
!= Leaves
.end() && Visited
.count(Op
) &&
528 "In leaf map but not visited!");
530 // Update the number of paths to the leaf.
531 IncorporateWeight(It
->second
, Weight
, Opcode
);
533 #if 0 // TODO: Re-enable once PR13021 is fixed.
534 // The leaf already has one use from inside the expression. As we want
535 // exactly one such use, drop this new use of the leaf.
536 assert(!Op
->hasOneUse() && "Only one use, but we got here twice!");
537 I
->setOperand(OpIdx
, UndefValue::get(I
->getType()));
540 // If the leaf is a binary operation of the right kind and we now see
541 // that its multiple original uses were in fact all by nodes belonging
542 // to the expression, then no longer consider it to be a leaf and add
543 // its operands to the expression.
544 if (BinaryOperator
*BO
= isReassociableOp(Op
, Opcode
)) {
545 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op
<< " (" << It
->second
<< ")\n");
546 Worklist
.push_back(std::make_pair(BO
, It
->second
));
552 // If we still have uses that are not accounted for by the expression
553 // then it is not safe to modify the value.
554 if (!Op
->hasOneUse())
557 // No uses outside the expression, try morphing it.
559 Leaves
.erase(It
); // Since the value may be morphed below.
562 // At this point we have a value which, first of all, is not a binary
563 // expression of the right kind, and secondly, is only used inside the
564 // expression. This means that it can safely be modified. See if we
565 // can usefully morph it into an expression of the right kind.
566 assert((!isa
<Instruction
>(Op
) ||
567 cast
<Instruction
>(Op
)->getOpcode() != Opcode
568 || (isa
<FPMathOperator
>(Op
) &&
569 !cast
<Instruction
>(Op
)->isFast())) &&
570 "Should have been handled above!");
571 assert(Op
->hasOneUse() && "Has uses outside the expression tree!");
573 // If this is a multiply expression, turn any internal negations into
574 // multiplies by -1 so they can be reassociated.
575 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Op
))
576 if ((Opcode
== Instruction::Mul
&& match(BO
, m_Neg(m_Value()))) ||
577 (Opcode
== Instruction::FMul
&& match(BO
, m_FNeg(m_Value())))) {
579 << "MORPH LEAF: " << *Op
<< " (" << Weight
<< ") TO ");
580 BO
= LowerNegateToMultiply(BO
);
581 LLVM_DEBUG(dbgs() << *BO
<< '\n');
582 Worklist
.push_back(std::make_pair(BO
, Weight
));
587 // Failed to morph into an expression of the right type. This really is
589 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op
<< " (" << Weight
<< ")\n");
590 assert(!isReassociableOp(Op
, Opcode
) && "Value was morphed?");
591 LeafOrder
.push_back(Op
);
596 // The leaves, repeated according to their weights, represent the linearized
597 // form of the expression.
598 for (unsigned i
= 0, e
= LeafOrder
.size(); i
!= e
; ++i
) {
599 Value
*V
= LeafOrder
[i
];
600 LeafMap::iterator It
= Leaves
.find(V
);
601 if (It
== Leaves
.end())
602 // Node initially thought to be a leaf wasn't.
604 assert(!isReassociableOp(V
, Opcode
) && "Shouldn't be a leaf!");
605 APInt Weight
= It
->second
;
606 if (Weight
.isMinValue())
607 // Leaf already output or weight reduction eliminated it.
609 // Ensure the leaf is only output once.
611 Ops
.push_back(std::make_pair(V
, Weight
));
614 // For nilpotent operations or addition there may be no operands, for example
615 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
616 // in both cases the weight reduces to 0 causing the value to be skipped.
618 Constant
*Identity
= ConstantExpr::getBinOpIdentity(Opcode
, I
->getType());
619 assert(Identity
&& "Associative operation without identity!");
620 Ops
.emplace_back(Identity
, APInt(Bitwidth
, 1));
626 /// Now that the operands for this expression tree are
627 /// linearized and optimized, emit them in-order.
628 void ReassociatePass::RewriteExprTree(BinaryOperator
*I
,
629 SmallVectorImpl
<ValueEntry
> &Ops
) {
630 assert(Ops
.size() > 1 && "Single values should be used directly!");
632 // Since our optimizations should never increase the number of operations, the
633 // new expression can usually be written reusing the existing binary operators
634 // from the original expression tree, without creating any new instructions,
635 // though the rewritten expression may have a completely different topology.
636 // We take care to not change anything if the new expression will be the same
637 // as the original. If more than trivial changes (like commuting operands)
638 // were made then we are obliged to clear out any optional subclass data like
641 /// NodesToRewrite - Nodes from the original expression available for writing
642 /// the new expression into.
643 SmallVector
<BinaryOperator
*, 8> NodesToRewrite
;
644 unsigned Opcode
= I
->getOpcode();
645 BinaryOperator
*Op
= I
;
647 /// NotRewritable - The operands being written will be the leaves of the new
648 /// expression and must not be used as inner nodes (via NodesToRewrite) by
649 /// mistake. Inner nodes are always reassociable, and usually leaves are not
650 /// (if they were they would have been incorporated into the expression and so
651 /// would not be leaves), so most of the time there is no danger of this. But
652 /// in rare cases a leaf may become reassociable if an optimization kills uses
653 /// of it, or it may momentarily become reassociable during rewriting (below)
654 /// due it being removed as an operand of one of its uses. Ensure that misuse
655 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
656 /// leaves and refusing to reuse any of them as inner nodes.
657 SmallPtrSet
<Value
*, 8> NotRewritable
;
658 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
659 NotRewritable
.insert(Ops
[i
].Op
);
661 // ExpressionChanged - Non-null if the rewritten expression differs from the
662 // original in some non-trivial way, requiring the clearing of optional flags.
663 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
664 BinaryOperator
*ExpressionChanged
= nullptr;
665 for (unsigned i
= 0; ; ++i
) {
666 // The last operation (which comes earliest in the IR) is special as both
667 // operands will come from Ops, rather than just one with the other being
669 if (i
+2 == Ops
.size()) {
670 Value
*NewLHS
= Ops
[i
].Op
;
671 Value
*NewRHS
= Ops
[i
+1].Op
;
672 Value
*OldLHS
= Op
->getOperand(0);
673 Value
*OldRHS
= Op
->getOperand(1);
675 if (NewLHS
== OldLHS
&& NewRHS
== OldRHS
)
676 // Nothing changed, leave it alone.
679 if (NewLHS
== OldRHS
&& NewRHS
== OldLHS
) {
680 // The order of the operands was reversed. Swap them.
681 LLVM_DEBUG(dbgs() << "RA: " << *Op
<< '\n');
683 LLVM_DEBUG(dbgs() << "TO: " << *Op
<< '\n');
689 // The new operation differs non-trivially from the original. Overwrite
690 // the old operands with the new ones.
691 LLVM_DEBUG(dbgs() << "RA: " << *Op
<< '\n');
692 if (NewLHS
!= OldLHS
) {
693 BinaryOperator
*BO
= isReassociableOp(OldLHS
, Opcode
);
694 if (BO
&& !NotRewritable
.count(BO
))
695 NodesToRewrite
.push_back(BO
);
696 Op
->setOperand(0, NewLHS
);
698 if (NewRHS
!= OldRHS
) {
699 BinaryOperator
*BO
= isReassociableOp(OldRHS
, Opcode
);
700 if (BO
&& !NotRewritable
.count(BO
))
701 NodesToRewrite
.push_back(BO
);
702 Op
->setOperand(1, NewRHS
);
704 LLVM_DEBUG(dbgs() << "TO: " << *Op
<< '\n');
706 ExpressionChanged
= Op
;
713 // Not the last operation. The left-hand side will be a sub-expression
714 // while the right-hand side will be the current element of Ops.
715 Value
*NewRHS
= Ops
[i
].Op
;
716 if (NewRHS
!= Op
->getOperand(1)) {
717 LLVM_DEBUG(dbgs() << "RA: " << *Op
<< '\n');
718 if (NewRHS
== Op
->getOperand(0)) {
719 // The new right-hand side was already present as the left operand. If
720 // we are lucky then swapping the operands will sort out both of them.
723 // Overwrite with the new right-hand side.
724 BinaryOperator
*BO
= isReassociableOp(Op
->getOperand(1), Opcode
);
725 if (BO
&& !NotRewritable
.count(BO
))
726 NodesToRewrite
.push_back(BO
);
727 Op
->setOperand(1, NewRHS
);
728 ExpressionChanged
= Op
;
730 LLVM_DEBUG(dbgs() << "TO: " << *Op
<< '\n');
735 // Now deal with the left-hand side. If this is already an operation node
736 // from the original expression then just rewrite the rest of the expression
738 BinaryOperator
*BO
= isReassociableOp(Op
->getOperand(0), Opcode
);
739 if (BO
&& !NotRewritable
.count(BO
)) {
744 // Otherwise, grab a spare node from the original expression and use that as
745 // the left-hand side. If there are no nodes left then the optimizers made
746 // an expression with more nodes than the original! This usually means that
747 // they did something stupid but it might mean that the problem was just too
748 // hard (finding the mimimal number of multiplications needed to realize a
749 // multiplication expression is NP-complete). Whatever the reason, smart or
750 // stupid, create a new node if there are none left.
