[SimplifyCFG] FoldTwoEntryPHINode(): consider *total* speculation cost, not per-BB...
[llvm-complete.git] / lib / CodeGen / SelectionDAG / DAGCombiner.cpp
bloba7e506855481a252bac945124d3e608c214fc3c9
1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
10 // both before and after the DAG is legalized.
12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
13 // primarily intended to handle simplification opportunities that are implicit
14 // in the LLVM IR and exposed by the various codegen lowering phases.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/IntervalMap.h"
23 #include "llvm/ADT/None.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/CodeGen/DAGCombine.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAG.h"
40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
41 #include "llvm/CodeGen/SelectionDAGNodes.h"
42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Attributes.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/KnownBits.h"
61 #include "llvm/Support/MachineValueType.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <functional>
70 #include <iterator>
71 #include <string>
72 #include <tuple>
73 #include <utility>
75 using namespace llvm;
77 #define DEBUG_TYPE "dagcombine"
79 STATISTIC(NodesCombined , "Number of dag nodes combined");
80 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
81 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
82 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
83 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int");
84 STATISTIC(SlicedLoads, "Number of load sliced");
85 STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops");
87 static cl::opt<bool>
88 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
89 cl::desc("Enable DAG combiner's use of IR alias analysis"));
91 static cl::opt<bool>
92 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
93 cl::desc("Enable DAG combiner's use of TBAA"));
95 #ifndef NDEBUG
96 static cl::opt<std::string>
97 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
98 cl::desc("Only use DAG-combiner alias analysis in this"
99 " function"));
100 #endif
102 /// Hidden option to stress test load slicing, i.e., when this option
103 /// is enabled, load slicing bypasses most of its profitability guards.
104 static cl::opt<bool>
105 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
106 cl::desc("Bypass the profitability model of load slicing"),
107 cl::init(false));
109 static cl::opt<bool>
110 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
111 cl::desc("DAG combiner may split indexing from loads"));
113 static cl::opt<bool>
114 EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true),
115 cl::desc("DAG combiner enable merging multiple stores "
116 "into a wider store"));
118 static cl::opt<unsigned> TokenFactorInlineLimit(
119 "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048),
120 cl::desc("Limit the number of operands to inline for Token Factors"));
122 static cl::opt<unsigned> StoreMergeDependenceLimit(
123 "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10),
124 cl::desc("Limit the number of times for the same StoreNode and RootNode "
125 "to bail out in store merging dependence check"));
127 namespace {
129 class DAGCombiner {
130 SelectionDAG &DAG;
131 const TargetLowering &TLI;
132 CombineLevel Level;
133 CodeGenOpt::Level OptLevel;
134 bool LegalOperations = false;
135 bool LegalTypes = false;
136 bool ForCodeSize;
138 /// Worklist of all of the nodes that need to be simplified.
140 /// This must behave as a stack -- new nodes to process are pushed onto the
141 /// back and when processing we pop off of the back.
143 /// The worklist will not contain duplicates but may contain null entries
144 /// due to nodes being deleted from the underlying DAG.
145 SmallVector<SDNode *, 64> Worklist;
147 /// Mapping from an SDNode to its position on the worklist.
149 /// This is used to find and remove nodes from the worklist (by nulling
150 /// them) when they are deleted from the underlying DAG. It relies on
151 /// stable indices of nodes within the worklist.
152 DenseMap<SDNode *, unsigned> WorklistMap;
153 /// This records all nodes attempted to add to the worklist since we
154 /// considered a new worklist entry. As we keep do not add duplicate nodes
155 /// in the worklist, this is different from the tail of the worklist.
156 SmallSetVector<SDNode *, 32> PruningList;
158 /// Set of nodes which have been combined (at least once).
160 /// This is used to allow us to reliably add any operands of a DAG node
161 /// which have not yet been combined to the worklist.
162 SmallPtrSet<SDNode *, 32> CombinedNodes;
164 /// Map from candidate StoreNode to the pair of RootNode and count.
165 /// The count is used to track how many times we have seen the StoreNode
166 /// with the same RootNode bail out in dependence check. If we have seen
167 /// the bail out for the same pair many times over a limit, we won't
168 /// consider the StoreNode with the same RootNode as store merging
169 /// candidate again.
170 DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap;
172 // AA - Used for DAG load/store alias analysis.
173 AliasAnalysis *AA;
175 /// When an instruction is simplified, add all users of the instruction to
176 /// the work lists because they might get more simplified now.
177 void AddUsersToWorklist(SDNode *N) {
178 for (SDNode *Node : N->uses())
179 AddToWorklist(Node);
182 // Prune potentially dangling nodes. This is called after
183 // any visit to a node, but should also be called during a visit after any
184 // failed combine which may have created a DAG node.
185 void clearAddedDanglingWorklistEntries() {
186 // Check any nodes added to the worklist to see if they are prunable.
187 while (!PruningList.empty()) {
188 auto *N = PruningList.pop_back_val();
189 if (N->use_empty())
190 recursivelyDeleteUnusedNodes(N);
194 SDNode *getNextWorklistEntry() {
195 // Before we do any work, remove nodes that are not in use.
196 clearAddedDanglingWorklistEntries();
197 SDNode *N = nullptr;
198 // The Worklist holds the SDNodes in order, but it may contain null
199 // entries.
200 while (!N && !Worklist.empty()) {
201 N = Worklist.pop_back_val();
204 if (N) {
205 bool GoodWorklistEntry = WorklistMap.erase(N);
206 (void)GoodWorklistEntry;
207 assert(GoodWorklistEntry &&
208 "Found a worklist entry without a corresponding map entry!");
210 return N;
213 /// Call the node-specific routine that folds each particular type of node.
214 SDValue visit(SDNode *N);
216 public:
217 DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL)
218 : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
219 OptLevel(OL), AA(AA) {
220 ForCodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
222 MaximumLegalStoreInBits = 0;
223 for (MVT VT : MVT::all_valuetypes())
224 if (EVT(VT).isSimple() && VT != MVT::Other &&
225 TLI.isTypeLegal(EVT(VT)) &&
226 VT.getSizeInBits() >= MaximumLegalStoreInBits)
227 MaximumLegalStoreInBits = VT.getSizeInBits();
230 void ConsiderForPruning(SDNode *N) {
231 // Mark this for potential pruning.
232 PruningList.insert(N);
235 /// Add to the worklist making sure its instance is at the back (next to be
236 /// processed.)
237 void AddToWorklist(SDNode *N) {
238 assert(N->getOpcode() != ISD::DELETED_NODE &&
239 "Deleted Node added to Worklist");
241 // Skip handle nodes as they can't usefully be combined and confuse the
242 // zero-use deletion strategy.
243 if (N->getOpcode() == ISD::HANDLENODE)
244 return;
246 ConsiderForPruning(N);
248 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second)
249 Worklist.push_back(N);
252 /// Remove all instances of N from the worklist.
253 void removeFromWorklist(SDNode *N) {
254 CombinedNodes.erase(N);
255 PruningList.remove(N);
256 StoreRootCountMap.erase(N);
258 auto It = WorklistMap.find(N);
259 if (It == WorklistMap.end())
260 return; // Not in the worklist.
262 // Null out the entry rather than erasing it to avoid a linear operation.
263 Worklist[It->second] = nullptr;
264 WorklistMap.erase(It);
267 void deleteAndRecombine(SDNode *N);
268 bool recursivelyDeleteUnusedNodes(SDNode *N);
270 /// Replaces all uses of the results of one DAG node with new values.
271 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
272 bool AddTo = true);
274 /// Replaces all uses of the results of one DAG node with new values.
275 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
276 return CombineTo(N, &Res, 1, AddTo);
279 /// Replaces all uses of the results of one DAG node with new values.
280 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
281 bool AddTo = true) {
282 SDValue To[] = { Res0, Res1 };
283 return CombineTo(N, To, 2, AddTo);
286 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
288 private:
289 unsigned MaximumLegalStoreInBits;
291 /// Check the specified integer node value to see if it can be simplified or
292 /// if things it uses can be simplified by bit propagation.
293 /// If so, return true.
294 bool SimplifyDemandedBits(SDValue Op) {
295 unsigned BitWidth = Op.getScalarValueSizeInBits();
296 APInt DemandedBits = APInt::getAllOnesValue(BitWidth);
297 return SimplifyDemandedBits(Op, DemandedBits);
300 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) {
301 EVT VT = Op.getValueType();
302 unsigned NumElts = VT.isVector() ? VT.getVectorNumElements() : 1;
303 APInt DemandedElts = APInt::getAllOnesValue(NumElts);
304 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts);
307 /// Check the specified vector node value to see if it can be simplified or
308 /// if things it uses can be simplified as it only uses some of the
309 /// elements. If so, return true.
310 bool SimplifyDemandedVectorElts(SDValue Op) {
311 unsigned NumElts = Op.getValueType().getVectorNumElements();
312 APInt DemandedElts = APInt::getAllOnesValue(NumElts);
313 return SimplifyDemandedVectorElts(Op, DemandedElts);
316 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
317 const APInt &DemandedElts);
318 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
319 bool AssumeSingleUse = false);
321 bool CombineToPreIndexedLoadStore(SDNode *N);
322 bool CombineToPostIndexedLoadStore(SDNode *N);
323 SDValue SplitIndexingFromLoad(LoadSDNode *LD);
324 bool SliceUpLoad(SDNode *N);
326 // Scalars have size 0 to distinguish from singleton vectors.
327 SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD);
328 bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val);
329 bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val);
331 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
332 /// load.
334 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
335 /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
336 /// \param EltNo index of the vector element to load.
337 /// \param OriginalLoad load that EVE came from to be replaced.
338 /// \returns EVE on success SDValue() on failure.
339 SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
340 SDValue EltNo,
341 LoadSDNode *OriginalLoad);
342 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
343 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
344 SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
345 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
346 SDValue PromoteIntBinOp(SDValue Op);
347 SDValue PromoteIntShiftOp(SDValue Op);
348 SDValue PromoteExtend(SDValue Op);
349 bool PromoteLoad(SDValue Op);
351 /// Call the node-specific routine that knows how to fold each
352 /// particular type of node. If that doesn't do anything, try the
353 /// target-specific DAG combines.
354 SDValue combine(SDNode *N);
356 // Visitation implementation - Implement dag node combining for different
357 // node types. The semantics are as follows:
358 // Return Value:
359 // SDValue.getNode() == 0 - No change was made
360 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
361 // otherwise - N should be replaced by the returned Operand.
363 SDValue visitTokenFactor(SDNode *N);
364 SDValue visitMERGE_VALUES(SDNode *N);
365 SDValue visitADD(SDNode *N);
366 SDValue visitADDLike(SDNode *N);
367 SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference);
368 SDValue visitSUB(SDNode *N);
369 SDValue visitADDSAT(SDNode *N);
370 SDValue visitSUBSAT(SDNode *N);
371 SDValue visitADDC(SDNode *N);
372 SDValue visitADDO(SDNode *N);
373 SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N);
374 SDValue visitSUBC(SDNode *N);
375 SDValue visitSUBO(SDNode *N);
376 SDValue visitADDE(SDNode *N);
377 SDValue visitADDCARRY(SDNode *N);
378 SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N);
379 SDValue visitSUBE(SDNode *N);
380 SDValue visitSUBCARRY(SDNode *N);
381 SDValue visitMUL(SDNode *N);
382 SDValue visitMULFIX(SDNode *N);
383 SDValue useDivRem(SDNode *N);
384 SDValue visitSDIV(SDNode *N);
385 SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N);
386 SDValue visitUDIV(SDNode *N);
387 SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N);
388 SDValue visitREM(SDNode *N);
389 SDValue visitMULHU(SDNode *N);
390 SDValue visitMULHS(SDNode *N);
391 SDValue visitSMUL_LOHI(SDNode *N);
392 SDValue visitUMUL_LOHI(SDNode *N);
393 SDValue visitMULO(SDNode *N);
394 SDValue visitIMINMAX(SDNode *N);
395 SDValue visitAND(SDNode *N);
396 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N);
397 SDValue visitOR(SDNode *N);
398 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N);
399 SDValue visitXOR(SDNode *N);
400 SDValue SimplifyVBinOp(SDNode *N);
401 SDValue visitSHL(SDNode *N);
402 SDValue visitSRA(SDNode *N);
403 SDValue visitSRL(SDNode *N);
404 SDValue visitFunnelShift(SDNode *N);
405 SDValue visitRotate(SDNode *N);
406 SDValue visitABS(SDNode *N);
407 SDValue visitBSWAP(SDNode *N);
408 SDValue visitBITREVERSE(SDNode *N);
409 SDValue visitCTLZ(SDNode *N);
410 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
411 SDValue visitCTTZ(SDNode *N);
412 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
413 SDValue visitCTPOP(SDNode *N);
414 SDValue visitSELECT(SDNode *N);
415 SDValue visitVSELECT(SDNode *N);
416 SDValue visitSELECT_CC(SDNode *N);
417 SDValue visitSETCC(SDNode *N);
418 SDValue visitSETCCCARRY(SDNode *N);
419 SDValue visitSIGN_EXTEND(SDNode *N);
420 SDValue visitZERO_EXTEND(SDNode *N);
421 SDValue visitANY_EXTEND(SDNode *N);
422 SDValue visitAssertExt(SDNode *N);
423 SDValue visitSIGN_EXTEND_INREG(SDNode *N);
424 SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N);
425 SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N);
426 SDValue visitTRUNCATE(SDNode *N);
427 SDValue visitBITCAST(SDNode *N);
428 SDValue visitBUILD_PAIR(SDNode *N);
429 SDValue visitFADD(SDNode *N);
430 SDValue visitFSUB(SDNode *N);
431 SDValue visitFMUL(SDNode *N);
432 SDValue visitFMA(SDNode *N);
433 SDValue visitFDIV(SDNode *N);
434 SDValue visitFREM(SDNode *N);
435 SDValue visitFSQRT(SDNode *N);
436 SDValue visitFCOPYSIGN(SDNode *N);
437 SDValue visitFPOW(SDNode *N);
438 SDValue visitSINT_TO_FP(SDNode *N);
439 SDValue visitUINT_TO_FP(SDNode *N);
440 SDValue visitFP_TO_SINT(SDNode *N);
441 SDValue visitFP_TO_UINT(SDNode *N);
442 SDValue visitFP_ROUND(SDNode *N);
443 SDValue visitFP_EXTEND(SDNode *N);
444 SDValue visitFNEG(SDNode *N);
445 SDValue visitFABS(SDNode *N);
446 SDValue visitFCEIL(SDNode *N);
447 SDValue visitFTRUNC(SDNode *N);
448 SDValue visitFFLOOR(SDNode *N);
449 SDValue visitFMINNUM(SDNode *N);
450 SDValue visitFMAXNUM(SDNode *N);
451 SDValue visitFMINIMUM(SDNode *N);
452 SDValue visitFMAXIMUM(SDNode *N);
453 SDValue visitBRCOND(SDNode *N);
454 SDValue visitBR_CC(SDNode *N);
455 SDValue visitLOAD(SDNode *N);
457 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain);
458 SDValue replaceStoreOfFPConstant(StoreSDNode *ST);
460 SDValue visitSTORE(SDNode *N);
461 SDValue visitLIFETIME_END(SDNode *N);
462 SDValue visitINSERT_VECTOR_ELT(SDNode *N);
463 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
464 SDValue visitBUILD_VECTOR(SDNode *N);
465 SDValue visitCONCAT_VECTORS(SDNode *N);
466 SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
467 SDValue visitVECTOR_SHUFFLE(SDNode *N);
468 SDValue visitSCALAR_TO_VECTOR(SDNode *N);
469 SDValue visitINSERT_SUBVECTOR(SDNode *N);
470 SDValue visitMLOAD(SDNode *N);
471 SDValue visitMSTORE(SDNode *N);
472 SDValue visitMGATHER(SDNode *N);
473 SDValue visitMSCATTER(SDNode *N);
474 SDValue visitFP_TO_FP16(SDNode *N);
475 SDValue visitFP16_TO_FP(SDNode *N);
476 SDValue visitVECREDUCE(SDNode *N);
478 SDValue visitFADDForFMACombine(SDNode *N);
479 SDValue visitFSUBForFMACombine(SDNode *N);
480 SDValue visitFMULForFMADistributiveCombine(SDNode *N);
482 SDValue XformToShuffleWithZero(SDNode *N);
483 bool reassociationCanBreakAddressingModePattern(unsigned Opc,
484 const SDLoc &DL, SDValue N0,
485 SDValue N1);
486 SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0,
487 SDValue N1);
488 SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
489 SDValue N1, SDNodeFlags Flags);
491 SDValue visitShiftByConstant(SDNode *N);
493 SDValue foldSelectOfConstants(SDNode *N);
494 SDValue foldVSelectOfConstants(SDNode *N);
495 SDValue foldBinOpIntoSelect(SDNode *BO);
496 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
497 SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N);
498 SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2);
499 SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
500 SDValue N2, SDValue N3, ISD::CondCode CC,
501 bool NotExtCompare = false);
502 SDValue convertSelectOfFPConstantsToLoadOffset(
503 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
504 ISD::CondCode CC);
505 SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1,
506 SDValue N2, SDValue N3, ISD::CondCode CC);
507 SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
508 const SDLoc &DL);
509 SDValue unfoldMaskedMerge(SDNode *N);
510 SDValue unfoldExtremeBitClearingToShifts(SDNode *N);
511 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
512 const SDLoc &DL, bool foldBooleans);
513 SDValue rebuildSetCC(SDValue N);
515 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
516 SDValue &CC) const;
517 bool isOneUseSetCC(SDValue N) const;
518 bool isCheaperToUseNegatedFPOps(SDValue X, SDValue Y);
520 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
521 unsigned HiOp);
522 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
523 SDValue CombineExtLoad(SDNode *N);
524 SDValue CombineZExtLogicopShiftLoad(SDNode *N);
525 SDValue combineRepeatedFPDivisors(SDNode *N);
526 SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex);
527 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
528 SDValue BuildSDIV(SDNode *N);
529 SDValue BuildSDIVPow2(SDNode *N);
530 SDValue BuildUDIV(SDNode *N);
531 SDValue BuildLogBase2(SDValue V, const SDLoc &DL);
532 SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags);
533 SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags);
534 SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags);
535 SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip);
536 SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations,
537 SDNodeFlags Flags, bool Reciprocal);
538 SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations,
539 SDNodeFlags Flags, bool Reciprocal);
540 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
541 bool DemandHighBits = true);
542 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
543 SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
544 SDValue InnerPos, SDValue InnerNeg,
545 unsigned PosOpcode, unsigned NegOpcode,
546 const SDLoc &DL);
547 SDNode *MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL);
548 SDValue MatchLoadCombine(SDNode *N);
549 SDValue MatchStoreCombine(StoreSDNode *N);
550 SDValue ReduceLoadWidth(SDNode *N);
551 SDValue ReduceLoadOpStoreWidth(SDNode *N);
552 SDValue splitMergedValStore(StoreSDNode *ST);
553 SDValue TransformFPLoadStorePair(SDNode *N);
554 SDValue convertBuildVecZextToZext(SDNode *N);
555 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
556 SDValue reduceBuildVecToShuffle(SDNode *N);
557 SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N,
558 ArrayRef<int> VectorMask, SDValue VecIn1,
559 SDValue VecIn2, unsigned LeftIdx,
560 bool DidSplitVec);
561 SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast);
563 /// Walk up chain skipping non-aliasing memory nodes,
564 /// looking for aliasing nodes and adding them to the Aliases vector.
565 void GatherAllAliases(SDNode *N, SDValue OriginalChain,
566 SmallVectorImpl<SDValue> &Aliases);
568 /// Return true if there is any possibility that the two addresses overlap.
569 bool isAlias(SDNode *Op0, SDNode *Op1) const;
571 /// Walk up chain skipping non-aliasing memory nodes, looking for a better
572 /// chain (aliasing node.)
573 SDValue FindBetterChain(SDNode *N, SDValue Chain);
575 /// Try to replace a store and any possibly adjacent stores on
576 /// consecutive chains with better chains. Return true only if St is
577 /// replaced.
579 /// Notice that other chains may still be replaced even if the function
580 /// returns false.
581 bool findBetterNeighborChains(StoreSDNode *St);
583 // Helper for findBetterNeighborChains. Walk up store chain add additional
584 // chained stores that do not overlap and can be parallelized.
585 bool parallelizeChainedStores(StoreSDNode *St);
587 /// Holds a pointer to an LSBaseSDNode as well as information on where it
588 /// is located in a sequence of memory operations connected by a chain.
589 struct MemOpLink {
590 // Ptr to the mem node.
591 LSBaseSDNode *MemNode;
593 // Offset from the base ptr.
594 int64_t OffsetFromBase;
596 MemOpLink(LSBaseSDNode *N, int64_t Offset)
597 : MemNode(N), OffsetFromBase(Offset) {}
600 /// This is a helper function for visitMUL to check the profitability
601 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
602 /// MulNode is the original multiply, AddNode is (add x, c1),
603 /// and ConstNode is c2.
604 bool isMulAddWithConstProfitable(SDNode *MulNode,
605 SDValue &AddNode,
606 SDValue &ConstNode);
608 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns
609 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns
610 /// the type of the loaded value to be extended.
611 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
612 EVT LoadResultTy, EVT &ExtVT);
614 /// Helper function to calculate whether the given Load/Store can have its
615 /// width reduced to ExtVT.
616 bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType,
617 EVT &MemVT, unsigned ShAmt = 0);
619 /// Used by BackwardsPropagateMask to find suitable loads.
620 bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads,
621 SmallPtrSetImpl<SDNode*> &NodesWithConsts,
622 ConstantSDNode *Mask, SDNode *&NodeToMask);
623 /// Attempt to propagate a given AND node back to load leaves so that they
624 /// can be combined into narrow loads.
625 bool BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG);
627 /// Helper function for MergeConsecutiveStores which merges the
628 /// component store chains.
629 SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
630 unsigned NumStores);
632 /// This is a helper function for MergeConsecutiveStores. When the
633 /// source elements of the consecutive stores are all constants or
634 /// all extracted vector elements, try to merge them into one
635 /// larger store introducing bitcasts if necessary. \return True
636 /// if a merged store was created.
637 bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
638 EVT MemVT, unsigned NumStores,
639 bool IsConstantSrc, bool UseVector,
640 bool UseTrunc);
642 /// This is a helper function for MergeConsecutiveStores. Stores
643 /// that potentially may be merged with St are placed in
644 /// StoreNodes. RootNode is a chain predecessor to all store
645 /// candidates.
646 void getStoreMergeCandidates(StoreSDNode *St,
647 SmallVectorImpl<MemOpLink> &StoreNodes,
648 SDNode *&Root);
650 /// Helper function for MergeConsecutiveStores. Checks if
651 /// candidate stores have indirect dependency through their
652 /// operands. RootNode is the predecessor to all stores calculated
653 /// by getStoreMergeCandidates and is used to prune the dependency check.
654 /// \return True if safe to merge.
655 bool checkMergeStoreCandidatesForDependencies(
656 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
657 SDNode *RootNode);
659 /// Merge consecutive store operations into a wide store.
660 /// This optimization uses wide integers or vectors when possible.
661 /// \return number of stores that were merged into a merged store (the
662 /// affected nodes are stored as a prefix in \p StoreNodes).
663 bool MergeConsecutiveStores(StoreSDNode *St);
665 /// Try to transform a truncation where C is a constant:
666 /// (trunc (and X, C)) -> (and (trunc X), (trunc C))
668 /// \p N needs to be a truncation and its first operand an AND. Other
669 /// requirements are checked by the function (e.g. that trunc is
670 /// single-use) and if missed an empty SDValue is returned.
671 SDValue distributeTruncateThroughAnd(SDNode *N);
673 /// Helper function to determine whether the target supports operation
674 /// given by \p Opcode for type \p VT, that is, whether the operation
675 /// is legal or custom before legalizing operations, and whether is
676 /// legal (but not custom) after legalization.
677 bool hasOperation(unsigned Opcode, EVT VT) {
678 if (LegalOperations)
679 return TLI.isOperationLegal(Opcode, VT);
680 return TLI.isOperationLegalOrCustom(Opcode, VT);
683 public:
684 /// Runs the dag combiner on all nodes in the work list
685 void Run(CombineLevel AtLevel);
687 SelectionDAG &getDAG() const { return DAG; }
689 /// Returns a type large enough to hold any valid shift amount - before type
690 /// legalization these can be huge.
691 EVT getShiftAmountTy(EVT LHSTy) {
692 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
693 return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes);
696 /// This method returns true if we are running before type legalization or
697 /// if the specified VT is legal.
698 bool isTypeLegal(const EVT &VT) {
699 if (!LegalTypes) return true;
700 return TLI.isTypeLegal(VT);
703 /// Convenience wrapper around TargetLowering::getSetCCResultType
704 EVT getSetCCResultType(EVT VT) const {
705 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
708 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
709 SDValue OrigLoad, SDValue ExtLoad,
710 ISD::NodeType ExtType);
713 /// This class is a DAGUpdateListener that removes any deleted
714 /// nodes from the worklist.
715 class WorklistRemover : public SelectionDAG::DAGUpdateListener {
716 DAGCombiner &DC;
718 public:
719 explicit WorklistRemover(DAGCombiner &dc)
720 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
722 void NodeDeleted(SDNode *N, SDNode *E) override {
723 DC.removeFromWorklist(N);
727 class WorklistInserter : public SelectionDAG::DAGUpdateListener {
728 DAGCombiner &DC;
730 public:
731 explicit WorklistInserter(DAGCombiner &dc)
732 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
734 // FIXME: Ideally we could add N to the worklist, but this causes exponential
735 // compile time costs in large DAGs, e.g. Halide.
736 void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); }
739 } // end anonymous namespace
741 //===----------------------------------------------------------------------===//
742 // TargetLowering::DAGCombinerInfo implementation
743 //===----------------------------------------------------------------------===//
745 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
746 ((DAGCombiner*)DC)->AddToWorklist(N);
749 SDValue TargetLowering::DAGCombinerInfo::
750 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
751 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
754 SDValue TargetLowering::DAGCombinerInfo::
755 CombineTo(SDNode *N, SDValue Res, bool AddTo) {
756 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
759 SDValue TargetLowering::DAGCombinerInfo::
760 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
761 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
764 void TargetLowering::DAGCombinerInfo::
765 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
766 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
769 //===----------------------------------------------------------------------===//
770 // Helper Functions
771 //===----------------------------------------------------------------------===//
773 void DAGCombiner::deleteAndRecombine(SDNode *N) {
774 removeFromWorklist(N);
776 // If the operands of this node are only used by the node, they will now be
777 // dead. Make sure to re-visit them and recursively delete dead nodes.
778 for (const SDValue &Op : N->ops())
779 // For an operand generating multiple values, one of the values may
780 // become dead allowing further simplification (e.g. split index
781 // arithmetic from an indexed load).
782 if (Op->hasOneUse() || Op->getNumValues() > 1)
783 AddToWorklist(Op.getNode());
785 DAG.DeleteNode(N);
788 /// Return 1 if we can compute the negated form of the specified expression for
789 /// the same cost as the expression itself, or 2 if we can compute the negated
790 /// form more cheaply than the expression itself.
791 static char isNegatibleForFree(SDValue Op, bool LegalOperations,
792 const TargetLowering &TLI,
793 const TargetOptions *Options,
794 bool ForCodeSize,
795 unsigned Depth = 0) {
796 // fneg is removable even if it has multiple uses.
797 if (Op.getOpcode() == ISD::FNEG)
798 return 2;
800 // Don't allow anything with multiple uses unless we know it is free.
801 EVT VT = Op.getValueType();
802 const SDNodeFlags Flags = Op->getFlags();
803 if (!Op.hasOneUse() &&
804 !(Op.getOpcode() == ISD::FP_EXTEND &&
805 TLI.isFPExtFree(VT, Op.getOperand(0).getValueType())))
806 return 0;
808 // Don't recurse exponentially.
809 if (Depth > 6)
810 return 0;
812 switch (Op.getOpcode()) {
813 default: return false;
814 case ISD::ConstantFP: {
815 if (!LegalOperations)
816 return 1;
818 // Don't invert constant FP values after legalization unless the target says
819 // the negated constant is legal.
820 return TLI.isOperationLegal(ISD::ConstantFP, VT) ||
821 TLI.isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
822 ForCodeSize);
824 case ISD::BUILD_VECTOR: {
825 // Only permit BUILD_VECTOR of constants.
826 if (llvm::any_of(Op->op_values(), [&](SDValue N) {
827 return !N.isUndef() && !isa<ConstantFPSDNode>(N);
829 return 0;
830 if (!LegalOperations)
831 return 1;
832 if (TLI.isOperationLegal(ISD::ConstantFP, VT) &&
833 TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
834 return 1;
835 return llvm::all_of(Op->op_values(), [&](SDValue N) {
836 return N.isUndef() ||
837 TLI.isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
838 ForCodeSize);
841 case ISD::FADD:
842 if (!Options->NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
843 return 0;
845 // After operation legalization, it might not be legal to create new FSUBs.
846 if (LegalOperations && !TLI.isOperationLegalOrCustom(ISD::FSUB, VT))
847 return 0;
849 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
850 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
851 Options, ForCodeSize, Depth + 1))
852 return V;
853 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
854 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
855 ForCodeSize, Depth + 1);
856 case ISD::FSUB:
857 // We can't turn -(A-B) into B-A when we honor signed zeros.
858 if (!Options->NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
859 return 0;
861 // fold (fneg (fsub A, B)) -> (fsub B, A)
862 return 1;
864 case ISD::FMUL:
865 case ISD::FDIV:
866 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
867 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
868 Options, ForCodeSize, Depth + 1))
869 return V;
871 // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
872 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
873 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
874 return 0;
876 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
877 ForCodeSize, Depth + 1);
879 case ISD::FMA:
880 case ISD::FMAD: {
881 if (!Options->NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
882 return 0;
884 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
885 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
886 char V2 = isNegatibleForFree(Op.getOperand(2), LegalOperations, TLI,
887 Options, ForCodeSize, Depth + 1);
888 if (!V2)
889 return 0;
891 // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
892 char V0 = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
893 Options, ForCodeSize, Depth + 1);
894 char V1 = isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI,
895 Options, ForCodeSize, Depth + 1);
896 char V01 = std::max(V0, V1);
897 return V01 ? std::max(V01, V2) : 0;
900 case ISD::FP_EXTEND:
901 case ISD::FP_ROUND:
902 case ISD::FSIN:
903 return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
904 ForCodeSize, Depth + 1);
908 /// If isNegatibleForFree returns true, return the newly negated expression.
909 static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
910 bool LegalOperations, bool ForCodeSize,
911 unsigned Depth = 0) {
912 // fneg is removable even if it has multiple uses.
913 if (Op.getOpcode() == ISD::FNEG)
914 return Op.getOperand(0);
916 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
917 const TargetOptions &Options = DAG.getTarget().Options;
918 const SDNodeFlags Flags = Op->getFlags();
920 switch (Op.getOpcode()) {
921 default: llvm_unreachable("Unknown code");
922 case ISD::ConstantFP: {
923 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
924 V.changeSign();
925 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
927 case ISD::BUILD_VECTOR: {
928 SmallVector<SDValue, 4> Ops;
929 for (SDValue C : Op->op_values()) {
930 if (C.isUndef()) {
931 Ops.push_back(C);
932 continue;
934 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
935 V.changeSign();
936 Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType()));
938 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops);
940 case ISD::FADD:
941 assert((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) &&
942 "Expected NSZ fp-flag");
944 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
945 if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
946 DAG.getTargetLoweringInfo(), &Options, ForCodeSize,
947 Depth + 1))
948 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
949 GetNegatedExpression(Op.getOperand(0), DAG,
950 LegalOperations, ForCodeSize,
951 Depth + 1),
952 Op.getOperand(1), Flags);
953 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
954 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
955 GetNegatedExpression(Op.getOperand(1), DAG,
956 LegalOperations, ForCodeSize,
957 Depth + 1),
958 Op.getOperand(0), Flags);
959 case ISD::FSUB:
960 // fold (fneg (fsub 0, B)) -> B
961 if (ConstantFPSDNode *N0CFP =
962 isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true))
963 if (N0CFP->isZero())
964 return Op.getOperand(1);
966 // fold (fneg (fsub A, B)) -> (fsub B, A)
967 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
968 Op.getOperand(1), Op.getOperand(0), Flags);
970 case ISD::FMUL:
971 case ISD::FDIV:
972 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
973 if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
974 DAG.getTargetLoweringInfo(), &Options, ForCodeSize,
975 Depth + 1))
976 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
977 GetNegatedExpression(Op.getOperand(0), DAG,
978 LegalOperations, ForCodeSize,
979 Depth + 1),
980 Op.getOperand(1), Flags);
982 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
983 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
984 Op.getOperand(0),
985 GetNegatedExpression(Op.getOperand(1), DAG,
986 LegalOperations, ForCodeSize,
987 Depth + 1), Flags);
989 case ISD::FMA:
990 case ISD::FMAD: {
991 assert((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) &&
992 "Expected NSZ fp-flag");
994 SDValue Neg2 = GetNegatedExpression(Op.getOperand(2), DAG, LegalOperations,
995 ForCodeSize, Depth + 1);
997 char V0 = isNegatibleForFree(Op.getOperand(0), LegalOperations,
998 DAG.getTargetLoweringInfo(), &Options,
999 ForCodeSize, Depth + 1);
1000 char V1 = isNegatibleForFree(Op.getOperand(1), LegalOperations,
1001 DAG.getTargetLoweringInfo(), &Options,
1002 ForCodeSize, Depth + 1);
1003 if (V0 >= V1) {
1004 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
1005 SDValue Neg0 = GetNegatedExpression(
1006 Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1);
1007 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0,
1008 Op.getOperand(1), Neg2, Flags);
1011 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
1012 SDValue Neg1 = GetNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
1013 ForCodeSize, Depth + 1);
1014 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
1015 Op.getOperand(0), Neg1, Neg2, Flags);
1018 case ISD::FP_EXTEND:
1019 case ISD::FSIN:
1020 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
1021 GetNegatedExpression(Op.getOperand(0), DAG,
1022 LegalOperations, ForCodeSize,
1023 Depth + 1));
1024 case ISD::FP_ROUND:
1025 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
1026 GetNegatedExpression(Op.getOperand(0), DAG,
1027 LegalOperations, ForCodeSize,
1028 Depth + 1),
1029 Op.getOperand(1));
1033 // APInts must be the same size for most operations, this helper
1034 // function zero extends the shorter of the pair so that they match.
1035 // We provide an Offset so that we can create bitwidths that won't overflow.
1036 static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) {
1037 unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth());
1038 LHS = LHS.zextOrSelf(Bits);
1039 RHS = RHS.zextOrSelf(Bits);
1042 // Return true if this node is a setcc, or is a select_cc
1043 // that selects between the target values used for true and false, making it
1044 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
1045 // the appropriate nodes based on the type of node we are checking. This
1046 // simplifies life a bit for the callers.
1047 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
1048 SDValue &CC) const {
1049 if (N.getOpcode() == ISD::SETCC) {
1050 LHS = N.getOperand(0);
1051 RHS = N.getOperand(1);
1052 CC = N.getOperand(2);
1053 return true;
1056 if (N.getOpcode() != ISD::SELECT_CC ||
1057 !TLI.isConstTrueVal(N.getOperand(2).getNode()) ||
1058 !TLI.isConstFalseVal(N.getOperand(3).getNode()))
1059 return false;
1061 if (TLI.getBooleanContents(N.getValueType()) ==
1062 TargetLowering::UndefinedBooleanContent)
1063 return false;
1065 LHS = N.getOperand(0);
1066 RHS = N.getOperand(1);
1067 CC = N.getOperand(4);
1068 return true;
1071 /// Return true if this is a SetCC-equivalent operation with only one use.
1072 /// If this is true, it allows the users to invert the operation for free when
1073 /// it is profitable to do so.
1074 bool DAGCombiner::isOneUseSetCC(SDValue N) const {
1075 SDValue N0, N1, N2;
1076 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
1077 return true;
1078 return false;
1081 // Returns the SDNode if it is a constant float BuildVector
1082 // or constant float.
1083 static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) {
1084 if (isa<ConstantFPSDNode>(N))
1085 return N.getNode();
1086 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
1087 return N.getNode();
1088 return nullptr;
1091 // Determines if it is a constant integer or a build vector of constant
1092 // integers (and undefs).
1093 // Do not permit build vector implicit truncation.
1094 static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) {
1095 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N))
1096 return !(Const->isOpaque() && NoOpaques);
1097 if (N.getOpcode() != ISD::BUILD_VECTOR)
1098 return false;
1099 unsigned BitWidth = N.getScalarValueSizeInBits();
1100 for (const SDValue &Op : N->op_values()) {
1101 if (Op.isUndef())
1102 continue;
1103 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op);
1104 if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth ||
1105 (Const->isOpaque() && NoOpaques))
1106 return false;
1108 return true;
1111 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
1112 // undef's.
1113 static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) {
1114 if (V.getOpcode() != ISD::BUILD_VECTOR)
1115 return false;
1116 return isConstantOrConstantVector(V, NoOpaques) ||
1117 ISD::isBuildVectorOfConstantFPSDNodes(V.getNode());
1120 bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc,
1121 const SDLoc &DL,
1122 SDValue N0,
1123 SDValue N1) {
1124 // Currently this only tries to ensure we don't undo the GEP splits done by
1125 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this,
1126 // we check if the following transformation would be problematic:
1127 // (load/store (add, (add, x, offset1), offset2)) ->
1128 // (load/store (add, x, offset1+offset2)).
1130 if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD)
1131 return false;
1133 if (N0.hasOneUse())
1134 return false;
1136 auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
1137 auto *C2 = dyn_cast<ConstantSDNode>(N1);
1138 if (!C1 || !C2)
1139 return false;
1141 const APInt &C1APIntVal = C1->getAPIntValue();
1142 const APInt &C2APIntVal = C2->getAPIntValue();
1143 if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64)
1144 return false;
1146 const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal;
1147 if (CombinedValueIntVal.getBitWidth() > 64)
1148 return false;
1149 const int64_t CombinedValue = CombinedValueIntVal.getSExtValue();
1151 for (SDNode *Node : N0->uses()) {
1152 auto LoadStore = dyn_cast<MemSDNode>(Node);
1153 if (LoadStore) {
1154 // Is x[offset2] already not a legal addressing mode? If so then
1155 // reassociating the constants breaks nothing (we test offset2 because
1156 // that's the one we hope to fold into the load or store).
1157 TargetLoweringBase::AddrMode AM;
1158 AM.HasBaseReg = true;
1159 AM.BaseOffs = C2APIntVal.getSExtValue();
1160 EVT VT = LoadStore->getMemoryVT();
1161 unsigned AS = LoadStore->getAddressSpace();
1162 Type *AccessTy = VT.getTypeForEVT(*DAG.getContext());
1163 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
1164 continue;
1166 // Would x[offset1+offset2] still be a legal addressing mode?
1167 AM.BaseOffs = CombinedValue;
1168 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
1169 return true;
1173 return false;
1176 // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression
1177 // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc.
1178 SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL,
1179 SDValue N0, SDValue N1) {
1180 EVT VT = N0.getValueType();
1182 if (N0.getOpcode() != Opc)
1183 return SDValue();
1185 // Don't reassociate reductions.
1186 if (N0->getFlags().hasVectorReduction())
1187 return SDValue();
1189 if (SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) {
1190 if (SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
1191 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2))
1192 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, C1, C2))
1193 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
1194 return SDValue();
1196 if (N0.hasOneUse()) {
1197 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
1198 // iff (op x, c1) has one use
1199 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1);
1200 if (!OpNode.getNode())
1201 return SDValue();
1202 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
1205 return SDValue();
1208 // Try to reassociate commutative binops.
1209 SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
1210 SDValue N1, SDNodeFlags Flags) {
1211 assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative.");
1212 // Don't reassociate reductions.
1213 if (Flags.hasVectorReduction())
1214 return SDValue();
1216 // Floating-point reassociation is not allowed without loose FP math.
1217 if (N0.getValueType().isFloatingPoint() ||
1218 N1.getValueType().isFloatingPoint())
1219 if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros())
1220 return SDValue();
1222 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1))
1223 return Combined;
1224 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0))
1225 return Combined;
1226 return SDValue();
1229 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
1230 bool AddTo) {
1231 assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
1232 ++NodesCombined;
1233 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: ";
1234 To[0].getNode()->dump(&DAG);
1235 dbgs() << " and " << NumTo - 1 << " other values\n");
1236 for (unsigned i = 0, e = NumTo; i != e; ++i)
1237 assert((!To[i].getNode() ||
1238 N->getValueType(i) == To[i].getValueType()) &&
1239 "Cannot combine value to value of different type!");
1241 WorklistRemover DeadNodes(*this);
1242 DAG.ReplaceAllUsesWith(N, To);
1243 if (AddTo) {
1244 // Push the new nodes and any users onto the worklist
1245 for (unsigned i = 0, e = NumTo; i != e; ++i) {
1246 if (To[i].getNode()) {
1247 AddToWorklist(To[i].getNode());
1248 AddUsersToWorklist(To[i].getNode());
1253 // Finally, if the node is now dead, remove it from the graph. The node
1254 // may not be dead if the replacement process recursively simplified to
1255 // something else needing this node.
1256 if (N->use_empty())
1257 deleteAndRecombine(N);
1258 return SDValue(N, 0);
1261 void DAGCombiner::
1262 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
1263 // Replace all uses. If any nodes become isomorphic to other nodes and
1264 // are deleted, make sure to remove them from our worklist.
1265 WorklistRemover DeadNodes(*this);
1266 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
1268 // Push the new node and any (possibly new) users onto the worklist.
1269 AddToWorklist(TLO.New.getNode());
1270 AddUsersToWorklist(TLO.New.getNode());
1272 // Finally, if the node is now dead, remove it from the graph. The node
1273 // may not be dead if the replacement process recursively simplified to
1274 // something else needing this node.
1275 if (TLO.Old.getNode()->use_empty())
1276 deleteAndRecombine(TLO.Old.getNode());
1279 /// Check the specified integer node value to see if it can be simplified or if
1280 /// things it uses can be simplified by bit propagation. If so, return true.
1281 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
1282 const APInt &DemandedElts) {
1283 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
1284 KnownBits Known;
1285 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO))
1286 return false;
1288 // Revisit the node.
1289 AddToWorklist(Op.getNode());
1291 // Replace the old value with the new one.
1292 ++NodesCombined;
1293 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG);
1294 dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG);
1295 dbgs() << '\n');
1297 CommitTargetLoweringOpt(TLO);
1298 return true;
1301 /// Check the specified vector node value to see if it can be simplified or
1302 /// if things it uses can be simplified as it only uses some of the elements.
1303 /// If so, return true.
1304 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op,
1305 const APInt &DemandedElts,
1306 bool AssumeSingleUse) {
1307 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
1308 APInt KnownUndef, KnownZero;
1309 if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero,
1310 TLO, 0, AssumeSingleUse))
1311 return false;
1313 // Revisit the node.
1314 AddToWorklist(Op.getNode());
1316 // Replace the old value with the new one.
1317 ++NodesCombined;
1318 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG);
1319 dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG);
1320 dbgs() << '\n');
1322 CommitTargetLoweringOpt(TLO);
1323 return true;
1326 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
1327 SDLoc DL(Load);
1328 EVT VT = Load->getValueType(0);
1329 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0));
1331 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: ";
1332 Trunc.getNode()->dump(&DAG); dbgs() << '\n');
1333 WorklistRemover DeadNodes(*this);
1334 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
1335 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
1336 deleteAndRecombine(Load);
1337 AddToWorklist(Trunc.getNode());
1340 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
1341 Replace = false;
1342 SDLoc DL(Op);
1343 if (ISD::isUNINDEXEDLoad(Op.getNode())) {
1344 LoadSDNode *LD = cast<LoadSDNode>(Op);
1345 EVT MemVT = LD->getMemoryVT();
1346 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
1347 : LD->getExtensionType();
1348 Replace = true;
1349 return DAG.getExtLoad(ExtType, DL, PVT,
1350 LD->getChain(), LD->getBasePtr(),
1351 MemVT, LD->getMemOperand());
1354 unsigned Opc = Op.getOpcode();
1355 switch (Opc) {
1356 default: break;
1357 case ISD::AssertSext:
1358 if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT))
1359 return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1));
1360 break;
1361 case ISD::AssertZext:
1362 if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT))
1363 return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1));
1364 break;
1365 case ISD::Constant: {
1366 unsigned ExtOpc =
1367 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1368 return DAG.getNode(ExtOpc, DL, PVT, Op);
1372 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
1373 return SDValue();
1374 return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op);
1377 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
1378 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
1379 return SDValue();
1380 EVT OldVT = Op.getValueType();
1381 SDLoc DL(Op);
1382 bool Replace = false;
1383 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1384 if (!NewOp.getNode())
1385 return SDValue();
1386 AddToWorklist(NewOp.getNode());
1388 if (Replace)
1389 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1390 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp,
1391 DAG.getValueType(OldVT));
1394 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
1395 EVT OldVT = Op.getValueType();
1396 SDLoc DL(Op);
1397 bool Replace = false;
1398 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1399 if (!NewOp.getNode())
1400 return SDValue();
1401 AddToWorklist(NewOp.getNode());
1403 if (Replace)
1404 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1405 return DAG.getZeroExtendInReg(NewOp, DL, OldVT);
1408 /// Promote the specified integer binary operation if the target indicates it is
1409 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1410 /// i32 since i16 instructions are longer.
1411 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
1412 if (!LegalOperations)
1413 return SDValue();
1415 EVT VT = Op.getValueType();
1416 if (VT.isVector() || !VT.isInteger())
1417 return SDValue();
1419 // If operation type is 'undesirable', e.g. i16 on x86, consider
1420 // promoting it.
1421 unsigned Opc = Op.getOpcode();
1422 if (TLI.isTypeDesirableForOp(Opc, VT))
1423 return SDValue();
1425 EVT PVT = VT;
1426 // Consult target whether it is a good idea to promote this operation and
1427 // what's the right type to promote it to.
1428 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1429 assert(PVT != VT && "Don't know what type to promote to!");
1431 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
1433 bool Replace0 = false;
1434 SDValue N0 = Op.getOperand(0);
1435 SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
1437 bool Replace1 = false;
1438 SDValue N1 = Op.getOperand(1);
1439 SDValue NN1 = PromoteOperand(N1, PVT, Replace1);
1440 SDLoc DL(Op);
1442 SDValue RV =
1443 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1));
1445 // We are always replacing N0/N1's use in N and only need
1446 // additional replacements if there are additional uses.
1447 Replace0 &= !N0->hasOneUse();
1448 Replace1 &= (N0 != N1) && !N1->hasOneUse();
1450 // Combine Op here so it is preserved past replacements.
1451 CombineTo(Op.getNode(), RV);
1453 // If operands have a use ordering, make sure we deal with
1454 // predecessor first.
1455 if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) {
1456 std::swap(N0, N1);
1457 std::swap(NN0, NN1);
1460 if (Replace0) {
1461 AddToWorklist(NN0.getNode());
1462 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
1464 if (Replace1) {
1465 AddToWorklist(NN1.getNode());
1466 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
1468 return Op;
1470 return SDValue();
1473 /// Promote the specified integer shift operation if the target indicates it is
1474 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1475 /// i32 since i16 instructions are longer.
1476 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
1477 if (!LegalOperations)
1478 return SDValue();
1480 EVT VT = Op.getValueType();
1481 if (VT.isVector() || !VT.isInteger())
1482 return SDValue();
1484 // If operation type is 'undesirable', e.g. i16 on x86, consider
1485 // promoting it.
1486 unsigned Opc = Op.getOpcode();
1487 if (TLI.isTypeDesirableForOp(Opc, VT))
1488 return SDValue();
1490 EVT PVT = VT;
1491 // Consult target whether it is a good idea to promote this operation and
1492 // what's the right type to promote it to.
1493 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1494 assert(PVT != VT && "Don't know what type to promote to!");
1496 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
1498 bool Replace = false;
1499 SDValue N0 = Op.getOperand(0);
1500 SDValue N1 = Op.getOperand(1);
1501 if (Opc == ISD::SRA)
1502 N0 = SExtPromoteOperand(N0, PVT);
1503 else if (Opc == ISD::SRL)
1504 N0 = ZExtPromoteOperand(N0, PVT);
1505 else
1506 N0 = PromoteOperand(N0, PVT, Replace);
1508 if (!N0.getNode())
1509 return SDValue();
1511 SDLoc DL(Op);
1512 SDValue RV =
1513 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1));
1515 if (Replace)
1516 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
1518 // Deal with Op being deleted.
1519 if (Op && Op.getOpcode() != ISD::DELETED_NODE)
1520 return RV;
1522 return SDValue();
1525 SDValue DAGCombiner::PromoteExtend(SDValue Op) {
1526 if (!LegalOperations)
1527 return SDValue();
1529 EVT VT = Op.getValueType();
1530 if (VT.isVector() || !VT.isInteger())
1531 return SDValue();
1533 // If operation type is 'undesirable', e.g. i16 on x86, consider
1534 // promoting it.
1535 unsigned Opc = Op.getOpcode();
1536 if (TLI.isTypeDesirableForOp(Opc, VT))
1537 return SDValue();
1539 EVT PVT = VT;
1540 // Consult target whether it is a good idea to promote this operation and
1541 // what's the right type to promote it to.
1542 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1543 assert(PVT != VT && "Don't know what type to promote to!");
1544 // fold (aext (aext x)) -> (aext x)
1545 // fold (aext (zext x)) -> (zext x)
1546 // fold (aext (sext x)) -> (sext x)
1547 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
1548 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
1550 return SDValue();
1553 bool DAGCombiner::PromoteLoad(SDValue Op) {
1554 if (!LegalOperations)
1555 return false;
1557 if (!ISD::isUNINDEXEDLoad(Op.getNode()))
1558 return false;
1560 EVT VT = Op.getValueType();
1561 if (VT.isVector() || !VT.isInteger())
1562 return false;
1564 // If operation type is 'undesirable', e.g. i16 on x86, consider
1565 // promoting it.
1566 unsigned Opc = Op.getOpcode();
1567 if (TLI.isTypeDesirableForOp(Opc, VT))
1568 return false;
1570 EVT PVT = VT;
1571 // Consult target whether it is a good idea to promote this operation and
1572 // what's the right type to promote it to.
1573 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1574 assert(PVT != VT && "Don't know what type to promote to!");
1576 SDLoc DL(Op);
1577 SDNode *N = Op.getNode();
1578 LoadSDNode *LD = cast<LoadSDNode>(N);
1579 EVT MemVT = LD->getMemoryVT();
1580 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
1581 : LD->getExtensionType();
1582 SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT,
1583 LD->getChain(), LD->getBasePtr(),
1584 MemVT, LD->getMemOperand());
1585 SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD);
1587 LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: ";
1588 Result.getNode()->dump(&DAG); dbgs() << '\n');
1589 WorklistRemover DeadNodes(*this);
1590 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1591 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
1592 deleteAndRecombine(N);
1593 AddToWorklist(Result.getNode());
1594 return true;
1596 return false;
1599 /// Recursively delete a node which has no uses and any operands for
1600 /// which it is the only use.
1602 /// Note that this both deletes the nodes and removes them from the worklist.
1603 /// It also adds any nodes who have had a user deleted to the worklist as they
1604 /// may now have only one use and subject to other combines.
1605 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
1606 if (!N->use_empty())
1607 return false;
1609 SmallSetVector<SDNode *, 16> Nodes;
1610 Nodes.insert(N);
1611 do {
1612 N = Nodes.pop_back_val();
1613 if (!N)
1614 continue;
1616 if (N->use_empty()) {
1617 for (const SDValue &ChildN : N->op_values())
1618 Nodes.insert(ChildN.getNode());
1620 removeFromWorklist(N);
1621 DAG.DeleteNode(N);
1622 } else {
1623 AddToWorklist(N);
1625 } while (!Nodes.empty());
1626 return true;
1629 //===----------------------------------------------------------------------===//
1630 // Main DAG Combiner implementation
1631 //===----------------------------------------------------------------------===//
1633 void DAGCombiner::Run(CombineLevel AtLevel) {
1634 // set the instance variables, so that the various visit routines may use it.
1635 Level = AtLevel;
1636 LegalOperations = Level >= AfterLegalizeVectorOps;
1637 LegalTypes = Level >= AfterLegalizeTypes;
1639 WorklistInserter AddNodes(*this);
1641 // Add all the dag nodes to the worklist.
1642 for (SDNode &Node : DAG.allnodes())
1643 AddToWorklist(&Node);
1645 // Create a dummy node (which is not added to allnodes), that adds a reference
1646 // to the root node, preventing it from being deleted, and tracking any
1647 // changes of the root.
1648 HandleSDNode Dummy(DAG.getRoot());
1650 // While we have a valid worklist entry node, try to combine it.
1651 while (SDNode *N = getNextWorklistEntry()) {
1652 // If N has no uses, it is dead. Make sure to revisit all N's operands once
1653 // N is deleted from the DAG, since they too may now be dead or may have a
1654 // reduced number of uses, allowing other xforms.
1655 if (recursivelyDeleteUnusedNodes(N))
1656 continue;
1658 WorklistRemover DeadNodes(*this);
1660 // If this combine is running after legalizing the DAG, re-legalize any
1661 // nodes pulled off the worklist.
1662 if (Level == AfterLegalizeDAG) {
1663 SmallSetVector<SDNode *, 16> UpdatedNodes;
1664 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
1666 for (SDNode *LN : UpdatedNodes) {
1667 AddUsersToWorklist(LN);
1668 AddToWorklist(LN);
1670 if (!NIsValid)
1671 continue;
1674 LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));
1676 // Add any operands of the new node which have not yet been combined to the
1677 // worklist as well. Because the worklist uniques things already, this
1678 // won't repeatedly process the same operand.
1679 CombinedNodes.insert(N);
1680 for (const SDValue &ChildN : N->op_values())
1681 if (!CombinedNodes.count(ChildN.getNode()))
1682 AddToWorklist(ChildN.getNode());
1684 SDValue RV = combine(N);
1686 if (!RV.getNode())
1687 continue;
1689 ++NodesCombined;
1691 // If we get back the same node we passed in, rather than a new node or
1692 // zero, we know that the node must have defined multiple values and
1693 // CombineTo was used. Since CombineTo takes care of the worklist
1694 // mechanics for us, we have no work to do in this case.
1695 if (RV.getNode() == N)
1696 continue;
1698 assert(N->getOpcode() != ISD::DELETED_NODE &&
1699 RV.getOpcode() != ISD::DELETED_NODE &&
1700 "Node was deleted but visit returned new node!");
1702 LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG));
1704 if (N->getNumValues() == RV.getNode()->getNumValues())
1705 DAG.ReplaceAllUsesWith(N, RV.getNode());
1706 else {
1707 assert(N->getValueType(0) == RV.getValueType() &&
1708 N->getNumValues() == 1 && "Type mismatch");
1709 DAG.ReplaceAllUsesWith(N, &RV);
1712 // Push the new node and any users onto the worklist
1713 AddToWorklist(RV.getNode());
1714 AddUsersToWorklist(RV.getNode());
1716 // Finally, if the node is now dead, remove it from the graph. The node
1717 // may not be dead if the replacement process recursively simplified to
1718 // something else needing this node. This will also take care of adding any
1719 // operands which have lost a user to the worklist.
1720 recursivelyDeleteUnusedNodes(N);
1723 // If the root changed (e.g. it was a dead load, update the root).
1724 DAG.setRoot(Dummy.getValue());
1725 DAG.RemoveDeadNodes();
1728 SDValue DAGCombiner::visit(SDNode *N) {
1729 switch (N->getOpcode()) {
1730 default: break;
1731 case ISD::TokenFactor: return visitTokenFactor(N);
1732 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
1733 case ISD::ADD: return visitADD(N);
1734 case ISD::SUB: return visitSUB(N);
1735 case ISD::SADDSAT:
1736 case ISD::UADDSAT: return visitADDSAT(N);
1737 case ISD::SSUBSAT:
1738 case ISD::USUBSAT: return visitSUBSAT(N);
1739 case ISD::ADDC: return visitADDC(N);
1740 case ISD::SADDO:
1741 case ISD::UADDO: return visitADDO(N);
1742 case ISD::SUBC: return visitSUBC(N);
1743 case ISD::SSUBO:
1744 case ISD::USUBO: return visitSUBO(N);
1745 case ISD::ADDE: return visitADDE(N);
1746 case ISD::ADDCARRY: return visitADDCARRY(N);
1747 case ISD::SUBE: return visitSUBE(N);
1748 case ISD::SUBCARRY: return visitSUBCARRY(N);
1749 case ISD::SMULFIX:
1750 case ISD::SMULFIXSAT:
1751 case ISD::UMULFIX:
1752 case ISD::UMULFIXSAT: return visitMULFIX(N);
1753 case ISD::MUL: return visitMUL(N);
1754 case ISD::SDIV: return visitSDIV(N);
1755 case ISD::UDIV: return visitUDIV(N);
1756 case ISD::SREM:
1757 case ISD::UREM: return visitREM(N);
1758 case ISD::MULHU: return visitMULHU(N);
1759 case ISD::MULHS: return visitMULHS(N);
1760 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
1761 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
1762 case ISD::SMULO:
1763 case ISD::UMULO: return visitMULO(N);
1764 case ISD::SMIN:
1765 case ISD::SMAX:
1766 case ISD::UMIN:
1767 case ISD::UMAX: return visitIMINMAX(N);
1768 case ISD::AND: return visitAND(N);
1769 case ISD::OR: return visitOR(N);
1770 case ISD::XOR: return visitXOR(N);
1771 case ISD::SHL: return visitSHL(N);
1772 case ISD::SRA: return visitSRA(N);
1773 case ISD::SRL: return visitSRL(N);
1774 case ISD::ROTR:
1775 case ISD::ROTL: return visitRotate(N);
1776 case ISD::FSHL:
1777 case ISD::FSHR: return visitFunnelShift(N);
1778 case ISD::ABS: return visitABS(N);
1779 case ISD::BSWAP: return visitBSWAP(N);
1780 case ISD::BITREVERSE: return visitBITREVERSE(N);
1781 case ISD::CTLZ: return visitCTLZ(N);
1782 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N);
1783 case ISD::CTTZ: return visitCTTZ(N);
1784 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N);
1785 case ISD::CTPOP: return visitCTPOP(N);
1786 case ISD::SELECT: return visitSELECT(N);
1787 case ISD::VSELECT: return visitVSELECT(N);
1788 case ISD::SELECT_CC: return visitSELECT_CC(N);
1789 case ISD::SETCC: return visitSETCC(N);
1790 case ISD::SETCCCARRY: return visitSETCCCARRY(N);
1791 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
1792 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
1793 case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
1794 case ISD::AssertSext:
1795 case ISD::AssertZext: return visitAssertExt(N);
1796 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
1797 case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N);
1798 case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N);
1799 case ISD::TRUNCATE: return visitTRUNCATE(N);
1800 case ISD::BITCAST: return visitBITCAST(N);
1801 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
1802 case ISD::FADD: return visitFADD(N);
1803 case ISD::FSUB: return visitFSUB(N);
1804 case ISD::FMUL: return visitFMUL(N);
1805 case ISD::FMA: return visitFMA(N);
1806 case ISD::FDIV: return visitFDIV(N);
1807 case ISD::FREM: return visitFREM(N);
1808 case ISD::FSQRT: return visitFSQRT(N);
1809 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
1810 case ISD::FPOW: return visitFPOW(N);
1811 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
1812 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
1813 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
1814 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
1815 case ISD::FP_ROUND: return visitFP_ROUND(N);
1816 case ISD::FP_EXTEND: return visitFP_EXTEND(N);
1817 case ISD::FNEG: return visitFNEG(N);
1818 case ISD::FABS: return visitFABS(N);
1819 case ISD::FFLOOR: return visitFFLOOR(N);
1820 case ISD::FMINNUM: return visitFMINNUM(N);
1821 case ISD::FMAXNUM: return visitFMAXNUM(N);
1822 case ISD::FMINIMUM: return visitFMINIMUM(N);
1823 case ISD::FMAXIMUM: return visitFMAXIMUM(N);
1824 case ISD::FCEIL: return visitFCEIL(N);
1825 case ISD::FTRUNC: return visitFTRUNC(N);
1826 case ISD::BRCOND: return visitBRCOND(N);
1827 case ISD::BR_CC: return visitBR_CC(N);
1828 case ISD::LOAD: return visitLOAD(N);
1829 case ISD::STORE: return visitSTORE(N);
1830 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
1831 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1832 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
1833 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
1834 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
1835 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
1836 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N);
1837 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N);
1838 case ISD::MGATHER: return visitMGATHER(N);
1839 case ISD::MLOAD: return visitMLOAD(N);
1840 case ISD::MSCATTER: return visitMSCATTER(N);
1841 case ISD::MSTORE: return visitMSTORE(N);
1842 case ISD::LIFETIME_END: return visitLIFETIME_END(N);
1843 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N);
1844 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N);
1845 case ISD::VECREDUCE_FADD:
1846 case ISD::VECREDUCE_FMUL:
1847 case ISD::VECREDUCE_ADD:
1848 case ISD::VECREDUCE_MUL:
1849 case ISD::VECREDUCE_AND:
1850 case ISD::VECREDUCE_OR:
1851 case ISD::VECREDUCE_XOR:
1852 case ISD::VECREDUCE_SMAX:
1853 case ISD::VECREDUCE_SMIN:
1854 case ISD::VECREDUCE_UMAX:
1855 case ISD::VECREDUCE_UMIN:
1856 case ISD::VECREDUCE_FMAX:
1857 case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N);
1859 return SDValue();
1862 SDValue DAGCombiner::combine(SDNode *N) {
1863 SDValue RV = visit(N);
1865 // If nothing happened, try a target-specific DAG combine.
1866 if (!RV.getNode()) {
1867 assert(N->getOpcode() != ISD::DELETED_NODE &&
1868 "Node was deleted but visit returned NULL!");
1870 if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1871 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1873 // Expose the DAG combiner to the target combiner impls.
1874 TargetLowering::DAGCombinerInfo
1875 DagCombineInfo(DAG, Level, false, this);
1877 RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1881 // If nothing happened still, try promoting the operation.
1882 if (!RV.getNode()) {
1883 switch (N->getOpcode()) {
1884 default: break;
1885 case ISD::ADD:
1886 case ISD::SUB:
1887 case ISD::MUL:
1888 case ISD::AND:
1889 case ISD::OR:
1890 case ISD::XOR:
1891 RV = PromoteIntBinOp(SDValue(N, 0));
1892 break;
1893 case ISD::SHL:
1894 case ISD::SRA:
1895 case ISD::SRL:
1896 RV = PromoteIntShiftOp(SDValue(N, 0));
1897 break;
1898 case ISD::SIGN_EXTEND:
1899 case ISD::ZERO_EXTEND:
1900 case ISD::ANY_EXTEND:
1901 RV = PromoteExtend(SDValue(N, 0));
1902 break;
1903 case ISD::LOAD:
1904 if (PromoteLoad(SDValue(N, 0)))
1905 RV = SDValue(N, 0);
1906 break;
1910 // If N is a commutative binary node, try to eliminate it if the commuted
1911 // version is already present in the DAG.
1912 if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) &&
1913 N->getNumValues() == 1) {
1914 SDValue N0 = N->getOperand(0);
1915 SDValue N1 = N->getOperand(1);
1917 // Constant operands are canonicalized to RHS.
1918 if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) {
1919 SDValue Ops[] = {N1, N0};
1920 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
1921 N->getFlags());
1922 if (CSENode)
1923 return SDValue(CSENode, 0);
1927 return RV;
1930 /// Given a node, return its input chain if it has one, otherwise return a null
1931 /// sd operand.
1932 static SDValue getInputChainForNode(SDNode *N) {
1933 if (unsigned NumOps = N->getNumOperands()) {
1934 if (N->getOperand(0).getValueType() == MVT::Other)
1935 return N->getOperand(0);
1936 if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1937 return N->getOperand(NumOps-1);
1938 for (unsigned i = 1; i < NumOps-1; ++i)
1939 if (N->getOperand(i).getValueType() == MVT::Other)
1940 return N->getOperand(i);
1942 return SDValue();
1945 SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1946 // If N has two operands, where one has an input chain equal to the other,
1947 // the 'other' chain is redundant.
1948 if (N->getNumOperands() == 2) {
1949 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1950 return N->getOperand(0);
1951 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1952 return N->getOperand(1);
1955 // Don't simplify token factors if optnone.
1956 if (OptLevel == CodeGenOpt::None)
1957 return SDValue();
1959 // If the sole user is a token factor, we should make sure we have a
1960 // chance to merge them together. This prevents TF chains from inhibiting
1961 // optimizations.
1962 if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor)
1963 AddToWorklist(*(N->use_begin()));
1965 SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
1966 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
1967 SmallPtrSet<SDNode*, 16> SeenOps;
1968 bool Changed = false; // If we should replace this token factor.
1970 // Start out with this token factor.
1971 TFs.push_back(N);
1973 // Iterate through token factors. The TFs grows when new token factors are
1974 // encountered.
1975 for (unsigned i = 0; i < TFs.size(); ++i) {
1976 // Limit number of nodes to inline, to avoid quadratic compile times.
1977 // We have to add the outstanding Token Factors to Ops, otherwise we might
1978 // drop Ops from the resulting Token Factors.
1979 if (Ops.size() > TokenFactorInlineLimit) {
1980 for (unsigned j = i; j < TFs.size(); j++)
1981 Ops.emplace_back(TFs[j], 0);
1982 // Drop unprocessed Token Factors from TFs, so we do not add them to the
1983 // combiner worklist later.
1984 TFs.resize(i);
1985 break;
1988 SDNode *TF = TFs[i];
1989 // Check each of the operands.
1990 for (const SDValue &Op : TF->op_values()) {
1991 switch (Op.getOpcode()) {
1992 case ISD::EntryToken:
1993 // Entry tokens don't need to be added to the list. They are
1994 // redundant.
1995 Changed = true;
1996 break;
1998 case ISD::TokenFactor:
1999 if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) {
2000 // Queue up for processing.
2001 TFs.push_back(Op.getNode());
2002 Changed = true;
2003 break;
2005 LLVM_FALLTHROUGH;
2007 default:
2008 // Only add if it isn't already in the list.
2009 if (SeenOps.insert(Op.getNode()).second)
2010 Ops.push_back(Op);
2011 else
2012 Changed = true;
2013 break;
2018 // Re-visit inlined Token Factors, to clean them up in case they have been
2019 // removed. Skip the first Token Factor, as this is the current node.
2020 for (unsigned i = 1, e = TFs.size(); i < e; i++)
2021 AddToWorklist(TFs[i]);
2023 // Remove Nodes that are chained to another node in the list. Do so
2024 // by walking up chains breath-first stopping when we've seen
2025 // another operand. In general we must climb to the EntryNode, but we can exit
2026 // early if we find all remaining work is associated with just one operand as
2027 // no further pruning is possible.
2029 // List of nodes to search through and original Ops from which they originate.
2030 SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist;
2031 SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op.
2032 SmallPtrSet<SDNode *, 16> SeenChains;
2033 bool DidPruneOps = false;
2035 unsigned NumLeftToConsider = 0;
2036 for (const SDValue &Op : Ops) {
2037 Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++));
2038 OpWorkCount.push_back(1);
2041 auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) {
2042 // If this is an Op, we can remove the op from the list. Remark any
2043 // search associated with it as from the current OpNumber.
2044 if (SeenOps.count(Op) != 0) {
2045 Changed = true;
2046 DidPruneOps = true;
2047 unsigned OrigOpNumber = 0;
2048 while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op)
2049 OrigOpNumber++;
2050 assert((OrigOpNumber != Ops.size()) &&
2051 "expected to find TokenFactor Operand");
2052 // Re-mark worklist from OrigOpNumber to OpNumber
2053 for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) {
2054 if (Worklist[i].second == OrigOpNumber) {
2055 Worklist[i].second = OpNumber;
2058 OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber];
2059 OpWorkCount[OrigOpNumber] = 0;
2060 NumLeftToConsider--;
2062 // Add if it's a new chain
2063 if (SeenChains.insert(Op).second) {
2064 OpWorkCount[OpNumber]++;
2065 Worklist.push_back(std::make_pair(Op, OpNumber));
2069 for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) {
2070 // We need at least be consider at least 2 Ops to prune.
2071 if (NumLeftToConsider <= 1)
2072 break;
2073 auto CurNode = Worklist[i].first;
2074 auto CurOpNumber = Worklist[i].second;
2075 assert((OpWorkCount[CurOpNumber] > 0) &&
2076 "Node should not appear in worklist");
2077 switch (CurNode->getOpcode()) {
2078 case ISD::EntryToken:
2079 // Hitting EntryToken is the only way for the search to terminate without
2080 // hitting
2081 // another operand's search. Prevent us from marking this operand
2082 // considered.
2083 NumLeftToConsider++;
2084 break;
2085 case ISD::TokenFactor:
2086 for (const SDValue &Op : CurNode->op_values())
2087 AddToWorklist(i, Op.getNode(), CurOpNumber);
2088 break;
2089 case ISD::LIFETIME_START:
2090 case ISD::LIFETIME_END:
2091 case ISD::CopyFromReg:
2092 case ISD::CopyToReg:
2093 AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber);
2094 break;
2095 default:
2096 if (auto *MemNode = dyn_cast<MemSDNode>(CurNode))
2097 AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber);
2098 break;
2100 OpWorkCount[CurOpNumber]--;
2101 if (OpWorkCount[CurOpNumber] == 0)
2102 NumLeftToConsider--;
2105 // If we've changed things around then replace token factor.
2106 if (Changed) {
2107 SDValue Result;
2108 if (Ops.empty()) {
2109 // The entry token is the only possible outcome.
2110 Result = DAG.getEntryNode();
2111 } else {
2112 if (DidPruneOps) {
2113 SmallVector<SDValue, 8> PrunedOps;
2115 for (const SDValue &Op : Ops) {
2116 if (SeenChains.count(Op.getNode()) == 0)
2117 PrunedOps.push_back(Op);
2119 Result = DAG.getTokenFactor(SDLoc(N), PrunedOps);
2120 } else {
2121 Result = DAG.getTokenFactor(SDLoc(N), Ops);
2124 return Result;
2126 return SDValue();
2129 /// MERGE_VALUES can always be eliminated.
2130 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
2131 WorklistRemover DeadNodes(*this);
2132 // Replacing results may cause a different MERGE_VALUES to suddenly
2133 // be CSE'd with N, and carry its uses with it. Iterate until no
2134 // uses remain, to ensure that the node can be safely deleted.
2135 // First add the users of this node to the work list so that they
2136 // can be tried again once they have new operands.
2137 AddUsersToWorklist(N);
2138 do {
2139 // Do as a single replacement to avoid rewalking use lists.
2140 SmallVector<SDValue, 8> Ops;
2141 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2142 Ops.push_back(N->getOperand(i));
2143 DAG.ReplaceAllUsesWith(N, Ops.data());
2144 } while (!N->use_empty());
2145 deleteAndRecombine(N);
2146 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2149 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
2150 /// ConstantSDNode pointer else nullptr.
2151 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) {
2152 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N);
2153 return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
2156 SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) {
2157 assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 &&
2158 "Unexpected binary operator");
2160 // Don't do this unless the old select is going away. We want to eliminate the
2161 // binary operator, not replace a binop with a select.
2162 // TODO: Handle ISD::SELECT_CC.
2163 unsigned SelOpNo = 0;
2164 SDValue Sel = BO->getOperand(0);
2165 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) {
2166 SelOpNo = 1;
2167 Sel = BO->getOperand(1);
2170 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse())
2171 return SDValue();
2173 SDValue CT = Sel.getOperand(1);
2174 if (!isConstantOrConstantVector(CT, true) &&
2175 !isConstantFPBuildVectorOrConstantFP(CT))
2176 return SDValue();
2178 SDValue CF = Sel.getOperand(2);
2179 if (!isConstantOrConstantVector(CF, true) &&
2180 !isConstantFPBuildVectorOrConstantFP(CF))
2181 return SDValue();
2183 // Bail out if any constants are opaque because we can't constant fold those.
2184 // The exception is "and" and "or" with either 0 or -1 in which case we can
2185 // propagate non constant operands into select. I.e.:
2186 // and (select Cond, 0, -1), X --> select Cond, 0, X
2187 // or X, (select Cond, -1, 0) --> select Cond, -1, X
2188 auto BinOpcode = BO->getOpcode();
2189 bool CanFoldNonConst =
2190 (BinOpcode == ISD::AND || BinOpcode == ISD::OR) &&
2191 (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) &&
2192 (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF));
2194 SDValue CBO = BO->getOperand(SelOpNo ^ 1);
2195 if (!CanFoldNonConst &&
2196 !isConstantOrConstantVector(CBO, true) &&
2197 !isConstantFPBuildVectorOrConstantFP(CBO))
2198 return SDValue();
2200 EVT VT = Sel.getValueType();
2202 // In case of shift value and shift amount may have different VT. For instance
2203 // on x86 shift amount is i8 regardles of LHS type. Bail out if we have
2204 // swapped operands and value types do not match. NB: x86 is fine if operands
2205 // are not swapped with shift amount VT being not bigger than shifted value.
2206 // TODO: that is possible to check for a shift operation, correct VTs and
2207 // still perform optimization on x86 if needed.
2208 if (SelOpNo && VT != CBO.getValueType())
2209 return SDValue();
2211 // We have a select-of-constants followed by a binary operator with a
2212 // constant. Eliminate the binop by pulling the constant math into the select.
2213 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
2214 SDLoc DL(Sel);
2215 SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT)
2216 : DAG.getNode(BinOpcode, DL, VT, CT, CBO);
2217 if (!CanFoldNonConst && !NewCT.isUndef() &&
2218 !isConstantOrConstantVector(NewCT, true) &&
2219 !isConstantFPBuildVectorOrConstantFP(NewCT))
2220 return SDValue();
2222 SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF)
2223 : DAG.getNode(BinOpcode, DL, VT, CF, CBO);
2224 if (!CanFoldNonConst && !NewCF.isUndef() &&
2225 !isConstantOrConstantVector(NewCF, true) &&
2226 !isConstantFPBuildVectorOrConstantFP(NewCF))
2227 return SDValue();
2229 SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF);
2230 SelectOp->setFlags(BO->getFlags());
2231 return SelectOp;
2234 static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) {
2235 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
2236 "Expecting add or sub");
2238 // Match a constant operand and a zext operand for the math instruction:
2239 // add Z, C
2240 // sub C, Z
2241 bool IsAdd = N->getOpcode() == ISD::ADD;
2242 SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0);
2243 SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1);
2244 auto *CN = dyn_cast<ConstantSDNode>(C);
2245 if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND)
2246 return SDValue();
2248 // Match the zext operand as a setcc of a boolean.
2249 if (Z.getOperand(0).getOpcode() != ISD::SETCC ||
2250 Z.getOperand(0).getValueType() != MVT::i1)
2251 return SDValue();
2253 // Match the compare as: setcc (X & 1), 0, eq.
2254 SDValue SetCC = Z.getOperand(0);
2255 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
2256 if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) ||
2257 SetCC.getOperand(0).getOpcode() != ISD::AND ||
2258 !isOneConstant(SetCC.getOperand(0).getOperand(1)))
2259 return SDValue();
2261 // We are adding/subtracting a constant and an inverted low bit. Turn that
2262 // into a subtract/add of the low bit with incremented/decremented constant:
2263 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
2264 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
2265 EVT VT = C.getValueType();
2266 SDLoc DL(N);
2267 SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT);
2268 SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) :
2269 DAG.getConstant(CN->getAPIntValue() - 1, DL, VT);
2270 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit);
2273 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
2274 /// a shift and add with a different constant.
2275 static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) {
2276 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
2277 "Expecting add or sub");
2279 // We need a constant operand for the add/sub, and the other operand is a
2280 // logical shift right: add (srl), C or sub C, (srl).
2281 // TODO - support non-uniform vector amounts.
2282 bool IsAdd = N->getOpcode() == ISD::ADD;
2283 SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0);
2284 SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1);
2285 ConstantSDNode *C = isConstOrConstSplat(ConstantOp);
2286 if (!C || ShiftOp.getOpcode() != ISD::SRL)
2287 return SDValue();
2289 // The shift must be of a 'not' value.
2290 SDValue Not = ShiftOp.getOperand(0);
2291 if (!Not.hasOneUse() || !isBitwiseNot(Not))
2292 return SDValue();
2294 // The shift must be moving the sign bit to the least-significant-bit.
2295 EVT VT = ShiftOp.getValueType();
2296 SDValue ShAmt = ShiftOp.getOperand(1);
2297 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
2298 if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1))
2299 return SDValue();
2301 // Eliminate the 'not' by adjusting the shift and add/sub constant:
2302 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
2303 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
2304 SDLoc DL(N);
2305 auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL;
2306 SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt);
2307 APInt NewC = IsAdd ? C->getAPIntValue() + 1 : C->getAPIntValue() - 1;
2308 return DAG.getNode(ISD::ADD, DL, VT, NewShift, DAG.getConstant(NewC, DL, VT));
2311 /// Try to fold a node that behaves like an ADD (note that N isn't necessarily
2312 /// an ISD::ADD here, it could for example be an ISD::OR if we know that there
2313 /// are no common bits set in the operands).
2314 SDValue DAGCombiner::visitADDLike(SDNode *N) {
2315 SDValue N0 = N->getOperand(0);
2316 SDValue N1 = N->getOperand(1);
2317 EVT VT = N0.getValueType();
2318 SDLoc DL(N);
2320 // fold vector ops
2321 if (VT.isVector()) {
2322 if (SDValue FoldedVOp = SimplifyVBinOp(N))
2323 return FoldedVOp;
2325 // fold (add x, 0) -> x, vector edition
2326 if (ISD::isBuildVectorAllZeros(N1.getNode()))
2327 return N0;
2328 if (ISD::isBuildVectorAllZeros(N0.getNode()))
2329 return N1;
2332 // fold (add x, undef) -> undef
2333 if (N0.isUndef())
2334 return N0;
2336 if (N1.isUndef())
2337 return N1;
2339 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
2340 // canonicalize constant to RHS
2341 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
2342 return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
2343 // fold (add c1, c2) -> c1+c2
2344 return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N0.getNode(),
2345 N1.getNode());
2348 // fold (add x, 0) -> x
2349 if (isNullConstant(N1))
2350 return N0;
2352 if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) {
2353 // fold ((A-c1)+c2) -> (A+(c2-c1))
2354 if (N0.getOpcode() == ISD::SUB &&
2355 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) {
2356 SDValue Sub = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N1.getNode(),
2357 N0.getOperand(1).getNode());
2358 assert(Sub && "Constant folding failed");
2359 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub);
2362 // fold ((c1-A)+c2) -> (c1+c2)-A
2363 if (N0.getOpcode() == ISD::SUB &&
2364 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) {
2365 SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N1.getNode(),
2366 N0.getOperand(0).getNode());
2367 assert(Add && "Constant folding failed");
2368 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
2371 // add (sext i1 X), 1 -> zext (not i1 X)
2372 // We don't transform this pattern:
2373 // add (zext i1 X), -1 -> sext (not i1 X)
2374 // because most (?) targets generate better code for the zext form.
2375 if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() &&
2376 isOneOrOneSplat(N1)) {
2377 SDValue X = N0.getOperand(0);
2378 if ((!LegalOperations ||
2379 (TLI.isOperationLegal(ISD::XOR, X.getValueType()) &&
2380 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) &&
2381 X.getScalarValueSizeInBits() == 1) {
2382 SDValue Not = DAG.getNOT(DL, X, X.getValueType());
2383 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not);
2387 // Undo the add -> or combine to merge constant offsets from a frame index.
2388 if (N0.getOpcode() == ISD::OR &&
2389 isa<FrameIndexSDNode>(N0.getOperand(0)) &&
2390 isa<ConstantSDNode>(N0.getOperand(1)) &&
2391 DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) {
2392 SDValue Add0 = DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(1));
2393 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0);
2397 if (SDValue NewSel = foldBinOpIntoSelect(N))
2398 return NewSel;
2400 // reassociate add
2401 if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) {
2402 if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags()))
2403 return RADD;
2405 // fold ((0-A) + B) -> B-A
2406 if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0)))
2407 return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
2409 // fold (A + (0-B)) -> A-B
2410 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
2411 return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1));
2413 // fold (A+(B-A)) -> B
2414 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
2415 return N1.getOperand(0);
2417 // fold ((B-A)+A) -> B
2418 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
2419 return N0.getOperand(0);
2421 // fold ((A-B)+(C-A)) -> (C-B)
2422 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
2423 N0.getOperand(0) == N1.getOperand(1))
2424 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
2425 N0.getOperand(1));
2427 // fold ((A-B)+(B-C)) -> (A-C)
2428 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
2429 N0.getOperand(1) == N1.getOperand(0))
2430 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
2431 N1.getOperand(1));
2433 // fold (A+(B-(A+C))) to (B-C)
2434 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
2435 N0 == N1.getOperand(1).getOperand(0))
2436 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
2437 N1.getOperand(1).getOperand(1));
2439 // fold (A+(B-(C+A))) to (B-C)
2440 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
2441 N0 == N1.getOperand(1).getOperand(1))
2442 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
2443 N1.getOperand(1).getOperand(0));
2445 // fold (A+((B-A)+or-C)) to (B+or-C)
2446 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
2447 N1.getOperand(0).getOpcode() == ISD::SUB &&
2448 N0 == N1.getOperand(0).getOperand(1))
2449 return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0),
2450 N1.getOperand(1));
2452 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
2453 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
2454 SDValue N00 = N0.getOperand(0);
2455 SDValue N01 = N0.getOperand(1);
2456 SDValue N10 = N1.getOperand(0);
2457 SDValue N11 = N1.getOperand(1);
2459 if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10))
2460 return DAG.getNode(ISD::SUB, DL, VT,
2461 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
2462 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
2465 // fold (add (umax X, C), -C) --> (usubsat X, C)
2466 if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) {
2467 auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) {
2468 return (!Max && !Op) ||
2469 (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue()));
2471 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT,
2472 /*AllowUndefs*/ true))
2473 return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0),
2474 N0.getOperand(1));
2477 if (SimplifyDemandedBits(SDValue(N, 0)))
2478 return SDValue(N, 0);
2480 if (isOneOrOneSplat(N1)) {
2481 // fold (add (xor a, -1), 1) -> (sub 0, a)
2482 if (isBitwiseNot(N0))
2483 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
2484 N0.getOperand(0));
2486 // fold (add (add (xor a, -1), b), 1) -> (sub b, a)
2487 if (N0.getOpcode() == ISD::ADD ||
2488 N0.getOpcode() == ISD::UADDO ||
2489 N0.getOpcode() == ISD::SADDO) {
2490 SDValue A, Xor;
2492 if (isBitwiseNot(N0.getOperand(0))) {
2493 A = N0.getOperand(1);
2494 Xor = N0.getOperand(0);
2495 } else if (isBitwiseNot(N0.getOperand(1))) {
2496 A = N0.getOperand(0);
2497 Xor = N0.getOperand(1);
2500 if (Xor)
2501 return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0));
2504 // Look for:
2505 // add (add x, y), 1
2506 // And if the target does not like this form then turn into:
2507 // sub y, (xor x, -1)
2508 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() &&
2509 N0.getOpcode() == ISD::ADD) {
2510 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
2511 DAG.getAllOnesConstant(DL, VT));
2512 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not);
2516 // (x - y) + -1 -> add (xor y, -1), x
2517 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
2518 isAllOnesOrAllOnesSplat(N1)) {
2519 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1);
2520 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0));
2523 if (SDValue Combined = visitADDLikeCommutative(N0, N1, N))
2524 return Combined;
2526 if (SDValue Combined = visitADDLikeCommutative(N1, N0, N))
2527 return Combined;
2529 return SDValue();
2532 SDValue DAGCombiner::visitADD(SDNode *N) {
2533 SDValue N0 = N->getOperand(0);
2534 SDValue N1 = N->getOperand(1);
2535 EVT VT = N0.getValueType();
2536 SDLoc DL(N);
2538 if (SDValue Combined = visitADDLike(N))
2539 return Combined;
2541 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
2542 return V;
2544 if (SDValue V = foldAddSubOfSignBit(N, DAG))
2545 return V;
2547 // fold (a+b) -> (a|b) iff a and b share no bits.
2548 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
2549 DAG.haveNoCommonBitsSet(N0, N1))
2550 return DAG.getNode(ISD::OR, DL, VT, N0, N1);
2552 return SDValue();
2555 SDValue DAGCombiner::visitADDSAT(SDNode *N) {
2556 unsigned Opcode = N->getOpcode();
2557 SDValue N0 = N->getOperand(0);
2558 SDValue N1 = N->getOperand(1);
2559 EVT VT = N0.getValueType();
2560 SDLoc DL(N);
2562 // fold vector ops
2563 if (VT.isVector()) {
2564 // TODO SimplifyVBinOp
2566 // fold (add_sat x, 0) -> x, vector edition
2567 if (ISD::isBuildVectorAllZeros(N1.getNode()))
2568 return N0;
2569 if (ISD::isBuildVectorAllZeros(N0.getNode()))
2570 return N1;
2573 // fold (add_sat x, undef) -> -1
2574 if (N0.isUndef() || N1.isUndef())
2575 return DAG.getAllOnesConstant(DL, VT);
2577 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
2578 // canonicalize constant to RHS
2579 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
2580 return DAG.getNode(Opcode, DL, VT, N1, N0);
2581 // fold (add_sat c1, c2) -> c3
2582 return DAG.FoldConstantArithmetic(Opcode, DL, VT, N0.getNode(),
2583 N1.getNode());
2586 // fold (add_sat x, 0) -> x
2587 if (isNullConstant(N1))
2588 return N0;
2590 // If it cannot overflow, transform into an add.
2591 if (Opcode == ISD::UADDSAT)
2592 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
2593 return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
2595 return SDValue();
2598 static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) {
2599 bool Masked = false;
2601 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
2602 while (true) {
2603 if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) {
2604 V = V.getOperand(0);
2605 continue;
2608 if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) {
2609 Masked = true;
2610 V = V.getOperand(0);
2611 continue;
2614 break;
2617 // If this is not a carry, return.
2618 if (V.getResNo() != 1)
2619 return SDValue();
2621 if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY &&
2622 V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO)
2623 return SDValue();
2625 EVT VT = V.getNode()->getValueType(0);
2626 if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT))
2627 return SDValue();
2629 // If the result is masked, then no matter what kind of bool it is we can
2630 // return. If it isn't, then we need to make sure the bool type is either 0 or
2631 // 1 and not other values.
