[SimplifyCFG] FoldTwoEntryPHINode(): consider *total* speculation cost, not per-BB...
[llvm-complete.git] / lib / CodeGen / SelectionDAG / SelectionDAGISel.cpp
blob10d98616f63271082900355a311995bc96c4e6ec
1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAGISel class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/CodeGen/FastISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachinePassRegistry.h"
47 #include "llvm/CodeGen/MachineRegisterInfo.h"
48 #include "llvm/CodeGen/SchedulerRegistry.h"
49 #include "llvm/CodeGen/SelectionDAG.h"
50 #include "llvm/CodeGen/SelectionDAGNodes.h"
51 #include "llvm/CodeGen/StackProtector.h"
52 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Constants.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/DebugInfoMetadata.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DiagnosticInfo.h"
64 #include "llvm/IR/Dominators.h"
65 #include "llvm/IR/Function.h"
66 #include "llvm/IR/InlineAsm.h"
67 #include "llvm/IR/InstIterator.h"
68 #include "llvm/IR/InstrTypes.h"
69 #include "llvm/IR/Instruction.h"
70 #include "llvm/IR/Instructions.h"
71 #include "llvm/IR/IntrinsicInst.h"
72 #include "llvm/IR/Intrinsics.h"
73 #include "llvm/IR/Metadata.h"
74 #include "llvm/IR/Type.h"
75 #include "llvm/IR/User.h"
76 #include "llvm/IR/Value.h"
77 #include "llvm/MC/MCInstrDesc.h"
78 #include "llvm/MC/MCRegisterInfo.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/KnownBits.h"
88 #include "llvm/Support/MachineValueType.h"
89 #include "llvm/Support/Timer.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include "llvm/Target/TargetIntrinsicInfo.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
95 #include <algorithm>
96 #include <cassert>
97 #include <cstdint>
98 #include <iterator>
99 #include <limits>
100 #include <memory>
101 #include <string>
102 #include <utility>
103 #include <vector>
105 using namespace llvm;
107 #define DEBUG_TYPE "isel"
109 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
110 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
111 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
112 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
113 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
114 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
115 STATISTIC(NumFastIselFailLowerArguments,
116 "Number of entry blocks where fast isel failed to lower arguments");
118 static cl::opt<int> EnableFastISelAbort(
119 "fast-isel-abort", cl::Hidden,
120 cl::desc("Enable abort calls when \"fast\" instruction selection "
121 "fails to lower an instruction: 0 disable the abort, 1 will "
122 "abort but for args, calls and terminators, 2 will also "
123 "abort for argument lowering, and 3 will never fallback "
124 "to SelectionDAG."));
126 static cl::opt<bool> EnableFastISelFallbackReport(
127 "fast-isel-report-on-fallback", cl::Hidden,
128 cl::desc("Emit a diagnostic when \"fast\" instruction selection "
129 "falls back to SelectionDAG."));
131 static cl::opt<bool>
132 UseMBPI("use-mbpi",
133 cl::desc("use Machine Branch Probability Info"),
134 cl::init(true), cl::Hidden);
136 #ifndef NDEBUG
137 static cl::opt<std::string>
138 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
139 cl::desc("Only display the basic block whose name "
140 "matches this for all view-*-dags options"));
141 static cl::opt<bool>
142 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
143 cl::desc("Pop up a window to show dags before the first "
144 "dag combine pass"));
145 static cl::opt<bool>
146 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
147 cl::desc("Pop up a window to show dags before legalize types"));
148 static cl::opt<bool>
149 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
150 cl::desc("Pop up a window to show dags before legalize"));
151 static cl::opt<bool>
152 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
153 cl::desc("Pop up a window to show dags before the second "
154 "dag combine pass"));
155 static cl::opt<bool>
156 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
157 cl::desc("Pop up a window to show dags before the post legalize types"
158 " dag combine pass"));
159 static cl::opt<bool>
160 ViewISelDAGs("view-isel-dags", cl::Hidden,
161 cl::desc("Pop up a window to show isel dags as they are selected"));
162 static cl::opt<bool>
163 ViewSchedDAGs("view-sched-dags", cl::Hidden,
164 cl::desc("Pop up a window to show sched dags as they are processed"));
165 static cl::opt<bool>
166 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
167 cl::desc("Pop up a window to show SUnit dags after they are processed"));
168 #else
169 static const bool ViewDAGCombine1 = false,
170 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
171 ViewDAGCombine2 = false,
172 ViewDAGCombineLT = false,
173 ViewISelDAGs = false, ViewSchedDAGs = false,
174 ViewSUnitDAGs = false;
175 #endif
177 //===---------------------------------------------------------------------===//
179 /// RegisterScheduler class - Track the registration of instruction schedulers.