751 BinaryOperator
*NewOp
;
752 if (NodesToRewrite
.empty()) {
753 Constant
*Undef
= UndefValue::get(I
->getType());
754 NewOp
= BinaryOperator::Create(Instruction::BinaryOps(Opcode
),
755 Undef
, Undef
, "", I
);
756 if (NewOp
->getType()->isFPOrFPVectorTy())
757 NewOp
->setFastMathFlags(I
->getFastMathFlags());
759 NewOp
= NodesToRewrite
.pop_back_val();
762 LLVM_DEBUG(dbgs() << "RA: " << *Op
<< '\n');
763 Op
->setOperand(0, NewOp
);
764 LLVM_DEBUG(dbgs() << "TO: " << *Op
<< '\n');
765 ExpressionChanged
= Op
;
771 // If the expression changed non-trivially then clear out all subclass data
772 // starting from the operator specified in ExpressionChanged, and compactify
773 // the operators to just before the expression root to guarantee that the
774 // expression tree is dominated by all of Ops.
775 if (ExpressionChanged
)
777 // Preserve FastMathFlags.
778 if (isa
<FPMathOperator
>(I
)) {
779 FastMathFlags Flags
= I
->getFastMathFlags();
780 ExpressionChanged
->clearSubclassOptionalData();
781 ExpressionChanged
->setFastMathFlags(Flags
);
783 ExpressionChanged
->clearSubclassOptionalData();
785 if (ExpressionChanged
== I
)
788 // Discard any debug info related to the expressions that has changed (we
789 // can leave debug infor related to the root, since the result of the
790 // expression tree should be the same even after reassociation).
791 replaceDbgUsesWithUndef(ExpressionChanged
);
793 ExpressionChanged
->moveBefore(I
);
794 ExpressionChanged
= cast
<BinaryOperator
>(*ExpressionChanged
->user_begin());
797 // Throw away any left over nodes from the original expression.
798 for (unsigned i
= 0, e
= NodesToRewrite
.size(); i
!= e
; ++i
)
799 RedoInsts
.insert(NodesToRewrite
[i
]);
802 /// Insert instructions before the instruction pointed to by BI,
803 /// that computes the negative version of the value specified. The negative
804 /// version of the value is returned, and BI is left pointing at the instruction
805 /// that should be processed next by the reassociation pass.
806 /// Also add intermediate instructions to the redo list that are modified while
807 /// pushing the negates through adds. These will be revisited to see if
808 /// additional opportunities have been exposed.
809 static Value
*NegateValue(Value
*V
, Instruction
*BI
,
810 ReassociatePass::OrderedSet
&ToRedo
) {
811 if (auto *C
= dyn_cast
<Constant
>(V
))
812 return C
->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C
) :
813 ConstantExpr::getNeg(C
);
815 // We are trying to expose opportunity for reassociation. One of the things
816 // that we want to do to achieve this is to push a negation as deep into an
817 // expression chain as possible, to expose the add instructions. In practice,
818 // this means that we turn this:
819 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
820 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
821 // the constants. We assume that instcombine will clean up the mess later if
822 // we introduce tons of unnecessary negation instructions.
824 if (BinaryOperator
*I
=
825 isReassociableOp(V
, Instruction::Add
, Instruction::FAdd
)) {
826 // Push the negates through the add.
827 I
->setOperand(0, NegateValue(I
->getOperand(0), BI
, ToRedo
));
828 I
->setOperand(1, NegateValue(I
->getOperand(1), BI
, ToRedo
));
829 if (I
->getOpcode() == Instruction::Add
) {
830 I
->setHasNoUnsignedWrap(false);
831 I
->setHasNoSignedWrap(false);
834 // We must move the add instruction here, because the neg instructions do
835 // not dominate the old add instruction in general. By moving it, we are
836 // assured that the neg instructions we just inserted dominate the
837 // instruction we are about to insert after them.
840 I
->setName(I
->getName()+".neg");
842 // Add the intermediate negates to the redo list as processing them later
843 // could expose more reassociating opportunities.
848 // Okay, we need to materialize a negated version of V with an instruction.
849 // Scan the use lists of V to see if we have one already.
850 for (User
*U
: V
->users()) {
851 if (!match(U
, m_Neg(m_Value())) && !match(U
, m_FNeg(m_Value())))
854 // We found one! Now we have to make sure that the definition dominates
855 // this use. We do this by moving it to the entry block (if it is a
856 // non-instruction value) or right after the definition. These negates will
857 // be zapped by reassociate later, so we don't need much finesse here.
858 BinaryOperator
*TheNeg
= cast
<BinaryOperator
>(U
);
860 // Verify that the negate is in this function, V might be a constant expr.
861 if (TheNeg
->getParent()->getParent() != BI
->getParent()->getParent())
864 BasicBlock::iterator InsertPt
;
865 if (Instruction
*InstInput
= dyn_cast
<Instruction
>(V
)) {
866 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(InstInput
)) {
867 InsertPt
= II
->getNormalDest()->begin();
869 InsertPt
= ++InstInput
->getIterator();
871 while (isa
<PHINode
>(InsertPt
)) ++InsertPt
;
873 InsertPt
= TheNeg
->getParent()->getParent()->getEntryBlock().begin();
875 TheNeg
->moveBefore(&*InsertPt
);
876 if (TheNeg
->getOpcode() == Instruction::Sub
) {
877 TheNeg
->setHasNoUnsignedWrap(false);
878 TheNeg
->setHasNoSignedWrap(false);
880 TheNeg
->andIRFlags(BI
);
882 ToRedo
.insert(TheNeg
);
886 // Insert a 'neg' instruction that subtracts the value from zero to get the
888 BinaryOperator
*NewNeg
= CreateNeg(V
, V
->getName() + ".neg", BI
, BI
);
889 ToRedo
.insert(NewNeg
);
893 /// Return true if we should break up this subtract of X-Y into (X + -Y).
894 static bool ShouldBreakUpSubtract(Instruction
*Sub
) {
895 // If this is a negation, we can't split it up!
896 if (match(Sub
, m_Neg(m_Value())) || match(Sub
, m_FNeg(m_Value())))
899 // Don't breakup X - undef.
900 if (isa
<UndefValue
>(Sub
->getOperand(1)))
903 // Don't bother to break this up unless either the LHS is an associable add or
904 // subtract or if this is only used by one.
905 Value
*V0
= Sub
->getOperand(0);
906 if (isReassociableOp(V0
, Instruction::Add
, Instruction::FAdd
) ||
907 isReassociableOp(V0
, Instruction::Sub
, Instruction::FSub
))
909 Value
*V1
= Sub
->getOperand(1);
910 if (isReassociableOp(V1
, Instruction::Add
, Instruction::FAdd
) ||
911 isReassociableOp(V1
, Instruction::Sub
, Instruction::FSub
))
913 Value
*VB
= Sub
->user_back();
914 if (Sub
->hasOneUse() &&
915 (isReassociableOp(VB
, Instruction::Add
, Instruction::FAdd
) ||
916 isReassociableOp(VB
, Instruction::Sub
, Instruction::FSub
)))
922 /// If we have (X-Y), and if either X is an add, or if this is only used by an
923 /// add, transform this into (X+(0-Y)) to promote better reassociation.
924 static BinaryOperator
*BreakUpSubtract(Instruction
*Sub
,
925 ReassociatePass::OrderedSet
&ToRedo
) {
926 // Convert a subtract into an add and a neg instruction. This allows sub
927 // instructions to be commuted with other add instructions.
929 // Calculate the negative value of Operand 1 of the sub instruction,
930 // and set it as the RHS of the add instruction we just made.
931 Value
*NegVal
= NegateValue(Sub
->getOperand(1), Sub
, ToRedo
);
932 BinaryOperator
*New
= CreateAdd(Sub
->getOperand(0), NegVal
, "", Sub
, Sub
);
933 Sub
->setOperand(0, Constant::getNullValue(Sub
->getType())); // Drop use of op.
934 Sub
->setOperand(1, Constant::getNullValue(Sub
->getType())); // Drop use of op.
937 // Everyone now refers to the add instruction.
938 Sub
->replaceAllUsesWith(New
);
939 New
->setDebugLoc(Sub
->getDebugLoc());
941 LLVM_DEBUG(dbgs() << "Negated: " << *New
<< '\n');
945 /// If this is a shift of a reassociable multiply or is used by one, change
946 /// this into a multiply by a constant to assist with further reassociation.
947 static BinaryOperator
*ConvertShiftToMul(Instruction
*Shl
) {
948 Constant
*MulCst
= ConstantInt::get(Shl
->getType(), 1);
949 MulCst
= ConstantExpr::getShl(MulCst
, cast
<Constant
>(Shl
->getOperand(1)));
951 BinaryOperator
*Mul
=
952 BinaryOperator::CreateMul(Shl
->getOperand(0), MulCst
, "", Shl
);
953 Shl
->setOperand(0, UndefValue::get(Shl
->getType())); // Drop use of op.
956 // Everyone now refers to the mul instruction.