2632 if (Masked ||
2633 TLI.getBooleanContents(V.getValueType()) ==
2634 TargetLoweringBase::ZeroOrOneBooleanContent)
2635 return V;
2637 return SDValue();
2640 /// Given the operands of an add/sub operation, see if the 2nd operand is a
2641 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert
2642 /// the opcode and bypass the mask operation.
2643 static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1,
2644 SelectionDAG &DAG, const SDLoc &DL) {
2645 if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1)))
2646 return SDValue();
2648 EVT VT = N0.getValueType();
2649 if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits())
2650 return SDValue();
2652 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X
2653 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X
2654 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0));
2657 /// Helper for doing combines based on N0 and N1 being added to each other.
2658 SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1,
2659 SDNode *LocReference) {
2660 EVT VT = N0.getValueType();
2661 SDLoc DL(LocReference);
2663 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
2664 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB &&
2665 isNullOrNullSplat(N1.getOperand(0).getOperand(0)))
2666 return DAG.getNode(ISD::SUB, DL, VT, N0,
2667 DAG.getNode(ISD::SHL, DL, VT,
2668 N1.getOperand(0).getOperand(1),
2669 N1.getOperand(1)));
2671 if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL))
2672 return V;
2674 // Look for:
2675 // add (add x, 1), y
2676 // And if the target does not like this form then turn into:
2677 // sub y, (xor x, -1)
2678 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() &&
2679 N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) {
2680 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
2681 DAG.getAllOnesConstant(DL, VT));
2682 return DAG.getNode(ISD::SUB, DL, VT, N1, Not);
2685 // Hoist one-use subtraction by non-opaque constant:
2686 // (x - C) + y -> (x + y) - C
2687 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
2688 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
2689 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
2690 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1);
2691 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
2693 // Hoist one-use subtraction from non-opaque constant:
2694 // (C - x) + y -> (y - x) + C
2695 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
2696 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
2697 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
2698 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0));
2701 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1'
2702 // rather than 'add 0/-1' (the zext should get folded).
2703 // add (sext i1 Y), X --> sub X, (zext i1 Y)
2704 if (N0.getOpcode() == ISD::SIGN_EXTEND &&
2705 N0.getOperand(0).getScalarValueSizeInBits() == 1 &&
2706 TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) {
2707 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
2708 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
2711 // add X, (sextinreg Y i1) -> sub X, (and Y 1)
2712 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
2713 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
2714 if (TN->getVT() == MVT::i1) {
2715 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
2716 DAG.getConstant(1, DL, VT));
2717 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
2721 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2722 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) &&
2723 N1.getResNo() == 0)
2724 return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(),
2725 N0, N1.getOperand(0), N1.getOperand(2));
2727 // (add X, Carry) -> (addcarry X, 0, Carry)
2728 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
2729 if (SDValue Carry = getAsCarry(TLI, N1))
2730 return DAG.getNode(ISD::ADDCARRY, DL,
2731 DAG.getVTList(VT, Carry.getValueType()), N0,
2732 DAG.getConstant(0, DL, VT), Carry);
2734 return SDValue();
2737 SDValue DAGCombiner::visitADDC(SDNode *N) {
2738 SDValue N0 = N->getOperand(0);
2739 SDValue N1 = N->getOperand(1);
2740 EVT VT = N0.getValueType();
2741 SDLoc DL(N);
2743 // If the flag result is dead, turn this into an ADD.
2744 if (!N->hasAnyUseOfValue(1))
2745 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2746 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2748 // canonicalize constant to RHS.
2749 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2750 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2751 if (N0C && !N1C)
2752 return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0);
2754 // fold (addc x, 0) -> x + no carry out
2755 if (isNullConstant(N1))
2756 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
2757 DL, MVT::Glue));
2759 // If it cannot overflow, transform into an add.
2760 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
2761 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2762 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2764 return SDValue();
2767 static SDValue flipBoolean(SDValue V, const SDLoc &DL,
2768 SelectionDAG &DAG, const TargetLowering &TLI) {
2769 EVT VT = V.getValueType();
2771 SDValue Cst;
2772 switch (TLI.getBooleanContents(VT)) {
2773 case TargetLowering::ZeroOrOneBooleanContent:
2774 case TargetLowering::UndefinedBooleanContent:
2775 Cst = DAG.getConstant(1, DL, VT);
2776 break;
2777 case TargetLowering::ZeroOrNegativeOneBooleanContent:
2778 Cst = DAG.getAllOnesConstant(DL, VT);
2779 break;
2782 return DAG.getNode(ISD::XOR, DL, VT, V, Cst);
2786 * Flips a boolean if it is cheaper to compute. If the Force parameters is set,
2787 * then the flip also occurs if computing the inverse is the same cost.
2788 * This function returns an empty SDValue in case it cannot flip the boolean
2789 * without increasing the cost of the computation. If you want to flip a boolean
2790 * no matter what, use flipBoolean.
2792 static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG,
2793 const TargetLowering &TLI,
2794 bool Force) {
2795 if (Force && isa<ConstantSDNode>(V))
2796 return flipBoolean(V, SDLoc(V), DAG, TLI);
2798 if (V.getOpcode() != ISD::XOR)
2799 return SDValue();
2801 ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false);
2802 if (!Const)
2803 return SDValue();
2805 EVT VT = V.getValueType();
2807 bool IsFlip = false;
2808 switch(TLI.getBooleanContents(VT)) {
2809 case TargetLowering::ZeroOrOneBooleanContent:
2810 IsFlip = Const->isOne();
2811 break;
2812 case TargetLowering::ZeroOrNegativeOneBooleanContent:
2813 IsFlip = Const->isAllOnesValue();
2814 break;
2815 case TargetLowering::UndefinedBooleanContent:
2816 IsFlip = (Const->getAPIntValue() & 0x01) == 1;
2817 break;
2820 if (IsFlip)
2821 return V.getOperand(0);
2822 if (Force)
2823 return flipBoolean(V, SDLoc(V), DAG, TLI);
2824 return SDValue();
2827 SDValue DAGCombiner::visitADDO(SDNode *N) {
2828 SDValue N0 = N->getOperand(0);
2829 SDValue N1 = N->getOperand(1);
2830 EVT VT = N0.getValueType();
2831 bool IsSigned = (ISD::SADDO == N->getOpcode());
2833 EVT CarryVT = N->getValueType(1);
2834 SDLoc DL(N);
2836 // If the flag result is dead, turn this into an ADD.
2837 if (!N->hasAnyUseOfValue(1))
2838 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2839 DAG.getUNDEF(CarryVT));
2841 // canonicalize constant to RHS.
2842 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
2843 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
2844 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
2846 // fold (addo x, 0) -> x + no carry out
2847 if (isNullOrNullSplat(N1))
2848 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
2850 if (!IsSigned) {
2851 // If it cannot overflow, transform into an add.
2852 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
2853 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2854 DAG.getConstant(0, DL, CarryVT));
2856 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
2857 if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) {
2858 SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(),
2859 DAG.getConstant(0, DL, VT), N0.getOperand(0));
2860 return CombineTo(N, Sub,
2861 flipBoolean(Sub.getValue(1), DL, DAG, TLI));
2864 if (SDValue Combined = visitUADDOLike(N0, N1, N))
2865 return Combined;
2867 if (SDValue Combined = visitUADDOLike(N1, N0, N))
2868 return Combined;
2871 return SDValue();
2874 SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) {
2875 EVT VT = N0.getValueType();
2876 if (VT.isVector())
2877 return SDValue();
2879 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2880 // If Y + 1 cannot overflow.
2881 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) {
2882 SDValue Y = N1.getOperand(0);
2883 SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType());
2884 if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never)
2885 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y,
2886 N1.getOperand(2));
2889 // (uaddo X, Carry) -> (addcarry X, 0, Carry)
2890 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
2891 if (SDValue Carry = getAsCarry(TLI, N1))
2892 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0,
2893 DAG.getConstant(0, SDLoc(N), VT), Carry);
2895 return SDValue();
2898 SDValue DAGCombiner::visitADDE(SDNode *N) {
2899 SDValue N0 = N->getOperand(0);
2900 SDValue N1 = N->getOperand(1);
2901 SDValue CarryIn = N->getOperand(2);
2903 // canonicalize constant to RHS
2904 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2905 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2906 if (N0C && !N1C)
2907 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
2908 N1, N0, CarryIn);
2910 // fold (adde x, y, false) -> (addc x, y)
2911 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
2912 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
2914 return SDValue();
2917 SDValue DAGCombiner::visitADDCARRY(SDNode *N) {
2918 SDValue N0 = N->getOperand(0);
2919 SDValue N1 = N->getOperand(1);
2920 SDValue CarryIn = N->getOperand(2);
2921 SDLoc DL(N);
2923 // canonicalize constant to RHS
2924 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2925 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2926 if (N0C && !N1C)
2927 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn);
2929 // fold (addcarry x, y, false) -> (uaddo x, y)
2930 if (isNullConstant(CarryIn)) {
2931 if (!LegalOperations ||
2932 TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0)))
2933 return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1);
2936 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
2937 if (isNullConstant(N0) && isNullConstant(N1)) {
2938 EVT VT = N0.getValueType();
2939 EVT CarryVT = CarryIn.getValueType();
2940 SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT);
2941 AddToWorklist(CarryExt.getNode());
2942 return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt,
2943 DAG.getConstant(1, DL, VT)),
2944 DAG.getConstant(0, DL, CarryVT));
2947 if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N))
2948 return Combined;
2950 if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N))
2951 return Combined;
2953 return SDValue();
2957 * If we are facing some sort of diamond carry propapagtion pattern try to
2958 * break it up to generate something like:
2959 * (addcarry X, 0, (addcarry A, B, Z):Carry)
2961 * The end result is usually an increase in operation required, but because the
2962 * carry is now linearized, other tranforms can kick in and optimize the DAG.
2964 * Patterns typically look something like
2965 * (uaddo A, B)
2966 * / \
2967 * Carry Sum
2968 * | \
2969 * | (addcarry *, 0, Z)
2970 * | /
2971 * \ Carry
2972 * | /
2973 * (addcarry X, *, *)
2975 * But numerous variation exist. Our goal is to identify A, B, X and Z and
2976 * produce a combine with a single path for carry propagation.
2978 static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG,
2979 SDValue X, SDValue Carry0, SDValue Carry1,
2980 SDNode *N) {
2981 if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1)
2982 return SDValue();
2983 if (Carry1.getOpcode() != ISD::UADDO)
2984 return SDValue();
2986 SDValue Z;
2989 * First look for a suitable Z. It will present itself in the form of
2990 * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true
2992 if (Carry0.getOpcode() == ISD::ADDCARRY &&
2993 isNullConstant(Carry0.getOperand(1))) {
2994 Z = Carry0.getOperand(2);
2995 } else if (Carry0.getOpcode() == ISD::UADDO &&
2996 isOneConstant(Carry0.getOperand(1))) {
2997 EVT VT = Combiner.getSetCCResultType(Carry0.getValueType());
2998 Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT);
2999 } else {
3000 // We couldn't find a suitable Z.
3001 return SDValue();
3005 auto cancelDiamond = [&](SDValue A,SDValue B) {
3006 SDLoc DL(N);
3007 SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z);
3008 Combiner.AddToWorklist(NewY.getNode());
3009 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X,
3010 DAG.getConstant(0, DL, X.getValueType()),
3011 NewY.getValue(1));
3015 * (uaddo A, B)
3017 * Sum
3019 * (addcarry *, 0, Z)
3021 if (Carry0.getOperand(0) == Carry1.getValue(0)) {
3022 return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1));
3026 * (addcarry A, 0, Z)
3028 * Sum
3030 * (uaddo *, B)
3032 if (Carry1.getOperand(0) == Carry0.getValue(0)) {
3033 return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1));
3036 if (Carry1.getOperand(1) == Carry0.getValue(0)) {
3037 return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0));
3040 return SDValue();
3043 SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn,
3044 SDNode *N) {
3045 // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry.
3046 if (isBitwiseNot(N0))
3047 if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) {
3048 SDLoc DL(N);
3049 SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1,
3050 N0.getOperand(0), NotC);
3051 return CombineTo(N, Sub,
3052 flipBoolean(Sub.getValue(1), DL, DAG, TLI));
3055 // Iff the flag result is dead:
3056 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry)
3057 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo
3058 // or the dependency between the instructions.
3059 if ((N0.getOpcode() == ISD::ADD ||
3060 (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 &&
3061 N0.getValue(1) != CarryIn)) &&
3062 isNullConstant(N1) && !N->hasAnyUseOfValue(1))
3063 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(),
3064 N0.getOperand(0), N0.getOperand(1), CarryIn);
3067 * When one of the addcarry argument is itself a carry, we may be facing
3068 * a diamond carry propagation. In which case we try to transform the DAG
3069 * to ensure linear carry propagation if that is possible.
3071 if (auto Y = getAsCarry(TLI, N1)) {
3072 // Because both are carries, Y and Z can be swapped.
3073 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N))
3074 return R;
3075 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N))
3076 return R;
3079 return SDValue();
3082 // Since it may not be valid to emit a fold to zero for vector initializers
3083 // check if we can before folding.
3084 static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT,
3085 SelectionDAG &DAG, bool LegalOperations) {
3086 if (!VT.isVector())
3087 return DAG.getConstant(0, DL, VT);
3088 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
3089 return DAG.getConstant(0, DL, VT);
3090 return SDValue();
3093 SDValue DAGCombiner::visitSUB(SDNode *N) {
3094 SDValue N0 = N->getOperand(0);
3095 SDValue N1 = N->getOperand(1);
3096 EVT VT = N0.getValueType();
3097 SDLoc DL(N);
3099 // fold vector ops
3100 if (VT.isVector()) {
3101 if (SDValue FoldedVOp = SimplifyVBinOp(N))
3102 return FoldedVOp;
3104 // fold (sub x, 0) -> x, vector edition
3105 if (ISD::isBuildVectorAllZeros(N1.getNode()))
3106 return N0;
3109 // fold (sub x, x) -> 0
3110 // FIXME: Refactor this and xor and other similar operations together.
3111 if (N0 == N1)
3112 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
3113 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3114 DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
3115 // fold (sub c1, c2) -> c1-c2
3116 return DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(),
3117 N1.getNode());
3120 if (SDValue NewSel = foldBinOpIntoSelect(N))
3121 return NewSel;
3123 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
3125 // fold (sub x, c) -> (add x, -c)
3126 if (N1C) {
3127 return DAG.getNode(ISD::ADD, DL, VT, N0,
3128 DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
3131 if (isNullOrNullSplat(N0)) {
3132 unsigned BitWidth = VT.getScalarSizeInBits();
3133 // Right-shifting everything out but the sign bit followed by negation is
3134 // the same as flipping arithmetic/logical shift type without the negation:
3135 // -(X >>u 31) -> (X >>s 31)
3136 // -(X >>s 31) -> (X >>u 31)
3137 if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) {
3138 ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1));
3139 if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) {
3140 auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA;
3141 if (!LegalOperations || TLI.isOperationLegal(NewSh, VT))
3142 return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1));
3146 // 0 - X --> 0 if the sub is NUW.
3147 if (N->getFlags().hasNoUnsignedWrap())
3148 return N0;
3150 if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) {
3151 // N1 is either 0 or the minimum signed value. If the sub is NSW, then
3152 // N1 must be 0 because negating the minimum signed value is undefined.
3153 if (N->getFlags().hasNoSignedWrap())
3154 return N0;
3156 // 0 - X --> X if X is 0 or the minimum signed value.
3157 return N1;
3161 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
3162 if (isAllOnesOrAllOnesSplat(N0))
3163 return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
3165 // fold (A - (0-B)) -> A+B
3166 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
3167 return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1));
3169 // fold A-(A-B) -> B
3170 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
3171 return N1.getOperand(1);
3173 // fold (A+B)-A -> B
3174 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
3175 return N0.getOperand(1);
3177 // fold (A+B)-B -> A
3178 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
3179 return N0.getOperand(0);
3181 // fold (A+C1)-C2 -> A+(C1-C2)
3182 if (N0.getOpcode() == ISD::ADD &&
3183 isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
3184 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
3185 SDValue NewC = DAG.FoldConstantArithmetic(
3186 ISD::SUB, DL, VT, N0.getOperand(1).getNode(), N1.getNode());
3187 assert(NewC && "Constant folding failed");
3188 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC);
3191 // fold C2-(A+C1) -> (C2-C1)-A
3192 if (N1.getOpcode() == ISD::ADD) {
3193 SDValue N11 = N1.getOperand(1);
3194 if (isConstantOrConstantVector(N0, /* NoOpaques */ true) &&
3195 isConstantOrConstantVector(N11, /* NoOpaques */ true)) {
3196 SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(),
3197 N11.getNode());
3198 assert(NewC && "Constant folding failed");
3199 return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0));
3203 // fold (A-C1)-C2 -> A-(C1+C2)
3204 if (N0.getOpcode() == ISD::SUB &&
3205 isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
3206 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
3207 SDValue NewC = DAG.FoldConstantArithmetic(
3208 ISD::ADD, DL, VT, N0.getOperand(1).getNode(), N1.getNode());
3209 assert(NewC && "Constant folding failed");
3210 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC);
3213 // fold (c1-A)-c2 -> (c1-c2)-A
3214 if (N0.getOpcode() == ISD::SUB &&
3215 isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
3216 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) {
3217 SDValue NewC = DAG.FoldConstantArithmetic(
3218 ISD::SUB, DL, VT, N0.getOperand(0).getNode(), N1.getNode());
3219 assert(NewC && "Constant folding failed");
3220 return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1));
3223 // fold ((A+(B+or-C))-B) -> A+or-C
3224 if (N0.getOpcode() == ISD::ADD &&
3225 (N0.getOperand(1).getOpcode() == ISD::SUB ||
3226 N0.getOperand(1).getOpcode() == ISD::ADD) &&
3227 N0.getOperand(1).getOperand(0) == N1)
3228 return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0),
3229 N0.getOperand(1).getOperand(1));
3231 // fold ((A+(C+B))-B) -> A+C
3232 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD &&
3233 N0.getOperand(1).getOperand(1) == N1)
3234 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0),
3235 N0.getOperand(1).getOperand(0));
3237 // fold ((A-(B-C))-C) -> A-B
3238 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB &&
3239 N0.getOperand(1).getOperand(1) == N1)
3240 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
3241 N0.getOperand(1).getOperand(0));
3243 // fold (A-(B-C)) -> A+(C-B)
3244 if (N1.getOpcode() == ISD::SUB && N1.hasOneUse())
3245 return DAG.getNode(ISD::ADD, DL, VT, N0,
3246 DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1),
3247 N1.getOperand(0)));
3249 // fold (X - (-Y * Z)) -> (X + (Y * Z))
3250 if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) {
3251 if (N1.getOperand(0).getOpcode() == ISD::SUB &&
3252 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) {
3253 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
3254 N1.getOperand(0).getOperand(1),
3255 N1.getOperand(1));
3256 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
3258 if (N1.getOperand(1).getOpcode() == ISD::SUB &&
3259 isNullOrNullSplat(N1.getOperand(1).getOperand(0))) {
3260 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
3261 N1.getOperand(0),
3262 N1.getOperand(1).getOperand(1));
3263 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
3267 // If either operand of a sub is undef, the result is undef
3268 if (N0.isUndef())
3269 return N0;
3270 if (N1.isUndef())
3271 return N1;
3273 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
3274 return V;
3276 if (SDValue V = foldAddSubOfSignBit(N, DAG))
3277 return V;
3279 if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N)))
3280 return V;
3282 // (x - y) - 1 -> add (xor y, -1), x
3283 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) {
3284 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1),
3285 DAG.getAllOnesConstant(DL, VT));
3286 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0));
3289 // Look for:
3290 // sub y, (xor x, -1)
3291 // And if the target does not like this form then turn into:
3292 // add (add x, y), 1
3293 if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) {
3294 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0));
3295 return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT));
3298 // Hoist one-use addition by non-opaque constant:
3299 // (x + C) - y -> (x - y) + C
3300 if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD &&
3301 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
3302 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
3303 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1));
3305 // y - (x + C) -> (y - x) - C
3306 if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD &&
3307 isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) {
3308 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0));
3309 return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1));
3311 // (x - C) - y -> (x - y) - C
3312 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
3313 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
3314 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
3315 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
3316 return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1));
3318 // (C - x) - y -> C - (x + y)
3319 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
3320 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
3321 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1);
3322 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add);
3325 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1'
3326 // rather than 'sub 0/1' (the sext should get folded).
3327 // sub X, (zext i1 Y) --> add X, (sext i1 Y)
3328 if (N1.getOpcode() == ISD::ZERO_EXTEND &&
3329 N1.getOperand(0).getScalarValueSizeInBits() == 1 &&
3330 TLI.getBooleanContents(VT) ==
3331 TargetLowering::ZeroOrNegativeOneBooleanContent) {
3332 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0));
3333 return DAG.getNode(ISD::ADD, DL, VT, N0, SExt);
3336 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X)
3337 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
3338 if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) {
3339 SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1);
3340 SDValue S0 = N1.getOperand(0);
3341 if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) {
3342 unsigned OpSizeInBits = VT.getScalarSizeInBits();
3343 if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1)))
3344 if (C->getAPIntValue() == (OpSizeInBits - 1))
3345 return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0);
3350 // If the relocation model supports it, consider symbol offsets.
3351 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
3352 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
3353 // fold (sub Sym, c) -> Sym-c
3354 if (N1C && GA->getOpcode() == ISD::GlobalAddress)
3355 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
3356 GA->getOffset() -
3357 (uint64_t)N1C->getSExtValue());
3358 // fold (sub Sym+c1, Sym+c2) -> c1-c2
3359 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
3360 if (GA->getGlobal() == GB->getGlobal())
3361 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
3362 DL, VT);
3365 // sub X, (sextinreg Y i1) -> add X, (and Y 1)
3366 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
3367 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
3368 if (TN->getVT() == MVT::i1) {
3369 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
3370 DAG.getConstant(1, DL, VT));
3371 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
3375 // Prefer an add for more folding potential and possibly better codegen:
3376 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
3377 if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) {
3378 SDValue ShAmt = N1.getOperand(1);
3379 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
3380 if (ShAmtC &&
3381 ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) {
3382 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt);
3383 return DAG.getNode(ISD::ADD, DL, VT, N0, SRA);
3387 return SDValue();
3390 SDValue DAGCombiner::visitSUBSAT(SDNode *N) {
3391 SDValue N0 = N->getOperand(0);
3392 SDValue N1 = N->getOperand(1);
3393 EVT VT = N0.getValueType();
3394 SDLoc DL(N);
3396 // fold vector ops
3397 if (VT.isVector()) {
3398 // TODO SimplifyVBinOp
3400 // fold (sub_sat x, 0) -> x, vector edition
3401 if (ISD::isBuildVectorAllZeros(N1.getNode()))
3402 return N0;
3405 // fold (sub_sat x, undef) -> 0
3406 if (N0.isUndef() || N1.isUndef())
3407 return DAG.getConstant(0, DL, VT);
3409 // fold (sub_sat x, x) -> 0
3410 if (N0 == N1)
3411 return DAG.getConstant(0, DL, VT);
3413 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3414 DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
3415 // fold (sub_sat c1, c2) -> c3
3416 return DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, N0.getNode(),
3417 N1.getNode());
3420 // fold (sub_sat x, 0) -> x
3421 if (isNullConstant(N1))
3422 return N0;
3424 return SDValue();
3427 SDValue DAGCombiner::visitSUBC(SDNode *N) {
3428 SDValue N0 = N->getOperand(0);
3429 SDValue N1 = N->getOperand(1);
3430 EVT VT = N0.getValueType();
3431 SDLoc DL(N);
3433 // If the flag result is dead, turn this into an SUB.
3434 if (!N->hasAnyUseOfValue(1))
3435 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
3436 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3438 // fold (subc x, x) -> 0 + no borrow
3439 if (N0 == N1)
3440 return CombineTo(N, DAG.getConstant(0, DL, VT),
3441 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3443 // fold (subc x, 0) -> x + no borrow
3444 if (isNullConstant(N1))
3445 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3447 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3448 if (isAllOnesConstant(N0))
3449 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
3450 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3452 return SDValue();
3455 SDValue DAGCombiner::visitSUBO(SDNode *N) {
3456 SDValue N0 = N->getOperand(0);
3457 SDValue N1 = N->getOperand(1);
3458 EVT VT = N0.getValueType();
3459 bool IsSigned = (ISD::SSUBO == N->getOpcode());
3461 EVT CarryVT = N->getValueType(1);
3462 SDLoc DL(N);
3464 // If the flag result is dead, turn this into an SUB.
3465 if (!N->hasAnyUseOfValue(1))
3466 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
3467 DAG.getUNDEF(CarryVT));
3469 // fold (subo x, x) -> 0 + no borrow
3470 if (N0 == N1)
3471 return CombineTo(N, DAG.getConstant(0, DL, VT),
3472 DAG.getConstant(0, DL, CarryVT));
3474 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
3476 // fold (subox, c) -> (addo x, -c)
3477 if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) {
3478 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0,
3479 DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
3482 // fold (subo x, 0) -> x + no borrow
3483 if (isNullOrNullSplat(N1))
3484 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
3486 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3487 if (!IsSigned && isAllOnesOrAllOnesSplat(N0))
3488 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
3489 DAG.getConstant(0, DL, CarryVT));
3491 return SDValue();
3494 SDValue DAGCombiner::visitSUBE(SDNode *N) {
3495 SDValue N0 = N->getOperand(0);
3496 SDValue N1 = N->getOperand(1);
3497 SDValue CarryIn = N->getOperand(2);
3499 // fold (sube x, y, false) -> (subc x, y)
3500 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
3501 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
3503 return SDValue();
3506 SDValue DAGCombiner::visitSUBCARRY(SDNode *N) {
3507 SDValue N0 = N->getOperand(0);
3508 SDValue N1 = N->getOperand(1);
3509 SDValue CarryIn = N->getOperand(2);
3511 // fold (subcarry x, y, false) -> (usubo x, y)
3512 if (isNullConstant(CarryIn)) {
3513 if (!LegalOperations ||
3514 TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0)))
3515 return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1);
3518 return SDValue();
3521 // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and
3522 // UMULFIXSAT here.
3523 SDValue DAGCombiner::visitMULFIX(SDNode *N) {
3524 SDValue N0 = N->getOperand(0);
3525 SDValue N1 = N->getOperand(1);
3526 SDValue Scale = N->getOperand(2);
3527 EVT VT = N0.getValueType();
3529 // fold (mulfix x, undef, scale) -> 0
3530 if (N0.isUndef() || N1.isUndef())
3531 return DAG.getConstant(0, SDLoc(N), VT);
3533 // Canonicalize constant to RHS (vector doesn't have to splat)
3534 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3535 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
3536 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale);
3538 // fold (mulfix x, 0, scale) -> 0
3539 if (isNullConstant(N1))
3540 return DAG.getConstant(0, SDLoc(N), VT);
3542 return SDValue();
3545 SDValue DAGCombiner::visitMUL(SDNode *N) {
3546 SDValue N0 = N->getOperand(0);
3547 SDValue N1 = N->getOperand(1);
3548 EVT VT = N0.getValueType();
3550 // fold (mul x, undef) -> 0
3551 if (N0.isUndef() || N1.isUndef())
3552 return DAG.getConstant(0, SDLoc(N), VT);
3554 bool N0IsConst = false;
3555 bool N1IsConst = false;
3556 bool N1IsOpaqueConst = false;
3557 bool N0IsOpaqueConst = false;
3558 APInt ConstValue0, ConstValue1;
3559 // fold vector ops
3560 if (VT.isVector()) {
3561 if (SDValue FoldedVOp = SimplifyVBinOp(N))
3562 return FoldedVOp;
3564 N0IsConst = ISD::isConstantSplatVector(N0.getNode(), ConstValue0);
3565 N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1);
3566 assert((!N0IsConst ||
3567 ConstValue0.getBitWidth() == VT.getScalarSizeInBits()) &&
3568 "Splat APInt should be element width");
3569 assert((!N1IsConst ||
3570 ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) &&
3571 "Splat APInt should be element width");
3572 } else {
3573 N0IsConst = isa<ConstantSDNode>(N0);
3574 if (N0IsConst) {
3575 ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue();
3576 N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque();
3578 N1IsConst = isa<ConstantSDNode>(N1);
3579 if (N1IsConst) {
3580 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue();
3581 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
3585 // fold (mul c1, c2) -> c1*c2
3586 if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst)
3587 return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT,
3588 N0.getNode(), N1.getNode());
3590 // canonicalize constant to RHS (vector doesn't have to splat)
3591 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3592 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
3593 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
3594 // fold (mul x, 0) -> 0
3595 if (N1IsConst && ConstValue1.isNullValue())
3596 return N1;
3597 // fold (mul x, 1) -> x
3598 if (N1IsConst && ConstValue1.isOneValue())
3599 return N0;
3601 if (SDValue NewSel = foldBinOpIntoSelect(N))
3602 return NewSel;
3604 // fold (mul x, -1) -> 0-x
3605 if (N1IsConst && ConstValue1.isAllOnesValue()) {
3606 SDLoc DL(N);
3607 return DAG.getNode(ISD::SUB, DL, VT,
3608 DAG.getConstant(0, DL, VT), N0);
3610 // fold (mul x, (1 << c)) -> x << c
3611 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
3612 DAG.isKnownToBeAPowerOfTwo(N1) &&
3613 (!VT.isVector() || Level <= AfterLegalizeVectorOps)) {
3614 SDLoc DL(N);
3615 SDValue LogBase2 = BuildLogBase2(N1, DL);
3616 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
3617 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
3618 return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc);
3620 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
3621 if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) {
3622 unsigned Log2Val = (-ConstValue1).logBase2();
3623 SDLoc DL(N);
3624 // FIXME: If the input is something that is easily negated (e.g. a
3625 // single-use add), we should put the negate there.
3626 return DAG.getNode(ISD::SUB, DL, VT,
3627 DAG.getConstant(0, DL, VT),
3628 DAG.getNode(ISD::SHL, DL, VT, N0,
3629 DAG.getConstant(Log2Val, DL,
3630 getShiftAmountTy(N0.getValueType()))));
3633 // Try to transform multiply-by-(power-of-2 +/- 1) into shift and add/sub.
3634 // mul x, (2^N + 1) --> add (shl x, N), x
3635 // mul x, (2^N - 1) --> sub (shl x, N), x
3636 // Examples: x * 33 --> (x << 5) + x
3637 // x * 15 --> (x << 4) - x
3638 // x * -33 --> -((x << 5) + x)
3639 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
3640 if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) {
3641 // TODO: We could handle more general decomposition of any constant by
3642 // having the target set a limit on number of ops and making a
3643 // callback to determine that sequence (similar to sqrt expansion).
3644 unsigned MathOp = ISD::DELETED_NODE;
3645 APInt MulC = ConstValue1.abs();
3646 if ((MulC - 1).isPowerOf2())
3647 MathOp = ISD::ADD;
3648 else if ((MulC + 1).isPowerOf2())
3649 MathOp = ISD::SUB;
3651 if (MathOp != ISD::DELETED_NODE) {
3652 unsigned ShAmt =
3653 MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2();
3654 assert(ShAmt < VT.getScalarSizeInBits() &&
3655 "multiply-by-constant generated out of bounds shift");
3656 SDLoc DL(N);
3657 SDValue Shl =
3658 DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT));
3659 SDValue R = DAG.getNode(MathOp, DL, VT, Shl, N0);
3660 if (ConstValue1.isNegative())
3661 R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R);
3662 return R;
3666 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
3667 if (N0.getOpcode() == ISD::SHL &&
3668 isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
3669 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
3670 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1));
3671 if (isConstantOrConstantVector(C3))
3672 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3);
3675 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
3676 // use.
3678 SDValue Sh(nullptr, 0), Y(nullptr, 0);
3680 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
3681 if (N0.getOpcode() == ISD::SHL &&
3682 isConstantOrConstantVector(N0.getOperand(1)) &&
3683 N0.getNode()->hasOneUse()) {
3684 Sh = N0; Y = N1;
3685 } else if (N1.getOpcode() == ISD::SHL &&
3686 isConstantOrConstantVector(N1.getOperand(1)) &&
3687 N1.getNode()->hasOneUse()) {
3688 Sh = N1; Y = N0;
3691 if (Sh.getNode()) {
3692 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y);
3693 return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1));
3697 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
3698 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
3699 N0.getOpcode() == ISD::ADD &&
3700 DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
3701 isMulAddWithConstProfitable(N, N0, N1))
3702 return DAG.getNode(ISD::ADD, SDLoc(N), VT,
3703 DAG.getNode(ISD::MUL, SDLoc(N0), VT,
3704 N0.getOperand(0), N1),
3705 DAG.getNode(ISD::MUL, SDLoc(N1), VT,
3706 N0.getOperand(1), N1));
3708 // reassociate mul
3709 if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags()))
3710 return RMUL;
3712 return SDValue();
3715 /// Return true if divmod libcall is available.
3716 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
3717 const TargetLowering &TLI) {
3718 RTLIB::Libcall LC;
3719 EVT NodeType = Node->getValueType(0);
3720 if (!NodeType.isSimple())
3721 return false;
3722 switch (NodeType.getSimpleVT().SimpleTy) {
3723 default: return false; // No libcall for vector types.
3724 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
3725 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
3726 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
3727 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
3728 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
3731 return TLI.getLibcallName(LC) != nullptr;
3734 /// Issue divrem if both quotient and remainder are needed.
3735 SDValue DAGCombiner::useDivRem(SDNode *Node) {
3736 if (Node->use_empty())
3737 return SDValue(); // This is a dead node, leave it alone.
3739 unsigned Opcode = Node->getOpcode();
3740 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM);
3741 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3743 // DivMod lib calls can still work on non-legal types if using lib-calls.
3744 EVT VT = Node->getValueType(0);
3745 if (VT.isVector() || !VT.isInteger())
3746 return SDValue();
3748 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT))
3749 return SDValue();
3751 // If DIVREM is going to get expanded into a libcall,
3752 // but there is no libcall available, then don't combine.
3753 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) &&
3754 !isDivRemLibcallAvailable(Node, isSigned, TLI))
3755 return SDValue();
3757 // If div is legal, it's better to do the normal expansion
3758 unsigned OtherOpcode = 0;
3759 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) {
3760 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM;
3761 if (TLI.isOperationLegalOrCustom(Opcode, VT))
3762 return SDValue();
3763 } else {
3764 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
3765 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT))
3766 return SDValue();
3769 SDValue Op0 = Node->getOperand(0);
3770 SDValue Op1 = Node->getOperand(1);
3771 SDValue combined;
3772 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
3773 UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
3774 SDNode *User = *UI;
3775 if (User == Node || User->getOpcode() == ISD::DELETED_NODE ||
3776 User->use_empty())
3777 continue;
3778 // Convert the other matching node(s), too;
3779 // otherwise, the DIVREM may get target-legalized into something
3780 // target-specific that we won't be able to recognize.
3781 unsigned UserOpc = User->getOpcode();
3782 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) &&
3783 User->getOperand(0) == Op0 &&
3784 User->getOperand(1) == Op1) {
3785 if (!combined) {
3786 if (UserOpc == OtherOpcode) {
3787 SDVTList VTs = DAG.getVTList(VT, VT);
3788 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1);
3789 } else if (UserOpc == DivRemOpc) {
3790 combined = SDValue(User, 0);
3791 } else {
3792 assert(UserOpc == Opcode);
3793 continue;
3796 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV)
3797 CombineTo(User, combined);
3798 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM)
3799 CombineTo(User, combined.getValue(1));
3802 return combined;
3805 static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) {
3806 SDValue N0 = N->getOperand(0);
3807 SDValue N1 = N->getOperand(1);
3808 EVT VT = N->getValueType(0);
3809 SDLoc DL(N);
3811 unsigned Opc = N->getOpcode();
3812 bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc);
3813 ConstantSDNode *N1C = isConstOrConstSplat(N1);
3815 // X / undef -> undef
3816 // X % undef -> undef
3817 // X / 0 -> undef
3818 // X % 0 -> undef
3819 // NOTE: This includes vectors where any divisor element is zero/undef.
3820 if (DAG.isUndef(Opc, {N0, N1}))
3821 return DAG.getUNDEF(VT);
3823 // undef / X -> 0
3824 // undef % X -> 0
3825 if (N0.isUndef())
3826 return DAG.getConstant(0, DL, VT);
3828 // 0 / X -> 0
3829 // 0 % X -> 0
3830 ConstantSDNode *N0C = isConstOrConstSplat(N0);
3831 if (N0C && N0C->isNullValue())
3832 return N0;
3834 // X / X -> 1
3835 // X % X -> 0
3836 if (N0 == N1)
3837 return DAG.getConstant(IsDiv ? 1 : 0, DL, VT);
3839 // X / 1 -> X
3840 // X % 1 -> 0
3841 // If this is a boolean op (single-bit element type), we can't have
3842 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
3843 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume
3844 // it's a 1.
3845 if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1))
3846 return IsDiv ? N0 : DAG.getConstant(0, DL, VT);
3848 return SDValue();
3851 SDValue DAGCombiner::visitSDIV(SDNode *N) {
3852 SDValue N0 = N->getOperand(0);
3853 SDValue N1 = N->getOperand(1);
3854 EVT VT = N->getValueType(0);
3855 EVT CCVT = getSetCCResultType(VT);
3857 // fold vector ops
3858 if (VT.isVector())
3859 if (SDValue FoldedVOp = SimplifyVBinOp(N))
3860 return FoldedVOp;
3862 SDLoc DL(N);
3864 // fold (sdiv c1, c2) -> c1/c2
3865 ConstantSDNode *N0C = isConstOrConstSplat(N0);
3866 ConstantSDNode *N1C = isConstOrConstSplat(N1);
3867 if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque())
3868 return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C);
3869 // fold (sdiv X, -1) -> 0-X
3870 if (N1C && N1C->isAllOnesValue())
3871 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0);
3872 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
3873 if (N1C && N1C->getAPIntValue().isMinSignedValue())
3874 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
3875 DAG.getConstant(1, DL, VT),
3876 DAG.getConstant(0, DL, VT));
3878 if (SDValue V = simplifyDivRem(N, DAG))
3879 return V;
3881 if (SDValue NewSel = foldBinOpIntoSelect(N))
3882 return NewSel;
3884 // If we know the sign bits of both operands are zero, strength reduce to a
3885 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
3886 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
3887 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
3889 if (SDValue V = visitSDIVLike(N0, N1, N)) {
3890 // If the corresponding remainder node exists, update its users with
3891 // (Dividend - (Quotient * Divisor).
3892 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(),
3893 { N0, N1 })) {
3894 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
3895 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
3896 AddToWorklist(Mul.getNode());
3897 AddToWorklist(Sub.getNode());
3898 CombineTo(RemNode, Sub);
3900 return V;
3903 // sdiv, srem -> sdivrem
3904 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
3905 // true. Otherwise, we break the simplification logic in visitREM().
3906 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3907 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
3908 if (SDValue DivRem = useDivRem(N))
3909 return DivRem;
3911 return SDValue();
3914 SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) {
3915 SDLoc DL(N);
3916 EVT VT = N->getValueType(0);
3917 EVT CCVT = getSetCCResultType(VT);
3918 unsigned BitWidth = VT.getScalarSizeInBits();
3920 // Helper for determining whether a value is a power-2 constant scalar or a
3921 // vector of such elements.
3922 auto IsPowerOfTwo = [](ConstantSDNode *C) {
3923 if (C->isNullValue() || C->isOpaque())
3924 return false;
3925 if (C->getAPIntValue().isPowerOf2())
3926 return true;
3927 if ((-C->getAPIntValue()).isPowerOf2())
3928 return true;
3929 return false;
3932 // fold (sdiv X, pow2) -> simple ops after legalize
3933 // FIXME: We check for the exact bit here because the generic lowering gives
3934 // better results in that case. The target-specific lowering should learn how
3935 // to handle exact sdivs efficiently.
3936 if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) {
3937 // Target-specific implementation of sdiv x, pow2.
3938 if (SDValue Res = BuildSDIVPow2(N))
3939 return Res;
3941 // Create constants that are functions of the shift amount value.
3942 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
3943 SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy);
3944 SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1);
3945 C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy);
3946 SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1);
3947 if (!isConstantOrConstantVector(Inexact))
3948 return SDValue();
3950 // Splat the sign bit into the register
3951 SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0,
3952 DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy));
3953 AddToWorklist(Sign.getNode());
3955 // Add (N0 < 0) ? abs2 - 1 : 0;
3956 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact);
3957 AddToWorklist(Srl.getNode());
3958 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl);
3959 AddToWorklist(Add.getNode());
3960 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1);
3961 AddToWorklist(Sra.getNode());
3963 // Special case: (sdiv X, 1) -> X
3964 // Special Case: (sdiv X, -1) -> 0-X
3965 SDValue One = DAG.getConstant(1, DL, VT);
3966 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
3967 SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ);
3968 SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ);
3969 SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes);
3970 Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra);
3972 // If dividing by a positive value, we're done. Otherwise, the result must
3973 // be negated.
3974 SDValue Zero = DAG.getConstant(0, DL, VT);
3975 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra);
3977 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
3978 SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT);
3979 SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra);
3980 return Res;
3983 // If integer divide is expensive and we satisfy the requirements, emit an
3984 // alternate sequence. Targets may check function attributes for size/speed
3985 // trade-offs.
3986 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3987 if (isConstantOrConstantVector(N1) &&
3988 !TLI.isIntDivCheap(N->getValueType(0), Attr))
3989 if (SDValue Op = BuildSDIV(N))
3990 return Op;
3992 return SDValue();
3995 SDValue DAGCombiner::visitUDIV(SDNode *N) {
3996 SDValue N0 = N->getOperand(0);
3997 SDValue N1 = N->getOperand(1);
3998 EVT VT = N->getValueType(0);
3999 EVT CCVT = getSetCCResultType(VT);
4001 // fold vector ops
4002 if (VT.isVector())
4003 if (SDValue FoldedVOp = SimplifyVBinOp(N))
4004 return FoldedVOp;
4006 SDLoc DL(N);
4008 // fold (udiv c1, c2) -> c1/c2
4009 ConstantSDNode *N0C = isConstOrConstSplat(N0);
4010 ConstantSDNode *N1C = isConstOrConstSplat(N1);
4011 if (N0C && N1C)
4012 if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT,
4013 N0C, N1C))
4014 return Folded;
4015 // fold (udiv X, -1) -> select(X == -1, 1, 0)
4016 if (N1C && N1C->getAPIntValue().isAllOnesValue())
4017 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
4018 DAG.getConstant(1, DL, VT),
4019 DAG.getConstant(0, DL, VT));
4021 if (SDValue V = simplifyDivRem(N, DAG))
4022 return V;
4024 if (SDValue NewSel = foldBinOpIntoSelect(N))
4025 return NewSel;
4027 if (SDValue V = visitUDIVLike(N0, N1, N)) {
4028 // If the corresponding remainder node exists, update its users with
4029 // (Dividend - (Quotient * Divisor).
4030 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(),
4031 { N0, N1 })) {
4032 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
4033 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
4034 AddToWorklist(Mul.getNode());
4035 AddToWorklist(Sub.getNode());
4036 CombineTo(RemNode, Sub);
4038 return V;
4041 // sdiv, srem -> sdivrem
4042 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
4043 // true. Otherwise, we break the simplification logic in visitREM().
4044 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4045 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
4046 if (SDValue DivRem = useDivRem(N))
4047 return DivRem;
4049 return SDValue();
4052 SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) {
4053 SDLoc DL(N);
4054 EVT VT = N->getValueType(0);
4056 // fold (udiv x, (1 << c)) -> x >>u c
4057 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
4058 DAG.isKnownToBeAPowerOfTwo(N1)) {
4059 SDValue LogBase2 = BuildLogBase2(N1, DL);
4060 AddToWorklist(LogBase2.getNode());
4062 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
4063 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
4064 AddToWorklist(Trunc.getNode());
4065 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
4068 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
4069 if (N1.getOpcode() == ISD::SHL) {
4070 SDValue N10 = N1.getOperand(0);
4071 if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) &&
4072 DAG.isKnownToBeAPowerOfTwo(N10)) {
4073 SDValue LogBase2 = BuildLogBase2(N10, DL);
4074 AddToWorklist(LogBase2.getNode());
4076 EVT ADDVT = N1.getOperand(1).getValueType();
4077 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT);
4078 AddToWorklist(Trunc.getNode());
4079 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc);
4080 AddToWorklist(Add.getNode());
4081 return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
4085 // fold (udiv x, c) -> alternate
4086 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4087 if (isConstantOrConstantVector(N1) &&
4088 !TLI.isIntDivCheap(N->getValueType(0), Attr))
4089 if (SDValue Op = BuildUDIV(N))
4090 return Op;
4092 return SDValue();
4095 // handles ISD::SREM and ISD::UREM
4096 SDValue DAGCombiner::visitREM(SDNode *N) {
4097 unsigned Opcode = N->getOpcode();
4098 SDValue N0 = N->getOperand(0);
4099 SDValue N1 = N->getOperand(1);
4100 EVT VT = N->getValueType(0);
4101 EVT CCVT = getSetCCResultType(VT);
4103 bool isSigned = (Opcode == ISD::SREM);
4104 SDLoc DL(N);
4106 // fold (rem c1, c2) -> c1%c2
4107 ConstantSDNode *N0C = isConstOrConstSplat(N0);
4108 ConstantSDNode *N1C = isConstOrConstSplat(N1);
4109 if (N0C && N1C)
4110 if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C))
4111 return Folded;
4112 // fold (urem X, -1) -> select(X == -1, 0, x)
4113 if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue())
4114 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
4115 DAG.getConstant(0, DL, VT), N0);
4117 if (SDValue V = simplifyDivRem(N, DAG))
4118 return V;
4120 if (SDValue NewSel = foldBinOpIntoSelect(N))
4121 return NewSel;
4123 if (isSigned) {
4124 // If we know the sign bits of both operands are zero, strength reduce to a
4125 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
4126 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
4127 return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
4128 } else {
4129 SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
4130 if (DAG.isKnownToBeAPowerOfTwo(N1)) {
4131 // fold (urem x, pow2) -> (and x, pow2-1)
4132 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
4133 AddToWorklist(Add.getNode());
4134 return DAG.getNode(ISD::AND, DL, VT, N0, Add);
4136 if (N1.getOpcode() == ISD::SHL &&
4137 DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) {
4138 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
4139 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
4140 AddToWorklist(Add.getNode());
4141 return DAG.getNode(ISD::AND, DL, VT, N0, Add);
4145 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4147 // If X/C can be simplified by the division-by-constant logic, lower
4148 // X%C to the equivalent of X-X/C*C.
4149 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
4150 // speculative DIV must not cause a DIVREM conversion. We guard against this
4151 // by skipping the simplification if isIntDivCheap(). When div is not cheap,
4152 // combine will not return a DIVREM. Regardless, checking cheapness here
4153 // makes sense since the simplification results in fatter code.
4154 if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) {
4155 SDValue OptimizedDiv =
4156 isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N);
4157 if (OptimizedDiv.getNode()) {
4158 // If the equivalent Div node also exists, update its users.
4159 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
4160 if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(),
4161 { N0, N1 }))
4162 CombineTo(DivNode, OptimizedDiv);
4163 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1);
4164 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
4165 AddToWorklist(OptimizedDiv.getNode());
4166 AddToWorklist(Mul.getNode());
4167 return Sub;
4171 // sdiv, srem -> sdivrem
4172 if (SDValue DivRem = useDivRem(N))
4173 return DivRem.getValue(1);
4175 return SDValue();
4178 SDValue DAGCombiner::visitMULHS(SDNode *N) {
4179 SDValue N0 = N->getOperand(0);
4180 SDValue N1 = N->getOperand(1);
4181 EVT VT = N->getValueType(0);
4182 SDLoc DL(N);
4184 if (VT.isVector()) {
4185 // fold (mulhs x, 0) -> 0
4186 // do not return N0/N1, because undef node may exist.
4187 if (ISD::isBuildVectorAllZeros(N0.getNode()) ||
4188 ISD::isBuildVectorAllZeros(N1.getNode()))
4189 return DAG.getConstant(0, DL, VT);
4192 // fold (mulhs x, 0) -> 0
4193 if (isNullConstant(N1))
4194 return N1;
4195 // fold (mulhs x, 1) -> (sra x, size(x)-1)
4196 if (isOneConstant(N1))
4197 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0,
4198 DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL,
4199 getShiftAmountTy(N0.getValueType())));
4201 // fold (mulhs x, undef) -> 0
4202 if (N0.isUndef() || N1.isUndef())
4203 return DAG.getConstant(0, DL, VT);
4205 // If the type twice as wide is legal, transform the mulhs to a wider multiply
4206 // plus a shift.
4207 if (VT.isSimple() && !VT.isVector()) {
4208 MVT Simple = VT.getSimpleVT();
4209 unsigned SimpleSize = Simple.getSizeInBits();
4210 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
4211 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
4212 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
4213 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
4214 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
4215 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
4216 DAG.getConstant(SimpleSize, DL,
4217 getShiftAmountTy(N1.getValueType())));
4218 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
4222 return SDValue();
4225 SDValue DAGCombiner::visitMULHU(SDNode *N) {
4226 SDValue N0 = N->getOperand(0);
4227 SDValue N1 = N->getOperand(1);
4228 EVT VT = N->getValueType(0);
4229 SDLoc DL(N);
4231 if (VT.isVector()) {
4232 // fold (mulhu x, 0) -> 0
4233 // do not return N0/N1, because undef node may exist.
4234 if (ISD::isBuildVectorAllZeros(N0.getNode()) ||
4235 ISD::isBuildVectorAllZeros(N1.getNode()))
4236 return DAG.getConstant(0, DL, VT);
4239 // fold (mulhu x, 0) -> 0
4240 if (isNullConstant(N1))
4241 return N1;
4242 // fold (mulhu x, 1) -> 0
4243 if (isOneConstant(N1))
4244 return DAG.getConstant(0, DL, N0.getValueType());
4245 // fold (mulhu x, undef) -> 0
4246 if (N0.isUndef() || N1.isUndef())
4247 return DAG.getConstant(0, DL, VT);
4249 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
4250 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
4251 DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) {
4252 unsigned NumEltBits = VT.getScalarSizeInBits();
4253 SDValue LogBase2 = BuildLogBase2(N1, DL);
4254 SDValue SRLAmt = DAG.getNode(
4255 ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2);
4256 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
4257 SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT);
4258 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
4261 // If the type twice as wide is legal, transform the mulhu to a wider multiply
4262 // plus a shift.
4263 if (VT.isSimple() && !VT.isVector()) {
4264 MVT Simple = VT.getSimpleVT();
4265 unsigned SimpleSize = Simple.getSizeInBits();
4266 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
4267 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
4268 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
4269 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
4270 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
4271 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
4272 DAG.getConstant(SimpleSize, DL,
4273 getShiftAmountTy(N1.getValueType())));
4274 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
4278 return SDValue();
4281 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp
4282 /// give the opcodes for the two computations that are being performed. Return
4283 /// true if a simplification was made.
4284 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
4285 unsigned HiOp) {
4286 // If the high half is not needed, just compute the low half.
4287 bool HiExists = N->hasAnyUseOfValue(1);
4288 if (!HiExists && (!LegalOperations ||
4289 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
4290 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
4291 return CombineTo(N, Res, Res);
4294 // If the low half is not needed, just compute the high half.
4295 bool LoExists = N->hasAnyUseOfValue(0);
4296 if (!LoExists && (!LegalOperations ||
4297 TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) {
4298 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
4299 return CombineTo(N, Res, Res);
4302 // If both halves are used, return as it is.
4303 if (LoExists && HiExists)
4304 return SDValue();
4306 // If the two computed results can be simplified separately, separate them.
4307 if (LoExists) {
4308 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
4309 AddToWorklist(Lo.getNode());
4310 SDValue LoOpt = combine(Lo.getNode());
4311 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
4312 (!LegalOperations ||
4313 TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType())))
4314 return CombineTo(N, LoOpt, LoOpt);
4317 if (HiExists) {
4318 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
4319 AddToWorklist(Hi.getNode());
4320 SDValue HiOpt = combine(Hi.getNode());
4321 if (HiOpt.getNode() && HiOpt != Hi &&
4322 (!LegalOperations ||
4323 TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType())))
4324 return CombineTo(N, HiOpt, HiOpt);
4327 return SDValue();
4330 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
4331 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
4332 return Res;
4334 EVT VT = N->getValueType(0);
4335 SDLoc DL(N);
4337 // If the type is twice as wide is legal, transform the mulhu to a wider
4338 // multiply plus a shift.
4339 if (VT.isSimple() && !VT.isVector()) {
4340 MVT Simple = VT.getSimpleVT();
4341 unsigned SimpleSize = Simple.getSizeInBits();
4342 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
4343 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
4344 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
4345 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
4346 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
4347 // Compute the high part as N1.
4348 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
4349 DAG.getConstant(SimpleSize, DL,
4350 getShiftAmountTy(Lo.getValueType())));
4351 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
4352 // Compute the low part as N0.
4353 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
4354 return CombineTo(N, Lo, Hi);
4358 return SDValue();
4361 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
4362 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
4363 return Res;
4365 EVT VT = N->getValueType(0);
4366 SDLoc DL(N);
4368 // (umul_lohi N0, 0) -> (0, 0)
4369 if (isNullConstant(N->getOperand(1))) {
4370 SDValue Zero = DAG.getConstant(0, DL, VT);
4371 return CombineTo(N, Zero, Zero);
4374 // (umul_lohi N0, 1) -> (N0, 0)
4375 if (isOneConstant(N->getOperand(1))) {
4376 SDValue Zero = DAG.getConstant(0, DL, VT);
4377 return CombineTo(N, N->getOperand(0), Zero);
4380 // If the type is twice as wide is legal, transform the mulhu to a wider
4381 // multiply plus a shift.
4382 if (VT.isSimple() && !VT.isVector()) {
4383 MVT Simple = VT.getSimpleVT();
4384 unsigned SimpleSize = Simple.getSizeInBits();
4385 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
4386 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
4387 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
4388 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
4389 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
4390 // Compute the high part as N1.
4391 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
4392 DAG.getConstant(SimpleSize, DL,
4393 getShiftAmountTy(Lo.getValueType())));
4394 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
4395 // Compute the low part as N0.
4396 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
4397 return CombineTo(N, Lo, Hi);
4401 return SDValue();
4404 SDValue DAGCombiner::visitMULO(SDNode *N) {
4405 SDValue N0 = N->getOperand(0);
4406 SDValue N1 = N->getOperand(1);
4407 EVT VT = N0.getValueType();
4408 bool IsSigned = (ISD::SMULO == N->getOpcode());
4410 EVT CarryVT = N->getValueType(1);
4411 SDLoc DL(N);
4413 // canonicalize constant to RHS.
4414 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
4415 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
4416 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
4418 // fold (mulo x, 0) -> 0 + no carry out
4419 if (isNullOrNullSplat(N1))
4420 return CombineTo(N, DAG.getConstant(0, DL, VT),
4421 DAG.getConstant(0, DL, CarryVT));
4423 // (mulo x, 2) -> (addo x, x)
4424 if (ConstantSDNode *C2 = isConstOrConstSplat(N1))
4425 if (C2->getAPIntValue() == 2)
4426 return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL,
4427 N->getVTList(), N0, N0);
4429 return SDValue();
4432 SDValue DAGCombiner::visitIMINMAX(SDNode *N) {
4433 SDValue N0 = N->getOperand(0);
4434 SDValue N1 = N->getOperand(1);
4435 EVT VT = N0.getValueType();
4437 // fold vector ops
4438 if (VT.isVector())
4439 if (SDValue FoldedVOp = SimplifyVBinOp(N))
4440 return FoldedVOp;
4442 // fold operation with constant operands.
4443 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
4444 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
4445 if (N0C && N1C)
4446 return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C);
4448 // canonicalize constant to RHS
4449 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
4450 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
4451 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
4453 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
4454 // Only do this if the current op isn't legal and the flipped is.
4455 unsigned Opcode = N->getOpcode();
4456 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4457 if (!TLI.isOperationLegal(Opcode, VT) &&
4458 (N0.isUndef() || DAG.SignBitIsZero(N0)) &&
4459 (N1.isUndef() || DAG.SignBitIsZero(N1))) {
4460 unsigned AltOpcode;
4461 switch (Opcode) {
4462 case ISD::SMIN: AltOpcode = ISD::UMIN; break;
4463 case ISD::SMAX: AltOpcode = ISD::UMAX; break;
4464 case ISD::UMIN: AltOpcode = ISD::SMIN; break;
4465 case ISD::UMAX: AltOpcode = ISD::SMAX; break;
4466 default: llvm_unreachable("Unknown MINMAX opcode");
4468 if (TLI.isOperationLegal(AltOpcode, VT))
4469 return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1);
4472 return SDValue();
4475 /// If this is a bitwise logic instruction and both operands have the same
4476 /// opcode, try to sink the other opcode after the logic instruction.
4477 SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) {
4478 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4479 EVT VT = N0.getValueType();
4480 unsigned LogicOpcode = N->getOpcode();
4481 unsigned HandOpcode = N0.getOpcode();
4482 assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR ||
4483 LogicOpcode == ISD::XOR) && "Expected logic opcode");
4484 assert(HandOpcode == N1.getOpcode() && "Bad input!");
4486 // Bail early if none of these transforms apply.
4487 if (N0.getNumOperands() == 0)
4488 return SDValue();
4490 // FIXME: We should check number of uses of the operands to not increase
4491 // the instruction count for all transforms.
4493 // Handle size-changing casts.
4494 SDValue X = N0.getOperand(0);
4495 SDValue Y = N1.getOperand(0);
4496 EVT XVT = X.getValueType();
4497 SDLoc DL(N);
4498 if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND ||
4499 HandOpcode == ISD::SIGN_EXTEND) {
4500 // If both operands have other uses, this transform would create extra
4501 // instructions without eliminating anything.
4502 if (!N0.hasOneUse() && !N1.hasOneUse())
4503 return SDValue();
4504 // We need matching integer source types.
4505 if (XVT != Y.getValueType())
4506 return SDValue();
4507 // Don't create an illegal op during or after legalization. Don't ever
4508 // create an unsupported vector op.
4509 if ((VT.isVector() || LegalOperations) &&
4510 !TLI.isOperationLegalOrCustom(LogicOpcode, XVT))
4511 return SDValue();
4512 // Avoid infinite looping with PromoteIntBinOp.
4513 // TODO: Should we apply desirable/legal constraints to all opcodes?
4514 if (HandOpcode == ISD::ANY_EXTEND && LegalTypes &&
4515 !TLI.isTypeDesirableForOp(LogicOpcode, XVT))
4516 return SDValue();
4517 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
4518 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4519 return DAG.getNode(HandOpcode, DL, VT, Logic);
4522 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
4523 if (HandOpcode == ISD::TRUNCATE) {
4524 // If both operands have other uses, this transform would create extra
4525 // instructions without eliminating anything.
4526 if (!N0.hasOneUse() && !N1.hasOneUse())
4527 return SDValue();
4528 // We need matching source types.
4529 if (XVT != Y.getValueType())
4530 return SDValue();
4531 // Don't create an illegal op during or after legalization.
4532 if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT))
4533 return SDValue();
4534 // Be extra careful sinking truncate. If it's free, there's no benefit in
4535 // widening a binop. Also, don't create a logic op on an illegal type.
4536 if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT))
4537 return SDValue();
4538 if (!TLI.isTypeLegal(XVT))
4539 return SDValue();
4540 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4541 return DAG.getNode(HandOpcode, DL, VT, Logic);
4544 // For binops SHL/SRL/SRA/AND:
4545 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
4546 if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL ||
4547 HandOpcode == ISD::SRA || HandOpcode == ISD::AND) &&
4548 N0.getOperand(1) == N1.getOperand(1)) {
4549 // If either operand has other uses, this transform is not an improvement.
4550 if (!N0.hasOneUse() || !N1.hasOneUse())
4551 return SDValue();
4552 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4553 return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1));
4556 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
4557 if (HandOpcode == ISD::BSWAP) {
4558 // If either operand has other uses, this transform is not an improvement.
4559 if (!N0.hasOneUse() || !N1.hasOneUse())
4560 return SDValue();
4561 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4562 return DAG.getNode(HandOpcode, DL, VT, Logic);
4565 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
4566 // Only perform this optimization up until type legalization, before
4567 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
4568 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
4569 // we don't want to undo this promotion.
4570 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
4571 // on scalars.
4572 if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) &&
4573 Level <= AfterLegalizeTypes) {
4574 // Input types must be integer and the same.
4575 if (XVT.isInteger() && XVT == Y.getValueType()) {
4576 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4577 return DAG.getNode(HandOpcode, DL, VT, Logic);
4581 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
4582 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
4583 // If both shuffles use the same mask, and both shuffle within a single
4584 // vector, then it is worthwhile to move the swizzle after the operation.
4585 // The type-legalizer generates this pattern when loading illegal
4586 // vector types from memory. In many cases this allows additional shuffle
4587 // optimizations.
4588 // There are other cases where moving the shuffle after the xor/and/or
4589 // is profitable even if shuffles don't perform a swizzle.
4590 // If both shuffles use the same mask, and both shuffles have the same first
4591 // or second operand, then it might still be profitable to move the shuffle
4592 // after the xor/and/or operation.
4593 if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
4594 auto *SVN0 = cast<ShuffleVectorSDNode>(N0);
4595 auto *SVN1 = cast<ShuffleVectorSDNode>(N1);
4596 assert(X.getValueType() == Y.getValueType() &&
4597 "Inputs to shuffles are not the same type");
4599 // Check that both shuffles use the same mask. The masks are known to be of
4600 // the same length because the result vector type is the same.
4601 // Check also that shuffles have only one use to avoid introducing extra
4602 // instructions.
4603 if (!SVN0->hasOneUse() || !SVN1->hasOneUse() ||
4604 !SVN0->getMask().equals(SVN1->getMask()))
4605 return SDValue();
4607 // Don't try to fold this node if it requires introducing a
4608 // build vector of all zeros that might be illegal at this stage.
4609 SDValue ShOp = N0.getOperand(1);
4610 if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
4611 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
4613 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
4614 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
4615 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT,
4616 N0.getOperand(0), N1.getOperand(0));
4617 return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask());
4620 // Don't try to fold this node if it requires introducing a
4621 // build vector of all zeros that might be illegal at this stage.
4622 ShOp = N0.getOperand(0);
4623 if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
4624 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
4626 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
4627 if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) {
4628 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1),
4629 N1.getOperand(1));
4630 return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask());
4634 return SDValue();
4637 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
4638 SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
4639 const SDLoc &DL) {
4640 SDValue LL, LR, RL, RR, N0CC, N1CC;
4641 if (!isSetCCEquivalent(N0, LL, LR, N0CC) ||
4642 !isSetCCEquivalent(N1, RL, RR, N1CC))
4643 return SDValue();
4645 assert(N0.getValueType() == N1.getValueType() &&
4646 "Unexpected operand types for bitwise logic op");
4647 assert(LL.getValueType() == LR.getValueType() &&
4648 RL.getValueType() == RR.getValueType() &&
4649 "Unexpected operand types for setcc");
4651 // If we're here post-legalization or the logic op type is not i1, the logic
4652 // op type must match a setcc result type. Also, all folds require new
4653 // operations on the left and right operands, so those types must match.
4654 EVT VT = N0.getValueType();
4655 EVT OpVT = LL.getValueType();
4656 if (LegalOperations || VT.getScalarType() != MVT::i1)
4657 if (VT != getSetCCResultType(OpVT))
4658 return SDValue();
4659 if (OpVT != RL.getValueType())
4660 return SDValue();
4662 ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get();
4663 ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get();
4664 bool IsInteger = OpVT.isInteger();
4665 if (LR == RR && CC0 == CC1 && IsInteger) {
4666 bool IsZero = isNullOrNullSplat(LR);
4667 bool IsNeg1 = isAllOnesOrAllOnesSplat(LR);
4669 // All bits clear?
4670 bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero;
4671 // All sign bits clear?
4672 bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1;
4673 // Any bits set?
4674 bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero;
4675 // Any sign bits set?
4676 bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero;
4678 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
4679 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
4680 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
4681 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
4682 if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) {
4683 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL);
4684 AddToWorklist(Or.getNode());
4685 return DAG.getSetCC(DL, VT, Or, LR, CC1);
4688 // All bits set?
4689 bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1;
4690 // All sign bits set?
4691 bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero;
4692 // Any bits clear?
4693 bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1;
4694 // Any sign bits clear?
4695 bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1;
4697 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
4698 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
4699 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
4700 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
4701 if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) {
4702 SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL);
4703 AddToWorklist(And.getNode());
4704 return DAG.getSetCC(DL, VT, And, LR, CC1);
4708 // TODO: What is the 'or' equivalent of this fold?
4709 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
4710 if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 &&
4711 IsInteger && CC0 == ISD::SETNE &&
4712 ((isNullConstant(LR) && isAllOnesConstant(RR)) ||
4713 (isAllOnesConstant(LR) && isNullConstant(RR)))) {
4714 SDValue One = DAG.getConstant(1, DL, OpVT);
4715 SDValue Two = DAG.getConstant(2, DL, OpVT);
4716 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One);
4717 AddToWorklist(Add.getNode());
4718 return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE);
4721 // Try more general transforms if the predicates match and the only user of
4722 // the compares is the 'and' or 'or'.
4723 if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 &&
4724 N0.hasOneUse() && N1.hasOneUse()) {
4725 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
4726 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
4727 if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) {
4728 SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR);
4729 SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR);
4730 SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR);
4731 SDValue Zero = DAG.getConstant(0, DL, OpVT);
4732 return DAG.getSetCC(DL, VT, Or, Zero, CC1);
4735 // Turn compare of constants whose difference is 1 bit into add+and+setcc.
4736 // TODO - support non-uniform vector amounts.
4737 if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) {
4738 // Match a shared variable operand and 2 non-opaque constant operands.
4739 ConstantSDNode *C0 = isConstOrConstSplat(LR);
4740 ConstantSDNode *C1 = isConstOrConstSplat(RR);
4741 if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) {
4742 // Canonicalize larger constant as C0.
4743 if (C1->getAPIntValue().ugt(C0->getAPIntValue()))
4744 std::swap(C0, C1);
4746 // The difference of the constants must be a single bit.
4747 const APInt &C0Val = C0->getAPIntValue();
4748 const APInt &C1Val = C1->getAPIntValue();
4749 if ((C0Val - C1Val).isPowerOf2()) {
4750 // and/or (setcc X, C0, ne), (setcc X, C1, ne/eq) -->
4751 // setcc ((add X, -C1), ~(C0 - C1)), 0, ne/eq
4752 SDValue OffsetC = DAG.getConstant(-C1Val, DL, OpVT);
4753 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LL, OffsetC);
4754 SDValue MaskC = DAG.getConstant(~(C0Val - C1Val), DL, OpVT);
4755 SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Add, MaskC);
4756 SDValue Zero = DAG.getConstant(0, DL, OpVT);
4757 return DAG.getSetCC(DL, VT, And, Zero, CC0);
4763 // Canonicalize equivalent operands to LL == RL.
4764 if (LL == RR && LR == RL) {
4765 CC1 = ISD::getSetCCSwappedOperands(CC1);
4766 std::swap(RL, RR);
4769 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
4770 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
4771 if (LL == RL && LR == RR) {
4772 ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, IsInteger)
4773 : ISD::getSetCCOrOperation(CC0, CC1, IsInteger);
4774 if (NewCC != ISD::SETCC_INVALID &&
4775 (!LegalOperations ||
4776 (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) &&
4777 TLI.isOperationLegal(ISD::SETCC, OpVT))))
4778 return DAG.getSetCC(DL, VT, LL, LR, NewCC);
4781 return SDValue();
4784 /// This contains all DAGCombine rules which reduce two values combined by
4785 /// an And operation to a single value. This makes them reusable in the context
4786 /// of visitSELECT(). Rules involving constants are not included as
4787 /// visitSELECT() already handles those cases.
4788 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) {
4789 EVT VT = N1.getValueType();
4790 SDLoc DL(N);
4792 // fold (and x, undef) -> 0
4793 if (N0.isUndef() || N1.isUndef())
4794 return DAG.getConstant(0, DL, VT);
4796 if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL))
4797 return V;
4799 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
4800 VT.getSizeInBits() <= 64) {
4801 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4802 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
4803 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
4804 // immediate for an add, but it is legal if its top c2 bits are set,
4805 // transform the ADD so the immediate doesn't need to be materialized
4806 // in a register.
4807 APInt ADDC = ADDI->getAPIntValue();
4808 APInt SRLC = SRLI->getAPIntValue();
4809 if (ADDC.getMinSignedBits() <= 64 &&
4810 SRLC.ult(VT.getSizeInBits()) &&
4811 !TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
4812 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
4813 SRLC.getZExtValue());
4814 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
4815 ADDC |= Mask;
4816 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
4817 SDLoc DL0(N0);
4818 SDValue NewAdd =
4819 DAG.getNode(ISD::ADD, DL0, VT,
4820 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
4821 CombineTo(N0.getNode(), NewAdd);
4822 // Return N so it doesn't get rechecked!
4823 return SDValue(N, 0);
4831 // Reduce bit extract of low half of an integer to the narrower type.
4832 // (and (srl i64:x, K), KMask) ->
4833 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
4834 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
4835 if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) {
4836 if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4837 unsigned Size = VT.getSizeInBits();
4838 const APInt &AndMask = CAnd->getAPIntValue();
4839 unsigned ShiftBits = CShift->getZExtValue();
4841 // Bail out, this node will probably disappear anyway.
4842 if (ShiftBits == 0)
4843 return SDValue();
4845 unsigned MaskBits = AndMask.countTrailingOnes();
4846 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2);
4848 if (AndMask.isMask() &&
4849 // Required bits must not span the two halves of the integer and
4850 // must fit in the half size type.
4851 (ShiftBits + MaskBits <= Size / 2) &&
4852 TLI.isNarrowingProfitable(VT, HalfVT) &&
4853 TLI.isTypeDesirableForOp(ISD::AND, HalfVT) &&
4854 TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) &&
4855 TLI.isTruncateFree(VT, HalfVT) &&
4856 TLI.isZExtFree(HalfVT, VT)) {
4857 // The isNarrowingProfitable is to avoid regressions on PPC and
4858 // AArch64 which match a few 64-bit bit insert / bit extract patterns
4859 // on downstream users of this. Those patterns could probably be
4860 // extended to handle extensions mixed in.
4862 SDValue SL(N0);
4863 assert(MaskBits <= Size);
4865 // Extracting the highest bit of the low half.
4866 EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout());
4867 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT,
4868 N0.getOperand(0));
4870 SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT);
4871 SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT);
4872 SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK);
4873 SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask);
4874 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And);
4880 return SDValue();
4883 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
4884 EVT LoadResultTy, EVT &ExtVT) {
4885 if (!AndC->getAPIntValue().isMask())
4886 return false;
4888 unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes();
4890 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
4891 EVT LoadedVT = LoadN->getMemoryVT();
4893 if (ExtVT == LoadedVT &&
4894 (!LegalOperations ||
4895 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) {
4896 // ZEXTLOAD will match without needing to change the size of the value being
4897 // loaded.
4898 return true;
4901 // Do not change the width of a volatile or atomic loads.
4902 if (!LoadN->isSimple())
4903 return false;
4905 // Do not generate loads of non-round integer types since these can
4906 // be expensive (and would be wrong if the type is not byte sized).
4907 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound())
4908 return false;
4910 if (LegalOperations &&
4911 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))
4912 return false;
4914 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT))
4915 return false;
4917 return true;
4920 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST,
4921 ISD::LoadExtType ExtType, EVT &MemVT,
4922 unsigned ShAmt) {
4923 if (!LDST)
4924 return false;
4925 // Only allow byte offsets.
4926 if (ShAmt % 8)
4927 return false;
4929 // Do not generate loads of non-round integer types since these can
4930 // be expensive (and would be wrong if the type is not byte sized).
4931 if (!MemVT.isRound())
4932 return false;
4934 // Don't change the width of a volatile or atomic loads.
4935 if (!LDST->isSimple())
4936 return false;
4938 // Verify that we are actually reducing a load width here.
4939 if (LDST->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits())
4940 return false;
4942 // Ensure that this isn't going to produce an unsupported unaligned access.
4943 if (ShAmt &&
4944 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
4945 LDST->getAddressSpace(), ShAmt / 8,
4946 LDST->getMemOperand()->getFlags()))
4947 return false;
4949 // It's not possible to generate a constant of extended or untyped type.
4950 EVT PtrType = LDST->getBasePtr().getValueType();
4951 if (PtrType == MVT::Untyped || PtrType.isExtended())
4952 return false;
4954 if (isa<LoadSDNode>(LDST)) {
4955 LoadSDNode *Load = cast<LoadSDNode>(LDST);
4956 // Don't transform one with multiple uses, this would require adding a new
4957 // load.
4958 if (!SDValue(Load, 0).hasOneUse())
4959 return false;
4961 if (LegalOperations &&
4962 !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT))
4963 return false;
4965 // For the transform to be legal, the load must produce only two values
4966 // (the value loaded and the chain). Don't transform a pre-increment
4967 // load, for example, which produces an extra value. Otherwise the
4968 // transformation is not equivalent, and the downstream logic to replace
4969 // uses gets things wrong.
4970 if (Load->getNumValues() > 2)
4971 return false;
4973 // If the load that we're shrinking is an extload and we're not just
4974 // discarding the extension we can't simply shrink the load. Bail.
4975 // TODO: It would be possible to merge the extensions in some cases.
4976 if (Load->getExtensionType() != ISD::NON_EXTLOAD &&
4977 Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
4978 return false;
4980 if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT))
4981 return false;
4982 } else {
4983 assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode");
4984 StoreSDNode *Store = cast<StoreSDNode>(LDST);
4985 // Can't write outside the original store
4986 if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
4987 return false;
4989 if (LegalOperations &&
4990 !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT))
4991 return false;
4993 return true;
4996 bool DAGCombiner::SearchForAndLoads(SDNode *N,
4997 SmallVectorImpl<LoadSDNode*> &Loads,
4998 SmallPtrSetImpl<SDNode*> &NodesWithConsts,
4999 ConstantSDNode *Mask,
5000 SDNode *&NodeToMask) {
5001 // Recursively search for the operands, looking for loads which can be
5002 // narrowed.
5003 for (SDValue Op : N->op_values()) {
5004 if (Op.getValueType().isVector())
5005 return false;
5007 // Some constants may need fixing up later if they are too large.
5008 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
5009 if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) &&
5010 (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue())
5011 NodesWithConsts.insert(N);
5012 continue;
5015 if (!Op.hasOneUse())
5016 return false;
5018 switch(Op.getOpcode()) {
5019 case ISD::LOAD: {
5020 auto *Load = cast<LoadSDNode>(Op);
5021 EVT ExtVT;
5022 if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) &&
5023 isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) {
5025 // ZEXTLOAD is already small enough.
5026 if (Load->getExtensionType() == ISD::ZEXTLOAD &&
5027 ExtVT.bitsGE(Load->getMemoryVT()))
5028 continue;
5030 // Use LE to convert equal sized loads to zext.
5031 if (ExtVT.bitsLE(Load->getMemoryVT()))
5032 Loads.push_back(Load);
5034 continue;
5036 return false;
5038 case ISD::ZERO_EXTEND:
5039 case ISD::AssertZext: {
5040 unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes();
5041 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
5042 EVT VT = Op.getOpcode() == ISD::AssertZext ?
5043 cast<VTSDNode>(Op.getOperand(1))->getVT() :
5044 Op.getOperand(0).getValueType();
5046 // We can accept extending nodes if the mask is wider or an equal
5047 // width to the original type.
5048 if (ExtVT.bitsGE(VT))
5049 continue;
5050 break;
5052 case ISD::OR:
5053 case ISD::XOR:
5054 case ISD::AND:
5055 if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask,
5056 NodeToMask))
5057 return false;
5058 continue;
5061 // Allow one node which will masked along with any loads found.
5062 if (NodeToMask)
5063 return false;
5065 // Also ensure that the node to be masked only produces one data result.
5066 NodeToMask = Op.getNode();
5067 if (NodeToMask->getNumValues() > 1) {
5068 bool HasValue = false;
5069 for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) {
5070 MVT VT = SDValue(NodeToMask, i).getSimpleValueType();
5071 if (VT != MVT::Glue && VT != MVT::Other) {
5072 if (HasValue) {
5073 NodeToMask = nullptr;
5074 return false;
5076 HasValue = true;
5079 assert(HasValue && "Node to be masked has no data result?");
5082 return true;
5085 bool DAGCombiner::BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG) {
5086 auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
5087 if (!Mask)
5088 return false;
5090 if (!Mask->getAPIntValue().isMask())
5091 return false;
5093 // No need to do anything if the and directly uses a load.
5094 if (isa<LoadSDNode>(N->getOperand(0)))
5095 return false;
5097 SmallVector<LoadSDNode*, 8> Loads;
5098 SmallPtrSet<SDNode*, 2> NodesWithConsts;
5099 SDNode *FixupNode = nullptr;
5100 if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) {
5101 if (Loads.size() == 0)
5102 return false;
5104 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump());
5105 SDValue MaskOp = N->getOperand(1);
5107 // If it exists, fixup the single node we allow in the tree that needs
5108 // masking.
5109 if (FixupNode) {
5110 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump());
5111 SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode),
5112 FixupNode->getValueType(0),
5113 SDValue(FixupNode, 0), MaskOp);
5114 DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And);
5115 if (And.getOpcode() == ISD ::AND)
5116 DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp);
5119 // Narrow any constants that need it.
5120 for (auto *LogicN : NodesWithConsts) {
5121 SDValue Op0 = LogicN->getOperand(0);
5122 SDValue Op1 = LogicN->getOperand(1);
5124 if (isa<ConstantSDNode>(Op0))
5125 std::swap(Op0, Op1);
5127 SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(),
5128 Op1, MaskOp);
5130 DAG.UpdateNodeOperands(LogicN, Op0, And);
5133 // Create narrow loads.
5134 for (auto *Load : Loads) {
5135 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump());
5136 SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0),
5137 SDValue(Load, 0), MaskOp);
5138 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And);
5139 if (And.getOpcode() == ISD ::AND)
5140 And = SDValue(
5141 DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0);
5142 SDValue NewLoad = ReduceLoadWidth(And.getNode());
5143 assert(NewLoad &&
5144 "Shouldn't be masking the load if it can't be narrowed");
5145 CombineTo(Load, NewLoad, NewLoad.getValue(1));
5147 DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode());
5148 return true;
5150 return false;
5153 // Unfold
5154 // x & (-1 'logical shift' y)
5155 // To
5156 // (x 'opposite logical shift' y) 'logical shift' y
5157 // if it is better for performance.
5158 SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) {
5159 assert(N->getOpcode() == ISD::AND);
5161 SDValue N0 = N->getOperand(0);
5162 SDValue N1 = N->getOperand(1);
5164 // Do we actually prefer shifts over mask?
5165 if (!TLI.shouldFoldMaskToVariableShiftPair(N0))
5166 return SDValue();
5168 // Try to match (-1 '[outer] logical shift' y)
5169 unsigned OuterShift;
5170 unsigned InnerShift; // The opposite direction to the OuterShift.
5171 SDValue Y; // Shift amount.
5172 auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool {
5173 if (!M.hasOneUse())
5174 return false;
5175 OuterShift = M->getOpcode();
5176 if (OuterShift == ISD::SHL)
5177 InnerShift = ISD::SRL;
5178 else if (OuterShift == ISD::SRL)
5179 InnerShift = ISD::SHL;
5180 else
5181 return false;
5182 if (!isAllOnesConstant(M->getOperand(0)))
5183 return false;
5184 Y = M->getOperand(1);
5185 return true;
5188 SDValue X;
5189 if (matchMask(N1))
5190 X = N0;
5191 else if (matchMask(N0))
5192 X = N1;
5193 else
5194 return SDValue();
5196 SDLoc DL(N);
5197 EVT VT = N->getValueType(0);
5199 // tmp = x 'opposite logical shift' y
5200 SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y);
5201 // ret = tmp 'logical shift' y
5202 SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y);
5204 return T1;
5207 /// Try to replace shift/logic that tests if a bit is clear with mask + setcc.
5208 /// For a target with a bit test, this is expected to become test + set and save
5209 /// at least 1 instruction.
5210 static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) {
5211 assert(And->getOpcode() == ISD::AND && "Expected an 'and' op");
5213 // This is probably not worthwhile without a supported type.
5214 EVT VT = And->getValueType(0);
5215 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5216 if (!TLI.isTypeLegal(VT))
5217 return SDValue();
5219 // Look through an optional extension and find a 'not'.
5220 // TODO: Should we favor test+set even without the 'not' op?
5221 SDValue Not = And->getOperand(0), And1 = And->getOperand(1);
5222 if (Not.getOpcode() == ISD::ANY_EXTEND)
5223 Not = Not.getOperand(0);
5224 if (!isBitwiseNot(Not) || !Not.hasOneUse() || !isOneConstant(And1))
5225 return SDValue();
5227 // Look though an optional truncation. The source operand may not be the same
5228 // type as the original 'and', but that is ok because we are masking off
5229 // everything but the low bit.
5230 SDValue Srl = Not.getOperand(0);
5231 if (Srl.getOpcode() == ISD::TRUNCATE)
5232 Srl = Srl.getOperand(0);
5234 // Match a shift-right by constant.
5235 if (Srl.getOpcode() != ISD::SRL || !Srl.hasOneUse() ||
5236 !isa<ConstantSDNode>(Srl.getOperand(1)))
5237 return SDValue();
5239 // We might have looked through casts that make this transform invalid.
5240 // TODO: If the source type is wider than the result type, do the mask and
5241 // compare in the source type.
5242 const APInt &ShiftAmt = Srl.getConstantOperandAPInt(1);
5243 unsigned VTBitWidth = VT.getSizeInBits();
5244 if (ShiftAmt.uge(VTBitWidth))
5245 return SDValue();
5247 // Turn this into a bit-test pattern using mask op + setcc:
5248 // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0
5249 SDLoc DL(And);
5250 SDValue X = DAG.getZExtOrTrunc(Srl.getOperand(0), DL, VT);
5251 EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5252 SDValue Mask = DAG.getConstant(
5253 APInt::getOneBitSet(VTBitWidth, ShiftAmt.getZExtValue()), DL, VT);
5254 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask);
5255 SDValue Zero = DAG.getConstant(0, DL, VT);
5256 SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ);
5257 return DAG.getZExtOrTrunc(Setcc, DL, VT);
5260 SDValue DAGCombiner::visitAND(SDNode *N) {
5261 SDValue N0 = N->getOperand(0);
5262 SDValue N1 = N->getOperand(1);
5263 EVT VT = N1.getValueType();
5265 // x & x --> x
5266 if (N0 == N1)
5267 return N0;
5269 // fold vector ops
5270 if (VT.isVector()) {
5271 if (SDValue FoldedVOp = SimplifyVBinOp(N))
5272 return FoldedVOp;
5274 // fold (and x, 0) -> 0, vector edition
5275 if (ISD::isBuildVectorAllZeros(N0.getNode()))
5276 // do not return N0, because undef node may exist in N0
5277 return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()),
5278 SDLoc(N), N0.getValueType());
5279 if (ISD::isBuildVectorAllZeros(N1.getNode()))
5280 // do not return N1, because undef node may exist in N1
5281 return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()),
5282 SDLoc(N), N1.getValueType());
5284 // fold (and x, -1) -> x, vector edition
5285 if (ISD::isBuildVectorAllOnes(N0.getNode()))
5286 return N1;
5287 if (ISD::isBuildVectorAllOnes(N1.getNode()))
5288 return N0;
5291 // fold (and c1, c2) -> c1&c2
5292 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
5293 ConstantSDNode *N1C = isConstOrConstSplat(N1);
5294 if (N0C && N1C && !N1C->isOpaque())
5295 return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C);
5296 // canonicalize constant to RHS
5297 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
5298 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
5299 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
5300 // fold (and x, -1) -> x
5301 if (isAllOnesConstant(N1))
5302 return N0;
5303 // if (and x, c) is known to be zero, return 0
5304 unsigned BitWidth = VT.getScalarSizeInBits();
5305 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
5306 APInt::getAllOnesValue(BitWidth)))
5307 return DAG.getConstant(0, SDLoc(N), VT);
5309 if (SDValue NewSel = foldBinOpIntoSelect(N))
5310 return NewSel;
5312 // reassociate and
5313 if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags()))
5314 return RAND;
5316 // Try to convert a constant mask AND into a shuffle clear mask.
5317 if (VT.isVector())
5318 if (SDValue Shuffle = XformToShuffleWithZero(N))
5319 return Shuffle;
5321 // fold (and (or x, C), D) -> D if (C & D) == D
5322 auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) {
5323 return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue());
5325 if (N0.getOpcode() == ISD::OR &&
5326 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset))
5327 return N1;
5328 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
5329 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
5330 SDValue N0Op0 = N0.getOperand(0);
5331 APInt Mask = ~N1C->getAPIntValue();
5332 Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits());
5333 if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
5334 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
5335 N0.getValueType(), N0Op0);
5337 // Replace uses of the AND with uses of the Zero extend node.
5338 CombineTo(N, Zext);
5340 // We actually want to replace all uses of the any_extend with the
5341 // zero_extend, to avoid duplicating things. This will later cause this
5342 // AND to be folded.
5343 CombineTo(N0.getNode(), Zext);
5344 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5348 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
5349 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
5350 // already be zero by virtue of the width of the base type of the load.
5352 // the 'X' node here can either be nothing or an extract_vector_elt to catch
5353 // more cases.
5354 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5355 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() &&
5356 N0.getOperand(0).getOpcode() == ISD::LOAD &&
5357 N0.getOperand(0).getResNo() == 0) ||
5358 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) {
5359 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
5360 N0 : N0.getOperand(0) );
5362 // Get the constant (if applicable) the zero'th operand is being ANDed with.
5363 // This can be a pure constant or a vector splat, in which case we treat the
5364 // vector as a scalar and use the splat value.
5365 APInt Constant = APInt::getNullValue(1);
5366 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
5367 Constant = C->getAPIntValue();
5368 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
5369 APInt SplatValue, SplatUndef;
5370 unsigned SplatBitSize;
5371 bool HasAnyUndefs;
5372 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
5373 SplatBitSize, HasAnyUndefs);
5374 if (IsSplat) {
5375 // Undef bits can contribute to a possible optimisation if set, so
5376 // set them.
5377 SplatValue |= SplatUndef;
5379 // The splat value may be something like "0x00FFFFFF", which means 0 for
5380 // the first vector value and FF for the rest, repeating. We need a mask
5381 // that will apply equally to all members of the vector, so AND all the
5382 // lanes of the constant together.