957 Shl
->replaceAllUsesWith(Mul
);
958 Mul
->setDebugLoc(Shl
->getDebugLoc());
960 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
961 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
963 bool NSW
= cast
<BinaryOperator
>(Shl
)->hasNoSignedWrap();
964 bool NUW
= cast
<BinaryOperator
>(Shl
)->hasNoUnsignedWrap();
966 Mul
->setHasNoSignedWrap(true);
967 Mul
->setHasNoUnsignedWrap(NUW
);
971 /// Scan backwards and forwards among values with the same rank as element i
972 /// to see if X exists. If X does not exist, return i. This is useful when
973 /// scanning for 'x' when we see '-x' because they both get the same rank.
974 static unsigned FindInOperandList(const SmallVectorImpl
<ValueEntry
> &Ops
,
975 unsigned i
, Value
*X
) {
976 unsigned XRank
= Ops
[i
].Rank
;
977 unsigned e
= Ops
.size();
978 for (unsigned j
= i
+1; j
!= e
&& Ops
[j
].Rank
== XRank
; ++j
) {
981 if (Instruction
*I1
= dyn_cast
<Instruction
>(Ops
[j
].Op
))
982 if (Instruction
*I2
= dyn_cast
<Instruction
>(X
))
983 if (I1
->isIdenticalTo(I2
))
987 for (unsigned j
= i
-1; j
!= ~0U && Ops
[j
].Rank
== XRank
; --j
) {
990 if (Instruction
*I1
= dyn_cast
<Instruction
>(Ops
[j
].Op
))
991 if (Instruction
*I2
= dyn_cast
<Instruction
>(X
))
992 if (I1
->isIdenticalTo(I2
))
998 /// Emit a tree of add instructions, summing Ops together
999 /// and returning the result. Insert the tree before I.
1000 static Value
*EmitAddTreeOfValues(Instruction
*I
,
1001 SmallVectorImpl
<WeakTrackingVH
> &Ops
) {
1002 if (Ops
.size() == 1) return Ops
.back();
1004 Value
*V1
= Ops
.back();
1006 Value
*V2
= EmitAddTreeOfValues(I
, Ops
);
1007 return CreateAdd(V2
, V1
, "reass.add", I
, I
);
1010 /// If V is an expression tree that is a multiplication sequence,
1011 /// and if this sequence contains a multiply by Factor,
1012 /// remove Factor from the tree and return the new tree.
1013 Value
*ReassociatePass::RemoveFactorFromExpression(Value
*V
, Value
*Factor
) {
1014 BinaryOperator
*BO
= isReassociableOp(V
, Instruction::Mul
, Instruction::FMul
);
1018 SmallVector
<RepeatedValue
, 8> Tree
;
1019 MadeChange
|= LinearizeExprTree(BO
, Tree
);
1020 SmallVector
<ValueEntry
, 8> Factors
;
1021 Factors
.reserve(Tree
.size());
1022 for (unsigned i
= 0, e
= Tree
.size(); i
!= e
; ++i
) {
1023 RepeatedValue E
= Tree
[i
];
1024 Factors
.append(E
.second
.getZExtValue(),
1025 ValueEntry(getRank(E
.first
), E
.first
));
1028 bool FoundFactor
= false;
1029 bool NeedsNegate
= false;
1030 for (unsigned i
= 0, e
= Factors
.size(); i
!= e
; ++i
) {
1031 if (Factors
[i
].Op
== Factor
) {
1033 Factors
.erase(Factors
.begin()+i
);
1037 // If this is a negative version of this factor, remove it.
1038 if (ConstantInt
*FC1
= dyn_cast
<ConstantInt
>(Factor
)) {
1039 if (ConstantInt
*FC2
= dyn_cast
<ConstantInt
>(Factors
[i
].Op
))
1040 if (FC1
->getValue() == -FC2
->getValue()) {
1041 FoundFactor
= NeedsNegate
= true;
1042 Factors
.erase(Factors
.begin()+i
);
1045 } else if (ConstantFP
*FC1
= dyn_cast
<ConstantFP
>(Factor
)) {
1046 if (ConstantFP
*FC2
= dyn_cast
<ConstantFP
>(Factors
[i
].Op
)) {
1047 const APFloat
&F1
= FC1
->getValueAPF();
1048 APFloat
F2(FC2
->getValueAPF());
1050 if (F1
.compare(F2
) == APFloat::cmpEqual
) {
1051 FoundFactor
= NeedsNegate
= true;
1052 Factors
.erase(Factors
.begin() + i
);
1060 // Make sure to restore the operands to the expression tree.
1061 RewriteExprTree(BO
, Factors
);
1065 BasicBlock::iterator InsertPt
= ++BO
->getIterator();
1067 // If this was just a single multiply, remove the multiply and return the only
1068 // remaining operand.
1069 if (Factors
.size() == 1) {
1070 RedoInsts
.insert(BO
);
1073 RewriteExprTree(BO
, Factors
);
1078 V
= CreateNeg(V
, "neg", &*InsertPt
, BO
);
1083 /// If V is a single-use multiply, recursively add its operands as factors,
1084 /// otherwise add V to the list of factors.
1086 /// Ops is the top-level list of add operands we're trying to factor.
1087 static void FindSingleUseMultiplyFactors(Value
*V
,
1088 SmallVectorImpl
<Value
*> &Factors
) {
1089 BinaryOperator
*BO
= isReassociableOp(V
, Instruction::Mul
, Instruction::FMul
);
1091 Factors
.push_back(V
);
1095 // Otherwise, add the LHS and RHS to the list of factors.
1096 FindSingleUseMultiplyFactors(BO
->getOperand(1), Factors
);
1097 FindSingleUseMultiplyFactors(BO
->getOperand(0), Factors
);
1100 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1101 /// This optimizes based on identities. If it can be reduced to a single Value,
1102 /// it is returned, otherwise the Ops list is mutated as necessary.
1103 static Value
*OptimizeAndOrXor(unsigned Opcode
,
1104 SmallVectorImpl
<ValueEntry
> &Ops
) {
1105 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1106 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1107 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1108 // First, check for X and ~X in the operand list.
1109 assert(i
< Ops
.size());
1111 if (match(Ops
[i
].Op
, m_Not(m_Value(X
)))) { // Cannot occur for ^.
1112 unsigned FoundX
= FindInOperandList(Ops
, i
, X
);
1114 if (Opcode
== Instruction::And
) // ...&X&~X = 0
1115 return Constant::getNullValue(X
->getType());
1117 if (Opcode
== Instruction::Or
) // ...|X|~X = -1
1118 return Constant::getAllOnesValue(X
->getType());
1122 // Next, check for duplicate pairs of values, which we assume are next to
1123 // each other, due to our sorting criteria.
1124 assert(i
< Ops
.size());
1125 if (i
+1 != Ops
.size() && Ops
[i
+1].Op
== Ops
[i
].Op
) {
1126 if (Opcode
== Instruction::And
|| Opcode
== Instruction::Or
) {
1127 // Drop duplicate values for And and Or.
1128 Ops
.erase(Ops
.begin()+i
);
1134 // Drop pairs of values for Xor.
1135 assert(Opcode
== Instruction::Xor
);
1137 return Constant::getNullValue(Ops
[0].Op
->getType());
1140 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+2);
1148 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1149 /// instruction with the given two operands, and return the resulting
1150 /// instruction. There are two special cases: 1) if the constant operand is 0,
1151 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1153 static Value
*createAndInstr(Instruction
*InsertBefore
, Value
*Opnd
,
1154 const APInt
&ConstOpnd
) {
1155 if (ConstOpnd
.isNullValue())
1158 if (ConstOpnd
.isAllOnesValue())
1161 Instruction
*I
= BinaryOperator::CreateAnd(
1162 Opnd
, ConstantInt::get(Opnd
->getType(), ConstOpnd
), "and.ra",
1164 I
->setDebugLoc(InsertBefore
->getDebugLoc());
1168 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1169 // into "R ^ C", where C would be 0, and R is a symbolic value.
1171 // If it was successful, true is returned, and the "R" and "C" is returned
1172 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1173 // and both "Res" and "ConstOpnd" remain unchanged.
1174 bool ReassociatePass::CombineXorOpnd(Instruction
*I
, XorOpnd
*Opnd1
,
1175 APInt
&ConstOpnd
, Value
*&Res
) {
1176 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1177 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1178 // = (x & ~c1) ^ (c1 ^ c2)
1179 // It is useful only when c1 == c2.
1180 if (!Opnd1
->isOrExpr() || Opnd1
->getConstPart().isNullValue())
1183 if (!Opnd1
->getValue()->hasOneUse())
1186 const APInt
&C1
= Opnd1
->getConstPart();
1187 if (C1
!= ConstOpnd
)
1190 Value
*X
= Opnd1
->getSymbolicPart();
1191 Res
= createAndInstr(I
, X
, ~C1
);
1192 // ConstOpnd was C2, now C1 ^ C2.
1195 if (Instruction
*T
= dyn_cast
<Instruction
>(Opnd1
->getValue()))
1196 RedoInsts
.insert(T
);
1200 // Helper function of OptimizeXor(). It tries to simplify
1201 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1204 // If it was successful, true is returned, and the "R" and "C" is returned
1205 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1206 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1207 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1208 bool ReassociatePass::CombineXorOpnd(Instruction
*I
, XorOpnd
*Opnd1
,
1209 XorOpnd
*Opnd2
, APInt
&ConstOpnd
,
1211 Value
*X
= Opnd1
->getSymbolicPart();
1212 if (X
!= Opnd2
->getSymbolicPart())
1215 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1216 int DeadInstNum
= 1;
1217 if (Opnd1
->getValue()->hasOneUse())
1219 if (Opnd2
->getValue()->hasOneUse())
1223 // (x | c1) ^ (x & c2)
1224 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1225 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1226 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1228 if (Opnd1
->isOrExpr() != Opnd2
->isOrExpr()) {
1229 if (Opnd2
->isOrExpr())
1230 std::swap(Opnd1
, Opnd2
);
1232 const APInt
&C1
= Opnd1
->getConstPart();
1233 const APInt
&C2
= Opnd2
->getConstPart();
1234 APInt
C3((~C1
) ^ C2
);
1236 // Do not increase code size!
1237 if (!C3
.isNullValue() && !C3
.isAllOnesValue()) {
1238 int NewInstNum
= ConstOpnd
.getBoolValue() ? 1 : 2;
1239 if (NewInstNum
> DeadInstNum
)
1243 Res
= createAndInstr(I
, X
, C3
);
1245 } else if (Opnd1
->isOrExpr()) {
1246 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1248 const APInt
&C1
= Opnd1
->getConstPart();
1249 const APInt
&C2
= Opnd2
->getConstPart();
1252 // Do not increase code size
1253 if (!C3
.isNullValue() && !C3
.isAllOnesValue()) {
1254 int NewInstNum
= ConstOpnd
.getBoolValue() ? 1 : 2;
1255 if (NewInstNum
> DeadInstNum
)
1259 Res
= createAndInstr(I
, X
, C3
);
1262 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1264 const APInt
&C1
= Opnd1
->getConstPart();
1265 const APInt
&C2
= Opnd2
->getConstPart();
1267 Res
= createAndInstr(I
, X
, C3
);
1270 // Put the original operands in the Redo list; hope they will be deleted
1272 if (Instruction
*T
= dyn_cast
<Instruction
>(Opnd1
->getValue()))
1273 RedoInsts
.insert(T
);
1274 if (Instruction
*T
= dyn_cast
<Instruction
>(Opnd2
->getValue()))
1275 RedoInsts
.insert(T
);
1280 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1281 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1283 Value
*ReassociatePass::OptimizeXor(Instruction
*I
,
1284 SmallVectorImpl
<ValueEntry
> &Ops
) {
1285 if (Value
*V
= OptimizeAndOrXor(Instruction::Xor
, Ops
))
1288 if (Ops
.size() == 1)
1291 SmallVector
<XorOpnd
, 8> Opnds
;
1292 SmallVector
<XorOpnd
*, 8> OpndPtrs
;
1293 Type
*Ty
= Ops
[0].Op
->getType();
1294 APInt
ConstOpnd(Ty
->getScalarSizeInBits(), 0);
1296 // Step 1: Convert ValueEntry to XorOpnd
1297 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1298 Value
*V
= Ops
[i
].Op
;
1300 // TODO: Support non-splat vectors.
1301 if (match(V
, m_APInt(C
))) {
1305 O
.setSymbolicRank(getRank(O
.getSymbolicPart()));
1310 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1311 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1312 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1313 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1314 // when new elements are added to the vector.
1315 for (unsigned i
= 0, e
= Opnds
.size(); i
!= e
; ++i
)
1316 OpndPtrs
.push_back(&Opnds
[i
]);
1318 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1319 // the same symbolic value cluster together. For instance, the input operand
1320 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1321 // ("x | 123", "x & 789", "y & 456").
1323 // The purpose is twofold:
1324 // 1) Cluster together the operands sharing the same symbolic-value.
1325 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1326 // could potentially shorten crital path, and expose more loop-invariants.
1327 // Note that values' rank are basically defined in RPO order (FIXME).
1328 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1329 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1330 // "z" in the order of X-Y-Z is better than any other orders.
1331 std::stable_sort(OpndPtrs
.begin(), OpndPtrs
.end(),
1332 [](XorOpnd
*LHS
, XorOpnd
*RHS
) {
1333 return LHS
->getSymbolicRank() < RHS
->getSymbolicRank();
1336 // Step 3: Combine adjacent operands
1337 XorOpnd
*PrevOpnd
= nullptr;
1338 bool Changed
= false;
1339 for (unsigned i
= 0, e
= Opnds
.size(); i
< e
; i
++) {
1340 XorOpnd
*CurrOpnd
= OpndPtrs
[i
];
1341 // The combined value
1344 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1345 if (!ConstOpnd
.isNullValue() &&
1346 CombineXorOpnd(I
, CurrOpnd
, ConstOpnd
, CV
)) {
1349 *CurrOpnd
= XorOpnd(CV
);
1351 CurrOpnd
->Invalidate();
1356 if (!PrevOpnd
|| CurrOpnd
->getSymbolicPart() != PrevOpnd
->getSymbolicPart()) {
1357 PrevOpnd
= CurrOpnd
;
1361 // step 3.2: When previous and current operands share the same symbolic
1362 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1363 if (CombineXorOpnd(I
, CurrOpnd
, PrevOpnd
, ConstOpnd
, CV
)) {
1364 // Remove previous operand
1365 PrevOpnd
->Invalidate();
1367 *CurrOpnd
= XorOpnd(CV
);
1368 PrevOpnd
= CurrOpnd
;
1370 CurrOpnd
->Invalidate();
1377 // Step 4: Reassemble the Ops
1380 for (unsigned int i
= 0, e
= Opnds
.size(); i
< e
; i
++) {
1381 XorOpnd
&O
= Opnds
[i
];
1384 ValueEntry
VE(getRank(O
.getValue()), O
.getValue());
1387 if (!ConstOpnd
.isNullValue()) {
1388 Value
*C
= ConstantInt::get(Ty
, ConstOpnd
);
1389 ValueEntry
VE(getRank(C
), C
);
1392 unsigned Sz
= Ops
.size();
1394 return Ops
.back().Op
;
1396 assert(ConstOpnd
.isNullValue());
1397 return ConstantInt::get(Ty
, ConstOpnd
);
1404 /// Optimize a series of operands to an 'add' instruction. This
1405 /// optimizes based on identities. If it can be reduced to a single Value, it
1406 /// is returned, otherwise the Ops list is mutated as necessary.
1407 Value
*ReassociatePass::OptimizeAdd(Instruction
*I
,
1408 SmallVectorImpl
<ValueEntry
> &Ops
) {
1409 // Scan the operand lists looking for X and -X pairs. If we find any, we
1410 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1412 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1414 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1415 Value
*TheOp
= Ops
[i
].Op
;
1416 // Check to see if we've seen this operand before. If so, we factor all
1417 // instances of the operand together. Due to our sorting criteria, we know
1418 // that these need to be next to each other in the vector.
1419 if (i
+1 != Ops
.size() && Ops
[i
+1].Op
== TheOp
) {
1420 // Rescan the list, remove all instances of this operand from the expr.
1421 unsigned NumFound
= 0;
1423 Ops
.erase(Ops
.begin()+i
);
1425 } while (i
!= Ops
.size() && Ops
[i
].Op
== TheOp
);
1427 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound
<< "]: " << *TheOp
1431 // Insert a new multiply.
1432 Type
*Ty
= TheOp
->getType();
1433 Constant
*C
= Ty
->isIntOrIntVectorTy() ?
1434 ConstantInt::get(Ty
, NumFound
) : ConstantFP::get(Ty
, NumFound
);
1435 Instruction
*Mul
= CreateMul(TheOp
, C
, "factor", I
, I
);
1437 // Now that we have inserted a multiply, optimize it. This allows us to
1438 // handle cases that require multiple factoring steps, such as this:
1439 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1440 RedoInsts
.insert(Mul
);
1442 // If every add operand was a duplicate, return the multiply.
1446 // Otherwise, we had some input that didn't have the dupe, such as
1447 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1448 // things being added by this operation.
1449 Ops
.insert(Ops
.begin(), ValueEntry(getRank(Mul
), Mul
));
1456 // Check for X and -X or X and ~X in the operand list.
1458 if (!match(TheOp
, m_Neg(m_Value(X
))) && !match(TheOp
, m_Not(m_Value(X
))) &&
1459 !match(TheOp
, m_FNeg(m_Value(X
))))
1462 unsigned FoundX
= FindInOperandList(Ops
, i
, X
);
1466 // Remove X and -X from the operand list.
1467 if (Ops
.size() == 2 &&
1468 (match(TheOp
, m_Neg(m_Value())) || match(TheOp
, m_FNeg(m_Value()))))
1469 return Constant::getNullValue(X
->getType());
1471 // Remove X and ~X from the operand list.