5383 unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits();
5385 // If the splat value has been compressed to a bitlength lower
5386 // than the size of the vector lane, we need to re-expand it to
5387 // the lane size.
5388 if (EltBitWidth > SplatBitSize)
5389 for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth);
5390 SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2)
5391 SplatValue |= SplatValue.shl(SplatBitSize);
5393 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
5394 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
5395 if ((SplatBitSize % EltBitWidth) == 0) {
5396 Constant = APInt::getAllOnesValue(EltBitWidth);
5397 for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i)
5398 Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth);
5403 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
5404 // actually legal and isn't going to get expanded, else this is a false
5405 // optimisation.
5406 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
5407 Load->getValueType(0),
5408 Load->getMemoryVT());
5410 // Resize the constant to the same size as the original memory access before
5411 // extension. If it is still the AllOnesValue then this AND is completely
5412 // unneeded.
5413 Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits());
5415 bool B;
5416 switch (Load->getExtensionType()) {
5417 default: B = false; break;
5418 case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
5419 case ISD::ZEXTLOAD:
5420 case ISD::NON_EXTLOAD: B = true; break;
5423 if (B && Constant.isAllOnesValue()) {
5424 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
5425 // preserve semantics once we get rid of the AND.
5426 SDValue NewLoad(Load, 0);
5428 // Fold the AND away. NewLoad may get replaced immediately.
5429 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
5431 if (Load->getExtensionType() == ISD::EXTLOAD) {
5432 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
5433 Load->getValueType(0), SDLoc(Load),
5434 Load->getChain(), Load->getBasePtr(),
5435 Load->getOffset(), Load->getMemoryVT(),
5436 Load->getMemOperand());
5437 // Replace uses of the EXTLOAD with the new ZEXTLOAD.
5438 if (Load->getNumValues() == 3) {
5439 // PRE/POST_INC loads have 3 values.
5440 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
5441 NewLoad.getValue(2) };
5442 CombineTo(Load, To, 3, true);
5443 } else {
5444 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
5448 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5452 // fold (and (load x), 255) -> (zextload x, i8)
5453 // fold (and (extload x, i16), 255) -> (zextload x, i8)
5454 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
5455 if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD ||
5456 (N0.getOpcode() == ISD::ANY_EXTEND &&
5457 N0.getOperand(0).getOpcode() == ISD::LOAD))) {
5458 if (SDValue Res = ReduceLoadWidth(N)) {
5459 LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND
5460 ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0);
5461 AddToWorklist(N);
5462 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res);
5463 return SDValue(N, 0);
5467 if (Level >= AfterLegalizeTypes) {
5468 // Attempt to propagate the AND back up to the leaves which, if they're
5469 // loads, can be combined to narrow loads and the AND node can be removed.
5470 // Perform after legalization so that extend nodes will already be
5471 // combined into the loads.
5472 if (BackwardsPropagateMask(N, DAG)) {
5473 return SDValue(N, 0);
5477 if (SDValue Combined = visitANDLike(N0, N1, N))
5478 return Combined;
5480 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
5481 if (N0.getOpcode() == N1.getOpcode())
5482 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
5483 return V;
5485 // Masking the negated extension of a boolean is just the zero-extended
5486 // boolean:
5487 // and (sub 0, zext(bool X)), 1 --> zext(bool X)
5488 // and (sub 0, sext(bool X)), 1 --> zext(bool X)
5490 // Note: the SimplifyDemandedBits fold below can make an information-losing
5491 // transform, and then we have no way to find this better fold.
5492 if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) {
5493 if (isNullOrNullSplat(N0.getOperand(0))) {
5494 SDValue SubRHS = N0.getOperand(1);
5495 if (SubRHS.getOpcode() == ISD::ZERO_EXTEND &&
5496 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
5497 return SubRHS;
5498 if (SubRHS.getOpcode() == ISD::SIGN_EXTEND &&
5499 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
5500 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0));
5504 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
5505 // fold (and (sra)) -> (and (srl)) when possible.
5506 if (SimplifyDemandedBits(SDValue(N, 0)))
5507 return SDValue(N, 0);
5509 // fold (zext_inreg (extload x)) -> (zextload x)
5510 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
5511 if (ISD::isUNINDEXEDLoad(N0.getNode()) &&
5512 (ISD::isEXTLoad(N0.getNode()) ||
5513 (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) {
5514 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5515 EVT MemVT = LN0->getMemoryVT();
5516 // If we zero all the possible extended bits, then we can turn this into
5517 // a zextload if we are running before legalize or the operation is legal.
5518 unsigned ExtBitSize = N1.getScalarValueSizeInBits();
5519 unsigned MemBitSize = MemVT.getScalarSizeInBits();
5520 APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize);
5521 if (DAG.MaskedValueIsZero(N1, ExtBits) &&
5522 ((!LegalOperations && LN0->isSimple()) ||
5523 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
5524 SDValue ExtLoad =
5525 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(),
5526 LN0->getBasePtr(), MemVT, LN0->getMemOperand());
5527 AddToWorklist(N);
5528 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5529 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5533 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
5534 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
5535 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5536 N0.getOperand(1), false))
5537 return BSwap;
5540 if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N))
5541 return Shifts;
5543 if (TLI.hasBitTest(N0, N1))
5544 if (SDValue V = combineShiftAnd1ToBitTest(N, DAG))
5545 return V;
5547 return SDValue();
5550 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
5551 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
5552 bool DemandHighBits) {
5553 if (!LegalOperations)
5554 return SDValue();
5556 EVT VT = N->getValueType(0);
5557 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
5558 return SDValue();
5559 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
5560 return SDValue();
5562 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
5563 bool LookPassAnd0 = false;
5564 bool LookPassAnd1 = false;
5565 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
5566 std::swap(N0, N1);
5567 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
5568 std::swap(N0, N1);
5569 if (N0.getOpcode() == ISD::AND) {
5570 if (!N0.getNode()->hasOneUse())
5571 return SDValue();
5572 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5573 // Also handle 0xffff since the LHS is guaranteed to have zeros there.
5574 // This is needed for X86.
5575 if (!N01C || (N01C->getZExtValue() != 0xFF00 &&
5576 N01C->getZExtValue() != 0xFFFF))
5577 return SDValue();
5578 N0 = N0.getOperand(0);
5579 LookPassAnd0 = true;
5582 if (N1.getOpcode() == ISD::AND) {
5583 if (!N1.getNode()->hasOneUse())
5584 return SDValue();
5585 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5586 if (!N11C || N11C->getZExtValue() != 0xFF)
5587 return SDValue();
5588 N1 = N1.getOperand(0);
5589 LookPassAnd1 = true;
5592 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
5593 std::swap(N0, N1);
5594 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
5595 return SDValue();
5596 if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse())
5597 return SDValue();
5599 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5600 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5601 if (!N01C || !N11C)
5602 return SDValue();
5603 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
5604 return SDValue();
5606 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
5607 SDValue N00 = N0->getOperand(0);
5608 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
5609 if (!N00.getNode()->hasOneUse())
5610 return SDValue();
5611 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
5612 if (!N001C || N001C->getZExtValue() != 0xFF)
5613 return SDValue();
5614 N00 = N00.getOperand(0);
5615 LookPassAnd0 = true;
5618 SDValue N10 = N1->getOperand(0);
5619 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
5620 if (!N10.getNode()->hasOneUse())
5621 return SDValue();
5622 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
5623 // Also allow 0xFFFF since the bits will be shifted out. This is needed
5624 // for X86.
5625 if (!N101C || (N101C->getZExtValue() != 0xFF00 &&
5626 N101C->getZExtValue() != 0xFFFF))
5627 return SDValue();
5628 N10 = N10.getOperand(0);
5629 LookPassAnd1 = true;
5632 if (N00 != N10)
5633 return SDValue();
5635 // Make sure everything beyond the low halfword gets set to zero since the SRL
5636 // 16 will clear the top bits.
5637 unsigned OpSizeInBits = VT.getSizeInBits();
5638 if (DemandHighBits && OpSizeInBits > 16) {
5639 // If the left-shift isn't masked out then the only way this is a bswap is
5640 // if all bits beyond the low 8 are 0. In that case the entire pattern
5641 // reduces to a left shift anyway: leave it for other parts of the combiner.
5642 if (!LookPassAnd0)
5643 return SDValue();
5645 // However, if the right shift isn't masked out then it might be because
5646 // it's not needed. See if we can spot that too.
5647 if (!LookPassAnd1 &&
5648 !DAG.MaskedValueIsZero(
5649 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
5650 return SDValue();
5653 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
5654 if (OpSizeInBits > 16) {
5655 SDLoc DL(N);
5656 Res = DAG.getNode(ISD::SRL, DL, VT, Res,
5657 DAG.getConstant(OpSizeInBits - 16, DL,
5658 getShiftAmountTy(VT)));
5660 return Res;
5663 /// Return true if the specified node is an element that makes up a 32-bit
5664 /// packed halfword byteswap.
5665 /// ((x & 0x000000ff) << 8) |
5666 /// ((x & 0x0000ff00) >> 8) |
5667 /// ((x & 0x00ff0000) << 8) |
5668 /// ((x & 0xff000000) >> 8)
5669 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) {
5670 if (!N.getNode()->hasOneUse())
5671 return false;
5673 unsigned Opc = N.getOpcode();
5674 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
5675 return false;
5677 SDValue N0 = N.getOperand(0);
5678 unsigned Opc0 = N0.getOpcode();
5679 if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL)
5680 return false;
5682 ConstantSDNode *N1C = nullptr;
5683 // SHL or SRL: look upstream for AND mask operand
5684 if (Opc == ISD::AND)
5685 N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
5686 else if (Opc0 == ISD::AND)
5687 N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5688 if (!N1C)
5689 return false;
5691 unsigned MaskByteOffset;
5692 switch (N1C->getZExtValue()) {
5693 default:
5694 return false;
5695 case 0xFF: MaskByteOffset = 0; break;
5696 case 0xFF00: MaskByteOffset = 1; break;
5697 case 0xFFFF:
5698 // In case demanded bits didn't clear the bits that will be shifted out.
5699 // This is needed for X86.
5700 if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) {
5701 MaskByteOffset = 1;
5702 break;
5704 return false;
5705 case 0xFF0000: MaskByteOffset = 2; break;
5706 case 0xFF000000: MaskByteOffset = 3; break;
5709 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
5710 if (Opc == ISD::AND) {
5711 if (MaskByteOffset == 0 || MaskByteOffset == 2) {
5712 // (x >> 8) & 0xff
5713 // (x >> 8) & 0xff0000
5714 if (Opc0 != ISD::SRL)
5715 return false;
5716 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5717 if (!C || C->getZExtValue() != 8)
5718 return false;
5719 } else {
5720 // (x << 8) & 0xff00
5721 // (x << 8) & 0xff000000
5722 if (Opc0 != ISD::SHL)
5723 return false;
5724 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5725 if (!C || C->getZExtValue() != 8)
5726 return false;
5728 } else if (Opc == ISD::SHL) {
5729 // (x & 0xff) << 8
5730 // (x & 0xff0000) << 8
5731 if (MaskByteOffset != 0 && MaskByteOffset != 2)
5732 return false;
5733 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
5734 if (!C || C->getZExtValue() != 8)
5735 return false;
5736 } else { // Opc == ISD::SRL
5737 // (x & 0xff00) >> 8
5738 // (x & 0xff000000) >> 8
5739 if (MaskByteOffset != 1 && MaskByteOffset != 3)
5740 return false;
5741 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
5742 if (!C || C->getZExtValue() != 8)
5743 return false;
5746 if (Parts[MaskByteOffset])
5747 return false;
5749 Parts[MaskByteOffset] = N0.getOperand(0).getNode();
5750 return true;
5753 /// Match a 32-bit packed halfword bswap. That is
5754 /// ((x & 0x000000ff) << 8) |
5755 /// ((x & 0x0000ff00) >> 8) |
5756 /// ((x & 0x00ff0000) << 8) |
5757 /// ((x & 0xff000000) >> 8)
5758 /// => (rotl (bswap x), 16)
5759 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
5760 if (!LegalOperations)
5761 return SDValue();
5763 EVT VT = N->getValueType(0);
5764 if (VT != MVT::i32)
5765 return SDValue();
5766 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
5767 return SDValue();
5769 // Look for either
5770 // (or (or (and), (and)), (or (and), (and)))
5771 // (or (or (or (and), (and)), (and)), (and))
5772 if (N0.getOpcode() != ISD::OR)
5773 return SDValue();
5774 SDValue N00 = N0.getOperand(0);
5775 SDValue N01 = N0.getOperand(1);
5776 SDNode *Parts[4] = {};
5778 if (N1.getOpcode() == ISD::OR &&
5779 N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
5780 // (or (or (and), (and)), (or (and), (and)))
5781 if (!isBSwapHWordElement(N00, Parts))
5782 return SDValue();
5784 if (!isBSwapHWordElement(N01, Parts))
5785 return SDValue();
5786 SDValue N10 = N1.getOperand(0);
5787 if (!isBSwapHWordElement(N10, Parts))
5788 return SDValue();
5789 SDValue N11 = N1.getOperand(1);
5790 if (!isBSwapHWordElement(N11, Parts))
5791 return SDValue();
5792 } else {
5793 // (or (or (or (and), (and)), (and)), (and))
5794 if (!isBSwapHWordElement(N1, Parts))
5795 return SDValue();
5796 if (!isBSwapHWordElement(N01, Parts))
5797 return SDValue();
5798 if (N00.getOpcode() != ISD::OR)
5799 return SDValue();
5800 SDValue N000 = N00.getOperand(0);
5801 if (!isBSwapHWordElement(N000, Parts))
5802 return SDValue();
5803 SDValue N001 = N00.getOperand(1);
5804 if (!isBSwapHWordElement(N001, Parts))
5805 return SDValue();
5808 // Make sure the parts are all coming from the same node.
5809 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
5810 return SDValue();
5812 SDLoc DL(N);
5813 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
5814 SDValue(Parts[0], 0));
5816 // Result of the bswap should be rotated by 16. If it's not legal, then
5817 // do (x << 16) | (x >> 16).
5818 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT));
5819 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
5820 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
5821 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
5822 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
5823 return DAG.getNode(ISD::OR, DL, VT,
5824 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
5825 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
5828 /// This contains all DAGCombine rules which reduce two values combined by
5829 /// an Or operation to a single value \see visitANDLike().
5830 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) {
5831 EVT VT = N1.getValueType();
5832 SDLoc DL(N);
5834 // fold (or x, undef) -> -1
5835 if (!LegalOperations && (N0.isUndef() || N1.isUndef()))
5836 return DAG.getAllOnesConstant(DL, VT);
5838 if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL))
5839 return V;
5841 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
5842 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
5843 // Don't increase # computations.
5844 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
5845 // We can only do this xform if we know that bits from X that are set in C2
5846 // but not in C1 are already zero. Likewise for Y.
5847 if (const ConstantSDNode *N0O1C =
5848 getAsNonOpaqueConstant(N0.getOperand(1))) {
5849 if (const ConstantSDNode *N1O1C =
5850 getAsNonOpaqueConstant(N1.getOperand(1))) {
5851 // We can only do this xform if we know that bits from X that are set in
5852 // C2 but not in C1 are already zero. Likewise for Y.
5853 const APInt &LHSMask = N0O1C->getAPIntValue();
5854 const APInt &RHSMask = N1O1C->getAPIntValue();
5856 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
5857 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
5858 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
5859 N0.getOperand(0), N1.getOperand(0));
5860 return DAG.getNode(ISD::AND, DL, VT, X,
5861 DAG.getConstant(LHSMask | RHSMask, DL, VT));
5867 // (or (and X, M), (and X, N)) -> (and X, (or M, N))
5868 if (N0.getOpcode() == ISD::AND &&
5869 N1.getOpcode() == ISD::AND &&
5870 N0.getOperand(0) == N1.getOperand(0) &&
5871 // Don't increase # computations.
5872 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
5873 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
5874 N0.getOperand(1), N1.getOperand(1));
5875 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X);
5878 return SDValue();
5881 /// OR combines for which the commuted variant will be tried as well.
5882 static SDValue visitORCommutative(
5883 SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) {
5884 EVT VT = N0.getValueType();
5885 if (N0.getOpcode() == ISD::AND) {
5886 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y)
5887 if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1)
5888 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1);
5890 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y)
5891 if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1)
5892 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1);
5895 return SDValue();
5898 SDValue DAGCombiner::visitOR(SDNode *N) {
5899 SDValue N0 = N->getOperand(0);
5900 SDValue N1 = N->getOperand(1);
5901 EVT VT = N1.getValueType();
5903 // x | x --> x
5904 if (N0 == N1)
5905 return N0;
5907 // fold vector ops
5908 if (VT.isVector()) {
5909 if (SDValue FoldedVOp = SimplifyVBinOp(N))
5910 return FoldedVOp;
5912 // fold (or x, 0) -> x, vector edition
5913 if (ISD::isBuildVectorAllZeros(N0.getNode()))
5914 return N1;
5915 if (ISD::isBuildVectorAllZeros(N1.getNode()))
5916 return N0;
5918 // fold (or x, -1) -> -1, vector edition
5919 if (ISD::isBuildVectorAllOnes(N0.getNode()))
5920 // do not return N0, because undef node may exist in N0
5921 return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType());
5922 if (ISD::isBuildVectorAllOnes(N1.getNode()))
5923 // do not return N1, because undef node may exist in N1
5924 return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType());
5926 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
5927 // Do this only if the resulting shuffle is legal.
5928 if (isa<ShuffleVectorSDNode>(N0) &&
5929 isa<ShuffleVectorSDNode>(N1) &&
5930 // Avoid folding a node with illegal type.
5931 TLI.isTypeLegal(VT)) {
5932 bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode());
5933 bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode());
5934 bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
5935 bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode());
5936 // Ensure both shuffles have a zero input.
5937 if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) {
5938 assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!");
5939 assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!");
5940 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0);
5941 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1);
5942 bool CanFold = true;
5943 int NumElts = VT.getVectorNumElements();
5944 SmallVector<int, 4> Mask(NumElts);
5946 for (int i = 0; i != NumElts; ++i) {
5947 int M0 = SV0->getMaskElt(i);
5948 int M1 = SV1->getMaskElt(i);
5950 // Determine if either index is pointing to a zero vector.
5951 bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts));
5952 bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts));
5954 // If one element is zero and the otherside is undef, keep undef.
5955 // This also handles the case that both are undef.
5956 if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) {
5957 Mask[i] = -1;
5958 continue;
5961 // Make sure only one of the elements is zero.
5962 if (M0Zero == M1Zero) {
5963 CanFold = false;
5964 break;
5967 assert((M0 >= 0 || M1 >= 0) && "Undef index!");
5969 // We have a zero and non-zero element. If the non-zero came from
5970 // SV0 make the index a LHS index. If it came from SV1, make it
5971 // a RHS index. We need to mod by NumElts because we don't care
5972 // which operand it came from in the original shuffles.
5973 Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts;
5976 if (CanFold) {
5977 SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0);
5978 SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0);
5980 SDValue LegalShuffle =
5981 TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS,
5982 Mask, DAG);
5983 if (LegalShuffle)
5984 return LegalShuffle;
5990 // fold (or c1, c2) -> c1|c2
5991 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
5992 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5993 if (N0C && N1C && !N1C->isOpaque())
5994 return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C);
5995 // canonicalize constant to RHS
5996 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
5997 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
5998 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
5999 // fold (or x, 0) -> x
6000 if (isNullConstant(N1))
6001 return N0;
6002 // fold (or x, -1) -> -1
6003 if (isAllOnesConstant(N1))
6004 return N1;
6006 if (SDValue NewSel = foldBinOpIntoSelect(N))
6007 return NewSel;
6009 // fold (or x, c) -> c iff (x & ~c) == 0
6010 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
6011 return N1;
6013 if (SDValue Combined = visitORLike(N0, N1, N))
6014 return Combined;
6016 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
6017 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1))
6018 return BSwap;
6019 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1))
6020 return BSwap;
6022 // reassociate or
6023 if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags()))
6024 return ROR;
6026 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
6027 // iff (c1 & c2) != 0 or c1/c2 are undef.
6028 auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) {
6029 return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue());
6031 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
6032 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) {
6033 if (SDValue COR = DAG.FoldConstantArithmetic(
6034 ISD::OR, SDLoc(N1), VT, N1.getNode(), N0.getOperand(1).getNode())) {
6035 SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1);
6036 AddToWorklist(IOR.getNode());
6037 return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR);
6041 if (SDValue Combined = visitORCommutative(DAG, N0, N1, N))
6042 return Combined;
6043 if (SDValue Combined = visitORCommutative(DAG, N1, N0, N))
6044 return Combined;
6046 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
6047 if (N0.getOpcode() == N1.getOpcode())
6048 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
6049 return V;
6051 // See if this is some rotate idiom.
6052 if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
6053 return SDValue(Rot, 0);
6055 if (SDValue Load = MatchLoadCombine(N))
6056 return Load;
6058 // Simplify the operands using demanded-bits information.
6059 if (SimplifyDemandedBits(SDValue(N, 0)))
6060 return SDValue(N, 0);
6062 // If OR can be rewritten into ADD, try combines based on ADD.
6063 if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) &&
6064 DAG.haveNoCommonBitsSet(N0, N1))
6065 if (SDValue Combined = visitADDLike(N))
6066 return Combined;
6068 return SDValue();
6071 static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) {
6072 if (Op.getOpcode() == ISD::AND &&
6073 DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) {
6074 Mask = Op.getOperand(1);
6075 return Op.getOperand(0);
6077 return Op;
6080 /// Match "(X shl/srl V1) & V2" where V2 may not be present.
6081 static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift,
6082 SDValue &Mask) {
6083 Op = stripConstantMask(DAG, Op, Mask);
6084 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
6085 Shift = Op;
6086 return true;
6088 return false;
6091 /// Helper function for visitOR to extract the needed side of a rotate idiom
6092 /// from a shl/srl/mul/udiv. This is meant to handle cases where
6093 /// InstCombine merged some outside op with one of the shifts from
6094 /// the rotate pattern.
6095 /// \returns An empty \c SDValue if the needed shift couldn't be extracted.
6096 /// Otherwise, returns an expansion of \p ExtractFrom based on the following
6097 /// patterns:
6099 /// (or (add v v) (shrl v bitwidth-1)):
6100 /// expands (add v v) -> (shl v 1)
6102 /// (or (mul v c0) (shrl (mul v c1) c2)):
6103 /// expands (mul v c0) -> (shl (mul v c1) c3)
6105 /// (or (udiv v c0) (shl (udiv v c1) c2)):
6106 /// expands (udiv v c0) -> (shrl (udiv v c1) c3)
6108 /// (or (shl v c0) (shrl (shl v c1) c2)):
6109 /// expands (shl v c0) -> (shl (shl v c1) c3)
6111 /// (or (shrl v c0) (shl (shrl v c1) c2)):
6112 /// expands (shrl v c0) -> (shrl (shrl v c1) c3)
6114 /// Such that in all cases, c3+c2==bitwidth(op v c1).
6115 static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift,
6116 SDValue ExtractFrom, SDValue &Mask,
6117 const SDLoc &DL) {
6118 assert(OppShift && ExtractFrom && "Empty SDValue");
6119 assert(
6120 (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) &&
6121 "Existing shift must be valid as a rotate half");
6123 ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask);
6125 // Value and Type of the shift.
6126 SDValue OppShiftLHS = OppShift.getOperand(0);
6127 EVT ShiftedVT = OppShiftLHS.getValueType();
6129 // Amount of the existing shift.
6130 ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1));
6132 // (add v v) -> (shl v 1)
6133 if (OppShift.getOpcode() == ISD::SRL && OppShiftCst &&
6134 ExtractFrom.getOpcode() == ISD::ADD &&
6135 ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) &&
6136 ExtractFrom.getOperand(0) == OppShiftLHS &&
6137 OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1)
6138 return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS,
6139 DAG.getShiftAmountConstant(1, ShiftedVT, DL));
6141 // Preconditions:
6142 // (or (op0 v c0) (shiftl/r (op0 v c1) c2))
6144 // Find opcode of the needed shift to be extracted from (op0 v c0).
6145 unsigned Opcode = ISD::DELETED_NODE;
6146 bool IsMulOrDiv = false;
6147 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
6148 // opcode or its arithmetic (mul or udiv) variant.
6149 auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) {
6150 IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant;
6151 if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift)
6152 return false;
6153 Opcode = NeededShift;
6154 return true;
6156 // op0 must be either the needed shift opcode or the mul/udiv equivalent
6157 // that the needed shift can be extracted from.
6158 if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) &&
6159 (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV)))
6160 return SDValue();
6162 // op0 must be the same opcode on both sides, have the same LHS argument,
6163 // and produce the same value type.
6164 if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() ||
6165 OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) ||
6166 ShiftedVT != ExtractFrom.getValueType())
6167 return SDValue();
6169 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
6170 ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1));
6171 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
6172 ConstantSDNode *ExtractFromCst =
6173 isConstOrConstSplat(ExtractFrom.getOperand(1));
6174 // TODO: We should be able to handle non-uniform constant vectors for these values
6175 // Check that we have constant values.
6176 if (!OppShiftCst || !OppShiftCst->getAPIntValue() ||
6177 !OppLHSCst || !OppLHSCst->getAPIntValue() ||
6178 !ExtractFromCst || !ExtractFromCst->getAPIntValue())
6179 return SDValue();
6181 // Compute the shift amount we need to extract to complete the rotate.
6182 const unsigned VTWidth = ShiftedVT.getScalarSizeInBits();
6183 if (OppShiftCst->getAPIntValue().ugt(VTWidth))
6184 return SDValue();
6185 APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue();
6186 // Normalize the bitwidth of the two mul/udiv/shift constant operands.
6187 APInt ExtractFromAmt = ExtractFromCst->getAPIntValue();
6188 APInt OppLHSAmt = OppLHSCst->getAPIntValue();
6189 zeroExtendToMatch(ExtractFromAmt, OppLHSAmt);
6191 // Now try extract the needed shift from the ExtractFrom op and see if the
6192 // result matches up with the existing shift's LHS op.
6193 if (IsMulOrDiv) {
6194 // Op to extract from is a mul or udiv by a constant.
6195 // Check:
6196 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
6197 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
6198 const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(),
6199 NeededShiftAmt.getZExtValue());
6200 APInt ResultAmt;
6201 APInt Rem;
6202 APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem);
6203 if (Rem != 0 || ResultAmt != OppLHSAmt)
6204 return SDValue();
6205 } else {
6206 // Op to extract from is a shift by a constant.
6207 // Check:
6208 // c2 - (bitwidth(op0 v c0) - c1) == c0
6209 if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc(
6210 ExtractFromAmt.getBitWidth()))
6211 return SDValue();
6214 // Return the expanded shift op that should allow a rotate to be formed.
6215 EVT ShiftVT = OppShift.getOperand(1).getValueType();
6216 EVT ResVT = ExtractFrom.getValueType();
6217 SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT);
6218 return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode);
6221 // Return true if we can prove that, whenever Neg and Pos are both in the
6222 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
6223 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
6225 // (or (shift1 X, Neg), (shift2 X, Pos))
6227 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
6228 // in direction shift1 by Neg. The range [0, EltSize) means that we only need
6229 // to consider shift amounts with defined behavior.
6230 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize,
6231 SelectionDAG &DAG) {
6232 // If EltSize is a power of 2 then:
6234 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
6235 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
6237 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
6238 // for the stronger condition:
6240 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
6242 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
6243 // we can just replace Neg with Neg' for the rest of the function.
6245 // In other cases we check for the even stronger condition:
6247 // Neg == EltSize - Pos [B]
6249 // for all Neg and Pos. Note that the (or ...) then invokes undefined
6250 // behavior if Pos == 0 (and consequently Neg == EltSize).
6252 // We could actually use [A] whenever EltSize is a power of 2, but the
6253 // only extra cases that it would match are those uninteresting ones
6254 // where Neg and Pos are never in range at the same time. E.g. for
6255 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
6256 // as well as (sub 32, Pos), but:
6258 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
6260 // always invokes undefined behavior for 32-bit X.
6262 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
6263 unsigned MaskLoBits = 0;
6264 if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) {
6265 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) {
6266 KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0));
6267 unsigned Bits = Log2_64(EltSize);
6268 if (NegC->getAPIntValue().getActiveBits() <= Bits &&
6269 ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) {
6270 Neg = Neg.getOperand(0);
6271 MaskLoBits = Bits;
6276 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
6277 if (Neg.getOpcode() != ISD::SUB)
6278 return false;
6279 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0));
6280 if (!NegC)
6281 return false;
6282 SDValue NegOp1 = Neg.getOperand(1);
6284 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
6285 // Pos'. The truncation is redundant for the purpose of the equality.
6286 if (MaskLoBits && Pos.getOpcode() == ISD::AND) {
6287 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) {
6288 KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0));
6289 if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits &&
6290 ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >=
6291 MaskLoBits))
6292 Pos = Pos.getOperand(0);
6296 // The condition we need is now:
6298 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
6300 // If NegOp1 == Pos then we need:
6302 // EltSize & Mask == NegC & Mask
6304 // (because "x & Mask" is a truncation and distributes through subtraction).
6305 APInt Width;
6306 if (Pos == NegOp1)
6307 Width = NegC->getAPIntValue();
6309 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
6310 // Then the condition we want to prove becomes:
6312 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
6314 // which, again because "x & Mask" is a truncation, becomes:
6316 // NegC & Mask == (EltSize - PosC) & Mask
6317 // EltSize & Mask == (NegC + PosC) & Mask
6318 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
6319 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
6320 Width = PosC->getAPIntValue() + NegC->getAPIntValue();
6321 else
6322 return false;
6323 } else
6324 return false;
6326 // Now we just need to check that EltSize & Mask == Width & Mask.
6327 if (MaskLoBits)
6328 // EltSize & Mask is 0 since Mask is EltSize - 1.
6329 return Width.getLoBits(MaskLoBits) == 0;
6330 return Width == EltSize;
6333 // A subroutine of MatchRotate used once we have found an OR of two opposite
6334 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
6335 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
6336 // former being preferred if supported. InnerPos and InnerNeg are Pos and
6337 // Neg with outer conversions stripped away.
6338 SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
6339 SDValue Neg, SDValue InnerPos,
6340 SDValue InnerNeg, unsigned PosOpcode,
6341 unsigned NegOpcode, const SDLoc &DL) {
6342 // fold (or (shl x, (*ext y)),
6343 // (srl x, (*ext (sub 32, y)))) ->
6344 // (rotl x, y) or (rotr x, (sub 32, y))
6346 // fold (or (shl x, (*ext (sub 32, y))),
6347 // (srl x, (*ext y))) ->
6348 // (rotr x, y) or (rotl x, (sub 32, y))
6349 EVT VT = Shifted.getValueType();
6350 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG)) {
6351 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
6352 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
6353 HasPos ? Pos : Neg).getNode();
6356 return nullptr;
6359 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
6360 // idioms for rotate, and if the target supports rotation instructions, generate
6361 // a rot[lr].
6362 SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) {
6363 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
6364 EVT VT = LHS.getValueType();
6365 if (!TLI.isTypeLegal(VT)) return nullptr;
6367 // The target must have at least one rotate flavor.
6368 bool HasROTL = hasOperation(ISD::ROTL, VT);
6369 bool HasROTR = hasOperation(ISD::ROTR, VT);
6370 if (!HasROTL && !HasROTR) return nullptr;
6372 // Check for truncated rotate.
6373 if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE &&
6374 LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) {
6375 assert(LHS.getValueType() == RHS.getValueType());
6376 if (SDNode *Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) {
6377 return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(),
6378 SDValue(Rot, 0)).getNode();
6382 // Match "(X shl/srl V1) & V2" where V2 may not be present.
6383 SDValue LHSShift; // The shift.
6384 SDValue LHSMask; // AND value if any.
6385 matchRotateHalf(DAG, LHS, LHSShift, LHSMask);
6387 SDValue RHSShift; // The shift.
6388 SDValue RHSMask; // AND value if any.
6389 matchRotateHalf(DAG, RHS, RHSShift, RHSMask);
6391 // If neither side matched a rotate half, bail
6392 if (!LHSShift && !RHSShift)
6393 return nullptr;
6395 // InstCombine may have combined a constant shl, srl, mul, or udiv with one
6396 // side of the rotate, so try to handle that here. In all cases we need to
6397 // pass the matched shift from the opposite side to compute the opcode and
6398 // needed shift amount to extract. We still want to do this if both sides
6399 // matched a rotate half because one half may be a potential overshift that
6400 // can be broken down (ie if InstCombine merged two shl or srl ops into a
6401 // single one).
6403 // Have LHS side of the rotate, try to extract the needed shift from the RHS.
6404 if (LHSShift)
6405 if (SDValue NewRHSShift =
6406 extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL))
6407 RHSShift = NewRHSShift;
6408 // Have RHS side of the rotate, try to extract the needed shift from the LHS.
6409 if (RHSShift)
6410 if (SDValue NewLHSShift =
6411 extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL))
6412 LHSShift = NewLHSShift;
6414 // If a side is still missing, nothing else we can do.
6415 if (!RHSShift || !LHSShift)
6416 return nullptr;
6418 // At this point we've matched or extracted a shift op on each side.
6420 if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
6421 return nullptr; // Not shifting the same value.
6423 if (LHSShift.getOpcode() == RHSShift.getOpcode())
6424 return nullptr; // Shifts must disagree.
6426 // Canonicalize shl to left side in a shl/srl pair.
6427 if (RHSShift.getOpcode() == ISD::SHL) {
6428 std::swap(LHS, RHS);
6429 std::swap(LHSShift, RHSShift);
6430 std::swap(LHSMask, RHSMask);
6433 unsigned EltSizeInBits = VT.getScalarSizeInBits();
6434 SDValue LHSShiftArg = LHSShift.getOperand(0);
6435 SDValue LHSShiftAmt = LHSShift.getOperand(1);
6436 SDValue RHSShiftArg = RHSShift.getOperand(0);
6437 SDValue RHSShiftAmt = RHSShift.getOperand(1);
6439 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
6440 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
6441 auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS,
6442 ConstantSDNode *RHS) {
6443 return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits;
6445 if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) {
6446 SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
6447 LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
6449 // If there is an AND of either shifted operand, apply it to the result.
6450 if (LHSMask.getNode() || RHSMask.getNode()) {
6451 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
6452 SDValue Mask = AllOnes;
6454 if (LHSMask.getNode()) {
6455 SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt);
6456 Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
6457 DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits));
6459 if (RHSMask.getNode()) {
6460 SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt);
6461 Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
6462 DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits));
6465 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask);
6468 return Rot.getNode();
6471 // If there is a mask here, and we have a variable shift, we can't be sure
6472 // that we're masking out the right stuff.
6473 if (LHSMask.getNode() || RHSMask.getNode())
6474 return nullptr;
6476 // If the shift amount is sign/zext/any-extended just peel it off.
6477 SDValue LExtOp0 = LHSShiftAmt;
6478 SDValue RExtOp0 = RHSShiftAmt;
6479 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
6480 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
6481 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
6482 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
6483 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
6484 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
6485 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
6486 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
6487 LExtOp0 = LHSShiftAmt.getOperand(0);
6488 RExtOp0 = RHSShiftAmt.getOperand(0);
6491 SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt,
6492 LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL);
6493 if (TryL)
6494 return TryL;
6496 SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
6497 RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL);
6498 if (TryR)
6499 return TryR;
6501 return nullptr;
6504 namespace {
6506 /// Represents known origin of an individual byte in load combine pattern. The
6507 /// value of the byte is either constant zero or comes from memory.
6508 struct ByteProvider {
6509 // For constant zero providers Load is set to nullptr. For memory providers
6510 // Load represents the node which loads the byte from memory.
6511 // ByteOffset is the offset of the byte in the value produced by the load.
6512 LoadSDNode *Load = nullptr;
6513 unsigned ByteOffset = 0;
6515 ByteProvider() = default;
6517 static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) {
6518 return ByteProvider(Load, ByteOffset);
6521 static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); }
6523 bool isConstantZero() const { return !Load; }
6524 bool isMemory() const { return Load; }
6526 bool operator==(const ByteProvider &Other) const {
6527 return Other.Load == Load && Other.ByteOffset == ByteOffset;
6530 private:
6531 ByteProvider(LoadSDNode *Load, unsigned ByteOffset)
6532 : Load(Load), ByteOffset(ByteOffset) {}
6535 } // end anonymous namespace
6537 /// Recursively traverses the expression calculating the origin of the requested
6538 /// byte of the given value. Returns None if the provider can't be calculated.
6540 /// For all the values except the root of the expression verifies that the value
6541 /// has exactly one use and if it's not true return None. This way if the origin
6542 /// of the byte is returned it's guaranteed that the values which contribute to
6543 /// the byte are not used outside of this expression.
6545 /// Because the parts of the expression are not allowed to have more than one
6546 /// use this function iterates over trees, not DAGs. So it never visits the same
6547 /// node more than once.
6548 static const Optional<ByteProvider>
6549 calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth,
6550 bool Root = false) {
6551 // Typical i64 by i8 pattern requires recursion up to 8 calls depth
6552 if (Depth == 10)
6553 return None;
6555 if (!Root && !Op.hasOneUse())
6556 return None;
6558 assert(Op.getValueType().isScalarInteger() && "can't handle other types");
6559 unsigned BitWidth = Op.getValueSizeInBits();
6560 if (BitWidth % 8 != 0)
6561 return None;
6562 unsigned ByteWidth = BitWidth / 8;
6563 assert(Index < ByteWidth && "invalid index requested");
6564 (void) ByteWidth;
6566 switch (Op.getOpcode()) {
6567 case ISD::OR: {
6568 auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1);
6569 if (!LHS)
6570 return None;
6571 auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1);
6572 if (!RHS)
6573 return None;
6575 if (LHS->isConstantZero())
6576 return RHS;
6577 if (RHS->isConstantZero())
6578 return LHS;
6579 return None;
6581 case ISD::SHL: {
6582 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
6583 if (!ShiftOp)
6584 return None;
6586 uint64_t BitShift = ShiftOp->getZExtValue();
6587 if (BitShift % 8 != 0)
6588 return None;
6589 uint64_t ByteShift = BitShift / 8;
6591 return Index < ByteShift
6592 ? ByteProvider::getConstantZero()
6593 : calculateByteProvider(Op->getOperand(0), Index - ByteShift,
6594 Depth + 1);
6596 case ISD::ANY_EXTEND:
6597 case ISD::SIGN_EXTEND:
6598 case ISD::ZERO_EXTEND: {
6599 SDValue NarrowOp = Op->getOperand(0);
6600 unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
6601 if (NarrowBitWidth % 8 != 0)
6602 return None;
6603 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
6605 if (Index >= NarrowByteWidth)
6606 return Op.getOpcode() == ISD::ZERO_EXTEND
6607 ? Optional<ByteProvider>(ByteProvider::getConstantZero())
6608 : None;
6609 return calculateByteProvider(NarrowOp, Index, Depth + 1);
6611 case ISD::BSWAP:
6612 return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1,
6613 Depth + 1);
6614 case ISD::LOAD: {
6615 auto L = cast<LoadSDNode>(Op.getNode());
6616 if (!L->isSimple() || L->isIndexed())
6617 return None;
6619 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
6620 if (NarrowBitWidth % 8 != 0)
6621 return None;
6622 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
6624 if (Index >= NarrowByteWidth)
6625 return L->getExtensionType() == ISD::ZEXTLOAD
6626 ? Optional<ByteProvider>(ByteProvider::getConstantZero())
6627 : None;
6628 return ByteProvider::getMemory(L, Index);
6632 return None;
6635 static unsigned LittleEndianByteAt(unsigned BW, unsigned i) {
6636 return i;
6639 static unsigned BigEndianByteAt(unsigned BW, unsigned i) {
6640 return BW - i - 1;
6643 // Check if the bytes offsets we are looking at match with either big or
6644 // little endian value loaded. Return true for big endian, false for little
6645 // endian, and None if match failed.
6646 static Optional<bool> isBigEndian(const SmallVector<int64_t, 4> &ByteOffsets,
6647 int64_t FirstOffset) {
6648 // The endian can be decided only when it is 2 bytes at least.
6649 unsigned Width = ByteOffsets.size();
6650 if (Width < 2)
6651 return None;
6653 bool BigEndian = true, LittleEndian = true;
6654 for (unsigned i = 0; i < Width; i++) {
6655 int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset;
6656 LittleEndian &= CurrentByteOffset == LittleEndianByteAt(Width, i);
6657 BigEndian &= CurrentByteOffset == BigEndianByteAt(Width, i);
6658 if (!BigEndian && !LittleEndian)
6659 return None;
6662 assert((BigEndian != LittleEndian) && "It should be either big endian or"
6663 "little endian");
6664 return BigEndian;
6667 static SDValue stripTruncAndExt(SDValue Value) {
6668 switch (Value.getOpcode()) {
6669 case ISD::TRUNCATE:
6670 case ISD::ZERO_EXTEND:
6671 case ISD::SIGN_EXTEND:
6672 case ISD::ANY_EXTEND:
6673 return stripTruncAndExt(Value.getOperand(0));
6675 return Value;
6678 /// Match a pattern where a wide type scalar value is stored by several narrow
6679 /// stores. Fold it into a single store or a BSWAP and a store if the targets
6680 /// supports it.
6682 /// Assuming little endian target:
6683 /// i8 *p = ...
6684 /// i32 val = ...
6685 /// p[0] = (val >> 0) & 0xFF;
6686 /// p[1] = (val >> 8) & 0xFF;
6687 /// p[2] = (val >> 16) & 0xFF;
6688 /// p[3] = (val >> 24) & 0xFF;
6689 /// =>
6690 /// *((i32)p) = val;
6692 /// i8 *p = ...
6693 /// i32 val = ...
6694 /// p[0] = (val >> 24) & 0xFF;
6695 /// p[1] = (val >> 16) & 0xFF;
6696 /// p[2] = (val >> 8) & 0xFF;
6697 /// p[3] = (val >> 0) & 0xFF;
6698 /// =>
6699 /// *((i32)p) = BSWAP(val);
6700 SDValue DAGCombiner::MatchStoreCombine(StoreSDNode *N) {
6701 // Collect all the stores in the chain.
6702 SDValue Chain;
6703 SmallVector<StoreSDNode *, 8> Stores;
6704 for (StoreSDNode *Store = N; Store; Store = dyn_cast<StoreSDNode>(Chain)) {
6705 // TODO: Allow unordered atomics when wider type is legal (see D66309)
6706 if (Store->getMemoryVT() != MVT::i8 ||
6707 !Store->isSimple() || Store->isIndexed())
6708 return SDValue();
6709 Stores.push_back(Store);
6710 Chain = Store->getChain();
6712 // Handle the simple type only.
6713 unsigned Width = Stores.size();
6714 EVT VT = EVT::getIntegerVT(
6715 *DAG.getContext(), Width * N->getMemoryVT().getSizeInBits());
6716 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
6717 return SDValue();
6719 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6720 if (LegalOperations && !TLI.isOperationLegal(ISD::STORE, VT))
6721 return SDValue();
6723 // Check if all the bytes of the combined value we are looking at are stored
6724 // to the same base address. Collect bytes offsets from Base address into
6725 // ByteOffsets.
6726 SDValue CombinedValue;
6727 SmallVector<int64_t, 4> ByteOffsets(Width, INT64_MAX);
6728 int64_t FirstOffset = INT64_MAX;
6729 StoreSDNode *FirstStore = nullptr;
6730 Optional<BaseIndexOffset> Base;
6731 for (auto Store : Stores) {
6732 // All the stores store different byte of the CombinedValue. A truncate is
6733 // required to get that byte value.
6734 SDValue Trunc = Store->getValue();
6735 if (Trunc.getOpcode() != ISD::TRUNCATE)
6736 return SDValue();
6737 // A shift operation is required to get the right byte offset, except the
6738 // first byte.
6739 int64_t Offset = 0;
6740 SDValue Value = Trunc.getOperand(0);
6741 if (Value.getOpcode() == ISD::SRL ||
6742 Value.getOpcode() == ISD::SRA) {
6743 ConstantSDNode *ShiftOffset =
6744 dyn_cast<ConstantSDNode>(Value.getOperand(1));
6745 // Trying to match the following pattern. The shift offset must be
6746 // a constant and a multiple of 8. It is the byte offset in "y".
6748 // x = srl y, offset
6749 // i8 z = trunc x
6750 // store z, ...
6751 if (!ShiftOffset || (ShiftOffset->getSExtValue() % 8))
6752 return SDValue();
6754 Offset = ShiftOffset->getSExtValue()/8;
6755 Value = Value.getOperand(0);
6758 // Stores must share the same combined value with different offsets.
6759 if (!CombinedValue)
6760 CombinedValue = Value;
6761 else if (stripTruncAndExt(CombinedValue) != stripTruncAndExt(Value))
6762 return SDValue();
6764 // The trunc and all the extend operation should be stripped to get the
6765 // real value we are stored.
6766 else if (CombinedValue.getValueType() != VT) {
6767 if (Value.getValueType() == VT ||
6768 Value.getValueSizeInBits() > CombinedValue.getValueSizeInBits())
6769 CombinedValue = Value;
6770 // Give up if the combined value type is smaller than the store size.
6771 if (CombinedValue.getValueSizeInBits() < VT.getSizeInBits())
6772 return SDValue();
6775 // Stores must share the same base address
6776 BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG);
6777 int64_t ByteOffsetFromBase = 0;
6778 if (!Base)
6779 Base = Ptr;
6780 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
6781 return SDValue();
6783 // Remember the first byte store
6784 if (ByteOffsetFromBase < FirstOffset) {
6785 FirstStore = Store;
6786 FirstOffset = ByteOffsetFromBase;
6788 // Map the offset in the store and the offset in the combined value, and
6789 // early return if it has been set before.
6790 if (Offset < 0 || Offset >= Width || ByteOffsets[Offset] != INT64_MAX)
6791 return SDValue();
6792 ByteOffsets[Offset] = ByteOffsetFromBase;
6795 assert(FirstOffset != INT64_MAX && "First byte offset must be set");
6796 assert(FirstStore && "First store must be set");
6798 // Check if the bytes of the combined value we are looking at match with
6799 // either big or little endian value store.
6800 Optional<bool> IsBigEndian = isBigEndian(ByteOffsets, FirstOffset);
6801 if (!IsBigEndian.hasValue())
6802 return SDValue();
6804 // The node we are looking at matches with the pattern, check if we can
6805 // replace it with a single bswap if needed and store.
6807 // If the store needs byte swap check if the target supports it
6808 bool NeedsBswap = DAG.getDataLayout().isBigEndian() != *IsBigEndian;
6810 // Before legalize we can introduce illegal bswaps which will be later
6811 // converted to an explicit bswap sequence. This way we end up with a single
6812 // store and byte shuffling instead of several stores and byte shuffling.
6813 if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT))
6814 return SDValue();
6816 // Check that a store of the wide type is both allowed and fast on the target
6817 bool Fast = false;
6818 bool Allowed =
6819 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
6820 *FirstStore->getMemOperand(), &Fast);
6821 if (!Allowed || !Fast)
6822 return SDValue();
6824 if (VT != CombinedValue.getValueType()) {
6825 assert(CombinedValue.getValueType().getSizeInBits() > VT.getSizeInBits() &&
6826 "Get unexpected store value to combine");
6827 CombinedValue = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT,
6828 CombinedValue);
6831 if (NeedsBswap)
6832 CombinedValue = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, CombinedValue);
6834 SDValue NewStore =
6835 DAG.getStore(Chain, SDLoc(N), CombinedValue, FirstStore->getBasePtr(),
6836 FirstStore->getPointerInfo(), FirstStore->getAlignment());
6838 // Rely on other DAG combine rules to remove the other individual stores.
6839 DAG.ReplaceAllUsesWith(N, NewStore.getNode());
6840 return NewStore;
6843 /// Match a pattern where a wide type scalar value is loaded by several narrow
6844 /// loads and combined by shifts and ors. Fold it into a single load or a load
6845 /// and a BSWAP if the targets supports it.
6847 /// Assuming little endian target:
6848 /// i8 *a = ...
6849 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
6850 /// =>
6851 /// i32 val = *((i32)a)
6853 /// i8 *a = ...
6854 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
6855 /// =>
6856 /// i32 val = BSWAP(*((i32)a))
6858 /// TODO: This rule matches complex patterns with OR node roots and doesn't
6859 /// interact well with the worklist mechanism. When a part of the pattern is
6860 /// updated (e.g. one of the loads) its direct users are put into the worklist,
6861 /// but the root node of the pattern which triggers the load combine is not
6862 /// necessarily a direct user of the changed node. For example, once the address
6863 /// of t28 load is reassociated load combine won't be triggered:
6864 /// t25: i32 = add t4, Constant:i32<2>
6865 /// t26: i64 = sign_extend t25
6866 /// t27: i64 = add t2, t26
6867 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
6868 /// t29: i32 = zero_extend t28
6869 /// t32: i32 = shl t29, Constant:i8<8>
6870 /// t33: i32 = or t23, t32
6871 /// As a possible fix visitLoad can check if the load can be a part of a load
6872 /// combine pattern and add corresponding OR roots to the worklist.
6873 SDValue DAGCombiner::MatchLoadCombine(SDNode *N) {
6874 assert(N->getOpcode() == ISD::OR &&
6875 "Can only match load combining against OR nodes");
6877 // Handles simple types only
6878 EVT VT = N->getValueType(0);
6879 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
6880 return SDValue();
6881 unsigned ByteWidth = VT.getSizeInBits() / 8;
6883 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6884 // Before legalize we can introduce too wide illegal loads which will be later
6885 // split into legal sized loads. This enables us to combine i64 load by i8
6886 // patterns to a couple of i32 loads on 32 bit targets.
6887 if (LegalOperations && !TLI.isOperationLegal(ISD::LOAD, VT))
6888 return SDValue();
6890 bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian();
6891 auto MemoryByteOffset = [&] (ByteProvider P) {
6892 assert(P.isMemory() && "Must be a memory byte provider");
6893 unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits();
6894 assert(LoadBitWidth % 8 == 0 &&
6895 "can only analyze providers for individual bytes not bit");
6896 unsigned LoadByteWidth = LoadBitWidth / 8;
6897 return IsBigEndianTarget
6898 ? BigEndianByteAt(LoadByteWidth, P.ByteOffset)
6899 : LittleEndianByteAt(LoadByteWidth, P.ByteOffset);
6902 Optional<BaseIndexOffset> Base;
6903 SDValue Chain;
6905 SmallPtrSet<LoadSDNode *, 8> Loads;
6906 Optional<ByteProvider> FirstByteProvider;
6907 int64_t FirstOffset = INT64_MAX;
6909 // Check if all the bytes of the OR we are looking at are loaded from the same
6910 // base address. Collect bytes offsets from Base address in ByteOffsets.
6911 SmallVector<int64_t, 4> ByteOffsets(ByteWidth);
6912 for (unsigned i = 0; i < ByteWidth; i++) {
6913 auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true);
6914 if (!P || !P->isMemory()) // All the bytes must be loaded from memory
6915 return SDValue();
6917 LoadSDNode *L = P->Load;
6918 assert(L->hasNUsesOfValue(1, 0) && L->isSimple() &&
6919 !L->isIndexed() &&
6920 "Must be enforced by calculateByteProvider");
6921 assert(L->getOffset().isUndef() && "Unindexed load must have undef offset");
6923 // All loads must share the same chain
6924 SDValue LChain = L->getChain();
6925 if (!Chain)
6926 Chain = LChain;
6927 else if (Chain != LChain)
6928 return SDValue();
6930 // Loads must share the same base address
6931 BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG);
6932 int64_t ByteOffsetFromBase = 0;
6933 if (!Base)
6934 Base = Ptr;
6935 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
6936 return SDValue();
6938 // Calculate the offset of the current byte from the base address
6939 ByteOffsetFromBase += MemoryByteOffset(*P);
6940 ByteOffsets[i] = ByteOffsetFromBase;
6942 // Remember the first byte load
6943 if (ByteOffsetFromBase < FirstOffset) {
6944 FirstByteProvider = P;
6945 FirstOffset = ByteOffsetFromBase;
6948 Loads.insert(L);
6950 assert(!Loads.empty() && "All the bytes of the value must be loaded from "
6951 "memory, so there must be at least one load which produces the value");
6952 assert(Base && "Base address of the accessed memory location must be set");
6953 assert(FirstOffset != INT64_MAX && "First byte offset must be set");
6955 // Check if the bytes of the OR we are looking at match with either big or
6956 // little endian value load
6957 Optional<bool> IsBigEndian = isBigEndian(ByteOffsets, FirstOffset);
6958 if (!IsBigEndian.hasValue())
6959 return SDValue();
6961 assert(FirstByteProvider && "must be set");
6963 // Ensure that the first byte is loaded from zero offset of the first load.
6964 // So the combined value can be loaded from the first load address.
6965 if (MemoryByteOffset(*FirstByteProvider) != 0)
6966 return SDValue();
6967 LoadSDNode *FirstLoad = FirstByteProvider->Load;
6969 // The node we are looking at matches with the pattern, check if we can
6970 // replace it with a single load and bswap if needed.
6972 // If the load needs byte swap check if the target supports it
6973 bool NeedsBswap = IsBigEndianTarget != *IsBigEndian;
6975 // Before legalize we can introduce illegal bswaps which will be later
6976 // converted to an explicit bswap sequence. This way we end up with a single
6977 // load and byte shuffling instead of several loads and byte shuffling.
6978 if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT))
6979 return SDValue();
6981 // Check that a load of the wide type is both allowed and fast on the target
6982 bool Fast = false;
6983 bool Allowed = TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(),
6984 VT, *FirstLoad->getMemOperand(), &Fast);
6985 if (!Allowed || !Fast)
6986 return SDValue();
6988 SDValue NewLoad =
6989 DAG.getLoad(VT, SDLoc(N), Chain, FirstLoad->getBasePtr(),
6990 FirstLoad->getPointerInfo(), FirstLoad->getAlignment());
6992 // Transfer chain users from old loads to the new load.
6993 for (LoadSDNode *L : Loads)
6994 DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1));
6996 return NeedsBswap ? DAG.getNode(ISD::BSWAP, SDLoc(N), VT, NewLoad) : NewLoad;
6999 // If the target has andn, bsl, or a similar bit-select instruction,
7000 // we want to unfold masked merge, with canonical pattern of:
7001 // | A | |B|
7002 // ((x ^ y) & m) ^ y
7003 // | D |
7004 // Into:
7005 // (x & m) | (y & ~m)
7006 // If y is a constant, and the 'andn' does not work with immediates,
7007 // we unfold into a different pattern:
7008 // ~(~x & m) & (m | y)
7009 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
7010 // the very least that breaks andnpd / andnps patterns, and because those
7011 // patterns are simplified in IR and shouldn't be created in the DAG
7012 SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) {
7013 assert(N->getOpcode() == ISD::XOR);
7015 // Don't touch 'not' (i.e. where y = -1).
7016 if (isAllOnesOrAllOnesSplat(N->getOperand(1)))
7017 return SDValue();
7019 EVT VT = N->getValueType(0);
7021 // There are 3 commutable operators in the pattern,
7022 // so we have to deal with 8 possible variants of the basic pattern.
7023 SDValue X, Y, M;
7024 auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) {
7025 if (And.getOpcode() != ISD::AND || !And.hasOneUse())
7026 return false;
7027 SDValue Xor = And.getOperand(XorIdx);
7028 if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse())
7029 return false;
7030 SDValue Xor0 = Xor.getOperand(0);
7031 SDValue Xor1 = Xor.getOperand(1);
7032 // Don't touch 'not' (i.e. where y = -1).
7033 if (isAllOnesOrAllOnesSplat(Xor1))
7034 return false;
7035 if (Other == Xor0)
7036 std::swap(Xor0, Xor1);
7037 if (Other != Xor1)
7038 return false;
7039 X = Xor0;
7040 Y = Xor1;
7041 M = And.getOperand(XorIdx ? 0 : 1);
7042 return true;
7045 SDValue N0 = N->getOperand(0);
7046 SDValue N1 = N->getOperand(1);
7047 if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) &&
7048 !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0))
7049 return SDValue();
7051 // Don't do anything if the mask is constant. This should not be reachable.
7052 // InstCombine should have already unfolded this pattern, and DAGCombiner
7053 // probably shouldn't produce it, too.
7054 if (isa<ConstantSDNode>(M.getNode()))
7055 return SDValue();
7057 // We can transform if the target has AndNot
7058 if (!TLI.hasAndNot(M))
7059 return SDValue();
7061 SDLoc DL(N);
7063 // If Y is a constant, check that 'andn' works with immediates.
7064 if (!TLI.hasAndNot(Y)) {
7065 assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable.");
7066 // If not, we need to do a bit more work to make sure andn is still used.
7067 SDValue NotX = DAG.getNOT(DL, X, VT);
7068 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M);
7069 SDValue NotLHS = DAG.getNOT(DL, LHS, VT);
7070 SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y);
7071 return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS);
7074 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M);
7075 SDValue NotM = DAG.getNOT(DL, M, VT);
7076 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM);
7078 return DAG.getNode(ISD::OR, DL, VT, LHS, RHS);
7081 SDValue DAGCombiner::visitXOR(SDNode *N) {
7082 SDValue N0 = N->getOperand(0);
7083 SDValue N1 = N->getOperand(1);
7084 EVT VT = N0.getValueType();
7086 // fold vector ops
7087 if (VT.isVector()) {
7088 if (SDValue FoldedVOp = SimplifyVBinOp(N))
7089 return FoldedVOp;
7091 // fold (xor x, 0) -> x, vector edition
7092 if (ISD::isBuildVectorAllZeros(N0.getNode()))
7093 return N1;
7094 if (ISD::isBuildVectorAllZeros(N1.getNode()))
7095 return N0;
7098 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
7099 SDLoc DL(N);
7100 if (N0.isUndef() && N1.isUndef())
7101 return DAG.getConstant(0, DL, VT);
7102 // fold (xor x, undef) -> undef
7103 if (N0.isUndef())
7104 return N0;
7105 if (N1.isUndef())
7106 return N1;
7107 // fold (xor c1, c2) -> c1^c2
7108 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
7109 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
7110 if (N0C && N1C)
7111 return DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, N0C, N1C);
7112 // canonicalize constant to RHS
7113 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
7114 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
7115 return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
7116 // fold (xor x, 0) -> x
7117 if (isNullConstant(N1))
7118 return N0;
7120 if (SDValue NewSel = foldBinOpIntoSelect(N))
7121 return NewSel;
7123 // reassociate xor
7124 if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags()))
7125 return RXOR;
7127 // fold !(x cc y) -> (x !cc y)
7128 unsigned N0Opcode = N0.getOpcode();
7129 SDValue LHS, RHS, CC;
7130 if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) {
7131 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
7132 LHS.getValueType().isInteger());
7133 if (!LegalOperations ||
7134 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
7135 switch (N0Opcode) {
7136 default:
7137 llvm_unreachable("Unhandled SetCC Equivalent!");
7138 case ISD::SETCC:
7139 return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC);
7140 case ISD::SELECT_CC:
7141 return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2),
7142 N0.getOperand(3), NotCC);
7147 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
7148 if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() &&
7149 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
7150 SDValue V = N0.getOperand(0);
7151 SDLoc DL0(N0);
7152 V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V,
7153 DAG.getConstant(1, DL0, V.getValueType()));
7154 AddToWorklist(V.getNode());
7155 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V);
7158 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
7159 if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() &&
7160 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
7161 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
7162 if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) {
7163 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
7164 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
7165 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
7166 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
7167 return DAG.getNode(NewOpcode, DL, VT, N00, N01);
7170 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
7171 if (isAllOnesConstant(N1) && N0.hasOneUse() &&
7172 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
7173 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
7174 if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) {
7175 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
7176 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
7177 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
7178 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
7179 return DAG.getNode(NewOpcode, DL, VT, N00, N01);
7183 // fold (not (neg x)) -> (add X, -1)
7184 // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if
7185 // Y is a constant or the subtract has a single use.
7186 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB &&
7187 isNullConstant(N0.getOperand(0))) {
7188 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1),
7189 DAG.getAllOnesConstant(DL, VT));
7192 // fold (xor (and x, y), y) -> (and (not x), y)
7193 if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) {
7194 SDValue X = N0.getOperand(0);
7195 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
7196 AddToWorklist(NotX.getNode());
7197 return DAG.getNode(ISD::AND, DL, VT, NotX, N1);
7200 if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) {
7201 ConstantSDNode *XorC = isConstOrConstSplat(N1);
7202 ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1));
7203 unsigned BitWidth = VT.getScalarSizeInBits();
7204 if (XorC && ShiftC) {
7205 // Don't crash on an oversized shift. We can not guarantee that a bogus
7206 // shift has been simplified to undef.
7207 uint64_t ShiftAmt = ShiftC->getLimitedValue();
7208 if (ShiftAmt < BitWidth) {
7209 APInt Ones = APInt::getAllOnesValue(BitWidth);
7210 Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt);
7211 if (XorC->getAPIntValue() == Ones) {
7212 // If the xor constant is a shifted -1, do a 'not' before the shift:
7213 // xor (X << ShiftC), XorC --> (not X) << ShiftC
7214 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
7215 SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT);
7216 return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1));
7222 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
7223 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
7224 SDValue A = N0Opcode == ISD::ADD ? N0 : N1;
7225 SDValue S = N0Opcode == ISD::SRA ? N0 : N1;
7226 if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) {
7227 SDValue A0 = A.getOperand(0), A1 = A.getOperand(1);
7228 SDValue S0 = S.getOperand(0);
7229 if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) {
7230 unsigned OpSizeInBits = VT.getScalarSizeInBits();
7231 if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1)))
7232 if (C->getAPIntValue() == (OpSizeInBits - 1))
7233 return DAG.getNode(ISD::ABS, DL, VT, S0);
7238 // fold (xor x, x) -> 0
7239 if (N0 == N1)
7240 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
7242 // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
7243 // Here is a concrete example of this equivalence:
7244 // i16 x == 14
7245 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000
7246 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
7248 // =>
7250 // i16 ~1 == 0b1111111111111110
7251 // i16 rol(~1, 14) == 0b1011111111111111
7253 // Some additional tips to help conceptualize this transform:
7254 // - Try to see the operation as placing a single zero in a value of all ones.
7255 // - There exists no value for x which would allow the result to contain zero.
7256 // - Values of x larger than the bitwidth are undefined and do not require a
7257 // consistent result.
7258 // - Pushing the zero left requires shifting one bits in from the right.
7259 // A rotate left of ~1 is a nice way of achieving the desired result.
7260 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL &&
7261 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) {
7262 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT),
7263 N0.getOperand(1));
7266 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
7267 if (N0Opcode == N1.getOpcode())
7268 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
7269 return V;
7271 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
7272 if (SDValue MM = unfoldMaskedMerge(N))
7273 return MM;
7275 // Simplify the expression using non-local knowledge.
7276 if (SimplifyDemandedBits(SDValue(N, 0)))
7277 return SDValue(N, 0);
7279 return SDValue();
7282 /// If we have a shift-by-constant of a bitwise logic op that itself has a
7283 /// shift-by-constant operand with identical opcode, we may be able to convert
7284 /// that into 2 independent shifts followed by the logic op. This is a
7285 /// throughput improvement.
7286 static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) {
7287 // Match a one-use bitwise logic op.
7288 SDValue LogicOp = Shift->getOperand(0);
7289 if (!LogicOp.hasOneUse())
7290 return SDValue();
7292 unsigned LogicOpcode = LogicOp.getOpcode();
7293 if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR &&
7294 LogicOpcode != ISD::XOR)
7295 return SDValue();
7297 // Find a matching one-use shift by constant.
7298 unsigned ShiftOpcode = Shift->getOpcode();
7299 SDValue C1 = Shift->getOperand(1);
7300 ConstantSDNode *C1Node = isConstOrConstSplat(C1);
7301 assert(C1Node && "Expected a shift with constant operand");
7302 const APInt &C1Val = C1Node->getAPIntValue();
7303 auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp,
7304 const APInt *&ShiftAmtVal) {
7305 if (V.getOpcode() != ShiftOpcode || !V.hasOneUse())
7306 return false;
7308 ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1));
7309 if (!ShiftCNode)
7310 return false;
7312 // Capture the shifted operand and shift amount value.
7313 ShiftOp = V.getOperand(0);
7314 ShiftAmtVal = &ShiftCNode->getAPIntValue();
7316 // Shift amount types do not have to match their operand type, so check that
7317 // the constants are the same width.
7318 if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth())
7319 return false;
7321 // The fold is not valid if the sum of the shift values exceeds bitwidth.
7322 if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits()))
7323 return false;
7325 return true;
7328 // Logic ops are commutative, so check each operand for a match.
7329 SDValue X, Y;
7330 const APInt *C0Val;
7331 if (matchFirstShift(LogicOp.getOperand(0), X, C0Val))
7332 Y = LogicOp.getOperand(1);
7333 else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val))
7334 Y = LogicOp.getOperand(0);
7335 else
7336 return SDValue();
7338 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
7339 SDLoc DL(Shift);
7340 EVT VT = Shift->getValueType(0);
7341 EVT ShiftAmtVT = Shift->getOperand(1).getValueType();
7342 SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT);
7343 SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC);
7344 SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1);
7345 return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2);
7348 /// Handle transforms common to the three shifts, when the shift amount is a
7349 /// constant.
7350 /// We are looking for: (shift being one of shl/sra/srl)
7351 /// shift (binop X, C0), C1
7352 /// And want to transform into:
7353 /// binop (shift X, C1), (shift C0, C1)
7354 SDValue DAGCombiner::visitShiftByConstant(SDNode *N) {
7355 assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand");
7357 // Do not turn a 'not' into a regular xor.
7358 if (isBitwiseNot(N->getOperand(0)))
7359 return SDValue();
7361 // The inner binop must be one-use, since we want to replace it.
7362 SDValue LHS = N->getOperand(0);
7363 if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level))
7364 return SDValue();
7366 // TODO: This is limited to early combining because it may reveal regressions
7367 // otherwise. But since we just checked a target hook to see if this is
7368 // desirable, that should have filtered out cases where this interferes
7369 // with some other pattern matching.
7370 if (!LegalTypes)
7371 if (SDValue R = combineShiftOfShiftedLogic(N, DAG))
7372 return R;
7374 // We want to pull some binops through shifts, so that we have (and (shift))
7375 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
7376 // thing happens with address calculations, so it's important to canonicalize
7377 // it.
7378 switch (LHS.getOpcode()) {
7379 default:
7380 return SDValue();
7381 case ISD::OR:
7382 case ISD::XOR:
7383 case ISD::AND:
7384 break;
7385 case ISD::ADD:
7386 if (N->getOpcode() != ISD::SHL)
7387 return SDValue(); // only shl(add) not sr[al](add).
7388 break;
7391 // We require the RHS of the binop to be a constant and not opaque as well.
7392 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS.getOperand(1));
7393 if (!BinOpCst)
7394 return SDValue();
7396 // FIXME: disable this unless the input to the binop is a shift by a constant
7397 // or is copy/select. Enable this in other cases when figure out it's exactly
7398 // profitable.
7399 SDValue BinOpLHSVal = LHS.getOperand(0);
7400 bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL ||
7401 BinOpLHSVal.getOpcode() == ISD::SRA ||
7402 BinOpLHSVal.getOpcode() == ISD::SRL) &&
7403 isa<ConstantSDNode>(BinOpLHSVal.getOperand(1));
7404 bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg ||
7405 BinOpLHSVal.getOpcode() == ISD::SELECT;
7407 if (!IsShiftByConstant && !IsCopyOrSelect)
7408 return SDValue();
7410 if (IsCopyOrSelect && N->hasOneUse())
7411 return SDValue();
7413 // Fold the constants, shifting the binop RHS by the shift amount.
7414 SDLoc DL(N);
7415 EVT VT = N->getValueType(0);
7416 SDValue NewRHS = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(1),
7417 N->getOperand(1));
7418 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!");
7420 SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0),
7421 N->getOperand(1));
7422 return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS);
7425 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
7426 assert(N->getOpcode() == ISD::TRUNCATE);
7427 assert(N->getOperand(0).getOpcode() == ISD::AND);
7429 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
7430 EVT TruncVT = N->getValueType(0);
7431 if (N->hasOneUse() && N->getOperand(0).hasOneUse() &&
7432 TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) {
7433 SDValue N01 = N->getOperand(0).getOperand(1);
7434 if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) {
7435 SDLoc DL(N);
7436 SDValue N00 = N->getOperand(0).getOperand(0);
7437 SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00);
7438 SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01);
7439 AddToWorklist(Trunc00.getNode());
7440 AddToWorklist(Trunc01.getNode());
7441 return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01);
7445 return SDValue();
7448 SDValue DAGCombiner::visitRotate(SDNode *N) {
7449 SDLoc dl(N);
7450 SDValue N0 = N->getOperand(0);
7451 SDValue N1 = N->getOperand(1);
7452 EVT VT = N->getValueType(0);
7453 unsigned Bitsize = VT.getScalarSizeInBits();
7455 // fold (rot x, 0) -> x
7456 if (isNullOrNullSplat(N1))
7457 return N0;
7459 // fold (rot x, c) -> x iff (c % BitSize) == 0
7460 if (isPowerOf2_32(Bitsize) && Bitsize > 1) {
7461 APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1);
7462 if (DAG.MaskedValueIsZero(N1, ModuloMask))
7463 return N0;
7466 // fold (rot x, c) -> (rot x, c % BitSize)
7467 // TODO - support non-uniform vector amounts.
7468 if (ConstantSDNode *Cst = isConstOrConstSplat(N1)) {
7469 if (Cst->getAPIntValue().uge(Bitsize)) {
7470 uint64_t RotAmt = Cst->getAPIntValue().urem(Bitsize);
7471 return DAG.getNode(N->getOpcode(), dl, VT, N0,
7472 DAG.getConstant(RotAmt, dl, N1.getValueType()));
7476 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
7477 if (N1.getOpcode() == ISD::TRUNCATE &&
7478 N1.getOperand(0).getOpcode() == ISD::AND) {
7479 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
7480 return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1);
7483 unsigned NextOp = N0.getOpcode();
7484 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize)
7485 if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) {
7486 SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1);
7487 SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1));
7488 if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) {
7489 EVT ShiftVT = C1->getValueType(0);
7490 bool SameSide = (N->getOpcode() == NextOp);
7491 unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB;
7492 if (SDValue CombinedShift =
7493 DAG.FoldConstantArithmetic(CombineOp, dl, ShiftVT, C1, C2)) {
7494 SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT);
7495 SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic(
7496 ISD::SREM, dl, ShiftVT, CombinedShift.getNode(),
7497 BitsizeC.getNode());
7498 return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0),
7499 CombinedShiftNorm);
7503 return SDValue();
7506 SDValue DAGCombiner::visitSHL(SDNode *N) {
7507 SDValue N0 = N->getOperand(0);
7508 SDValue N1 = N->getOperand(1);
7509 if (SDValue V = DAG.simplifyShift(N0, N1))
7510 return V;
7512 EVT VT = N0.getValueType();
7513 EVT ShiftVT = N1.getValueType();
7514 unsigned OpSizeInBits = VT.getScalarSizeInBits();
7516 // fold vector ops
7517 if (VT.isVector()) {
7518 if (SDValue FoldedVOp = SimplifyVBinOp(N))
7519 return FoldedVOp;
7521 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
7522 // If setcc produces all-one true value then:
7523 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
7524 if (N1CV && N1CV->isConstant()) {
7525 if (N0.getOpcode() == ISD::AND) {
7526 SDValue N00 = N0->getOperand(0);
7527 SDValue N01 = N0->getOperand(1);
7528 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
7530 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
7531 TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
7532 TargetLowering::ZeroOrNegativeOneBooleanContent) {
7533 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT,
7534 N01CV, N1CV))
7535 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
7541 ConstantSDNode *N1C = isConstOrConstSplat(N1);
7543 // fold (shl c1, c2) -> c1<<c2
7544 // TODO - support non-uniform vector shift amounts.
7545 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
7546 if (N0C && N1C && !N1C->isOpaque())
7547 return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C);
7549 if (SDValue NewSel = foldBinOpIntoSelect(N))
7550 return NewSel;
7552 // if (shl x, c) is known to be zero, return 0
7553 if (DAG.MaskedValueIsZero(SDValue(N, 0),
7554 APInt::getAllOnesValue(OpSizeInBits)))
7555 return DAG.getConstant(0, SDLoc(N), VT);
7557 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
7558 if (N1.getOpcode() == ISD::TRUNCATE &&
7559 N1.getOperand(0).getOpcode() == ISD::AND) {
7560 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
7561 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1);
7564 // TODO - support non-uniform vector shift amounts.
7565 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
7566 return SDValue(N, 0);
7568 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
7569 if (N0.getOpcode() == ISD::SHL) {
7570 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
7571 ConstantSDNode *RHS) {
7572 APInt c1 = LHS->getAPIntValue();
7573 APInt c2 = RHS->getAPIntValue();
7574 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7575 return (c1 + c2).uge(OpSizeInBits);
7577 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
7578 return DAG.getConstant(0, SDLoc(N), VT);
7580 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
7581 ConstantSDNode *RHS) {
7582 APInt c1 = LHS->getAPIntValue();
7583 APInt c2 = RHS->getAPIntValue();
7584 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7585 return (c1 + c2).ult(OpSizeInBits);
7587 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
7588 SDLoc DL(N);
7589 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
7590 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum);
7594 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2))
7595 // For this to be valid, the second form must not preserve any of the bits
7596 // that are shifted out by the inner shift in the first form. This means
7597 // the outer shift size must be >= the number of bits added by the ext.
7598 // As a corollary, we don't care what kind of ext it is.
7599 if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
7600 N0.getOpcode() == ISD::ANY_EXTEND ||
7601 N0.getOpcode() == ISD::SIGN_EXTEND) &&
7602 N0.getOperand(0).getOpcode() == ISD::SHL) {
7603 SDValue N0Op0 = N0.getOperand(0);
7604 SDValue InnerShiftAmt = N0Op0.getOperand(1);
7605 EVT InnerVT = N0Op0.getValueType();
7606 uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits();
7608 auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
7609 ConstantSDNode *RHS) {
7610 APInt c1 = LHS->getAPIntValue();
7611 APInt c2 = RHS->getAPIntValue();
7612 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7613 return c2.uge(OpSizeInBits - InnerBitwidth) &&
7614 (c1 + c2).uge(OpSizeInBits);
7616 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange,
7617 /*AllowUndefs*/ false,
7618 /*AllowTypeMismatch*/ true))
7619 return DAG.getConstant(0, SDLoc(N), VT);
7621 auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
7622 ConstantSDNode *RHS) {
7623 APInt c1 = LHS->getAPIntValue();
7624 APInt c2 = RHS->getAPIntValue();
7625 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7626 return c2.uge(OpSizeInBits - InnerBitwidth) &&
7627 (c1 + c2).ult(OpSizeInBits);
7629 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange,
7630 /*AllowUndefs*/ false,
7631 /*AllowTypeMismatch*/ true)) {
7632 SDLoc DL(N);
7633 SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0));
7634 SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT);
7635 Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1);
7636 return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum);
7640 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
7641 // Only fold this if the inner zext has no other uses to avoid increasing
7642 // the total number of instructions.
7643 if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
7644 N0.getOperand(0).getOpcode() == ISD::SRL) {
7645 SDValue N0Op0 = N0.getOperand(0);
7646 SDValue InnerShiftAmt = N0Op0.getOperand(1);
7648 auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) {
7649 APInt c1 = LHS->getAPIntValue();
7650 APInt c2 = RHS->getAPIntValue();
7651 zeroExtendToMatch(c1, c2);
7652 return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2);
7654 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual,
7655 /*AllowUndefs*/ false,
7656 /*AllowTypeMismatch*/ true)) {
7657 SDLoc DL(N);
7658 EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType();
7659 SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT);
7660 NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL);
7661 AddToWorklist(NewSHL.getNode());
7662 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
7666 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
7667 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2
7668 // TODO - support non-uniform vector shift amounts.
7669 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) &&
7670 N0->getFlags().hasExact()) {
7671 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
7672 uint64_t C1 = N0C1->getZExtValue();
7673 uint64_t C2 = N1C->getZExtValue();
7674 SDLoc DL(N);
7675 if (C1 <= C2)
7676 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
7677 DAG.getConstant(C2 - C1, DL, ShiftVT));
7678 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0),
7679 DAG.getConstant(C1 - C2, DL, ShiftVT));
7683 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
7684 // (and (srl x, (sub c1, c2), MASK)
7685 // Only fold this if the inner shift has no other uses -- if it does, folding
7686 // this will increase the total number of instructions.
7687 // TODO - drop hasOneUse requirement if c1 == c2?
7688 // TODO - support non-uniform vector shift amounts.
7689 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
7690 TLI.shouldFoldConstantShiftPairToMask(N, Level)) {
7691 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
7692 if (N0C1->getAPIntValue().ult(OpSizeInBits)) {
7693 uint64_t c1 = N0C1->getZExtValue();
7694 uint64_t c2 = N1C->getZExtValue();
7695 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1);
7696 SDValue Shift;
7697 if (c2 > c1) {
7698 Mask <<= c2 - c1;
7699 SDLoc DL(N);
7700 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
7701 DAG.getConstant(c2 - c1, DL, ShiftVT));
7702 } else {
7703 Mask.lshrInPlace(c1 - c2);
7704 SDLoc DL(N);
7705 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
7706 DAG.getConstant(c1 - c2, DL, ShiftVT));
7708 SDLoc DL(N0);
7709 return DAG.getNode(ISD::AND, DL, VT, Shift,
7710 DAG.getConstant(Mask, DL, VT));
7715 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
7716 if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) &&
7717 isConstantOrConstantVector(N1, /* No Opaques */ true)) {
7718 SDLoc DL(N);
7719 SDValue AllBits = DAG.getAllOnesConstant(DL, VT);
7720 SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1);
7721 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask);
7724 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
7725 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
7726 // Variant of version done on multiply, except mul by a power of 2 is turned
7727 // into a shift.
7728 if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) &&
7729 N0.getNode()->hasOneUse() &&
7730 isConstantOrConstantVector(N1, /* No Opaques */ true) &&
7731 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) &&
7732 TLI.isDesirableToCommuteWithShift(N, Level)) {
7733 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
7734 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
7735 AddToWorklist(Shl0.getNode());
7736 AddToWorklist(Shl1.getNode());
7737 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1);
7740 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
7741 if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() &&
7742 isConstantOrConstantVector(N1, /* No Opaques */ true) &&
7743 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) {
7744 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
7745 if (isConstantOrConstantVector(Shl))
7746 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl);
7749 if (N1C && !N1C->isOpaque())
7750 if (SDValue NewSHL = visitShiftByConstant(N))
7751 return NewSHL;
7753 return SDValue();
7756 SDValue DAGCombiner::visitSRA(SDNode *N) {
7757 SDValue N0 = N->getOperand(0);
7758 SDValue N1 = N->getOperand(1);
7759 if (SDValue V = DAG.simplifyShift(N0, N1))
7760 return V;
7762 EVT VT = N0.getValueType();
7763 unsigned OpSizeInBits = VT.getScalarSizeInBits();
7765 // Arithmetic shifting an all-sign-bit value is a no-op.
7766 // fold (sra 0, x) -> 0
7767 // fold (sra -1, x) -> -1
7768 if (DAG.ComputeNumSignBits(N0) == OpSizeInBits)
7769 return N0;
7771 // fold vector ops
7772 if (VT.isVector())
7773 if (SDValue FoldedVOp = SimplifyVBinOp(N))
7774 return FoldedVOp;
7776 ConstantSDNode *N1C = isConstOrConstSplat(N1);
7778 // fold (sra c1, c2) -> (sra c1, c2)
7779 // TODO - support non-uniform vector shift amounts.
7780 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
7781 if (N0C && N1C && !N1C->isOpaque())
7782 return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C);
7784 if (SDValue NewSel = foldBinOpIntoSelect(N))
7785 return NewSel;
7787 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
7788 // sext_inreg.
7789 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
7790 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
7791 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
7792 if (VT.isVector())
7793 ExtVT = EVT::getVectorVT(*DAG.getContext(),
7794 ExtVT, VT.getVectorNumElements());
7795 if ((!LegalOperations ||
7796 TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
7797 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
7798 N0.getOperand(0), DAG.getValueType(ExtVT));
7801 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
7802 // clamp (add c1, c2) to max shift.
7803 if (N0.getOpcode() == ISD::SRA) {
7804 SDLoc DL(N);
7805 EVT ShiftVT = N1.getValueType();
7806 EVT ShiftSVT = ShiftVT.getScalarType();
7807 SmallVector<SDValue, 16> ShiftValues;
7809 auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) {
7810 APInt c1 = LHS->getAPIntValue();
7811 APInt c2 = RHS->getAPIntValue();
7812 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7813 APInt Sum = c1 + c2;
7814 unsigned ShiftSum =
7815 Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue();
7816 ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT));
7817 return true;
7819 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) {
7820 SDValue ShiftValue;
7821 if (VT.isVector())
7822 ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues);
7823 else
7824 ShiftValue = ShiftValues[0];
7825 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue);
7829 // fold (sra (shl X, m), (sub result_size, n))
7830 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
7831 // result_size - n != m.
7832 // If truncate is free for the target sext(shl) is likely to result in better
7833 // code.
7834 if (N0.getOpcode() == ISD::SHL && N1C) {
7835 // Get the two constanst of the shifts, CN0 = m, CN = n.
7836 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
7837 if (N01C) {
7838 LLVMContext &Ctx = *DAG.getContext();
7839 // Determine what the truncate's result bitsize and type would be.
7840 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
7842 if (VT.isVector())
7843 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements());
7845 // Determine the residual right-shift amount.
7846 int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
7848 // If the shift is not a no-op (in which case this should be just a sign
7849 // extend already), the truncated to type is legal, sign_extend is legal
7850 // on that type, and the truncate to that type is both legal and free,
7851 // perform the transform.
7852 if ((ShiftAmt > 0) &&
7853 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
7854 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
7855 TLI.isTruncateFree(VT, TruncVT)) {
7856 SDLoc DL(N);
7857 SDValue Amt = DAG.getConstant(ShiftAmt, DL,
7858 getShiftAmountTy(N0.getOperand(0).getValueType()));
7859 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
7860 N0.getOperand(0), Amt);
7861 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
7862 Shift);
7863 return DAG.getNode(ISD::SIGN_EXTEND, DL,
7864 N->getValueType(0), Trunc);
7869 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper.
7870 // sra (add (shl X, N1C), AddC), N1C -->
7871 // sext (add (trunc X to (width - N1C)), AddC')
7872 if (!LegalTypes && N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C &&
7873 N0.getOperand(0).getOpcode() == ISD::SHL &&
7874 N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) {
7875 if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) {
7876 SDValue Shl = N0.getOperand(0);
7877 // Determine what the truncate's type would be and ask the target if that
7878 // is a free operation.
7879 LLVMContext &Ctx = *DAG.getContext();
7880 unsigned ShiftAmt = N1C->getZExtValue();
7881 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt);
7882 if (VT.isVector())
7883 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements());
7885 // TODO: The simple type check probably belongs in the default hook
7886 // implementation and/or target-specific overrides (because
7887 // non-simple types likely require masking when legalized), but that
7888 // restriction may conflict with other transforms.
7889 if (TruncVT.isSimple() && TLI.isTruncateFree(VT, TruncVT)) {
7890 SDLoc DL(N);
7891 SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT);
7892 SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt).
7893 trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT);
7894 SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC);
7895 return DAG.getSExtOrTrunc(Add, DL, VT);
7900 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
7901 if (N1.getOpcode() == ISD::TRUNCATE &&
7902 N1.getOperand(0).getOpcode() == ISD::AND) {
7903 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
7904 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1);
7907 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2))
7908 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
7909 // if c1 is equal to the number of bits the trunc removes
7910 // TODO - support non-uniform vector shift amounts.
7911 if (N0.getOpcode() == ISD::TRUNCATE &&
7912 (N0.getOperand(0).getOpcode() == ISD::SRL ||
7913 N0.getOperand(0).getOpcode() == ISD::SRA) &&
7914 N0.getOperand(0).hasOneUse() &&
7915 N0.getOperand(0).getOperand(1).hasOneUse() && N1C) {
7916 SDValue N0Op0 = N0.getOperand(0);
7917 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
7918 EVT LargeVT = N0Op0.getValueType();
7919 unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits;
7920 if (LargeShift->getAPIntValue() == TruncBits) {
7921 SDLoc DL(N);
7922 SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL,
7923 getShiftAmountTy(LargeVT));
7924 SDValue SRA =
7925 DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt);
7926 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
7931 // Simplify, based on bits shifted out of the LHS.
7932 // TODO - support non-uniform vector shift amounts.
7933 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
7934 return SDValue(N, 0);
7936 // If the sign bit is known to be zero, switch this to a SRL.
7937 if (DAG.SignBitIsZero(N0))
7938 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
7940 if (N1C && !N1C->isOpaque())
7941 if (SDValue NewSRA = visitShiftByConstant(N))
7942 return NewSRA;
7944 return SDValue();
7947 SDValue DAGCombiner::visitSRL(SDNode *N) {
7948 SDValue N0 = N->getOperand(0);
7949 SDValue N1 = N->getOperand(1);
7950 if (SDValue V = DAG.simplifyShift(N0, N1))
7951 return V;
7953 EVT VT = N0.getValueType();
7954 unsigned OpSizeInBits = VT.getScalarSizeInBits();
7956 // fold vector ops
7957 if (VT.isVector())
7958 if (SDValue FoldedVOp = SimplifyVBinOp(N))
7959 return FoldedVOp;
7961 ConstantSDNode *N1C = isConstOrConstSplat(N1);
7963 // fold (srl c1, c2) -> c1 >>u c2
7964 // TODO - support non-uniform vector shift amounts.
7965 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
7966 if (N0C && N1C && !N1C->isOpaque())
7967 return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C);
7969 if (SDValue NewSel = foldBinOpIntoSelect(N))
7970 return NewSel;
7972 // if (srl x, c) is known to be zero, return 0
7973 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
7974 APInt::getAllOnesValue(OpSizeInBits)))
7975 return DAG.getConstant(0, SDLoc(N), VT);
7977 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
7978 if (N0.getOpcode() == ISD::SRL) {
7979 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
7980 ConstantSDNode *RHS) {
7981 APInt c1 = LHS->getAPIntValue();
7982 APInt c2 = RHS->getAPIntValue();
7983 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7984 return (c1 + c2).uge(OpSizeInBits);
7986 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
7987 return DAG.getConstant(0, SDLoc(N), VT);
7989 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
7990 ConstantSDNode *RHS) {
7991 APInt c1 = LHS->getAPIntValue();
7992 APInt c2 = RHS->getAPIntValue();
7993 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7994 return (c1 + c2).ult(OpSizeInBits);
7996 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
7997 SDLoc DL(N);
7998 EVT ShiftVT = N1.getValueType();
7999 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
8000 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum);
8004 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
8005 // TODO - support non-uniform vector shift amounts.