1472 if (Ops
.size() == 2 && match(TheOp
, m_Not(m_Value())))
1473 return Constant::getAllOnesValue(X
->getType());
1475 Ops
.erase(Ops
.begin()+i
);
1479 --i
; // Need to back up an extra one.
1480 Ops
.erase(Ops
.begin()+FoundX
);
1482 --i
; // Revisit element.
1483 e
-= 2; // Removed two elements.
1485 // if X and ~X we append -1 to the operand list.
1486 if (match(TheOp
, m_Not(m_Value()))) {
1487 Value
*V
= Constant::getAllOnesValue(X
->getType());
1488 Ops
.insert(Ops
.end(), ValueEntry(getRank(V
), V
));
1493 // Scan the operand list, checking to see if there are any common factors
1494 // between operands. Consider something like A*A+A*B*C+D. We would like to
1495 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1496 // To efficiently find this, we count the number of times a factor occurs
1497 // for any ADD operands that are MULs.
1498 DenseMap
<Value
*, unsigned> FactorOccurrences
;
1500 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1501 // where they are actually the same multiply.
1502 unsigned MaxOcc
= 0;
1503 Value
*MaxOccVal
= nullptr;
1504 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1505 BinaryOperator
*BOp
=
1506 isReassociableOp(Ops
[i
].Op
, Instruction::Mul
, Instruction::FMul
);
1510 // Compute all of the factors of this added value.
1511 SmallVector
<Value
*, 8> Factors
;
1512 FindSingleUseMultiplyFactors(BOp
, Factors
);
1513 assert(Factors
.size() > 1 && "Bad linearize!");
1515 // Add one to FactorOccurrences for each unique factor in this op.
1516 SmallPtrSet
<Value
*, 8> Duplicates
;
1517 for (unsigned i
= 0, e
= Factors
.size(); i
!= e
; ++i
) {
1518 Value
*Factor
= Factors
[i
];
1519 if (!Duplicates
.insert(Factor
).second
)
1522 unsigned Occ
= ++FactorOccurrences
[Factor
];
1528 // If Factor is a negative constant, add the negated value as a factor
1529 // because we can percolate the negate out. Watch for minint, which
1530 // cannot be positivified.
1531 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Factor
)) {
1532 if (CI
->isNegative() && !CI
->isMinValue(true)) {
1533 Factor
= ConstantInt::get(CI
->getContext(), -CI
->getValue());
1534 if (!Duplicates
.insert(Factor
).second
)
1536 unsigned Occ
= ++FactorOccurrences
[Factor
];
1542 } else if (ConstantFP
*CF
= dyn_cast
<ConstantFP
>(Factor
)) {
1543 if (CF
->isNegative()) {
1544 APFloat
F(CF
->getValueAPF());
1546 Factor
= ConstantFP::get(CF
->getContext(), F
);
1547 if (!Duplicates
.insert(Factor
).second
)
1549 unsigned Occ
= ++FactorOccurrences
[Factor
];
1559 // If any factor occurred more than one time, we can pull it out.
1561 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc
<< "]: " << *MaxOccVal
1565 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1566 // this, we could otherwise run into situations where removing a factor
1567 // from an expression will drop a use of maxocc, and this can cause
1568 // RemoveFactorFromExpression on successive values to behave differently.
1569 Instruction
*DummyInst
=
1570 I
->getType()->isIntOrIntVectorTy()
1571 ? BinaryOperator::CreateAdd(MaxOccVal
, MaxOccVal
)
1572 : BinaryOperator::CreateFAdd(MaxOccVal
, MaxOccVal
);
1574 SmallVector
<WeakTrackingVH
, 4> NewMulOps
;
1575 for (unsigned i
= 0; i
!= Ops
.size(); ++i
) {
1576 // Only try to remove factors from expressions we're allowed to.
1577 BinaryOperator
*BOp
=
1578 isReassociableOp(Ops
[i
].Op
, Instruction::Mul
, Instruction::FMul
);
1582 if (Value
*V
= RemoveFactorFromExpression(Ops
[i
].Op
, MaxOccVal
)) {
1583 // The factorized operand may occur several times. Convert them all in
1585 for (unsigned j
= Ops
.size(); j
!= i
;) {
1587 if (Ops
[j
].Op
== Ops
[i
].Op
) {
1588 NewMulOps
.push_back(V
);
1589 Ops
.erase(Ops
.begin()+j
);
1596 // No need for extra uses anymore.
1597 DummyInst
->deleteValue();
1599 unsigned NumAddedValues
= NewMulOps
.size();
1600 Value
*V
= EmitAddTreeOfValues(I
, NewMulOps
);
1602 // Now that we have inserted the add tree, optimize it. This allows us to
1603 // handle cases that require multiple factoring steps, such as this:
1604 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
1605 assert(NumAddedValues
> 1 && "Each occurrence should contribute a value");
1606 (void)NumAddedValues
;
1607 if (Instruction
*VI
= dyn_cast
<Instruction
>(V
))
1608 RedoInsts
.insert(VI
);
1610 // Create the multiply.
1611 Instruction
*V2
= CreateMul(V
, MaxOccVal
, "reass.mul", I
, I
);
1613 // Rerun associate on the multiply in case the inner expression turned into
1614 // a multiply. We want to make sure that we keep things in canonical form.
1615 RedoInsts
.insert(V2
);
1617 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1618 // entire result expression is just the multiply "A*(B+C)".
1622 // Otherwise, we had some input that didn't have the factor, such as
1623 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
1624 // things being added by this operation.
1625 Ops
.insert(Ops
.begin(), ValueEntry(getRank(V2
), V2
));
1631 /// Build up a vector of value/power pairs factoring a product.
1633 /// Given a series of multiplication operands, build a vector of factors and
1634 /// the powers each is raised to when forming the final product. Sort them in
1635 /// the order of descending power.
1637 /// (x*x) -> [(x, 2)]
1638 /// ((x*x)*x) -> [(x, 3)]
1639 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1641 /// \returns Whether any factors have a power greater than one.
1642 static bool collectMultiplyFactors(SmallVectorImpl
<ValueEntry
> &Ops
,
1643 SmallVectorImpl
<Factor
> &Factors
) {
1644 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1645 // Compute the sum of powers of simplifiable factors.
1646 unsigned FactorPowerSum
= 0;
1647 for (unsigned Idx
= 1, Size
= Ops
.size(); Idx
< Size
; ++Idx
) {
1648 Value
*Op
= Ops
[Idx
-1].Op
;
1650 // Count the number of occurrences of this value.
1652 for (; Idx
< Size
&& Ops
[Idx
].Op
== Op
; ++Idx
)
1654 // Track for simplification all factors which occur 2 or more times.
1656 FactorPowerSum
+= Count
;
1659 // We can only simplify factors if the sum of the powers of our simplifiable
1660 // factors is 4 or higher. When that is the case, we will *always* have
1661 // a simplification. This is an important invariant to prevent cyclicly
1662 // trying to simplify already minimal formations.
1663 if (FactorPowerSum
< 4)
1666 // Now gather the simplifiable factors, removing them from Ops.
1668 for (unsigned Idx
= 1; Idx
< Ops
.size(); ++Idx
) {
1669 Value
*Op
= Ops
[Idx
-1].Op
;
1671 // Count the number of occurrences of this value.
1673 for (; Idx
< Ops
.size() && Ops
[Idx
].Op
== Op
; ++Idx
)
1677 // Move an even number of occurrences to Factors.
1680 FactorPowerSum
+= Count
;
1681 Factors
.push_back(Factor(Op
, Count
));
1682 Ops
.erase(Ops
.begin()+Idx
, Ops
.begin()+Idx
+Count
);
1685 // None of the adjustments above should have reduced the sum of factor powers
1686 // below our mininum of '4'.
1687 assert(FactorPowerSum
>= 4);
1689 std::stable_sort(Factors
.begin(), Factors
.end(),
1690 [](const Factor
&LHS
, const Factor
&RHS
) {
1691 return LHS
.Power
> RHS
.Power
;
1696 /// Build a tree of multiplies, computing the product of Ops.
1697 static Value
*buildMultiplyTree(IRBuilder
<> &Builder
,
1698 SmallVectorImpl
<Value
*> &Ops
) {
1699 if (Ops
.size() == 1)
1702 Value
*LHS
= Ops
.pop_back_val();
1704 if (LHS
->getType()->isIntOrIntVectorTy())
1705 LHS
= Builder
.CreateMul(LHS
, Ops
.pop_back_val());
1707 LHS
= Builder
.CreateFMul(LHS
, Ops
.pop_back_val());
1708 } while (!Ops
.empty());
1713 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1715 /// Given a vector of values raised to various powers, where no two values are
1716 /// equal and the powers are sorted in decreasing order, compute the minimal
1717 /// DAG of multiplies to compute the final product, and return that product
1720 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder
<> &Builder
,
1721 SmallVectorImpl
<Factor
> &Factors
) {
1722 assert(Factors
[0].Power
);
1723 SmallVector
<Value
*, 4> OuterProduct
;
1724 for (unsigned LastIdx
= 0, Idx
= 1, Size
= Factors
.size();
1725 Idx
< Size
&& Factors
[Idx
].Power
> 0; ++Idx
) {
1726 if (Factors
[Idx
].Power
!= Factors
[LastIdx
].Power
) {
1731 // We want to multiply across all the factors with the same power so that
1732 // we can raise them to that power as a single entity. Build a mini tree
1734 SmallVector
<Value
*, 4> InnerProduct
;
1735 InnerProduct
.push_back(Factors
[LastIdx
].Base
);
1737 InnerProduct
.push_back(Factors
[Idx
].Base
);
1739 } while (Idx
< Size
&& Factors
[Idx
].Power
== Factors
[LastIdx
].Power
);
1741 // Reset the base value of the first factor to the new expression tree.
1742 // We'll remove all the factors with the same power in a second pass.
1743 Value
*M
= Factors
[LastIdx
].Base
= buildMultiplyTree(Builder
, InnerProduct
);
1744 if (Instruction
*MI
= dyn_cast
<Instruction
>(M
))
1745 RedoInsts
.insert(MI
);
1749 // Unique factors with equal powers -- we've folded them into the first one's
1751 Factors
.erase(std::unique(Factors
.begin(), Factors
.end(),
1752 [](const Factor
&LHS
, const Factor
&RHS
) {
1753 return LHS
.Power
== RHS
.Power
;
1757 // Iteratively collect the base of each factor with an add power into the
1758 // outer product, and halve each power in preparation for squaring the
1760 for (unsigned Idx
= 0, Size
= Factors
.size(); Idx
!= Size
; ++Idx
) {
1761 if (Factors
[Idx
].Power
& 1)
1762 OuterProduct
.push_back(Factors
[Idx
].Base
);
1763 Factors
[Idx
].Power
>>= 1;
1765 if (Factors
[0].Power
) {
1766 Value
*SquareRoot
= buildMinimalMultiplyDAG(Builder
, Factors
);
1767 OuterProduct
.push_back(SquareRoot
);
1768 OuterProduct
.push_back(SquareRoot
);
1770 if (OuterProduct
.size() == 1)
1771 return OuterProduct
.front();
1773 Value
*V
= buildMultiplyTree(Builder
, OuterProduct
);
1777 Value
*ReassociatePass::OptimizeMul(BinaryOperator
*I
,
1778 SmallVectorImpl
<ValueEntry
> &Ops
) {
1779 // We can only optimize the multiplies when there is a chain of more than
1780 // three, such that a balanced tree might require fewer total multiplies.
1784 // Try to turn linear trees of multiplies without other uses of the
1785 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1787 SmallVector
<Factor
, 4> Factors
;
1788 if (!collectMultiplyFactors(Ops
, Factors
))
1789 return nullptr; // All distinct factors, so nothing left for us to do.
1791 IRBuilder
<> Builder(I
);
1792 // The reassociate transformation for FP operations is performed only
1793 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1794 // to the newly generated operations.
1795 if (auto FPI
= dyn_cast
<FPMathOperator
>(I
))
1796 Builder
.setFastMathFlags(FPI
->getFastMathFlags());
1798 Value
*V
= buildMinimalMultiplyDAG(Builder
, Factors
);
1802 ValueEntry NewEntry
= ValueEntry(getRank(V
), V
);
1803 Ops
.insert(std::lower_bound(Ops
.begin(), Ops
.end(), NewEntry
), NewEntry
);
1807 Value
*ReassociatePass::OptimizeExpression(BinaryOperator
*I
,
1808 SmallVectorImpl
<ValueEntry
> &Ops
) {
1809 // Now that we have the linearized expression tree, try to optimize it.
1810 // Start by folding any constants that we found.
1811 Constant
*Cst
= nullptr;
1812 unsigned Opcode
= I
->getOpcode();
1813 while (!Ops
.empty() && isa
<Constant
>(Ops
.back().Op
)) {
1814 Constant
*C
= cast
<Constant
>(Ops
.pop_back_val().Op
);
1815 Cst
= Cst
? ConstantExpr::get(Opcode
, C
, Cst
) : C
;
1817 // If there was nothing but constants then we are done.
1821 // Put the combined constant back at the end of the operand list, except if
1822 // there is no point. For example, an add of 0 gets dropped here, while a
1823 // multiplication by zero turns the whole expression into zero.
1824 if (Cst
&& Cst
!= ConstantExpr::getBinOpIdentity(Opcode
, I
->getType())) {
1825 if (Cst
== ConstantExpr::getBinOpAbsorber(Opcode
, I
->getType()))
1827 Ops
.push_back(ValueEntry(0, Cst
));
1830 if (Ops
.size() == 1) return Ops
[0].Op
;
1832 // Handle destructive annihilation due to identities between elements in the
1833 // argument list here.
1834 unsigned NumOps
= Ops
.size();
1837 case Instruction::And
:
1838 case Instruction::Or
:
1839 if (Value
*Result
= OptimizeAndOrXor(Opcode
, Ops
))
1843 case Instruction::Xor
:
1844 if (Value
*Result
= OptimizeXor(I
, Ops
))
1848 case Instruction::Add
:
1849 case Instruction::FAdd
:
1850 if (Value
*Result
= OptimizeAdd(I
, Ops
))
1854 case Instruction::Mul
:
1855 case Instruction::FMul
:
1856 if (Value
*Result
= OptimizeMul(I
, Ops
))
1861 if (Ops
.size() != NumOps
)
1862 return OptimizeExpression(I
, Ops
);
1866 // Remove dead instructions and if any operands are trivially dead add them to
1867 // Insts so they will be removed as well.
1868 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction
*I
,
1869 OrderedSet
&Insts
) {
1870 assert(isInstructionTriviallyDead(I
) && "Trivially dead instructions only!");
1871 SmallVector
<Value
*, 4> Ops(I
->op_begin(), I
->op_end());
1872 ValueRankMap
.erase(I
);
1874 RedoInsts
.remove(I
);
1875 I
->eraseFromParent();
1877 if (Instruction
*OpInst
= dyn_cast
<Instruction
>(Op
))
1878 if (OpInst
->use_empty())
1879 Insts
.insert(OpInst
);
1882 /// Zap the given instruction, adding interesting operands to the work list.
1883 void ReassociatePass::EraseInst(Instruction
*I
) {
1884 assert(isInstructionTriviallyDead(I
) && "Trivially dead instructions only!");
1885 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I
->dump());
1887 SmallVector
<Value
*, 8> Ops(I
->op_begin(), I
->op_end());
1888 // Erase the dead instruction.
1889 ValueRankMap
.erase(I
);
1890 RedoInsts
.remove(I
);
1891 I
->eraseFromParent();
1892 // Optimize its operands.
1893 SmallPtrSet
<Instruction
*, 8> Visited
; // Detect self-referential nodes.
1894 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1895 if (Instruction
*Op
= dyn_cast
<Instruction
>(Ops
[i
])) {
1896 // If this is a node in an expression tree, climb to the expression root
1897 // and add that since that's where optimization actually happens.
1898 unsigned Opcode
= Op
->getOpcode();
1899 while (Op
->hasOneUse() && Op
->user_back()->getOpcode() == Opcode
&&
1900 Visited
.insert(Op
).second
)
1901 Op
= Op
->user_back();
1903 // The instruction we're going to push may be coming from a
1904 // dead block, and Reassociate skips the processing of unreachable
1905 // blocks because it's a waste of time and also because it can
1906 // lead to infinite loop due to LLVM's non-standard definition
1908 if (ValueRankMap
.find(Op
) != ValueRankMap
.end())
1909 RedoInsts
.insert(Op
);
1915 // Canonicalize expressions of the following form:
1916 // x + (-Constant * y) -> x - (Constant * y)
1917 // x - (-Constant * y) -> x + (Constant * y)
1918 Instruction
*ReassociatePass::canonicalizeNegConstExpr(Instruction
*I
) {
1919 if (!I
->hasOneUse() || I
->getType()->isVectorTy())
1922 // Must be a fmul or fdiv instruction.
1923 unsigned Opcode
= I
->getOpcode();
1924 if (Opcode
!= Instruction::FMul
&& Opcode
!= Instruction::FDiv
)
1927 auto *C0
= dyn_cast
<ConstantFP
>(I
->getOperand(0));
1928 auto *C1
= dyn_cast
<ConstantFP
>(I
->getOperand(1));
1930 // Both operands are constant, let it get constant folded away.
1934 ConstantFP
*CF
= C0
? C0
: C1
;
1936 // Must have one constant operand.
1940 // Must be a negative ConstantFP.
1941 if (!CF
->isNegative())
1944 // User must be a binary operator with one or more uses.
1945 Instruction
*User
= I
->user_back();
1946 if (!isa
<BinaryOperator
>(User
) || User
->use_empty())
1949 unsigned UserOpcode
= User
->getOpcode();
1950 if (UserOpcode
!= Instruction::FAdd
&& UserOpcode
!= Instruction::FSub
)
1953 // Subtraction is not commutative. Explicitly, the following transform is
1954 // not valid: (-Constant * y) - x -> x + (Constant * y)
1955 if (!User
->isCommutative() && User
->getOperand(1) != I
)
1958 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
1959 // resulting subtract will be broken up later. This can get us into an
1960 // infinite loop during reassociation.