8006 if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
8007 N0.getOperand(0).getOpcode() == ISD::SRL) {
8008 if (auto N001C = isConstOrConstSplat(N0.getOperand(0).getOperand(1))) {
8009 uint64_t c1 = N001C->getZExtValue();
8010 uint64_t c2 = N1C->getZExtValue();
8011 EVT InnerShiftVT = N0.getOperand(0).getValueType();
8012 EVT ShiftCountVT = N0.getOperand(0).getOperand(1).getValueType();
8013 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
8014 // This is only valid if the OpSizeInBits + c1 = size of inner shift.
8015 if (c1 + OpSizeInBits == InnerShiftSize) {
8016 SDLoc DL(N0);
8017 if (c1 + c2 >= InnerShiftSize)
8018 return DAG.getConstant(0, DL, VT);
8019 return DAG.getNode(ISD::TRUNCATE, DL, VT,
8020 DAG.getNode(ISD::SRL, DL, InnerShiftVT,
8021 N0.getOperand(0).getOperand(0),
8022 DAG.getConstant(c1 + c2, DL,
8023 ShiftCountVT)));
8028 // fold (srl (shl x, c), c) -> (and x, cst2)
8029 // TODO - (srl (shl x, c1), c2).
8030 if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
8031 isConstantOrConstantVector(N1, /* NoOpaques */ true)) {
8032 SDLoc DL(N);
8033 SDValue Mask =
8034 DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1);
8035 AddToWorklist(Mask.getNode());
8036 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask);
8039 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
8040 // TODO - support non-uniform vector shift amounts.
8041 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
8042 // Shifting in all undef bits?
8043 EVT SmallVT = N0.getOperand(0).getValueType();
8044 unsigned BitSize = SmallVT.getScalarSizeInBits();
8045 if (N1C->getAPIntValue().uge(BitSize))
8046 return DAG.getUNDEF(VT);
8048 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
8049 uint64_t ShiftAmt = N1C->getZExtValue();
8050 SDLoc DL0(N0);
8051 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT,
8052 N0.getOperand(0),
8053 DAG.getConstant(ShiftAmt, DL0,
8054 getShiftAmountTy(SmallVT)));
8055 AddToWorklist(SmallShift.getNode());
8056 APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt);
8057 SDLoc DL(N);
8058 return DAG.getNode(ISD::AND, DL, VT,
8059 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
8060 DAG.getConstant(Mask, DL, VT));
8064 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
8065 // bit, which is unmodified by sra.
8066 if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) {
8067 if (N0.getOpcode() == ISD::SRA)
8068 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
8071 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
8072 if (N1C && N0.getOpcode() == ISD::CTLZ &&
8073 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
8074 KnownBits Known = DAG.computeKnownBits(N0.getOperand(0));
8076 // If any of the input bits are KnownOne, then the input couldn't be all
8077 // zeros, thus the result of the srl will always be zero.
8078 if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);
8080 // If all of the bits input the to ctlz node are known to be zero, then
8081 // the result of the ctlz is "32" and the result of the shift is one.
8082 APInt UnknownBits = ~Known.Zero;
8083 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);
8085 // Otherwise, check to see if there is exactly one bit input to the ctlz.
8086 if (UnknownBits.isPowerOf2()) {
8087 // Okay, we know that only that the single bit specified by UnknownBits
8088 // could be set on input to the CTLZ node. If this bit is set, the SRL
8089 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
8090 // to an SRL/XOR pair, which is likely to simplify more.
8091 unsigned ShAmt = UnknownBits.countTrailingZeros();
8092 SDValue Op = N0.getOperand(0);
8094 if (ShAmt) {
8095 SDLoc DL(N0);
8096 Op = DAG.getNode(ISD::SRL, DL, VT, Op,
8097 DAG.getConstant(ShAmt, DL,
8098 getShiftAmountTy(Op.getValueType())));
8099 AddToWorklist(Op.getNode());
8102 SDLoc DL(N);
8103 return DAG.getNode(ISD::XOR, DL, VT,
8104 Op, DAG.getConstant(1, DL, VT));
8108 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
8109 if (N1.getOpcode() == ISD::TRUNCATE &&
8110 N1.getOperand(0).getOpcode() == ISD::AND) {
8111 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
8112 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1);
8115 // fold operands of srl based on knowledge that the low bits are not
8116 // demanded.
8117 // TODO - support non-uniform vector shift amounts.
8118 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
8119 return SDValue(N, 0);
8121 if (N1C && !N1C->isOpaque())
8122 if (SDValue NewSRL = visitShiftByConstant(N))
8123 return NewSRL;
8125 // Attempt to convert a srl of a load into a narrower zero-extending load.
8126 if (SDValue NarrowLoad = ReduceLoadWidth(N))
8127 return NarrowLoad;
8129 // Here is a common situation. We want to optimize:
8131 // %a = ...
8132 // %b = and i32 %a, 2
8133 // %c = srl i32 %b, 1
8134 // brcond i32 %c ...
8136 // into
8138 // %a = ...
8139 // %b = and %a, 2
8140 // %c = setcc eq %b, 0
8141 // brcond %c ...
8143 // However when after the source operand of SRL is optimized into AND, the SRL
8144 // itself may not be optimized further. Look for it and add the BRCOND into
8145 // the worklist.
8146 if (N->hasOneUse()) {
8147 SDNode *Use = *N->use_begin();
8148 if (Use->getOpcode() == ISD::BRCOND)
8149 AddToWorklist(Use);
8150 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
8151 // Also look pass the truncate.
8152 Use = *Use->use_begin();
8153 if (Use->getOpcode() == ISD::BRCOND)
8154 AddToWorklist(Use);
8158 return SDValue();
8161 SDValue DAGCombiner::visitFunnelShift(SDNode *N) {
8162 EVT VT = N->getValueType(0);
8163 SDValue N0 = N->getOperand(0);
8164 SDValue N1 = N->getOperand(1);
8165 SDValue N2 = N->getOperand(2);
8166 bool IsFSHL = N->getOpcode() == ISD::FSHL;
8167 unsigned BitWidth = VT.getScalarSizeInBits();
8169 // fold (fshl N0, N1, 0) -> N0
8170 // fold (fshr N0, N1, 0) -> N1
8171 if (isPowerOf2_32(BitWidth))
8172 if (DAG.MaskedValueIsZero(
8173 N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1)))
8174 return IsFSHL ? N0 : N1;
8176 auto IsUndefOrZero = [](SDValue V) {
8177 return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true);
8180 // TODO - support non-uniform vector shift amounts.
8181 if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) {
8182 EVT ShAmtTy = N2.getValueType();
8184 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
8185 if (Cst->getAPIntValue().uge(BitWidth)) {
8186 uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth);
8187 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1,
8188 DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy));
8191 unsigned ShAmt = Cst->getZExtValue();
8192 if (ShAmt == 0)
8193 return IsFSHL ? N0 : N1;
8195 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C)
8196 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C)
8197 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C)
8198 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C)
8199 if (IsUndefOrZero(N0))
8200 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1,
8201 DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt,
8202 SDLoc(N), ShAmtTy));
8203 if (IsUndefOrZero(N1))
8204 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
8205 DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt,
8206 SDLoc(N), ShAmtTy));
8209 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2)
8210 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2)
8211 // iff We know the shift amount is in range.
8212 // TODO: when is it worth doing SUB(BW, N2) as well?
8213 if (isPowerOf2_32(BitWidth)) {
8214 APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1);
8215 if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
8216 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2);
8217 if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
8218 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2);
8221 // fold (fshl N0, N0, N2) -> (rotl N0, N2)
8222 // fold (fshr N0, N0, N2) -> (rotr N0, N2)
8223 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift
8224 // is legal as well we might be better off avoiding non-constant (BW - N2).
8225 unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR;
8226 if (N0 == N1 && hasOperation(RotOpc, VT))
8227 return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2);
8229 // Simplify, based on bits shifted out of N0/N1.
8230 if (SimplifyDemandedBits(SDValue(N, 0)))
8231 return SDValue(N, 0);
8233 return SDValue();
8236 SDValue DAGCombiner::visitABS(SDNode *N) {
8237 SDValue N0 = N->getOperand(0);
8238 EVT VT = N->getValueType(0);
8240 // fold (abs c1) -> c2
8241 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8242 return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0);
8243 // fold (abs (abs x)) -> (abs x)
8244 if (N0.getOpcode() == ISD::ABS)
8245 return N0;
8246 // fold (abs x) -> x iff not-negative
8247 if (DAG.SignBitIsZero(N0))
8248 return N0;
8249 return SDValue();
8252 SDValue DAGCombiner::visitBSWAP(SDNode *N) {
8253 SDValue N0 = N->getOperand(0);
8254 EVT VT = N->getValueType(0);
8256 // fold (bswap c1) -> c2
8257 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8258 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0);
8259 // fold (bswap (bswap x)) -> x
8260 if (N0.getOpcode() == ISD::BSWAP)
8261 return N0->getOperand(0);
8262 return SDValue();
8265 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) {
8266 SDValue N0 = N->getOperand(0);
8267 EVT VT = N->getValueType(0);
8269 // fold (bitreverse c1) -> c2
8270 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8271 return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0);
8272 // fold (bitreverse (bitreverse x)) -> x
8273 if (N0.getOpcode() == ISD::BITREVERSE)
8274 return N0.getOperand(0);
8275 return SDValue();
8278 SDValue DAGCombiner::visitCTLZ(SDNode *N) {
8279 SDValue N0 = N->getOperand(0);
8280 EVT VT = N->getValueType(0);
8282 // fold (ctlz c1) -> c2
8283 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8284 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
8286 // If the value is known never to be zero, switch to the undef version.
8287 if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) {
8288 if (DAG.isKnownNeverZero(N0))
8289 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
8292 return SDValue();
8295 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
8296 SDValue N0 = N->getOperand(0);
8297 EVT VT = N->getValueType(0);
8299 // fold (ctlz_zero_undef c1) -> c2
8300 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8301 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
8302 return SDValue();
8305 SDValue DAGCombiner::visitCTTZ(SDNode *N) {
8306 SDValue N0 = N->getOperand(0);
8307 EVT VT = N->getValueType(0);
8309 // fold (cttz c1) -> c2
8310 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8311 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
8313 // If the value is known never to be zero, switch to the undef version.
8314 if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) {
8315 if (DAG.isKnownNeverZero(N0))
8316 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
8319 return SDValue();
8322 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
8323 SDValue N0 = N->getOperand(0);
8324 EVT VT = N->getValueType(0);
8326 // fold (cttz_zero_undef c1) -> c2
8327 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8328 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
8329 return SDValue();
8332 SDValue DAGCombiner::visitCTPOP(SDNode *N) {
8333 SDValue N0 = N->getOperand(0);
8334 EVT VT = N->getValueType(0);
8336 // fold (ctpop c1) -> c2
8337 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8338 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
8339 return SDValue();
8342 // FIXME: This should be checking for no signed zeros on individual operands, as
8343 // well as no nans.
8344 static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS,
8345 SDValue RHS,
8346 const TargetLowering &TLI) {
8347 const TargetOptions &Options = DAG.getTarget().Options;
8348 EVT VT = LHS.getValueType();
8350 return Options.NoSignedZerosFPMath && VT.isFloatingPoint() &&
8351 TLI.isProfitableToCombineMinNumMaxNum(VT) &&
8352 DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS);
8355 /// Generate Min/Max node
8356 static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
8357 SDValue RHS, SDValue True, SDValue False,
8358 ISD::CondCode CC, const TargetLowering &TLI,
8359 SelectionDAG &DAG) {
8360 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
8361 return SDValue();
8363 EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
8364 switch (CC) {
8365 case ISD::SETOLT:
8366 case ISD::SETOLE:
8367 case ISD::SETLT:
8368 case ISD::SETLE:
8369 case ISD::SETULT:
8370 case ISD::SETULE: {
8371 // Since it's known never nan to get here already, either fminnum or
8372 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
8373 // expanded in terms of it.
8374 unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8375 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
8376 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
8378 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
8379 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
8380 return DAG.getNode(Opcode, DL, VT, LHS, RHS);
8381 return SDValue();
8383 case ISD::SETOGT:
8384 case ISD::SETOGE:
8385 case ISD::SETGT:
8386 case ISD::SETGE:
8387 case ISD::SETUGT:
8388 case ISD::SETUGE: {
8389 unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
8390 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
8391 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
8393 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
8394 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
8395 return DAG.getNode(Opcode, DL, VT, LHS, RHS);
8396 return SDValue();
8398 default:
8399 return SDValue();
8403 SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) {
8404 SDValue Cond = N->getOperand(0);
8405 SDValue N1 = N->getOperand(1);
8406 SDValue N2 = N->getOperand(2);
8407 EVT VT = N->getValueType(0);
8408 EVT CondVT = Cond.getValueType();
8409 SDLoc DL(N);
8411 if (!VT.isInteger())
8412 return SDValue();
8414 auto *C1 = dyn_cast<ConstantSDNode>(N1);
8415 auto *C2 = dyn_cast<ConstantSDNode>(N2);
8416 if (!C1 || !C2)
8417 return SDValue();
8419 // Only do this before legalization to avoid conflicting with target-specific
8420 // transforms in the other direction (create a select from a zext/sext). There
8421 // is also a target-independent combine here in DAGCombiner in the other
8422 // direction for (select Cond, -1, 0) when the condition is not i1.
8423 if (CondVT == MVT::i1 && !LegalOperations) {
8424 if (C1->isNullValue() && C2->isOne()) {
8425 // select Cond, 0, 1 --> zext (!Cond)
8426 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
8427 if (VT != MVT::i1)
8428 NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond);
8429 return NotCond;
8431 if (C1->isNullValue() && C2->isAllOnesValue()) {
8432 // select Cond, 0, -1 --> sext (!Cond)
8433 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
8434 if (VT != MVT::i1)
8435 NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond);
8436 return NotCond;
8438 if (C1->isOne() && C2->isNullValue()) {
8439 // select Cond, 1, 0 --> zext (Cond)
8440 if (VT != MVT::i1)
8441 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
8442 return Cond;
8444 if (C1->isAllOnesValue() && C2->isNullValue()) {
8445 // select Cond, -1, 0 --> sext (Cond)
8446 if (VT != MVT::i1)
8447 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
8448 return Cond;
8451 // For any constants that differ by 1, we can transform the select into an
8452 // extend and add. Use a target hook because some targets may prefer to
8453 // transform in the other direction.
8454 if (TLI.convertSelectOfConstantsToMath(VT)) {
8455 if (C1->getAPIntValue() - 1 == C2->getAPIntValue()) {
8456 // select Cond, C1, C1-1 --> add (zext Cond), C1-1
8457 if (VT != MVT::i1)
8458 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
8459 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
8461 if (C1->getAPIntValue() + 1 == C2->getAPIntValue()) {
8462 // select Cond, C1, C1+1 --> add (sext Cond), C1+1
8463 if (VT != MVT::i1)
8464 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
8465 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
8469 return SDValue();
8472 // fold (select Cond, 0, 1) -> (xor Cond, 1)
8473 // We can't do this reliably if integer based booleans have different contents
8474 // to floating point based booleans. This is because we can't tell whether we
8475 // have an integer-based boolean or a floating-point-based boolean unless we
8476 // can find the SETCC that produced it and inspect its operands. This is
8477 // fairly easy if C is the SETCC node, but it can potentially be
8478 // undiscoverable (or not reasonably discoverable). For example, it could be
8479 // in another basic block or it could require searching a complicated
8480 // expression.
8481 if (CondVT.isInteger() &&
8482 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
8483 TargetLowering::ZeroOrOneBooleanContent &&
8484 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
8485 TargetLowering::ZeroOrOneBooleanContent &&
8486 C1->isNullValue() && C2->isOne()) {
8487 SDValue NotCond =
8488 DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT));
8489 if (VT.bitsEq(CondVT))
8490 return NotCond;
8491 return DAG.getZExtOrTrunc(NotCond, DL, VT);
8494 return SDValue();
8497 SDValue DAGCombiner::visitSELECT(SDNode *N) {
8498 SDValue N0 = N->getOperand(0);
8499 SDValue N1 = N->getOperand(1);
8500 SDValue N2 = N->getOperand(2);
8501 EVT VT = N->getValueType(0);
8502 EVT VT0 = N0.getValueType();
8503 SDLoc DL(N);
8504 SDNodeFlags Flags = N->getFlags();
8506 if (SDValue V = DAG.simplifySelect(N0, N1, N2))
8507 return V;
8509 // fold (select X, X, Y) -> (or X, Y)
8510 // fold (select X, 1, Y) -> (or C, Y)
8511 if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1)))
8512 return DAG.getNode(ISD::OR, DL, VT, N0, N2);
8514 if (SDValue V = foldSelectOfConstants(N))
8515 return V;
8517 // fold (select C, 0, X) -> (and (not C), X)
8518 if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) {
8519 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
8520 AddToWorklist(NOTNode.getNode());
8521 return DAG.getNode(ISD::AND, DL, VT, NOTNode, N2);
8523 // fold (select C, X, 1) -> (or (not C), X)
8524 if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) {
8525 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
8526 AddToWorklist(NOTNode.getNode());
8527 return DAG.getNode(ISD::OR, DL, VT, NOTNode, N1);
8529 // fold (select X, Y, X) -> (and X, Y)
8530 // fold (select X, Y, 0) -> (and X, Y)
8531 if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2)))
8532 return DAG.getNode(ISD::AND, DL, VT, N0, N1);
8534 // If we can fold this based on the true/false value, do so.
8535 if (SimplifySelectOps(N, N1, N2))
8536 return SDValue(N, 0); // Don't revisit N.
8538 if (VT0 == MVT::i1) {
8539 // The code in this block deals with the following 2 equivalences:
8540 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
8541 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
8542 // The target can specify its preferred form with the
8543 // shouldNormalizeToSelectSequence() callback. However we always transform
8544 // to the right anyway if we find the inner select exists in the DAG anyway
8545 // and we always transform to the left side if we know that we can further
8546 // optimize the combination of the conditions.
8547 bool normalizeToSequence =
8548 TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT);
8549 // select (and Cond0, Cond1), X, Y
8550 // -> select Cond0, (select Cond1, X, Y), Y
8551 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
8552 SDValue Cond0 = N0->getOperand(0);
8553 SDValue Cond1 = N0->getOperand(1);
8554 SDValue InnerSelect =
8555 DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags);
8556 if (normalizeToSequence || !InnerSelect.use_empty())
8557 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0,
8558 InnerSelect, N2, Flags);
8559 // Cleanup on failure.
8560 if (InnerSelect.use_empty())
8561 recursivelyDeleteUnusedNodes(InnerSelect.getNode());
8563 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
8564 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
8565 SDValue Cond0 = N0->getOperand(0);
8566 SDValue Cond1 = N0->getOperand(1);
8567 SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(),
8568 Cond1, N1, N2, Flags);
8569 if (normalizeToSequence || !InnerSelect.use_empty())
8570 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1,
8571 InnerSelect, Flags);
8572 // Cleanup on failure.
8573 if (InnerSelect.use_empty())
8574 recursivelyDeleteUnusedNodes(InnerSelect.getNode());
8577 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
8578 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) {
8579 SDValue N1_0 = N1->getOperand(0);
8580 SDValue N1_1 = N1->getOperand(1);
8581 SDValue N1_2 = N1->getOperand(2);
8582 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
8583 // Create the actual and node if we can generate good code for it.
8584 if (!normalizeToSequence) {
8585 SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0);
8586 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1,
8587 N2, Flags);
8589 // Otherwise see if we can optimize the "and" to a better pattern.
8590 if (SDValue Combined = visitANDLike(N0, N1_0, N)) {
8591 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1,
8592 N2, Flags);
8596 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
8597 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) {
8598 SDValue N2_0 = N2->getOperand(0);
8599 SDValue N2_1 = N2->getOperand(1);
8600 SDValue N2_2 = N2->getOperand(2);
8601 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
8602 // Create the actual or node if we can generate good code for it.
8603 if (!normalizeToSequence) {
8604 SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0);
8605 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1,
8606 N2_2, Flags);
8608 // Otherwise see if we can optimize to a better pattern.
8609 if (SDValue Combined = visitORLike(N0, N2_0, N))
8610 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1,
8611 N2_2, Flags);
8616 // select (not Cond), N1, N2 -> select Cond, N2, N1
8617 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) {
8618 SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1);
8619 SelectOp->setFlags(Flags);
8620 return SelectOp;
8623 // Fold selects based on a setcc into other things, such as min/max/abs.
8624 if (N0.getOpcode() == ISD::SETCC) {
8625 SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1);
8626 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
8628 // select (fcmp lt x, y), x, y -> fminnum x, y
8629 // select (fcmp gt x, y), x, y -> fmaxnum x, y
8631 // This is OK if we don't care what happens if either operand is a NaN.
8632 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI))
8633 if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2,
8634 CC, TLI, DAG))
8635 return FMinMax;
8637 // Use 'unsigned add with overflow' to optimize an unsigned saturating add.
8638 // This is conservatively limited to pre-legal-operations to give targets
8639 // a chance to reverse the transform if they want to do that. Also, it is
8640 // unlikely that the pattern would be formed late, so it's probably not
8641 // worth going through the other checks.
8642 if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) &&
8643 CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) &&
8644 N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) {
8645 auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1));
8646 auto *NotC = dyn_cast<ConstantSDNode>(Cond1);
8647 if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) {
8648 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
8649 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0
8651 // The IR equivalent of this transform would have this form:
8652 // %a = add %x, C
8653 // %c = icmp ugt %x, ~C
8654 // %r = select %c, -1, %a
8655 // =>
8656 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
8657 // %u0 = extractvalue %u, 0
8658 // %u1 = extractvalue %u, 1
8659 // %r = select %u1, -1, %u0
8660 SDVTList VTs = DAG.getVTList(VT, VT0);
8661 SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1));
8662 return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0));
8666 if (TLI.isOperationLegal(ISD::SELECT_CC, VT) ||
8667 (!LegalOperations &&
8668 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) {
8669 // Any flags available in a select/setcc fold will be on the setcc as they
8670 // migrated from fcmp
8671 Flags = N0.getNode()->getFlags();
8672 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1,
8673 N2, N0.getOperand(2));
8674 SelectNode->setFlags(Flags);
8675 return SelectNode;
8678 return SimplifySelect(DL, N0, N1, N2);
8681 return SDValue();
8684 // This function assumes all the vselect's arguments are CONCAT_VECTOR
8685 // nodes and that the condition is a BV of ConstantSDNodes (or undefs).
8686 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
8687 SDLoc DL(N);
8688 SDValue Cond = N->getOperand(0);
8689 SDValue LHS = N->getOperand(1);
8690 SDValue RHS = N->getOperand(2);
8691 EVT VT = N->getValueType(0);
8692 int NumElems = VT.getVectorNumElements();
8693 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
8694 RHS.getOpcode() == ISD::CONCAT_VECTORS &&
8695 Cond.getOpcode() == ISD::BUILD_VECTOR);
8697 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
8698 // binary ones here.
8699 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
8700 return SDValue();
8702 // We're sure we have an even number of elements due to the
8703 // concat_vectors we have as arguments to vselect.
8704 // Skip BV elements until we find one that's not an UNDEF
8705 // After we find an UNDEF element, keep looping until we get to half the
8706 // length of the BV and see if all the non-undef nodes are the same.
8707 ConstantSDNode *BottomHalf = nullptr;
8708 for (int i = 0; i < NumElems / 2; ++i) {
8709 if (Cond->getOperand(i)->isUndef())
8710 continue;
8712 if (BottomHalf == nullptr)
8713 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
8714 else if (Cond->getOperand(i).getNode() != BottomHalf)
8715 return SDValue();
8718 // Do the same for the second half of the BuildVector
8719 ConstantSDNode *TopHalf = nullptr;
8720 for (int i = NumElems / 2; i < NumElems; ++i) {
8721 if (Cond->getOperand(i)->isUndef())
8722 continue;
8724 if (TopHalf == nullptr)
8725 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
8726 else if (Cond->getOperand(i).getNode() != TopHalf)
8727 return SDValue();
8730 assert(TopHalf && BottomHalf &&
8731 "One half of the selector was all UNDEFs and the other was all the "
8732 "same value. This should have been addressed before this function.");
8733 return DAG.getNode(
8734 ISD::CONCAT_VECTORS, DL, VT,
8735 BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0),
8736 TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
8739 SDValue DAGCombiner::visitMSCATTER(SDNode *N) {
8740 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
8741 SDValue Mask = MSC->getMask();
8742 SDValue Chain = MSC->getChain();
8743 SDLoc DL(N);
8745 // Zap scatters with a zero mask.
8746 if (ISD::isBuildVectorAllZeros(Mask.getNode()))
8747 return Chain;
8749 return SDValue();
8752 SDValue DAGCombiner::visitMSTORE(SDNode *N) {
8753 MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
8754 SDValue Mask = MST->getMask();
8755 SDValue Chain = MST->getChain();
8756 SDLoc DL(N);
8758 // Zap masked stores with a zero mask.
8759 if (ISD::isBuildVectorAllZeros(Mask.getNode()))
8760 return Chain;
8762 return SDValue();
8765 SDValue DAGCombiner::visitMGATHER(SDNode *N) {
8766 MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N);
8767 SDValue Mask = MGT->getMask();
8768 SDLoc DL(N);
8770 // Zap gathers with a zero mask.
8771 if (ISD::isBuildVectorAllZeros(Mask.getNode()))
8772 return CombineTo(N, MGT->getPassThru(), MGT->getChain());
8774 return SDValue();
8777 SDValue DAGCombiner::visitMLOAD(SDNode *N) {
8778 MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
8779 SDValue Mask = MLD->getMask();
8780 SDLoc DL(N);
8782 // Zap masked loads with a zero mask.
8783 if (ISD::isBuildVectorAllZeros(Mask.getNode()))
8784 return CombineTo(N, MLD->getPassThru(), MLD->getChain());
8786 return SDValue();
8789 /// A vector select of 2 constant vectors can be simplified to math/logic to
8790 /// avoid a variable select instruction and possibly avoid constant loads.
8791 SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) {
8792 SDValue Cond = N->getOperand(0);
8793 SDValue N1 = N->getOperand(1);
8794 SDValue N2 = N->getOperand(2);
8795 EVT VT = N->getValueType(0);
8796 if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 ||
8797 !TLI.convertSelectOfConstantsToMath(VT) ||
8798 !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) ||
8799 !ISD::isBuildVectorOfConstantSDNodes(N2.getNode()))
8800 return SDValue();
8802 // Check if we can use the condition value to increment/decrement a single
8803 // constant value. This simplifies a select to an add and removes a constant
8804 // load/materialization from the general case.
8805 bool AllAddOne = true;
8806 bool AllSubOne = true;
8807 unsigned Elts = VT.getVectorNumElements();
8808 for (unsigned i = 0; i != Elts; ++i) {
8809 SDValue N1Elt = N1.getOperand(i);
8810 SDValue N2Elt = N2.getOperand(i);
8811 if (N1Elt.isUndef() || N2Elt.isUndef())
8812 continue;
8814 const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue();
8815 const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue();
8816 if (C1 != C2 + 1)
8817 AllAddOne = false;
8818 if (C1 != C2 - 1)
8819 AllSubOne = false;
8822 // Further simplifications for the extra-special cases where the constants are
8823 // all 0 or all -1 should be implemented as folds of these patterns.
8824 SDLoc DL(N);
8825 if (AllAddOne || AllSubOne) {
8826 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
8827 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
8828 auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
8829 SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond);
8830 return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2);
8833 // The general case for select-of-constants:
8834 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
8835 // ...but that only makes sense if a vselect is slower than 2 logic ops, so
8836 // leave that to a machine-specific pass.
8837 return SDValue();
8840 SDValue DAGCombiner::visitVSELECT(SDNode *N) {
8841 SDValue N0 = N->getOperand(0);
8842 SDValue N1 = N->getOperand(1);
8843 SDValue N2 = N->getOperand(2);
8844 EVT VT = N->getValueType(0);
8845 SDLoc DL(N);
8847 if (SDValue V = DAG.simplifySelect(N0, N1, N2))
8848 return V;
8850 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1
8851 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false))
8852 return DAG.getSelect(DL, VT, F, N2, N1);
8854 // Canonicalize integer abs.
8855 // vselect (setg[te] X, 0), X, -X ->
8856 // vselect (setgt X, -1), X, -X ->
8857 // vselect (setl[te] X, 0), -X, X ->
8858 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
8859 if (N0.getOpcode() == ISD::SETCC) {
8860 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
8861 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
8862 bool isAbs = false;
8863 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
8865 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
8866 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
8867 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
8868 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
8869 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
8870 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
8871 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
8873 if (isAbs) {
8874 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT))
8875 return DAG.getNode(ISD::ABS, DL, VT, LHS);
8877 SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS,
8878 DAG.getConstant(VT.getScalarSizeInBits() - 1,
8879 DL, getShiftAmountTy(VT)));
8880 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
8881 AddToWorklist(Shift.getNode());
8882 AddToWorklist(Add.getNode());
8883 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
8886 // vselect x, y (fcmp lt x, y) -> fminnum x, y
8887 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y
8889 // This is OK if we don't care about what happens if either operand is a
8890 // NaN.
8892 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) {
8893 if (SDValue FMinMax =
8894 combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC, TLI, DAG))
8895 return FMinMax;
8898 // If this select has a condition (setcc) with narrower operands than the
8899 // select, try to widen the compare to match the select width.
8900 // TODO: This should be extended to handle any constant.
8901 // TODO: This could be extended to handle non-loading patterns, but that
8902 // requires thorough testing to avoid regressions.
8903 if (isNullOrNullSplat(RHS)) {
8904 EVT NarrowVT = LHS.getValueType();
8905 EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger();
8906 EVT SetCCVT = getSetCCResultType(LHS.getValueType());
8907 unsigned SetCCWidth = SetCCVT.getScalarSizeInBits();
8908 unsigned WideWidth = WideVT.getScalarSizeInBits();
8909 bool IsSigned = isSignedIntSetCC(CC);
8910 auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
8911 if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() &&
8912 SetCCWidth != 1 && SetCCWidth < WideWidth &&
8913 TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) &&
8914 TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) {
8915 // Both compare operands can be widened for free. The LHS can use an
8916 // extended load, and the RHS is a constant:
8917 // vselect (ext (setcc load(X), C)), N1, N2 -->
8918 // vselect (setcc extload(X), C'), N1, N2
8919 auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
8920 SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS);
8921 SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS);
8922 EVT WideSetCCVT = getSetCCResultType(WideVT);
8923 SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC);
8924 return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2);
8929 if (SimplifySelectOps(N, N1, N2))
8930 return SDValue(N, 0); // Don't revisit N.
8932 // Fold (vselect (build_vector all_ones), N1, N2) -> N1
8933 if (ISD::isBuildVectorAllOnes(N0.getNode()))
8934 return N1;
8935 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2
8936 if (ISD::isBuildVectorAllZeros(N0.getNode()))
8937 return N2;
8939 // The ConvertSelectToConcatVector function is assuming both the above
8940 // checks for (vselect (build_vector all{ones,zeros) ...) have been made
8941 // and addressed.
8942 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
8943 N2.getOpcode() == ISD::CONCAT_VECTORS &&
8944 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
8945 if (SDValue CV = ConvertSelectToConcatVector(N, DAG))
8946 return CV;
8949 if (SDValue V = foldVSelectOfConstants(N))
8950 return V;
8952 return SDValue();
8955 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
8956 SDValue N0 = N->getOperand(0);
8957 SDValue N1 = N->getOperand(1);
8958 SDValue N2 = N->getOperand(2);
8959 SDValue N3 = N->getOperand(3);
8960 SDValue N4 = N->getOperand(4);
8961 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
8963 // fold select_cc lhs, rhs, x, x, cc -> x
8964 if (N2 == N3)
8965 return N2;
8967 // Determine if the condition we're dealing with is constant
8968 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1,
8969 CC, SDLoc(N), false)) {
8970 AddToWorklist(SCC.getNode());
8972 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
8973 if (!SCCC->isNullValue())
8974 return N2; // cond always true -> true val
8975 else
8976 return N3; // cond always false -> false val
8977 } else if (SCC->isUndef()) {
8978 // When the condition is UNDEF, just return the first operand. This is
8979 // coherent the DAG creation, no setcc node is created in this case
8980 return N2;
8981 } else if (SCC.getOpcode() == ISD::SETCC) {
8982 // Fold to a simpler select_cc
8983 SDValue SelectOp = DAG.getNode(
8984 ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0),
8985 SCC.getOperand(1), N2, N3, SCC.getOperand(2));
8986 SelectOp->setFlags(SCC->getFlags());
8987 return SelectOp;
8991 // If we can fold this based on the true/false value, do so.
8992 if (SimplifySelectOps(N, N2, N3))
8993 return SDValue(N, 0); // Don't revisit N.
8995 // fold select_cc into other things, such as min/max/abs
8996 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
8999 SDValue DAGCombiner::visitSETCC(SDNode *N) {
9000 // setcc is very commonly used as an argument to brcond. This pattern
9001 // also lend itself to numerous combines and, as a result, it is desired
9002 // we keep the argument to a brcond as a setcc as much as possible.
9003 bool PreferSetCC =
9004 N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND;
9006 SDValue Combined = SimplifySetCC(
9007 N->getValueType(0), N->getOperand(0), N->getOperand(1),
9008 cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC);
9010 if (!Combined)
9011 return SDValue();
9013 // If we prefer to have a setcc, and we don't, we'll try our best to
9014 // recreate one using rebuildSetCC.
9015 if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) {
9016 SDValue NewSetCC = rebuildSetCC(Combined);
9018 // We don't have anything interesting to combine to.
9019 if (NewSetCC.getNode() == N)
9020 return SDValue();
9022 if (NewSetCC)
9023 return NewSetCC;
9026 return Combined;
9029 SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) {
9030 SDValue LHS = N->getOperand(0);
9031 SDValue RHS = N->getOperand(1);
9032 SDValue Carry = N->getOperand(2);
9033 SDValue Cond = N->getOperand(3);
9035 // If Carry is false, fold to a regular SETCC.
9036 if (isNullConstant(Carry))
9037 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond);
9039 return SDValue();
9042 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
9043 /// a build_vector of constants.
9044 /// This function is called by the DAGCombiner when visiting sext/zext/aext
9045 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
9046 /// Vector extends are not folded if operations are legal; this is to
9047 /// avoid introducing illegal build_vector dag nodes.
9048 static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI,
9049 SelectionDAG &DAG, bool LegalTypes) {
9050 unsigned Opcode = N->getOpcode();
9051 SDValue N0 = N->getOperand(0);
9052 EVT VT = N->getValueType(0);
9053 SDLoc DL(N);
9055 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
9056 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
9057 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG)
9058 && "Expected EXTEND dag node in input!");
9060 // fold (sext c1) -> c1
9061 // fold (zext c1) -> c1
9062 // fold (aext c1) -> c1
9063 if (isa<ConstantSDNode>(N0))
9064 return DAG.getNode(Opcode, DL, VT, N0);
9066 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
9067 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2)
9068 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
9069 if (N0->getOpcode() == ISD::SELECT) {
9070 SDValue Op1 = N0->getOperand(1);
9071 SDValue Op2 = N0->getOperand(2);
9072 if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) &&
9073 (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) {
9074 // For any_extend, choose sign extension of the constants to allow a
9075 // possible further transform to sign_extend_inreg.i.e.
9077 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0>
9078 // t2: i64 = any_extend t1
9079 // -->
9080 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0>
9081 // -->
9082 // t4: i64 = sign_extend_inreg t3
9083 unsigned FoldOpc = Opcode;
9084 if (FoldOpc == ISD::ANY_EXTEND)
9085 FoldOpc = ISD::SIGN_EXTEND;
9086 return DAG.getSelect(DL, VT, N0->getOperand(0),
9087 DAG.getNode(FoldOpc, DL, VT, Op1),
9088 DAG.getNode(FoldOpc, DL, VT, Op2));
9092 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
9093 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
9094 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
9095 EVT SVT = VT.getScalarType();
9096 if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) &&
9097 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())))
9098 return SDValue();
9100 // We can fold this node into a build_vector.
9101 unsigned VTBits = SVT.getSizeInBits();
9102 unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits();
9103 SmallVector<SDValue, 8> Elts;
9104 unsigned NumElts = VT.getVectorNumElements();
9106 // For zero-extensions, UNDEF elements still guarantee to have the upper
9107 // bits set to zero.
9108 bool IsZext =
9109 Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG;
9111 for (unsigned i = 0; i != NumElts; ++i) {
9112 SDValue Op = N0.getOperand(i);
9113 if (Op.isUndef()) {
9114 Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT));
9115 continue;
9118 SDLoc DL(Op);
9119 // Get the constant value and if needed trunc it to the size of the type.
9120 // Nodes like build_vector might have constants wider than the scalar type.
9121 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits);
9122 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
9123 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT));
9124 else
9125 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT));
9128 return DAG.getBuildVector(VT, DL, Elts);
9131 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
9132 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
9133 // transformation. Returns true if extension are possible and the above
9134 // mentioned transformation is profitable.
9135 static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0,
9136 unsigned ExtOpc,
9137 SmallVectorImpl<SDNode *> &ExtendNodes,
9138 const TargetLowering &TLI) {
9139 bool HasCopyToRegUses = false;
9140 bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType());
9141 for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
9142 UE = N0.getNode()->use_end();
9143 UI != UE; ++UI) {
9144 SDNode *User = *UI;
9145 if (User == N)
9146 continue;
9147 if (UI.getUse().getResNo() != N0.getResNo())
9148 continue;
9149 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
9150 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
9151 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
9152 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
9153 // Sign bits will be lost after a zext.
9154 return false;
9155 bool Add = false;
9156 for (unsigned i = 0; i != 2; ++i) {
9157 SDValue UseOp = User->getOperand(i);
9158 if (UseOp == N0)
9159 continue;
9160 if (!isa<ConstantSDNode>(UseOp))
9161 return false;
9162 Add = true;
9164 if (Add)
9165 ExtendNodes.push_back(User);
9166 continue;
9168 // If truncates aren't free and there are users we can't
9169 // extend, it isn't worthwhile.
9170 if (!isTruncFree)
9171 return false;
9172 // Remember if this value is live-out.
9173 if (User->getOpcode() == ISD::CopyToReg)
9174 HasCopyToRegUses = true;
9177 if (HasCopyToRegUses) {
9178 bool BothLiveOut = false;
9179 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
9180 UI != UE; ++UI) {
9181 SDUse &Use = UI.getUse();
9182 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
9183 BothLiveOut = true;
9184 break;
9187 if (BothLiveOut)
9188 // Both unextended and extended values are live out. There had better be
9189 // a good reason for the transformation.
9190 return ExtendNodes.size();
9192 return true;
9195 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
9196 SDValue OrigLoad, SDValue ExtLoad,
9197 ISD::NodeType ExtType) {
9198 // Extend SetCC uses if necessary.
9199 SDLoc DL(ExtLoad);
9200 for (SDNode *SetCC : SetCCs) {
9201 SmallVector<SDValue, 4> Ops;
9203 for (unsigned j = 0; j != 2; ++j) {
9204 SDValue SOp = SetCC->getOperand(j);
9205 if (SOp == OrigLoad)
9206 Ops.push_back(ExtLoad);
9207 else
9208 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
9211 Ops.push_back(SetCC->getOperand(2));
9212 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
9216 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
9217 SDValue DAGCombiner::CombineExtLoad(SDNode *N) {
9218 SDValue N0 = N->getOperand(0);
9219 EVT DstVT = N->getValueType(0);
9220 EVT SrcVT = N0.getValueType();
9222 assert((N->getOpcode() == ISD::SIGN_EXTEND ||
9223 N->getOpcode() == ISD::ZERO_EXTEND) &&
9224 "Unexpected node type (not an extend)!");
9226 // fold (sext (load x)) to multiple smaller sextloads; same for zext.
9227 // For example, on a target with legal v4i32, but illegal v8i32, turn:
9228 // (v8i32 (sext (v8i16 (load x))))
9229 // into:
9230 // (v8i32 (concat_vectors (v4i32 (sextload x)),
9231 // (v4i32 (sextload (x + 16)))))
9232 // Where uses of the original load, i.e.:
9233 // (v8i16 (load x))
9234 // are replaced with:
9235 // (v8i16 (truncate
9236 // (v8i32 (concat_vectors (v4i32 (sextload x)),
9237 // (v4i32 (sextload (x + 16)))))))
9239 // This combine is only applicable to illegal, but splittable, vectors.
9240 // All legal types, and illegal non-vector types, are handled elsewhere.
9241 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
9243 if (N0->getOpcode() != ISD::LOAD)
9244 return SDValue();
9246 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9248 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) ||
9249 !N0.hasOneUse() || !LN0->isSimple() ||
9250 !DstVT.isVector() || !DstVT.isPow2VectorType() ||
9251 !TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
9252 return SDValue();
9254 SmallVector<SDNode *, 4> SetCCs;
9255 if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI))
9256 return SDValue();
9258 ISD::LoadExtType ExtType =
9259 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
9261 // Try to split the vector types to get down to legal types.
9262 EVT SplitSrcVT = SrcVT;
9263 EVT SplitDstVT = DstVT;
9264 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) &&
9265 SplitSrcVT.getVectorNumElements() > 1) {
9266 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first;
9267 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first;
9270 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT))
9271 return SDValue();
9273 SDLoc DL(N);
9274 const unsigned NumSplits =
9275 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements();
9276 const unsigned Stride = SplitSrcVT.getStoreSize();
9277 SmallVector<SDValue, 4> Loads;
9278 SmallVector<SDValue, 4> Chains;
9280 SDValue BasePtr = LN0->getBasePtr();
9281 for (unsigned Idx = 0; Idx < NumSplits; Idx++) {
9282 const unsigned Offset = Idx * Stride;
9283 const unsigned Align = MinAlign(LN0->getAlignment(), Offset);
9285 SDValue SplitLoad = DAG.getExtLoad(
9286 ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr,
9287 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align,
9288 LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
9290 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
9291 DAG.getConstant(Stride, DL, BasePtr.getValueType()));
9293 Loads.push_back(SplitLoad.getValue(0));
9294 Chains.push_back(SplitLoad.getValue(1));
9297 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
9298 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads);
9300 // Simplify TF.
9301 AddToWorklist(NewChain.getNode());
9303 CombineTo(N, NewValue);
9305 // Replace uses of the original load (before extension)
9306 // with a truncate of the concatenated sextloaded vectors.
9307 SDValue Trunc =
9308 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue);
9309 ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode());
9310 CombineTo(N0.getNode(), Trunc, NewChain);
9311 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9314 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
9315 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
9316 SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) {
9317 assert(N->getOpcode() == ISD::ZERO_EXTEND);
9318 EVT VT = N->getValueType(0);
9319 EVT OrigVT = N->getOperand(0).getValueType();
9320 if (TLI.isZExtFree(OrigVT, VT))
9321 return SDValue();
9323 // and/or/xor
9324 SDValue N0 = N->getOperand(0);
9325 if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
9326 N0.getOpcode() == ISD::XOR) ||
9327 N0.getOperand(1).getOpcode() != ISD::Constant ||
9328 (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT)))
9329 return SDValue();
9331 // shl/shr
9332 SDValue N1 = N0->getOperand(0);
9333 if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) ||
9334 N1.getOperand(1).getOpcode() != ISD::Constant ||
9335 (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT)))
9336 return SDValue();
9338 // load
9339 if (!isa<LoadSDNode>(N1.getOperand(0)))
9340 return SDValue();
9341 LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0));
9342 EVT MemVT = Load->getMemoryVT();
9343 if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) ||
9344 Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed())
9345 return SDValue();
9348 // If the shift op is SHL, the logic op must be AND, otherwise the result
9349 // will be wrong.
9350 if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND)
9351 return SDValue();
9353 if (!N0.hasOneUse() || !N1.hasOneUse())
9354 return SDValue();
9356 SmallVector<SDNode*, 4> SetCCs;
9357 if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0),
9358 ISD::ZERO_EXTEND, SetCCs, TLI))
9359 return SDValue();
9361 // Actually do the transformation.
9362 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT,
9363 Load->getChain(), Load->getBasePtr(),
9364 Load->getMemoryVT(), Load->getMemOperand());
9366 SDLoc DL1(N1);
9367 SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad,
9368 N1.getOperand(1));
9370 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9371 Mask = Mask.zext(VT.getSizeInBits());
9372 SDLoc DL0(N0);
9373 SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift,
9374 DAG.getConstant(Mask, DL0, VT));
9376 ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
9377 CombineTo(N, And);
9378 if (SDValue(Load, 0).hasOneUse()) {
9379 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1));
9380 } else {
9381 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load),
9382 Load->getValueType(0), ExtLoad);
9383 CombineTo(Load, Trunc, ExtLoad.getValue(1));
9386 // N0 is dead at this point.
9387 recursivelyDeleteUnusedNodes(N0.getNode());
9389 return SDValue(N,0); // Return N so it doesn't get rechecked!
9392 /// If we're narrowing or widening the result of a vector select and the final
9393 /// size is the same size as a setcc (compare) feeding the select, then try to
9394 /// apply the cast operation to the select's operands because matching vector
9395 /// sizes for a select condition and other operands should be more efficient.
9396 SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) {
9397 unsigned CastOpcode = Cast->getOpcode();
9398 assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND ||
9399 CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND ||
9400 CastOpcode == ISD::FP_ROUND) &&
9401 "Unexpected opcode for vector select narrowing/widening");
9403 // We only do this transform before legal ops because the pattern may be
9404 // obfuscated by target-specific operations after legalization. Do not create
9405 // an illegal select op, however, because that may be difficult to lower.
9406 EVT VT = Cast->getValueType(0);
9407 if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
9408 return SDValue();
9410 SDValue VSel = Cast->getOperand(0);
9411 if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() ||
9412 VSel.getOperand(0).getOpcode() != ISD::SETCC)
9413 return SDValue();
9415 // Does the setcc have the same vector size as the casted select?
9416 SDValue SetCC = VSel.getOperand(0);
9417 EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType());
9418 if (SetCCVT.getSizeInBits() != VT.getSizeInBits())
9419 return SDValue();
9421 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
9422 SDValue A = VSel.getOperand(1);
9423 SDValue B = VSel.getOperand(2);
9424 SDValue CastA, CastB;
9425 SDLoc DL(Cast);
9426 if (CastOpcode == ISD::FP_ROUND) {
9427 // FP_ROUND (fptrunc) has an extra flag operand to pass along.
9428 CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1));
9429 CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1));
9430 } else {
9431 CastA = DAG.getNode(CastOpcode, DL, VT, A);
9432 CastB = DAG.getNode(CastOpcode, DL, VT, B);
9434 return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB);
9437 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
9438 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
9439 static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner,
9440 const TargetLowering &TLI, EVT VT,
9441 bool LegalOperations, SDNode *N,
9442 SDValue N0, ISD::LoadExtType ExtLoadType) {
9443 SDNode *N0Node = N0.getNode();
9444 bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node)
9445 : ISD::isZEXTLoad(N0Node);
9446 if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) ||
9447 !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse())
9448 return SDValue();
9450 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9451 EVT MemVT = LN0->getMemoryVT();
9452 if ((LegalOperations || !LN0->isSimple() ||
9453 VT.isVector()) &&
9454 !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT))
9455 return SDValue();
9457 SDValue ExtLoad =
9458 DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
9459 LN0->getBasePtr(), MemVT, LN0->getMemOperand());
9460 Combiner.CombineTo(N, ExtLoad);
9461 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
9462 if (LN0->use_empty())
9463 Combiner.recursivelyDeleteUnusedNodes(LN0);
9464 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9467 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
9468 // Only generate vector extloads when 1) they're legal, and 2) they are
9469 // deemed desirable by the target.
9470 static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner,
9471 const TargetLowering &TLI, EVT VT,
9472 bool LegalOperations, SDNode *N, SDValue N0,
9473 ISD::LoadExtType ExtLoadType,
9474 ISD::NodeType ExtOpc) {
9475 if (!ISD::isNON_EXTLoad(N0.getNode()) ||
9476 !ISD::isUNINDEXEDLoad(N0.getNode()) ||
9477 ((LegalOperations || VT.isVector() ||
9478 !cast<LoadSDNode>(N0)->isSimple()) &&
9479 !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType())))
9480 return {};
9482 bool DoXform = true;
9483 SmallVector<SDNode *, 4> SetCCs;
9484 if (!N0.hasOneUse())
9485 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI);
9486 if (VT.isVector())
9487 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
9488 if (!DoXform)
9489 return {};
9491 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9492 SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
9493 LN0->getBasePtr(), N0.getValueType(),
9494 LN0->getMemOperand());
9495 Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc);
9496 // If the load value is used only by N, replace it via CombineTo N.
9497 bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse();
9498 Combiner.CombineTo(N, ExtLoad);
9499 if (NoReplaceTrunc) {
9500 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
9501 Combiner.recursivelyDeleteUnusedNodes(LN0);
9502 } else {
9503 SDValue Trunc =
9504 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
9505 Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1));
9507 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9510 static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG,
9511 bool LegalOperations) {
9512 assert((N->getOpcode() == ISD::SIGN_EXTEND ||
9513 N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext");
9515 SDValue SetCC = N->getOperand(0);
9516 if (LegalOperations || SetCC.getOpcode() != ISD::SETCC ||
9517 !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1)
9518 return SDValue();
9520 SDValue X = SetCC.getOperand(0);
9521 SDValue Ones = SetCC.getOperand(1);
9522 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
9523 EVT VT = N->getValueType(0);
9524 EVT XVT = X.getValueType();
9525 // setge X, C is canonicalized to setgt, so we do not need to match that
9526 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does
9527 // not require the 'not' op.
9528 if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) {
9529 // Invert and smear/shift the sign bit:
9530 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
9531 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
9532 SDLoc DL(N);
9533 SDValue NotX = DAG.getNOT(DL, X, VT);
9534 SDValue ShiftAmount = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
9535 auto ShiftOpcode = N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL;
9536 return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount);
9538 return SDValue();
9541 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
9542 SDValue N0 = N->getOperand(0);
9543 EVT VT = N->getValueType(0);
9544 SDLoc DL(N);
9546 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
9547 return Res;
9549 // fold (sext (sext x)) -> (sext x)
9550 // fold (sext (aext x)) -> (sext x)
9551 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
9552 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0));
9554 if (N0.getOpcode() == ISD::TRUNCATE) {
9555 // fold (sext (truncate (load x))) -> (sext (smaller load x))
9556 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
9557 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
9558 SDNode *oye = N0.getOperand(0).getNode();
9559 if (NarrowLoad.getNode() != N0.getNode()) {
9560 CombineTo(N0.getNode(), NarrowLoad);
9561 // CombineTo deleted the truncate, if needed, but not what's under it.
9562 AddToWorklist(oye);
9564 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9567 // See if the value being truncated is already sign extended. If so, just
9568 // eliminate the trunc/sext pair.
9569 SDValue Op = N0.getOperand(0);
9570 unsigned OpBits = Op.getScalarValueSizeInBits();
9571 unsigned MidBits = N0.getScalarValueSizeInBits();
9572 unsigned DestBits = VT.getScalarSizeInBits();
9573 unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
9575 if (OpBits == DestBits) {
9576 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
9577 // bits, it is already ready.
9578 if (NumSignBits > DestBits-MidBits)
9579 return Op;
9580 } else if (OpBits < DestBits) {
9581 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
9582 // bits, just sext from i32.
9583 if (NumSignBits > OpBits-MidBits)
9584 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op);
9585 } else {
9586 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
9587 // bits, just truncate to i32.
9588 if (NumSignBits > OpBits-MidBits)
9589 return DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
9592 // fold (sext (truncate x)) -> (sextinreg x).
9593 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
9594 N0.getValueType())) {
9595 if (OpBits < DestBits)
9596 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
9597 else if (OpBits > DestBits)
9598 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
9599 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op,
9600 DAG.getValueType(N0.getValueType()));
9604 // Try to simplify (sext (load x)).
9605 if (SDValue foldedExt =
9606 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
9607 ISD::SEXTLOAD, ISD::SIGN_EXTEND))
9608 return foldedExt;
9610 // fold (sext (load x)) to multiple smaller sextloads.
9611 // Only on illegal but splittable vectors.
9612 if (SDValue ExtLoad = CombineExtLoad(N))
9613 return ExtLoad;
9615 // Try to simplify (sext (sextload x)).
9616 if (SDValue foldedExt = tryToFoldExtOfExtload(
9617 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD))
9618 return foldedExt;
9620 // fold (sext (and/or/xor (load x), cst)) ->
9621 // (and/or/xor (sextload x), (sext cst))
9622 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
9623 N0.getOpcode() == ISD::XOR) &&
9624 isa<LoadSDNode>(N0.getOperand(0)) &&
9625 N0.getOperand(1).getOpcode() == ISD::Constant &&
9626 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
9627 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
9628 EVT MemVT = LN00->getMemoryVT();
9629 if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) &&
9630 LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) {
9631 SmallVector<SDNode*, 4> SetCCs;
9632 bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
9633 ISD::SIGN_EXTEND, SetCCs, TLI);
9634 if (DoXform) {
9635 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT,
9636 LN00->getChain(), LN00->getBasePtr(),
9637 LN00->getMemoryVT(),
9638 LN00->getMemOperand());
9639 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9640 Mask = Mask.sext(VT.getSizeInBits());
9641 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
9642 ExtLoad, DAG.getConstant(Mask, DL, VT));
9643 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND);
9644 bool NoReplaceTruncAnd = !N0.hasOneUse();
9645 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
9646 CombineTo(N, And);
9647 // If N0 has multiple uses, change other uses as well.
9648 if (NoReplaceTruncAnd) {
9649 SDValue TruncAnd =
9650 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
9651 CombineTo(N0.getNode(), TruncAnd);
9653 if (NoReplaceTrunc) {
9654 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
9655 } else {
9656 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
9657 LN00->getValueType(0), ExtLoad);
9658 CombineTo(LN00, Trunc, ExtLoad.getValue(1));
9660 return SDValue(N,0); // Return N so it doesn't get rechecked!
9665 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
9666 return V;
9668 if (N0.getOpcode() == ISD::SETCC) {
9669 SDValue N00 = N0.getOperand(0);
9670 SDValue N01 = N0.getOperand(1);
9671 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
9672 EVT N00VT = N0.getOperand(0).getValueType();
9674 // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
9675 // Only do this before legalize for now.
9676 if (VT.isVector() && !LegalOperations &&
9677 TLI.getBooleanContents(N00VT) ==
9678 TargetLowering::ZeroOrNegativeOneBooleanContent) {
9679 // On some architectures (such as SSE/NEON/etc) the SETCC result type is
9680 // of the same size as the compared operands. Only optimize sext(setcc())
9681 // if this is the case.
9682 EVT SVT = getSetCCResultType(N00VT);
9684 // If we already have the desired type, don't change it.
9685 if (SVT != N0.getValueType()) {
9686 // We know that the # elements of the results is the same as the
9687 // # elements of the compare (and the # elements of the compare result
9688 // for that matter). Check to see that they are the same size. If so,
9689 // we know that the element size of the sext'd result matches the
9690 // element size of the compare operands.
9691 if (VT.getSizeInBits() == SVT.getSizeInBits())
9692 return DAG.getSetCC(DL, VT, N00, N01, CC);
9694 // If the desired elements are smaller or larger than the source
9695 // elements, we can use a matching integer vector type and then
9696 // truncate/sign extend.
9697 EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger();
9698 if (SVT == MatchingVecType) {
9699 SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC);
9700 return DAG.getSExtOrTrunc(VsetCC, DL, VT);
9705 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
9706 // Here, T can be 1 or -1, depending on the type of the setcc and
9707 // getBooleanContents().
9708 unsigned SetCCWidth = N0.getScalarValueSizeInBits();
9710 // To determine the "true" side of the select, we need to know the high bit
9711 // of the value returned by the setcc if it evaluates to true.
9712 // If the type of the setcc is i1, then the true case of the select is just
9713 // sext(i1 1), that is, -1.
9714 // If the type of the setcc is larger (say, i8) then the value of the high
9715 // bit depends on getBooleanContents(), so ask TLI for a real "true" value
9716 // of the appropriate width.
9717 SDValue ExtTrueVal = (SetCCWidth == 1)
9718 ? DAG.getAllOnesConstant(DL, VT)
9719 : DAG.getBoolConstant(true, DL, VT, N00VT);
9720 SDValue Zero = DAG.getConstant(0, DL, VT);
9721 if (SDValue SCC =
9722 SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true))
9723 return SCC;
9725 if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) {
9726 EVT SetCCVT = getSetCCResultType(N00VT);
9727 // Don't do this transform for i1 because there's a select transform
9728 // that would reverse it.
9729 // TODO: We should not do this transform at all without a target hook
9730 // because a sext is likely cheaper than a select?
9731 if (SetCCVT.getScalarSizeInBits() != 1 &&
9732 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) {
9733 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC);
9734 return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero);
9739 // fold (sext x) -> (zext x) if the sign bit is known zero.
9740 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
9741 DAG.SignBitIsZero(N0))
9742 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0);
9744 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
9745 return NewVSel;
9747 // Eliminate this sign extend by doing a negation in the destination type:
9748 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64)
9749 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
9750 isNullOrNullSplat(N0.getOperand(0)) &&
9751 N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND &&
9752 TLI.isOperationLegalOrCustom(ISD::SUB, VT)) {
9753 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT);
9754 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext);
9756 // Eliminate this sign extend by doing a decrement in the destination type:
9757 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1)
9758 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() &&
9759 isAllOnesOrAllOnesSplat(N0.getOperand(1)) &&
9760 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
9761 TLI.isOperationLegalOrCustom(ISD::ADD, VT)) {
9762 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT);
9763 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT));
9766 return SDValue();
9769 // isTruncateOf - If N is a truncate of some other value, return true, record
9770 // the value being truncated in Op and which of Op's bits are zero/one in Known.
9771 // This function computes KnownBits to avoid a duplicated call to
9772 // computeKnownBits in the caller.
9773 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
9774 KnownBits &Known) {
9775 if (N->getOpcode() == ISD::TRUNCATE) {
9776 Op = N->getOperand(0);
9777 Known = DAG.computeKnownBits(Op);
9778 return true;
9781 if (N.getOpcode() != ISD::SETCC ||
9782 N.getValueType().getScalarType() != MVT::i1 ||
9783 cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE)
9784 return false;
9786 SDValue Op0 = N->getOperand(0);
9787 SDValue Op1 = N->getOperand(1);
9788 assert(Op0.getValueType() == Op1.getValueType());
9790 if (isNullOrNullSplat(Op0))
9791 Op = Op1;
9792 else if (isNullOrNullSplat(Op1))
9793 Op = Op0;
9794 else
9795 return false;
9797 Known = DAG.computeKnownBits(Op);
9799 return (Known.Zero | 1).isAllOnesValue();
9802 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
9803 SDValue N0 = N->getOperand(0);
9804 EVT VT = N->getValueType(0);
9806 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
9807 return Res;
9809 // fold (zext (zext x)) -> (zext x)
9810 // fold (zext (aext x)) -> (zext x)
9811 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
9812 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
9813 N0.getOperand(0));
9815 // fold (zext (truncate x)) -> (zext x) or
9816 // (zext (truncate x)) -> (truncate x)
9817 // This is valid when the truncated bits of x are already zero.
9818 SDValue Op;
9819 KnownBits Known;
9820 if (isTruncateOf(DAG, N0, Op, Known)) {
9821 APInt TruncatedBits =
9822 (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ?
9823 APInt(Op.getScalarValueSizeInBits(), 0) :
9824 APInt::getBitsSet(Op.getScalarValueSizeInBits(),
9825 N0.getScalarValueSizeInBits(),
9826 std::min(Op.getScalarValueSizeInBits(),
9827 VT.getScalarSizeInBits()));
9828 if (TruncatedBits.isSubsetOf(Known.Zero))
9829 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
9832 // fold (zext (truncate x)) -> (and x, mask)
9833 if (N0.getOpcode() == ISD::TRUNCATE) {
9834 // fold (zext (truncate (load x))) -> (zext (smaller load x))
9835 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
9836 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
9837 SDNode *oye = N0.getOperand(0).getNode();
9838 if (NarrowLoad.getNode() != N0.getNode()) {
9839 CombineTo(N0.getNode(), NarrowLoad);
9840 // CombineTo deleted the truncate, if needed, but not what's under it.
9841 AddToWorklist(oye);
9843 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9846 EVT SrcVT = N0.getOperand(0).getValueType();
9847 EVT MinVT = N0.getValueType();
9849 // Try to mask before the extension to avoid having to generate a larger mask,
9850 // possibly over several sub-vectors.
9851 if (SrcVT.bitsLT(VT) && VT.isVector()) {
9852 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) &&
9853 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) {
9854 SDValue Op = N0.getOperand(0);
9855 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
9856 AddToWorklist(Op.getNode());
9857 SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
9858 // Transfer the debug info; the new node is equivalent to N0.
9859 DAG.transferDbgValues(N0, ZExtOrTrunc);
9860 return ZExtOrTrunc;
9864 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) {
9865 SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
9866 AddToWorklist(Op.getNode());
9867 SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
9868 // We may safely transfer the debug info describing the truncate node over
9869 // to the equivalent and operation.
9870 DAG.transferDbgValues(N0, And);
9871 return And;
9875 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
9876 // if either of the casts is not free.
9877 if (N0.getOpcode() == ISD::AND &&
9878 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
9879 N0.getOperand(1).getOpcode() == ISD::Constant &&
9880 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
9881 N0.getValueType()) ||
9882 !TLI.isZExtFree(N0.getValueType(), VT))) {
9883 SDValue X = N0.getOperand(0).getOperand(0);
9884 X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT);
9885 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9886 Mask = Mask.zext(VT.getSizeInBits());
9887 SDLoc DL(N);
9888 return DAG.getNode(ISD::AND, DL, VT,
9889 X, DAG.getConstant(Mask, DL, VT));
9892 // Try to simplify (zext (load x)).
9893 if (SDValue foldedExt =
9894 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
9895 ISD::ZEXTLOAD, ISD::ZERO_EXTEND))
9896 return foldedExt;
9898 // fold (zext (load x)) to multiple smaller zextloads.
9899 // Only on illegal but splittable vectors.
9900 if (SDValue ExtLoad = CombineExtLoad(N))
9901 return ExtLoad;
9903 // fold (zext (and/or/xor (load x), cst)) ->
9904 // (and/or/xor (zextload x), (zext cst))
9905 // Unless (and (load x) cst) will match as a zextload already and has
9906 // additional users.
9907 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
9908 N0.getOpcode() == ISD::XOR) &&
9909 isa<LoadSDNode>(N0.getOperand(0)) &&
9910 N0.getOperand(1).getOpcode() == ISD::Constant &&
9911 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
9912 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
9913 EVT MemVT = LN00->getMemoryVT();
9914 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) &&
9915 LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) {
9916 bool DoXform = true;
9917 SmallVector<SDNode*, 4> SetCCs;
9918 if (!N0.hasOneUse()) {
9919 if (N0.getOpcode() == ISD::AND) {
9920 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1));
9921 EVT LoadResultTy = AndC->getValueType(0);
9922 EVT ExtVT;
9923 if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT))
9924 DoXform = false;
9927 if (DoXform)
9928 DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
9929 ISD::ZERO_EXTEND, SetCCs, TLI);
9930 if (DoXform) {
9931 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT,
9932 LN00->getChain(), LN00->getBasePtr(),
9933 LN00->getMemoryVT(),
9934 LN00->getMemOperand());
9935 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9936 Mask = Mask.zext(VT.getSizeInBits());
9937 SDLoc DL(N);
9938 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
9939 ExtLoad, DAG.getConstant(Mask, DL, VT));
9940 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
9941 bool NoReplaceTruncAnd = !N0.hasOneUse();
9942 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
9943 CombineTo(N, And);
9944 // If N0 has multiple uses, change other uses as well.
9945 if (NoReplaceTruncAnd) {
9946 SDValue TruncAnd =
9947 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
9948 CombineTo(N0.getNode(), TruncAnd);
9950 if (NoReplaceTrunc) {
9951 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
9952 } else {
9953 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
9954 LN00->getValueType(0), ExtLoad);
9955 CombineTo(LN00, Trunc, ExtLoad.getValue(1));
9957 return SDValue(N,0); // Return N so it doesn't get rechecked!
9962 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
9963 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
9964 if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N))
9965 return ZExtLoad;
9967 // Try to simplify (zext (zextload x)).
9968 if (SDValue foldedExt = tryToFoldExtOfExtload(
9969 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD))
9970 return foldedExt;
9972 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
9973 return V;
9975 if (N0.getOpcode() == ISD::SETCC) {
9976 // Only do this before legalize for now.
9977 if (!LegalOperations && VT.isVector() &&
9978 N0.getValueType().getVectorElementType() == MVT::i1) {
9979 EVT N00VT = N0.getOperand(0).getValueType();
9980 if (getSetCCResultType(N00VT) == N0.getValueType())
9981 return SDValue();
9983 // We know that the # elements of the results is the same as the #
9984 // elements of the compare (and the # elements of the compare result for
9985 // that matter). Check to see that they are the same size. If so, we know
9986 // that the element size of the sext'd result matches the element size of
9987 // the compare operands.
9988 SDLoc DL(N);
9989 SDValue VecOnes = DAG.getConstant(1, DL, VT);
9990 if (VT.getSizeInBits() == N00VT.getSizeInBits()) {
9991 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
9992 SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0),
9993 N0.getOperand(1), N0.getOperand(2));
9994 return DAG.getNode(ISD::AND, DL, VT, VSetCC, VecOnes);
9997 // If the desired elements are smaller or larger than the source
9998 // elements we can use a matching integer vector type and then
9999 // truncate/sign extend.
10000 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
10001 SDValue VsetCC =
10002 DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0),
10003 N0.getOperand(1), N0.getOperand(2));
10004 return DAG.getNode(ISD::AND, DL, VT, DAG.getSExtOrTrunc(VsetCC, DL, VT),
10005 VecOnes);
10008 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
10009 SDLoc DL(N);
10010 if (SDValue SCC = SimplifySelectCC(
10011 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
10012 DAG.getConstant(0, DL, VT),
10013 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
10014 return SCC;
10017 // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
10018 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
10019 isa<ConstantSDNode>(N0.getOperand(1)) &&
10020 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
10021 N0.hasOneUse()) {
10022 SDValue ShAmt = N0.getOperand(1);
10023 if (N0.getOpcode() == ISD::SHL) {
10024 SDValue InnerZExt = N0.getOperand(0);
10025 // If the original shl may be shifting out bits, do not perform this
10026 // transformation.
10027 unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() -
10028 InnerZExt.getOperand(0).getValueSizeInBits();
10029 if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits))
10030 return SDValue();
10033 SDLoc DL(N);
10035 // Ensure that the shift amount is wide enough for the shifted value.
10036 if (VT.getSizeInBits() >= 256)
10037 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
10039 return DAG.getNode(N0.getOpcode(), DL, VT,
10040 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
10041 ShAmt);
10044 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
10045 return NewVSel;
10047 return SDValue();
10050 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
10051 SDValue N0 = N->getOperand(0);
10052 EVT VT = N->getValueType(0);
10054 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
10055 return Res;
10057 // fold (aext (aext x)) -> (aext x)
10058 // fold (aext (zext x)) -> (zext x)
10059 // fold (aext (sext x)) -> (sext x)
10060 if (N0.getOpcode() == ISD::ANY_EXTEND ||
10061 N0.getOpcode() == ISD::ZERO_EXTEND ||
10062 N0.getOpcode() == ISD::SIGN_EXTEND)
10063 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
10065 // fold (aext (truncate (load x))) -> (aext (smaller load x))
10066 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
10067 if (N0.getOpcode() == ISD::TRUNCATE) {
10068 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
10069 SDNode *oye = N0.getOperand(0).getNode();
10070 if (NarrowLoad.getNode() != N0.getNode()) {
10071 CombineTo(N0.getNode(), NarrowLoad);
10072 // CombineTo deleted the truncate, if needed, but not what's under it.
10073 AddToWorklist(oye);
10075 return SDValue(N, 0); // Return N so it doesn't get rechecked!
10079 // fold (aext (truncate x))
10080 if (N0.getOpcode() == ISD::TRUNCATE)
10081 return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
10083 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
10084 // if the trunc is not free.
10085 if (N0.getOpcode() == ISD::AND &&
10086 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
10087 N0.getOperand(1).getOpcode() == ISD::Constant &&
10088 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
10089 N0.getValueType())) {
10090 SDLoc DL(N);
10091 SDValue X = N0.getOperand(0).getOperand(0);
10092 X = DAG.getAnyExtOrTrunc(X, DL, VT);
10093 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
10094 Mask = Mask.zext(VT.getSizeInBits());
10095 return DAG.getNode(ISD::AND, DL, VT,
10096 X, DAG.getConstant(Mask, DL, VT));
10099 // fold (aext (load x)) -> (aext (truncate (extload x)))
10100 // None of the supported targets knows how to perform load and any_ext
10101 // on vectors in one instruction. We only perform this transformation on
10102 // scalars.
10103 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
10104 ISD::isUNINDEXEDLoad(N0.getNode()) &&
10105 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
10106 bool DoXform = true;
10107 SmallVector<SDNode*, 4> SetCCs;
10108 if (!N0.hasOneUse())
10109 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs,
10110 TLI);
10111 if (DoXform) {
10112 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10113 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
10114 LN0->getChain(),
10115 LN0->getBasePtr(), N0.getValueType(),
10116 LN0->getMemOperand());
10117 ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND);
10118 // If the load value is used only by N, replace it via CombineTo N.
10119 bool NoReplaceTrunc = N0.hasOneUse();
10120 CombineTo(N, ExtLoad);
10121 if (NoReplaceTrunc) {
10122 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
10123 recursivelyDeleteUnusedNodes(LN0);
10124 } else {
10125 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
10126 N0.getValueType(), ExtLoad);
10127 CombineTo(LN0, Trunc, ExtLoad.getValue(1));
10129 return SDValue(N, 0); // Return N so it doesn't get rechecked!
10133 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
10134 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
10135 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
10136 if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) &&
10137 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
10138 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10139 ISD::LoadExtType ExtType = LN0->getExtensionType();
10140 EVT MemVT = LN0->getMemoryVT();
10141 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
10142 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N),
10143 VT, LN0->getChain(), LN0->getBasePtr(),
10144 MemVT, LN0->getMemOperand());
10145 CombineTo(N, ExtLoad);
10146 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
10147 recursivelyDeleteUnusedNodes(LN0);
10148 return SDValue(N, 0); // Return N so it doesn't get rechecked!
10152 if (N0.getOpcode() == ISD::SETCC) {
10153 // For vectors:
10154 // aext(setcc) -> vsetcc
10155 // aext(setcc) -> truncate(vsetcc)
10156 // aext(setcc) -> aext(vsetcc)
10157 // Only do this before legalize for now.
10158 if (VT.isVector() && !LegalOperations) {
10159 EVT N00VT = N0.getOperand(0).getValueType();
10160 if (getSetCCResultType(N00VT) == N0.getValueType())
10161 return SDValue();
10163 // We know that the # elements of the results is the same as the
10164 // # elements of the compare (and the # elements of the compare result
10165 // for that matter). Check to see that they are the same size. If so,
10166 // we know that the element size of the sext'd result matches the
10167 // element size of the compare operands.
10168 if (VT.getSizeInBits() == N00VT.getSizeInBits())
10169 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
10170 N0.getOperand(1),
10171 cast<CondCodeSDNode>(N0.getOperand(2))->get());
10173 // If the desired elements are smaller or larger than the source
10174 // elements we can use a matching integer vector type and then
10175 // truncate/any extend
10176 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
10177 SDValue VsetCC =
10178 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
10179 N0.getOperand(1),
10180 cast<CondCodeSDNode>(N0.getOperand(2))->get());
10181 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT);
10184 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
10185 SDLoc DL(N);
10186 if (SDValue SCC = SimplifySelectCC(
10187 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
10188 DAG.getConstant(0, DL, VT),
10189 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
10190 return SCC;
10193 return SDValue();
10196 SDValue DAGCombiner::visitAssertExt(SDNode *N) {
10197 unsigned Opcode = N->getOpcode();
10198 SDValue N0 = N->getOperand(0);
10199 SDValue N1 = N->getOperand(1);
10200 EVT AssertVT = cast<VTSDNode>(N1)->getVT();
10202 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
10203 if (N0.getOpcode() == Opcode &&
10204 AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT())
10205 return N0;
10207 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
10208 N0.getOperand(0).getOpcode() == Opcode) {
10209 // We have an assert, truncate, assert sandwich. Make one stronger assert
10210 // by asserting on the smallest asserted type to the larger source type.
10211 // This eliminates the later assert:
10212 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
10213 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
10214 SDValue BigA = N0.getOperand(0);
10215 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
10216 assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&
10217 "Asserting zero/sign-extended bits to a type larger than the "
10218 "truncated destination does not provide information");
10220 SDLoc DL(N);
10221 EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT;
10222 SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT);
10223 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
10224 BigA.getOperand(0), MinAssertVTVal);
10225 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
10228 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller
10229 // than X. Just move the AssertZext in front of the truncate and drop the
10230 // AssertSExt.
10231 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
10232 N0.getOperand(0).getOpcode() == ISD::AssertSext &&
10233 Opcode == ISD::AssertZext) {
10234 SDValue BigA = N0.getOperand(0);
10235 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
10236 assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&
10237 "Asserting zero/sign-extended bits to a type larger than the "
10238 "truncated destination does not provide information");
10240 if (AssertVT.bitsLT(BigA_AssertVT)) {
10241 SDLoc DL(N);
10242 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
10243 BigA.getOperand(0), N1);
10244 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
10248 return SDValue();
10251 /// If the result of a wider load is shifted to right of N bits and then
10252 /// truncated to a narrower type and where N is a multiple of number of bits of
10253 /// the narrower type, transform it to a narrower load from address + N / num of
10254 /// bits of new type. Also narrow the load if the result is masked with an AND
10255 /// to effectively produce a smaller type. If the result is to be extended, also
10256 /// fold the extension to form a extending load.
10257 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
10258 unsigned Opc = N->getOpcode();
10260 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
10261 SDValue N0 = N->getOperand(0);
10262 EVT VT = N->getValueType(0);
10263 EVT ExtVT = VT;
10265 // This transformation isn't valid for vector loads.
10266 if (VT.isVector())
10267 return SDValue();
10269 unsigned ShAmt = 0;
10270 bool HasShiftedOffset = false;
10271 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
10272 // extended to VT.
10273 if (Opc == ISD::SIGN_EXTEND_INREG) {
10274 ExtType = ISD::SEXTLOAD;
10275 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
10276 } else if (Opc == ISD::SRL) {
10277 // Another special-case: SRL is basically zero-extending a narrower value,
10278 // or it maybe shifting a higher subword, half or byte into the lowest
10279 // bits.
10280 ExtType = ISD::ZEXTLOAD;
10281 N0 = SDValue(N, 0);
10283 auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0));
10284 auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
10285 if (!N01 || !LN0)
10286 return SDValue();
10288 uint64_t ShiftAmt = N01->getZExtValue();
10289 uint64_t MemoryWidth = LN0->getMemoryVT().getSizeInBits();
10290 if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt)
10291 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt);
10292 else
10293 ExtVT = EVT::getIntegerVT(*DAG.getContext(),
10294 VT.getSizeInBits() - ShiftAmt);
10295 } else if (Opc == ISD::AND) {
10296 // An AND with a constant mask is the same as a truncate + zero-extend.
10297 auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1));
10298 if (!AndC)
10299 return SDValue();
10301 const APInt &Mask = AndC->getAPIntValue();
10302 unsigned ActiveBits = 0;
10303 if (Mask.isMask()) {
10304 ActiveBits = Mask.countTrailingOnes();
10305 } else if (Mask.isShiftedMask()) {
10306 ShAmt = Mask.countTrailingZeros();
10307 APInt ShiftedMask = Mask.lshr(ShAmt);
10308 ActiveBits = ShiftedMask.countTrailingOnes();
10309 HasShiftedOffset = true;
10310 } else
10311 return SDValue();
10313 ExtType = ISD::ZEXTLOAD;
10314 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
10317 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
10318 SDValue SRL = N0;
10319 if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) {
10320 ShAmt = ConstShift->getZExtValue();
10321 unsigned EVTBits = ExtVT.getSizeInBits();
10322 // Is the shift amount a multiple of size of VT?
10323 if ((ShAmt & (EVTBits-1)) == 0) {
10324 N0 = N0.getOperand(0);
10325 // Is the load width a multiple of size of VT?
10326 if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0)
10327 return SDValue();
10330 // At this point, we must have a load or else we can't do the transform.
10331 if (!isa<LoadSDNode>(N0)) return SDValue();
10333 auto *LN0 = cast<LoadSDNode>(N0);
10335 // Because a SRL must be assumed to *need* to zero-extend the high bits
10336 // (as opposed to anyext the high bits), we can't combine the zextload
10337 // lowering of SRL and an sextload.
10338 if (LN0->getExtensionType() == ISD::SEXTLOAD)
10339 return SDValue();
10341 // If the shift amount is larger than the input type then we're not
10342 // accessing any of the loaded bytes. If the load was a zextload/extload
10343 // then the result of the shift+trunc is zero/undef (handled elsewhere).
10344 if (ShAmt >= LN0->getMemoryVT().getSizeInBits())
10345 return SDValue();
10347 // If the SRL is only used by a masking AND, we may be able to adjust
10348 // the ExtVT to make the AND redundant.
10349 SDNode *Mask = *(SRL->use_begin());
10350 if (Mask->getOpcode() == ISD::AND &&
10351 isa<ConstantSDNode>(Mask->getOperand(1))) {
10352 const APInt &ShiftMask =
10353 cast<ConstantSDNode>(Mask->getOperand(1))->getAPIntValue();
10354 if (ShiftMask.isMask()) {
10355 EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(),
10356 ShiftMask.countTrailingOnes());
10357 // If the mask is smaller, recompute the type.
10358 if ((ExtVT.getSizeInBits() > MaskedVT.getSizeInBits()) &&
10359 TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT))
10360 ExtVT = MaskedVT;
10366 // If the load is shifted left (and the result isn't shifted back right),
10367 // we can fold the truncate through the shift.
10368 unsigned ShLeftAmt = 0;
10369 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
10370 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
10371 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
10372 ShLeftAmt = N01->getZExtValue();
10373 N0 = N0.getOperand(0);
10377 // If we haven't found a load, we can't narrow it.
10378 if (!isa<LoadSDNode>(N0))
10379 return SDValue();
10381 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10382 if (!isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt))
10383 return SDValue();
10385 auto AdjustBigEndianShift = [&](unsigned ShAmt) {
10386 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
10387 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
10388 return LVTStoreBits - EVTStoreBits - ShAmt;
10391 // For big endian targets, we need to adjust the offset to the pointer to
10392 // load the correct bytes.
10393 if (DAG.getDataLayout().isBigEndian())
10394 ShAmt = AdjustBigEndianShift(ShAmt);
10396 EVT PtrType = N0.getOperand(1).getValueType();
10397 uint64_t PtrOff = ShAmt / 8;
10398 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
10399 SDLoc DL(LN0);
10400 // The original load itself didn't wrap, so an offset within it doesn't.
10401 SDNodeFlags Flags;
10402 Flags.setNoUnsignedWrap(true);
10403 SDValue NewPtr = DAG.getNode(ISD::ADD, DL,
10404 PtrType, LN0->getBasePtr(),
10405 DAG.getConstant(PtrOff, DL, PtrType),
10406 Flags);
10407 AddToWorklist(NewPtr.getNode());
10409 SDValue Load;
10410 if (ExtType == ISD::NON_EXTLOAD)
10411 Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr,
10412 LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign,
10413 LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
10414 else
10415 Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr,
10416 LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT,
10417 NewAlign, LN0->getMemOperand()->getFlags(),
10418 LN0->getAAInfo());
10420 // Replace the old load's chain with the new load's chain.
10421 WorklistRemover DeadNodes(*this);
10422 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
10424 // Shift the result left, if we've swallowed a left shift.
10425 SDValue Result = Load;
10426 if (ShLeftAmt != 0) {
10427 EVT ShImmTy = getShiftAmountTy(Result.getValueType());
10428 if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
10429 ShImmTy = VT;
10430 // If the shift amount is as large as the result size (but, presumably,
10431 // no larger than the source) then the useful bits of the result are
10432 // zero; we can't simply return the shortened shift, because the result
10433 // of that operation is undefined.
10434 if (ShLeftAmt >= VT.getSizeInBits())
10435 Result = DAG.getConstant(0, DL, VT);
10436 else
10437 Result = DAG.getNode(ISD::SHL, DL, VT,
10438 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy));
10441 if (HasShiftedOffset) {
10442 // Recalculate the shift amount after it has been altered to calculate
10443 // the offset.
10444 if (DAG.getDataLayout().isBigEndian())
10445 ShAmt = AdjustBigEndianShift(ShAmt);
10447 // We're using a shifted mask, so the load now has an offset. This means
10448 // that data has been loaded into the lower bytes than it would have been
10449 // before, so we need to shl the loaded data into the correct position in the
10450 // register.
10451 SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT);
10452 Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC);
10453 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
10456 // Return the new loaded value.
10457 return Result;
10460 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
10461 SDValue N0 = N->getOperand(0);
10462 SDValue N1 = N->getOperand(1);
10463 EVT VT = N->getValueType(0);
10464 EVT EVT = cast<VTSDNode>(N1)->getVT();
10465 unsigned VTBits = VT.getScalarSizeInBits();
10466 unsigned EVTBits = EVT.getScalarSizeInBits();
10468 if (N0.isUndef())
10469 return DAG.getUNDEF(VT);
10471 // fold (sext_in_reg c1) -> c1
10472 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
10473 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
10475 // If the input is already sign extended, just drop the extension.
10476 if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
10477 return N0;
10479 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
10480 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
10481 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
10482 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
10483 N0.getOperand(0), N1);
10485 // fold (sext_in_reg (sext x)) -> (sext x)
10486 // fold (sext_in_reg (aext x)) -> (sext x)
10487 // if x is small enough or if we know that x has more than 1 sign bit and the
10488 // sign_extend_inreg is extending from one of them.
10489 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
10490 SDValue N00 = N0.getOperand(0);
10491 unsigned N00Bits = N00.getScalarValueSizeInBits();
10492 if ((N00Bits <= EVTBits ||
10493 (N00Bits - DAG.ComputeNumSignBits(N00)) < EVTBits) &&
10494 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
10495 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00);
10498 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
10499 if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG ||
10500 N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG ||
10501 N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) &&
10502 N0.getOperand(0).getScalarValueSizeInBits() == EVTBits) {
10503 if (!LegalOperations ||
10504 TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT))
10505 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT,
10506 N0.getOperand(0));
10509 // fold (sext_in_reg (zext x)) -> (sext x)
10510 // iff we are extending the source sign bit.
10511 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
10512 SDValue N00 = N0.getOperand(0);
10513 if (N00.getScalarValueSizeInBits() == EVTBits &&
10514 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
10515 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
10518 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
10519 if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, EVTBits - 1)))
10520 return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT.getScalarType());
10522 // fold operands of sext_in_reg based on knowledge that the top bits are not
10523 // demanded.
10524 if (SimplifyDemandedBits(SDValue(N, 0)))
10525 return SDValue(N, 0);
10527 // fold (sext_in_reg (load x)) -> (smaller sextload x)
10528 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
10529 if (SDValue NarrowLoad = ReduceLoadWidth(N))
10530 return NarrowLoad;
10532 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
10533 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
10534 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
10535 if (N0.getOpcode() == ISD::SRL) {
10536 if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
10537 if (ShAmt->getAPIntValue().ule(VTBits - EVTBits)) {
10538 // We can turn this into an SRA iff the input to the SRL is already sign
10539 // extended enough.
10540 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
10541 if (((VTBits - EVTBits) - ShAmt->getZExtValue()) < InSignBits)
10542 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
10543 N0.getOperand(1));
10547 // fold (sext_inreg (extload x)) -> (sextload x)
10548 // If sextload is not supported by target, we can only do the combine when
10549 // load has one use. Doing otherwise can block folding the extload with other
10550 // extends that the target does support.
10551 if (ISD::isEXTLoad(N0.getNode()) &&
10552 ISD::isUNINDEXEDLoad(N0.getNode()) &&
10553 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
10554 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() &&
10555 N0.hasOneUse()) ||
10556 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
10557 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10558 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
10559 LN0->getChain(),
10560 LN0->getBasePtr(), EVT,
10561 LN0->getMemOperand());
10562 CombineTo(N, ExtLoad);
10563 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
10564 AddToWorklist(ExtLoad.getNode());
10565 return SDValue(N, 0); // Return N so it doesn't get rechecked!
10567 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
10568 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
10569 N0.hasOneUse() &&
10570 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
10571 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) &&
10572 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
10573 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10574 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
10575 LN0->getChain(),
10576 LN0->getBasePtr(), EVT,
10577 LN0->getMemOperand());
10578 CombineTo(N, ExtLoad);
10579 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
10580 return SDValue(N, 0); // Return N so it doesn't get rechecked!
10583 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
10584 if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
10585 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
10586 N0.getOperand(1), false))
10587 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
10588 BSwap, N1);
10591 return SDValue();
10594 SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) {
10595 SDValue N0 = N->getOperand(0);
10596 EVT VT = N->getValueType(0);
10598 if (N0.isUndef())
10599 return DAG.getUNDEF(VT);
10601 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
10602 return Res;
10604 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
10605 return SDValue(N, 0);
10607 return SDValue();
10610 SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) {
10611 SDValue N0 = N->getOperand(0);
10612 EVT VT = N->getValueType(0);
10614 if (N0.isUndef())
10615 return DAG.getUNDEF(VT);
10617 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
10618 return Res;
10620 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
10621 return SDValue(N, 0);
10623 return SDValue();
10626 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
10627 SDValue N0 = N->getOperand(0);
10628 EVT VT = N->getValueType(0);
10629 EVT SrcVT = N0.getValueType();
10630 bool isLE = DAG.getDataLayout().isLittleEndian();
10632 // noop truncate
10633 if (SrcVT == VT)
10634 return N0;
10636 // fold (truncate (truncate x)) -> (truncate x)
10637 if (N0.getOpcode() == ISD::TRUNCATE)
10638 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
10640 // fold (truncate c1) -> c1
10641 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
10642 SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
10643 if (C.getNode() != N)
10644 return C;
10647 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
10648 if (N0.getOpcode() == ISD::ZERO_EXTEND ||
10649 N0.getOpcode() == ISD::SIGN_EXTEND ||
10650 N0.getOpcode() == ISD::ANY_EXTEND) {
10651 // if the source is smaller than the dest, we still need an extend.