1961 if (UserOpcode
== Instruction::FAdd
&& ShouldBreakUpSubtract(User
))
1964 // Change the sign of the constant.
1965 APFloat Val
= CF
->getValueAPF();
1967 I
->setOperand(C0
? 0 : 1, ConstantFP::get(CF
->getContext(), Val
));
1969 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1970 // ((-Const*y) + x) -> (x + (-Const*y)).
1971 if (User
->getOperand(0) == I
&& User
->isCommutative())
1972 cast
<BinaryOperator
>(User
)->swapOperands();
1974 Value
*Op0
= User
->getOperand(0);
1975 Value
*Op1
= User
->getOperand(1);
1977 switch (UserOpcode
) {
1979 llvm_unreachable("Unexpected Opcode!");
1980 case Instruction::FAdd
:
1981 NI
= BinaryOperator::CreateFSub(Op0
, Op1
);
1982 NI
->setFastMathFlags(cast
<FPMathOperator
>(User
)->getFastMathFlags());
1984 case Instruction::FSub
:
1985 NI
= BinaryOperator::CreateFAdd(Op0
, Op1
);
1986 NI
->setFastMathFlags(cast
<FPMathOperator
>(User
)->getFastMathFlags());
1990 NI
->insertBefore(User
);
1991 NI
->setName(User
->getName());
1992 User
->replaceAllUsesWith(NI
);
1993 NI
->setDebugLoc(I
->getDebugLoc());
1994 RedoInsts
.insert(I
);
1999 /// Inspect and optimize the given instruction. Note that erasing
2000 /// instructions is not allowed.
2001 void ReassociatePass::OptimizeInst(Instruction
*I
) {
2002 // Only consider operations that we understand.
2003 if (!isa
<BinaryOperator
>(I
))
2006 if (I
->getOpcode() == Instruction::Shl
&& isa
<ConstantInt
>(I
->getOperand(1)))
2007 // If an operand of this shift is a reassociable multiply, or if the shift
2008 // is used by a reassociable multiply or add, turn into a multiply.
2009 if (isReassociableOp(I
->getOperand(0), Instruction::Mul
) ||
2011 (isReassociableOp(I
->user_back(), Instruction::Mul
) ||
2012 isReassociableOp(I
->user_back(), Instruction::Add
)))) {
2013 Instruction
*NI
= ConvertShiftToMul(I
);
2014 RedoInsts
.insert(I
);
2019 // Canonicalize negative constants out of expressions.
2020 if (Instruction
*Res
= canonicalizeNegConstExpr(I
))
2023 // Commute binary operators, to canonicalize the order of their operands.
2024 // This can potentially expose more CSE opportunities, and makes writing other
2025 // transformations simpler.
2026 if (I
->isCommutative())
2027 canonicalizeOperands(I
);
2029 // Don't optimize floating-point instructions unless they are 'fast'.
2030 if (I
->getType()->isFPOrFPVectorTy() && !I
->isFast())
2033 // Do not reassociate boolean (i1) expressions. We want to preserve the
2034 // original order of evaluation for short-circuited comparisons that
2035 // SimplifyCFG has folded to AND/OR expressions. If the expression
2036 // is not further optimized, it is likely to be transformed back to a
2037 // short-circuited form for code gen, and the source order may have been
2038 // optimized for the most likely conditions.
2039 if (I
->getType()->isIntegerTy(1))
2042 // If this is a subtract instruction which is not already in negate form,
2043 // see if we can convert it to X+-Y.
2044 if (I
->getOpcode() == Instruction::Sub
) {
2045 if (ShouldBreakUpSubtract(I
)) {
2046 Instruction
*NI
= BreakUpSubtract(I
, RedoInsts
);
2047 RedoInsts
.insert(I
);
2050 } else if (match(I
, m_Neg(m_Value()))) {
2051 // Otherwise, this is a negation. See if the operand is a multiply tree
2052 // and if this is not an inner node of a multiply tree.
2053 if (isReassociableOp(I
->getOperand(1), Instruction::Mul
) &&
2055 !isReassociableOp(I
->user_back(), Instruction::Mul
))) {
2056 Instruction
*NI
= LowerNegateToMultiply(I
);
2057 // If the negate was simplified, revisit the users to see if we can
2058 // reassociate further.
2059 for (User
*U
: NI
->users()) {
2060 if (BinaryOperator
*Tmp
= dyn_cast
<BinaryOperator
>(U
))
2061 RedoInsts
.insert(Tmp
);
2063 RedoInsts
.insert(I
);
2068 } else if (I
->getOpcode() == Instruction::FSub
) {
2069 if (ShouldBreakUpSubtract(I
)) {
2070 Instruction
*NI
= BreakUpSubtract(I
, RedoInsts
);
2071 RedoInsts
.insert(I
);
2074 } else if (match(I
, m_FNeg(m_Value()))) {
2075 // Otherwise, this is a negation. See if the operand is a multiply tree
2076 // and if this is not an inner node of a multiply tree.
2077 if (isReassociableOp(I
->getOperand(1), Instruction::FMul
) &&
2079 !isReassociableOp(I
->user_back(), Instruction::FMul
))) {
2080 // If the negate was simplified, revisit the users to see if we can
2081 // reassociate further.
2082 Instruction
*NI
= LowerNegateToMultiply(I
);
2083 for (User
*U
: NI
->users()) {
2084 if (BinaryOperator
*Tmp
= dyn_cast
<BinaryOperator
>(U
))
2085 RedoInsts
.insert(Tmp
);
2087 RedoInsts
.insert(I
);
2094 // If this instruction is an associative binary operator, process it.
2095 if (!I
->isAssociative()) return;
2096 BinaryOperator
*BO
= cast
<BinaryOperator
>(I
);
2098 // If this is an interior node of a reassociable tree, ignore it until we
2099 // get to the root of the tree, to avoid N^2 analysis.
2100 unsigned Opcode
= BO
->getOpcode();
2101 if (BO
->hasOneUse() && BO
->user_back()->getOpcode() == Opcode
) {
2102 // During the initial run we will get to the root of the tree.
2103 // But if we get here while we are redoing instructions, there is no
2104 // guarantee that the root will be visited. So Redo later
2105 if (BO
->user_back() != BO
&&
2106 BO
->getParent() == BO
->user_back()->getParent())
2107 RedoInsts
.insert(BO
->user_back());
2111 // If this is an add tree that is used by a sub instruction, ignore it
2112 // until we process the subtract.
2113 if (BO
->hasOneUse() && BO
->getOpcode() == Instruction::Add
&&
2114 cast
<Instruction
>(BO
->user_back())->getOpcode() == Instruction::Sub
)
2116 if (BO
->hasOneUse() && BO
->getOpcode() == Instruction::FAdd
&&
2117 cast
<Instruction
>(BO
->user_back())->getOpcode() == Instruction::FSub
)
2120 ReassociateExpression(BO
);
2123 void ReassociatePass::ReassociateExpression(BinaryOperator
*I
) {
2124 // First, walk the expression tree, linearizing the tree, collecting the
2125 // operand information.
2126 SmallVector
<RepeatedValue
, 8> Tree
;
2127 MadeChange
|= LinearizeExprTree(I
, Tree
);
2128 SmallVector
<ValueEntry
, 8> Ops
;
2129 Ops
.reserve(Tree
.size());
2130 for (unsigned i
= 0, e
= Tree
.size(); i
!= e
; ++i
) {
2131 RepeatedValue E
= Tree
[i
];
2132 Ops
.append(E
.second
.getZExtValue(),
2133 ValueEntry(getRank(E
.first
), E
.first
));
2136 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I
, Ops
); dbgs() << '\n');
2138 // Now that we have linearized the tree to a list and have gathered all of
2139 // the operands and their ranks, sort the operands by their rank. Use a
2140 // stable_sort so that values with equal ranks will have their relative
2141 // positions maintained (and so the compiler is deterministic). Note that
2142 // this sorts so that the highest ranking values end up at the beginning of
2144 std::stable_sort(Ops
.begin(), Ops
.end());
2146 // Now that we have the expression tree in a convenient
2147 // sorted form, optimize it globally if possible.
2148 if (Value
*V
= OptimizeExpression(I
, Ops
)) {
2150 // Self-referential expression in unreachable code.
2152 // This expression tree simplified to something that isn't a tree,
2154 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V
<< '\n');
2155 I
->replaceAllUsesWith(V
);
2156 if (Instruction
*VI
= dyn_cast
<Instruction
>(V
))
2157 if (I
->getDebugLoc())
2158 VI
->setDebugLoc(I
->getDebugLoc());
2159 RedoInsts
.insert(I
);
2164 // We want to sink immediates as deeply as possible except in the case where
2165 // this is a multiply tree used only by an add, and the immediate is a -1.
2166 // In this case we reassociate to put the negation on the outside so that we
2167 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2168 if (I
->hasOneUse()) {
2169 if (I
->getOpcode() == Instruction::Mul
&&
2170 cast
<Instruction
>(I
->user_back())->getOpcode() == Instruction::Add
&&
2171 isa
<ConstantInt
>(Ops
.back().Op
) &&
2172 cast
<ConstantInt
>(Ops
.back().Op
)->isMinusOne()) {
2173 ValueEntry Tmp
= Ops
.pop_back_val();
2174 Ops
.insert(Ops
.begin(), Tmp
);
2175 } else if (I
->getOpcode() == Instruction::FMul
&&
2176 cast
<Instruction
>(I
->user_back())->getOpcode() ==
2177 Instruction::FAdd
&&
2178 isa
<ConstantFP
>(Ops
.back().Op
) &&
2179 cast
<ConstantFP
>(Ops
.back().Op
)->isExactlyValue(-1.0)) {
2180 ValueEntry Tmp
= Ops
.pop_back_val();
2181 Ops
.insert(Ops
.begin(), Tmp
);
2185 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I
, Ops
); dbgs() << '\n');
2187 if (Ops
.size() == 1) {
2189 // Self-referential expression in unreachable code.
2192 // This expression tree simplified to something that isn't a tree,
2194 I
->replaceAllUsesWith(Ops
[0].Op
);
2195 if (Instruction
*OI
= dyn_cast
<Instruction
>(Ops
[0].Op
))
2196 OI
->setDebugLoc(I
->getDebugLoc());
2197 RedoInsts
.insert(I
);
2201 if (Ops
.size() > 2 && Ops
.size() <= GlobalReassociateLimit
) {
2202 // Find the pair with the highest count in the pairmap and move it to the
2203 // back of the list so that it can later be CSE'd.
2206 // if c*e is the most "popular" pair, we can express this as
2209 unsigned BestRank
= 0;
2210 std::pair
<unsigned, unsigned> BestPair
;
2211 unsigned Idx
= I
->getOpcode() - Instruction::BinaryOpsBegin
;
2212 for (unsigned i
= 0; i
< Ops
.size() - 1; ++i
)
2213 for (unsigned j
= i
+ 1; j
< Ops
.size(); ++j
) {
2215 Value
*Op0
= Ops
[i
].Op
;
2216 Value
*Op1
= Ops
[j
].Op
;
2217 if (std::less
<Value
*>()(Op1
, Op0
))
2218 std::swap(Op0
, Op1
);
2219 auto it
= PairMap
[Idx
].find({Op0
, Op1
});
2220 if (it
!= PairMap
[Idx
].end())
2221 Score
+= it
->second
;
2223 unsigned MaxRank
= std::max(Ops
[i
].Rank
, Ops
[j
].Rank
);
2224 if (Score
> Max
|| (Score
== Max
&& MaxRank
< BestRank
)) {
2231 auto Op0
= Ops
[BestPair
.first
];
2232 auto Op1
= Ops
[BestPair
.second
];
2233 Ops
.erase(&Ops
[BestPair
.second
]);
2234 Ops
.erase(&Ops
[BestPair
.first
]);
2239 // Now that we ordered and optimized the expressions, splat them back into
2240 // the expression tree, removing any unneeded nodes.
2241 RewriteExprTree(I
, Ops
);
2245 ReassociatePass::BuildPairMap(ReversePostOrderTraversal
<Function
*> &RPOT
) {
2246 // Make a "pairmap" of how often each operand pair occurs.
2247 for (BasicBlock
*BI
: RPOT
) {
2248 for (Instruction
&I
: *BI
) {
2249 if (!I
.isAssociative())
2252 // Ignore nodes that aren't at the root of trees.
2253 if (I
.hasOneUse() && I
.user_back()->getOpcode() == I
.getOpcode())
2256 // Collect all operands in a single reassociable expression.
2257 // Since Reassociate has already been run once, we can assume things
2258 // are already canonical according to Reassociation's regime.
2259 SmallVector
<Value
*, 8> Worklist
= { I
.getOperand(0), I
.getOperand(1) };
2260 SmallVector
<Value
*, 8> Ops
;
2261 while (!Worklist
.empty() && Ops
.size() <= GlobalReassociateLimit
) {
2262 Value
*Op
= Worklist
.pop_back_val();
2263 Instruction
*OpI
= dyn_cast
<Instruction
>(Op
);
2264 if (!OpI
|| OpI
->getOpcode() != I
.getOpcode() || !OpI
->hasOneUse()) {
2268 // Be paranoid about self-referencing expressions in unreachable code.
2269 if (OpI
->getOperand(0) != OpI
)
2270 Worklist
.push_back(OpI
->getOperand(0));
2271 if (OpI
->getOperand(1) != OpI
)
2272 Worklist
.push_back(OpI
->getOperand(1));
2274 // Skip extremely long expressions.
2275 if (Ops
.size() > GlobalReassociateLimit
)
2278 // Add all pairwise combinations of operands to the pair map.
2279 unsigned BinaryIdx
= I
.getOpcode() - Instruction::BinaryOpsBegin
;
2280 SmallSet
<std::pair
<Value
*, Value
*>, 32> Visited
;
2281 for (unsigned i
= 0; i
< Ops
.size() - 1; ++i
) {
2282 for (unsigned j
= i
+ 1; j
< Ops
.size(); ++j
) {
2283 // Canonicalize operand orderings.
2284 Value
*Op0
= Ops
[i
];
2285 Value
*Op1
= Ops
[j
];
2286 if (std::less
<Value
*>()(Op1
, Op0
))
2287 std::swap(Op0
, Op1
);
2288 if (!Visited
.insert({Op0
, Op1
}).second
)
2290 auto res
= PairMap
[BinaryIdx
].insert({{Op0
, Op1
}, 1});
2292 ++res
.first
->second
;
2299 PreservedAnalyses
ReassociatePass::run(Function
&F
, FunctionAnalysisManager
&) {
2300 // Get the functions basic blocks in Reverse Post Order. This order is used by
2301 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2302 // blocks (it has been seen that the analysis in this pass could hang when
2303 // analysing dead basic blocks).
2304 ReversePostOrderTraversal
<Function
*> RPOT(&F
);
2306 // Calculate the rank map for F.
2307 BuildRankMap(F
, RPOT
);
2309 // Build the pair map before running reassociate.
2310 // Technically this would be more accurate if we did it after one round
2311 // of reassociation, but in practice it doesn't seem to help much on
2312 // real-world code, so don't waste the compile time running reassociate
2314 // If a user wants, they could expicitly run reassociate twice in their
2315 // pass pipeline for further potential gains.
2316 // It might also be possible to update the pair map during runtime, but the
2317 // overhead of that may be large if there's many reassociable chains.
2322 // Traverse the same blocks that were analysed by BuildRankMap.
2323 for (BasicBlock
*BI
: RPOT
) {
2324 assert(RankMap
.count(&*BI
) && "BB should be ranked.");
2325 // Optimize every instruction in the basic block.
2326 for (BasicBlock::iterator II
= BI
->begin(), IE
= BI
->end(); II
!= IE
;)
2327 if (isInstructionTriviallyDead(&*II
)) {
2331 assert(II
->getParent() == &*BI
&& "Moved to a different block!");
2335 // Make a copy of all the instructions to be redone so we can remove dead
2337 OrderedSet
ToRedo(RedoInsts
);
2338 // Iterate over all instructions to be reevaluated and remove trivially dead
2339 // instructions. If any operand of the trivially dead instruction becomes
2340 // dead mark it for deletion as well. Continue this process until all
2341 // trivially dead instructions have been removed.
2342 while (!ToRedo
.empty()) {
2343 Instruction
*I
= ToRedo
.pop_back_val();
2344 if (isInstructionTriviallyDead(I
)) {
2345 RecursivelyEraseDeadInsts(I
, ToRedo
);
2350 // Now that we have removed dead instructions, we can reoptimize the
2351 // remaining instructions.
2352 while (!RedoInsts
.empty()) {
2353 Instruction
*I
= RedoInsts
.front();
2354 RedoInsts
.erase(RedoInsts
.begin());
2355 if (isInstructionTriviallyDead(I
))
2362 // We are done with the rank map and pair map.
2364 ValueRankMap
.clear();
2365 for (auto &Entry
: PairMap
)
2369 PreservedAnalyses PA
;
2370 PA
.preserveSet
<CFGAnalyses
>();
2371 PA
.preserve
<GlobalsAA
>();
2375 return PreservedAnalyses::all();
2380 class ReassociateLegacyPass
: public FunctionPass
{
2381 ReassociatePass Impl
;
2384 static char ID
; // Pass identification, replacement for typeid
2386 ReassociateLegacyPass() : FunctionPass(ID
) {
2387 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2390 bool runOnFunction(Function
&F
) override
{
2391 if (skipFunction(F
))
2394 FunctionAnalysisManager DummyFAM
;
2395 auto PA
= Impl
.run(F
, DummyFAM
);
2396 return !PA
.areAllPreserved();
2399 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
2400 AU
.setPreservesCFG();
2401 AU
.addPreserved
<GlobalsAAWrapperPass
>();
2405 } // end anonymous namespace
2407 char ReassociateLegacyPass::ID
= 0;
2409 INITIALIZE_PASS(ReassociateLegacyPass
, "reassociate",
2410 "Reassociate expressions", false, false)
2412 // Public interface to the Reassociate pass
2413 FunctionPass
*llvm::createReassociatePass() {
2414 return new ReassociateLegacyPass();