10652 if (N0.getOperand(0).getValueType().bitsLT(VT))
10653 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
10654 // if the source is larger than the dest, than we just need the truncate.
10655 if (N0.getOperand(0).getValueType().bitsGT(VT))
10656 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
10657 // if the source and dest are the same type, we can drop both the extend
10658 // and the truncate.
10659 return N0.getOperand(0);
10662 // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
10663 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND))
10664 return SDValue();
10666 // Fold extract-and-trunc into a narrow extract. For example:
10667 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
10668 // i32 y = TRUNCATE(i64 x)
10669 // -- becomes --
10670 // v16i8 b = BITCAST (v2i64 val)
10671 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
10673 // Note: We only run this optimization after type legalization (which often
10674 // creates this pattern) and before operation legalization after which
10675 // we need to be more careful about the vector instructions that we generate.
10676 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
10677 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) {
10678 EVT VecTy = N0.getOperand(0).getValueType();
10679 EVT ExTy = N0.getValueType();
10680 EVT TrTy = N->getValueType(0);
10682 unsigned NumElem = VecTy.getVectorNumElements();
10683 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
10685 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
10686 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
10688 SDValue EltNo = N0->getOperand(1);
10689 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
10690 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
10691 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
10692 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
10694 SDLoc DL(N);
10695 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy,
10696 DAG.getBitcast(NVT, N0.getOperand(0)),
10697 DAG.getConstant(Index, DL, IndexTy));
10701 // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
10702 if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) {
10703 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) &&
10704 TLI.isTruncateFree(SrcVT, VT)) {
10705 SDLoc SL(N0);
10706 SDValue Cond = N0.getOperand(0);
10707 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
10708 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2));
10709 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1);
10713 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
10714 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
10715 (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) &&
10716 TLI.isTypeDesirableForOp(ISD::SHL, VT)) {
10717 SDValue Amt = N0.getOperand(1);
10718 KnownBits Known = DAG.computeKnownBits(Amt);
10719 unsigned Size = VT.getScalarSizeInBits();
10720 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) {
10721 SDLoc SL(N);
10722 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
10724 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
10725 if (AmtVT != Amt.getValueType()) {
10726 Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT);
10727 AddToWorklist(Amt.getNode());
10729 return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt);
10733 // Attempt to pre-truncate BUILD_VECTOR sources.
10734 if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations &&
10735 TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType())) {
10736 SDLoc DL(N);
10737 EVT SVT = VT.getScalarType();
10738 SmallVector<SDValue, 8> TruncOps;
10739 for (const SDValue &Op : N0->op_values()) {
10740 SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op);
10741 TruncOps.push_back(TruncOp);
10743 return DAG.getBuildVector(VT, DL, TruncOps);
10746 // Fold a series of buildvector, bitcast, and truncate if possible.
10747 // For example fold
10748 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
10749 // (2xi32 (buildvector x, y)).
10750 if (Level == AfterLegalizeVectorOps && VT.isVector() &&
10751 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
10752 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
10753 N0.getOperand(0).hasOneUse()) {
10754 SDValue BuildVect = N0.getOperand(0);
10755 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
10756 EVT TruncVecEltTy = VT.getVectorElementType();
10758 // Check that the element types match.
10759 if (BuildVectEltTy == TruncVecEltTy) {
10760 // Now we only need to compute the offset of the truncated elements.
10761 unsigned BuildVecNumElts = BuildVect.getNumOperands();
10762 unsigned TruncVecNumElts = VT.getVectorNumElements();
10763 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
10765 assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
10766 "Invalid number of elements");
10768 SmallVector<SDValue, 8> Opnds;
10769 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
10770 Opnds.push_back(BuildVect.getOperand(i));
10772 return DAG.getBuildVector(VT, SDLoc(N), Opnds);
10776 // See if we can simplify the input to this truncate through knowledge that
10777 // only the low bits are being used.
10778 // For example "trunc (or (shl x, 8), y)" // -> trunc y
10779 // Currently we only perform this optimization on scalars because vectors
10780 // may have different active low bits.
10781 if (!VT.isVector()) {
10782 APInt Mask =
10783 APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits());
10784 if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask))
10785 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
10788 // fold (truncate (load x)) -> (smaller load x)
10789 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
10790 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
10791 if (SDValue Reduced = ReduceLoadWidth(N))
10792 return Reduced;
10794 // Handle the case where the load remains an extending load even
10795 // after truncation.
10796 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
10797 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10798 if (LN0->isSimple() &&
10799 LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) {
10800 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0),
10801 VT, LN0->getChain(), LN0->getBasePtr(),
10802 LN0->getMemoryVT(),
10803 LN0->getMemOperand());
10804 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
10805 return NewLoad;
10810 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
10811 // where ... are all 'undef'.
10812 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
10813 SmallVector<EVT, 8> VTs;
10814 SDValue V;
10815 unsigned Idx = 0;
10816 unsigned NumDefs = 0;
10818 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
10819 SDValue X = N0.getOperand(i);
10820 if (!X.isUndef()) {
10821 V = X;
10822 Idx = i;
10823 NumDefs++;
10825 // Stop if more than one members are non-undef.
10826 if (NumDefs > 1)
10827 break;
10828 VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
10829 VT.getVectorElementType(),
10830 X.getValueType().getVectorNumElements()));
10833 if (NumDefs == 0)
10834 return DAG.getUNDEF(VT);
10836 if (NumDefs == 1) {
10837 assert(V.getNode() && "The single defined operand is empty!");
10838 SmallVector<SDValue, 8> Opnds;
10839 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
10840 if (i != Idx) {
10841 Opnds.push_back(DAG.getUNDEF(VTs[i]));
10842 continue;
10844 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
10845 AddToWorklist(NV.getNode());
10846 Opnds.push_back(NV);
10848 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds);
10852 // Fold truncate of a bitcast of a vector to an extract of the low vector
10853 // element.
10855 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
10856 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) {
10857 SDValue VecSrc = N0.getOperand(0);
10858 EVT SrcVT = VecSrc.getValueType();
10859 if (SrcVT.isVector() && SrcVT.getScalarType() == VT &&
10860 (!LegalOperations ||
10861 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, SrcVT))) {
10862 SDLoc SL(N);
10864 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
10865 unsigned Idx = isLE ? 0 : SrcVT.getVectorNumElements() - 1;
10866 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT,
10867 VecSrc, DAG.getConstant(Idx, SL, IdxVT));
10871 // Simplify the operands using demanded-bits information.
10872 if (!VT.isVector() &&
10873 SimplifyDemandedBits(SDValue(N, 0)))
10874 return SDValue(N, 0);
10876 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
10877 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry)
10878 // When the adde's carry is not used.
10879 if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) &&
10880 N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) &&
10881 // We only do for addcarry before legalize operation
10882 ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) ||
10883 TLI.isOperationLegal(N0.getOpcode(), VT))) {
10884 SDLoc SL(N);
10885 auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
10886 auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
10887 auto VTs = DAG.getVTList(VT, N0->getValueType(1));
10888 return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2));
10891 // fold (truncate (extract_subvector(ext x))) ->
10892 // (extract_subvector x)
10893 // TODO: This can be generalized to cover cases where the truncate and extract
10894 // do not fully cancel each other out.
10895 if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
10896 SDValue N00 = N0.getOperand(0);
10897 if (N00.getOpcode() == ISD::SIGN_EXTEND ||
10898 N00.getOpcode() == ISD::ZERO_EXTEND ||
10899 N00.getOpcode() == ISD::ANY_EXTEND) {
10900 if (N00.getOperand(0)->getValueType(0).getVectorElementType() ==
10901 VT.getVectorElementType())
10902 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT,
10903 N00.getOperand(0), N0.getOperand(1));
10907 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
10908 return NewVSel;
10910 // Narrow a suitable binary operation with a non-opaque constant operand by
10911 // moving it ahead of the truncate. This is limited to pre-legalization
10912 // because targets may prefer a wider type during later combines and invert
10913 // this transform.
10914 switch (N0.getOpcode()) {
10915 case ISD::ADD:
10916 case ISD::SUB:
10917 case ISD::MUL:
10918 case ISD::AND:
10919 case ISD::OR:
10920 case ISD::XOR:
10921 if (!LegalOperations && N0.hasOneUse() &&
10922 (isConstantOrConstantVector(N0.getOperand(0), true) ||
10923 isConstantOrConstantVector(N0.getOperand(1), true))) {
10924 // TODO: We already restricted this to pre-legalization, but for vectors
10925 // we are extra cautious to not create an unsupported operation.
10926 // Target-specific changes are likely needed to avoid regressions here.
10927 if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) {
10928 SDLoc DL(N);
10929 SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
10930 SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1));
10931 return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR);
10936 return SDValue();
10939 static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
10940 SDValue Elt = N->getOperand(i);
10941 if (Elt.getOpcode() != ISD::MERGE_VALUES)
10942 return Elt.getNode();
10943 return Elt.getOperand(Elt.getResNo()).getNode();
10946 /// build_pair (load, load) -> load
10947 /// if load locations are consecutive.
10948 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
10949 assert(N->getOpcode() == ISD::BUILD_PAIR);
10951 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
10952 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
10954 // A BUILD_PAIR is always having the least significant part in elt 0 and the
10955 // most significant part in elt 1. So when combining into one large load, we
10956 // need to consider the endianness.
10957 if (DAG.getDataLayout().isBigEndian())
10958 std::swap(LD1, LD2);
10960 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
10961 LD1->getAddressSpace() != LD2->getAddressSpace())
10962 return SDValue();
10963 EVT LD1VT = LD1->getValueType(0);
10964 unsigned LD1Bytes = LD1VT.getStoreSize();
10965 if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() &&
10966 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) {
10967 unsigned Align = LD1->getAlignment();
10968 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
10969 VT.getTypeForEVT(*DAG.getContext()));
10971 if (NewAlign <= Align &&
10972 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
10973 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(),
10974 LD1->getPointerInfo(), Align);
10977 return SDValue();
10980 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) {
10981 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
10982 // and Lo parts; on big-endian machines it doesn't.
10983 return DAG.getDataLayout().isBigEndian() ? 1 : 0;
10986 static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG,
10987 const TargetLowering &TLI) {
10988 // If this is not a bitcast to an FP type or if the target doesn't have
10989 // IEEE754-compliant FP logic, we're done.
10990 EVT VT = N->getValueType(0);
10991 if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT))
10992 return SDValue();
10994 // TODO: Handle cases where the integer constant is a different scalar
10995 // bitwidth to the FP.
10996 SDValue N0 = N->getOperand(0);
10997 EVT SourceVT = N0.getValueType();
10998 if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits())
10999 return SDValue();
11001 unsigned FPOpcode;
11002 APInt SignMask;
11003 switch (N0.getOpcode()) {
11004 case ISD::AND:
11005 FPOpcode = ISD::FABS;
11006 SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits());
11007 break;
11008 case ISD::XOR:
11009 FPOpcode = ISD::FNEG;
11010 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
11011 break;
11012 case ISD::OR:
11013 FPOpcode = ISD::FABS;
11014 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
11015 break;
11016 default:
11017 return SDValue();
11020 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
11021 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
11022 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
11023 // fneg (fabs X)
11024 SDValue LogicOp0 = N0.getOperand(0);
11025 ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true);
11026 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask &&
11027 LogicOp0.getOpcode() == ISD::BITCAST &&
11028 LogicOp0.getOperand(0).getValueType() == VT) {
11029 SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0));
11030 NumFPLogicOpsConv++;
11031 if (N0.getOpcode() == ISD::OR)
11032 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp);
11033 return FPOp;
11036 return SDValue();
11039 SDValue DAGCombiner::visitBITCAST(SDNode *N) {
11040 SDValue N0 = N->getOperand(0);
11041 EVT VT = N->getValueType(0);
11043 if (N0.isUndef())
11044 return DAG.getUNDEF(VT);
11046 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
11047 // Only do this before legalize types, unless both types are integer and the
11048 // scalar type is legal. Only do this before legalize ops, since the target
11049 // maybe depending on the bitcast.
11050 // First check to see if this is all constant.
11051 // TODO: Support FP bitcasts after legalize types.
11052 if (VT.isVector() &&
11053 (!LegalTypes ||
11054 (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() &&
11055 TLI.isTypeLegal(VT.getVectorElementType()))) &&
11056 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
11057 cast<BuildVectorSDNode>(N0)->isConstant())
11058 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(),
11059 VT.getVectorElementType());
11061 // If the input is a constant, let getNode fold it.
11062 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
11063 // If we can't allow illegal operations, we need to check that this is just
11064 // a fp -> int or int -> conversion and that the resulting operation will
11065 // be legal.
11066 if (!LegalOperations ||
11067 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() &&
11068 TLI.isOperationLegal(ISD::ConstantFP, VT)) ||
11069 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() &&
11070 TLI.isOperationLegal(ISD::Constant, VT))) {
11071 SDValue C = DAG.getBitcast(VT, N0);
11072 if (C.getNode() != N)
11073 return C;
11077 // (conv (conv x, t1), t2) -> (conv x, t2)
11078 if (N0.getOpcode() == ISD::BITCAST)
11079 return DAG.getBitcast(VT, N0.getOperand(0));
11081 // fold (conv (load x)) -> (load (conv*)x)
11082 // If the resultant load doesn't need a higher alignment than the original!
11083 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
11084 // Do not remove the cast if the types differ in endian layout.
11085 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) ==
11086 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) &&
11087 // If the load is volatile, we only want to change the load type if the
11088 // resulting load is legal. Otherwise we might increase the number of
11089 // memory accesses. We don't care if the original type was legal or not
11090 // as we assume software couldn't rely on the number of accesses of an
11091 // illegal type.
11092 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) ||
11093 TLI.isOperationLegal(ISD::LOAD, VT))) {
11094 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
11096 if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG,
11097 *LN0->getMemOperand())) {
11098 SDValue Load =
11099 DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
11100 LN0->getPointerInfo(), LN0->getAlignment(),
11101 LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
11102 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
11103 return Load;
11107 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI))
11108 return V;
11110 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
11111 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
11113 // For ppc_fp128:
11114 // fold (bitcast (fneg x)) ->
11115 // flipbit = signbit
11116 // (xor (bitcast x) (build_pair flipbit, flipbit))
11118 // fold (bitcast (fabs x)) ->
11119 // flipbit = (and (extract_element (bitcast x), 0), signbit)
11120 // (xor (bitcast x) (build_pair flipbit, flipbit))
11121 // This often reduces constant pool loads.
11122 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
11123 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
11124 N0.getNode()->hasOneUse() && VT.isInteger() &&
11125 !VT.isVector() && !N0.getValueType().isVector()) {
11126 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0));
11127 AddToWorklist(NewConv.getNode());
11129 SDLoc DL(N);
11130 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
11131 assert(VT.getSizeInBits() == 128);
11132 SDValue SignBit = DAG.getConstant(
11133 APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64);
11134 SDValue FlipBit;
11135 if (N0.getOpcode() == ISD::FNEG) {
11136 FlipBit = SignBit;
11137 AddToWorklist(FlipBit.getNode());
11138 } else {
11139 assert(N0.getOpcode() == ISD::FABS);
11140 SDValue Hi =
11141 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv,
11142 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
11143 SDLoc(NewConv)));
11144 AddToWorklist(Hi.getNode());
11145 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit);
11146 AddToWorklist(FlipBit.getNode());
11148 SDValue FlipBits =
11149 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
11150 AddToWorklist(FlipBits.getNode());
11151 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits);
11153 APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
11154 if (N0.getOpcode() == ISD::FNEG)
11155 return DAG.getNode(ISD::XOR, DL, VT,
11156 NewConv, DAG.getConstant(SignBit, DL, VT));
11157 assert(N0.getOpcode() == ISD::FABS);
11158 return DAG.getNode(ISD::AND, DL, VT,
11159 NewConv, DAG.getConstant(~SignBit, DL, VT));
11162 // fold (bitconvert (fcopysign cst, x)) ->
11163 // (or (and (bitconvert x), sign), (and cst, (not sign)))
11164 // Note that we don't handle (copysign x, cst) because this can always be
11165 // folded to an fneg or fabs.
11167 // For ppc_fp128:
11168 // fold (bitcast (fcopysign cst, x)) ->
11169 // flipbit = (and (extract_element
11170 // (xor (bitcast cst), (bitcast x)), 0),
11171 // signbit)
11172 // (xor (bitcast cst) (build_pair flipbit, flipbit))
11173 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
11174 isa<ConstantFPSDNode>(N0.getOperand(0)) &&
11175 VT.isInteger() && !VT.isVector()) {
11176 unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits();
11177 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
11178 if (isTypeLegal(IntXVT)) {
11179 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1));
11180 AddToWorklist(X.getNode());
11182 // If X has a different width than the result/lhs, sext it or truncate it.
11183 unsigned VTWidth = VT.getSizeInBits();
11184 if (OrigXWidth < VTWidth) {
11185 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
11186 AddToWorklist(X.getNode());
11187 } else if (OrigXWidth > VTWidth) {
11188 // To get the sign bit in the right place, we have to shift it right
11189 // before truncating.
11190 SDLoc DL(X);
11191 X = DAG.getNode(ISD::SRL, DL,
11192 X.getValueType(), X,
11193 DAG.getConstant(OrigXWidth-VTWidth, DL,
11194 X.getValueType()));
11195 AddToWorklist(X.getNode());
11196 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
11197 AddToWorklist(X.getNode());
11200 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
11201 APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2);
11202 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
11203 AddToWorklist(Cst.getNode());
11204 SDValue X = DAG.getBitcast(VT, N0.getOperand(1));
11205 AddToWorklist(X.getNode());
11206 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X);
11207 AddToWorklist(XorResult.getNode());
11208 SDValue XorResult64 = DAG.getNode(
11209 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult,
11210 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
11211 SDLoc(XorResult)));
11212 AddToWorklist(XorResult64.getNode());
11213 SDValue FlipBit =
11214 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64,
11215 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64));
11216 AddToWorklist(FlipBit.getNode());
11217 SDValue FlipBits =
11218 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
11219 AddToWorklist(FlipBits.getNode());
11220 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits);
11222 APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
11223 X = DAG.getNode(ISD::AND, SDLoc(X), VT,
11224 X, DAG.getConstant(SignBit, SDLoc(X), VT));
11225 AddToWorklist(X.getNode());
11227 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
11228 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
11229 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT));
11230 AddToWorklist(Cst.getNode());
11232 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
11236 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
11237 if (N0.getOpcode() == ISD::BUILD_PAIR)
11238 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT))
11239 return CombineLD;
11241 // Remove double bitcasts from shuffles - this is often a legacy of
11242 // XformToShuffleWithZero being used to combine bitmaskings (of
11243 // float vectors bitcast to integer vectors) into shuffles.
11244 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
11245 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() &&
11246 N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() &&
11247 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() &&
11248 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) {
11249 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0);
11251 // If operands are a bitcast, peek through if it casts the original VT.
11252 // If operands are a constant, just bitcast back to original VT.
11253 auto PeekThroughBitcast = [&](SDValue Op) {
11254 if (Op.getOpcode() == ISD::BITCAST &&
11255 Op.getOperand(0).getValueType() == VT)
11256 return SDValue(Op.getOperand(0));
11257 if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) ||
11258 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode()))
11259 return DAG.getBitcast(VT, Op);
11260 return SDValue();
11263 // FIXME: If either input vector is bitcast, try to convert the shuffle to
11264 // the result type of this bitcast. This would eliminate at least one
11265 // bitcast. See the transform in InstCombine.
11266 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0));
11267 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1));
11268 if (!(SV0 && SV1))
11269 return SDValue();
11271 int MaskScale =
11272 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements();
11273 SmallVector<int, 8> NewMask;
11274 for (int M : SVN->getMask())
11275 for (int i = 0; i != MaskScale; ++i)
11276 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i);
11278 SDValue LegalShuffle =
11279 TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG);
11280 if (LegalShuffle)
11281 return LegalShuffle;
11284 return SDValue();
11287 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
11288 EVT VT = N->getValueType(0);
11289 return CombineConsecutiveLoads(N, VT);
11292 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef
11293 /// operands. DstEltVT indicates the destination element value type.
11294 SDValue DAGCombiner::
11295 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
11296 EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
11298 // If this is already the right type, we're done.
11299 if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
11301 unsigned SrcBitSize = SrcEltVT.getSizeInBits();
11302 unsigned DstBitSize = DstEltVT.getSizeInBits();
11304 // If this is a conversion of N elements of one type to N elements of another
11305 // type, convert each element. This handles FP<->INT cases.
11306 if (SrcBitSize == DstBitSize) {
11307 SmallVector<SDValue, 8> Ops;
11308 for (SDValue Op : BV->op_values()) {
11309 // If the vector element type is not legal, the BUILD_VECTOR operands
11310 // are promoted and implicitly truncated. Make that explicit here.
11311 if (Op.getValueType() != SrcEltVT)
11312 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
11313 Ops.push_back(DAG.getBitcast(DstEltVT, Op));
11314 AddToWorklist(Ops.back().getNode());
11316 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
11317 BV->getValueType(0).getVectorNumElements());
11318 return DAG.getBuildVector(VT, SDLoc(BV), Ops);
11321 // Otherwise, we're growing or shrinking the elements. To avoid having to
11322 // handle annoying details of growing/shrinking FP values, we convert them to
11323 // int first.
11324 if (SrcEltVT.isFloatingPoint()) {
11325 // Convert the input float vector to a int vector where the elements are the
11326 // same sizes.
11327 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
11328 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
11329 SrcEltVT = IntVT;
11332 // Now we know the input is an integer vector. If the output is a FP type,
11333 // convert to integer first, then to FP of the right size.
11334 if (DstEltVT.isFloatingPoint()) {
11335 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
11336 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
11338 // Next, convert to FP elements of the same size.
11339 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
11342 SDLoc DL(BV);
11344 // Okay, we know the src/dst types are both integers of differing types.
11345 // Handling growing first.
11346 assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
11347 if (SrcBitSize < DstBitSize) {
11348 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
11350 SmallVector<SDValue, 8> Ops;
11351 for (unsigned i = 0, e = BV->getNumOperands(); i != e;
11352 i += NumInputsPerOutput) {
11353 bool isLE = DAG.getDataLayout().isLittleEndian();
11354 APInt NewBits = APInt(DstBitSize, 0);
11355 bool EltIsUndef = true;
11356 for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
11357 // Shift the previously computed bits over.
11358 NewBits <<= SrcBitSize;
11359 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
11360 if (Op.isUndef()) continue;
11361 EltIsUndef = false;
11363 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
11364 zextOrTrunc(SrcBitSize).zext(DstBitSize);
11367 if (EltIsUndef)
11368 Ops.push_back(DAG.getUNDEF(DstEltVT));
11369 else
11370 Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT));
11373 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
11374 return DAG.getBuildVector(VT, DL, Ops);
11377 // Finally, this must be the case where we are shrinking elements: each input
11378 // turns into multiple outputs.
11379 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
11380 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
11381 NumOutputsPerInput*BV->getNumOperands());
11382 SmallVector<SDValue, 8> Ops;
11384 for (const SDValue &Op : BV->op_values()) {
11385 if (Op.isUndef()) {
11386 Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT));
11387 continue;
11390 APInt OpVal = cast<ConstantSDNode>(Op)->
11391 getAPIntValue().zextOrTrunc(SrcBitSize);
11393 for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
11394 APInt ThisVal = OpVal.trunc(DstBitSize);
11395 Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT));
11396 OpVal.lshrInPlace(DstBitSize);
11399 // For big endian targets, swap the order of the pieces of each element.
11400 if (DAG.getDataLayout().isBigEndian())
11401 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
11404 return DAG.getBuildVector(VT, DL, Ops);
11407 static bool isContractable(SDNode *N) {
11408 SDNodeFlags F = N->getFlags();
11409 return F.hasAllowContract() || F.hasAllowReassociation();
11412 /// Try to perform FMA combining on a given FADD node.
11413 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
11414 SDValue N0 = N->getOperand(0);
11415 SDValue N1 = N->getOperand(1);
11416 EVT VT = N->getValueType(0);
11417 SDLoc SL(N);
11419 const TargetOptions &Options = DAG.getTarget().Options;
11421 // Floating-point multiply-add with intermediate rounding.
11422 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
11424 // Floating-point multiply-add without intermediate rounding.
11425 bool HasFMA =
11426 TLI.isFMAFasterThanFMulAndFAdd(VT) &&
11427 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
11429 // No valid opcode, do not combine.
11430 if (!HasFMAD && !HasFMA)
11431 return SDValue();
11433 SDNodeFlags Flags = N->getFlags();
11434 bool CanFuse = Options.UnsafeFPMath || isContractable(N);
11435 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
11436 CanFuse || HasFMAD);
11437 // If the addition is not contractable, do not combine.
11438 if (!AllowFusionGlobally && !isContractable(N))
11439 return SDValue();
11441 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo();
11442 if (STI && STI->generateFMAsInMachineCombiner(OptLevel))
11443 return SDValue();
11445 // Always prefer FMAD to FMA for precision.
11446 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
11447 bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
11449 // Is the node an FMUL and contractable either due to global flags or
11450 // SDNodeFlags.
11451 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
11452 if (N.getOpcode() != ISD::FMUL)
11453 return false;
11454 return AllowFusionGlobally || isContractable(N.getNode());
11456 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
11457 // prefer to fold the multiply with fewer uses.
11458 if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) {
11459 if (N0.getNode()->use_size() > N1.getNode()->use_size())
11460 std::swap(N0, N1);
11463 // fold (fadd (fmul x, y), z) -> (fma x, y, z)
11464 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
11465 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11466 N0.getOperand(0), N0.getOperand(1), N1, Flags);
11469 // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
11470 // Note: Commutes FADD operands.
11471 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
11472 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11473 N1.getOperand(0), N1.getOperand(1), N0, Flags);
11476 // Look through FP_EXTEND nodes to do more combining.
11478 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
11479 if (N0.getOpcode() == ISD::FP_EXTEND) {
11480 SDValue N00 = N0.getOperand(0);
11481 if (isContractableFMUL(N00) &&
11482 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
11483 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11484 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11485 N00.getOperand(0)),
11486 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11487 N00.getOperand(1)), N1, Flags);
11491 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
11492 // Note: Commutes FADD operands.
11493 if (N1.getOpcode() == ISD::FP_EXTEND) {
11494 SDValue N10 = N1.getOperand(0);
11495 if (isContractableFMUL(N10) &&
11496 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
11497 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11498 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11499 N10.getOperand(0)),
11500 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11501 N10.getOperand(1)), N0, Flags);
11505 // More folding opportunities when target permits.
11506 if (Aggressive) {
11507 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z))
11508 if (CanFuse &&
11509 N0.getOpcode() == PreferredFusedOpcode &&
11510 N0.getOperand(2).getOpcode() == ISD::FMUL &&
11511 N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) {
11512 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11513 N0.getOperand(0), N0.getOperand(1),
11514 DAG.getNode(PreferredFusedOpcode, SL, VT,
11515 N0.getOperand(2).getOperand(0),
11516 N0.getOperand(2).getOperand(1),
11517 N1, Flags), Flags);
11520 // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x))
11521 if (CanFuse &&
11522 N1->getOpcode() == PreferredFusedOpcode &&
11523 N1.getOperand(2).getOpcode() == ISD::FMUL &&
11524 N1->hasOneUse() && N1.getOperand(2)->hasOneUse()) {
11525 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11526 N1.getOperand(0), N1.getOperand(1),
11527 DAG.getNode(PreferredFusedOpcode, SL, VT,
11528 N1.getOperand(2).getOperand(0),
11529 N1.getOperand(2).getOperand(1),
11530 N0, Flags), Flags);
11534 // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
11535 // -> (fma x, y, (fma (fpext u), (fpext v), z))
11536 auto FoldFAddFMAFPExtFMul = [&] (
11537 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z,
11538 SDNodeFlags Flags) {
11539 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y,
11540 DAG.getNode(PreferredFusedOpcode, SL, VT,
11541 DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
11542 DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
11543 Z, Flags), Flags);
11545 if (N0.getOpcode() == PreferredFusedOpcode) {
11546 SDValue N02 = N0.getOperand(2);
11547 if (N02.getOpcode() == ISD::FP_EXTEND) {
11548 SDValue N020 = N02.getOperand(0);
11549 if (isContractableFMUL(N020) &&
11550 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) {
11551 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1),
11552 N020.getOperand(0), N020.getOperand(1),
11553 N1, Flags);
11558 // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
11559 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
11560 // FIXME: This turns two single-precision and one double-precision
11561 // operation into two double-precision operations, which might not be
11562 // interesting for all targets, especially GPUs.
11563 auto FoldFAddFPExtFMAFMul = [&] (
11564 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z,
11565 SDNodeFlags Flags) {
11566 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11567 DAG.getNode(ISD::FP_EXTEND, SL, VT, X),
11568 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y),
11569 DAG.getNode(PreferredFusedOpcode, SL, VT,
11570 DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
11571 DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
11572 Z, Flags), Flags);
11574 if (N0.getOpcode() == ISD::FP_EXTEND) {
11575 SDValue N00 = N0.getOperand(0);
11576 if (N00.getOpcode() == PreferredFusedOpcode) {
11577 SDValue N002 = N00.getOperand(2);
11578 if (isContractableFMUL(N002) &&
11579 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
11580 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1),
11581 N002.getOperand(0), N002.getOperand(1),
11582 N1, Flags);
11587 // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
11588 // -> (fma y, z, (fma (fpext u), (fpext v), x))
11589 if (N1.getOpcode() == PreferredFusedOpcode) {
11590 SDValue N12 = N1.getOperand(2);
11591 if (N12.getOpcode() == ISD::FP_EXTEND) {
11592 SDValue N120 = N12.getOperand(0);
11593 if (isContractableFMUL(N120) &&
11594 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) {
11595 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1),
11596 N120.getOperand(0), N120.getOperand(1),
11597 N0, Flags);
11602 // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
11603 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
11604 // FIXME: This turns two single-precision and one double-precision
11605 // operation into two double-precision operations, which might not be
11606 // interesting for all targets, especially GPUs.
11607 if (N1.getOpcode() == ISD::FP_EXTEND) {
11608 SDValue N10 = N1.getOperand(0);
11609 if (N10.getOpcode() == PreferredFusedOpcode) {
11610 SDValue N102 = N10.getOperand(2);
11611 if (isContractableFMUL(N102) &&
11612 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
11613 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1),
11614 N102.getOperand(0), N102.getOperand(1),
11615 N0, Flags);
11621 return SDValue();
11624 /// Try to perform FMA combining on a given FSUB node.
11625 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
11626 SDValue N0 = N->getOperand(0);
11627 SDValue N1 = N->getOperand(1);
11628 EVT VT = N->getValueType(0);
11629 SDLoc SL(N);
11631 const TargetOptions &Options = DAG.getTarget().Options;
11632 // Floating-point multiply-add with intermediate rounding.
11633 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
11635 // Floating-point multiply-add without intermediate rounding.
11636 bool HasFMA =
11637 TLI.isFMAFasterThanFMulAndFAdd(VT) &&
11638 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
11640 // No valid opcode, do not combine.
11641 if (!HasFMAD && !HasFMA)
11642 return SDValue();
11644 const SDNodeFlags Flags = N->getFlags();
11645 bool CanFuse = Options.UnsafeFPMath || isContractable(N);
11646 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
11647 CanFuse || HasFMAD);
11649 // If the subtraction is not contractable, do not combine.
11650 if (!AllowFusionGlobally && !isContractable(N))
11651 return SDValue();
11653 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo();
11654 if (STI && STI->generateFMAsInMachineCombiner(OptLevel))
11655 return SDValue();
11657 // Always prefer FMAD to FMA for precision.
11658 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
11659 bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
11661 // Is the node an FMUL and contractable either due to global flags or
11662 // SDNodeFlags.
11663 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
11664 if (N.getOpcode() != ISD::FMUL)
11665 return false;
11666 return AllowFusionGlobally || isContractable(N.getNode());
11669 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
11670 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
11671 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11672 N0.getOperand(0), N0.getOperand(1),
11673 DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
11676 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
11677 // Note: Commutes FSUB operands.
11678 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
11679 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11680 DAG.getNode(ISD::FNEG, SL, VT,
11681 N1.getOperand(0)),
11682 N1.getOperand(1), N0, Flags);
11685 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
11686 if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) &&
11687 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) {
11688 SDValue N00 = N0.getOperand(0).getOperand(0);
11689 SDValue N01 = N0.getOperand(0).getOperand(1);
11690 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11691 DAG.getNode(ISD::FNEG, SL, VT, N00), N01,
11692 DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
11695 // Look through FP_EXTEND nodes to do more combining.
11697 // fold (fsub (fpext (fmul x, y)), z)
11698 // -> (fma (fpext x), (fpext y), (fneg z))
11699 if (N0.getOpcode() == ISD::FP_EXTEND) {
11700 SDValue N00 = N0.getOperand(0);
11701 if (isContractableFMUL(N00) &&
11702 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
11703 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11704 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11705 N00.getOperand(0)),
11706 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11707 N00.getOperand(1)),
11708 DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
11712 // fold (fsub x, (fpext (fmul y, z)))
11713 // -> (fma (fneg (fpext y)), (fpext z), x)
11714 // Note: Commutes FSUB operands.
11715 if (N1.getOpcode() == ISD::FP_EXTEND) {
11716 SDValue N10 = N1.getOperand(0);
11717 if (isContractableFMUL(N10) &&
11718 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
11719 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11720 DAG.getNode(ISD::FNEG, SL, VT,
11721 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11722 N10.getOperand(0))),
11723 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11724 N10.getOperand(1)),
11725 N0, Flags);
11729 // fold (fsub (fpext (fneg (fmul, x, y))), z)
11730 // -> (fneg (fma (fpext x), (fpext y), z))
11731 // Note: This could be removed with appropriate canonicalization of the
11732 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
11733 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
11734 // from implementing the canonicalization in visitFSUB.
11735 if (N0.getOpcode() == ISD::FP_EXTEND) {
11736 SDValue N00 = N0.getOperand(0);
11737 if (N00.getOpcode() == ISD::FNEG) {
11738 SDValue N000 = N00.getOperand(0);
11739 if (isContractableFMUL(N000) &&
11740 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
11741 return DAG.getNode(ISD::FNEG, SL, VT,
11742 DAG.getNode(PreferredFusedOpcode, SL, VT,
11743 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11744 N000.getOperand(0)),
11745 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11746 N000.getOperand(1)),
11747 N1, Flags));
11752 // fold (fsub (fneg (fpext (fmul, x, y))), z)
11753 // -> (fneg (fma (fpext x)), (fpext y), z)
11754 // Note: This could be removed with appropriate canonicalization of the
11755 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
11756 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
11757 // from implementing the canonicalization in visitFSUB.
11758 if (N0.getOpcode() == ISD::FNEG) {
11759 SDValue N00 = N0.getOperand(0);
11760 if (N00.getOpcode() == ISD::FP_EXTEND) {
11761 SDValue N000 = N00.getOperand(0);
11762 if (isContractableFMUL(N000) &&
11763 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N000.getValueType())) {
11764 return DAG.getNode(ISD::FNEG, SL, VT,
11765 DAG.getNode(PreferredFusedOpcode, SL, VT,
11766 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11767 N000.getOperand(0)),
11768 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11769 N000.getOperand(1)),
11770 N1, Flags));
11775 // More folding opportunities when target permits.
11776 if (Aggressive) {
11777 // fold (fsub (fma x, y, (fmul u, v)), z)
11778 // -> (fma x, y (fma u, v, (fneg z)))
11779 if (CanFuse && N0.getOpcode() == PreferredFusedOpcode &&
11780 isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() &&
11781 N0.getOperand(2)->hasOneUse()) {
11782 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11783 N0.getOperand(0), N0.getOperand(1),
11784 DAG.getNode(PreferredFusedOpcode, SL, VT,
11785 N0.getOperand(2).getOperand(0),
11786 N0.getOperand(2).getOperand(1),
11787 DAG.getNode(ISD::FNEG, SL, VT,
11788 N1), Flags), Flags);
11791 // fold (fsub x, (fma y, z, (fmul u, v)))
11792 // -> (fma (fneg y), z, (fma (fneg u), v, x))
11793 if (CanFuse && N1.getOpcode() == PreferredFusedOpcode &&
11794 isContractableFMUL(N1.getOperand(2))) {
11795 SDValue N20 = N1.getOperand(2).getOperand(0);
11796 SDValue N21 = N1.getOperand(2).getOperand(1);
11797 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11798 DAG.getNode(ISD::FNEG, SL, VT,
11799 N1.getOperand(0)),
11800 N1.getOperand(1),
11801 DAG.getNode(PreferredFusedOpcode, SL, VT,
11802 DAG.getNode(ISD::FNEG, SL, VT, N20),
11803 N21, N0, Flags), Flags);
11807 // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
11808 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
11809 if (N0.getOpcode() == PreferredFusedOpcode) {
11810 SDValue N02 = N0.getOperand(2);
11811 if (N02.getOpcode() == ISD::FP_EXTEND) {
11812 SDValue N020 = N02.getOperand(0);
11813 if (isContractableFMUL(N020) &&
11814 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) {
11815 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11816 N0.getOperand(0), N0.getOperand(1),
11817 DAG.getNode(PreferredFusedOpcode, SL, VT,
11818 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11819 N020.getOperand(0)),
11820 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11821 N020.getOperand(1)),
11822 DAG.getNode(ISD::FNEG, SL, VT,
11823 N1), Flags), Flags);
11828 // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
11829 // -> (fma (fpext x), (fpext y),
11830 // (fma (fpext u), (fpext v), (fneg z)))
11831 // FIXME: This turns two single-precision and one double-precision
11832 // operation into two double-precision operations, which might not be
11833 // interesting for all targets, especially GPUs.
11834 if (N0.getOpcode() == ISD::FP_EXTEND) {
11835 SDValue N00 = N0.getOperand(0);
11836 if (N00.getOpcode() == PreferredFusedOpcode) {
11837 SDValue N002 = N00.getOperand(2);
11838 if (isContractableFMUL(N002) &&
11839 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
11840 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11841 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11842 N00.getOperand(0)),
11843 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11844 N00.getOperand(1)),
11845 DAG.getNode(PreferredFusedOpcode, SL, VT,
11846 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11847 N002.getOperand(0)),
11848 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11849 N002.getOperand(1)),
11850 DAG.getNode(ISD::FNEG, SL, VT,
11851 N1), Flags), Flags);
11856 // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
11857 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
11858 if (N1.getOpcode() == PreferredFusedOpcode &&
11859 N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) {
11860 SDValue N120 = N1.getOperand(2).getOperand(0);
11861 if (isContractableFMUL(N120) &&
11862 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) {
11863 SDValue N1200 = N120.getOperand(0);
11864 SDValue N1201 = N120.getOperand(1);
11865 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11866 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)),
11867 N1.getOperand(1),
11868 DAG.getNode(PreferredFusedOpcode, SL, VT,
11869 DAG.getNode(ISD::FNEG, SL, VT,
11870 DAG.getNode(ISD::FP_EXTEND, SL,
11871 VT, N1200)),
11872 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11873 N1201),
11874 N0, Flags), Flags);
11878 // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
11879 // -> (fma (fneg (fpext y)), (fpext z),
11880 // (fma (fneg (fpext u)), (fpext v), x))
11881 // FIXME: This turns two single-precision and one double-precision
11882 // operation into two double-precision operations, which might not be
11883 // interesting for all targets, especially GPUs.
11884 if (N1.getOpcode() == ISD::FP_EXTEND &&
11885 N1.getOperand(0).getOpcode() == PreferredFusedOpcode) {
11886 SDValue CvtSrc = N1.getOperand(0);
11887 SDValue N100 = CvtSrc.getOperand(0);
11888 SDValue N101 = CvtSrc.getOperand(1);
11889 SDValue N102 = CvtSrc.getOperand(2);
11890 if (isContractableFMUL(N102) &&
11891 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, CvtSrc.getValueType())) {
11892 SDValue N1020 = N102.getOperand(0);
11893 SDValue N1021 = N102.getOperand(1);
11894 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11895 DAG.getNode(ISD::FNEG, SL, VT,
11896 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11897 N100)),
11898 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101),
11899 DAG.getNode(PreferredFusedOpcode, SL, VT,
11900 DAG.getNode(ISD::FNEG, SL, VT,
11901 DAG.getNode(ISD::FP_EXTEND, SL,
11902 VT, N1020)),
11903 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11904 N1021),
11905 N0, Flags), Flags);
11910 return SDValue();
11913 /// Try to perform FMA combining on a given FMUL node based on the distributive
11914 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
11915 /// subtraction instead of addition).
11916 SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) {
11917 SDValue N0 = N->getOperand(0);
11918 SDValue N1 = N->getOperand(1);
11919 EVT VT = N->getValueType(0);
11920 SDLoc SL(N);
11921 const SDNodeFlags Flags = N->getFlags();
11923 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation");
11925 const TargetOptions &Options = DAG.getTarget().Options;
11927 // The transforms below are incorrect when x == 0 and y == inf, because the
11928 // intermediate multiplication produces a nan.
11929 if (!Options.NoInfsFPMath)
11930 return SDValue();
11932 // Floating-point multiply-add without intermediate rounding.
11933 bool HasFMA =
11934 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) &&
11935 TLI.isFMAFasterThanFMulAndFAdd(VT) &&
11936 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
11938 // Floating-point multiply-add with intermediate rounding. This can result
11939 // in a less precise result due to the changed rounding order.
11940 bool HasFMAD = Options.UnsafeFPMath &&
11941 (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
11943 // No valid opcode, do not combine.
11944 if (!HasFMAD && !HasFMA)
11945 return SDValue();
11947 // Always prefer FMAD to FMA for precision.
11948 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
11949 bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
11951 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
11952 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
11953 auto FuseFADD = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) {
11954 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) {
11955 if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) {
11956 if (C->isExactlyValue(+1.0))
11957 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
11958 Y, Flags);
11959 if (C->isExactlyValue(-1.0))
11960 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
11961 DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
11964 return SDValue();
11967 if (SDValue FMA = FuseFADD(N0, N1, Flags))
11968 return FMA;
11969 if (SDValue FMA = FuseFADD(N1, N0, Flags))
11970 return FMA;
11972 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
11973 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
11974 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
11975 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
11976 auto FuseFSUB = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) {
11977 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) {
11978 if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) {
11979 if (C0->isExactlyValue(+1.0))
11980 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11981 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
11982 Y, Flags);
11983 if (C0->isExactlyValue(-1.0))
11984 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11985 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
11986 DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
11988 if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) {
11989 if (C1->isExactlyValue(+1.0))
11990 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
11991 DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
11992 if (C1->isExactlyValue(-1.0))
11993 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
11994 Y, Flags);
11997 return SDValue();
12000 if (SDValue FMA = FuseFSUB(N0, N1, Flags))
12001 return FMA;
12002 if (SDValue FMA = FuseFSUB(N1, N0, Flags))
12003 return FMA;
12005 return SDValue();
12008 SDValue DAGCombiner::visitFADD(SDNode *N) {
12009 SDValue N0 = N->getOperand(0);
12010 SDValue N1 = N->getOperand(1);
12011 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0);
12012 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
12013 EVT VT = N->getValueType(0);
12014 SDLoc DL(N);
12015 const TargetOptions &Options = DAG.getTarget().Options;
12016 const SDNodeFlags Flags = N->getFlags();
12018 // fold vector ops
12019 if (VT.isVector())
12020 if (SDValue FoldedVOp = SimplifyVBinOp(N))
12021 return FoldedVOp;
12023 // fold (fadd c1, c2) -> c1 + c2
12024 if (N0CFP && N1CFP)
12025 return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags);
12027 // canonicalize constant to RHS
12028 if (N0CFP && !N1CFP)
12029 return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags);
12031 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
12032 ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true);
12033 if (N1C && N1C->isZero())
12034 if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())
12035 return N0;
12037 if (SDValue NewSel = foldBinOpIntoSelect(N))
12038 return NewSel;
12040 // fold (fadd A, (fneg B)) -> (fsub A, B)
12041 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
12042 isNegatibleForFree(N1, LegalOperations, TLI, &Options, ForCodeSize) == 2)
12043 return DAG.getNode(ISD::FSUB, DL, VT, N0,
12044 GetNegatedExpression(N1, DAG, LegalOperations,
12045 ForCodeSize), Flags);
12047 // fold (fadd (fneg A), B) -> (fsub B, A)
12048 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
12049 isNegatibleForFree(N0, LegalOperations, TLI, &Options, ForCodeSize) == 2)
12050 return DAG.getNode(ISD::FSUB, DL, VT, N1,
12051 GetNegatedExpression(N0, DAG, LegalOperations,
12052 ForCodeSize), Flags);
12054 auto isFMulNegTwo = [](SDValue FMul) {
12055 if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL)
12056 return false;
12057 auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true);
12058 return C && C->isExactlyValue(-2.0);
12061 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
12062 if (isFMulNegTwo(N0)) {
12063 SDValue B = N0.getOperand(0);
12064 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags);
12065 return DAG.getNode(ISD::FSUB, DL, VT, N1, Add, Flags);
12067 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
12068 if (isFMulNegTwo(N1)) {
12069 SDValue B = N1.getOperand(0);
12070 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags);
12071 return DAG.getNode(ISD::FSUB, DL, VT, N0, Add, Flags);
12074 // No FP constant should be created after legalization as Instruction
12075 // Selection pass has a hard time dealing with FP constants.
12076 bool AllowNewConst = (Level < AfterLegalizeDAG);
12078 // If nnan is enabled, fold lots of things.
12079 if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) {
12080 // If allowed, fold (fadd (fneg x), x) -> 0.0
12081 if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
12082 return DAG.getConstantFP(0.0, DL, VT);
12084 // If allowed, fold (fadd x, (fneg x)) -> 0.0
12085 if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
12086 return DAG.getConstantFP(0.0, DL, VT);
12089 // If 'unsafe math' or reassoc and nsz, fold lots of things.
12090 // TODO: break out portions of the transformations below for which Unsafe is
12091 // considered and which do not require both nsz and reassoc
12092 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) ||
12093 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
12094 AllowNewConst) {
12095 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2
12096 if (N1CFP && N0.getOpcode() == ISD::FADD &&
12097 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
12098 SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, Flags);
12099 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC, Flags);
12102 // We can fold chains of FADD's of the same value into multiplications.
12103 // This transform is not safe in general because we are reducing the number
12104 // of rounding steps.
12105 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
12106 if (N0.getOpcode() == ISD::FMUL) {
12107 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
12108 bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1));
12110 // (fadd (fmul x, c), x) -> (fmul x, c+1)
12111 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
12112 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
12113 DAG.getConstantFP(1.0, DL, VT), Flags);
12114 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags);
12117 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
12118 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
12119 N1.getOperand(0) == N1.getOperand(1) &&
12120 N0.getOperand(0) == N1.getOperand(0)) {
12121 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
12122 DAG.getConstantFP(2.0, DL, VT), Flags);
12123 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags);
12127 if (N1.getOpcode() == ISD::FMUL) {
12128 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
12129 bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1));
12131 // (fadd x, (fmul x, c)) -> (fmul x, c+1)
12132 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
12133 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
12134 DAG.getConstantFP(1.0, DL, VT), Flags);
12135 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags);
12138 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
12139 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
12140 N0.getOperand(0) == N0.getOperand(1) &&
12141 N1.getOperand(0) == N0.getOperand(0)) {
12142 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
12143 DAG.getConstantFP(2.0, DL, VT), Flags);
12144 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags);
12148 if (N0.getOpcode() == ISD::FADD) {
12149 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
12150 // (fadd (fadd x, x), x) -> (fmul x, 3.0)
12151 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) &&
12152 (N0.getOperand(0) == N1)) {
12153 return DAG.getNode(ISD::FMUL, DL, VT,
12154 N1, DAG.getConstantFP(3.0, DL, VT), Flags);
12158 if (N1.getOpcode() == ISD::FADD) {
12159 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
12160 // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
12161 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
12162 N1.getOperand(0) == N0) {
12163 return DAG.getNode(ISD::FMUL, DL, VT,
12164 N0, DAG.getConstantFP(3.0, DL, VT), Flags);
12168 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
12169 if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
12170 N0.getOperand(0) == N0.getOperand(1) &&
12171 N1.getOperand(0) == N1.getOperand(1) &&
12172 N0.getOperand(0) == N1.getOperand(0)) {
12173 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0),
12174 DAG.getConstantFP(4.0, DL, VT), Flags);
12177 } // enable-unsafe-fp-math
12179 // FADD -> FMA combines:
12180 if (SDValue Fused = visitFADDForFMACombine(N)) {
12181 AddToWorklist(Fused.getNode());
12182 return Fused;
12184 return SDValue();
12187 SDValue DAGCombiner::visitFSUB(SDNode *N) {
12188 SDValue N0 = N->getOperand(0);
12189 SDValue N1 = N->getOperand(1);
12190 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
12191 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
12192 EVT VT = N->getValueType(0);
12193 SDLoc DL(N);
12194 const TargetOptions &Options = DAG.getTarget().Options;
12195 const SDNodeFlags Flags = N->getFlags();
12197 // fold vector ops
12198 if (VT.isVector())
12199 if (SDValue FoldedVOp = SimplifyVBinOp(N))
12200 return FoldedVOp;
12202 // fold (fsub c1, c2) -> c1-c2
12203 if (N0CFP && N1CFP)
12204 return DAG.getNode(ISD::FSUB, DL, VT, N0, N1, Flags);
12206 if (SDValue NewSel = foldBinOpIntoSelect(N))
12207 return NewSel;
12209 // (fsub A, 0) -> A
12210 if (N1CFP && N1CFP->isZero()) {
12211 if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath ||
12212 Flags.hasNoSignedZeros()) {
12213 return N0;
12217 if (N0 == N1) {
12218 // (fsub x, x) -> 0.0
12219 if (Options.NoNaNsFPMath || Flags.hasNoNaNs())
12220 return DAG.getConstantFP(0.0f, DL, VT);
12223 // (fsub -0.0, N1) -> -N1
12224 // NOTE: It is safe to transform an FSUB(-0.0,X) into an FNEG(X), since the
12225 // FSUB does not specify the sign bit of a NaN. Also note that for
12226 // the same reason, the inverse transform is not safe, unless fast math
12227 // flags are in play.
12228 if (N0CFP && N0CFP->isZero()) {
12229 if (N0CFP->isNegative() ||
12230 (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) {
12231 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options, ForCodeSize))
12232 return GetNegatedExpression(N1, DAG, LegalOperations, ForCodeSize);
12233 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
12234 return DAG.getNode(ISD::FNEG, DL, VT, N1, Flags);
12238 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) ||
12239 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros()))
12240 && N1.getOpcode() == ISD::FADD) {
12241 // X - (X + Y) -> -Y
12242 if (N0 == N1->getOperand(0))
12243 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1), Flags);
12244 // X - (Y + X) -> -Y
12245 if (N0 == N1->getOperand(1))
12246 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0), Flags);
12249 // fold (fsub A, (fneg B)) -> (fadd A, B)
12250 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options, ForCodeSize))
12251 return DAG.getNode(ISD::FADD, DL, VT, N0,
12252 GetNegatedExpression(N1, DAG, LegalOperations,
12253 ForCodeSize), Flags);
12255 // FSUB -> FMA combines:
12256 if (SDValue Fused = visitFSUBForFMACombine(N)) {
12257 AddToWorklist(Fused.getNode());
12258 return Fused;
12261 return SDValue();
12264 /// Return true if both inputs are at least as cheap in negated form and at
12265 /// least one input is strictly cheaper in negated form.
12266 bool DAGCombiner::isCheaperToUseNegatedFPOps(SDValue X, SDValue Y) {
12267 const TargetOptions &Options = DAG.getTarget().Options;
12268 if (char LHSNeg = isNegatibleForFree(X, LegalOperations, TLI, &Options,
12269 ForCodeSize))
12270 if (char RHSNeg = isNegatibleForFree(Y, LegalOperations, TLI, &Options,
12271 ForCodeSize))
12272 // Both negated operands are at least as cheap as their counterparts.
12273 // Check to see if at least one is cheaper negated.
12274 if (LHSNeg == 2 || RHSNeg == 2)
12275 return true;
12277 return false;
12280 SDValue DAGCombiner::visitFMUL(SDNode *N) {
12281 SDValue N0 = N->getOperand(0);
12282 SDValue N1 = N->getOperand(1);
12283 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
12284 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
12285 EVT VT = N->getValueType(0);
12286 SDLoc DL(N);
12287 const TargetOptions &Options = DAG.getTarget().Options;
12288 const SDNodeFlags Flags = N->getFlags();
12290 // fold vector ops
12291 if (VT.isVector()) {
12292 // This just handles C1 * C2 for vectors. Other vector folds are below.
12293 if (SDValue FoldedVOp = SimplifyVBinOp(N))
12294 return FoldedVOp;
12297 // fold (fmul c1, c2) -> c1*c2
12298 if (N0CFP && N1CFP)
12299 return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags);
12301 // canonicalize constant to RHS
12302 if (isConstantFPBuildVectorOrConstantFP(N0) &&
12303 !isConstantFPBuildVectorOrConstantFP(N1))
12304 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags);
12306 if (SDValue NewSel = foldBinOpIntoSelect(N))
12307 return NewSel;
12309 if ((Options.NoNaNsFPMath && Options.NoSignedZerosFPMath) ||
12310 (Flags.hasNoNaNs() && Flags.hasNoSignedZeros())) {
12311 // fold (fmul A, 0) -> 0
12312 if (N1CFP && N1CFP->isZero())
12313 return N1;
12316 if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) {
12317 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2
12318 if (isConstantFPBuildVectorOrConstantFP(N1) &&
12319 N0.getOpcode() == ISD::FMUL) {
12320 SDValue N00 = N0.getOperand(0);
12321 SDValue N01 = N0.getOperand(1);
12322 // Avoid an infinite loop by making sure that N00 is not a constant
12323 // (the inner multiply has not been constant folded yet).
12324 if (isConstantFPBuildVectorOrConstantFP(N01) &&
12325 !isConstantFPBuildVectorOrConstantFP(N00)) {
12326 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags);
12327 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags);
12331 // Match a special-case: we convert X * 2.0 into fadd.
12332 // fmul (fadd X, X), C -> fmul X, 2.0 * C
12333 if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() &&
12334 N0.getOperand(0) == N0.getOperand(1)) {
12335 const SDValue Two = DAG.getConstantFP(2.0, DL, VT);
12336 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags);
12337 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags);
12341 // fold (fmul X, 2.0) -> (fadd X, X)
12342 if (N1CFP && N1CFP->isExactlyValue(+2.0))
12343 return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags);
12345 // fold (fmul X, -1.0) -> (fneg X)
12346 if (N1CFP && N1CFP->isExactlyValue(-1.0))
12347 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
12348 return DAG.getNode(ISD::FNEG, DL, VT, N0);
12350 // -N0 * -N1 --> N0 * N1
12351 if (isCheaperToUseNegatedFPOps(N0, N1)) {
12352 SDValue NegN0 = GetNegatedExpression(N0, DAG, LegalOperations, ForCodeSize);
12353 SDValue NegN1 = GetNegatedExpression(N1, DAG, LegalOperations, ForCodeSize);
12354 return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1, Flags);
12357 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
12358 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
12359 if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() &&
12360 (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) &&
12361 TLI.isOperationLegal(ISD::FABS, VT)) {
12362 SDValue Select = N0, X = N1;
12363 if (Select.getOpcode() != ISD::SELECT)
12364 std::swap(Select, X);
12366 SDValue Cond = Select.getOperand(0);
12367 auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1));
12368 auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2));
12370 if (TrueOpnd && FalseOpnd &&
12371 Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X &&
12372 isa<ConstantFPSDNode>(Cond.getOperand(1)) &&
12373 cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) {
12374 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12375 switch (CC) {
12376 default: break;
12377 case ISD::SETOLT:
12378 case ISD::SETULT:
12379 case ISD::SETOLE:
12380 case ISD::SETULE:
12381 case ISD::SETLT:
12382 case ISD::SETLE:
12383 std::swap(TrueOpnd, FalseOpnd);
12384 LLVM_FALLTHROUGH;
12385 case ISD::SETOGT:
12386 case ISD::SETUGT:
12387 case ISD::SETOGE:
12388 case ISD::SETUGE:
12389 case ISD::SETGT:
12390 case ISD::SETGE:
12391 if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) &&
12392 TLI.isOperationLegal(ISD::FNEG, VT))
12393 return DAG.getNode(ISD::FNEG, DL, VT,
12394 DAG.getNode(ISD::FABS, DL, VT, X));
12395 if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0))
12396 return DAG.getNode(ISD::FABS, DL, VT, X);
12398 break;
12403 // FMUL -> FMA combines:
12404 if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) {
12405 AddToWorklist(Fused.getNode());
12406 return Fused;
12409 return SDValue();
12412 SDValue DAGCombiner::visitFMA(SDNode *N) {
12413 SDValue N0 = N->getOperand(0);
12414 SDValue N1 = N->getOperand(1);
12415 SDValue N2 = N->getOperand(2);
12416 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
12417 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
12418 EVT VT = N->getValueType(0);
12419 SDLoc DL(N);
12420 const TargetOptions &Options = DAG.getTarget().Options;
12422 // FMA nodes have flags that propagate to the created nodes.
12423 const SDNodeFlags Flags = N->getFlags();
12424 bool UnsafeFPMath = Options.UnsafeFPMath || isContractable(N);
12426 // Constant fold FMA.
12427 if (isa<ConstantFPSDNode>(N0) &&
12428 isa<ConstantFPSDNode>(N1) &&
12429 isa<ConstantFPSDNode>(N2)) {
12430 return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2);
12433 // (-N0 * -N1) + N2 --> (N0 * N1) + N2
12434 if (isCheaperToUseNegatedFPOps(N0, N1)) {
12435 SDValue NegN0 = GetNegatedExpression(N0, DAG, LegalOperations, ForCodeSize);
12436 SDValue NegN1 = GetNegatedExpression(N1, DAG, LegalOperations, ForCodeSize);
12437 return DAG.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2, Flags);
12440 if (UnsafeFPMath) {
12441 if (N0CFP && N0CFP->isZero())
12442 return N2;
12443 if (N1CFP && N1CFP->isZero())
12444 return N2;
12446 // TODO: The FMA node should have flags that propagate to these nodes.
12447 if (N0CFP && N0CFP->isExactlyValue(1.0))
12448 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
12449 if (N1CFP && N1CFP->isExactlyValue(1.0))
12450 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
12452 // Canonicalize (fma c, x, y) -> (fma x, c, y)
12453 if (isConstantFPBuildVectorOrConstantFP(N0) &&
12454 !isConstantFPBuildVectorOrConstantFP(N1))
12455 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
12457 if (UnsafeFPMath) {
12458 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
12459 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) &&
12460 isConstantFPBuildVectorOrConstantFP(N1) &&
12461 isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) {
12462 return DAG.getNode(ISD::FMUL, DL, VT, N0,
12463 DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1),
12464 Flags), Flags);
12467 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
12468 if (N0.getOpcode() == ISD::FMUL &&
12469 isConstantFPBuildVectorOrConstantFP(N1) &&
12470 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
12471 return DAG.getNode(ISD::FMA, DL, VT,
12472 N0.getOperand(0),
12473 DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1),
12474 Flags),
12475 N2);
12479 // (fma x, 1, y) -> (fadd x, y)
12480 // (fma x, -1, y) -> (fadd (fneg x), y)
12481 if (N1CFP) {
12482 if (N1CFP->isExactlyValue(1.0))
12483 // TODO: The FMA node should have flags that propagate to this node.
12484 return DAG.getNode(ISD::FADD, DL, VT, N0, N2);
12486 if (N1CFP->isExactlyValue(-1.0) &&
12487 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
12488 SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0);
12489 AddToWorklist(RHSNeg.getNode());
12490 // TODO: The FMA node should have flags that propagate to this node.
12491 return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg);
12494 // fma (fneg x), K, y -> fma x -K, y
12495 if (N0.getOpcode() == ISD::FNEG &&
12496 (TLI.isOperationLegal(ISD::ConstantFP, VT) ||
12497 (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT,
12498 ForCodeSize)))) {
12499 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0),
12500 DAG.getNode(ISD::FNEG, DL, VT, N1, Flags), N2);
12504 if (UnsafeFPMath) {
12505 // (fma x, c, x) -> (fmul x, (c+1))
12506 if (N1CFP && N0 == N2) {
12507 return DAG.getNode(ISD::FMUL, DL, VT, N0,
12508 DAG.getNode(ISD::FADD, DL, VT, N1,
12509 DAG.getConstantFP(1.0, DL, VT), Flags),
12510 Flags);
12513 // (fma x, c, (fneg x)) -> (fmul x, (c-1))
12514 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
12515 return DAG.getNode(ISD::FMUL, DL, VT, N0,
12516 DAG.getNode(ISD::FADD, DL, VT, N1,
12517 DAG.getConstantFP(-1.0, DL, VT), Flags),
12518 Flags);
12522 return SDValue();
12525 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12526 // reciprocal.
12527 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
12528 // Notice that this is not always beneficial. One reason is different targets
12529 // may have different costs for FDIV and FMUL, so sometimes the cost of two
12530 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
12531 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
12532 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) {
12533 // TODO: Limit this transform based on optsize/minsize - it always creates at
12534 // least 1 extra instruction. But the perf win may be substantial enough
12535 // that only minsize should restrict this.
12536 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath;
12537 const SDNodeFlags Flags = N->getFlags();
12538 if (!UnsafeMath && !Flags.hasAllowReciprocal())
12539 return SDValue();
12541 // Skip if current node is a reciprocal/fneg-reciprocal.
12542 SDValue N0 = N->getOperand(0);
12543 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true);
12544 if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0)))
12545 return SDValue();
12547 // Exit early if the target does not want this transform or if there can't
12548 // possibly be enough uses of the divisor to make the transform worthwhile.
12549 SDValue N1 = N->getOperand(1);
12550 unsigned MinUses = TLI.combineRepeatedFPDivisors();
12552 // For splat vectors, scale the number of uses by the splat factor. If we can
12553 // convert the division into a scalar op, that will likely be much faster.
12554 unsigned NumElts = 1;
12555 EVT VT = N->getValueType(0);
12556 if (VT.isVector() && DAG.isSplatValue(N1))
12557 NumElts = VT.getVectorNumElements();
12559 if (!MinUses || (N1->use_size() * NumElts) < MinUses)
12560 return SDValue();
12562 // Find all FDIV users of the same divisor.
12563 // Use a set because duplicates may be present in the user list.
12564 SetVector<SDNode *> Users;
12565 for (auto *U : N1->uses()) {
12566 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) {
12567 // This division is eligible for optimization only if global unsafe math
12568 // is enabled or if this division allows reciprocal formation.
12569 if (UnsafeMath || U->getFlags().hasAllowReciprocal())
12570 Users.insert(U);
12574 // Now that we have the actual number of divisor uses, make sure it meets
12575 // the minimum threshold specified by the target.
12576 if ((Users.size() * NumElts) < MinUses)
12577 return SDValue();
12579 SDLoc DL(N);
12580 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
12581 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags);
12583 // Dividend / Divisor -> Dividend * Reciprocal
12584 for (auto *U : Users) {
12585 SDValue Dividend = U->getOperand(0);
12586 if (Dividend != FPOne) {
12587 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend,
12588 Reciprocal, Flags);
12589 CombineTo(U, NewNode);
12590 } else if (U != Reciprocal.getNode()) {
12591 // In the absence of fast-math-flags, this user node is always the
12592 // same node as Reciprocal, but with FMF they may be different nodes.
12593 CombineTo(U, Reciprocal);
12596 return SDValue(N, 0); // N was replaced.
12599 SDValue DAGCombiner::visitFDIV(SDNode *N) {
12600 SDValue N0 = N->getOperand(0);
12601 SDValue N1 = N->getOperand(1);
12602 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
12603 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
12604 EVT VT = N->getValueType(0);
12605 SDLoc DL(N);
12606 const TargetOptions &Options = DAG.getTarget().Options;
12607 SDNodeFlags Flags = N->getFlags();
12609 // fold vector ops
12610 if (VT.isVector())
12611 if (SDValue FoldedVOp = SimplifyVBinOp(N))
12612 return FoldedVOp;
12614 // fold (fdiv c1, c2) -> c1/c2
12615 if (N0CFP && N1CFP)
12616 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags);
12618 if (SDValue NewSel = foldBinOpIntoSelect(N))
12619 return NewSel;
12621 if (SDValue V = combineRepeatedFPDivisors(N))
12622 return V;
12624 if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) {
12625 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
12626 if (N1CFP) {
12627 // Compute the reciprocal 1.0 / c2.
12628 const APFloat &N1APF = N1CFP->getValueAPF();
12629 APFloat Recip(N1APF.getSemantics(), 1); // 1.0
12630 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
12631 // Only do the transform if the reciprocal is a legal fp immediate that
12632 // isn't too nasty (eg NaN, denormal, ...).
12633 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
12634 (!LegalOperations ||
12635 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
12636 // backend)... we should handle this gracefully after Legalize.
12637 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
12638 TLI.isOperationLegal(ISD::ConstantFP, VT) ||
12639 TLI.isFPImmLegal(Recip, VT, ForCodeSize)))
12640 return DAG.getNode(ISD::FMUL, DL, VT, N0,
12641 DAG.getConstantFP(Recip, DL, VT), Flags);
12644 // If this FDIV is part of a reciprocal square root, it may be folded
12645 // into a target-specific square root estimate instruction.
12646 if (N1.getOpcode() == ISD::FSQRT) {
12647 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags))
12648 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
12649 } else if (N1.getOpcode() == ISD::FP_EXTEND &&
12650 N1.getOperand(0).getOpcode() == ISD::FSQRT) {
12651 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0),
12652 Flags)) {
12653 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
12654 AddToWorklist(RV.getNode());
12655 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
12657 } else if (N1.getOpcode() == ISD::FP_ROUND &&
12658 N1.getOperand(0).getOpcode() == ISD::FSQRT) {
12659 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0),
12660 Flags)) {
12661 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
12662 AddToWorklist(RV.getNode());
12663 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
12665 } else if (N1.getOpcode() == ISD::FMUL) {
12666 // Look through an FMUL. Even though this won't remove the FDIV directly,
12667 // it's still worthwhile to get rid of the FSQRT if possible.
12668 SDValue SqrtOp;
12669 SDValue OtherOp;
12670 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
12671 SqrtOp = N1.getOperand(0);
12672 OtherOp = N1.getOperand(1);
12673 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
12674 SqrtOp = N1.getOperand(1);
12675 OtherOp = N1.getOperand(0);
12677 if (SqrtOp.getNode()) {
12678 // We found a FSQRT, so try to make this fold:
12679 // x / (y * sqrt(z)) -> x * (rsqrt(z) / y)
12680 if (SDValue RV = buildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) {
12681 RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags);
12682 AddToWorklist(RV.getNode());
12683 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
12688 // Fold into a reciprocal estimate and multiply instead of a real divide.
12689 if (SDValue RV = BuildDivEstimate(N0, N1, Flags))
12690 return RV;
12693 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
12694 if (isCheaperToUseNegatedFPOps(N0, N1))
12695 return DAG.getNode(
12696 ISD::FDIV, SDLoc(N), VT,
12697 GetNegatedExpression(N0, DAG, LegalOperations, ForCodeSize),
12698 GetNegatedExpression(N1, DAG, LegalOperations, ForCodeSize), Flags);
12700 return SDValue();
12703 SDValue DAGCombiner::visitFREM(SDNode *N) {
12704 SDValue N0 = N->getOperand(0);
12705 SDValue N1 = N->getOperand(1);
12706 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
12707 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
12708 EVT VT = N->getValueType(0);
12710 // fold (frem c1, c2) -> fmod(c1,c2)
12711 if (N0CFP && N1CFP)
12712 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, N->getFlags());
12714 if (SDValue NewSel = foldBinOpIntoSelect(N))
12715 return NewSel;
12717 return SDValue();
12720 SDValue DAGCombiner::visitFSQRT(SDNode *N) {
12721 SDNodeFlags Flags = N->getFlags();
12722 if (!DAG.getTarget().Options.UnsafeFPMath &&
12723 !Flags.hasApproximateFuncs())
12724 return SDValue();
12726 SDValue N0 = N->getOperand(0);
12727 if (TLI.isFsqrtCheap(N0, DAG))
12728 return SDValue();
12730 // FSQRT nodes have flags that propagate to the created nodes.
12731 return buildSqrtEstimate(N0, Flags);
12734 /// copysign(x, fp_extend(y)) -> copysign(x, y)
12735 /// copysign(x, fp_round(y)) -> copysign(x, y)
12736 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) {
12737 SDValue N1 = N->getOperand(1);
12738 if ((N1.getOpcode() == ISD::FP_EXTEND ||
12739 N1.getOpcode() == ISD::FP_ROUND)) {
12740 // Do not optimize out type conversion of f128 type yet.
12741 // For some targets like x86_64, configuration is changed to keep one f128
12742 // value in one SSE register, but instruction selection cannot handle
12743 // FCOPYSIGN on SSE registers yet.
12744 EVT N1VT = N1->getValueType(0);
12745 EVT N1Op0VT = N1->getOperand(0).getValueType();
12746 return (N1VT == N1Op0VT || N1Op0VT != MVT::f128);
12748 return false;
12751 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
12752 SDValue N0 = N->getOperand(0);
12753 SDValue N1 = N->getOperand(1);
12754 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0);
12755 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
12756 EVT VT = N->getValueType(0);
12758 if (N0CFP && N1CFP) // Constant fold
12759 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
12761 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) {
12762 const APFloat &V = N1C->getValueAPF();
12763 // copysign(x, c1) -> fabs(x) iff ispos(c1)
12764 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
12765 if (!V.isNegative()) {
12766 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
12767 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
12768 } else {
12769 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
12770 return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
12771 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
12775 // copysign(fabs(x), y) -> copysign(x, y)
12776 // copysign(fneg(x), y) -> copysign(x, y)
12777 // copysign(copysign(x,z), y) -> copysign(x, y)
12778 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
12779 N0.getOpcode() == ISD::FCOPYSIGN)
12780 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1);
12782 // copysign(x, abs(y)) -> abs(x)
12783 if (N1.getOpcode() == ISD::FABS)
12784 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
12786 // copysign(x, copysign(y,z)) -> copysign(x, z)
12787 if (N1.getOpcode() == ISD::FCOPYSIGN)
12788 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1));
12790 // copysign(x, fp_extend(y)) -> copysign(x, y)
12791 // copysign(x, fp_round(y)) -> copysign(x, y)
12792 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N))
12793 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0));
12795 return SDValue();
12798 SDValue DAGCombiner::visitFPOW(SDNode *N) {
12799 ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1));
12800 if (!ExponentC)
12801 return SDValue();
12803 // Try to convert x ** (1/3) into cube root.
12804 // TODO: Handle the various flavors of long double.
12805 // TODO: Since we're approximating, we don't need an exact 1/3 exponent.
12806 // Some range near 1/3 should be fine.
12807 EVT VT = N->getValueType(0);
12808 if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) ||
12809 (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) {
12810 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
12811 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
12812 // pow(-val, 1/3) = nan; cbrt(-val) = -num.
12813 // For regular numbers, rounding may cause the results to differ.
12814 // Therefore, we require { nsz ninf nnan afn } for this transform.
12815 // TODO: We could select out the special cases if we don't have nsz/ninf.
12816 SDNodeFlags Flags = N->getFlags();
12817 if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() ||
12818 !Flags.hasApproximateFuncs())
12819 return SDValue();
12821 // Do not create a cbrt() libcall if the target does not have it, and do not
12822 // turn a pow that has lowering support into a cbrt() libcall.
12823 if (!DAG.getLibInfo().has(LibFunc_cbrt) ||
12824 (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) &&
12825 DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT)))
12826 return SDValue();
12828 return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0), Flags);
12831 // Try to convert x ** (1/4) and x ** (3/4) into square roots.
12832 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
12833 // TODO: This could be extended (using a target hook) to handle smaller
12834 // power-of-2 fractional exponents.
12835 bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25);
12836 bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75);
12837 if (ExponentIs025 || ExponentIs075) {
12838 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
12839 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN.
12840 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0.
12841 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN.
12842 // For regular numbers, rounding may cause the results to differ.
12843 // Therefore, we require { nsz ninf afn } for this transform.
12844 // TODO: We could select out the special cases if we don't have nsz/ninf.
12845 SDNodeFlags Flags = N->getFlags();
12847 // We only need no signed zeros for the 0.25 case.
12848 if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() ||
12849 !Flags.hasApproximateFuncs())
12850 return SDValue();
12852 // Don't double the number of libcalls. We are trying to inline fast code.
12853 if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT))
12854 return SDValue();
12856 // Assume that libcalls are the smallest code.
12857 // TODO: This restriction should probably be lifted for vectors.
12858 if (DAG.getMachineFunction().getFunction().hasOptSize())
12859 return SDValue();
12861 // pow(X, 0.25) --> sqrt(sqrt(X))
12862 SDLoc DL(N);
12863 SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0), Flags);
12864 SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt, Flags);
12865 if (ExponentIs025)
12866 return SqrtSqrt;
12867 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X))
12868 return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt, Flags);
12871 return SDValue();
12874 static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG,
12875 const TargetLowering &TLI) {
12876 // This optimization is guarded by a function attribute because it may produce
12877 // unexpected results. Ie, programs may be relying on the platform-specific
12878 // undefined behavior when the float-to-int conversion overflows.
12879 const Function &F = DAG.getMachineFunction().getFunction();
12880 Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow");
12881 if (StrictOverflow.getValueAsString().equals("false"))
12882 return SDValue();
12884 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be
12885 // replacing casts with a libcall. We also must be allowed to ignore -0.0
12886 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
12887 // conversions would return +0.0.
12888 // FIXME: We should be able to use node-level FMF here.
12889 // TODO: If strict math, should we use FABS (+ range check for signed cast)?
12890 EVT VT = N->getValueType(0);
12891 if (!TLI.isOperationLegal(ISD::FTRUNC, VT) ||
12892 !DAG.getTarget().Options.NoSignedZerosFPMath)
12893 return SDValue();
12895 // fptosi/fptoui round towards zero, so converting from FP to integer and
12896 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
12897 SDValue N0 = N->getOperand(0);
12898 if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT &&
12899 N0.getOperand(0).getValueType() == VT)
12900 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
12902 if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT &&
12903 N0.getOperand(0).getValueType() == VT)
12904 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
12906 return SDValue();
12909 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
12910 SDValue N0 = N->getOperand(0);
12911 EVT VT = N->getValueType(0);
12912 EVT OpVT = N0.getValueType();
12914 // [us]itofp(undef) = 0, because the result value is bounded.
12915 if (N0.isUndef())
12916 return DAG.getConstantFP(0.0, SDLoc(N), VT);
12918 // fold (sint_to_fp c1) -> c1fp
12919 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
12920 // ...but only if the target supports immediate floating-point values
12921 (!LegalOperations ||
12922 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
12923 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
12925 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
12926 // but UINT_TO_FP is legal on this target, try to convert.
12927 if (!hasOperation(ISD::SINT_TO_FP, OpVT) &&
12928 hasOperation(ISD::UINT_TO_FP, OpVT)) {
12929 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
12930 if (DAG.SignBitIsZero(N0))
12931 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
12934 // The next optimizations are desirable only if SELECT_CC can be lowered.
12935 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
12936 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
12937 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
12938 !VT.isVector() &&
12939 (!LegalOperations ||
12940 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
12941 SDLoc DL(N);
12942 SDValue Ops[] =
12943 { N0.getOperand(0), N0.getOperand(1),
12944 DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
12945 N0.getOperand(2) };
12946 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
12949 // fold (sint_to_fp (zext (setcc x, y, cc))) ->
12950 // (select_cc x, y, 1.0, 0.0,, cc)
12951 if (N0.getOpcode() == ISD::ZERO_EXTEND &&
12952 N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
12953 (!LegalOperations ||
12954 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
12955 SDLoc DL(N);
12956 SDValue Ops[] =
12957 { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
12958 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
12959 N0.getOperand(0).getOperand(2) };
12960 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
12964 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
12965 return FTrunc;
12967 return SDValue();
12970 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
12971 SDValue N0 = N->getOperand(0);
12972 EVT VT = N->getValueType(0);
12973 EVT OpVT = N0.getValueType();
12975 // [us]itofp(undef) = 0, because the result value is bounded.
12976 if (N0.isUndef())
12977 return DAG.getConstantFP(0.0, SDLoc(N), VT);
12979 // fold (uint_to_fp c1) -> c1fp
12980 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
12981 // ...but only if the target supports immediate floating-point values
12982 (!LegalOperations ||
12983 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
12984 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
12986 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
12987 // but SINT_TO_FP is legal on this target, try to convert.
12988 if (!hasOperation(ISD::UINT_TO_FP, OpVT) &&
12989 hasOperation(ISD::SINT_TO_FP, OpVT)) {
12990 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
12991 if (DAG.SignBitIsZero(N0))
12992 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
12995 // The next optimizations are desirable only if SELECT_CC can be lowered.
12996 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
12997 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
12998 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
12999 (!LegalOperations ||
13000 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
13001 SDLoc DL(N);
13002 SDValue Ops[] =
13003 { N0.getOperand(0), N0.getOperand(1),
13004 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
13005 N0.getOperand(2) };
13006 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
13010 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
13011 return FTrunc;
13013 return SDValue();
13016 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
13017 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) {
13018 SDValue N0 = N->getOperand(0);
13019 EVT VT = N->getValueType(0);
13021 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP)
13022 return SDValue();
13024 SDValue Src = N0.getOperand(0);
13025 EVT SrcVT = Src.getValueType();
13026 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP;
13027 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT;
13029 // We can safely assume the conversion won't overflow the output range,
13030 // because (for example) (uint8_t)18293.f is undefined behavior.
13032 // Since we can assume the conversion won't overflow, our decision as to
13033 // whether the input will fit in the float should depend on the minimum
13034 // of the input range and output range.
13036 // This means this is also safe for a signed input and unsigned output, since
13037 // a negative input would lead to undefined behavior.
13038 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned;
13039 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned;
13040 unsigned ActualSize = std::min(InputSize, OutputSize);
13041 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType());
13043 // We can only fold away the float conversion if the input range can be
13044 // represented exactly in the float range.
13045 if (APFloat::semanticsPrecision(sem) >= ActualSize) {
13046 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) {
13047 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND
13048 : ISD::ZERO_EXTEND;
13049 return DAG.getNode(ExtOp, SDLoc(N), VT, Src);
13051 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits())
13052 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src);
13053 return DAG.getBitcast(VT, Src);
13055 return SDValue();
13058 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
13059 SDValue N0 = N->getOperand(0);
13060 EVT VT = N->getValueType(0);
13062 // fold (fp_to_sint undef) -> undef
13063 if (N0.isUndef())
13064 return DAG.getUNDEF(VT);
13066 // fold (fp_to_sint c1fp) -> c1
13067 if (isConstantFPBuildVectorOrConstantFP(N0))
13068 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
13070 return FoldIntToFPToInt(N, DAG);
13073 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
13074 SDValue N0 = N->getOperand(0);
13075 EVT VT = N->getValueType(0);
13077 // fold (fp_to_uint undef) -> undef
13078 if (N0.isUndef())
13079 return DAG.getUNDEF(VT);
13081 // fold (fp_to_uint c1fp) -> c1
13082 if (isConstantFPBuildVectorOrConstantFP(N0))
13083 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
13085 return FoldIntToFPToInt(N, DAG);
13088 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
13089 SDValue N0 = N->getOperand(0);
13090 SDValue N1 = N->getOperand(1);
13091 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
13092 EVT VT = N->getValueType(0);
13094 // fold (fp_round c1fp) -> c1fp
13095 if (N0CFP)
13096 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
13098 // fold (fp_round (fp_extend x)) -> x
13099 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
13100 return N0.getOperand(0);
13102 // fold (fp_round (fp_round x)) -> (fp_round x)
13103 if (N0.getOpcode() == ISD::FP_ROUND) {
13104 const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
13105 const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1;
13107 // Skip this folding if it results in an fp_round from f80 to f16.
13109 // f80 to f16 always generates an expensive (and as yet, unimplemented)
13110 // libcall to __truncxfhf2 instead of selecting native f16 conversion
13111 // instructions from f32 or f64. Moreover, the first (value-preserving)
13112 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
13113 // x86.
13114 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16)
13115 return SDValue();
13117 // If the first fp_round isn't a value preserving truncation, it might
13118 // introduce a tie in the second fp_round, that wouldn't occur in the
13119 // single-step fp_round we want to fold to.
13120 // In other words, double rounding isn't the same as rounding.
13121 // Also, this is a value preserving truncation iff both fp_round's are.
13122 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) {
13123 SDLoc DL(N);
13124 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0),
13125 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL));
13129 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
13130 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
13131 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
13132 N0.getOperand(0), N1);
13133 AddToWorklist(Tmp.getNode());
13134 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
13135 Tmp, N0.getOperand(1));
13138 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
13139 return NewVSel;
13141 return SDValue();
13144 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
13145 SDValue N0 = N->getOperand(0);
13146 EVT VT = N->getValueType(0);
13148 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
13149 if (N->hasOneUse() &&
13150 N->use_begin()->getOpcode() == ISD::FP_ROUND)
13151 return SDValue();
13153 // fold (fp_extend c1fp) -> c1fp
13154 if (isConstantFPBuildVectorOrConstantFP(N0))
13155 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
13157 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
13158 if (N0.getOpcode() == ISD::FP16_TO_FP &&
13159 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal)
13160 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0));
13162 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
13163 // value of X.
13164 if (N0.getOpcode() == ISD::FP_ROUND
13165 && N0.getConstantOperandVal(1) == 1) {
13166 SDValue In = N0.getOperand(0);
13167 if (In.getValueType() == VT) return In;
13168 if (VT.bitsLT(In.getValueType()))
13169 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
13170 In, N0.getOperand(1));
13171 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
13174 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
13175 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
13176 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
13177 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
13178 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
13179 LN0->getChain(),
13180 LN0->getBasePtr(), N0.getValueType(),
13181 LN0->getMemOperand());
13182 CombineTo(N, ExtLoad);
13183 CombineTo(N0.getNode(),
13184 DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
13185 N0.getValueType(), ExtLoad,
13186 DAG.getIntPtrConstant(1, SDLoc(N0))),
13187 ExtLoad.getValue(1));
13188 return SDValue(N, 0); // Return N so it doesn't get rechecked!
13191 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
13192 return NewVSel;
13194 return SDValue();
13197 SDValue DAGCombiner::visitFCEIL(SDNode *N) {
13198 SDValue N0 = N->getOperand(0);
13199 EVT VT = N->getValueType(0);
13201 // fold (fceil c1) -> fceil(c1)
13202 if (isConstantFPBuildVectorOrConstantFP(N0))
13203 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
13205 return SDValue();
13208 SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
13209 SDValue N0 = N->getOperand(0);
13210 EVT VT = N->getValueType(0);
13212 // fold (ftrunc c1) -> ftrunc(c1)
13213 if (isConstantFPBuildVectorOrConstantFP(N0))
13214 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
13216 // fold ftrunc (known rounded int x) -> x
13217 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
13218 // likely to be generated to extract integer from a rounded floating value.
13219 switch (N0.getOpcode()) {
13220 default: break;
13221 case ISD::FRINT:
13222 case ISD::FTRUNC:
13223 case ISD::FNEARBYINT:
13224 case ISD::FFLOOR:
13225 case ISD::FCEIL:
13226 return N0;
13229 return SDValue();
13232 SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
13233 SDValue N0 = N->getOperand(0);
13234 EVT VT = N->getValueType(0);
13236 // fold (ffloor c1) -> ffloor(c1)
13237 if (isConstantFPBuildVectorOrConstantFP(N0))
13238 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
13240 return SDValue();
13243 // FIXME: FNEG and FABS have a lot in common; refactor.
13244 SDValue DAGCombiner::visitFNEG(SDNode *N) {
13245 SDValue N0 = N->getOperand(0);
13246 EVT VT = N->getValueType(0);
13248 // Constant fold FNEG.
13249 if (isConstantFPBuildVectorOrConstantFP(N0))
13250 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
13252 if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
13253 &DAG.getTarget().Options, ForCodeSize))
13254 return GetNegatedExpression(N0, DAG, LegalOperations, ForCodeSize);
13256 // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading
13257 // constant pool values.
13258 if (!TLI.isFNegFree(VT) &&
13259 N0.getOpcode() == ISD::BITCAST &&
13260 N0.getNode()->hasOneUse()) {
13261 SDValue Int = N0.getOperand(0);
13262 EVT IntVT = Int.getValueType();
13263 if (IntVT.isInteger() && !IntVT.isVector()) {
13264 APInt SignMask;
13265 if (N0.getValueType().isVector()) {
13266 // For a vector, get a mask such as 0x80... per scalar element
13267 // and splat it.
13268 SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits());
13269 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
13270 } else {
13271 // For a scalar, just generate 0x80...
13272 SignMask = APInt::getSignMask(IntVT.getSizeInBits());
13274 SDLoc DL0(N0);
13275 Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int,
13276 DAG.getConstant(SignMask, DL0, IntVT));
13277 AddToWorklist(Int.getNode());
13278 return DAG.getBitcast(VT, Int);
13282 // (fneg (fmul c, x)) -> (fmul -c, x)
13283 if (N0.getOpcode() == ISD::FMUL &&
13284 (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) {
13285 ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
13286 if (CFP1) {
13287 APFloat CVal = CFP1->getValueAPF();
13288 CVal.changeSign();
13289 if (Level >= AfterLegalizeDAG &&
13290 (TLI.isFPImmLegal(CVal, VT, ForCodeSize) ||
13291 TLI.isOperationLegal(ISD::ConstantFP, VT)))
13292 return DAG.getNode(
13293 ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
13294 DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0.getOperand(1)),
13295 N0->getFlags());
13299 return SDValue();
13302 static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N,
13303 APFloat (*Op)(const APFloat &, const APFloat &)) {
13304 SDValue N0 = N->getOperand(0);
13305 SDValue N1 = N->getOperand(1);
13306 EVT VT = N->getValueType(0);
13307 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
13308 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
13310 if (N0CFP && N1CFP) {
13311 const APFloat &C0 = N0CFP->getValueAPF();
13312 const APFloat &C1 = N1CFP->getValueAPF();
13313 return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT);
13316 // Canonicalize to constant on RHS.
13317 if (isConstantFPBuildVectorOrConstantFP(N0) &&
13318 !isConstantFPBuildVectorOrConstantFP(N1))
13319 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
13321 return SDValue();
13324 SDValue DAGCombiner::visitFMINNUM(SDNode *N) {
13325 return visitFMinMax(DAG, N, minnum);
13328 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) {
13329 return visitFMinMax(DAG, N, maxnum);
13332 SDValue DAGCombiner::visitFMINIMUM(SDNode *N) {
13333 return visitFMinMax(DAG, N, minimum);
13336 SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) {
13337 return visitFMinMax(DAG, N, maximum);
13340 SDValue DAGCombiner::visitFABS(SDNode *N) {
13341 SDValue N0 = N->getOperand(0);
13342 EVT VT = N->getValueType(0);
13344 // fold (fabs c1) -> fabs(c1)
13345 if (isConstantFPBuildVectorOrConstantFP(N0))
13346 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
13348 // fold (fabs (fabs x)) -> (fabs x)
13349 if (N0.getOpcode() == ISD::FABS)
13350 return N->getOperand(0);
13352 // fold (fabs (fneg x)) -> (fabs x)
13353 // fold (fabs (fcopysign x, y)) -> (fabs x)
13354 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
13355 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
13357 // fabs(bitcast(x)) -> bitcast(x & ~sign) to avoid constant pool loads.
13358 if (!TLI.isFAbsFree(VT) && N0.getOpcode() == ISD::BITCAST && N0.hasOneUse()) {
13359 SDValue Int = N0.getOperand(0);
13360 EVT IntVT = Int.getValueType();
13361 if (IntVT.isInteger() && !IntVT.isVector()) {
13362 APInt SignMask;
13363 if (N0.getValueType().isVector()) {
13364 // For a vector, get a mask such as 0x7f... per scalar element
13365 // and splat it.
13366 SignMask = ~APInt::getSignMask(N0.getScalarValueSizeInBits());
13367 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
13368 } else {
13369 // For a scalar, just generate 0x7f...
13370 SignMask = ~APInt::getSignMask(IntVT.getSizeInBits());
13372 SDLoc DL(N0);
13373 Int = DAG.getNode(ISD::AND, DL, IntVT, Int,
13374 DAG.getConstant(SignMask, DL, IntVT));
13375 AddToWorklist(Int.getNode());
13376 return DAG.getBitcast(N->getValueType(0), Int);
13380 return SDValue();
13383 SDValue DAGCombiner::visitBRCOND(SDNode *N) {
13384 SDValue Chain = N->getOperand(0);
13385 SDValue N1 = N->getOperand(1);
13386 SDValue N2 = N->getOperand(2);
13388 // If N is a constant we could fold this into a fallthrough or unconditional
13389 // branch. However that doesn't happen very often in normal code, because
13390 // Instcombine/SimplifyCFG should have handled the available opportunities.
13391 // If we did this folding here, it would be necessary to update the
13392 // MachineBasicBlock CFG, which is awkward.
13394 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
13395 // on the target.
13396 if (N1.getOpcode() == ISD::SETCC &&
13397 TLI.isOperationLegalOrCustom(ISD::BR_CC,
13398 N1.getOperand(0).getValueType())) {
13399 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
13400 Chain, N1.getOperand(2),
13401 N1.getOperand(0), N1.getOperand(1), N2);
13404 if (N1.hasOneUse()) {
13405 if (SDValue NewN1 = rebuildSetCC(N1))
13406 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, NewN1, N2);
13409 return SDValue();
13412 SDValue DAGCombiner::rebuildSetCC(SDValue N) {
13413 if (N.getOpcode() == ISD::SRL ||
13414 (N.getOpcode() == ISD::TRUNCATE &&
13415 (N.getOperand(0).hasOneUse() &&
13416 N.getOperand(0).getOpcode() == ISD::SRL))) {
13417 // Look pass the truncate.
13418 if (N.getOpcode() == ISD::TRUNCATE)
13419 N = N.getOperand(0);
13421 // Match this pattern so that we can generate simpler code:
13423 // %a = ...
13424 // %b = and i32 %a, 2
13425 // %c = srl i32 %b, 1
13426 // brcond i32 %c ...
13428 // into
13430 // %a = ...
13431 // %b = and i32 %a, 2
13432 // %c = setcc eq %b, 0
13433 // brcond %c ...
13435 // This applies only when the AND constant value has one bit set and the
13436 // SRL constant is equal to the log2 of the AND constant. The back-end is
13437 // smart enough to convert the result into a TEST/JMP sequence.
13438 SDValue Op0 = N.getOperand(0);
13439 SDValue Op1 = N.getOperand(1);
13441 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) {
13442 SDValue AndOp1 = Op0.getOperand(1);
13444 if (AndOp1.getOpcode() == ISD::Constant) {
13445 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
13447 if (AndConst.isPowerOf2() &&
13448 cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) {
13449 SDLoc DL(N);
13450 return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()),
13451 Op0, DAG.getConstant(0, DL, Op0.getValueType()),
13452 ISD::SETNE);
13458 // Transform br(xor(x, y)) -> br(x != y)
13459 // Transform br(xor(xor(x,y), 1)) -> br (x == y)
13460 if (N.getOpcode() == ISD::XOR) {
13461 // Because we may call this on a speculatively constructed
13462 // SimplifiedSetCC Node, we need to simplify this node first.
13463 // Ideally this should be folded into SimplifySetCC and not
13464 // here. For now, grab a handle to N so we don't lose it from
13465 // replacements interal to the visit.
13466 HandleSDNode XORHandle(N);
13467 while (N.getOpcode() == ISD::XOR) {
13468 SDValue Tmp = visitXOR(N.getNode());
13469 // No simplification done.
13470 if (!Tmp.getNode())
13471 break;
13472 // Returning N is form in-visit replacement that may invalidated
13473 // N. Grab value from Handle.
13474 if (Tmp.getNode() == N.getNode())
13475 N = XORHandle.getValue();
13476 else // Node simplified. Try simplifying again.
13477 N = Tmp;
13480 if (N.getOpcode() != ISD::XOR)
13481 return N;
13483 SDNode *TheXor = N.getNode();
13485 SDValue Op0 = TheXor->getOperand(0);
13486 SDValue Op1 = TheXor->getOperand(1);
13488 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
13489 bool Equal = false;
13490 if (isOneConstant(Op0) && Op0.hasOneUse() &&
13491 Op0.getOpcode() == ISD::XOR) {
13492 TheXor = Op0.getNode();
13493 Equal = true;
13496 EVT SetCCVT = N.getValueType();
13497 if (LegalTypes)
13498 SetCCVT = getSetCCResultType(SetCCVT);
13499 // Replace the uses of XOR with SETCC
13500 return DAG.getSetCC(SDLoc(TheXor), SetCCVT, Op0, Op1,
13501 Equal ? ISD::SETEQ : ISD::SETNE);
13505 return SDValue();
13508 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
13510 SDValue DAGCombiner::visitBR_CC(SDNode *N) {
13511 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
13512 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
13514 // If N is a constant we could fold this into a fallthrough or unconditional
13515 // branch. However that doesn't happen very often in normal code, because
13516 // Instcombine/SimplifyCFG should have handled the available opportunities.
13517 // If we did this folding here, it would be necessary to update the
13518 // MachineBasicBlock CFG, which is awkward.
13520 // Use SimplifySetCC to simplify SETCC's.
13521 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
13522 CondLHS, CondRHS, CC->get(), SDLoc(N),
13523 false);
13524 if (Simp.getNode()) AddToWorklist(Simp.getNode());
13526 // fold to a simpler setcc
13527 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
13528 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
13529 N->getOperand(0), Simp.getOperand(2),
13530 Simp.getOperand(0), Simp.getOperand(1),
13531 N->getOperand(4));
13533 return SDValue();
13536 /// Return true if 'Use' is a load or a store that uses N as its base pointer
13537 /// and that N may be folded in the load / store addressing mode.
13538 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
13539 SelectionDAG &DAG,
13540 const TargetLowering &TLI) {
13541 EVT VT;
13542 unsigned AS;
13544 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
13545 if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
13546 return false;
13547 VT = LD->getMemoryVT();
13548 AS = LD->getAddressSpace();
13549 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
13550 if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
13551 return false;
13552 VT = ST->getMemoryVT();
13553 AS = ST->getAddressSpace();
13554 } else
13555 return false;
13557 TargetLowering::AddrMode AM;
13558 if (N->getOpcode() == ISD::ADD) {
13559 AM.HasBaseReg = true;
13560 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
13561 if (Offset)
13562 // [reg +/- imm]
13563 AM.BaseOffs = Offset->getSExtValue();
13564 else
13565 // [reg +/- reg]
13566 AM.Scale = 1;
13567 } else if (N->getOpcode() == ISD::SUB) {
13568 AM.HasBaseReg = true;
13569 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
13570 if (Offset)
13571 // [reg +/- imm]
13572 AM.BaseOffs = -Offset->getSExtValue();
13573 else
13574 // [reg +/- reg]
13575 AM.Scale = 1;
13576 } else
13577 return false;
13579 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM,
13580 VT.getTypeForEVT(*DAG.getContext()), AS);
13583 /// Try turning a load/store into a pre-indexed load/store when the base
13584 /// pointer is an add or subtract and it has other uses besides the load/store.
13585 /// After the transformation, the new indexed load/store has effectively folded
13586 /// the add/subtract in and all of its other uses are redirected to the
13587 /// new load/store.
13588 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
13589 if (Level < AfterLegalizeDAG)
13590 return false;
13592 bool isLoad = true;
13593 SDValue Ptr;
13594 EVT VT;
13595 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13596 if (LD->isIndexed())
13597 return false;
13598 VT = LD->getMemoryVT();
13599 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
13600 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
13601 return false;
13602 Ptr = LD->getBasePtr();
13603 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
13604 if (ST->isIndexed())
13605 return false;
13606 VT = ST->getMemoryVT();
13607 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
13608 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
13609 return false;
13610 Ptr = ST->getBasePtr();
13611 isLoad = false;
13612 } else {
13613 return false;
13616 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
13617 // out. There is no reason to make this a preinc/predec.
13618 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
13619 Ptr.getNode()->hasOneUse())
13620 return false;
13622 // Ask the target to do addressing mode selection.
13623 SDValue BasePtr;
13624 SDValue Offset;
13625 ISD::MemIndexedMode AM = ISD::UNINDEXED;
13626 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
13627 return false;
13629 // Backends without true r+i pre-indexed forms may need to pass a
13630 // constant base with a variable offset so that constant coercion
13631 // will work with the patterns in canonical form.
13632 bool Swapped = false;
13633 if (isa<ConstantSDNode>(BasePtr)) {
13634 std::swap(BasePtr, Offset);
13635 Swapped = true;
13638 // Don't create a indexed load / store with zero offset.
13639 if (isNullConstant(Offset))
13640 return false;
13642 // Try turning it into a pre-indexed load / store except when:
13643 // 1) The new base ptr is a frame index.
13644 // 2) If N is a store and the new base ptr is either the same as or is a
13645 // predecessor of the value being stored.
13646 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
13647 // that would create a cycle.
13648 // 4) All uses are load / store ops that use it as old base ptr.
13650 // Check #1. Preinc'ing a frame index would require copying the stack pointer
13651 // (plus the implicit offset) to a register to preinc anyway.
13652 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
13653 return false;
13655 // Check #2.
13656 if (!isLoad) {
13657 SDValue Val = cast<StoreSDNode>(N)->getValue();
13659 // Would require a copy.
13660 if (Val == BasePtr)
13661 return false;
13663 // Would create a cycle.
13664 if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode()))
13665 return false;
13668 // Caches for hasPredecessorHelper.
13669 SmallPtrSet<const SDNode *, 32> Visited;
13670 SmallVector<const SDNode *, 16> Worklist;
13671 Worklist.push_back(N);
13673 // If the offset is a constant, there may be other adds of constants that
13674 // can be folded with this one. We should do this to avoid having to keep
13675 // a copy of the original base pointer.
13676 SmallVector<SDNode *, 16> OtherUses;
13677 if (isa<ConstantSDNode>(Offset))
13678 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(),
13679 UE = BasePtr.getNode()->use_end();
13680 UI != UE; ++UI) {
13681 SDUse &Use = UI.getUse();
13682 // Skip the use that is Ptr and uses of other results from BasePtr's
13683 // node (important for nodes that return multiple results).
13684 if (Use.getUser() == Ptr.getNode() || Use != BasePtr)
13685 continue;
13687 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist))
13688 continue;
13690 if (Use.getUser()->getOpcode() != ISD::ADD &&
13691 Use.getUser()->getOpcode() != ISD::SUB) {
13692 OtherUses.clear();
13693 break;
13696 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1);
13697 if (!isa<ConstantSDNode>(Op1)) {
13698 OtherUses.clear();
13699 break;
13702 // FIXME: In some cases, we can be smarter about this.
13703 if (Op1.getValueType() != Offset.getValueType()) {
13704 OtherUses.clear();
13705 break;
13708 OtherUses.push_back(Use.getUser());
13711 if (Swapped)
13712 std::swap(BasePtr, Offset);
13714 // Now check for #3 and #4.
13715 bool RealUse = false;
13717 for (SDNode *Use : Ptr.getNode()->uses()) {
13718 if (Use == N)
13719 continue;
13720 if (SDNode::hasPredecessorHelper(Use, Visited, Worklist))
13721 return false;
13723 // If Ptr may be folded in addressing mode of other use, then it's
13724 // not profitable to do this transformation.
13725 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
13726 RealUse = true;
13729 if (!RealUse)
13730 return false;
13732 SDValue Result;
13733 if (isLoad)
13734 Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
13735 BasePtr, Offset, AM);
13736 else
13737 Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
13738 BasePtr, Offset, AM);
13739 ++PreIndexedNodes;
13740 ++NodesCombined;
13741 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: ";
13742 Result.getNode()->dump(&DAG); dbgs() << '\n');
13743 WorklistRemover DeadNodes(*this);
13744 if (isLoad) {
13745 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
13746 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
13747 } else {
13748 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
13751 // Finally, since the node is now dead, remove it from the graph.
13752 deleteAndRecombine(N);
13754 if (Swapped)
13755 std::swap(BasePtr, Offset);
13757 // Replace other uses of BasePtr that can be updated to use Ptr
13758 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
13759 unsigned OffsetIdx = 1;
13760 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
13761 OffsetIdx = 0;
13762 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
13763 BasePtr.getNode() && "Expected BasePtr operand");
13765 // We need to replace ptr0 in the following expression:
13766 // x0 * offset0 + y0 * ptr0 = t0
13767 // knowing that
13768 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
13770 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
13771 // indexed load/store and the expression that needs to be re-written.
13773 // Therefore, we have:
13774 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
13776 ConstantSDNode *CN =
13777 cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
13778 int X0, X1, Y0, Y1;
13779 const APInt &Offset0 = CN->getAPIntValue();
13780 APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
13782 X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
13783 Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
13784 X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
13785 Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
13787 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
13789 APInt CNV = Offset0;
13790 if (X0 < 0) CNV = -CNV;
13791 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
13792 else CNV = CNV - Offset1;
13794 SDLoc DL(OtherUses[i]);
13796 // We can now generate the new expression.
13797 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0));
13798 SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
13800 SDValue NewUse = DAG.getNode(Opcode,
13802 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
13803 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
13804 deleteAndRecombine(OtherUses[i]);
13807 // Replace the uses of Ptr with uses of the updated base value.
13808 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
13809 deleteAndRecombine(Ptr.getNode());
13810 AddToWorklist(Result.getNode());
13812 return true;
13815 /// Try to combine a load/store with a add/sub of the base pointer node into a
13816 /// post-indexed load/store. The transformation folded the add/subtract into the
13817 /// new indexed load/store effectively and all of its uses are redirected to the
13818 /// new load/store.
13819 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
13820 if (Level < AfterLegalizeDAG)
13821 return false;
13823 bool isLoad = true;
13824 SDValue Ptr;
13825 EVT VT;
13826 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13827 if (LD->isIndexed())
13828 return false;
13829 VT = LD->getMemoryVT();
13830 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
13831 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
13832 return false;
13833 Ptr = LD->getBasePtr();
13834 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
13835 if (ST->isIndexed())
13836 return false;
13837 VT = ST->getMemoryVT();
13838 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
13839 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
13840 return false;
13841 Ptr = ST->getBasePtr();
13842 isLoad = false;
13843 } else {
13844 return false;
13847 if (Ptr.getNode()->hasOneUse())
13848 return false;
13850 for (SDNode *Op : Ptr.getNode()->uses()) {
13851 if (Op == N ||
13852 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
13853 continue;
13855 SDValue BasePtr;
13856 SDValue Offset;
13857 ISD::MemIndexedMode AM = ISD::UNINDEXED;
13858 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
13859 // Don't create a indexed load / store with zero offset.
13860 if (isNullConstant(Offset))
13861 continue;
13863 // Try turning it into a post-indexed load / store except when
13864 // 1) All uses are load / store ops that use it as base ptr (and
13865 // it may be folded as addressing mmode).
13866 // 2) Op must be independent of N, i.e. Op is neither a predecessor
13867 // nor a successor of N. Otherwise, if Op is folded that would
13868 // create a cycle.
13870 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
13871 continue;
13873 // Check for #1.
13874 bool TryNext = false;
13875 for (SDNode *Use : BasePtr.getNode()->uses()) {
13876 if (Use == Ptr.getNode())
13877 continue;
13879 // If all the uses are load / store addresses, then don't do the
13880 // transformation.
13881 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
13882 bool RealUse = false;
13883 for (SDNode *UseUse : Use->uses()) {
13884 if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
13885 RealUse = true;
13888 if (!RealUse) {
13889 TryNext = true;
13890 break;
13895 if (TryNext)
13896 continue;
13898 // Check for #2.
13899 SmallPtrSet<const SDNode *, 32> Visited;
13900 SmallVector<const SDNode *, 8> Worklist;
13901 // Ptr is predecessor to both N and Op.
13902 Visited.insert(Ptr.getNode());
13903 Worklist.push_back(N);
13904 Worklist.push_back(Op);
13905 if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) &&
13906 !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) {
13907 SDValue Result = isLoad
13908 ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
13909 BasePtr, Offset, AM)
13910 : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
13911 BasePtr, Offset, AM);
13912 ++PostIndexedNodes;
13913 ++NodesCombined;
13914 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG);
13915 dbgs() << "\nWith: "; Result.getNode()->dump(&DAG);
13916 dbgs() << '\n');
13917 WorklistRemover DeadNodes(*this);
13918 if (isLoad) {
13919 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
13920 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
13921 } else {
13922 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
13925 // Finally, since the node is now dead, remove it from the graph.
13926 deleteAndRecombine(N);
13928 // Replace the uses of Use with uses of the updated base value.
13929 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
13930 Result.getValue(isLoad ? 1 : 0));
13931 deleteAndRecombine(Op);
13932 return true;
13937 return false;
13940 /// Return the base-pointer arithmetic from an indexed \p LD.
13941 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
13942 ISD::MemIndexedMode AM = LD->getAddressingMode();
13943 assert(AM != ISD::UNINDEXED);
13944 SDValue BP = LD->getOperand(1);
13945 SDValue Inc = LD->getOperand(2);
13947 // Some backends use TargetConstants for load offsets, but don't expect
13948 // TargetConstants in general ADD nodes. We can convert these constants into
13949 // regular Constants (if the constant is not opaque).
13950 assert((Inc.getOpcode() != ISD::TargetConstant ||
13951 !cast<ConstantSDNode>(Inc)->isOpaque()) &&
13952 "Cannot split out indexing using opaque target constants");
13953 if (Inc.getOpcode() == ISD::TargetConstant) {
13954 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
13955 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc),
13956 ConstInc->getValueType(0));
13959 unsigned Opc =
13960 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
13961 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
13964 static inline int numVectorEltsOrZero(EVT T) {
13965 return T.isVector() ? T.getVectorNumElements() : 0;
13968 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) {
13969 Val = ST->getValue();
13970 EVT STType = Val.getValueType();
13971 EVT STMemType = ST->getMemoryVT();
13972 if (STType == STMemType)
13973 return true;
13974 if (isTypeLegal(STMemType))
13975 return false; // fail.
13976 if (STType.isFloatingPoint() && STMemType.isFloatingPoint() &&
13977 TLI.isOperationLegal(ISD::FTRUNC, STMemType)) {
13978 Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val);
13979 return true;
13981 if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) &&
13982 STType.isInteger() && STMemType.isInteger()) {
13983 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val);
13984 return true;
13986 if (STType.getSizeInBits() == STMemType.getSizeInBits()) {
13987 Val = DAG.getBitcast(STMemType, Val);
13988 return true;
13990 return false; // fail.
13993 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) {
13994 EVT LDMemType = LD->getMemoryVT();
13995 EVT LDType = LD->getValueType(0);
13996 assert(Val.getValueType() == LDMemType &&
13997 "Attempting to extend value of non-matching type");
13998 if (LDType == LDMemType)
13999 return true;
14000 if (LDMemType.isInteger() && LDType.isInteger()) {
14001 switch (LD->getExtensionType()) {
14002 case ISD::NON_EXTLOAD:
14003 Val = DAG.getBitcast(LDType, Val);
14004 return true;
14005 case ISD::EXTLOAD:
14006 Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val);
14007 return true;
14008 case ISD::SEXTLOAD:
14009 Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val);
14010 return true;
14011 case ISD::ZEXTLOAD:
14012 Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val);
14013 return true;
14016 return false;
14019 SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) {
14020 if (OptLevel == CodeGenOpt::None || !LD->isSimple())
14021 return SDValue();
14022 SDValue Chain = LD->getOperand(0);
14023 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode());
14024 // TODO: Relax this restriction for unordered atomics (see D66309)
14025 if (!ST || !ST->isSimple())
14026 return SDValue();
14028 EVT LDType = LD->getValueType(0);
14029 EVT LDMemType = LD->getMemoryVT();
14030 EVT STMemType = ST->getMemoryVT();
14031 EVT STType = ST->getValue().getValueType();
14033 BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG);
14034 BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG);
14035 int64_t Offset;
14036 if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset))
14037 return SDValue();
14039 // Normalize for Endianness. After this Offset=0 will denote that the least
14040 // significant bit in the loaded value maps to the least significant bit in
14041 // the stored value). With Offset=n (for n > 0) the loaded value starts at the
14042 // n:th least significant byte of the stored value.
14043 if (DAG.getDataLayout().isBigEndian())
14044 Offset = (STMemType.getStoreSizeInBits() -
14045 LDMemType.getStoreSizeInBits()) / 8 - Offset;
14047 // Check that the stored value cover all bits that are loaded.
14048 bool STCoversLD =
14049 (Offset >= 0) &&
14050 (Offset * 8 + LDMemType.getSizeInBits() <= STMemType.getSizeInBits());
14052 auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue {
14053 if (LD->isIndexed()) {
14054 bool IsSub = (LD->getAddressingMode() == ISD::PRE_DEC ||
14055 LD->getAddressingMode() == ISD::POST_DEC);
14056 unsigned Opc = IsSub ? ISD::SUB : ISD::ADD;
14057 SDValue Idx = DAG.getNode(Opc, SDLoc(LD), LD->getOperand(1).getValueType(),
14058 LD->getOperand(1), LD->getOperand(2));
14059 SDValue Ops[] = {Val, Idx, Chain};
14060 return CombineTo(LD, Ops, 3);
14062 return CombineTo(LD, Val, Chain);
14065 if (!STCoversLD)
14066 return SDValue();
14068 // Memory as copy space (potentially masked).
14069 if (Offset == 0 && LDType == STType && STMemType == LDMemType) {
14070 // Simple case: Direct non-truncating forwarding
14071 if (LDType.getSizeInBits() == LDMemType.getSizeInBits())
14072 return ReplaceLd(LD, ST->getValue(), Chain);
14073 // Can we model the truncate and extension with an and mask?
14074 if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() &&
14075 !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) {
14076 // Mask to size of LDMemType
14077 auto Mask =
14078 DAG.getConstant(APInt::getLowBitsSet(STType.getSizeInBits(),
14079 STMemType.getSizeInBits()),
14080 SDLoc(ST), STType);
14081 auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask);
14082 return ReplaceLd(LD, Val, Chain);
14086 // TODO: Deal with nonzero offset.
14087 if (LD->getBasePtr().isUndef() || Offset != 0)
14088 return SDValue();
14089 // Model necessary truncations / extenstions.
14090 SDValue Val;
14091 // Truncate Value To Stored Memory Size.
14092 do {
14093 if (!getTruncatedStoreValue(ST, Val))
14094 continue;
14095 if (!isTypeLegal(LDMemType))
14096 continue;
14097 if (STMemType != LDMemType) {
14098 // TODO: Support vectors? This requires extract_subvector/bitcast.
14099 if (!STMemType.isVector() && !LDMemType.isVector() &&
14100 STMemType.isInteger() && LDMemType.isInteger())
14101 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val);
14102 else
14103 continue;
14105 if (!extendLoadedValueToExtension(LD, Val))
14106 continue;
14107 return ReplaceLd(LD, Val, Chain);
14108 } while (false);
14110 // On failure, cleanup dead nodes we may have created.
14111 if (Val->use_empty())
14112 deleteAndRecombine(Val.getNode());
14113 return SDValue();
14116 SDValue DAGCombiner::visitLOAD(SDNode *N) {
14117 LoadSDNode *LD = cast<LoadSDNode>(N);
14118 SDValue Chain = LD->getChain();
14119 SDValue Ptr = LD->getBasePtr();
14121 // If load is not volatile and there are no uses of the loaded value (and
14122 // the updated indexed value in case of indexed loads), change uses of the
14123 // chain value into uses of the chain input (i.e. delete the dead load).
14124 // TODO: Allow this for unordered atomics (see D66309)
14125 if (LD->isSimple()) {
14126 if (N->getValueType(1) == MVT::Other) {
14127 // Unindexed loads.
14128 if (!N->hasAnyUseOfValue(0)) {
14129 // It's not safe to use the two value CombineTo variant here. e.g.
14130 // v1, chain2 = load chain1, loc
14131 // v2, chain3 = load chain2, loc
14132 // v3 = add v2, c
14133 // Now we replace use of chain2 with chain1. This makes the second load
14134 // isomorphic to the one we are deleting, and thus makes this load live.
14135 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG);
14136 dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG);
14137 dbgs() << "\n");
14138 WorklistRemover DeadNodes(*this);
14139 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
14140 AddUsersToWorklist(Chain.getNode());
14141 if (N->use_empty())
14142 deleteAndRecombine(N);
14144 return SDValue(N, 0); // Return N so it doesn't get rechecked!
14146 } else {
14147 // Indexed loads.
14148 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
14150 // If this load has an opaque TargetConstant offset, then we cannot split
14151 // the indexing into an add/sub directly (that TargetConstant may not be
14152 // valid for a different type of node, and we cannot convert an opaque
14153 // target constant into a regular constant).
14154 bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant &&
14155 cast<ConstantSDNode>(LD->getOperand(2))->isOpaque();
14157 if (!N->hasAnyUseOfValue(0) &&
14158 ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) {
14159 SDValue Undef = DAG.getUNDEF(N->getValueType(0));
14160 SDValue Index;
14161 if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) {
14162 Index = SplitIndexingFromLoad(LD);
14163 // Try to fold the base pointer arithmetic into subsequent loads and
14164 // stores.
14165 AddUsersToWorklist(N);
14166 } else
14167 Index = DAG.getUNDEF(N->getValueType(1));
14168 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG);
14169 dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG);
14170 dbgs() << " and 2 other values\n");
14171 WorklistRemover DeadNodes(*this);
14172 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
14173 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
14174 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
14175 deleteAndRecombine(N);
14176 return SDValue(N, 0); // Return N so it doesn't get rechecked!
14181 // If this load is directly stored, replace the load value with the stored
14182 // value.
14183 if (auto V = ForwardStoreValueToDirectLoad(LD))
14184 return V;
14186 // Try to infer better alignment information than the load already has.
14187 if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
14188 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
14189 if (Align > LD->getAlignment() && LD->getSrcValueOffset() % Align == 0) {
14190 SDValue NewLoad = DAG.getExtLoad(
14191 LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr,
14192 LD->getPointerInfo(), LD->getMemoryVT(), Align,
14193 LD->getMemOperand()->getFlags(), LD->getAAInfo());
14194 // NewLoad will always be N as we are only refining the alignment
14195 assert(NewLoad.getNode() == N);
14196 (void)NewLoad;
14201 if (LD->isUnindexed()) {
14202 // Walk up chain skipping non-aliasing memory nodes.
14203 SDValue BetterChain = FindBetterChain(LD, Chain);
14205 // If there is a better chain.
14206 if (Chain != BetterChain) {
14207 SDValue ReplLoad;
14209 // Replace the chain to void dependency.
14210 if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
14211 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
14212 BetterChain, Ptr, LD->getMemOperand());
14213 } else {
14214 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
14215 LD->getValueType(0),
14216 BetterChain, Ptr, LD->getMemoryVT(),
14217 LD->getMemOperand());
14220 // Create token factor to keep old chain connected.
14221 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
14222 MVT::Other, Chain, ReplLoad.getValue(1));
14224 // Replace uses with load result and token factor
14225 return CombineTo(N, ReplLoad.getValue(0), Token);
14229 // Try transforming N to an indexed load.
14230 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
14231 return SDValue(N, 0);
14233 // Try to slice up N to more direct loads if the slices are mapped to
14234 // different register banks or pairing can take place.
14235 if (SliceUpLoad(N))
14236 return SDValue(N, 0);
14238 return SDValue();
14241 namespace {
14243 /// Helper structure used to slice a load in smaller loads.
14244 /// Basically a slice is obtained from the following sequence:
14245 /// Origin = load Ty1, Base
14246 /// Shift = srl Ty1 Origin, CstTy Amount
14247 /// Inst = trunc Shift to Ty2
14249 /// Then, it will be rewritten into:
14250 /// Slice = load SliceTy, Base + SliceOffset
14251 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
14253 /// SliceTy is deduced from the number of bits that are actually used to
14254 /// build Inst.
14255 struct LoadedSlice {
14256 /// Helper structure used to compute the cost of a slice.
14257 struct Cost {
14258 /// Are we optimizing for code size.
14259 bool ForCodeSize = false;
14261 /// Various cost.
14262 unsigned Loads = 0;
14263 unsigned Truncates = 0;
14264 unsigned CrossRegisterBanksCopies = 0;
14265 unsigned ZExts = 0;
14266 unsigned Shift = 0;
14268 explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {}
14270 /// Get the cost of one isolated slice.
14271 Cost(const LoadedSlice &LS, bool ForCodeSize)
14272 : ForCodeSize(ForCodeSize), Loads(1) {
14273 EVT TruncType = LS.Inst->getValueType(0);
14274 EVT LoadedType = LS.getLoadedType();
14275 if (TruncType != LoadedType &&
14276 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
14277 ZExts = 1;
14280 /// Account for slicing gain in the current cost.
14281 /// Slicing provide a few gains like removing a shift or a
14282 /// truncate. This method allows to grow the cost of the original
14283 /// load with the gain from this slice.
14284 void addSliceGain(const LoadedSlice &LS) {
14285 // Each slice saves a truncate.
14286 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
14287 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(),
14288 LS.Inst->getValueType(0)))
14289 ++Truncates;
14290 // If there is a shift amount, this slice gets rid of it.
14291 if (LS.Shift)
14292 ++Shift;
14293 // If this slice can merge a cross register bank copy, account for it.
14294 if (LS.canMergeExpensiveCrossRegisterBankCopy())
14295 ++CrossRegisterBanksCopies;
14298 Cost &operator+=(const Cost &RHS) {
14299 Loads += RHS.Loads;
14300 Truncates += RHS.Truncates;
14301 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
14302 ZExts += RHS.ZExts;
14303 Shift += RHS.Shift;
14304 return *this;
14307 bool operator==(const Cost &RHS) const {
14308 return Loads == RHS.Loads && Truncates == RHS.Truncates &&
14309 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
14310 ZExts == RHS.ZExts && Shift == RHS.Shift;
14313 bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
14315 bool operator<(const Cost &RHS) const {
14316 // Assume cross register banks copies are as expensive as loads.
14317 // FIXME: Do we want some more target hooks?
14318 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
14319 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
14320 // Unless we are optimizing for code size, consider the
14321 // expensive operation first.
14322 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
14323 return ExpensiveOpsLHS < ExpensiveOpsRHS;
14324 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
14325 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
14328 bool operator>(const Cost &RHS) const { return RHS < *this; }
14330 bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
14332 bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
14335 // The last instruction that represent the slice. This should be a
14336 // truncate instruction.
14337 SDNode *Inst;
14339 // The original load instruction.
14340 LoadSDNode *Origin;
14342 // The right shift amount in bits from the original load.
14343 unsigned Shift;
14345 // The DAG from which Origin came from.
14346 // This is used to get some contextual information about legal types, etc.
14347 SelectionDAG *DAG;
14349 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
14350 unsigned Shift = 0, SelectionDAG *DAG = nullptr)
14351 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
14353 /// Get the bits used in a chunk of bits \p BitWidth large.
14354 /// \return Result is \p BitWidth and has used bits set to 1 and
14355 /// not used bits set to 0.
14356 APInt getUsedBits() const {
14357 // Reproduce the trunc(lshr) sequence:
14358 // - Start from the truncated value.
14359 // - Zero extend to the desired bit width.
14360 // - Shift left.
14361 assert(Origin && "No original load to compare against.");
14362 unsigned BitWidth = Origin->getValueSizeInBits(0);
14363 assert(Inst && "This slice is not bound to an instruction");
14364 assert(Inst->getValueSizeInBits(0) <= BitWidth &&
14365 "Extracted slice is bigger than the whole type!");
14366 APInt UsedBits(Inst->getValueSizeInBits(0), 0);
14367 UsedBits.setAllBits();
14368 UsedBits = UsedBits.zext(BitWidth);
14369 UsedBits <<= Shift;
14370 return UsedBits;
14373 /// Get the size of the slice to be loaded in bytes.
14374 unsigned getLoadedSize() const {
14375 unsigned SliceSize = getUsedBits().countPopulation();
14376 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
14377 return SliceSize / 8;
14380 /// Get the type that will be loaded for this slice.
14381 /// Note: This may not be the final type for the slice.
14382 EVT getLoadedType() const {
14383 assert(DAG && "Missing context");
14384 LLVMContext &Ctxt = *DAG->getContext();
14385 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
14388 /// Get the alignment of the load used for this slice.
14389 unsigned getAlignment() const {
14390 unsigned Alignment = Origin->getAlignment();
14391 uint64_t Offset = getOffsetFromBase();
14392 if (Offset != 0)
14393 Alignment = MinAlign(Alignment, Alignment + Offset);
14394 return Alignment;
14397 /// Check if this slice can be rewritten with legal operations.
14398 bool isLegal() const {
14399 // An invalid slice is not legal.
14400 if (!Origin || !Inst || !DAG)
14401 return false;
14403 // Offsets are for indexed load only, we do not handle that.
14404 if (!Origin->getOffset().isUndef())
14405 return false;
14407 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
14409 // Check that the type is legal.
14410 EVT SliceType = getLoadedType();
14411 if (!TLI.isTypeLegal(SliceType))
14412 return false;
14414 // Check that the load is legal for this type.
14415 if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
14416 return false;
14418 // Check that the offset can be computed.
14419 // 1. Check its type.
14420 EVT PtrType = Origin->getBasePtr().getValueType();
14421 if (PtrType == MVT::Untyped || PtrType.isExtended())
14422 return false;
14424 // 2. Check that it fits in the immediate.
14425 if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
14426 return false;
14428 // 3. Check that the computation is legal.
14429 if (!TLI.isOperationLegal(ISD::ADD, PtrType))
14430 return false;
14432 // Check that the zext is legal if it needs one.
14433 EVT TruncateType = Inst->getValueType(0);
14434 if (TruncateType != SliceType &&
14435 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
14436 return false;
14438 return true;
14441 /// Get the offset in bytes of this slice in the original chunk of
14442 /// bits.
14443 /// \pre DAG != nullptr.
14444 uint64_t getOffsetFromBase() const {
14445 assert(DAG && "Missing context.");
14446 bool IsBigEndian = DAG->getDataLayout().isBigEndian();
14447 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
14448 uint64_t Offset = Shift / 8;
14449 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
14450 assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
14451 "The size of the original loaded type is not a multiple of a"
14452 " byte.");
14453 // If Offset is bigger than TySizeInBytes, it means we are loading all
14454 // zeros. This should have been optimized before in the process.
14455 assert(TySizeInBytes > Offset &&
14456 "Invalid shift amount for given loaded size");
14457 if (IsBigEndian)
14458 Offset = TySizeInBytes - Offset - getLoadedSize();
14459 return Offset;
14462 /// Generate the sequence of instructions to load the slice
14463 /// represented by this object and redirect the uses of this slice to
14464 /// this new sequence of instructions.
14465 /// \pre this->Inst && this->Origin are valid Instructions and this
14466 /// object passed the legal check: LoadedSlice::isLegal returned true.
14467 /// \return The last instruction of the sequence used to load the slice.
14468 SDValue loadSlice() const {
14469 assert(Inst && Origin && "Unable to replace a non-existing slice.");
14470 const SDValue &OldBaseAddr = Origin->getBasePtr();
14471 SDValue BaseAddr = OldBaseAddr;
14472 // Get the offset in that chunk of bytes w.r.t. the endianness.
14473 int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
14474 assert(Offset >= 0 && "Offset too big to fit in int64_t!");
14475 if (Offset) {
14476 // BaseAddr = BaseAddr + Offset.
14477 EVT ArithType = BaseAddr.getValueType();
14478 SDLoc DL(Origin);
14479 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr,
14480 DAG->getConstant(Offset, DL, ArithType));
14483 // Create the type of the loaded slice according to its size.
14484 EVT SliceType = getLoadedType();
14486 // Create the load for the slice.
14487 SDValue LastInst =
14488 DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
14489 Origin->getPointerInfo().getWithOffset(Offset),
14490 getAlignment(), Origin->getMemOperand()->getFlags());
14491 // If the final type is not the same as the loaded type, this means that
14492 // we have to pad with zero. Create a zero extend for that.
14493 EVT FinalType = Inst->getValueType(0);
14494 if (SliceType != FinalType)
14495 LastInst =
14496 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
14497 return LastInst;
14500 /// Check if this slice can be merged with an expensive cross register
14501 /// bank copy. E.g.,
14502 /// i = load i32
14503 /// f = bitcast i32 i to float
14504 bool canMergeExpensiveCrossRegisterBankCopy() const {
14505 if (!Inst || !Inst->hasOneUse())
14506 return false;
14507 SDNode *Use = *Inst->use_begin();
14508 if (Use->getOpcode() != ISD::BITCAST)
14509 return false;
14510 assert(DAG && "Missing context");
14511 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
14512 EVT ResVT = Use->getValueType(0);
14513 const TargetRegisterClass *ResRC =
14514 TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent());
14515 const TargetRegisterClass *ArgRC =
14516 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(),
14517 Use->getOperand(0)->isDivergent());
14518 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
14519 return false;
14521 // At this point, we know that we perform a cross-register-bank copy.
14522 // Check if it is expensive.
14523 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
14524 // Assume bitcasts are cheap, unless both register classes do not
14525 // explicitly share a common sub class.
14526 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
14527 return false;
14529 // Check if it will be merged with the load.
14530 // 1. Check the alignment constraint.
14531 unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment(
14532 ResVT.getTypeForEVT(*DAG->getContext()));
14534 if (RequiredAlignment > getAlignment())
14535 return false;
14537 // 2. Check that the load is a legal operation for that type.
14538 if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
14539 return false;
14541 // 3. Check that we do not have a zext in the way.
14542 if (Inst->getValueType(0) != getLoadedType())
14543 return false;
14545 return true;
14549 } // end anonymous namespace
14551 /// Check that all bits set in \p UsedBits form a dense region, i.e.,
14552 /// \p UsedBits looks like 0..0 1..1 0..0.
14553 static bool areUsedBitsDense(const APInt &UsedBits) {
14554 // If all the bits are one, this is dense!
14555 if (UsedBits.isAllOnesValue())
14556 return true;
14558 // Get rid of the unused bits on the right.
14559 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
14560 // Get rid of the unused bits on the left.
14561 if (NarrowedUsedBits.countLeadingZeros())
14562 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
14563 // Check that the chunk of bits is completely used.
14564 return NarrowedUsedBits.isAllOnesValue();
14567 /// Check whether or not \p First and \p Second are next to each other
14568 /// in memory. This means that there is no hole between the bits loaded
14569 /// by \p First and the bits loaded by \p Second.
14570 static bool areSlicesNextToEachOther(const LoadedSlice &First,
14571 const LoadedSlice &Second) {
14572 assert(First.Origin == Second.Origin && First.Origin &&
14573 "Unable to match different memory origins.");
14574 APInt UsedBits = First.getUsedBits();
14575 assert((UsedBits & Second.getUsedBits()) == 0 &&
14576 "Slices are not supposed to overlap.");
14577 UsedBits |= Second.getUsedBits();
14578 return areUsedBitsDense(UsedBits);
14581 /// Adjust the \p GlobalLSCost according to the target
14582 /// paring capabilities and the layout of the slices.
14583 /// \pre \p GlobalLSCost should account for at least as many loads as
14584 /// there is in the slices in \p LoadedSlices.
14585 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
14586 LoadedSlice::Cost &GlobalLSCost) {
14587 unsigned NumberOfSlices = LoadedSlices.size();
14588 // If there is less than 2 elements, no pairing is possible.
14589 if (NumberOfSlices < 2)
14590 return;
14592 // Sort the slices so that elements that are likely to be next to each
14593 // other in memory are next to each other in the list.
14594 llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) {
14595 assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
14596 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
14598 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
14599 // First (resp. Second) is the first (resp. Second) potentially candidate
14600 // to be placed in a paired load.
14601 const LoadedSlice *First = nullptr;
14602 const LoadedSlice *Second = nullptr;
14603 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
14604 // Set the beginning of the pair.
14605 First = Second) {
14606 Second = &LoadedSlices[CurrSlice];
14608 // If First is NULL, it means we start a new pair.
14609 // Get to the next slice.
14610 if (!First)
14611 continue;
14613 EVT LoadedType = First->getLoadedType();
14615 // If the types of the slices are different, we cannot pair them.
14616 if (LoadedType != Second->getLoadedType())
14617 continue;
14619 // Check if the target supplies paired loads for this type.
14620 unsigned RequiredAlignment = 0;
14621 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
14622 // move to the next pair, this type is hopeless.
14623 Second = nullptr;
14624 continue;
14626 // Check if we meet the alignment requirement.
14627 if (RequiredAlignment > First->getAlignment())
14628 continue;
14630 // Check that both loads are next to each other in memory.
14631 if (!areSlicesNextToEachOther(*First, *Second))
14632 continue;
14634 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
14635 --GlobalLSCost.Loads;
14636 // Move to the next pair.
14637 Second = nullptr;
14641 /// Check the profitability of all involved LoadedSlice.
14642 /// Currently, it is considered profitable if there is exactly two
14643 /// involved slices (1) which are (2) next to each other in memory, and
14644 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
14646 /// Note: The order of the elements in \p LoadedSlices may be modified, but not
14647 /// the elements themselves.
14649 /// FIXME: When the cost model will be mature enough, we can relax
14650 /// constraints (1) and (2).
14651 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
14652 const APInt &UsedBits, bool ForCodeSize) {
14653 unsigned NumberOfSlices = LoadedSlices.size();
14654 if (StressLoadSlicing)
14655 return NumberOfSlices > 1;
14657 // Check (1).
14658 if (NumberOfSlices != 2)
14659 return false;
14661 // Check (2).
14662 if (!areUsedBitsDense(UsedBits))
14663 return false;
14665 // Check (3).
14666 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
14667 // The original code has one big load.
14668 OrigCost.Loads = 1;
14669 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
14670 const LoadedSlice &LS = LoadedSlices[CurrSlice];
14671 // Accumulate the cost of all the slices.
14672 LoadedSlice::Cost SliceCost(LS, ForCodeSize);
14673 GlobalSlicingCost += SliceCost;
14675 // Account as cost in the original configuration the gain obtained
14676 // with the current slices.
14677 OrigCost.addSliceGain(LS);
14680 // If the target supports paired load, adjust the cost accordingly.
14681 adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
14682 return OrigCost > GlobalSlicingCost;
14685 /// If the given load, \p LI, is used only by trunc or trunc(lshr)
14686 /// operations, split it in the various pieces being extracted.
14688 /// This sort of thing is introduced by SROA.
14689 /// This slicing takes care not to insert overlapping loads.
14690 /// \pre LI is a simple load (i.e., not an atomic or volatile load).
14691 bool DAGCombiner::SliceUpLoad(SDNode *N) {
14692 if (Level < AfterLegalizeDAG)
14693 return false;
14695 LoadSDNode *LD = cast<LoadSDNode>(N);
14696 if (!LD->isSimple() || !ISD::isNormalLoad(LD) ||
14697 !LD->getValueType(0).isInteger())
14698 return false;
14700 // Keep track of already used bits to detect overlapping values.
14701 // In that case, we will just abort the transformation.
14702 APInt UsedBits(LD->getValueSizeInBits(0), 0);
14704 SmallVector<LoadedSlice, 4> LoadedSlices;
14706 // Check if this load is used as several smaller chunks of bits.
14707 // Basically, look for uses in trunc or trunc(lshr) and record a new chain
14708 // of computation for each trunc.
14709 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
14710 UI != UIEnd; ++UI) {
14711 // Skip the uses of the chain.
14712 if (UI.getUse().getResNo() != 0)
14713 continue;
14715 SDNode *User = *UI;
14716 unsigned Shift = 0;
14718 // Check if this is a trunc(lshr).
14719 if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
14720 isa<ConstantSDNode>(User->getOperand(1))) {
14721 Shift = User->getConstantOperandVal(1);
14722 User = *User->use_begin();
14725 // At this point, User is a Truncate, iff we encountered, trunc or
14726 // trunc(lshr).
14727 if (User->getOpcode() != ISD::TRUNCATE)
14728 return false;
14730 // The width of the type must be a power of 2 and greater than 8-bits.
14731 // Otherwise the load cannot be represented in LLVM IR.
14732 // Moreover, if we shifted with a non-8-bits multiple, the slice
14733 // will be across several bytes. We do not support that.
14734 unsigned Width = User->getValueSizeInBits(0);
14735 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
14736 return false;
14738 // Build the slice for this chain of computations.
14739 LoadedSlice LS(User, LD, Shift, &DAG);
14740 APInt CurrentUsedBits = LS.getUsedBits();
14742 // Check if this slice overlaps with another.
14743 if ((CurrentUsedBits & UsedBits) != 0)
14744 return false;
14745 // Update the bits used globally.
14746 UsedBits |= CurrentUsedBits;
14748 // Check if the new slice would be legal.
14749 if (!LS.isLegal())
14750 return false;
14752 // Record the slice.
14753 LoadedSlices.push_back(LS);
14756 // Abort slicing if it does not seem to be profitable.
14757 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
14758 return false;
14760 ++SlicedLoads;
14762 // Rewrite each chain to use an independent load.
14763 // By construction, each chain can be represented by a unique load.
14765 // Prepare the argument for the new token factor for all the slices.
14766 SmallVector<SDValue, 8> ArgChains;
14767 for (SmallVectorImpl<LoadedSlice>::const_iterator
14768 LSIt = LoadedSlices.begin(),
14769 LSItEnd = LoadedSlices.end();
14770 LSIt != LSItEnd; ++LSIt) {
14771 SDValue SliceInst = LSIt->loadSlice();
14772 CombineTo(LSIt->Inst, SliceInst, true);
14773 if (SliceInst.getOpcode() != ISD::LOAD)
14774 SliceInst = SliceInst.getOperand(0);
14775 assert(SliceInst->getOpcode() == ISD::LOAD &&
14776 "It takes more than a zext to get to the loaded slice!!");
14777 ArgChains.push_back(SliceInst.getValue(1));
14780 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
14781 ArgChains);
14782 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
14783 AddToWorklist(Chain.getNode());
14784 return true;
14787 /// Check to see if V is (and load (ptr), imm), where the load is having
14788 /// specific bytes cleared out. If so, return the byte size being masked out
14789 /// and the shift amount.
14790 static std::pair<unsigned, unsigned>
14791 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
14792 std::pair<unsigned, unsigned> Result(0, 0);
14794 // Check for the structure we're looking for.
14795 if (V->getOpcode() != ISD::AND ||
14796 !isa<ConstantSDNode>(V->getOperand(1)) ||
14797 !ISD::isNormalLoad(V->getOperand(0).getNode()))
14798 return Result;
14800 // Check the chain and pointer.
14801 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
14802 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer.
14804 // This only handles simple types.
14805 if (V.getValueType() != MVT::i16 &&
14806 V.getValueType() != MVT::i32 &&
14807 V.getValueType() != MVT::i64)
14808 return Result;
14810 // Check the constant mask. Invert it so that the bits being masked out are
14811 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
14812 // follow the sign bit for uniformity.
14813 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
14814 unsigned NotMaskLZ = countLeadingZeros(NotMask);
14815 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte.
14816 unsigned NotMaskTZ = countTrailingZeros(NotMask);
14817 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte.
14818 if (NotMaskLZ == 64) return Result; // All zero mask.
14820 // See if we have a continuous run of bits. If so, we have 0*1+0*
14821 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64)
14822 return Result;
14824 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
14825 if (V.getValueType() != MVT::i64 && NotMaskLZ)
14826 NotMaskLZ -= 64-V.getValueSizeInBits();
14828 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
14829 switch (MaskedBytes) {
14830 case 1:
14831 case 2:
14832 case 4: break;
14833 default: return Result; // All one mask, or 5-byte mask.
14836 // Verify that the first bit starts at a multiple of mask so that the access
14837 // is aligned the same as the access width.
14838 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
14840 // For narrowing to be valid, it must be the case that the load the
14841 // immediately preceding memory operation before the store.
14842 if (LD == Chain.getNode())
14843 ; // ok.
14844 else if (Chain->getOpcode() == ISD::TokenFactor &&
14845 SDValue(LD, 1).hasOneUse()) {
14846 // LD has only 1 chain use so they are no indirect dependencies.
14847 if (!LD->isOperandOf(Chain.getNode()))
14848 return Result;
14849 } else
14850 return Result; // Fail.
14852 Result.first = MaskedBytes;
14853 Result.second = NotMaskTZ/8;
14854 return Result;
14857 /// Check to see if IVal is something that provides a value as specified by
14858 /// MaskInfo. If so, replace the specified store with a narrower store of
14859 /// truncated IVal.
14860 static SDValue
14861 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
14862 SDValue IVal, StoreSDNode *St,
14863 DAGCombiner *DC) {
14864 unsigned NumBytes = MaskInfo.first;
14865 unsigned ByteShift = MaskInfo.second;
14866 SelectionDAG &DAG = DC->getDAG();
14868 // Check to see if IVal is all zeros in the part being masked in by the 'or'
14869 // that uses this. If not, this is not a replacement.
14870 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
14871 ByteShift*8, (ByteShift+NumBytes)*8);
14872 if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue();
14874 // Check that it is legal on the target to do this. It is legal if the new
14875 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
14876 // legalization (and the target doesn't explicitly think this is a bad idea).
14877 MVT VT = MVT::getIntegerVT(NumBytes * 8);
14878 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14879 if (!DC->isTypeLegal(VT))
14880 return SDValue();
14881 if (St->getMemOperand() &&
14882 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
14883 *St->getMemOperand()))
14884 return SDValue();
14886 // Okay, we can do this! Replace the 'St' store with a store of IVal that is
14887 // shifted by ByteShift and truncated down to NumBytes.
14888 if (ByteShift) {
14889 SDLoc DL(IVal);
14890 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal,
14891 DAG.getConstant(ByteShift*8, DL,
14892 DC->getShiftAmountTy(IVal.getValueType())));
14895 // Figure out the offset for the store and the alignment of the access.
14896 unsigned StOffset;
14897 unsigned NewAlign = St->getAlignment();
14899 if (DAG.getDataLayout().isLittleEndian())
14900 StOffset = ByteShift;
14901 else
14902 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
14904 SDValue Ptr = St->getBasePtr();
14905 if (StOffset) {
14906 SDLoc DL(IVal);
14907 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(),
14908 Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType()));
14909 NewAlign = MinAlign(NewAlign, StOffset);
14912 // Truncate down to the new size.
14913 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
14915 ++OpsNarrowed;
14916 return DAG
14917 .getStore(St->getChain(), SDLoc(St), IVal, Ptr,
14918 St->getPointerInfo().getWithOffset(StOffset), NewAlign);
14921 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and
14922 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
14923 /// narrowing the load and store if it would end up being a win for performance
14924 /// or code size.
14925 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
14926 StoreSDNode *ST = cast<StoreSDNode>(N);
14927 if (!ST->isSimple())
14928 return SDValue();
14930 SDValue Chain = ST->getChain();
14931 SDValue Value = ST->getValue();
14932 SDValue Ptr = ST->getBasePtr();
14933 EVT VT = Value.getValueType();
14935 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
14936 return SDValue();
14938 unsigned Opc = Value.getOpcode();
14940 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
14941 // is a byte mask indicating a consecutive number of bytes, check to see if
14942 // Y is known to provide just those bytes. If so, we try to replace the
14943 // load + replace + store sequence with a single (narrower) store, which makes
14944 // the load dead.
14945 if (Opc == ISD::OR) {
14946 std::pair<unsigned, unsigned> MaskedLoad;
14947 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
14948 if (MaskedLoad.first)
14949 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
14950 Value.getOperand(1), ST,this))
14951 return NewST;
14953 // Or is commutative, so try swapping X and Y.
14954 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
14955 if (MaskedLoad.first)
14956 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
14957 Value.getOperand(0), ST,this))
14958 return NewST;
14961 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
14962 Value.getOperand(1).getOpcode() != ISD::Constant)
14963 return SDValue();
14965 SDValue N0 = Value.getOperand(0);
14966 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
14967 Chain == SDValue(N0.getNode(), 1)) {
14968 LoadSDNode *LD = cast<LoadSDNode>(N0);
14969 if (LD->getBasePtr() != Ptr ||
14970 LD->getPointerInfo().getAddrSpace() !=
14971 ST->getPointerInfo().getAddrSpace())
14972 return SDValue();
14974 // Find the type to narrow it the load / op / store to.
14975 SDValue N1 = Value.getOperand(1);
14976 unsigned BitWidth = N1.getValueSizeInBits();
14977 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
14978 if (Opc == ISD::AND)
14979 Imm ^= APInt::getAllOnesValue(BitWidth);
14980 if (Imm == 0 || Imm.isAllOnesValue())
14981 return SDValue();
14982 unsigned ShAmt = Imm.countTrailingZeros();
14983 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
14984 unsigned NewBW = NextPowerOf2(MSB - ShAmt);
14985 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
14986 // The narrowing should be profitable, the load/store operation should be
14987 // legal (or custom) and the store size should be equal to the NewVT width.
14988 while (NewBW < BitWidth &&
14989 (NewVT.getStoreSizeInBits() != NewBW ||
14990 !TLI.isOperationLegalOrCustom(Opc, NewVT) ||
14991 !TLI.isNarrowingProfitable(VT, NewVT))) {
14992 NewBW = NextPowerOf2(NewBW);
14993 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
14995 if (NewBW >= BitWidth)
14996 return SDValue();
14998 // If the lsb changed does not start at the type bitwidth boundary,
14999 // start at the previous one.
15000 if (ShAmt % NewBW)
15001 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
15002 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
15003 std::min(BitWidth, ShAmt + NewBW));
15004 if ((Imm & Mask) == Imm) {
15005 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
15006 if (Opc == ISD::AND)
15007 NewImm ^= APInt::getAllOnesValue(NewBW);
15008 uint64_t PtrOff = ShAmt / 8;
15009 // For big endian targets, we need to adjust the offset to the pointer to
15010 // load the correct bytes.
15011 if (DAG.getDataLayout().isBigEndian())
15012 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
15014 unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
15015 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
15016 if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy))
15017 return SDValue();
15019 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
15020 Ptr.getValueType(), Ptr,
15021 DAG.getConstant(PtrOff, SDLoc(LD),
15022 Ptr.getValueType()));
15023 SDValue NewLD =
15024 DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr,
15025 LD->getPointerInfo().getWithOffset(PtrOff), NewAlign,
15026 LD->getMemOperand()->getFlags(), LD->getAAInfo());
15027 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
15028 DAG.getConstant(NewImm, SDLoc(Value),
15029 NewVT));
15030 SDValue NewST =
15031 DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr,
15032 ST->getPointerInfo().getWithOffset(PtrOff), NewAlign);
15034 AddToWorklist(NewPtr.getNode());
15035 AddToWorklist(NewLD.getNode());
15036 AddToWorklist(NewVal.getNode());
15037 WorklistRemover DeadNodes(*this);
15038 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
15039 ++OpsNarrowed;
15040 return NewST;
15044 return SDValue();
15047 /// For a given floating point load / store pair, if the load value isn't used
15048 /// by any other operations, then consider transforming the pair to integer
15049 /// load / store operations if the target deems the transformation profitable.
15050 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
15051 StoreSDNode *ST = cast<StoreSDNode>(N);
15052 SDValue Value = ST->getValue();
15053 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
15054 Value.hasOneUse()) {
15055 LoadSDNode *LD = cast<LoadSDNode>(Value);
15056 EVT VT = LD->getMemoryVT();
15057 if (!VT.isFloatingPoint() ||
15058 VT != ST->getMemoryVT() ||
15059 LD->isNonTemporal() ||
15060 ST->isNonTemporal() ||
15061 LD->getPointerInfo().getAddrSpace() != 0 ||
15062 ST->getPointerInfo().getAddrSpace() != 0)
15063 return SDValue();
15065 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
15066 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
15067 !TLI.isOperationLegal(ISD::STORE, IntVT) ||
15068 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
15069 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
15070 return SDValue();
15072 unsigned LDAlign = LD->getAlignment();
15073 unsigned STAlign = ST->getAlignment();
15074 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
15075 unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy);
15076 if (LDAlign < ABIAlign || STAlign < ABIAlign)
15077 return SDValue();
15079 SDValue NewLD =
15080 DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(),
15081 LD->getPointerInfo(), LDAlign);
15083 SDValue NewST =
15084 DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(),
15085 ST->getPointerInfo(), STAlign);
15087 AddToWorklist(NewLD.getNode());
15088 AddToWorklist(NewST.getNode());
15089 WorklistRemover DeadNodes(*this);
15090 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
15091 ++LdStFP2Int;
15092 return NewST;
15095 return SDValue();
15098 // This is a helper function for visitMUL to check the profitability
15099 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
15100 // MulNode is the original multiply, AddNode is (add x, c1),
15101 // and ConstNode is c2.
15103 // If the (add x, c1) has multiple uses, we could increase
15104 // the number of adds if we make this transformation.
15105 // It would only be worth doing this if we can remove a
15106 // multiply in the process. Check for that here.
15107 // To illustrate:
15108 // (A + c1) * c3
15109 // (A + c2) * c3
15110 // We're checking for cases where we have common "c3 * A" expressions.
15111 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode,
15112 SDValue &AddNode,
15113 SDValue &ConstNode) {
15114 APInt Val;
15116 // If the add only has one use, this would be OK to do.
15117 if (AddNode.getNode()->hasOneUse())
15118 return true;
15120 // Walk all the users of the constant with which we're multiplying.
15121 for (SDNode *Use : ConstNode->uses()) {
15122 if (Use == MulNode) // This use is the one we're on right now. Skip it.
15123 continue;
15125 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use.
15126 SDNode *OtherOp;
15127 SDNode *MulVar = AddNode.getOperand(0).getNode();
15129 // OtherOp is what we're multiplying against the constant.
15130 if (Use->getOperand(0) == ConstNode)
15131 OtherOp = Use->getOperand(1).getNode();
15132 else
15133 OtherOp = Use->getOperand(0).getNode();
15135 // Check to see if multiply is with the same operand of our "add".
15137 // ConstNode = CONST
15138 // Use = ConstNode * A <-- visiting Use. OtherOp is A.
15139 // ...
15140 // AddNode = (A + c1) <-- MulVar is A.
15141 // = AddNode * ConstNode <-- current visiting instruction.
15143 // If we make this transformation, we will have a common
15144 // multiply (ConstNode * A) that we can save.
15145 if (OtherOp == MulVar)
15146 return true;
15148 // Now check to see if a future expansion will give us a common
15149 // multiply.
15151 // ConstNode = CONST
15152 // AddNode = (A + c1)
15153 // ... = AddNode * ConstNode <-- current visiting instruction.
15154 // ...
15155 // OtherOp = (A + c2)
15156 // Use = OtherOp * ConstNode <-- visiting Use.
15158 // If we make this transformation, we will have a common
15159 // multiply (CONST * A) after we also do the same transformation
15160 // to the "t2" instruction.
15161 if (OtherOp->getOpcode() == ISD::ADD &&
15162 DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) &&
15163 OtherOp->getOperand(0).getNode() == MulVar)
15164 return true;
15168 // Didn't find a case where this would be profitable.
15169 return false;
15172 SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
15173 unsigned NumStores) {
15174 SmallVector<SDValue, 8> Chains;
15175 SmallPtrSet<const SDNode *, 8> Visited;
15176 SDLoc StoreDL(StoreNodes[0].MemNode);
15178 for (unsigned i = 0; i < NumStores; ++i) {
15179 Visited.insert(StoreNodes[i].MemNode);
15182 // don't include nodes that are children or repeated nodes.
15183 for (unsigned i = 0; i < NumStores; ++i) {
15184 if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second)
15185 Chains.push_back(StoreNodes[i].MemNode->getChain());
15188 assert(Chains.size() > 0 && "Chain should have generated a chain");
15189 return DAG.getTokenFactor(StoreDL, Chains);
15192 bool DAGCombiner::MergeStoresOfConstantsOrVecElts(
15193 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores,
15194 bool IsConstantSrc, bool UseVector, bool UseTrunc) {
15195 // Make sure we have something to merge.
15196 if (NumStores < 2)
15197 return false;
15199 // The latest Node in the DAG.
15200 SDLoc DL(StoreNodes[0].MemNode);
15202 int64_t ElementSizeBits = MemVT.getStoreSizeInBits();
15203 unsigned SizeInBits = NumStores * ElementSizeBits;
15204 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
15206 EVT StoreTy;
15207 if (UseVector) {
15208 unsigned Elts = NumStores * NumMemElts;
15209 // Get the type for the merged vector store.
15210 StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
15211 } else
15212 StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
15214 SDValue StoredVal;
15215 if (UseVector) {
15216 if (IsConstantSrc) {
15217 SmallVector<SDValue, 8> BuildVector;
15218 for (unsigned I = 0; I != NumStores; ++I) {
15219 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode);
15220 SDValue Val = St->getValue();
15221 // If constant is of the wrong type, convert it now.
15222 if (MemVT != Val.getValueType()) {
15223 Val = peekThroughBitcasts(Val);
15224 // Deal with constants of wrong size.
15225 if (ElementSizeBits != Val.getValueSizeInBits()) {
15226 EVT IntMemVT =
15227 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
15228 if (isa<ConstantFPSDNode>(Val)) {
15229 // Not clear how to truncate FP values.
15230 return false;
15231 } else if (auto *C = dyn_cast<ConstantSDNode>(Val))
15232 Val = DAG.getConstant(C->getAPIntValue()
15233 .zextOrTrunc(Val.getValueSizeInBits())
15234 .zextOrTrunc(ElementSizeBits),
15235 SDLoc(C), IntMemVT);
15237 // Make sure correctly size type is the correct type.
15238 Val = DAG.getBitcast(MemVT, Val);
15240 BuildVector.push_back(Val);
15242 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
15243 : ISD::BUILD_VECTOR,
15244 DL, StoreTy, BuildVector);
15245 } else {
15246 SmallVector<SDValue, 8> Ops;
15247 for (unsigned i = 0; i < NumStores; ++i) {
15248 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
15249 SDValue Val = peekThroughBitcasts(St->getValue());
15250 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
15251 // type MemVT. If the underlying value is not the correct
15252 // type, but it is an extraction of an appropriate vector we
15253 // can recast Val to be of the correct type. This may require
15254 // converting between EXTRACT_VECTOR_ELT and
15255 // EXTRACT_SUBVECTOR.
15256 if ((MemVT != Val.getValueType()) &&
15257 (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
15258 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) {
15259 EVT MemVTScalarTy = MemVT.getScalarType();
15260 // We may need to add a bitcast here to get types to line up.
15261 if (MemVTScalarTy != Val.getValueType().getScalarType()) {
15262 Val = DAG.getBitcast(MemVT, Val);
15263 } else {
15264 unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR
15265 : ISD::EXTRACT_VECTOR_ELT;
15266 SDValue Vec = Val.getOperand(0);
15267 SDValue Idx = Val.getOperand(1);
15268 Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx);
15271 Ops.push_back(Val);
15274 // Build the extracted vector elements back into a vector.
15275 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
15276 : ISD::BUILD_VECTOR,
15277 DL, StoreTy, Ops);
15279 } else {
15280 // We should always use a vector store when merging extracted vector
15281 // elements, so this path implies a store of constants.
15282 assert(IsConstantSrc && "Merged vector elements should use vector store");
15284 APInt StoreInt(SizeInBits, 0);
15286 // Construct a single integer constant which is made of the smaller
15287 // constant inputs.
15288 bool IsLE = DAG.getDataLayout().isLittleEndian();
15289 for (unsigned i = 0; i < NumStores; ++i) {
15290 unsigned Idx = IsLE ? (NumStores - 1 - i) : i;
15291 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
15293 SDValue Val = St->getValue();
15294 Val = peekThroughBitcasts(Val);
15295 StoreInt <<= ElementSizeBits;
15296 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
15297 StoreInt |= C->getAPIntValue()
15298 .zextOrTrunc(ElementSizeBits)
15299 .zextOrTrunc(SizeInBits);
15300 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
15301 StoreInt |= C->getValueAPF()
15302 .bitcastToAPInt()
15303 .zextOrTrunc(ElementSizeBits)
15304 .zextOrTrunc(SizeInBits);
15305 // If fp truncation is necessary give up for now.
15306 if (MemVT.getSizeInBits() != ElementSizeBits)
15307 return false;
15308 } else {
15309 llvm_unreachable("Invalid constant element type");
15313 // Create the new Load and Store operations.
15314 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy);
15317 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
15318 SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores);
15320 // make sure we use trunc store if it's necessary to be legal.
15321 SDValue NewStore;
15322 if (!UseTrunc) {
15323 NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(),
15324 FirstInChain->getPointerInfo(),
15325 FirstInChain->getAlignment());
15326 } else { // Must be realized as a trunc store
15327 EVT LegalizedStoredValTy =
15328 TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
15329 unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits();
15330 ConstantSDNode *C = cast<ConstantSDNode>(StoredVal);
15331 SDValue ExtendedStoreVal =
15332 DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL,
15333 LegalizedStoredValTy);
15334 NewStore = DAG.getTruncStore(
15335 NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(),
15336 FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/,
15337 FirstInChain->getAlignment(),
15338 FirstInChain->getMemOperand()->getFlags());
15341 // Replace all merged stores with the new store.
15342 for (unsigned i = 0; i < NumStores; ++i)
15343 CombineTo(StoreNodes[i].MemNode, NewStore);
15345 AddToWorklist(NewChain.getNode());
15346 return true;
15349 void DAGCombiner::getStoreMergeCandidates(
15350 StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes,
15351 SDNode *&RootNode) {
15352 // This holds the base pointer, index, and the offset in bytes from the base
15353 // pointer.
15354 BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
15355 EVT MemVT = St->getMemoryVT();
15357 SDValue Val = peekThroughBitcasts(St->getValue());
15358 // We must have a base and an offset.
15359 if (!BasePtr.getBase().getNode())
15360 return;
15362 // Do not handle stores to undef base pointers.
15363 if (BasePtr.getBase().isUndef())
15364 return;
15366 bool IsConstantSrc = isa<ConstantSDNode>(Val) || isa<ConstantFPSDNode>(Val);
15367 bool IsExtractVecSrc = (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
15368 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR);
15369 bool IsLoadSrc = isa<LoadSDNode>(Val);
15370 BaseIndexOffset LBasePtr;
15371 // Match on loadbaseptr if relevant.
15372 EVT LoadVT;
15373 if (IsLoadSrc) {
15374 auto *Ld = cast<LoadSDNode>(Val);
15375 LBasePtr = BaseIndexOffset::match(Ld, DAG);
15376 LoadVT = Ld->getMemoryVT();
15377 // Load and store should be the same type.
15378 if (MemVT != LoadVT)
15379 return;
15380 // Loads must only have one use.
15381 if (!Ld->hasNUsesOfValue(1, 0))
15382 return;
15383 // The memory operands must not be volatile/indexed/atomic.
15384 // TODO: May be able to relax for unordered atomics (see D66309)
15385 if (!Ld->isSimple() || Ld->isIndexed())
15386 return;
15388 auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr,
15389 int64_t &Offset) -> bool {
15390 // The memory operands must not be volatile/indexed/atomic.
15391 // TODO: May be able to relax for unordered atomics (see D66309)
15392 if (!Other->isSimple() || Other->isIndexed())
15393 return false;
15394 // Don't mix temporal stores with non-temporal stores.
15395 if (St->isNonTemporal() != Other->isNonTemporal())
15396 return false;
15397 SDValue OtherBC = peekThroughBitcasts(Other->getValue());
15398 // Allow merging constants of different types as integers.
15399 bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT())
15400 : Other->getMemoryVT() != MemVT;
15401 if (IsLoadSrc) {
15402 if (NoTypeMatch)
15403 return false;
15404 // The Load's Base Ptr must also match
15405 if (LoadSDNode *OtherLd = dyn_cast<LoadSDNode>(OtherBC)) {
15406 BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG);
15407 if (LoadVT != OtherLd->getMemoryVT())
15408 return false;
15409 // Loads must only have one use.
15410 if (!OtherLd->hasNUsesOfValue(1, 0))
15411 return false;
15412 // The memory operands must not be volatile/indexed/atomic.
15413 // TODO: May be able to relax for unordered atomics (see D66309)
15414 if (!OtherLd->isSimple() ||
15415 OtherLd->isIndexed())
15416 return false;
15417 // Don't mix temporal loads with non-temporal loads.
15418 if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal())
15419 return false;
15420 if (!(LBasePtr.equalBaseIndex(LPtr, DAG)))
15421 return false;
15422 } else
15423 return false;
15425 if (IsConstantSrc) {
15426 if (NoTypeMatch)
15427 return false;
15428 if (!(isa<ConstantSDNode>(OtherBC) || isa<ConstantFPSDNode>(OtherBC)))
15429 return false;
15431 if (IsExtractVecSrc) {
15432 // Do not merge truncated stores here.
15433 if (Other->isTruncatingStore())
15434 return false;
15435 if (!MemVT.bitsEq(OtherBC.getValueType()))
15436 return false;
15437 if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT &&
15438 OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR)
15439 return false;
15441 Ptr = BaseIndexOffset::match(Other, DAG);
15442 return (BasePtr.equalBaseIndex(Ptr, DAG, Offset));
15445 // Check if the pair of StoreNode and the RootNode already bail out many
15446 // times which is over the limit in dependence check.
15447 auto OverLimitInDependenceCheck = [&](SDNode *StoreNode,
15448 SDNode *RootNode) -> bool {
15449 auto RootCount = StoreRootCountMap.find(StoreNode);
15450 if (RootCount != StoreRootCountMap.end() &&
15451 RootCount->second.first == RootNode &&
15452 RootCount->second.second > StoreMergeDependenceLimit)
15453 return true;
15454 return false;
15457 // We looking for a root node which is an ancestor to all mergable
15458 // stores. We search up through a load, to our root and then down
15459 // through all children. For instance we will find Store{1,2,3} if
15460 // St is Store1, Store2. or Store3 where the root is not a load
15461 // which always true for nonvolatile ops. TODO: Expand
15462 // the search to find all valid candidates through multiple layers of loads.
15464 // Root
15465 // |-------|-------|
15466 // Load Load Store3
15467 // | |
15468 // Store1 Store2
15470 // FIXME: We should be able to climb and
15471 // descend TokenFactors to find candidates as well.
15473 RootNode = St->getChain().getNode();
15475 unsigned NumNodesExplored = 0;
15476 if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(RootNode)) {
15477 RootNode = Ldn->getChain().getNode();
15478 for (auto I = RootNode->use_begin(), E = RootNode->use_end();
15479 I != E && NumNodesExplored < 1024; ++I, ++NumNodesExplored)
15480 if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) // walk down chain
15481 for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2)
15482 if (I2.getOperandNo() == 0)
15483 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I2)) {
15484 BaseIndexOffset Ptr;
15485 int64_t PtrDiff;
15486 if (CandidateMatch(OtherST, Ptr, PtrDiff) &&
15487 !OverLimitInDependenceCheck(OtherST, RootNode))
15488 StoreNodes.push_back(MemOpLink(OtherST, PtrDiff));
15490 } else
15491 for (auto I = RootNode->use_begin(), E = RootNode->use_end();
15492 I != E && NumNodesExplored < 1024; ++I, ++NumNodesExplored)
15493 if (I.getOperandNo() == 0)
15494 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) {
15495 BaseIndexOffset Ptr;
15496 int64_t PtrDiff;
15497 if (CandidateMatch(OtherST, Ptr, PtrDiff) &&
15498 !OverLimitInDependenceCheck(OtherST, RootNode))
15499 StoreNodes.push_back(MemOpLink(OtherST, PtrDiff));
15503 // We need to check that merging these stores does not cause a loop in
15504 // the DAG. Any store candidate may depend on another candidate
15505 // indirectly through its operand (we already consider dependencies
15506 // through the chain). Check in parallel by searching up from
15507 // non-chain operands of candidates.
15508 bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
15509 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
15510 SDNode *RootNode) {
15511 // FIXME: We should be able to truncate a full search of
15512 // predecessors by doing a BFS and keeping tabs the originating
15513 // stores from which worklist nodes come from in a similar way to
15514 // TokenFactor simplfication.
15516 SmallPtrSet<const SDNode *, 32> Visited;
15517 SmallVector<const SDNode *, 8> Worklist;
15519 // RootNode is a predecessor to all candidates so we need not search
15520 // past it. Add RootNode (peeking through TokenFactors). Do not count
15521 // these towards size check.
15523 Worklist.push_back(RootNode);
15524 while (!Worklist.empty()) {
15525 auto N = Worklist.pop_back_val();
15526 if (!Visited.insert(N).second)
15527 continue; // Already present in Visited.
15528 if (N->getOpcode() == ISD::TokenFactor) {
15529 for (SDValue Op : N->ops())
15530 Worklist.push_back(Op.getNode());
15534 // Don't count pruning nodes towards max.
15535 unsigned int Max = 1024 + Visited.size();
15536 // Search Ops of store candidates.
15537 for (unsigned i = 0; i < NumStores; ++i) {
15538 SDNode *N = StoreNodes[i].MemNode;
15539 // Of the 4 Store Operands:
15540 // * Chain (Op 0) -> We have already considered these
15541 // in candidate selection and can be
15542 // safely ignored
15543 // * Value (Op 1) -> Cycles may happen (e.g. through load chains)
15544 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant,
15545 // but aren't necessarily fromt the same base node, so
15546 // cycles possible (e.g. via indexed store).
15547 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for
15548 // non-indexed stores). Not constant on all targets (e.g. ARM)
15549 // and so can participate in a cycle.
15550 for (unsigned j = 1; j < N->getNumOperands(); ++j)
15551 Worklist.push_back(N->getOperand(j).getNode());
15553 // Search through DAG. We can stop early if we find a store node.
15554 for (unsigned i = 0; i < NumStores; ++i)
15555 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist,
15556 Max)) {
15557 // If the searching bail out, record the StoreNode and RootNode in the
15558 // StoreRootCountMap. If we have seen the pair many times over a limit,
15559 // we won't add the StoreNode into StoreNodes set again.
15560 if (Visited.size() >= Max) {
15561 auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode];
15562 if (RootCount.first == RootNode)
15563 RootCount.second++;
15564 else
15565 RootCount = {RootNode, 1};
15567 return false;
15569 return true;
15572 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode *St) {
15573 if (OptLevel == CodeGenOpt::None || !EnableStoreMerging)
15574 return false;
15576 EVT MemVT = St->getMemoryVT();
15577 int64_t ElementSizeBytes = MemVT.getStoreSize();
15578 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
15580 if (MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits)
15581 return false;
15583 bool NoVectors = DAG.getMachineFunction().getFunction().hasFnAttribute(
15584 Attribute::NoImplicitFloat);
15586 // This function cannot currently deal with non-byte-sized memory sizes.
15587 if (ElementSizeBytes * 8 != MemVT.getSizeInBits())
15588 return false;
15590 if (!MemVT.isSimple())
15591 return false;
15593 // Perform an early exit check. Do not bother looking at stored values that
15594 // are not constants, loads, or extracted vector elements.
15595 SDValue StoredVal = peekThroughBitcasts(St->getValue());
15596 bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
15597 bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) ||
15598 isa<ConstantFPSDNode>(StoredVal);
15599 bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
15600 StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR);
15601 bool IsNonTemporalStore = St->isNonTemporal();
15602 bool IsNonTemporalLoad =
15603 IsLoadSrc && cast<LoadSDNode>(StoredVal)->isNonTemporal();
15605 if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc)
15606 return false;
15608 SmallVector<MemOpLink, 8> StoreNodes;
15609 SDNode *RootNode;
15610 // Find potential store merge candidates by searching through chain sub-DAG
15611 getStoreMergeCandidates(St, StoreNodes, RootNode);
15613 // Check if there is anything to merge.
15614 if (StoreNodes.size() < 2)
15615 return false;
15617 // Sort the memory operands according to their distance from the
15618 // base pointer.
15619 llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) {
15620 return LHS.OffsetFromBase < RHS.OffsetFromBase;
15623 // Store Merge attempts to merge the lowest stores. This generally
15624 // works out as if successful, as the remaining stores are checked
15625 // after the first collection of stores is merged. However, in the
15626 // case that a non-mergeable store is found first, e.g., {p[-2],
15627 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
15628 // mergeable cases. To prevent this, we prune such stores from the
15629 // front of StoreNodes here.
15631 bool RV = false;
15632 while (StoreNodes.size() > 1) {
15633 size_t StartIdx = 0;
15634 while ((StartIdx + 1 < StoreNodes.size()) &&
15635 StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes !=
15636 StoreNodes[StartIdx + 1].OffsetFromBase)
15637 ++StartIdx;
15639 // Bail if we don't have enough candidates to merge.
15640 if (StartIdx + 1 >= StoreNodes.size())
15641 return RV;
15643 if (StartIdx)
15644 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx);
15646 // Scan the memory operations on the chain and find the first
15647 // non-consecutive store memory address.
15648 unsigned NumConsecutiveStores = 1;
15649 int64_t StartAddress = StoreNodes[0].OffsetFromBase;
15650 // Check that the addresses are consecutive starting from the second
15651 // element in the list of stores.
15652 for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) {
15653 int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
15654 if (CurrAddress - StartAddress != (ElementSizeBytes * i))
15655 break;
15656 NumConsecutiveStores = i + 1;
15659 if (NumConsecutiveStores < 2) {
15660 StoreNodes.erase(StoreNodes.begin(),
15661 StoreNodes.begin() + NumConsecutiveStores);
15662 continue;
15665 // The node with the lowest store address.
15666 LLVMContext &Context = *DAG.getContext();
15667 const DataLayout &DL = DAG.getDataLayout();
15669 // Store the constants into memory as one consecutive store.
15670 if (IsConstantSrc) {
15671 while (NumConsecutiveStores >= 2) {
15672 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
15673 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
15674 unsigned FirstStoreAlign = FirstInChain->getAlignment();
15675 unsigned LastLegalType = 1;
15676 unsigned LastLegalVectorType = 1;
15677 bool LastIntegerTrunc = false;
15678 bool NonZero = false;
15679 unsigned FirstZeroAfterNonZero = NumConsecutiveStores;
15680 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
15681 StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode);
15682 SDValue StoredVal = ST->getValue();
15683 bool IsElementZero = false;
15684 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal))
15685 IsElementZero = C->isNullValue();
15686 else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal))
15687 IsElementZero = C->getConstantFPValue()->isNullValue();
15688 if (IsElementZero) {
15689 if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores)
15690 FirstZeroAfterNonZero = i;
15692 NonZero |= !IsElementZero;
15694 // Find a legal type for the constant store.
15695 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
15696 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits);
15697 bool IsFast = false;
15699 // Break early when size is too large to be legal.
15700 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
15701 break;
15703 if (TLI.isTypeLegal(StoreTy) &&
15704 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
15705 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15706 *FirstInChain->getMemOperand(), &IsFast) &&
15707 IsFast) {
15708 LastIntegerTrunc = false;
15709 LastLegalType = i + 1;
15710 // Or check whether a truncstore is legal.
15711 } else if (TLI.getTypeAction(Context, StoreTy) ==
15712 TargetLowering::TypePromoteInteger) {
15713 EVT LegalizedStoredValTy =
15714 TLI.getTypeToTransformTo(Context, StoredVal.getValueType());
15715 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
15716 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
15717 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15718 *FirstInChain->getMemOperand(),
15719 &IsFast) &&
15720 IsFast) {
15721 LastIntegerTrunc = true;
15722 LastLegalType = i + 1;
15726 // We only use vectors if the constant is known to be zero or the
15727 // target allows it and the function is not marked with the
15728 // noimplicitfloat attribute.
15729 if ((!NonZero ||
15730 TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) &&
15731 !NoVectors) {
15732 // Find a legal type for the vector store.
15733 unsigned Elts = (i + 1) * NumMemElts;
15734 EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
15735 if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) &&
15736 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
15737 TLI.allowsMemoryAccess(
15738 Context, DL, Ty, *FirstInChain->getMemOperand(), &IsFast) &&
15739 IsFast)
15740 LastLegalVectorType = i + 1;
15744 bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
15745 unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType;
15747 // Check if we found a legal integer type that creates a meaningful
15748 // merge.
15749 if (NumElem < 2) {
15750 // We know that candidate stores are in order and of correct
15751 // shape. While there is no mergeable sequence from the
15752 // beginning one may start later in the sequence. The only
15753 // reason a merge of size N could have failed where another of
15754 // the same size would not have, is if the alignment has
15755 // improved or we've dropped a non-zero value. Drop as many
15756 // candidates as we can here.
15757 unsigned NumSkip = 1;
15758 while (
15759 (NumSkip < NumConsecutiveStores) &&
15760 (NumSkip < FirstZeroAfterNonZero) &&
15761 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
15762 NumSkip++;
15764 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
15765 NumConsecutiveStores -= NumSkip;
15766 continue;
15769 // Check that we can merge these candidates without causing a cycle.
15770 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
15771 RootNode)) {
15772 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
15773 NumConsecutiveStores -= NumElem;
15774 continue;
15777 RV |= MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, true,
15778 UseVector, LastIntegerTrunc);
15780 // Remove merged stores for next iteration.
15781 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
15782 NumConsecutiveStores -= NumElem;
15784 continue;
15787 // When extracting multiple vector elements, try to store them
15788 // in one vector store rather than a sequence of scalar stores.
15789 if (IsExtractVecSrc) {
15790 // Loop on Consecutive Stores on success.
15791 while (NumConsecutiveStores >= 2) {
15792 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
15793 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
15794 unsigned FirstStoreAlign = FirstInChain->getAlignment();
15795 unsigned NumStoresToMerge = 1;
15796 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
15797 // Find a legal type for the vector store.
15798 unsigned Elts = (i + 1) * NumMemElts;
15799 EVT Ty =
15800 EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
15801 bool IsFast;
15803 // Break early when size is too large to be legal.
15804 if (Ty.getSizeInBits() > MaximumLegalStoreInBits)
15805 break;
15807 if (TLI.isTypeLegal(Ty) &&
15808 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
15809 TLI.allowsMemoryAccess(Context, DL, Ty,
15810 *FirstInChain->getMemOperand(), &IsFast) &&
15811 IsFast)
15812 NumStoresToMerge = i + 1;
15815 // Check if we found a legal integer type creating a meaningful
15816 // merge.
15817 if (NumStoresToMerge < 2) {
15818 // We know that candidate stores are in order and of correct
15819 // shape. While there is no mergeable sequence from the
15820 // beginning one may start later in the sequence. The only
15821 // reason a merge of size N could have failed where another of
15822 // the same size would not have, is if the alignment has
15823 // improved. Drop as many candidates as we can here.
15824 unsigned NumSkip = 1;
15825 while (
15826 (NumSkip < NumConsecutiveStores) &&
15827 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
15828 NumSkip++;
15830 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
15831 NumConsecutiveStores -= NumSkip;
15832 continue;
15835 // Check that we can merge these candidates without causing a cycle.
15836 if (!checkMergeStoreCandidatesForDependencies(
15837 StoreNodes, NumStoresToMerge, RootNode)) {
15838 StoreNodes.erase(StoreNodes.begin(),
15839 StoreNodes.begin() + NumStoresToMerge);
15840 NumConsecutiveStores -= NumStoresToMerge;
15841 continue;
15844 RV |= MergeStoresOfConstantsOrVecElts(
15845 StoreNodes, MemVT, NumStoresToMerge, false, true, false);
15847 StoreNodes.erase(StoreNodes.begin(),
15848 StoreNodes.begin() + NumStoresToMerge);
15849 NumConsecutiveStores -= NumStoresToMerge;
15851 continue;
15854 // Below we handle the case of multiple consecutive stores that
15855 // come from multiple consecutive loads. We merge them into a single
15856 // wide load and a single wide store.
15858 // Look for load nodes which are used by the stored values.
15859 SmallVector<MemOpLink, 8> LoadNodes;
15861 // Find acceptable loads. Loads need to have the same chain (token factor),
15862 // must not be zext, volatile, indexed, and they must be consecutive.
15863 BaseIndexOffset LdBasePtr;
15865 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
15866 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
15867 SDValue Val = peekThroughBitcasts(St->getValue());
15868 LoadSDNode *Ld = cast<LoadSDNode>(Val);
15870 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG);
15871 // If this is not the first ptr that we check.
15872 int64_t LdOffset = 0;
15873 if (LdBasePtr.getBase().getNode()) {
15874 // The base ptr must be the same.
15875 if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset))
15876 break;
15877 } else {
15878 // Check that all other base pointers are the same as this one.
15879 LdBasePtr = LdPtr;
15882 // We found a potential memory operand to merge.
15883 LoadNodes.push_back(MemOpLink(Ld, LdOffset));
15886 while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) {
15887 // If we have load/store pair instructions and we only have two values,
15888 // don't bother merging.
15889 unsigned RequiredAlignment;
15890 if (LoadNodes.size() == 2 &&
15891 TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
15892 StoreNodes[0].MemNode->getAlignment() >= RequiredAlignment) {
15893 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2);
15894 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2);
15895 break;
15897 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
15898 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
15899 unsigned FirstStoreAlign = FirstInChain->getAlignment();
15900 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
15901 unsigned FirstLoadAlign = FirstLoad->getAlignment();
15903 // Scan the memory operations on the chain and find the first
15904 // non-consecutive load memory address. These variables hold the index in
15905 // the store node array.
15907 unsigned LastConsecutiveLoad = 1;
15909 // This variable refers to the size and not index in the array.
15910 unsigned LastLegalVectorType = 1;
15911 unsigned LastLegalIntegerType = 1;
15912 bool isDereferenceable = true;
15913 bool DoIntegerTruncate = false;
15914 StartAddress = LoadNodes[0].OffsetFromBase;
15915 SDValue FirstChain = FirstLoad->getChain();
15916 for (unsigned i = 1; i < LoadNodes.size(); ++i) {
15917 // All loads must share the same chain.
15918 if (LoadNodes[i].MemNode->getChain() != FirstChain)
15919 break;
15921 int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
15922 if (CurrAddress - StartAddress != (ElementSizeBytes * i))
15923 break;
15924 LastConsecutiveLoad = i;
15926 if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable())
15927 isDereferenceable = false;
15929 // Find a legal type for the vector store.
15930 unsigned Elts = (i + 1) * NumMemElts;
15931 EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
15933 // Break early when size is too large to be legal.
15934 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
15935 break;
15937 bool IsFastSt, IsFastLd;
15938 if (TLI.isTypeLegal(StoreTy) &&
15939 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
15940 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15941 *FirstInChain->getMemOperand(), &IsFastSt) &&
15942 IsFastSt &&
15943 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15944 *FirstLoad->getMemOperand(), &IsFastLd) &&
15945 IsFastLd) {
15946 LastLegalVectorType = i + 1;
15949 // Find a legal type for the integer store.
15950 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
15951 StoreTy = EVT::getIntegerVT(Context, SizeInBits);
15952 if (TLI.isTypeLegal(StoreTy) &&
15953 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
15954 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15955 *FirstInChain->getMemOperand(), &IsFastSt) &&
15956 IsFastSt &&
15957 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15958 *FirstLoad->getMemOperand(), &IsFastLd) &&
15959 IsFastLd) {
15960 LastLegalIntegerType = i + 1;
15961 DoIntegerTruncate = false;
15962 // Or check whether a truncstore and extload is legal.
15963 } else if (TLI.getTypeAction(Context, StoreTy) ==
15964 TargetLowering::TypePromoteInteger) {
15965 EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy);
15966 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
15967 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
15968 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy,
15969 StoreTy) &&
15970 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy,
15971 StoreTy) &&
15972 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) &&
15973 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15974 *FirstInChain->getMemOperand(),
15975 &IsFastSt) &&
15976 IsFastSt &&
15977 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15978 *FirstLoad->getMemOperand(), &IsFastLd) &&
15979 IsFastLd) {
15980 LastLegalIntegerType = i + 1;
15981 DoIntegerTruncate = true;
15986 // Only use vector types if the vector type is larger than the integer
15987 // type. If they are the same, use integers.
15988 bool UseVectorTy =
15989 LastLegalVectorType > LastLegalIntegerType && !NoVectors;
15990 unsigned LastLegalType =
15991 std::max(LastLegalVectorType, LastLegalIntegerType);
15993 // We add +1 here because the LastXXX variables refer to location while
15994 // the NumElem refers to array/index size.
15995 unsigned NumElem =
15996 std::min(NumConsecutiveStores, LastConsecutiveLoad + 1);
15997 NumElem = std::min(LastLegalType, NumElem);
15999 if (NumElem < 2) {
16000 // We know that candidate stores are in order and of correct
16001 // shape. While there is no mergeable sequence from the
16002 // beginning one may start later in the sequence. The only
16003 // reason a merge of size N could have failed where another of
16004 // the same size would not have is if the alignment or either
16005 // the load or store has improved. Drop as many candidates as we
16006 // can here.
16007 unsigned NumSkip = 1;
16008 while ((NumSkip < LoadNodes.size()) &&
16009 (LoadNodes[NumSkip].MemNode->getAlignment() <= FirstLoadAlign) &&
16010 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
16011 NumSkip++;
16012 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
16013 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip);
16014 NumConsecutiveStores -= NumSkip;
16015 continue;
16018 // Check that we can merge these candidates without causing a cycle.
16019 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
16020 RootNode)) {
16021 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
16022 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
16023 NumConsecutiveStores -= NumElem;
16024 continue;
16027 // Find if it is better to use vectors or integers to load and store
16028 // to memory.
16029 EVT JointMemOpVT;
16030 if (UseVectorTy) {
16031 // Find a legal type for the vector store.
16032 unsigned Elts = NumElem * NumMemElts;
16033 JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
16034 } else {
16035 unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
16036 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits);
16039 SDLoc LoadDL(LoadNodes[0].MemNode);
16040 SDLoc StoreDL(StoreNodes[0].MemNode);
16042 // The merged loads are required to have the same incoming chain, so
16043 // using the first's chain is acceptable.
16045 SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem);
16046 AddToWorklist(NewStoreChain.getNode());
16048 MachineMemOperand::Flags LdMMOFlags =
16049 isDereferenceable ? MachineMemOperand::MODereferenceable
16050 : MachineMemOperand::MONone;
16051 if (IsNonTemporalLoad)
16052 LdMMOFlags |= MachineMemOperand::MONonTemporal;
16054 MachineMemOperand::Flags StMMOFlags =
16055 IsNonTemporalStore ? MachineMemOperand::MONonTemporal
16056 : MachineMemOperand::MONone;
16058 SDValue NewLoad, NewStore;
16059 if (UseVectorTy || !DoIntegerTruncate) {
16060 NewLoad =
16061 DAG.getLoad(JointMemOpVT, LoadDL, FirstLoad->getChain(),
16062 FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(),
16063 FirstLoadAlign, LdMMOFlags);
16064 NewStore = DAG.getStore(
16065 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(),
16066 FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags);
16067 } else { // This must be the truncstore/extload case
16068 EVT ExtendedTy =
16069 TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT);
16070 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy,
16071 FirstLoad->getChain(), FirstLoad->getBasePtr(),
16072 FirstLoad->getPointerInfo(), JointMemOpVT,
16073 FirstLoadAlign, LdMMOFlags);
16074 NewStore = DAG.getTruncStore(NewStoreChain, StoreDL, NewLoad,
16075 FirstInChain->getBasePtr(),
16076 FirstInChain->getPointerInfo(),
16077 JointMemOpVT, FirstInChain->getAlignment(),
16078 FirstInChain->getMemOperand()->getFlags());
16081 // Transfer chain users from old loads to the new load.
16082 for (unsigned i = 0; i < NumElem; ++i) {
16083 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
16084 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
16085 SDValue(NewLoad.getNode(), 1));
16088 // Replace the all stores with the new store. Recursively remove
16089 // corresponding value if its no longer used.
16090 for (unsigned i = 0; i < NumElem; ++i) {
16091 SDValue Val = StoreNodes[i].MemNode->getOperand(1);
16092 CombineTo(StoreNodes[i].MemNode, NewStore);
16093 if (Val.getNode()->use_empty())
16094 recursivelyDeleteUnusedNodes(Val.getNode());
16097 RV = true;
16098 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
16099 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
16100 NumConsecutiveStores -= NumElem;
16103 return RV;
16106 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) {
16107 SDLoc SL(ST);
16108 SDValue ReplStore;
16110 // Replace the chain to avoid dependency.
16111 if (ST->isTruncatingStore()) {
16112 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(),
16113 ST->getBasePtr(), ST->getMemoryVT(),
16114 ST->getMemOperand());
16115 } else {
16116 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(),
16117 ST->getMemOperand());
16120 // Create token to keep both nodes around.
16121 SDValue Token = DAG.getNode(ISD::TokenFactor, SL,
16122 MVT::Other, ST->getChain(), ReplStore);
16124 // Make sure the new and old chains are cleaned up.
16125 AddToWorklist(Token.getNode());
16127 // Don't add users to work list.
16128 return CombineTo(ST, Token, false);
16131 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) {
16132 SDValue Value = ST->getValue();
16133 if (Value.getOpcode() == ISD::TargetConstantFP)
16134 return SDValue();
16136 SDLoc DL(ST);
16138 SDValue Chain = ST->getChain();
16139 SDValue Ptr = ST->getBasePtr();
16141 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value);
16143 // NOTE: If the original store is volatile, this transform must not increase
16144 // the number of stores. For example, on x86-32 an f64 can be stored in one
16145 // processor operation but an i64 (which is not legal) requires two. So the
16146 // transform should not be done in this case.
16148 SDValue Tmp;
16149 switch (CFP->getSimpleValueType(0).SimpleTy) {
16150 default:
16151 llvm_unreachable("Unknown FP type");
16152 case MVT::f16: // We don't do this for these yet.
16153 case MVT::f80:
16154 case MVT::f128:
16155 case MVT::ppcf128:
16156 return SDValue();
16157 case MVT::f32:
16158 if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) ||
16159 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
16161 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
16162 bitcastToAPInt().getZExtValue(), SDLoc(CFP),
16163 MVT::i32);
16164 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand());
16167 return SDValue();
16168 case MVT::f64:
16169 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
16170 ST->isSimple()) ||
16171 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
16173 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
16174 getZExtValue(), SDLoc(CFP), MVT::i64);
16175 return DAG.getStore(Chain, DL, Tmp,
16176 Ptr, ST->getMemOperand());
16179 if (ST->isSimple() &&
16180 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
16181 // Many FP stores are not made apparent until after legalize, e.g. for
16182 // argument passing. Since this is so common, custom legalize the
16183 // 64-bit integer store into two 32-bit stores.
16184 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
16185 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32);
16186 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32);
16187 if (DAG.getDataLayout().isBigEndian())
16188 std::swap(Lo, Hi);
16190 unsigned Alignment = ST->getAlignment();
16191 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
16192 AAMDNodes AAInfo = ST->getAAInfo();
16194 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
16195 ST->getAlignment(), MMOFlags, AAInfo);
16196 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
16197 DAG.getConstant(4, DL, Ptr.getValueType()));
16198 Alignment = MinAlign(Alignment, 4U);
16199 SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr,
16200 ST->getPointerInfo().getWithOffset(4),
16201 Alignment, MMOFlags, AAInfo);
16202 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
16203 St0, St1);
16206 return SDValue();
16210 SDValue DAGCombiner::visitSTORE(SDNode *N) {
16211 StoreSDNode *ST = cast<StoreSDNode>(N);
16212 SDValue Chain = ST->getChain();
16213 SDValue Value = ST->getValue();
16214 SDValue Ptr = ST->getBasePtr();
16216 // If this is a store of a bit convert, store the input value if the
16217 // resultant store does not need a higher alignment than the original.
16218 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
16219 ST->isUnindexed()) {
16220 EVT SVT = Value.getOperand(0).getValueType();
16221 // If the store is volatile, we only want to change the store type if the
16222 // resulting store is legal. Otherwise we might increase the number of
16223 // memory accesses. We don't care if the original type was legal or not
16224 // as we assume software couldn't rely on the number of accesses of an
16225 // illegal type.
16226 // TODO: May be able to relax for unordered atomics (see D66309)
16227 if (((!LegalOperations && ST->isSimple()) ||
16228 TLI.isOperationLegal(ISD::STORE, SVT)) &&
16229 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT,
16230 DAG, *ST->getMemOperand())) {
16231 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
16232 ST->getPointerInfo(), ST->getAlignment(),
16233 ST->getMemOperand()->getFlags(), ST->getAAInfo());
16237 // Turn 'store undef, Ptr' -> nothing.
16238 if (Value.isUndef() && ST->isUnindexed())
16239 return Chain;
16241 // Try to infer better alignment information than the store already has.
16242 if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
16243 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
16244 if (Align > ST->getAlignment() && ST->getSrcValueOffset() % Align == 0) {
16245 SDValue NewStore =
16246 DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(),
16247 ST->getMemoryVT(), Align,
16248 ST->getMemOperand()->getFlags(), ST->getAAInfo());
16249 // NewStore will always be N as we are only refining the alignment
16250 assert(NewStore.getNode() == N);
16251 (void)NewStore;
16256 // Try transforming a pair floating point load / store ops to integer
16257 // load / store ops.
16258 if (SDValue NewST = TransformFPLoadStorePair(N))
16259 return NewST;
16261 // Try transforming several stores into STORE (BSWAP).
16262 if (SDValue Store = MatchStoreCombine(ST))
16263 return Store;
16265 if (ST->isUnindexed()) {
16266 // Walk up chain skipping non-aliasing memory nodes, on this store and any
16267 // adjacent stores.
16268 if (findBetterNeighborChains(ST)) {
16269 // replaceStoreChain uses CombineTo, which handled all of the worklist
16270 // manipulation. Return the original node to not do anything else.
16271 return SDValue(ST, 0);
16273 Chain = ST->getChain();
16276 // FIXME: is there such a thing as a truncating indexed store?
16277 if (ST->isTruncatingStore() && ST->isUnindexed() &&
16278 Value.getValueType().isInteger() &&
16279 (!isa<ConstantSDNode>(Value) ||
16280 !cast<ConstantSDNode>(Value)->isOpaque())) {
16281 APInt TruncDemandedBits =
16282 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
16283 ST->getMemoryVT().getScalarSizeInBits());
16285 // See if we can simplify the input to this truncstore with knowledge that
16286 // only the low bits are being used. For example:
16287 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
16288 AddToWorklist(Value.getNode());
16289 if (SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits))
16290 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(),
16291 ST->getMemOperand());
16293 // Otherwise, see if we can simplify the operation with
16294 // SimplifyDemandedBits, which only works if the value has a single use.
16295 if (SimplifyDemandedBits(Value, TruncDemandedBits)) {
16296 // Re-visit the store if anything changed and the store hasn't been merged
16297 // with another node (N is deleted) SimplifyDemandedBits will add Value's
16298 // node back to the worklist if necessary, but we also need to re-visit
16299 // the Store node itself.
16300 if (N->getOpcode() != ISD::DELETED_NODE)
16301 AddToWorklist(N);
16302 return SDValue(N, 0);
16306 // If this is a load followed by a store to the same location, then the store
16307 // is dead/noop.
16308 // TODO: Can relax for unordered atomics (see D66309)
16309 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
16310 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
16311 ST->isUnindexed() && ST->isSimple() &&
16312 // There can't be any side effects between the load and store, such as
16313 // a call or store.
16314 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
16315 // The store is dead, remove it.
16316 return Chain;
16320 // TODO: Can relax for unordered atomics (see D66309)
16321 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
16322 if (ST->isUnindexed() && ST->isSimple() &&
16323 ST1->isUnindexed() && ST1->isSimple()) {
16324 if (ST1->getBasePtr() == Ptr && ST1->getValue() == Value &&
16325 ST->getMemoryVT() == ST1->getMemoryVT()) {
16326 // If this is a store followed by a store with the same value to the
16327 // same location, then the store is dead/noop.
16328 return Chain;
16331 if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() &&
16332 !ST1->getBasePtr().isUndef()) {
16333 const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG);
16334 const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG);
16335 unsigned STBitSize = ST->getMemoryVT().getSizeInBits();
16336 unsigned ChainBitSize = ST1->getMemoryVT().getSizeInBits();
16337 // If this is a store who's preceding store to a subset of the current
16338 // location and no one other node is chained to that store we can
16339 // effectively drop the store. Do not remove stores to undef as they may
16340 // be used as data sinks.
16341 if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) {
16342 CombineTo(ST1, ST1->getChain());
16343 return SDValue();
16346 // If ST stores to a subset of preceding store's write set, we may be
16347 // able to fold ST's value into the preceding stored value. As we know
16348 // the other uses of ST1's chain are unconcerned with ST, this folding
16349 // will not affect those nodes.
16350 int64_t BitOffset;
16351 if (ChainBase.contains(DAG, ChainBitSize, STBase, STBitSize,
16352 BitOffset)) {
16353 SDValue ChainValue = ST1->getValue();
16354 if (auto *C1 = dyn_cast<ConstantSDNode>(ChainValue)) {
16355 if (auto *C = dyn_cast<ConstantSDNode>(Value)) {
16356 APInt Val = C1->getAPIntValue();
16357 APInt InsertVal = C->getAPIntValue().zextOrTrunc(STBitSize);
16358 // FIXME: Handle Big-endian mode.
16359 if (!DAG.getDataLayout().isBigEndian()) {
16360 Val.insertBits(InsertVal, BitOffset);
16361 SDValue NewSDVal =
16362 DAG.getConstant(Val, SDLoc(C), ChainValue.getValueType(),
16363 C1->isTargetOpcode(), C1->isOpaque());
16364 SDNode *NewST1 = DAG.UpdateNodeOperands(
16365 ST1, ST1->getChain(), NewSDVal, ST1->getOperand(2),
16366 ST1->getOperand(3));
16367 return CombineTo(ST, SDValue(NewST1, 0));
16371 } // End ST subset of ST1 case.
16376 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
16377 // truncating store. We can do this even if this is already a truncstore.
16378 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
16379 && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
16380 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
16381 ST->getMemoryVT())) {
16382 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
16383 Ptr, ST->getMemoryVT(), ST->getMemOperand());
16386 // Always perform this optimization before types are legal. If the target
16387 // prefers, also try this after legalization to catch stores that were created
16388 // by intrinsics or other nodes.
16389 if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) {
16390 while (true) {
16391 // There can be multiple store sequences on the same chain.
16392 // Keep trying to merge store sequences until we are unable to do so
16393 // or until we merge the last store on the chain.
16394 bool Changed = MergeConsecutiveStores(ST);
16395 if (!Changed) break;
16396 // Return N as merge only uses CombineTo and no worklist clean
16397 // up is necessary.
16398 if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N))
16399 return SDValue(N, 0);
16403 // Try transforming N to an indexed store.
16404 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
16405 return SDValue(N, 0);
16407 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
16409 // Make sure to do this only after attempting to merge stores in order to
16410 // avoid changing the types of some subset of stores due to visit order,
16411 // preventing their merging.
16412 if (isa<ConstantFPSDNode>(ST->getValue())) {
16413 if (SDValue NewSt = replaceStoreOfFPConstant(ST))
16414 return NewSt;
16417 if (SDValue NewSt = splitMergedValStore(ST))
16418 return NewSt;
16420 return ReduceLoadOpStoreWidth(N);
16423 SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) {
16424 const auto *LifetimeEnd = cast<LifetimeSDNode>(N);
16425 if (!LifetimeEnd->hasOffset())
16426 return SDValue();
16428 const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(),
16429 LifetimeEnd->getOffset(), false);
16431 // We walk up the chains to find stores.
16432 SmallVector<SDValue, 8> Chains = {N->getOperand(0)};
16433 while (!Chains.empty()) {
16434 SDValue Chain = Chains.back();
16435 Chains.pop_back();
16436 if (!Chain.hasOneUse())
16437 continue;
16438 switch (Chain.getOpcode()) {
16439 case ISD::TokenFactor:
16440 for (unsigned Nops = Chain.getNumOperands(); Nops;)
16441 Chains.push_back(Chain.getOperand(--Nops));
16442 break;
16443 case ISD::LIFETIME_START:
16444 case ISD::LIFETIME_END:
16445 // We can forward past any lifetime start/end that can be proven not to
16446 // alias the node.
16447 if (!isAlias(Chain.getNode(), N))
16448 Chains.push_back(Chain.getOperand(0));
16449 break;
16450 case ISD::STORE: {
16451 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain);
16452 // TODO: Can relax for unordered atomics (see D66309)
16453 if (!ST->isSimple() || ST->isIndexed())
16454 continue;
16455 const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG);
16456 // If we store purely within object bounds just before its lifetime ends,
16457 // we can remove the store.
16458 if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase,
16459 ST->getMemoryVT().getStoreSizeInBits())) {
16460 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump();
16461 dbgs() << "\nwithin LIFETIME_END of : ";
16462 LifetimeEndBase.dump(); dbgs() << "\n");
16463 CombineTo(ST, ST->getChain());
16464 return SDValue(N, 0);
16469 return SDValue();
16472 /// For the instruction sequence of store below, F and I values
16473 /// are bundled together as an i64 value before being stored into memory.
16474 /// Sometimes it is more efficent to generate separate stores for F and I,
16475 /// which can remove the bitwise instructions or sink them to colder places.
16477 /// (store (or (zext (bitcast F to i32) to i64),
16478 /// (shl (zext I to i64), 32)), addr) -->
16479 /// (store F, addr) and (store I, addr+4)
16481 /// Similarly, splitting for other merged store can also be beneficial, like:
16482 /// For pair of {i32, i32}, i64 store --> two i32 stores.
16483 /// For pair of {i32, i16}, i64 store --> two i32 stores.
16484 /// For pair of {i16, i16}, i32 store --> two i16 stores.
16485 /// For pair of {i16, i8}, i32 store --> two i16 stores.
16486 /// For pair of {i8, i8}, i16 store --> two i8 stores.
16488 /// We allow each target to determine specifically which kind of splitting is
16489 /// supported.
16491 /// The store patterns are commonly seen from the simple code snippet below
16492 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
16493 /// void goo(const std::pair<int, float> &);
16494 /// hoo() {
16495 /// ...
16496 /// goo(std::make_pair(tmp, ftmp));
16497 /// ...
16498 /// }
16500 SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) {
16501 if (OptLevel == CodeGenOpt::None)
16502 return SDValue();
16504 SDValue Val = ST->getValue();
16505 SDLoc DL(ST);
16507 // Match OR operand.
16508 if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR)
16509 return SDValue();
16511 // Match SHL operand and get Lower and Higher parts of Val.
16512 SDValue Op1 = Val.getOperand(0);
16513 SDValue Op2 = Val.getOperand(1);
16514 SDValue Lo, Hi;
16515 if (Op1.getOpcode() != ISD::SHL) {
16516 std::swap(Op1, Op2);
16517 if (Op1.getOpcode() != ISD::SHL)
16518 return SDValue();
16520 Lo = Op2;
16521 Hi = Op1.getOperand(0);
16522 if (!Op1.hasOneUse())
16523 return SDValue();
16525 // Match shift amount to HalfValBitSize.
16526 unsigned HalfValBitSize = Val.getValueSizeInBits() / 2;
16527 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1));
16528 if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize)
16529 return SDValue();
16531 // Lo and Hi are zero-extended from int with size less equal than 32
16532 // to i64.
16533 if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() ||
16534 !Lo.getOperand(0).getValueType().isScalarInteger() ||
16535 Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize ||
16536 Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() ||
16537 !Hi.getOperand(0).getValueType().isScalarInteger() ||
16538 Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize)
16539 return SDValue();
16541 // Use the EVT of low and high parts before bitcast as the input
16542 // of target query.
16543 EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST)
16544 ? Lo.getOperand(0).getValueType()
16545 : Lo.getValueType();
16546 EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST)
16547 ? Hi.getOperand(0).getValueType()
16548 : Hi.getValueType();
16549 if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
16550 return SDValue();
16552 // Start to split store.
16553 unsigned Alignment = ST->getAlignment();
16554 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
16555 AAMDNodes AAInfo = ST->getAAInfo();
16557 // Change the sizes of Lo and Hi's value types to HalfValBitSize.
16558 EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize);
16559 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0));
16560 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0));
16562 SDValue Chain = ST->getChain();
16563 SDValue Ptr = ST->getBasePtr();
16564 // Lower value store.
16565 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
16566 ST->getAlignment(), MMOFlags, AAInfo);
16567 Ptr =
16568 DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
16569 DAG.getConstant(HalfValBitSize / 8, DL, Ptr.getValueType()));
16570 // Higher value store.
16571 SDValue St1 =
16572 DAG.getStore(St0, DL, Hi, Ptr,
16573 ST->getPointerInfo().getWithOffset(HalfValBitSize / 8),
16574 Alignment / 2, MMOFlags, AAInfo);
16575 return St1;
16578 /// Convert a disguised subvector insertion into a shuffle:
16579 SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) {
16580 SDValue InsertVal = N->getOperand(1);
16581 SDValue Vec = N->getOperand(0);
16583 // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N), InsIndex)
16584 // --> (vector_shuffle X, Y)
16585 if (Vec.getOpcode() == ISD::VECTOR_SHUFFLE && Vec.hasOneUse() &&
16586 InsertVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
16587 isa<ConstantSDNode>(InsertVal.getOperand(1))) {
16588 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Vec.getNode());
16589 ArrayRef<int> Mask = SVN->getMask();
16591 SDValue X = Vec.getOperand(0);
16592 SDValue Y = Vec.getOperand(1);
16594 // Vec's operand 0 is using indices from 0 to N-1 and
16595 // operand 1 from N to 2N - 1, where N is the number of
16596 // elements in the vectors.
16597 int XOffset = -1;
16598 if (InsertVal.getOperand(0) == X) {
16599 XOffset = 0;
16600 } else if (InsertVal.getOperand(0) == Y) {
16601 XOffset = X.getValueType().getVectorNumElements();
16604 if (XOffset != -1) {
16605 SmallVector<int, 16> NewMask(Mask.begin(), Mask.end());
16607 auto *ExtrIndex = cast<ConstantSDNode>(InsertVal.getOperand(1));
16608 NewMask[InsIndex] = XOffset + ExtrIndex->getZExtValue();
16609 assert(NewMask[InsIndex] <
16610 (int)(2 * Vec.getValueType().getVectorNumElements()) &&
16611 NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound");
16613 SDValue LegalShuffle =
16614 TLI.buildLegalVectorShuffle(Vec.getValueType(), SDLoc(N), X,
16615 Y, NewMask, DAG);
16616 if (LegalShuffle)
16617 return LegalShuffle;
16621 // insert_vector_elt V, (bitcast X from vector type), IdxC -->
16622 // bitcast(shuffle (bitcast V), (extended X), Mask)
16623 // Note: We do not use an insert_subvector node because that requires a
16624 // legal subvector type.
16625 if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() ||
16626 !InsertVal.getOperand(0).getValueType().isVector())
16627 return SDValue();
16629 SDValue SubVec = InsertVal.getOperand(0);
16630 SDValue DestVec = N->getOperand(0);
16631 EVT SubVecVT = SubVec.getValueType();
16632 EVT VT = DestVec.getValueType();
16633 unsigned NumSrcElts = SubVecVT.getVectorNumElements();
16634 unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits();
16635 unsigned NumMaskVals = ExtendRatio * NumSrcElts;
16637 // Step 1: Create a shuffle mask that implements this insert operation. The
16638 // vector that we are inserting into will be operand 0 of the shuffle, so
16639 // those elements are just 'i'. The inserted subvector is in the first
16640 // positions of operand 1 of the shuffle. Example:
16641 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
16642 SmallVector<int, 16> Mask(NumMaskVals);
16643 for (unsigned i = 0; i != NumMaskVals; ++i) {
16644 if (i / NumSrcElts == InsIndex)
16645 Mask[i] = (i % NumSrcElts) + NumMaskVals;
16646 else
16647 Mask[i] = i;
16650 // Bail out if the target can not handle the shuffle we want to create.
16651 EVT SubVecEltVT = SubVecVT.getVectorElementType();
16652 EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals);
16653 if (!TLI.isShuffleMaskLegal(Mask, ShufVT))
16654 return SDValue();
16656 // Step 2: Create a wide vector from the inserted source vector by appending
16657 // undefined elements. This is the same size as our destination vector.
16658 SDLoc DL(N);
16659 SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT));
16660 ConcatOps[0] = SubVec;
16661 SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps);
16663 // Step 3: Shuffle in the padded subvector.
16664 SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec);
16665 SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask);
16666 AddToWorklist(PaddedSubV.getNode());
16667 AddToWorklist(DestVecBC.getNode());
16668 AddToWorklist(Shuf.getNode());
16669 return DAG.getBitcast(VT, Shuf);
16672 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
16673 SDValue InVec = N->getOperand(0);
16674 SDValue InVal = N->getOperand(1);
16675 SDValue EltNo = N->getOperand(2);
16676 SDLoc DL(N);
16678 // If the inserted element is an UNDEF, just use the input vector.
16679 if (InVal.isUndef())
16680 return InVec;
16682 EVT VT = InVec.getValueType();
16683 unsigned NumElts = VT.getVectorNumElements();
16685 // Remove redundant insertions:
16686 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
16687 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
16688 InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1))
16689 return InVec;
16691 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
16692 if (!IndexC) {
16693 // If this is variable insert to undef vector, it might be better to splat:
16694 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
16695 if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) {
16696 SmallVector<SDValue, 8> Ops(NumElts, InVal);
16697 return DAG.getBuildVector(VT, DL, Ops);
16699 return SDValue();
16702 // We must know which element is being inserted for folds below here.
16703 unsigned Elt = IndexC->getZExtValue();
16704 if (SDValue Shuf = combineInsertEltToShuffle(N, Elt))
16705 return Shuf;
16707 // Canonicalize insert_vector_elt dag nodes.
16708 // Example:
16709 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
16710 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
16712 // Do this only if the child insert_vector node has one use; also
16713 // do this only if indices are both constants and Idx1 < Idx0.
16714 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
16715 && isa<ConstantSDNode>(InVec.getOperand(2))) {
16716 unsigned OtherElt = InVec.getConstantOperandVal(2);
16717 if (Elt < OtherElt) {
16718 // Swap nodes.
16719 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
16720 InVec.getOperand(0), InVal, EltNo);
16721 AddToWorklist(NewOp.getNode());
16722 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
16723 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
16727 // If we can't generate a legal BUILD_VECTOR, exit
16728 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
16729 return SDValue();
16731 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
16732 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
16733 // vector elements.
16734 SmallVector<SDValue, 8> Ops;
16735 // Do not combine these two vectors if the output vector will not replace
16736 // the input vector.
16737 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
16738 Ops.append(InVec.getNode()->op_begin(),
16739 InVec.getNode()->op_end());
16740 } else if (InVec.isUndef()) {
16741 Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType()));
16742 } else {
16743 return SDValue();
16745 assert(Ops.size() == NumElts && "Unexpected vector size");
16747 // Insert the element
16748 if (Elt < Ops.size()) {
16749 // All the operands of BUILD_VECTOR must have the same type;
16750 // we enforce that here.
16751 EVT OpVT = Ops[0].getValueType();
16752 Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal;
16755 // Return the new vector
16756 return DAG.getBuildVector(VT, DL, Ops);
16759 SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
16760 SDValue EltNo,
16761 LoadSDNode *OriginalLoad) {
16762 assert(OriginalLoad->isSimple());
16764 EVT ResultVT = EVE->getValueType(0);
16765 EVT VecEltVT = InVecVT.getVectorElementType();
16766 unsigned Align = OriginalLoad->getAlignment();
16767 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
16768 VecEltVT.getTypeForEVT(*DAG.getContext()));
16770 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
16771 return SDValue();
16773 ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ?
16774 ISD::NON_EXTLOAD : ISD::EXTLOAD;
16775 if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT))
16776 return SDValue();
16778 Align = NewAlign;
16780 SDValue NewPtr = OriginalLoad->getBasePtr();
16781 SDValue Offset;
16782 EVT PtrType = NewPtr.getValueType();
16783 MachinePointerInfo MPI;
16784 SDLoc DL(EVE);
16785 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
16786 int Elt = ConstEltNo->getZExtValue();
16787 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8;
16788 Offset = DAG.getConstant(PtrOff, DL, PtrType);
16789 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff);
16790 } else {
16791 Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType);
16792 Offset = DAG.getNode(
16793 ISD::MUL, DL, PtrType, Offset,
16794 DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType));
16795 // Discard the pointer info except the address space because the memory
16796 // operand can't represent this new access since the offset is variable.
16797 MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace());
16799 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset);
16801 // The replacement we need to do here is a little tricky: we need to
16802 // replace an extractelement of a load with a load.
16803 // Use ReplaceAllUsesOfValuesWith to do the replacement.
16804 // Note that this replacement assumes that the extractvalue is the only
16805 // use of the load; that's okay because we don't want to perform this
16806 // transformation in other cases anyway.
16807 SDValue Load;
16808 SDValue Chain;
16809 if (ResultVT.bitsGT(VecEltVT)) {
16810 // If the result type of vextract is wider than the load, then issue an
16811 // extending load instead.
16812 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT,
16813 VecEltVT)
16814 ? ISD::ZEXTLOAD
16815 : ISD::EXTLOAD;
16816 Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT,
16817 OriginalLoad->getChain(), NewPtr, MPI, VecEltVT,
16818 Align, OriginalLoad->getMemOperand()->getFlags(),
16819 OriginalLoad->getAAInfo());
16820 Chain = Load.getValue(1);
16821 } else {
16822 Load = DAG.getLoad(VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr,
16823 MPI, Align, OriginalLoad->getMemOperand()->getFlags(),
16824 OriginalLoad->getAAInfo());
16825 Chain = Load.getValue(1);
16826 if (ResultVT.bitsLT(VecEltVT))
16827 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load);
16828 else
16829 Load = DAG.getBitcast(ResultVT, Load);
16831 WorklistRemover DeadNodes(*this);
16832 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) };
16833 SDValue To[] = { Load, Chain };
16834 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
16835 // Since we're explicitly calling ReplaceAllUses, add the new node to the
16836 // worklist explicitly as well.
16837 AddToWorklist(Load.getNode());
16838 AddUsersToWorklist(Load.getNode()); // Add users too
16839 // Make sure to revisit this node to clean it up; it will usually be dead.
16840 AddToWorklist(EVE);
16841 ++OpsNarrowed;
16842 return SDValue(EVE, 0);
16845 /// Transform a vector binary operation into a scalar binary operation by moving
16846 /// the math/logic after an extract element of a vector.
16847 static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG,
16848 bool LegalOperations) {
16849 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16850 SDValue Vec = ExtElt->getOperand(0);
16851 SDValue Index = ExtElt->getOperand(1);
16852 auto *IndexC = dyn_cast<ConstantSDNode>(Index);
16853 if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() ||
16854 Vec.getNode()->getNumValues() != 1)
16855 return SDValue();
16857 // Targets may want to avoid this to prevent an expensive register transfer.
16858 if (!TLI.shouldScalarizeBinop(Vec))
16859 return SDValue();
16861 // Extracting an element of a vector constant is constant-folded, so this
16862 // transform is just replacing a vector op with a scalar op while moving the
16863 // extract.
16864 SDValue Op0 = Vec.getOperand(0);
16865 SDValue Op1 = Vec.getOperand(1);
16866 if (isAnyConstantBuildVector(Op0, true) ||
16867 isAnyConstantBuildVector(Op1, true)) {
16868 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C'
16869 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC)
16870 SDLoc DL(ExtElt);
16871 EVT VT = ExtElt->getValueType(0);
16872 SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index);
16873 SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index);
16874 return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1);
16877 return SDValue();
16880 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
16881 SDValue VecOp = N->getOperand(0);
16882 SDValue Index = N->getOperand(1);
16883 EVT ScalarVT = N->getValueType(0);
16884 EVT VecVT = VecOp.getValueType();
16885 if (VecOp.isUndef())
16886 return DAG.getUNDEF(ScalarVT);
16888 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
16890 // This only really matters if the index is non-constant since other combines
16891 // on the constant elements already work.
16892 SDLoc DL(N);
16893 if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT &&
16894 Index == VecOp.getOperand(2)) {
16895 SDValue Elt = VecOp.getOperand(1);
16896 return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt;
16899 // (vextract (scalar_to_vector val, 0) -> val
16900 if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) {
16901 // Check if the result type doesn't match the inserted element type. A
16902 // SCALAR_TO_VECTOR may truncate the inserted element and the
16903 // EXTRACT_VECTOR_ELT may widen the extracted vector.
16904 SDValue InOp = VecOp.getOperand(0);
16905 if (InOp.getValueType() != ScalarVT) {
16906 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
16907 return DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
16909 return InOp;
16912 // extract_vector_elt of out-of-bounds element -> UNDEF
16913 auto *IndexC = dyn_cast<ConstantSDNode>(Index);
16914 unsigned NumElts = VecVT.getVectorNumElements();
16915 if (IndexC && IndexC->getAPIntValue().uge(NumElts))
16916 return DAG.getUNDEF(ScalarVT);
16918 // extract_vector_elt (build_vector x, y), 1 -> y
16919 if (IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR &&
16920 TLI.isTypeLegal(VecVT) &&
16921 (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) {
16922 SDValue Elt = VecOp.getOperand(IndexC->getZExtValue());
16923 EVT InEltVT = Elt.getValueType();
16925 // Sometimes build_vector's scalar input types do not match result type.
16926 if (ScalarVT == InEltVT)
16927 return Elt;
16929 // TODO: It may be useful to truncate if free if the build_vector implicitly
16930 // converts.
16933 // TODO: These transforms should not require the 'hasOneUse' restriction, but
16934 // there are regressions on multiple targets without it. We can end up with a
16935 // mess of scalar and vector code if we reduce only part of the DAG to scalar.
16936 if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() &&
16937 VecOp.hasOneUse()) {
16938 // The vector index of the LSBs of the source depend on the endian-ness.
16939 bool IsLE = DAG.getDataLayout().isLittleEndian();
16940 unsigned ExtractIndex = IndexC->getZExtValue();
16941 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
16942 unsigned BCTruncElt = IsLE ? 0 : NumElts - 1;
16943 SDValue BCSrc = VecOp.getOperand(0);
16944 if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger())
16945 return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc);
16947 if (LegalTypes && BCSrc.getValueType().isInteger() &&
16948 BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) {
16949 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt -->
16950 // trunc i64 X to i32
16951 SDValue X = BCSrc.getOperand(0);
16952 assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() &&
16953 "Extract element and scalar to vector can't change element type "
16954 "from FP to integer.");
16955 unsigned XBitWidth = X.getValueSizeInBits();
16956 unsigned VecEltBitWidth = VecVT.getScalarSizeInBits();
16957 BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1;
16959 // An extract element return value type can be wider than its vector
16960 // operand element type. In that case, the high bits are undefined, so
16961 // it's possible that we may need to extend rather than truncate.
16962 if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) {
16963 assert(XBitWidth % VecEltBitWidth == 0 &&
16964 "Scalar bitwidth must be a multiple of vector element bitwidth");
16965 return DAG.getAnyExtOrTrunc(X, DL, ScalarVT);
16970 if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations))
16971 return BO;
16973 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
16974 // We only perform this optimization before the op legalization phase because
16975 // we may introduce new vector instructions which are not backed by TD
16976 // patterns. For example on AVX, extracting elements from a wide vector
16977 // without using extract_subvector. However, if we can find an underlying
16978 // scalar value, then we can always use that.
16979 if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) {
16980 auto *Shuf = cast<ShuffleVectorSDNode>(VecOp);
16981 // Find the new index to extract from.
16982 int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue());
16984 // Extracting an undef index is undef.
16985 if (OrigElt == -1)
16986 return DAG.getUNDEF(ScalarVT);
16988 // Select the right vector half to extract from.
16989 SDValue SVInVec;
16990 if (OrigElt < (int)NumElts) {
16991 SVInVec = VecOp.getOperand(0);
16992 } else {
16993 SVInVec = VecOp.getOperand(1);
16994 OrigElt -= NumElts;
16997 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
16998 SDValue InOp = SVInVec.getOperand(OrigElt);
16999 if (InOp.getValueType() != ScalarVT) {
17000 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
17001 InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
17004 return InOp;
17007 // FIXME: We should handle recursing on other vector shuffles and
17008 // scalar_to_vector here as well.
17010 if (!LegalOperations ||
17011 // FIXME: Should really be just isOperationLegalOrCustom.
17012 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) ||
17013 TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) {
17014 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
17015 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec,
17016 DAG.getConstant(OrigElt, DL, IndexTy));
17020 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can
17021 // simplify it based on the (valid) extraction indices.
17022 if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) {
17023 return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
17024 Use->getOperand(0) == VecOp &&
17025 isa<ConstantSDNode>(Use->getOperand(1));
17026 })) {
17027 APInt DemandedElts = APInt::getNullValue(NumElts);
17028 for (SDNode *Use : VecOp->uses()) {
17029 auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1));
17030 if (CstElt->getAPIntValue().ult(NumElts))
17031 DemandedElts.setBit(CstElt->getZExtValue());
17033 if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) {
17034 // We simplified the vector operand of this extract element. If this
17035 // extract is not dead, visit it again so it is folded properly.
17036 if (N->getOpcode() != ISD::DELETED_NODE)
17037 AddToWorklist(N);
17038 return SDValue(N, 0);
17042 // Everything under here is trying to match an extract of a loaded value.
17043 // If the result of load has to be truncated, then it's not necessarily
17044 // profitable.
17045 bool BCNumEltsChanged = false;
17046 EVT ExtVT = VecVT.getVectorElementType();
17047 EVT LVT = ExtVT;
17048 if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT))
17049 return SDValue();
17051 if (VecOp.getOpcode() == ISD::BITCAST) {
17052 // Don't duplicate a load with other uses.
17053 if (!VecOp.hasOneUse())
17054 return SDValue();
17056 EVT BCVT = VecOp.getOperand(0).getValueType();
17057 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
17058 return SDValue();
17059 if (NumElts != BCVT.getVectorNumElements())
17060 BCNumEltsChanged = true;
17061 VecOp = VecOp.getOperand(0);
17062 ExtVT = BCVT.getVectorElementType();
17065 // extract (vector load $addr), i --> load $addr + i * size
17066 if (!LegalOperations && !IndexC && VecOp.hasOneUse() &&
17067 ISD::isNormalLoad(VecOp.getNode()) &&
17068 !Index->hasPredecessor(VecOp.getNode())) {
17069 auto *VecLoad = dyn_cast<LoadSDNode>(VecOp);
17070 if (VecLoad && VecLoad->isSimple())
17071 return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad);
17074 // Perform only after legalization to ensure build_vector / vector_shuffle
17075 // optimizations have already been done.
17076 if (!LegalOperations || !IndexC)
17077 return SDValue();
17079 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
17080 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
17081 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
17082 int Elt = IndexC->getZExtValue();
17083 LoadSDNode *LN0 = nullptr;
17084 if (ISD::isNormalLoad(VecOp.getNode())) {
17085 LN0 = cast<LoadSDNode>(VecOp);
17086 } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
17087 VecOp.getOperand(0).getValueType() == ExtVT &&
17088 ISD::isNormalLoad(VecOp.getOperand(0).getNode())) {
17089 // Don't duplicate a load with other uses.
17090 if (!VecOp.hasOneUse())
17091 return SDValue();
17093 LN0 = cast<LoadSDNode>(VecOp.getOperand(0));
17095 if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) {
17096 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
17097 // =>
17098 // (load $addr+1*size)
17100 // Don't duplicate a load with other uses.
17101 if (!VecOp.hasOneUse())
17102 return SDValue();
17104 // If the bit convert changed the number of elements, it is unsafe
17105 // to examine the mask.
17106 if (BCNumEltsChanged)
17107 return SDValue();
17109 // Select the input vector, guarding against out of range extract vector.
17110 int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt);
17111 VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1);
17113 if (VecOp.getOpcode() == ISD::BITCAST) {
17114 // Don't duplicate a load with other uses.
17115 if (!VecOp.hasOneUse())
17116 return SDValue();
17118 VecOp = VecOp.getOperand(0);
17120 if (ISD::isNormalLoad(VecOp.getNode())) {
17121 LN0 = cast<LoadSDNode>(VecOp);
17122 Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts;
17123 Index = DAG.getConstant(Elt, DL, Index.getValueType());
17127 // Make sure we found a non-volatile load and the extractelement is
17128 // the only use.
17129 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple())
17130 return SDValue();
17132 // If Idx was -1 above, Elt is going to be -1, so just return undef.
17133 if (Elt == -1)
17134 return DAG.getUNDEF(LVT);
17136 return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0);
17139 // Simplify (build_vec (ext )) to (bitcast (build_vec ))
17140 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
17141 // We perform this optimization post type-legalization because
17142 // the type-legalizer often scalarizes integer-promoted vectors.
17143 // Performing this optimization before may create bit-casts which
17144 // will be type-legalized to complex code sequences.
17145 // We perform this optimization only before the operation legalizer because we
17146 // may introduce illegal operations.
17147 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
17148 return SDValue();
17150 unsigned NumInScalars = N->getNumOperands();
17151 SDLoc DL(N);
17152 EVT VT = N->getValueType(0);
17154 // Check to see if this is a BUILD_VECTOR of a bunch of values
17155 // which come from any_extend or zero_extend nodes. If so, we can create
17156 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
17157 // optimizations. We do not handle sign-extend because we can't fill the sign
17158 // using shuffles.
17159 EVT SourceType = MVT::Other;
17160 bool AllAnyExt = true;
17162 for (unsigned i = 0; i != NumInScalars; ++i) {
17163 SDValue In = N->getOperand(i);
17164 // Ignore undef inputs.
17165 if (In.isUndef()) continue;
17167 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND;
17168 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
17170 // Abort if the element is not an extension.
17171 if (!ZeroExt && !AnyExt) {
17172 SourceType = MVT::Other;
17173 break;
17176 // The input is a ZeroExt or AnyExt. Check the original type.
17177 EVT InTy = In.getOperand(0).getValueType();
17179 // Check that all of the widened source types are the same.
17180 if (SourceType == MVT::Other)
17181 // First time.
17182 SourceType = InTy;
17183 else if (InTy != SourceType) {
17184 // Multiple income types. Abort.
17185 SourceType = MVT::Other;
17186 break;
17189 // Check if all of the extends are ANY_EXTENDs.
17190 AllAnyExt &= AnyExt;
17193 // In order to have valid types, all of the inputs must be extended from the
17194 // same source type and all of the inputs must be any or zero extend.
17195 // Scalar sizes must be a power of two.
17196 EVT OutScalarTy = VT.getScalarType();
17197 bool ValidTypes = SourceType != MVT::Other &&
17198 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
17199 isPowerOf2_32(SourceType.getSizeInBits());
17201 // Create a new simpler BUILD_VECTOR sequence which other optimizations can
17202 // turn into a single shuffle instruction.
17203 if (!ValidTypes)
17204 return SDValue();
17206 bool isLE = DAG.getDataLayout().isLittleEndian();
17207 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
17208 assert(ElemRatio > 1 && "Invalid element size ratio");
17209 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
17210 DAG.getConstant(0, DL, SourceType);
17212 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
17213 SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
17215 // Populate the new build_vector
17216 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
17217 SDValue Cast = N->getOperand(i);
17218 assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
17219 Cast.getOpcode() == ISD::ZERO_EXTEND ||
17220 Cast.isUndef()) && "Invalid cast opcode");
17221 SDValue In;
17222 if (Cast.isUndef())
17223 In = DAG.getUNDEF(SourceType);
17224 else
17225 In = Cast->getOperand(0);
17226 unsigned Index = isLE ? (i * ElemRatio) :
17227 (i * ElemRatio + (ElemRatio - 1));
17229 assert(Index < Ops.size() && "Invalid index");
17230 Ops[Index] = In;
17233 // The type of the new BUILD_VECTOR node.
17234 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
17235 assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
17236 "Invalid vector size");
17237 // Check if the new vector type is legal.
17238 if (!isTypeLegal(VecVT) ||
17239 (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) &&
17240 TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)))
17241 return SDValue();
17243 // Make the new BUILD_VECTOR.
17244 SDValue BV = DAG.getBuildVector(VecVT, DL, Ops);
17246 // The new BUILD_VECTOR node has the potential to be further optimized.
17247 AddToWorklist(BV.getNode());
17248 // Bitcast to the desired type.
17249 return DAG.getBitcast(VT, BV);
17252 SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N,
17253 ArrayRef<int> VectorMask,
17254 SDValue VecIn1, SDValue VecIn2,
17255 unsigned LeftIdx, bool DidSplitVec) {
17256 MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
17257 SDValue ZeroIdx = DAG.getConstant(0, DL, IdxTy);
17259 EVT VT = N->getValueType(0);
17260 EVT InVT1 = VecIn1.getValueType();
17261 EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1;
17263 unsigned NumElems = VT.getVectorNumElements();
17264 unsigned ShuffleNumElems = NumElems;
17266 // If we artificially split a vector in two already, then the offsets in the
17267 // operands will all be based off of VecIn1, even those in VecIn2.
17268 unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements();
17270 // We can't generate a shuffle node with mismatched input and output types.
17271 // Try to make the types match the type of the output.
17272 if (InVT1 != VT || InVT2 != VT) {
17273 if ((VT.getSizeInBits() % InVT1.getSizeInBits() == 0) && InVT1 == InVT2) {
17274 // If the output vector length is a multiple of both input lengths,
17275 // we can concatenate them and pad the rest with undefs.
17276 unsigned NumConcats = VT.getSizeInBits() / InVT1.getSizeInBits();
17277 assert(NumConcats >= 2 && "Concat needs at least two inputs!");
17278 SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1));
17279 ConcatOps[0] = VecIn1;
17280 ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1);
17281 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
17282 VecIn2 = SDValue();
17283 } else if (InVT1.getSizeInBits() == VT.getSizeInBits() * 2) {
17284 if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems))
17285 return SDValue();
17287 if (!VecIn2.getNode()) {
17288 // If we only have one input vector, and it's twice the size of the
17289 // output, split it in two.
17290 VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1,
17291 DAG.getConstant(NumElems, DL, IdxTy));
17292 VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx);
17293 // Since we now have shorter input vectors, adjust the offset of the
17294 // second vector's start.
17295 Vec2Offset = NumElems;
17296 } else if (InVT2.getSizeInBits() <= InVT1.getSizeInBits()) {
17297 // VecIn1 is wider than the output, and we have another, possibly
17298 // smaller input. Pad the smaller input with undefs, shuffle at the
17299 // input vector width, and extract the output.
17300 // The shuffle type is different than VT, so check legality again.
17301 if (LegalOperations &&
17302 !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1))
17303 return SDValue();
17305 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to
17306 // lower it back into a BUILD_VECTOR. So if the inserted type is
17307 // illegal, don't even try.
17308 if (InVT1 != InVT2) {
17309 if (!TLI.isTypeLegal(InVT2))
17310 return SDValue();
17311 VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1,
17312 DAG.getUNDEF(InVT1), VecIn2, ZeroIdx);
17314 ShuffleNumElems = NumElems * 2;
17315 } else {
17316 // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider
17317 // than VecIn1. We can't handle this for now - this case will disappear
17318 // when we start sorting the vectors by type.
17319 return SDValue();
17321 } else if (InVT2.getSizeInBits() * 2 == VT.getSizeInBits() &&
17322 InVT1.getSizeInBits() == VT.getSizeInBits()) {
17323 SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2));
17324 ConcatOps[0] = VecIn2;
17325 VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
17326 } else {
17327 // TODO: Support cases where the length mismatch isn't exactly by a
17328 // factor of 2.
17329 // TODO: Move this check upwards, so that if we have bad type
17330 // mismatches, we don't create any DAG nodes.
17331 return SDValue();
17335 // Initialize mask to undef.
17336 SmallVector<int, 8> Mask(ShuffleNumElems, -1);
17338 // Only need to run up to the number of elements actually used, not the
17339 // total number of elements in the shuffle - if we are shuffling a wider
17340 // vector, the high lanes should be set to undef.
17341 for (unsigned i = 0; i != NumElems; ++i) {
17342 if (VectorMask[i] <= 0)
17343 continue;
17345 unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1);
17346 if (VectorMask[i] == (int)LeftIdx) {
17347 Mask[i] = ExtIndex;
17348 } else if (VectorMask[i] == (int)LeftIdx + 1) {
17349 Mask[i] = Vec2Offset + ExtIndex;
17353 // The type the input vectors may have changed above.
17354 InVT1 = VecIn1.getValueType();
17356 // If we already have a VecIn2, it should have the same type as VecIn1.
17357 // If we don't, get an undef/zero vector of the appropriate type.
17358 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1);
17359 assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type.");
17361 SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask);
17362 if (ShuffleNumElems > NumElems)
17363 Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx);
17365 return Shuffle;
17368 static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) {
17369 assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector");
17371 // First, determine where the build vector is not undef.
17372 // TODO: We could extend this to handle zero elements as well as undefs.
17373 int NumBVOps = BV->getNumOperands();
17374 int ZextElt = -1;
17375 for (int i = 0; i != NumBVOps; ++i) {
17376 SDValue Op = BV->getOperand(i);
17377 if (Op.isUndef())
17378 continue;
17379 if (ZextElt == -1)
17380 ZextElt = i;
17381 else
17382 return SDValue();
17384 // Bail out if there's no non-undef element.
17385 if (ZextElt == -1)
17386 return SDValue();
17388 // The build vector contains some number of undef elements and exactly
17389 // one other element. That other element must be a zero-extended scalar
17390 // extracted from a vector at a constant index to turn this into a shuffle.
17391 // Also, require that the build vector does not implicitly truncate/extend
17392 // its elements.
17393 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND.
17394 EVT VT = BV->getValueType(0);
17395 SDValue Zext = BV->getOperand(ZextElt);
17396 if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() ||
17397 Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
17398 !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) ||
17399 Zext.getValueSizeInBits() != VT.getScalarSizeInBits())
17400 return SDValue();
17402 // The zero-extend must be a multiple of the source size, and we must be
17403 // building a vector of the same size as the source of the extract element.
17404 SDValue Extract = Zext.getOperand(0);
17405 unsigned DestSize = Zext.getValueSizeInBits();
17406 unsigned SrcSize = Extract.getValueSizeInBits();
17407 if (DestSize % SrcSize != 0 ||
17408 Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits())
17409 return SDValue();
17411 // Create a shuffle mask that will combine the extracted element with zeros
17412 // and undefs.
17413 int ZextRatio = DestSize / SrcSize;
17414 int NumMaskElts = NumBVOps * ZextRatio;
17415 SmallVector<int, 32> ShufMask(NumMaskElts, -1);
17416 for (int i = 0; i != NumMaskElts; ++i) {
17417 if (i / ZextRatio == ZextElt) {
17418 // The low bits of the (potentially translated) extracted element map to
17419 // the source vector. The high bits map to zero. We will use a zero vector
17420 // as the 2nd source operand of the shuffle, so use the 1st element of
17421 // that vector (mask value is number-of-elements) for the high bits.
17422 if (i % ZextRatio == 0)
17423 ShufMask[i] = Extract.getConstantOperandVal(1);
17424 else
17425 ShufMask[i] = NumMaskElts;
17428 // Undef elements of the build vector remain undef because we initialize
17429 // the shuffle mask with -1.
17432 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... -->
17433 // bitcast (shuffle V, ZeroVec, VectorMask)
17434 SDLoc DL(BV);
17435 EVT VecVT = Extract.getOperand(0).getValueType();
17436 SDValue ZeroVec = DAG.getConstant(0, DL, VecVT);
17437 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17438 SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0),
17439 ZeroVec, ShufMask, DAG);
17440 if (!Shuf)
17441 return SDValue();
17442 return DAG.getBitcast(VT, Shuf);
17445 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
17446 // operations. If the types of the vectors we're extracting from allow it,
17447 // turn this into a vector_shuffle node.
17448 SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) {
17449 SDLoc DL(N);
17450 EVT VT = N->getValueType(0);
17452 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
17453 if (!isTypeLegal(VT))
17454 return SDValue();
17456 if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG))
17457 return V;
17459 // May only combine to shuffle after legalize if shuffle is legal.
17460 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
17461 return SDValue();
17463 bool UsesZeroVector = false;
17464 unsigned NumElems = N->getNumOperands();
17466 // Record, for each element of the newly built vector, which input vector
17467 // that element comes from. -1 stands for undef, 0 for the zero vector,
17468 // and positive values for the input vectors.
17469 // VectorMask maps each element to its vector number, and VecIn maps vector
17470 // numbers to their initial SDValues.
17472 SmallVector<int, 8> VectorMask(NumElems, -1);
17473 SmallVector<SDValue, 8> VecIn;
17474 VecIn.push_back(SDValue());
17476 for (unsigned i = 0; i != NumElems; ++i) {
17477 SDValue Op = N->getOperand(i);
17479 if (Op.isUndef())
17480 continue;
17482 // See if we can use a blend with a zero vector.
17483 // TODO: Should we generalize this to a blend with an arbitrary constant
17484 // vector?
17485 if (isNullConstant(Op) || isNullFPConstant(Op)) {
17486 UsesZeroVector = true;
17487 VectorMask[i] = 0;
17488 continue;
17491 // Not an undef or zero. If the input is something other than an
17492 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
17493 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
17494 !isa<ConstantSDNode>(Op.getOperand(1)))
17495 return SDValue();
17496 SDValue ExtractedFromVec = Op.getOperand(0);
17498 const APInt &ExtractIdx = Op.getConstantOperandAPInt(1);
17499 if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements()))
17500 return SDValue();
17502 // All inputs must have the same element type as the output.
17503 if (VT.getVectorElementType() !=
17504 ExtractedFromVec.getValueType().getVectorElementType())
17505 return SDValue();
17507 // Have we seen this input vector before?
17508 // The vectors are expected to be tiny (usually 1 or 2 elements), so using
17509 // a map back from SDValues to numbers isn't worth it.
17510 unsigned Idx = std::distance(
17511 VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec));
17512 if (Idx == VecIn.size())
17513 VecIn.push_back(ExtractedFromVec);
17515 VectorMask[i] = Idx;
17518 // If we didn't find at least one input vector, bail out.
17519 if (VecIn.size() < 2)
17520 return SDValue();
17522 // If all the Operands of BUILD_VECTOR extract from same
17523 // vector, then split the vector efficiently based on the maximum
17524 // vector access index and adjust the VectorMask and
17525 // VecIn accordingly.
17526 bool DidSplitVec = false;
17527 if (VecIn.size() == 2) {
17528 unsigned MaxIndex = 0;
17529 unsigned NearestPow2 = 0;
17530 SDValue Vec = VecIn.back();
17531 EVT InVT = Vec.getValueType();
17532 MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
17533 SmallVector<unsigned, 8> IndexVec(NumElems, 0);
17535 for (unsigned i = 0; i < NumElems; i++) {
17536 if (VectorMask[i] <= 0)
17537 continue;
17538 unsigned Index = N->getOperand(i).getConstantOperandVal(1);
17539 IndexVec[i] = Index;
17540 MaxIndex = std::max(MaxIndex, Index);
17543 NearestPow2 = PowerOf2Ceil(MaxIndex);
17544 if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 &&
17545 NumElems * 2 < NearestPow2) {
17546 unsigned SplitSize = NearestPow2 / 2;
17547 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(),
17548 InVT.getVectorElementType(), SplitSize);
17549 if (TLI.isTypeLegal(SplitVT)) {
17550 SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
17551 DAG.getConstant(SplitSize, DL, IdxTy));
17552 SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
17553 DAG.getConstant(0, DL, IdxTy));
17554 VecIn.pop_back();
17555 VecIn.push_back(VecIn1);
17556 VecIn.push_back(VecIn2);
17557 DidSplitVec = true;
17559 for (unsigned i = 0; i < NumElems; i++) {
17560 if (VectorMask[i] <= 0)
17561 continue;
17562 VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2;
17568 // TODO: We want to sort the vectors by descending length, so that adjacent
17569 // pairs have similar length, and the longer vector is always first in the
17570 // pair.
17572 // TODO: Should this fire if some of the input vectors has illegal type (like
17573 // it does now), or should we let legalization run its course first?
17575 // Shuffle phase:
17576 // Take pairs of vectors, and shuffle them so that the result has elements
17577 // from these vectors in the correct places.
17578 // For example, given:
17579 // t10: i32 = extract_vector_elt t1, Constant:i64<0>
17580 // t11: i32 = extract_vector_elt t2, Constant:i64<0>
17581 // t12: i32 = extract_vector_elt t3, Constant:i64<0>
17582 // t13: i32 = extract_vector_elt t1, Constant:i64<1>
17583 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
17584 // We will generate:
17585 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
17586 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
17587 SmallVector<SDValue, 4> Shuffles;
17588 for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) {
17589 unsigned LeftIdx = 2 * In + 1;
17590 SDValue VecLeft = VecIn[LeftIdx];
17591 SDValue VecRight =
17592 (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue();
17594 if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft,
17595 VecRight, LeftIdx, DidSplitVec))
17596 Shuffles.push_back(Shuffle);
17597 else
17598 return SDValue();
17601 // If we need the zero vector as an "ingredient" in the blend tree, add it
17602 // to the list of shuffles.
17603 if (UsesZeroVector)
17604 Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT)
17605 : DAG.getConstantFP(0.0, DL, VT));
17607 // If we only have one shuffle, we're done.
17608 if (Shuffles.size() == 1)
17609 return Shuffles[0];
17611 // Update the vector mask to point to the post-shuffle vectors.
17612 for (int &Vec : VectorMask)
17613 if (Vec == 0)
17614 Vec = Shuffles.size() - 1;
17615 else
17616 Vec = (Vec - 1) / 2;
17618 // More than one shuffle. Generate a binary tree of blends, e.g. if from
17619 // the previous step we got the set of shuffles t10, t11, t12, t13, we will
17620 // generate:
17621 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
17622 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
17623 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
17624 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
17625 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
17626 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
17627 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
17629 // Make sure the initial size of the shuffle list is even.
17630 if (Shuffles.size() % 2)
17631 Shuffles.push_back(DAG.getUNDEF(VT));
17633 for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) {
17634 if (CurSize % 2) {
17635 Shuffles[CurSize] = DAG.getUNDEF(VT);
17636 CurSize++;
17638 for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) {
17639 int Left = 2 * In;
17640 int Right = 2 * In + 1;
17641 SmallVector<int, 8> Mask(NumElems, -1);
17642 for (unsigned i = 0; i != NumElems; ++i) {
17643 if (VectorMask[i] == Left) {
17644 Mask[i] = i;
17645 VectorMask[i] = In;
17646 } else if (VectorMask[i] == Right) {
17647 Mask[i] = i + NumElems;
17648 VectorMask[i] = In;
17652 Shuffles[In] =
17653 DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask);
17656 return Shuffles[0];
17659 // Try to turn a build vector of zero extends of extract vector elts into a
17660 // a vector zero extend and possibly an extract subvector.
17661 // TODO: Support sign extend?
17662 // TODO: Allow undef elements?
17663 SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) {
17664 if (LegalOperations)
17665 return SDValue();
17667 EVT VT = N->getValueType(0);
17669 bool FoundZeroExtend = false;
17670 SDValue Op0 = N->getOperand(0);
17671 auto checkElem = [&](SDValue Op) -> int64_t {
17672 unsigned Opc = Op.getOpcode();
17673 FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND);
17674 if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) &&
17675 Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
17676 Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0))
17677 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1)))
17678 return C->getZExtValue();
17679 return -1;
17682 // Make sure the first element matches
17683 // (zext (extract_vector_elt X, C))
17684 int64_t Offset = checkElem(Op0);
17685 if (Offset < 0)
17686 return SDValue();
17688 unsigned NumElems = N->getNumOperands();
17689 SDValue In = Op0.getOperand(0).getOperand(0);
17690 EVT InSVT = In.getValueType().getScalarType();
17691 EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems);
17693 // Don't create an illegal input type after type legalization.
17694 if (LegalTypes && !TLI.isTypeLegal(InVT))
17695 return SDValue();
17697 // Ensure all the elements come from the same vector and are adjacent.
17698 for (unsigned i = 1; i != NumElems; ++i) {
17699 if ((Offset + i) != checkElem(N->getOperand(i)))
17700 return SDValue();
17703 SDLoc DL(N);
17704 In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In,
17705 Op0.getOperand(0).getOperand(1));
17706 return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL,
17707 VT, In);
17710 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
17711 EVT VT = N->getValueType(0);
17713 // A vector built entirely of undefs is undef.
17714 if (ISD::allOperandsUndef(N))
17715 return DAG.getUNDEF(VT);
17717 // If this is a splat of a bitcast from another vector, change to a
17718 // concat_vector.
17719 // For example:
17720 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
17721 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
17723 // If X is a build_vector itself, the concat can become a larger build_vector.
17724 // TODO: Maybe this is useful for non-splat too?
17725 if (!LegalOperations) {
17726 if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) {
17727 Splat = peekThroughBitcasts(Splat);
17728 EVT SrcVT = Splat.getValueType();
17729 if (SrcVT.isVector()) {
17730 unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements();
17731 EVT NewVT = EVT::getVectorVT(*DAG.getContext(),
17732 SrcVT.getVectorElementType(), NumElts);
17733 if (!LegalTypes || TLI.isTypeLegal(NewVT)) {
17734 SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat);
17735 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N),
17736 NewVT, Ops);
17737 return DAG.getBitcast(VT, Concat);
17743 // Check if we can express BUILD VECTOR via subvector extract.
17744 if (!LegalTypes && (N->getNumOperands() > 1)) {
17745 SDValue Op0 = N->getOperand(0);
17746 auto checkElem = [&](SDValue Op) -> uint64_t {
17747 if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) &&
17748 (Op0.getOperand(0) == Op.getOperand(0)))
17749 if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
17750 return CNode->getZExtValue();
17751 return -1;
17754 int Offset = checkElem(Op0);
17755 for (unsigned i = 0; i < N->getNumOperands(); ++i) {
17756 if (Offset + i != checkElem(N->getOperand(i))) {
17757 Offset = -1;
17758 break;
17762 if ((Offset == 0) &&
17763 (Op0.getOperand(0).getValueType() == N->getValueType(0)))
17764 return Op0.getOperand(0);
17765 if ((Offset != -1) &&
17766 ((Offset % N->getValueType(0).getVectorNumElements()) ==
17767 0)) // IDX must be multiple of output size.
17768 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0),
17769 Op0.getOperand(0), Op0.getOperand(1));
17772 if (SDValue V = convertBuildVecZextToZext(N))
17773 return V;
17775 if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
17776 return V;
17778 if (SDValue V = reduceBuildVecToShuffle(N))
17779 return V;
17781 return SDValue();
17784 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) {
17785 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17786 EVT OpVT = N->getOperand(0).getValueType();
17788 // If the operands are legal vectors, leave them alone.
17789 if (TLI.isTypeLegal(OpVT))
17790 return SDValue();
17792 SDLoc DL(N);
17793 EVT VT = N->getValueType(0);
17794 SmallVector<SDValue, 8> Ops;
17796 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
17797 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
17799 // Keep track of what we encounter.
17800 bool AnyInteger = false;
17801 bool AnyFP = false;
17802 for (const SDValue &Op : N->ops()) {
17803 if (ISD::BITCAST == Op.getOpcode() &&
17804 !Op.getOperand(0).getValueType().isVector())
17805 Ops.push_back(Op.getOperand(0));
17806 else if (ISD::UNDEF == Op.getOpcode())
17807 Ops.push_back(ScalarUndef);
17808 else
17809 return SDValue();
17811 // Note whether we encounter an integer or floating point scalar.
17812 // If it's neither, bail out, it could be something weird like x86mmx.
17813 EVT LastOpVT = Ops.back().getValueType();
17814 if (LastOpVT.isFloatingPoint())
17815 AnyFP = true;
17816 else if (LastOpVT.isInteger())
17817 AnyInteger = true;
17818 else
17819 return SDValue();
17822 // If any of the operands is a floating point scalar bitcast to a vector,
17823 // use floating point types throughout, and bitcast everything.
17824 // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
17825 if (AnyFP) {
17826 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits());
17827 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
17828 if (AnyInteger) {
17829 for (SDValue &Op : Ops) {
17830 if (Op.getValueType() == SVT)
17831 continue;
17832 if (Op.isUndef())
17833 Op = ScalarUndef;
17834 else
17835 Op = DAG.getBitcast(SVT, Op);
17840 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT,
17841 VT.getSizeInBits() / SVT.getSizeInBits());
17842 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops));
17845 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
17846 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
17847 // most two distinct vectors the same size as the result, attempt to turn this
17848 // into a legal shuffle.
17849 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) {
17850 EVT VT = N->getValueType(0);
17851 EVT OpVT = N->getOperand(0).getValueType();
17852 int NumElts = VT.getVectorNumElements();
17853 int NumOpElts = OpVT.getVectorNumElements();
17855 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT);
17856 SmallVector<int, 8> Mask;
17858 for (SDValue Op : N->ops()) {
17859 Op = peekThroughBitcasts(Op);
17861 // UNDEF nodes convert to UNDEF shuffle mask values.
17862 if (Op.isUndef()) {
17863 Mask.append((unsigned)NumOpElts, -1);
17864 continue;
17867 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
17868 return SDValue();
17870 // What vector are we extracting the subvector from and at what index?
17871 SDValue ExtVec = Op.getOperand(0);
17873 // We want the EVT of the original extraction to correctly scale the
17874 // extraction index.
17875 EVT ExtVT = ExtVec.getValueType();
17876 ExtVec = peekThroughBitcasts(ExtVec);
17878 // UNDEF nodes convert to UNDEF shuffle mask values.
17879 if (ExtVec.isUndef()) {
17880 Mask.append((unsigned)NumOpElts, -1);
17881 continue;
17884 if (!isa<ConstantSDNode>(Op.getOperand(1)))
17885 return SDValue();
17886 int ExtIdx = Op.getConstantOperandVal(1);
17888 // Ensure that we are extracting a subvector from a vector the same
17889 // size as the result.
17890 if (ExtVT.getSizeInBits() != VT.getSizeInBits())
17891 return SDValue();
17893 // Scale the subvector index to account for any bitcast.
17894 int NumExtElts = ExtVT.getVectorNumElements();
17895 if (0 == (NumExtElts % NumElts))
17896 ExtIdx /= (NumExtElts / NumElts);
17897 else if (0 == (NumElts % NumExtElts))
17898 ExtIdx *= (NumElts / NumExtElts);
17899 else
17900 return SDValue();
17902 // At most we can reference 2 inputs in the final shuffle.
17903 if (SV0.isUndef() || SV0 == ExtVec) {
17904 SV0 = ExtVec;
17905 for (int i = 0; i != NumOpElts; ++i)
17906 Mask.push_back(i + ExtIdx);
17907 } else if (SV1.isUndef() || SV1 == ExtVec) {
17908 SV1 = ExtVec;
17909 for (int i = 0; i != NumOpElts; ++i)
17910 Mask.push_back(i + ExtIdx + NumElts);
17911 } else {
17912 return SDValue();
17916 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17917 return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0),
17918 DAG.getBitcast(VT, SV1), Mask, DAG);
17921 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
17922 // If we only have one input vector, we don't need to do any concatenation.
17923 if (N->getNumOperands() == 1)
17924 return N->getOperand(0);
17926 // Check if all of the operands are undefs.
17927 EVT VT = N->getValueType(0);
17928 if (ISD::allOperandsUndef(N))
17929 return DAG.getUNDEF(VT);
17931 // Optimize concat_vectors where all but the first of the vectors are undef.
17932 if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) {
17933 return Op.isUndef();
17934 })) {
17935 SDValue In = N->getOperand(0);
17936 assert(In.getValueType().isVector() && "Must concat vectors");
17938 // If the input is a concat_vectors, just make a larger concat by padding
17939 // with smaller undefs.
17940 if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) {
17941 unsigned NumOps = N->getNumOperands() * In.getNumOperands();
17942 SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end());
17943 Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType()));
17944 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
17947 SDValue Scalar = peekThroughOneUseBitcasts(In);
17949 // concat_vectors(scalar_to_vector(scalar), undef) ->
17950 // scalar_to_vector(scalar)
17951 if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR &&
17952 Scalar.hasOneUse()) {
17953 EVT SVT = Scalar.getValueType().getVectorElementType();
17954 if (SVT == Scalar.getOperand(0).getValueType())
17955 Scalar = Scalar.getOperand(0);
17958 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
17959 if (!Scalar.getValueType().isVector()) {
17960 // If the bitcast type isn't legal, it might be a trunc of a legal type;
17961 // look through the trunc so we can still do the transform:
17962 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
17963 if (Scalar->getOpcode() == ISD::TRUNCATE &&
17964 !TLI.isTypeLegal(Scalar.getValueType()) &&
17965 TLI.isTypeLegal(Scalar->getOperand(0).getValueType()))
17966 Scalar = Scalar->getOperand(0);
17968 EVT SclTy = Scalar.getValueType();
17970 if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
17971 return SDValue();
17973 // Bail out if the vector size is not a multiple of the scalar size.
17974 if (VT.getSizeInBits() % SclTy.getSizeInBits())
17975 return SDValue();
17977 unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits();
17978 if (VNTNumElms < 2)
17979 return SDValue();
17981 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms);
17982 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
17983 return SDValue();
17985 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar);
17986 return DAG.getBitcast(VT, Res);
17990 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
17991 // We have already tested above for an UNDEF only concatenation.
17992 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
17993 // -> (BUILD_VECTOR A, B, ..., C, D, ...)
17994 auto IsBuildVectorOrUndef = [](const SDValue &Op) {
17995 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode();
17997 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) {
17998 SmallVector<SDValue, 8> Opnds;
17999 EVT SVT = VT.getScalarType();
18001 EVT MinVT = SVT;
18002 if (!SVT.isFloatingPoint()) {
18003 // If BUILD_VECTOR are from built from integer, they may have different
18004 // operand types. Get the smallest type and truncate all operands to it.
18005 bool FoundMinVT = false;
18006 for (const SDValue &Op : N->ops())
18007 if (ISD::BUILD_VECTOR == Op.getOpcode()) {
18008 EVT OpSVT = Op.getOperand(0).getValueType();
18009 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT;
18010 FoundMinVT = true;
18012 assert(FoundMinVT && "Concat vector type mismatch");
18015 for (const SDValue &Op : N->ops()) {
18016 EVT OpVT = Op.getValueType();
18017 unsigned NumElts = OpVT.getVectorNumElements();
18019 if (ISD::UNDEF == Op.getOpcode())
18020 Opnds.append(NumElts, DAG.getUNDEF(MinVT));
18022 if (ISD::BUILD_VECTOR == Op.getOpcode()) {
18023 if (SVT.isFloatingPoint()) {
18024 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch");
18025 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts);
18026 } else {
18027 for (unsigned i = 0; i != NumElts; ++i)
18028 Opnds.push_back(
18029 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i)));
18034 assert(VT.getVectorNumElements() == Opnds.size() &&
18035 "Concat vector type mismatch");
18036 return DAG.getBuildVector(VT, SDLoc(N), Opnds);
18039 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
18040 if (SDValue V = combineConcatVectorOfScalars(N, DAG))
18041 return V;
18043 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
18044 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT))
18045 if (SDValue V = combineConcatVectorOfExtracts(N, DAG))
18046 return V;
18048 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
18049 // nodes often generate nop CONCAT_VECTOR nodes.
18050 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
18051 // place the incoming vectors at the exact same location.
18052 SDValue SingleSource = SDValue();
18053 unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
18055 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
18056 SDValue Op = N->getOperand(i);
18058 if (Op.isUndef())
18059 continue;
18061 // Check if this is the identity extract:
18062 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
18063 return SDValue();
18065 // Find the single incoming vector for the extract_subvector.
18066 if (SingleSource.getNode()) {
18067 if (Op.getOperand(0) != SingleSource)
18068 return SDValue();
18069 } else {
18070 SingleSource = Op.getOperand(0);
18072 // Check the source type is the same as the type of the result.
18073 // If not, this concat may extend the vector, so we can not
18074 // optimize it away.
18075 if (SingleSource.getValueType() != N->getValueType(0))
18076 return SDValue();
18079 auto *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
18080 // The extract index must be constant.
18081 if (!CS)
18082 return SDValue();
18084 // Check that we are reading from the identity index.
18085 unsigned IdentityIndex = i * PartNumElem;
18086 if (CS->getAPIntValue() != IdentityIndex)
18087 return SDValue();
18090 if (SingleSource.getNode())
18091 return SingleSource;
18093 return SDValue();
18096 // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find
18097 // if the subvector can be sourced for free.
18098 static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) {
18099 if (V.getOpcode() == ISD::INSERT_SUBVECTOR &&
18100 V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) {
18101 return V.getOperand(1);
18103 auto *IndexC = dyn_cast<ConstantSDNode>(Index);
18104 if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS &&
18105 V.getOperand(0).getValueType() == SubVT &&
18106 (IndexC->getZExtValue() % SubVT.getVectorNumElements()) == 0) {
18107 uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorNumElements();
18108 return V.getOperand(SubIdx);
18110 return SDValue();
18113 static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract,
18114 SelectionDAG &DAG) {
18115 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18116 SDValue BinOp = Extract->getOperand(0);
18117 unsigned BinOpcode = BinOp.getOpcode();
18118 if (!TLI.isBinOp(BinOpcode) || BinOp.getNode()->getNumValues() != 1)
18119 return SDValue();
18121 EVT VecVT = BinOp.getValueType();
18122 SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1);
18123 if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType())
18124 return SDValue();
18126 SDValue Index = Extract->getOperand(1);
18127 EVT SubVT = Extract->getValueType(0);
18128 if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT))
18129 return SDValue();
18131 SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT);
18132 SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT);
18134 // TODO: We could handle the case where only 1 operand is being inserted by
18135 // creating an extract of the other operand, but that requires checking
18136 // number of uses and/or costs.
18137 if (!Sub0 || !Sub1)
18138 return SDValue();
18140 // We are inserting both operands of the wide binop only to extract back
18141 // to the narrow vector size. Eliminate all of the insert/extract:
18142 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y
18143 return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1,
18144 BinOp->getFlags());
18147 /// If we are extracting a subvector produced by a wide binary operator try
18148 /// to use a narrow binary operator and/or avoid concatenation and extraction.
18149 static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG) {
18150 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
18151 // some of these bailouts with other transforms.
18153 if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG))
18154 return V;
18156 // The extract index must be a constant, so we can map it to a concat operand.
18157 auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
18158 if (!ExtractIndexC)
18159 return SDValue();
18161 // We are looking for an optionally bitcasted wide vector binary operator
18162 // feeding an extract subvector.
18163 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18164 SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0));
18165 unsigned BOpcode = BinOp.getOpcode();
18166 if (!TLI.isBinOp(BOpcode) || BinOp.getNode()->getNumValues() != 1)
18167 return SDValue();
18169 // The binop must be a vector type, so we can extract some fraction of it.
18170 EVT WideBVT = BinOp.getValueType();
18171 if (!WideBVT.isVector())
18172 return SDValue();
18174 EVT VT = Extract->getValueType(0);
18175 unsigned ExtractIndex = ExtractIndexC->getZExtValue();
18176 assert(ExtractIndex % VT.getVectorNumElements() == 0 &&
18177 "Extract index is not a multiple of the vector length.");
18179 // Bail out if this is not a proper multiple width extraction.
18180 unsigned WideWidth = WideBVT.getSizeInBits();
18181 unsigned NarrowWidth = VT.getSizeInBits();
18182 if (WideWidth % NarrowWidth != 0)
18183 return SDValue();
18185 // Bail out if we are extracting a fraction of a single operation. This can
18186 // occur because we potentially looked through a bitcast of the binop.
18187 unsigned NarrowingRatio = WideWidth / NarrowWidth;
18188 unsigned WideNumElts = WideBVT.getVectorNumElements();
18189 if (WideNumElts % NarrowingRatio != 0)
18190 return SDValue();
18192 // Bail out if the target does not support a narrower version of the binop.
18193 EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(),
18194 WideNumElts / NarrowingRatio);
18195 if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT))
18196 return SDValue();
18198 // If extraction is cheap, we don't need to look at the binop operands
18199 // for concat ops. The narrow binop alone makes this transform profitable.
18200 // We can't just reuse the original extract index operand because we may have
18201 // bitcasted.
18202 unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements();
18203 unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements();
18204 EVT ExtBOIdxVT = Extract->getOperand(1).getValueType();
18205 if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) &&
18206 BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) {
18207 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N)
18208 SDLoc DL(Extract);
18209 SDValue NewExtIndex = DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT);
18210 SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
18211 BinOp.getOperand(0), NewExtIndex);
18212 SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
18213 BinOp.getOperand(1), NewExtIndex);
18214 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y,
18215 BinOp.getNode()->getFlags());
18216 return DAG.getBitcast(VT, NarrowBinOp);
18219 // Only handle the case where we are doubling and then halving. A larger ratio
18220 // may require more than two narrow binops to replace the wide binop.
18221 if (NarrowingRatio != 2)
18222 return SDValue();
18224 // TODO: The motivating case for this transform is an x86 AVX1 target. That
18225 // target has temptingly almost legal versions of bitwise logic ops in 256-bit
18226 // flavors, but no other 256-bit integer support. This could be extended to
18227 // handle any binop, but that may require fixing/adding other folds to avoid
18228 // codegen regressions.
18229 if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR)
18230 return SDValue();
18232 // We need at least one concatenation operation of a binop operand to make
18233 // this transform worthwhile. The concat must double the input vector sizes.
18234 auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue {
18235 if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2)
18236 return V.getOperand(ConcatOpNum);
18237 return SDValue();
18239 SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0)));
18240 SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1)));
18242 if (SubVecL || SubVecR) {
18243 // If a binop operand was not the result of a concat, we must extract a
18244 // half-sized operand for our new narrow binop:
18245 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
18246 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC)
18247 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN
18248 SDLoc DL(Extract);
18249 SDValue IndexC = DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT);
18250 SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL)
18251 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
18252 BinOp.getOperand(0), IndexC);
18254 SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR)
18255 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
18256 BinOp.getOperand(1), IndexC);
18258 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y);
18259 return DAG.getBitcast(VT, NarrowBinOp);
18262 return SDValue();
18265 /// If we are extracting a subvector from a wide vector load, convert to a
18266 /// narrow load to eliminate the extraction:
18267 /// (extract_subvector (load wide vector)) --> (load narrow vector)
18268 static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) {
18269 // TODO: Add support for big-endian. The offset calculation must be adjusted.
18270 if (DAG.getDataLayout().isBigEndian())
18271 return SDValue();
18273 auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0));
18274 auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
18275 if (!Ld || Ld->getExtensionType() || !Ld->isSimple() ||
18276 !ExtIdx)
18277 return SDValue();
18279 // Allow targets to opt-out.
18280 EVT VT = Extract->getValueType(0);
18281 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18282 if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT))
18283 return SDValue();
18285 // The narrow load will be offset from the base address of the old load if
18286 // we are extracting from something besides index 0 (little-endian).
18287 SDLoc DL(Extract);
18288 SDValue BaseAddr = Ld->getOperand(1);
18289 unsigned Offset = ExtIdx->getZExtValue() * VT.getScalarType().getStoreSize();
18291 // TODO: Use "BaseIndexOffset" to make this more effective.
18292 SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL);
18293 MachineFunction &MF = DAG.getMachineFunction();
18294 MachineMemOperand *MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset,
18295 VT.getStoreSize());
18296 SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO);
18297 DAG.makeEquivalentMemoryOrdering(Ld, NewLd);
18298 return NewLd;
18301 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) {
18302 EVT NVT = N->getValueType(0);
18303 SDValue V = N->getOperand(0);
18305 // Extract from UNDEF is UNDEF.
18306 if (V.isUndef())
18307 return DAG.getUNDEF(NVT);
18309 if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT))
18310 if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG))
18311 return NarrowLoad;
18313 // Combine an extract of an extract into a single extract_subvector.
18314 // ext (ext X, C), 0 --> ext X, C
18315 SDValue Index = N->getOperand(1);
18316 if (isNullConstant(Index) && V.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
18317 V.hasOneUse() && isa<ConstantSDNode>(V.getOperand(1))) {
18318 if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(),
18319 V.getConstantOperandVal(1)) &&
18320 TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) {
18321 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0),
18322 V.getOperand(1));
18326 // Try to move vector bitcast after extract_subv by scaling extraction index:
18327 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index')
18328 if (isa<ConstantSDNode>(Index) && V.getOpcode() == ISD::BITCAST &&
18329 V.getOperand(0).getValueType().isVector()) {
18330 SDValue SrcOp = V.getOperand(0);
18331 EVT SrcVT = SrcOp.getValueType();
18332 unsigned SrcNumElts = SrcVT.getVectorNumElements();
18333 unsigned DestNumElts = V.getValueType().getVectorNumElements();
18334 if ((SrcNumElts % DestNumElts) == 0) {
18335 unsigned SrcDestRatio = SrcNumElts / DestNumElts;
18336 unsigned NewExtNumElts = NVT.getVectorNumElements() * SrcDestRatio;
18337 EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
18338 NewExtNumElts);
18339 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) {
18340 unsigned IndexValScaled = N->getConstantOperandVal(1) * SrcDestRatio;
18341 SDLoc DL(N);
18342 SDValue NewIndex = DAG.getIntPtrConstant(IndexValScaled, DL);
18343 SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT,
18344 V.getOperand(0), NewIndex);
18345 return DAG.getBitcast(NVT, NewExtract);
18348 // TODO - handle (DestNumElts % SrcNumElts) == 0
18351 // Combine:
18352 // (extract_subvec (concat V1, V2, ...), i)
18353 // Into:
18354 // Vi if possible
18355 // Only operand 0 is checked as 'concat' assumes all inputs of the same
18356 // type.
18357 if (V.getOpcode() == ISD::CONCAT_VECTORS && isa<ConstantSDNode>(Index) &&
18358 V.getOperand(0).getValueType() == NVT) {
18359 unsigned Idx = N->getConstantOperandVal(1);
18360 unsigned NumElems = NVT.getVectorNumElements();
18361 assert((Idx % NumElems) == 0 &&
18362 "IDX in concat is not a multiple of the result vector length.");
18363 return V->getOperand(Idx / NumElems);
18366 V = peekThroughBitcasts(V);
18368 // If the input is a build vector. Try to make a smaller build vector.
18369 if (V.getOpcode() == ISD::BUILD_VECTOR) {
18370 if (auto *IdxC = dyn_cast<ConstantSDNode>(Index)) {
18371 EVT InVT = V.getValueType();
18372 unsigned ExtractSize = NVT.getSizeInBits();
18373 unsigned EltSize = InVT.getScalarSizeInBits();
18374 // Only do this if we won't split any elements.
18375 if (ExtractSize % EltSize == 0) {
18376 unsigned NumElems = ExtractSize / EltSize;
18377 EVT EltVT = InVT.getVectorElementType();
18378 EVT ExtractVT = NumElems == 1 ? EltVT
18379 : EVT::getVectorVT(*DAG.getContext(),
18380 EltVT, NumElems);
18381 if ((Level < AfterLegalizeDAG ||
18382 (NumElems == 1 ||
18383 TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) &&
18384 (!LegalTypes || TLI.isTypeLegal(ExtractVT))) {
18385 unsigned IdxVal = IdxC->getZExtValue();
18386 IdxVal *= NVT.getScalarSizeInBits();
18387 IdxVal /= EltSize;
18389 if (NumElems == 1) {
18390 SDValue Src = V->getOperand(IdxVal);
18391 if (EltVT != Src.getValueType())
18392 Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src);
18393 return DAG.getBitcast(NVT, Src);
18396 // Extract the pieces from the original build_vector.
18397 SDValue BuildVec = DAG.getBuildVector(
18398 ExtractVT, SDLoc(N), V->ops().slice(IdxVal, NumElems));
18399 return DAG.getBitcast(NVT, BuildVec);
18405 if (V.getOpcode() == ISD::INSERT_SUBVECTOR) {
18406 // Handle only simple case where vector being inserted and vector
18407 // being extracted are of same size.
18408 EVT SmallVT = V.getOperand(1).getValueType();
18409 if (!NVT.bitsEq(SmallVT))
18410 return SDValue();
18412 // Only handle cases where both indexes are constants.
18413 auto *ExtIdx = dyn_cast<ConstantSDNode>(Index);
18414 auto *InsIdx = dyn_cast<ConstantSDNode>(V.getOperand(2));
18415 if (InsIdx && ExtIdx) {
18416 // Combine:
18417 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
18418 // Into:
18419 // indices are equal or bit offsets are equal => V1
18420 // otherwise => (extract_subvec V1, ExtIdx)
18421 if (InsIdx->getZExtValue() * SmallVT.getScalarSizeInBits() ==
18422 ExtIdx->getZExtValue() * NVT.getScalarSizeInBits())
18423 return DAG.getBitcast(NVT, V.getOperand(1));
18424 return DAG.getNode(
18425 ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT,
18426 DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)),
18427 Index);
18431 if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG))
18432 return NarrowBOp;
18434 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
18435 return SDValue(N, 0);
18437 return SDValue();
18440 /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles
18441 /// followed by concatenation. Narrow vector ops may have better performance
18442 /// than wide ops, and this can unlock further narrowing of other vector ops.
18443 /// Targets can invert this transform later if it is not profitable.
18444 static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf,
18445 SelectionDAG &DAG) {
18446 SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1);
18447 if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 ||
18448 N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 ||
18449 !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef())
18450 return SDValue();
18452 // Split the wide shuffle mask into halves. Any mask element that is accessing
18453 // operand 1 is offset down to account for narrowing of the vectors.
18454 ArrayRef<int> Mask = Shuf->getMask();
18455 EVT VT = Shuf->getValueType(0);
18456 unsigned NumElts = VT.getVectorNumElements();
18457 unsigned HalfNumElts = NumElts / 2;
18458 SmallVector<int, 16> Mask0(HalfNumElts, -1);
18459 SmallVector<int, 16> Mask1(HalfNumElts, -1);
18460 for (unsigned i = 0; i != NumElts; ++i) {
18461 if (Mask[i] == -1)
18462 continue;
18463 int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts;
18464 if (i < HalfNumElts)
18465 Mask0[i] = M;
18466 else
18467 Mask1[i - HalfNumElts] = M;
18470 // Ask the target if this is a valid transform.
18471 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18472 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
18473 HalfNumElts);
18474 if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) ||
18475 !TLI.isShuffleMaskLegal(Mask1, HalfVT))
18476 return SDValue();
18478 // shuffle (concat X, undef), (concat Y, undef), Mask -->
18479 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
18480 SDValue X = N0.getOperand(0), Y = N1.getOperand(0);
18481 SDLoc DL(Shuf);
18482 SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0);
18483 SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1);
18484 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1);
18487 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
18488 // or turn a shuffle of a single concat into simpler shuffle then concat.
18489 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
18490 EVT VT = N->getValueType(0);
18491 unsigned NumElts = VT.getVectorNumElements();
18493 SDValue N0 = N->getOperand(0);
18494 SDValue N1 = N->getOperand(1);
18495 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
18496 ArrayRef<int> Mask = SVN->getMask();
18498 SmallVector<SDValue, 4> Ops;
18499 EVT ConcatVT = N0.getOperand(0).getValueType();
18500 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
18501 unsigned NumConcats = NumElts / NumElemsPerConcat;
18503 auto IsUndefMaskElt = [](int i) { return i == -1; };
18505 // Special case: shuffle(concat(A,B)) can be more efficiently represented
18506 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
18507 // half vector elements.
18508 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() &&
18509 llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat),
18510 IsUndefMaskElt)) {
18511 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0),
18512 N0.getOperand(1),
18513 Mask.slice(0, NumElemsPerConcat));
18514 N1 = DAG.getUNDEF(ConcatVT);
18515 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1);
18518 // Look at every vector that's inserted. We're looking for exact
18519 // subvector-sized copies from a concatenated vector
18520 for (unsigned I = 0; I != NumConcats; ++I) {
18521 unsigned Begin = I * NumElemsPerConcat;
18522 ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat);
18524 // Make sure we're dealing with a copy.
18525 if (llvm::all_of(SubMask, IsUndefMaskElt)) {
18526 Ops.push_back(DAG.getUNDEF(ConcatVT));
18527 continue;
18530 int OpIdx = -1;
18531 for (int i = 0; i != (int)NumElemsPerConcat; ++i) {
18532 if (IsUndefMaskElt(SubMask[i]))
18533 continue;
18534 if ((SubMask[i] % (int)NumElemsPerConcat) != i)
18535 return SDValue();
18536 int EltOpIdx = SubMask[i] / NumElemsPerConcat;
18537 if (0 <= OpIdx && EltOpIdx != OpIdx)
18538 return SDValue();
18539 OpIdx = EltOpIdx;
18541 assert(0 <= OpIdx && "Unknown concat_vectors op");
18543 if (OpIdx < (int)N0.getNumOperands())
18544 Ops.push_back(N0.getOperand(OpIdx));
18545 else
18546 Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands()));
18549 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
18552 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
18553 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
18555 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
18556 // a simplification in some sense, but it isn't appropriate in general: some
18557 // BUILD_VECTORs are substantially cheaper than others. The general case
18558 // of a BUILD_VECTOR requires inserting each element individually (or
18559 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
18560 // all constants is a single constant pool load. A BUILD_VECTOR where each
18561 // element is identical is a splat. A BUILD_VECTOR where most of the operands
18562 // are undef lowers to a small number of element insertions.
18564 // To deal with this, we currently use a bunch of mostly arbitrary heuristics.
18565 // We don't fold shuffles where one side is a non-zero constant, and we don't
18566 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
18567 // non-constant operands. This seems to work out reasonably well in practice.
18568 static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN,
18569 SelectionDAG &DAG,
18570 const TargetLowering &TLI) {
18571 EVT VT = SVN->getValueType(0);
18572 unsigned NumElts = VT.getVectorNumElements();
18573 SDValue N0 = SVN->getOperand(0);
18574 SDValue N1 = SVN->getOperand(1);
18576 if (!N0->hasOneUse())
18577 return SDValue();
18579 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
18580 // discussed above.
18581 if (!N1.isUndef()) {
18582 if (!N1->hasOneUse())
18583 return SDValue();
18585 bool N0AnyConst = isAnyConstantBuildVector(N0);
18586 bool N1AnyConst = isAnyConstantBuildVector(N1);
18587 if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode()))
18588 return SDValue();
18589 if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode()))
18590 return SDValue();
18593 // If both inputs are splats of the same value then we can safely merge this
18594 // to a single BUILD_VECTOR with undef elements based on the shuffle mask.
18595 bool IsSplat = false;
18596 auto *BV0 = dyn_cast<BuildVectorSDNode>(N0);
18597 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
18598 if (BV0 && BV1)
18599 if (SDValue Splat0 = BV0->getSplatValue())
18600 IsSplat = (Splat0 == BV1->getSplatValue());
18602 SmallVector<SDValue, 8> Ops;
18603 SmallSet<SDValue, 16> DuplicateOps;
18604 for (int M : SVN->getMask()) {
18605 SDValue Op = DAG.getUNDEF(VT.getScalarType());
18606 if (M >= 0) {
18607 int Idx = M < (int)NumElts ? M : M - NumElts;
18608 SDValue &S = (M < (int)NumElts ? N0 : N1);
18609 if (S.getOpcode() == ISD::BUILD_VECTOR) {
18610 Op = S.getOperand(Idx);
18611 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) {
18612 SDValue Op0 = S.getOperand(0);
18613 Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType());
18614 } else {
18615 // Operand can't be combined - bail out.
18616 return SDValue();
18620 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're
18621 // generating a splat; semantically, this is fine, but it's likely to
18622 // generate low-quality code if the target can't reconstruct an appropriate
18623 // shuffle.
18624 if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op))
18625 if (!IsSplat && !DuplicateOps.insert(Op).second)
18626 return SDValue();
18628 Ops.push_back(Op);
18631 // BUILD_VECTOR requires all inputs to be of the same type, find the
18632 // maximum type and extend them all.
18633 EVT SVT = VT.getScalarType();
18634 if (SVT.isInteger())
18635 for (SDValue &Op : Ops)
18636 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
18637 if (SVT != VT.getScalarType())
18638 for (SDValue &Op : Ops)
18639 Op = TLI.isZExtFree(Op.getValueType(), SVT)
18640 ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT)
18641 : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT);
18642 return DAG.getBuildVector(VT, SDLoc(SVN), Ops);
18645 // Match shuffles that can be converted to any_vector_extend_in_reg.
18646 // This is often generated during legalization.
18647 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
18648 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case.
18649 static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN,
18650 SelectionDAG &DAG,
18651 const TargetLowering &TLI,
18652 bool LegalOperations) {
18653 EVT VT = SVN->getValueType(0);
18654 bool IsBigEndian = DAG.getDataLayout().isBigEndian();
18656 // TODO Add support for big-endian when we have a test case.
18657 if (!VT.isInteger() || IsBigEndian)
18658 return SDValue();
18660 unsigned NumElts = VT.getVectorNumElements();
18661 unsigned EltSizeInBits = VT.getScalarSizeInBits();
18662 ArrayRef<int> Mask = SVN->getMask();
18663 SDValue N0 = SVN->getOperand(0);
18665 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
18666 auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) {
18667 for (unsigned i = 0; i != NumElts; ++i) {
18668 if (Mask[i] < 0)
18669 continue;
18670 if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale))
18671 continue;
18672 return false;
18674 return true;
18677 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
18678 // power-of-2 extensions as they are the most likely.
18679 for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) {
18680 // Check for non power of 2 vector sizes
18681 if (NumElts % Scale != 0)
18682 continue;
18683 if (!isAnyExtend(Scale))
18684 continue;
18686 EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale);
18687 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale);
18688 // Never create an illegal type. Only create unsupported operations if we
18689 // are pre-legalization.
18690 if (TLI.isTypeLegal(OutVT))
18691 if (!LegalOperations ||
18692 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT))
18693 return DAG.getBitcast(VT,
18694 DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG,
18695 SDLoc(SVN), OutVT, N0));
18698 return SDValue();
18701 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
18702 // each source element of a large type into the lowest elements of a smaller
18703 // destination type. This is often generated during legalization.
18704 // If the source node itself was a '*_extend_vector_inreg' node then we should
18705 // then be able to remove it.
18706 static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN,
18707 SelectionDAG &DAG) {
18708 EVT VT = SVN->getValueType(0);
18709 bool IsBigEndian = DAG.getDataLayout().isBigEndian();
18711 // TODO Add support for big-endian when we have a test case.
18712 if (!VT.isInteger() || IsBigEndian)
18713 return SDValue();
18715 SDValue N0 = peekThroughBitcasts(SVN->getOperand(0));
18717 unsigned Opcode = N0.getOpcode();
18718 if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG &&
18719 Opcode != ISD::SIGN_EXTEND_VECTOR_INREG &&
18720 Opcode != ISD::ZERO_EXTEND_VECTOR_INREG)
18721 return SDValue();
18723 SDValue N00 = N0.getOperand(0);
18724 ArrayRef<int> Mask = SVN->getMask();
18725 unsigned NumElts = VT.getVectorNumElements();
18726 unsigned EltSizeInBits = VT.getScalarSizeInBits();
18727 unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits();
18728 unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits();
18730 if (ExtDstSizeInBits % ExtSrcSizeInBits != 0)
18731 return SDValue();
18732 unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits;
18734 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
18735 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
18736 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
18737 auto isTruncate = [&Mask, &NumElts](unsigned Scale) {
18738 for (unsigned i = 0; i != NumElts; ++i) {
18739 if (Mask[i] < 0)
18740 continue;
18741 if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale))
18742 continue;
18743 return false;
18745 return true;
18748 // At the moment we just handle the case where we've truncated back to the
18749 // same size as before the extension.
18750 // TODO: handle more extension/truncation cases as cases arise.
18751 if (EltSizeInBits != ExtSrcSizeInBits)
18752 return SDValue();
18754 // We can remove *extend_vector_inreg only if the truncation happens at
18755 // the same scale as the extension.
18756 if (isTruncate(ExtScale))
18757 return DAG.getBitcast(VT, N00);
18759 return SDValue();
18762 // Combine shuffles of splat-shuffles of the form:
18763 // shuffle (shuffle V, undef, splat-mask), undef, M
18764 // If splat-mask contains undef elements, we need to be careful about
18765 // introducing undef's in the folded mask which are not the result of composing
18766 // the masks of the shuffles.
18767 static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf,
18768 SelectionDAG &DAG) {
18769 if (!Shuf->getOperand(1).isUndef())
18770 return SDValue();
18771 auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
18772 if (!Splat || !Splat->isSplat())
18773 return SDValue();
18775 ArrayRef<int> ShufMask = Shuf->getMask();
18776 ArrayRef<int> SplatMask = Splat->getMask();
18777 assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch");
18779 // Prefer simplifying to the splat-shuffle, if possible. This is legal if
18780 // every undef mask element in the splat-shuffle has a corresponding undef
18781 // element in the user-shuffle's mask or if the composition of mask elements
18782 // would result in undef.
18783 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
18784 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
18785 // In this case it is not legal to simplify to the splat-shuffle because we
18786 // may be exposing the users of the shuffle an undef element at index 1
18787 // which was not there before the combine.
18788 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
18789 // In this case the composition of masks yields SplatMask, so it's ok to
18790 // simplify to the splat-shuffle.
18791 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
18792 // In this case the composed mask includes all undef elements of SplatMask
18793 // and in addition sets element zero to undef. It is safe to simplify to
18794 // the splat-shuffle.
18795 auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask,
18796 ArrayRef<int> SplatMask) {
18797 for (unsigned i = 0, e = UserMask.size(); i != e; ++i)
18798 if (UserMask[i] != -1 && SplatMask[i] == -1 &&
18799 SplatMask[UserMask[i]] != -1)
18800 return false;
18801 return true;
18803 if (CanSimplifyToExistingSplat(ShufMask, SplatMask))
18804 return Shuf->getOperand(0);
18806 // Create a new shuffle with a mask that is composed of the two shuffles'
18807 // masks.
18808 SmallVector<int, 32> NewMask;
18809 for (int Idx : ShufMask)
18810 NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]);
18812 return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat),
18813 Splat->getOperand(0), Splat->getOperand(1),
18814 NewMask);
18817 /// If the shuffle mask is taking exactly one element from the first vector
18818 /// operand and passing through all other elements from the second vector
18819 /// operand, return the index of the mask element that is choosing an element
18820 /// from the first operand. Otherwise, return -1.
18821 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) {
18822 int MaskSize = Mask.size();
18823 int EltFromOp0 = -1;
18824 // TODO: This does not match if there are undef elements in the shuffle mask.
18825 // Should we ignore undefs in the shuffle mask instead? The trade-off is
18826 // removing an instruction (a shuffle), but losing the knowledge that some
18827 // vector lanes are not needed.
18828 for (int i = 0; i != MaskSize; ++i) {
18829 if (Mask[i] >= 0 && Mask[i] < MaskSize) {
18830 // We're looking for a shuffle of exactly one element from operand 0.
18831 if (EltFromOp0 != -1)
18832 return -1;
18833 EltFromOp0 = i;
18834 } else if (Mask[i] != i + MaskSize) {
18835 // Nothing from operand 1 can change lanes.
18836 return -1;
18839 return EltFromOp0;
18842 /// If a shuffle inserts exactly one element from a source vector operand into
18843 /// another vector operand and we can access the specified element as a scalar,
18844 /// then we can eliminate the shuffle.
18845 static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf,
18846 SelectionDAG &DAG) {
18847 // First, check if we are taking one element of a vector and shuffling that
18848 // element into another vector.
18849 ArrayRef<int> Mask = Shuf->getMask();
18850 SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end());
18851 SDValue Op0 = Shuf->getOperand(0);
18852 SDValue Op1 = Shuf->getOperand(1);
18853 int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask);
18854 if (ShufOp0Index == -1) {
18855 // Commute mask and check again.
18856 ShuffleVectorSDNode::commuteMask(CommutedMask);
18857 ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask);
18858 if (ShufOp0Index == -1)
18859 return SDValue();
18860 // Commute operands to match the commuted shuffle mask.
18861 std::swap(Op0, Op1);
18862 Mask = CommutedMask;
18865 // The shuffle inserts exactly one element from operand 0 into operand 1.
18866 // Now see if we can access that element as a scalar via a real insert element
18867 // instruction.
18868 // TODO: We can try harder to locate the element as a scalar. Examples: it
18869 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant.
18870 assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() &&
18871 "Shuffle mask value must be from operand 0");
18872 if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT)
18873 return SDValue();
18875 auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2));
18876 if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index])
18877 return SDValue();
18879 // There's an existing insertelement with constant insertion index, so we
18880 // don't need to check the legality/profitability of a replacement operation
18881 // that differs at most in the constant value. The target should be able to
18882 // lower any of those in a similar way. If not, legalization will expand this
18883 // to a scalar-to-vector plus shuffle.
18885 // Note that the shuffle may move the scalar from the position that the insert
18886 // element used. Therefore, our new insert element occurs at the shuffle's
18887 // mask index value, not the insert's index value.
18888 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
18889 SDValue NewInsIndex = DAG.getConstant(ShufOp0Index, SDLoc(Shuf),
18890 Op0.getOperand(2).getValueType());
18891 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(),
18892 Op1, Op0.getOperand(1), NewInsIndex);
18895 /// If we have a unary shuffle of a shuffle, see if it can be folded away
18896 /// completely. This has the potential to lose undef knowledge because the first
18897 /// shuffle may not have an undef mask element where the second one does. So
18898 /// only call this after doing simplifications based on demanded elements.
18899 static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) {
18900 // shuf (shuf0 X, Y, Mask0), undef, Mask
18901 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
18902 if (!Shuf0 || !Shuf->getOperand(1).isUndef())
18903 return SDValue();
18905 ArrayRef<int> Mask = Shuf->getMask();
18906 ArrayRef<int> Mask0 = Shuf0->getMask();
18907 for (int i = 0, e = (int)Mask.size(); i != e; ++i) {
18908 // Ignore undef elements.
18909 if (Mask[i] == -1)
18910 continue;
18911 assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value");
18913 // Is the element of the shuffle operand chosen by this shuffle the same as
18914 // the element chosen by the shuffle operand itself?
18915 if (Mask0[Mask[i]] != Mask0[i])
18916 return SDValue();
18918 // Every element of this shuffle is identical to the result of the previous
18919 // shuffle, so we can replace this value.
18920 return Shuf->getOperand(0);
18923 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
18924 EVT VT = N->getValueType(0);
18925 unsigned NumElts = VT.getVectorNumElements();
18927 SDValue N0 = N->getOperand(0);
18928 SDValue N1 = N->getOperand(1);
18930 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
18932 // Canonicalize shuffle undef, undef -> undef
18933 if (N0.isUndef() && N1.isUndef())
18934 return DAG.getUNDEF(VT);
18936 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
18938 // Canonicalize shuffle v, v -> v, undef
18939 if (N0 == N1) {
18940 SmallVector<int, 8> NewMask;
18941 for (unsigned i = 0; i != NumElts; ++i) {
18942 int Idx = SVN->getMaskElt(i);
18943 if (Idx >= (int)NumElts) Idx -= NumElts;
18944 NewMask.push_back(Idx);
18946 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask);
18949 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
18950 if (N0.isUndef())
18951 return DAG.getCommutedVectorShuffle(*SVN);
18953 // Remove references to rhs if it is undef
18954 if (N1.isUndef()) {
18955 bool Changed = false;
18956 SmallVector<int, 8> NewMask;
18957 for (unsigned i = 0; i != NumElts; ++i) {
18958 int Idx = SVN->getMaskElt(i);
18959 if (Idx >= (int)NumElts) {
18960 Idx = -1;
18961 Changed = true;
18963 NewMask.push_back(Idx);
18965 if (Changed)
18966 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask);
18969 if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG))
18970 return InsElt;
18972 // A shuffle of a single vector that is a splatted value can always be folded.
18973 if (SDValue V = combineShuffleOfSplatVal(SVN, DAG))
18974 return V;
18976 // If it is a splat, check if the argument vector is another splat or a
18977 // build_vector.
18978 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
18979 int SplatIndex = SVN->getSplatIndex();
18980 if (TLI.isExtractVecEltCheap(VT, SplatIndex) &&
18981 TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) {
18982 // splat (vector_bo L, R), Index -->
18983 // splat (scalar_bo (extelt L, Index), (extelt R, Index))
18984 SDValue L = N0.getOperand(0), R = N0.getOperand(1);
18985 SDLoc DL(N);
18986 EVT EltVT = VT.getScalarType();
18987 SDValue Index = DAG.getIntPtrConstant(SplatIndex, DL);
18988 SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index);
18989 SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index);
18990 SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR,
18991 N0.getNode()->getFlags());
18992 SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO);
18993 SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0);
18994 return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask);
18997 // If this is a bit convert that changes the element type of the vector but
18998 // not the number of vector elements, look through it. Be careful not to
18999 // look though conversions that change things like v4f32 to v2f64.
19000 SDNode *V = N0.getNode();
19001 if (V->getOpcode() == ISD::BITCAST) {
19002 SDValue ConvInput = V->getOperand(0);
19003 if (ConvInput.getValueType().isVector() &&
19004 ConvInput.getValueType().getVectorNumElements() == NumElts)
19005 V = ConvInput.getNode();
19008 if (V->getOpcode() == ISD::BUILD_VECTOR) {
19009 assert(V->getNumOperands() == NumElts &&
19010 "BUILD_VECTOR has wrong number of operands");
19011 SDValue Base;
19012 bool AllSame = true;
19013 for (unsigned i = 0; i != NumElts; ++i) {
19014 if (!V->getOperand(i).isUndef()) {
19015 Base = V->getOperand(i);
19016 break;
19019 // Splat of <u, u, u, u>, return <u, u, u, u>
19020 if (!Base.getNode())
19021 return N0;
19022 for (unsigned i = 0; i != NumElts; ++i) {
19023 if (V->getOperand(i) != Base) {
19024 AllSame = false;
19025 break;
19028 // Splat of <x, x, x, x>, return <x, x, x, x>
19029 if (AllSame)
19030 return N0;
19032 // Canonicalize any other splat as a build_vector.
19033 SDValue Splatted = V->getOperand(SplatIndex);
19034 SmallVector<SDValue, 8> Ops(NumElts, Splatted);
19035 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops);
19037 // We may have jumped through bitcasts, so the type of the
19038 // BUILD_VECTOR may not match the type of the shuffle.
19039 if (V->getValueType(0) != VT)
19040 NewBV = DAG.getBitcast(VT, NewBV);
19041 return NewBV;
19045 // Simplify source operands based on shuffle mask.
19046 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
19047 return SDValue(N, 0);
19049 // This is intentionally placed after demanded elements simplification because
19050 // it could eliminate knowledge of undef elements created by this shuffle.
19051 if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN))
19052 return ShufOp;
19054 // Match shuffles that can be converted to any_vector_extend_in_reg.
19055 if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations))
19056 return V;
19058 // Combine "truncate_vector_in_reg" style shuffles.
19059 if (SDValue V = combineTruncationShuffle(SVN, DAG))
19060 return V;
19062 if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
19063 Level < AfterLegalizeVectorOps &&
19064 (N1.isUndef() ||
19065 (N1.getOpcode() == ISD::CONCAT_VECTORS &&
19066 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
19067 if (SDValue V = partitionShuffleOfConcats(N, DAG))
19068 return V;
19071 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
19072 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
19073 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT))
19074 if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI))
19075 return Res;
19077 // If this shuffle only has a single input that is a bitcasted shuffle,
19078 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
19079 // back to their original types.
19080 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
19081 N1.isUndef() && Level < AfterLegalizeVectorOps &&
19082 TLI.isTypeLegal(VT)) {
19083 auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) {
19084 if (Scale == 1)
19085 return SmallVector<int, 8>(Mask.begin(), Mask.end());
19087 SmallVector<int, 8> NewMask;
19088 for (int M : Mask)
19089 for (int s = 0; s != Scale; ++s)
19090 NewMask.push_back(M < 0 ? -1 : Scale * M + s);
19091 return NewMask;
19094 SDValue BC0 = peekThroughOneUseBitcasts(N0);
19095 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) {
19096 EVT SVT = VT.getScalarType();
19097 EVT InnerVT = BC0->getValueType(0);
19098 EVT InnerSVT = InnerVT.getScalarType();
19100 // Determine which shuffle works with the smaller scalar type.
19101 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT;
19102 EVT ScaleSVT = ScaleVT.getScalarType();
19104 if (TLI.isTypeLegal(ScaleVT) &&
19105 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) &&
19106 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) {
19107 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits();
19108 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits();
19110 // Scale the shuffle masks to the smaller scalar type.
19111 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0);
19112 SmallVector<int, 8> InnerMask =
19113 ScaleShuffleMask(InnerSVN->getMask(), InnerScale);
19114 SmallVector<int, 8> OuterMask =
19115 ScaleShuffleMask(SVN->getMask(), OuterScale);
19117 // Merge the shuffle masks.
19118 SmallVector<int, 8> NewMask;
19119 for (int M : OuterMask)
19120 NewMask.push_back(M < 0 ? -1 : InnerMask[M]);
19122 // Test for shuffle mask legality over both commutations.
19123 SDValue SV0 = BC0->getOperand(0);
19124 SDValue SV1 = BC0->getOperand(1);
19125 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
19126 if (!LegalMask) {
19127 std::swap(SV0, SV1);
19128 ShuffleVectorSDNode::commuteMask(NewMask);
19129 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
19132 if (LegalMask) {
19133 SV0 = DAG.getBitcast(ScaleVT, SV0);
19134 SV1 = DAG.getBitcast(ScaleVT, SV1);
19135 return DAG.getBitcast(
19136 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask));
19142 // Canonicalize shuffles according to rules:
19143 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
19144 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
19145 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
19146 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
19147 N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
19148 TLI.isTypeLegal(VT)) {
19149 // The incoming shuffle must be of the same type as the result of the
19150 // current shuffle.
19151 assert(N1->getOperand(0).getValueType() == VT &&
19152 "Shuffle types don't match");
19154 SDValue SV0 = N1->getOperand(0);
19155 SDValue SV1 = N1->getOperand(1);
19156 bool HasSameOp0 = N0 == SV0;
19157 bool IsSV1Undef = SV1.isUndef();
19158 if (HasSameOp0 || IsSV1Undef || N0 == SV1)
19159 // Commute the operands of this shuffle so that next rule
19160 // will trigger.
19161 return DAG.getCommutedVectorShuffle(*SVN);
19164 // Try to fold according to rules:
19165 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
19166 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
19167 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
19168 // Don't try to fold shuffles with illegal type.
19169 // Only fold if this shuffle is the only user of the other shuffle.
19170 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) &&
19171 Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
19172 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
19174 // Don't try to fold splats; they're likely to simplify somehow, or they
19175 // might be free.
19176 if (OtherSV->isSplat())
19177 return SDValue();
19179 // The incoming shuffle must be of the same type as the result of the
19180 // current shuffle.
19181 assert(OtherSV->getOperand(0).getValueType() == VT &&
19182 "Shuffle types don't match");
19184 SDValue SV0, SV1;
19185 SmallVector<int, 4> Mask;
19186 // Compute the combined shuffle mask for a shuffle with SV0 as the first
19187 // operand, and SV1 as the second operand.
19188 for (unsigned i = 0; i != NumElts; ++i) {
19189 int Idx = SVN->getMaskElt(i);
19190 if (Idx < 0) {
19191 // Propagate Undef.
19192 Mask.push_back(Idx);
19193 continue;
19196 SDValue CurrentVec;
19197 if (Idx < (int)NumElts) {
19198 // This shuffle index refers to the inner shuffle N0. Lookup the inner
19199 // shuffle mask to identify which vector is actually referenced.
19200 Idx = OtherSV->getMaskElt(Idx);
19201 if (Idx < 0) {
19202 // Propagate Undef.
19203 Mask.push_back(Idx);
19204 continue;
19207 CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0)
19208 : OtherSV->getOperand(1);
19209 } else {
19210 // This shuffle index references an element within N1.
19211 CurrentVec = N1;
19214 // Simple case where 'CurrentVec' is UNDEF.
19215 if (CurrentVec.isUndef()) {
19216 Mask.push_back(-1);
19217 continue;
19220 // Canonicalize the shuffle index. We don't know yet if CurrentVec
19221 // will be the first or second operand of the combined shuffle.
19222 Idx = Idx % NumElts;
19223 if (!SV0.getNode() || SV0 == CurrentVec) {
19224 // Ok. CurrentVec is the left hand side.
19225 // Update the mask accordingly.
19226 SV0 = CurrentVec;
19227 Mask.push_back(Idx);
19228 continue;
19231 // Bail out if we cannot convert the shuffle pair into a single shuffle.
19232 if (SV1.getNode() && SV1 != CurrentVec)
19233 return SDValue();
19235 // Ok. CurrentVec is the right hand side.
19236 // Update the mask accordingly.
19237 SV1 = CurrentVec;
19238 Mask.push_back(Idx + NumElts);
19241 // Check if all indices in Mask are Undef. In case, propagate Undef.
19242 bool isUndefMask = true;
19243 for (unsigned i = 0; i != NumElts && isUndefMask; ++i)
19244 isUndefMask &= Mask[i] < 0;
19246 if (isUndefMask)
19247 return DAG.getUNDEF(VT);
19249 if (!SV0.getNode())
19250 SV0 = DAG.getUNDEF(VT);
19251 if (!SV1.getNode())
19252 SV1 = DAG.getUNDEF(VT);
19254 // Avoid introducing shuffles with illegal mask.
19255 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
19256 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
19257 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
19258 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
19259 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
19260 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
19261 return TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask, DAG);
19264 if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG))
19265 return V;
19267 return SDValue();
19270 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
19271 SDValue InVal = N->getOperand(0);
19272 EVT VT = N->getValueType(0);
19274 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
19275 // with a VECTOR_SHUFFLE and possible truncate.
19276 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
19277 SDValue InVec = InVal->getOperand(0);
19278 SDValue EltNo = InVal->getOperand(1);
19279 auto InVecT = InVec.getValueType();
19280 if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) {
19281 SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1);
19282 int Elt = C0->getZExtValue();
19283 NewMask[0] = Elt;
19284 // If we have an implict truncate do truncate here as long as it's legal.
19285 // if it's not legal, this should
19286 if (VT.getScalarType() != InVal.getValueType() &&
19287 InVal.getValueType().isScalarInteger() &&
19288 isTypeLegal(VT.getScalarType())) {
19289 SDValue Val =
19290 DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal);
19291 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val);
19293 if (VT.getScalarType() == InVecT.getScalarType() &&
19294 VT.getVectorNumElements() <= InVecT.getVectorNumElements()) {
19295 SDValue LegalShuffle =
19296 TLI.buildLegalVectorShuffle(InVecT, SDLoc(N), InVec,
19297 DAG.getUNDEF(InVecT), NewMask, DAG);
19298 if (LegalShuffle) {
19299 // If the initial vector is the correct size this shuffle is a
19300 // valid result.
19301 if (VT == InVecT)
19302 return LegalShuffle;
19303 // If not we must truncate the vector.
19304 if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) {
19305 MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
19306 SDValue ZeroIdx = DAG.getConstant(0, SDLoc(N), IdxTy);
19307 EVT SubVT =
19308 EVT::getVectorVT(*DAG.getContext(), InVecT.getVectorElementType(),
19309 VT.getVectorNumElements());
19310 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT,
19311 LegalShuffle, ZeroIdx);
19318 return SDValue();
19321 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
19322 EVT VT = N->getValueType(0);
19323 SDValue N0 = N->getOperand(0);
19324 SDValue N1 = N->getOperand(1);
19325 SDValue N2 = N->getOperand(2);
19327 // If inserting an UNDEF, just return the original vector.
19328 if (N1.isUndef())
19329 return N0;
19331 // If this is an insert of an extracted vector into an undef vector, we can
19332 // just use the input to the extract.
19333 if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
19334 N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT)
19335 return N1.getOperand(0);
19337 // If we are inserting a bitcast value into an undef, with the same
19338 // number of elements, just use the bitcast input of the extract.
19339 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
19340 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
19341 if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST &&
19342 N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR &&
19343 N1.getOperand(0).getOperand(1) == N2 &&
19344 N1.getOperand(0).getOperand(0).getValueType().getVectorNumElements() ==
19345 VT.getVectorNumElements() &&
19346 N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() ==
19347 VT.getSizeInBits()) {
19348 return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0));
19351 // If both N1 and N2 are bitcast values on which insert_subvector
19352 // would makes sense, pull the bitcast through.
19353 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
19354 // BITCAST (INSERT_SUBVECTOR N0 N1 N2)
19355 if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) {
19356 SDValue CN0 = N0.getOperand(0);
19357 SDValue CN1 = N1.getOperand(0);
19358 EVT CN0VT = CN0.getValueType();
19359 EVT CN1VT = CN1.getValueType();
19360 if (CN0VT.isVector() && CN1VT.isVector() &&
19361 CN0VT.getVectorElementType() == CN1VT.getVectorElementType() &&
19362 CN0VT.getVectorNumElements() == VT.getVectorNumElements()) {
19363 SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N),
19364 CN0.getValueType(), CN0, CN1, N2);
19365 return DAG.getBitcast(VT, NewINSERT);
19369 // Combine INSERT_SUBVECTORs where we are inserting to the same index.
19370 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
19371 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
19372 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR &&
19373 N0.getOperand(1).getValueType() == N1.getValueType() &&
19374 N0.getOperand(2) == N2)
19375 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0),
19376 N1, N2);
19378 // Eliminate an intermediate insert into an undef vector:
19379 // insert_subvector undef, (insert_subvector undef, X, 0), N2 -->
19380 // insert_subvector undef, X, N2
19381 if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR &&
19382 N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2)))
19383 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0,
19384 N1.getOperand(1), N2);
19386 if (!isa<ConstantSDNode>(N2))
19387 return SDValue();
19389 uint64_t InsIdx = cast<ConstantSDNode>(N2)->getZExtValue();
19391 // Push subvector bitcasts to the output, adjusting the index as we go.
19392 // insert_subvector(bitcast(v), bitcast(s), c1)
19393 // -> bitcast(insert_subvector(v, s, c2))
19394 if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) &&
19395 N1.getOpcode() == ISD::BITCAST) {
19396 SDValue N0Src = peekThroughBitcasts(N0);
19397 SDValue N1Src = peekThroughBitcasts(N1);
19398 EVT N0SrcSVT = N0Src.getValueType().getScalarType();
19399 EVT N1SrcSVT = N1Src.getValueType().getScalarType();
19400 if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) &&
19401 N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) {
19402 EVT NewVT;
19403 SDLoc DL(N);
19404 SDValue NewIdx;
19405 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
19406 LLVMContext &Ctx = *DAG.getContext();
19407 unsigned NumElts = VT.getVectorNumElements();
19408 unsigned EltSizeInBits = VT.getScalarSizeInBits();
19409 if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) {
19410 unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits();
19411 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale);
19412 NewIdx = DAG.getConstant(InsIdx * Scale, DL, IdxVT);
19413 } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) {
19414 unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits;
19415 if ((NumElts % Scale) == 0 && (InsIdx % Scale) == 0) {
19416 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts / Scale);
19417 NewIdx = DAG.getConstant(InsIdx / Scale, DL, IdxVT);
19420 if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) {
19421 SDValue Res = DAG.getBitcast(NewVT, N0Src);
19422 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx);
19423 return DAG.getBitcast(VT, Res);
19428 // Canonicalize insert_subvector dag nodes.
19429 // Example:
19430 // (insert_subvector (insert_subvector A, Idx0), Idx1)
19431 // -> (insert_subvector (insert_subvector A, Idx1), Idx0)
19432 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() &&
19433 N1.getValueType() == N0.getOperand(1).getValueType() &&
19434 isa<ConstantSDNode>(N0.getOperand(2))) {
19435 unsigned OtherIdx = N0.getConstantOperandVal(2);
19436 if (InsIdx < OtherIdx) {
19437 // Swap nodes.
19438 SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT,
19439 N0.getOperand(0), N1, N2);
19440 AddToWorklist(NewOp.getNode());
19441 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()),
19442 VT, NewOp, N0.getOperand(1), N0.getOperand(2));
19446 // If the input vector is a concatenation, and the insert replaces
19447 // one of the pieces, we can optimize into a single concat_vectors.
19448 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() &&
19449 N0.getOperand(0).getValueType() == N1.getValueType()) {
19450 unsigned Factor = N1.getValueType().getVectorNumElements();
19452 SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end());
19453 Ops[cast<ConstantSDNode>(N2)->getZExtValue() / Factor] = N1;
19455 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
19458 // Simplify source operands based on insertion.
19459 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
19460 return SDValue(N, 0);
19462 return SDValue();
19465 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) {
19466 SDValue N0 = N->getOperand(0);
19468 // fold (fp_to_fp16 (fp16_to_fp op)) -> op
19469 if (N0->getOpcode() == ISD::FP16_TO_FP)
19470 return N0->getOperand(0);
19472 return SDValue();
19475 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) {
19476 SDValue N0 = N->getOperand(0);
19478 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
19479 if (N0->getOpcode() == ISD::AND) {
19480 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1));
19481 if (AndConst && AndConst->getAPIntValue() == 0xffff) {
19482 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0),
19483 N0.getOperand(0));
19487 return SDValue();
19490 SDValue DAGCombiner::visitVECREDUCE(SDNode *N) {
19491 SDValue N0 = N->getOperand(0);
19492 EVT VT = N0.getValueType();
19493 unsigned Opcode = N->getOpcode();
19495 // VECREDUCE over 1-element vector is just an extract.
19496 if (VT.getVectorNumElements() == 1) {
19497 SDLoc dl(N);
19498 SDValue Res = DAG.getNode(
19499 ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0,
19500 DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
19501 if (Res.getValueType() != N->getValueType(0))
19502 Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res);
19503 return Res;
19506 // On an boolean vector an and/or reduction is the same as a umin/umax
19507 // reduction. Convert them if the latter is legal while the former isn't.
19508 if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) {
19509 unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND
19510 ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX;
19511 if (!TLI.isOperationLegalOrCustom(Opcode, VT) &&
19512 TLI.isOperationLegalOrCustom(NewOpcode, VT) &&
19513 DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits())
19514 return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0);
19517 return SDValue();
19520 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
19521 /// with the destination vector and a zero vector.
19522 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
19523 /// vector_shuffle V, Zero, <0, 4, 2, 4>
19524 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
19525 assert(N->getOpcode() == ISD::AND && "Unexpected opcode!");
19527 EVT VT = N->getValueType(0);
19528 SDValue LHS = N->getOperand(0);
19529 SDValue RHS = peekThroughBitcasts(N->getOperand(1));
19530 SDLoc DL(N);
19532 // Make sure we're not running after operation legalization where it
19533 // may have custom lowered the vector shuffles.
19534 if (LegalOperations)
19535 return SDValue();
19537 if (RHS.getOpcode() != ISD::BUILD_VECTOR)
19538 return SDValue();
19540 EVT RVT = RHS.getValueType();
19541 unsigned NumElts = RHS.getNumOperands();
19543 // Attempt to create a valid clear mask, splitting the mask into
19544 // sub elements and checking to see if each is
19545 // all zeros or all ones - suitable for shuffle masking.
19546 auto BuildClearMask = [&](int Split) {
19547 int NumSubElts = NumElts * Split;
19548 int NumSubBits = RVT.getScalarSizeInBits() / Split;
19550 SmallVector<int, 8> Indices;
19551 for (int i = 0; i != NumSubElts; ++i) {
19552 int EltIdx = i / Split;
19553 int SubIdx = i % Split;
19554 SDValue Elt = RHS.getOperand(EltIdx);
19555 if (Elt.isUndef()) {
19556 Indices.push_back(-1);
19557 continue;
19560 APInt Bits;
19561 if (isa<ConstantSDNode>(Elt))
19562 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue();
19563 else if (isa<ConstantFPSDNode>(Elt))
19564 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt();
19565 else
19566 return SDValue();
19568 // Extract the sub element from the constant bit mask.
19569 if (DAG.getDataLayout().isBigEndian()) {
19570 Bits.lshrInPlace((Split - SubIdx - 1) * NumSubBits);
19571 } else {
19572 Bits.lshrInPlace(SubIdx * NumSubBits);
19575 if (Split > 1)
19576 Bits = Bits.trunc(NumSubBits);
19578 if (Bits.isAllOnesValue())
19579 Indices.push_back(i);
19580 else if (Bits == 0)
19581 Indices.push_back(i + NumSubElts);
19582 else
19583 return SDValue();
19586 // Let's see if the target supports this vector_shuffle.
19587 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits);
19588 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts);
19589 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT))
19590 return SDValue();
19592 SDValue Zero = DAG.getConstant(0, DL, ClearVT);
19593 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL,
19594 DAG.getBitcast(ClearVT, LHS),
19595 Zero, Indices));
19598 // Determine maximum split level (byte level masking).
19599 int MaxSplit = 1;
19600 if (RVT.getScalarSizeInBits() % 8 == 0)
19601 MaxSplit = RVT.getScalarSizeInBits() / 8;
19603 for (int Split = 1; Split <= MaxSplit; ++Split)
19604 if (RVT.getScalarSizeInBits() % Split == 0)
19605 if (SDValue S = BuildClearMask(Split))
19606 return S;
19608 return SDValue();
19611 /// If a vector binop is performed on splat values, it may be profitable to
19612 /// extract, scalarize, and insert/splat.
19613 static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG) {
19614 SDValue N0 = N->getOperand(0);
19615 SDValue N1 = N->getOperand(1);
19616 unsigned Opcode = N->getOpcode();
19617 EVT VT = N->getValueType(0);
19618 EVT EltVT = VT.getVectorElementType();
19619 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19621 // TODO: Remove/replace the extract cost check? If the elements are available
19622 // as scalars, then there may be no extract cost. Should we ask if
19623 // inserting a scalar back into a vector is cheap instead?
19624 int Index0, Index1;
19625 SDValue Src0 = DAG.getSplatSourceVector(N0, Index0);
19626 SDValue Src1 = DAG.getSplatSourceVector(N1, Index1);
19627 if (!Src0 || !Src1 || Index0 != Index1 ||
19628 Src0.getValueType().getVectorElementType() != EltVT ||
19629 Src1.getValueType().getVectorElementType() != EltVT ||
19630 !TLI.isExtractVecEltCheap(VT, Index0) ||
19631 !TLI.isOperationLegalOrCustom(Opcode, EltVT))
19632 return SDValue();
19634 SDLoc DL(N);
19635 SDValue IndexC =
19636 DAG.getConstant(Index0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()));
19637 SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, N0, IndexC);
19638 SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, N1, IndexC);
19639 SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags());
19641 // If all lanes but 1 are undefined, no need to splat the scalar result.
19642 // TODO: Keep track of undefs and use that info in the general case.
19643 if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() &&
19644 count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 &&
19645 count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) {
19646 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) -->
19647 // build_vec ..undef, (bo X, Y), undef...
19648 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT));
19649 Ops[Index0] = ScalarBO;
19650 return DAG.getBuildVector(VT, DL, Ops);
19653 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index
19654 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO);
19655 return DAG.getBuildVector(VT, DL, Ops);
19658 /// Visit a binary vector operation, like ADD.
19659 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
19660 assert(N->getValueType(0).isVector() &&
19661 "SimplifyVBinOp only works on vectors!");
19663 SDValue LHS = N->getOperand(0);
19664 SDValue RHS = N->getOperand(1);
19665 SDValue Ops[] = {LHS, RHS};
19666 EVT VT = N->getValueType(0);
19667 unsigned Opcode = N->getOpcode();
19669 // See if we can constant fold the vector operation.
19670 if (SDValue Fold = DAG.FoldConstantVectorArithmetic(
19671 Opcode, SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags()))
19672 return Fold;
19674 // Move unary shuffles with identical masks after a vector binop:
19675 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask))
19676 // --> shuffle (VBinOp A, B), Undef, Mask
19677 // This does not require type legality checks because we are creating the
19678 // same types of operations that are in the original sequence. We do have to
19679 // restrict ops like integer div that have immediate UB (eg, div-by-zero)
19680 // though. This code is adapted from the identical transform in instcombine.
19681 if (Opcode != ISD::UDIV && Opcode != ISD::SDIV &&
19682 Opcode != ISD::UREM && Opcode != ISD::SREM &&
19683 Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) {
19684 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS);
19685 auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS);
19686 if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) &&
19687 LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() &&
19688 (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) {
19689 SDLoc DL(N);
19690 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0),
19691 RHS.getOperand(0), N->getFlags());
19692 SDValue UndefV = LHS.getOperand(1);
19693 return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask());
19697 // The following pattern is likely to emerge with vector reduction ops. Moving
19698 // the binary operation ahead of insertion may allow using a narrower vector
19699 // instruction that has better performance than the wide version of the op:
19700 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z
19701 if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() &&
19702 RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() &&
19703 LHS.getOperand(2) == RHS.getOperand(2) &&
19704 (LHS.hasOneUse() || RHS.hasOneUse())) {
19705 SDValue X = LHS.getOperand(1);
19706 SDValue Y = RHS.getOperand(1);
19707 SDValue Z = LHS.getOperand(2);
19708 EVT NarrowVT = X.getValueType();
19709 if (NarrowVT == Y.getValueType() &&
19710 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) {
19711 // (binop undef, undef) may not return undef, so compute that result.
19712 SDLoc DL(N);
19713 SDValue VecC =
19714 DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT));
19715 SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y);
19716 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z);
19720 // Make sure all but the first op are undef or constant.
19721 auto ConcatWithConstantOrUndef = [](SDValue Concat) {
19722 return Concat.getOpcode() == ISD::CONCAT_VECTORS &&
19723 std::all_of(std::next(Concat->op_begin()), Concat->op_end(),
19724 [](const SDValue &Op) {
19725 return Op.isUndef() ||
19726 ISD::isBuildVectorOfConstantSDNodes(Op.getNode());
19730 // The following pattern is likely to emerge with vector reduction ops. Moving
19731 // the binary operation ahead of the concat may allow using a narrower vector
19732 // instruction that has better performance than the wide version of the op:
19733 // VBinOp (concat X, undef/constant), (concat Y, undef/constant) -->
19734 // concat (VBinOp X, Y), VecC
19735 if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) &&
19736 (LHS.hasOneUse() || RHS.hasOneUse())) {
19737 EVT NarrowVT = LHS.getOperand(0).getValueType();
19738 if (NarrowVT == RHS.getOperand(0).getValueType() &&
19739 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) {
19740 SDLoc DL(N);
19741 unsigned NumOperands = LHS.getNumOperands();
19742 SmallVector<SDValue, 4> ConcatOps;
19743 for (unsigned i = 0; i != NumOperands; ++i) {
19744 // This constant fold for operands 1 and up.
19745 ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i),
19746 RHS.getOperand(i)));
19749 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
19753 if (SDValue V = scalarizeBinOpOfSplats(N, DAG))
19754 return V;
19756 return SDValue();
19759 SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1,
19760 SDValue N2) {
19761 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
19763 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
19764 cast<CondCodeSDNode>(N0.getOperand(2))->get());
19766 // If we got a simplified select_cc node back from SimplifySelectCC, then
19767 // break it down into a new SETCC node, and a new SELECT node, and then return
19768 // the SELECT node, since we were called with a SELECT node.
19769 if (SCC.getNode()) {
19770 // Check to see if we got a select_cc back (to turn into setcc/select).
19771 // Otherwise, just return whatever node we got back, like fabs.
19772 if (SCC.getOpcode() == ISD::SELECT_CC) {
19773 const SDNodeFlags Flags = N0.getNode()->getFlags();
19774 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
19775 N0.getValueType(),
19776 SCC.getOperand(0), SCC.getOperand(1),
19777 SCC.getOperand(4), Flags);
19778 AddToWorklist(SETCC.getNode());
19779 SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
19780 SCC.getOperand(2), SCC.getOperand(3));
19781 SelectNode->setFlags(Flags);
19782 return SelectNode;
19785 return SCC;
19787 return SDValue();
19790 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
19791 /// being selected between, see if we can simplify the select. Callers of this
19792 /// should assume that TheSelect is deleted if this returns true. As such, they
19793 /// should return the appropriate thing (e.g. the node) back to the top-level of
19794 /// the DAG combiner loop to avoid it being looked at.
19795 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
19796 SDValue RHS) {
19797 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
19798 // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
19799 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) {
19800 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) {
19801 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
19802 SDValue Sqrt = RHS;
19803 ISD::CondCode CC;
19804 SDValue CmpLHS;
19805 const ConstantFPSDNode *Zero = nullptr;
19807 if (TheSelect->getOpcode() == ISD::SELECT_CC) {
19808 CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get();
19809 CmpLHS = TheSelect->getOperand(0);
19810 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1));
19811 } else {
19812 // SELECT or VSELECT
19813 SDValue Cmp = TheSelect->getOperand(0);
19814 if (Cmp.getOpcode() == ISD::SETCC) {
19815 CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get();
19816 CmpLHS = Cmp.getOperand(0);
19817 Zero = isConstOrConstSplatFP(Cmp.getOperand(1));
19820 if (Zero && Zero->isZero() &&
19821 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT ||
19822 CC == ISD::SETULT || CC == ISD::SETLT)) {
19823 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
19824 CombineTo(TheSelect, Sqrt);
19825 return true;
19829 // Cannot simplify select with vector condition
19830 if (TheSelect->getOperand(0).getValueType().isVector()) return false;
19832 // If this is a select from two identical things, try to pull the operation
19833 // through the select.
19834 if (LHS.getOpcode() != RHS.getOpcode() ||
19835 !LHS.hasOneUse() || !RHS.hasOneUse())
19836 return false;
19838 // If this is a load and the token chain is identical, replace the select
19839 // of two loads with a load through a select of the address to load from.
19840 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
19841 // constants have been dropped into the constant pool.
19842 if (LHS.getOpcode() == ISD::LOAD) {
19843 LoadSDNode *LLD = cast<LoadSDNode>(LHS);
19844 LoadSDNode *RLD = cast<LoadSDNode>(RHS);
19846 // Token chains must be identical.
19847 if (LHS.getOperand(0) != RHS.getOperand(0) ||
19848 // Do not let this transformation reduce the number of volatile loads.
19849 // Be conservative for atomics for the moment
19850 // TODO: This does appear to be legal for unordered atomics (see D66309)
19851 !LLD->isSimple() || !RLD->isSimple() ||
19852 // FIXME: If either is a pre/post inc/dec load,
19853 // we'd need to split out the address adjustment.
19854 LLD->isIndexed() || RLD->isIndexed() ||
19855 // If this is an EXTLOAD, the VT's must match.
19856 LLD->getMemoryVT() != RLD->getMemoryVT() ||
19857 // If this is an EXTLOAD, the kind of extension must match.
19858 (LLD->getExtensionType() != RLD->getExtensionType() &&
19859 // The only exception is if one of the extensions is anyext.
19860 LLD->getExtensionType() != ISD::EXTLOAD &&
19861 RLD->getExtensionType() != ISD::EXTLOAD) ||
19862 // FIXME: this discards src value information. This is
19863 // over-conservative. It would be beneficial to be able to remember
19864 // both potential memory locations. Since we are discarding
19865 // src value info, don't do the transformation if the memory
19866 // locations are not in the default address space.
19867 LLD->getPointerInfo().getAddrSpace() != 0 ||
19868 RLD->getPointerInfo().getAddrSpace() != 0 ||
19869 // We can't produce a CMOV of a TargetFrameIndex since we won't
19870 // generate the address generation required.
19871 LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex ||
19872 RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex ||
19873 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
19874 LLD->getBasePtr().getValueType()))
19875 return false;
19877 // The loads must not depend on one another.
19878 if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD))
19879 return false;
19881 // Check that the select condition doesn't reach either load. If so,
19882 // folding this will induce a cycle into the DAG. If not, this is safe to
19883 // xform, so create a select of the addresses.
19885 SmallPtrSet<const SDNode *, 32> Visited;
19886 SmallVector<const SDNode *, 16> Worklist;
19888 // Always fail if LLD and RLD are not independent. TheSelect is a
19889 // predecessor to all Nodes in question so we need not search past it.
19891 Visited.insert(TheSelect);
19892 Worklist.push_back(LLD);
19893 Worklist.push_back(RLD);
19895 if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) ||
19896 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))
19897 return false;
19899 SDValue Addr;
19900 if (TheSelect->getOpcode() == ISD::SELECT) {
19901 // We cannot do this optimization if any pair of {RLD, LLD} is a
19902 // predecessor to {RLD, LLD, CondNode}. As we've already compared the
19903 // Loads, we only need to check if CondNode is a successor to one of the
19904 // loads. We can further avoid this if there's no use of their chain
19905 // value.
19906 SDNode *CondNode = TheSelect->getOperand(0).getNode();
19907 Worklist.push_back(CondNode);
19909 if ((LLD->hasAnyUseOfValue(1) &&
19910 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
19911 (RLD->hasAnyUseOfValue(1) &&
19912 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
19913 return false;
19915 Addr = DAG.getSelect(SDLoc(TheSelect),
19916 LLD->getBasePtr().getValueType(),
19917 TheSelect->getOperand(0), LLD->getBasePtr(),
19918 RLD->getBasePtr());
19919 } else { // Otherwise SELECT_CC
19920 // We cannot do this optimization if any pair of {RLD, LLD} is a
19921 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
19922 // the Loads, we only need to check if CondLHS/CondRHS is a successor to
19923 // one of the loads. We can further avoid this if there's no use of their
19924 // chain value.
19926 SDNode *CondLHS = TheSelect->getOperand(0).getNode();
19927 SDNode *CondRHS = TheSelect->getOperand(1).getNode();
19928 Worklist.push_back(CondLHS);
19929 Worklist.push_back(CondRHS);
19931 if ((LLD->hasAnyUseOfValue(1) &&
19932 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
19933 (RLD->hasAnyUseOfValue(1) &&
19934 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
19935 return false;
19937 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
19938 LLD->getBasePtr().getValueType(),
19939 TheSelect->getOperand(0),
19940 TheSelect->getOperand(1),
19941 LLD->getBasePtr(), RLD->getBasePtr(),
19942 TheSelect->getOperand(4));
19945 SDValue Load;
19946 // It is safe to replace the two loads if they have different alignments,
19947 // but the new load must be the minimum (most restrictive) alignment of the
19948 // inputs.
19949 unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment());
19950 MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags();
19951 if (!RLD->isInvariant())
19952 MMOFlags &= ~MachineMemOperand::MOInvariant;
19953 if (!RLD->isDereferenceable())
19954 MMOFlags &= ~MachineMemOperand::MODereferenceable;
19955 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
19956 // FIXME: Discards pointer and AA info.
19957 Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect),
19958 LLD->getChain(), Addr, MachinePointerInfo(), Alignment,
19959 MMOFlags);
19960 } else {
19961 // FIXME: Discards pointer and AA info.
19962 Load = DAG.getExtLoad(
19963 LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType()
19964 : LLD->getExtensionType(),
19965 SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr,
19966 MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags);
19969 // Users of the select now use the result of the load.
19970 CombineTo(TheSelect, Load);
19972 // Users of the old loads now use the new load's chain. We know the
19973 // old-load value is dead now.
19974 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
19975 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
19976 return true;
19979 return false;
19982 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
19983 /// bitwise 'and'.
19984 SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0,
19985 SDValue N1, SDValue N2, SDValue N3,
19986 ISD::CondCode CC) {
19987 // If this is a select where the false operand is zero and the compare is a
19988 // check of the sign bit, see if we can perform the "gzip trick":
19989 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
19990 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
19991 EVT XType = N0.getValueType();
19992 EVT AType = N2.getValueType();
19993 if (!isNullConstant(N3) || !XType.bitsGE(AType))
19994 return SDValue();
19996 // If the comparison is testing for a positive value, we have to invert
19997 // the sign bit mask, so only do that transform if the target has a bitwise
19998 // 'and not' instruction (the invert is free).
19999 if (CC == ISD::SETGT && TLI.hasAndNot(N2)) {
20000 // (X > -1) ? A : 0
20001 // (X > 0) ? X : 0 <-- This is canonical signed max.
20002 if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2)))
20003 return SDValue();
20004 } else if (CC == ISD::SETLT) {
20005 // (X < 0) ? A : 0
20006 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
20007 if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2)))
20008 return SDValue();
20009 } else {
20010 return SDValue();
20013 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
20014 // constant.
20015 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
20016 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
20017 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
20018 unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1;
20019 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy);
20020 SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt);
20021 AddToWorklist(Shift.getNode());
20023 if (XType.bitsGT(AType)) {
20024 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
20025 AddToWorklist(Shift.getNode());
20028 if (CC == ISD::SETGT)
20029 Shift = DAG.getNOT(DL, Shift, AType);
20031 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
20034 SDValue ShiftAmt = DAG.getConstant(XType.getSizeInBits() - 1, DL, ShiftAmtTy);
20035 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt);
20036 AddToWorklist(Shift.getNode());
20038 if (XType.bitsGT(AType)) {
20039 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
20040 AddToWorklist(Shift.getNode());
20043 if (CC == ISD::SETGT)
20044 Shift = DAG.getNOT(DL, Shift, AType);
20046 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
20049 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
20050 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
20051 /// in it. This may be a win when the constant is not otherwise available
20052 /// because it replaces two constant pool loads with one.
20053 SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset(
20054 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
20055 ISD::CondCode CC) {
20056 if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType()))
20057 return SDValue();
20059 // If we are before legalize types, we want the other legalization to happen
20060 // first (for example, to avoid messing with soft float).
20061 auto *TV = dyn_cast<ConstantFPSDNode>(N2);
20062 auto *FV = dyn_cast<ConstantFPSDNode>(N3);
20063 EVT VT = N2.getValueType();
20064 if (!TV || !FV || !TLI.isTypeLegal(VT))
20065 return SDValue();
20067 // If a constant can be materialized without loads, this does not make sense.
20068 if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal ||
20069 TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) ||
20070 TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize))
20071 return SDValue();
20073 // If both constants have multiple uses, then we won't need to do an extra
20074 // load. The values are likely around in registers for other users.
20075 if (!TV->hasOneUse() && !FV->hasOneUse())
20076 return SDValue();
20078 Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()),
20079 const_cast<ConstantFP*>(TV->getConstantFPValue()) };
20080 Type *FPTy = Elts[0]->getType();
20081 const DataLayout &TD = DAG.getDataLayout();
20083 // Create a ConstantArray of the two constants.
20084 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
20085 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()),
20086 TD.getPrefTypeAlignment(FPTy));
20087 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
20089 // Get offsets to the 0 and 1 elements of the array, so we can select between
20090 // them.
20091 SDValue Zero = DAG.getIntPtrConstant(0, DL);
20092 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
20093 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV));
20094 SDValue Cond =
20095 DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC);
20096 AddToWorklist(Cond.getNode());
20097 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero);
20098 AddToWorklist(CstOffset.getNode());
20099 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset);
20100 AddToWorklist(CPIdx.getNode());
20101 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
20102 MachinePointerInfo::getConstantPool(
20103 DAG.getMachineFunction()), Alignment);
20106 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3
20107 /// where 'cond' is the comparison specified by CC.
20108 SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
20109 SDValue N2, SDValue N3, ISD::CondCode CC,
20110 bool NotExtCompare) {
20111 // (x ? y : y) -> y.
20112 if (N2 == N3) return N2;
20114 EVT CmpOpVT = N0.getValueType();
20115 EVT CmpResVT = getSetCCResultType(CmpOpVT);
20116 EVT VT = N2.getValueType();
20117 auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
20118 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
20119 auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
20121 // Determine if the condition we're dealing with is constant.
20122 if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) {
20123 AddToWorklist(SCC.getNode());
20124 if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) {
20125 // fold select_cc true, x, y -> x
20126 // fold select_cc false, x, y -> y
20127 return !(SCCC->isNullValue()) ? N2 : N3;
20131 if (SDValue V =
20132 convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC))
20133 return V;
20135 if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC))
20136 return V;
20138 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
20139 // where y is has a single bit set.
20140 // A plaintext description would be, we can turn the SELECT_CC into an AND
20141 // when the condition can be materialized as an all-ones register. Any
20142 // single bit-test can be materialized as an all-ones register with
20143 // shift-left and shift-right-arith.
20144 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
20145 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) {
20146 SDValue AndLHS = N0->getOperand(0);
20147 auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
20148 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
20149 // Shift the tested bit over the sign bit.
20150 const APInt &AndMask = ConstAndRHS->getAPIntValue();
20151 SDValue ShlAmt =
20152 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS),
20153 getShiftAmountTy(AndLHS.getValueType()));
20154 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
20156 // Now arithmetic right shift it all the way over, so the result is either
20157 // all-ones, or zero.
20158 SDValue ShrAmt =
20159 DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl),
20160 getShiftAmountTy(Shl.getValueType()));
20161 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
20163 return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
20167 // fold select C, 16, 0 -> shl C, 4
20168 bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2();
20169 bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2();
20171 if ((Fold || Swap) &&
20172 TLI.getBooleanContents(CmpOpVT) ==
20173 TargetLowering::ZeroOrOneBooleanContent &&
20174 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) {
20176 if (Swap) {
20177 CC = ISD::getSetCCInverse(CC, CmpOpVT.isInteger());
20178 std::swap(N2C, N3C);
20181 // If the caller doesn't want us to simplify this into a zext of a compare,
20182 // don't do it.
20183 if (NotExtCompare && N2C->isOne())
20184 return SDValue();
20186 SDValue Temp, SCC;
20187 // zext (setcc n0, n1)
20188 if (LegalTypes) {
20189 SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC);
20190 if (VT.bitsLT(SCC.getValueType()))
20191 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT);
20192 else
20193 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
20194 } else {
20195 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
20196 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
20199 AddToWorklist(SCC.getNode());
20200 AddToWorklist(Temp.getNode());
20202 if (N2C->isOne())
20203 return Temp;
20205 // shl setcc result by log2 n2c
20206 return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
20207 DAG.getConstant(N2C->getAPIntValue().logBase2(),
20208 SDLoc(Temp),
20209 getShiftAmountTy(Temp.getValueType())));
20212 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
20213 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
20214 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
20215 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
20216 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
20217 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
20218 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
20219 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
20220 if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
20221 SDValue ValueOnZero = N2;
20222 SDValue Count = N3;
20223 // If the condition is NE instead of E, swap the operands.
20224 if (CC == ISD::SETNE)
20225 std::swap(ValueOnZero, Count);
20226 // Check if the value on zero is a constant equal to the bits in the type.
20227 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) {
20228 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) {
20229 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is
20230 // legal, combine to just cttz.
20231 if ((Count.getOpcode() == ISD::CTTZ ||
20232 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) &&
20233 N0 == Count.getOperand(0) &&
20234 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT)))
20235 return DAG.getNode(ISD::CTTZ, DL, VT, N0);
20236 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
20237 // legal, combine to just ctlz.
20238 if ((Count.getOpcode() == ISD::CTLZ ||
20239 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) &&
20240 N0 == Count.getOperand(0) &&
20241 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT)))
20242 return DAG.getNode(ISD::CTLZ, DL, VT, N0);
20247 return SDValue();
20250 /// This is a stub for TargetLowering::SimplifySetCC.
20251 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
20252 ISD::CondCode Cond, const SDLoc &DL,
20253 bool foldBooleans) {
20254 TargetLowering::DAGCombinerInfo
20255 DagCombineInfo(DAG, Level, false, this);
20256 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
20259 /// Given an ISD::SDIV node expressing a divide by constant, return
20260 /// a DAG expression to select that will generate the same value by multiplying
20261 /// by a magic number.
20262 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
20263 SDValue DAGCombiner::BuildSDIV(SDNode *N) {
20264 // when optimising for minimum size, we don't want to expand a div to a mul
20265 // and a shift.
20266 if (DAG.getMachineFunction().getFunction().hasMinSize())
20267 return SDValue();
20269 SmallVector<SDNode *, 8> Built;
20270 if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) {
20271 for (SDNode *N : Built)
20272 AddToWorklist(N);
20273 return S;
20276 return SDValue();
20279 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
20280 /// DAG expression that will generate the same value by right shifting.
20281 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
20282 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
20283 if (!C)
20284 return SDValue();
20286 // Avoid division by zero.
20287 if (C->isNullValue())
20288 return SDValue();
20290 SmallVector<SDNode *, 8> Built;
20291 if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) {
20292 for (SDNode *N : Built)
20293 AddToWorklist(N);
20294 return S;
20297 return SDValue();
20300 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG
20301 /// expression that will generate the same value by multiplying by a magic
20302 /// number.
20303 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
20304 SDValue DAGCombiner::BuildUDIV(SDNode *N) {
20305 // when optimising for minimum size, we don't want to expand a div to a mul
20306 // and a shift.
20307 if (DAG.getMachineFunction().getFunction().hasMinSize())
20308 return SDValue();
20310 SmallVector<SDNode *, 8> Built;
20311 if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) {
20312 for (SDNode *N : Built)
20313 AddToWorklist(N);
20314 return S;
20317 return SDValue();
20320 /// Determines the LogBase2 value for a non-null input value using the
20321 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
20322 SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) {
20323 EVT VT = V.getValueType();
20324 unsigned EltBits = VT.getScalarSizeInBits();
20325 SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V);
20326 SDValue Base = DAG.getConstant(EltBits - 1, DL, VT);
20327 SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz);
20328 return LogBase2;
20331 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
20332 /// For the reciprocal, we need to find the zero of the function:
20333 /// F(X) = A X - 1 [which has a zero at X = 1/A]
20334 /// =>
20335 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
20336 /// does not require additional intermediate precision]
20337 /// For the last iteration, put numerator N into it to gain more precision:
20338 /// Result = N X_i + X_i (N - N A X_i)
20339 SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op,
20340 SDNodeFlags Flags) {
20341 if (Level >= AfterLegalizeDAG)
20342 return SDValue();
20344 // TODO: Handle half and/or extended types?
20345 EVT VT = Op.getValueType();
20346 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
20347 return SDValue();
20349 // If estimates are explicitly disabled for this function, we're done.
20350 MachineFunction &MF = DAG.getMachineFunction();
20351 int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF);
20352 if (Enabled == TLI.ReciprocalEstimate::Disabled)
20353 return SDValue();
20355 // Estimates may be explicitly enabled for this type with a custom number of
20356 // refinement steps.
20357 int Iterations = TLI.getDivRefinementSteps(VT, MF);
20358 if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) {
20359 AddToWorklist(Est.getNode());
20361 SDLoc DL(Op);
20362 if (Iterations) {
20363 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
20365 // Newton iterations: Est = Est + Est (N - Arg * Est)
20366 // If this is the last iteration, also multiply by the numerator.
20367 for (int i = 0; i < Iterations; ++i) {
20368 SDValue MulEst = Est;
20370 if (i == Iterations - 1) {
20371 MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags);
20372 AddToWorklist(MulEst.getNode());
20375 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags);
20376 AddToWorklist(NewEst.getNode());
20378 NewEst = DAG.getNode(ISD::FSUB, DL, VT,
20379 (i == Iterations - 1 ? N : FPOne), NewEst, Flags);
20380 AddToWorklist(NewEst.getNode());
20382 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
20383 AddToWorklist(NewEst.getNode());
20385 Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags);
20386 AddToWorklist(Est.getNode());
20388 } else {
20389 // If no iterations are available, multiply with N.
20390 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags);
20391 AddToWorklist(Est.getNode());
20394 return Est;
20397 return SDValue();
20400 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
20401 /// For the reciprocal sqrt, we need to find the zero of the function:
20402 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
20403 /// =>
20404 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
20405 /// As a result, we precompute A/2 prior to the iteration loop.
20406 SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est,
20407 unsigned Iterations,
20408 SDNodeFlags Flags, bool Reciprocal) {
20409 EVT VT = Arg.getValueType();
20410 SDLoc DL(Arg);
20411 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT);
20413 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
20414 // this entire sequence requires only one FP constant.
20415 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags);
20416 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags);
20418 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
20419 for (unsigned i = 0; i < Iterations; ++i) {
20420 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
20421 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags);
20422 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags);
20423 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
20426 // If non-reciprocal square root is requested, multiply the result by Arg.
20427 if (!Reciprocal)
20428 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags);
20430 return Est;
20433 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
20434 /// For the reciprocal sqrt, we need to find the zero of the function:
20435 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
20436 /// =>
20437 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
20438 SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est,
20439 unsigned Iterations,
20440 SDNodeFlags Flags, bool Reciprocal) {
20441 EVT VT = Arg.getValueType();
20442 SDLoc DL(Arg);
20443 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT);
20444 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT);
20446 // This routine must enter the loop below to work correctly
20447 // when (Reciprocal == false).
20448 assert(Iterations > 0);
20450 // Newton iterations for reciprocal square root:
20451 // E = (E * -0.5) * ((A * E) * E + -3.0)
20452 for (unsigned i = 0; i < Iterations; ++i) {
20453 SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags);
20454 SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags);
20455 SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags);
20457 // When calculating a square root at the last iteration build:
20458 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
20459 // (notice a common subexpression)
20460 SDValue LHS;
20461 if (Reciprocal || (i + 1) < Iterations) {
20462 // RSQRT: LHS = (E * -0.5)
20463 LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags);
20464 } else {
20465 // SQRT: LHS = (A * E) * -0.5
20466 LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags);
20469 Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags);
20472 return Est;
20475 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
20476 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
20477 /// Op can be zero.
20478 SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags,
20479 bool Reciprocal) {
20480 if (Level >= AfterLegalizeDAG)
20481 return SDValue();
20483 // TODO: Handle half and/or extended types?
20484 EVT VT = Op.getValueType();
20485 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
20486 return SDValue();
20488 // If estimates are explicitly disabled for this function, we're done.
20489 MachineFunction &MF = DAG.getMachineFunction();
20490 int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF);
20491 if (Enabled == TLI.ReciprocalEstimate::Disabled)
20492 return SDValue();
20494 // Estimates may be explicitly enabled for this type with a custom number of
20495 // refinement steps.
20496 int Iterations = TLI.getSqrtRefinementSteps(VT, MF);
20498 bool UseOneConstNR = false;
20499 if (SDValue Est =
20500 TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR,
20501 Reciprocal)) {
20502 AddToWorklist(Est.getNode());
20504 if (Iterations) {
20505 Est = UseOneConstNR
20506 ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal)
20507 : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal);
20509 if (!Reciprocal) {
20510 // The estimate is now completely wrong if the input was exactly 0.0 or
20511 // possibly a denormal. Force the answer to 0.0 for those cases.
20512 SDLoc DL(Op);
20513 EVT CCVT = getSetCCResultType(VT);
20514 ISD::NodeType SelOpcode = VT.isVector() ? ISD::VSELECT : ISD::SELECT;
20515 const Function &F = DAG.getMachineFunction().getFunction();
20516 Attribute Denorms = F.getFnAttribute("denormal-fp-math");
20517 if (Denorms.getValueAsString().equals("ieee")) {
20518 // fabs(X) < SmallestNormal ? 0.0 : Est
20519 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
20520 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
20521 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
20522 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
20523 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
20524 SDValue IsDenorm = DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
20525 Est = DAG.getNode(SelOpcode, DL, VT, IsDenorm, FPZero, Est);
20526 } else {
20527 // X == 0.0 ? 0.0 : Est
20528 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
20529 SDValue IsZero = DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
20530 Est = DAG.getNode(SelOpcode, DL, VT, IsZero, FPZero, Est);
20534 return Est;
20537 return SDValue();
20540 SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) {
20541 return buildSqrtEstimateImpl(Op, Flags, true);
20544 SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) {
20545 return buildSqrtEstimateImpl(Op, Flags, false);
20548 /// Return true if there is any possibility that the two addresses overlap.
20549 bool DAGCombiner::isAlias(SDNode *Op0, SDNode *Op1) const {
20551 struct MemUseCharacteristics {
20552 bool IsVolatile;
20553 bool IsAtomic;
20554 SDValue BasePtr;
20555 int64_t Offset;
20556 Optional<int64_t> NumBytes;
20557 MachineMemOperand *MMO;
20560 auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics {
20561 if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) {
20562 int64_t Offset = 0;
20563 if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset()))
20564 Offset = (LSN->getAddressingMode() == ISD::PRE_INC)
20565 ? C->getSExtValue()
20566 : (LSN->getAddressingMode() == ISD::PRE_DEC)
20567 ? -1 * C->getSExtValue()
20568 : 0;
20569 return {LSN->isVolatile(), LSN->isAtomic(), LSN->getBasePtr(),
20570 Offset /*base offset*/,
20571 Optional<int64_t>(LSN->getMemoryVT().getStoreSize()),
20572 LSN->getMemOperand()};
20574 if (const auto *LN = cast<LifetimeSDNode>(N))
20575 return {false /*isVolatile*/, /*isAtomic*/ false, LN->getOperand(1),
20576 (LN->hasOffset()) ? LN->getOffset() : 0,
20577 (LN->hasOffset()) ? Optional<int64_t>(LN->getSize())
20578 : Optional<int64_t>(),
20579 (MachineMemOperand *)nullptr};
20580 // Default.
20581 return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(),
20582 (int64_t)0 /*offset*/,
20583 Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr};
20586 MemUseCharacteristics MUC0 = getCharacteristics(Op0),
20587 MUC1 = getCharacteristics(Op1);
20589 // If they are to the same address, then they must be aliases.
20590 if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr &&
20591 MUC0.Offset == MUC1.Offset)
20592 return true;
20594 // If they are both volatile then they cannot be reordered.
20595 if (MUC0.IsVolatile && MUC1.IsVolatile)
20596 return true;
20598 // Be conservative about atomics for the moment
20599 // TODO: This is way overconservative for unordered atomics (see D66309)
20600 if (MUC0.IsAtomic && MUC1.IsAtomic)
20601 return true;
20603 if (MUC0.MMO && MUC1.MMO) {
20604 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
20605 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
20606 return false;
20609 // Try to prove that there is aliasing, or that there is no aliasing. Either
20610 // way, we can return now. If nothing can be proved, proceed with more tests.
20611 bool IsAlias;
20612 if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes,
20613 DAG, IsAlias))
20614 return IsAlias;
20616 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if
20617 // either are not known.
20618 if (!MUC0.MMO || !MUC1.MMO)
20619 return true;
20621 // If one operation reads from invariant memory, and the other may store, they
20622 // cannot alias. These should really be checking the equivalent of mayWrite,
20623 // but it only matters for memory nodes other than load /store.
20624 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
20625 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
20626 return false;
20628 // If we know required SrcValue1 and SrcValue2 have relatively large
20629 // alignment compared to the size and offset of the access, we may be able
20630 // to prove they do not alias. This check is conservative for now to catch
20631 // cases created by splitting vector types.
20632 int64_t SrcValOffset0 = MUC0.MMO->getOffset();
20633 int64_t SrcValOffset1 = MUC1.MMO->getOffset();
20634 unsigned OrigAlignment0 = MUC0.MMO->getBaseAlignment();
20635 unsigned OrigAlignment1 = MUC1.MMO->getBaseAlignment();
20636 if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 &&
20637 MUC0.NumBytes.hasValue() && MUC1.NumBytes.hasValue() &&
20638 *MUC0.NumBytes == *MUC1.NumBytes && OrigAlignment0 > *MUC0.NumBytes) {
20639 int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0;
20640 int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1;
20642 // There is no overlap between these relatively aligned accesses of
20643 // similar size. Return no alias.
20644 if ((OffAlign0 + *MUC0.NumBytes) <= OffAlign1 ||
20645 (OffAlign1 + *MUC1.NumBytes) <= OffAlign0)
20646 return false;
20649 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0
20650 ? CombinerGlobalAA
20651 : DAG.getSubtarget().useAA();
20652 #ifndef NDEBUG
20653 if (CombinerAAOnlyFunc.getNumOccurrences() &&
20654 CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
20655 UseAA = false;
20656 #endif
20658 if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue()) {
20659 // Use alias analysis information.
20660 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
20661 int64_t Overlap0 = *MUC0.NumBytes + SrcValOffset0 - MinOffset;
20662 int64_t Overlap1 = *MUC1.NumBytes + SrcValOffset1 - MinOffset;
20663 AliasResult AAResult = AA->alias(
20664 MemoryLocation(MUC0.MMO->getValue(), Overlap0,
20665 UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()),
20666 MemoryLocation(MUC1.MMO->getValue(), Overlap1,
20667 UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes()));
20668 if (AAResult == NoAlias)
20669 return false;
20672 // Otherwise we have to assume they alias.
20673 return true;
20676 /// Walk up chain skipping non-aliasing memory nodes,
20677 /// looking for aliasing nodes and adding them to the Aliases vector.
20678 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
20679 SmallVectorImpl<SDValue> &Aliases) {
20680 SmallVector<SDValue, 8> Chains; // List of chains to visit.
20681 SmallPtrSet<SDNode *, 16> Visited; // Visited node set.
20683 // Get alias information for node.
20684 // TODO: relax aliasing for unordered atomics (see D66309)
20685 const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple();
20687 // Starting off.
20688 Chains.push_back(OriginalChain);
20689 unsigned Depth = 0;
20691 // Attempt to improve chain by a single step
20692 std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool {
20693 switch (C.getOpcode()) {
20694 case ISD::EntryToken:
20695 // No need to mark EntryToken.
20696 C = SDValue();
20697 return true;
20698 case ISD::LOAD:
20699 case ISD::STORE: {
20700 // Get alias information for C.
20701 // TODO: Relax aliasing for unordered atomics (see D66309)
20702 bool IsOpLoad = isa<LoadSDNode>(C.getNode()) &&
20703 cast<LSBaseSDNode>(C.getNode())->isSimple();
20704 if ((IsLoad && IsOpLoad) || !isAlias(N, C.getNode())) {
20705 // Look further up the chain.
20706 C = C.getOperand(0);
20707 return true;
20709 // Alias, so stop here.
20710 return false;
20713 case ISD::CopyFromReg:
20714 // Always forward past past CopyFromReg.
20715 C = C.getOperand(0);
20716 return true;
20718 case ISD::LIFETIME_START:
20719 case ISD::LIFETIME_END: {
20720 // We can forward past any lifetime start/end that can be proven not to
20721 // alias the memory access.
20722 if (!isAlias(N, C.getNode())) {
20723 // Look further up the chain.
20724 C = C.getOperand(0);
20725 return true;
20727 return false;
20729 default:
20730 return false;
20734 // Look at each chain and determine if it is an alias. If so, add it to the
20735 // aliases list. If not, then continue up the chain looking for the next
20736 // candidate.
20737 while (!Chains.empty()) {
20738 SDValue Chain = Chains.pop_back_val();
20740 // Don't bother if we've seen Chain before.
20741 if (!Visited.insert(Chain.getNode()).second)
20742 continue;
20744 // For TokenFactor nodes, look at each operand and only continue up the
20745 // chain until we reach the depth limit.
20747 // FIXME: The depth check could be made to return the last non-aliasing
20748 // chain we found before we hit a tokenfactor rather than the original
20749 // chain.
20750 if (Depth > TLI.getGatherAllAliasesMaxDepth()) {
20751 Aliases.clear();
20752 Aliases.push_back(OriginalChain);
20753 return;
20756 if (Chain.getOpcode() == ISD::TokenFactor) {
20757 // We have to check each of the operands of the token factor for "small"
20758 // token factors, so we queue them up. Adding the operands to the queue
20759 // (stack) in reverse order maintains the original order and increases the
20760 // likelihood that getNode will find a matching token factor (CSE.)
20761 if (Chain.getNumOperands() > 16) {
20762 Aliases.push_back(Chain);
20763 continue;
20765 for (unsigned n = Chain.getNumOperands(); n;)
20766 Chains.push_back(Chain.getOperand(--n));
20767 ++Depth;
20768 continue;
20770 // Everything else
20771 if (ImproveChain(Chain)) {
20772 // Updated Chain Found, Consider new chain if one exists.
20773 if (Chain.getNode())
20774 Chains.push_back(Chain);
20775 ++Depth;
20776 continue;
20778 // No Improved Chain Possible, treat as Alias.
20779 Aliases.push_back(Chain);
20783 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
20784 /// (aliasing node.)
20785 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
20786 if (OptLevel == CodeGenOpt::None)
20787 return OldChain;
20789 // Ops for replacing token factor.
20790 SmallVector<SDValue, 8> Aliases;
20792 // Accumulate all the aliases to this node.
20793 GatherAllAliases(N, OldChain, Aliases);
20795 // If no operands then chain to entry token.
20796 if (Aliases.size() == 0)
20797 return DAG.getEntryNode();
20799 // If a single operand then chain to it. We don't need to revisit it.
20800 if (Aliases.size() == 1)
20801 return Aliases[0];
20803 // Construct a custom tailored token factor.
20804 return DAG.getTokenFactor(SDLoc(N), Aliases);
20807 namespace {
20808 // TODO: Replace with with std::monostate when we move to C++17.
20809 struct UnitT { } Unit;
20810 bool operator==(const UnitT &, const UnitT &) { return true; }
20811 bool operator!=(const UnitT &, const UnitT &) { return false; }
20812 } // namespace
20814 // This function tries to collect a bunch of potentially interesting
20815 // nodes to improve the chains of, all at once. This might seem
20816 // redundant, as this function gets called when visiting every store
20817 // node, so why not let the work be done on each store as it's visited?
20819 // I believe this is mainly important because MergeConsecutiveStores
20820 // is unable to deal with merging stores of different sizes, so unless
20821 // we improve the chains of all the potential candidates up-front
20822 // before running MergeConsecutiveStores, it might only see some of
20823 // the nodes that will eventually be candidates, and then not be able
20824 // to go from a partially-merged state to the desired final
20825 // fully-merged state.
20827 bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) {
20828 SmallVector<StoreSDNode *, 8> ChainedStores;
20829 StoreSDNode *STChain = St;
20830 // Intervals records which offsets from BaseIndex have been covered. In
20831 // the common case, every store writes to the immediately previous address
20832 // space and thus merged with the previous interval at insertion time.
20834 using IMap =
20835 llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>;
20836 IMap::Allocator A;
20837 IMap Intervals(A);
20839 // This holds the base pointer, index, and the offset in bytes from the base
20840 // pointer.
20841 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
20843 // We must have a base and an offset.
20844 if (!BasePtr.getBase().getNode())
20845 return false;
20847 // Do not handle stores to undef base pointers.
20848 if (BasePtr.getBase().isUndef())
20849 return false;
20851 // Add ST's interval.
20852 Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit);
20854 while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) {
20855 // If the chain has more than one use, then we can't reorder the mem ops.
20856 if (!SDValue(Chain, 0)->hasOneUse())
20857 break;
20858 // TODO: Relax for unordered atomics (see D66309)
20859 if (!Chain->isSimple() || Chain->isIndexed())
20860 break;
20862 // Find the base pointer and offset for this memory node.
20863 const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG);
20864 // Check that the base pointer is the same as the original one.
20865 int64_t Offset;
20866 if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset))
20867 break;
20868 int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8;
20869 // Make sure we don't overlap with other intervals by checking the ones to
20870 // the left or right before inserting.
20871 auto I = Intervals.find(Offset);
20872 // If there's a next interval, we should end before it.
20873 if (I != Intervals.end() && I.start() < (Offset + Length))
20874 break;
20875 // If there's a previous interval, we should start after it.
20876 if (I != Intervals.begin() && (--I).stop() <= Offset)
20877 break;
20878 Intervals.insert(Offset, Offset + Length, Unit);
20880 ChainedStores.push_back(Chain);
20881 STChain = Chain;
20884 // If we didn't find a chained store, exit.
20885 if (ChainedStores.size() == 0)
20886 return false;
20888 // Improve all chained stores (St and ChainedStores members) starting from
20889 // where the store chain ended and return single TokenFactor.
20890 SDValue NewChain = STChain->getChain();
20891 SmallVector<SDValue, 8> TFOps;
20892 for (unsigned I = ChainedStores.size(); I;) {
20893 StoreSDNode *S = ChainedStores[--I];
20894 SDValue BetterChain = FindBetterChain(S, NewChain);
20895 S = cast<StoreSDNode>(DAG.UpdateNodeOperands(
20896 S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3)));
20897 TFOps.push_back(SDValue(S, 0));
20898 ChainedStores[I] = S;
20901 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo.
20902 SDValue BetterChain = FindBetterChain(St, NewChain);
20903 SDValue NewST;
20904 if (St->isTruncatingStore())
20905 NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(),
20906 St->getBasePtr(), St->getMemoryVT(),
20907 St->getMemOperand());
20908 else
20909 NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(),
20910 St->getBasePtr(), St->getMemOperand());
20912 TFOps.push_back(NewST);
20914 // If we improved every element of TFOps, then we've lost the dependence on
20915 // NewChain to successors of St and we need to add it back to TFOps. Do so at
20916 // the beginning to keep relative order consistent with FindBetterChains.
20917 auto hasImprovedChain = [&](SDValue ST) -> bool {
20918 return ST->getOperand(0) != NewChain;
20920 bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain);
20921 if (AddNewChain)
20922 TFOps.insert(TFOps.begin(), NewChain);
20924 SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps);
20925 CombineTo(St, TF);
20927 // Add TF and its operands to the worklist.
20928 AddToWorklist(TF.getNode());
20929 for (const SDValue &Op : TF->ops())
20930 AddToWorklist(Op.getNode());
20931 AddToWorklist(STChain);
20932 return true;
20935 bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) {
20936 if (OptLevel == CodeGenOpt::None)
20937 return false;
20939 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
20941 // We must have a base and an offset.
20942 if (!BasePtr.getBase().getNode())
20943 return false;
20945 // Do not handle stores to undef base pointers.
20946 if (BasePtr.getBase().isUndef())
20947 return false;
20949 // Directly improve a chain of disjoint stores starting at St.
20950 if (parallelizeChainedStores(St))
20951 return true;
20953 // Improve St's Chain..
20954 SDValue BetterChain = FindBetterChain(St, St->getChain());
20955 if (St->getChain() != BetterChain) {
20956 replaceStoreChain(St, BetterChain);
20957 return true;
20959 return false;
20962 /// This is the entry point for the file.
20963 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA,
20964 CodeGenOpt::Level OptLevel) {
20965 /// This is the main entry point to this class.
20966 DAGCombiner(*this, AA, OptLevel).Run(Level);