181 //===---------------------------------------------------------------------===//
182 MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
183 RegisterScheduler::Registry;
185 //===---------------------------------------------------------------------===//
187 /// ISHeuristic command line option for instruction schedulers.
189 //===---------------------------------------------------------------------===//
190 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
191 RegisterPassParser<RegisterScheduler>>
192 ISHeuristic("pre-RA-sched",
193 cl::init(&createDefaultScheduler), cl::Hidden,
194 cl::desc("Instruction schedulers available (before register"
195 " allocation):"));
197 static RegisterScheduler
198 defaultListDAGScheduler("default", "Best scheduler for the target",
199 createDefaultScheduler);
201 namespace llvm {
203 //===--------------------------------------------------------------------===//
204 /// This class is used by SelectionDAGISel to temporarily override
205 /// the optimization level on a per-function basis.
206 class OptLevelChanger {
207 SelectionDAGISel &IS;
208 CodeGenOpt::Level SavedOptLevel;
209 bool SavedFastISel;
211 public:
212 OptLevelChanger(SelectionDAGISel &ISel,
213 CodeGenOpt::Level NewOptLevel) : IS(ISel) {
214 SavedOptLevel = IS.OptLevel;
215 if (NewOptLevel == SavedOptLevel)
216 return;
217 IS.OptLevel = NewOptLevel;
218 IS.TM.setOptLevel(NewOptLevel);
219 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
220 << IS.MF->getFunction().getName() << "\n");
221 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
222 << NewOptLevel << "\n");
223 SavedFastISel = IS.TM.Options.EnableFastISel;
224 if (NewOptLevel == CodeGenOpt::None) {
225 IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
226 LLVM_DEBUG(
227 dbgs() << "\tFastISel is "
228 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
229 << "\n");
233 ~OptLevelChanger() {
234 if (IS.OptLevel == SavedOptLevel)
235 return;
236 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
237 << IS.MF->getFunction().getName() << "\n");
238 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
239 << SavedOptLevel << "\n");
240 IS.OptLevel = SavedOptLevel;
241 IS.TM.setOptLevel(SavedOptLevel);
242 IS.TM.setFastISel(SavedFastISel);
246 //===--------------------------------------------------------------------===//
247 /// createDefaultScheduler - This creates an instruction scheduler appropriate
248 /// for the target.
249 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
250 CodeGenOpt::Level OptLevel) {
251 const TargetLowering *TLI = IS->TLI;
252 const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
254 // Try first to see if the Target has its own way of selecting a scheduler
255 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
256 return SchedulerCtor(IS, OptLevel);
259 if (OptLevel == CodeGenOpt::None ||
260 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
261 TLI->getSchedulingPreference() == Sched::Source)
262 return createSourceListDAGScheduler(IS, OptLevel);
263 if (TLI->getSchedulingPreference() == Sched::RegPressure)
264 return createBURRListDAGScheduler(IS, OptLevel);
265 if (TLI->getSchedulingPreference() == Sched::Hybrid)
266 return createHybridListDAGScheduler(IS, OptLevel);
267 if (TLI->getSchedulingPreference() == Sched::VLIW)
268 return createVLIWDAGScheduler(IS, OptLevel);
269 assert(TLI->getSchedulingPreference() == Sched::ILP &&
270 "Unknown sched type!");
271 return createILPListDAGScheduler(IS, OptLevel);
274 } // end namespace llvm
276 // EmitInstrWithCustomInserter - This method should be implemented by targets
277 // that mark instructions with the 'usesCustomInserter' flag. These
278 // instructions are special in various ways, which require special support to
279 // insert. The specified MachineInstr is created but not inserted into any
280 // basic blocks, and this method is called to expand it into a sequence of
281 // instructions, potentially also creating new basic blocks and control flow.
282 // When new basic blocks are inserted and the edges from MBB to its successors
283 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
284 // DenseMap.
285 MachineBasicBlock *
286 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
287 MachineBasicBlock *MBB) const {
288 #ifndef NDEBUG
289 dbgs() << "If a target marks an instruction with "
290 "'usesCustomInserter', it must implement "
291 "TargetLowering::EmitInstrWithCustomInserter!";
292 #endif
293 llvm_unreachable(nullptr);
296 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
297 SDNode *Node) const {
298 assert(!MI.hasPostISelHook() &&
299 "If a target marks an instruction with 'hasPostISelHook', "
300 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
303 //===----------------------------------------------------------------------===//
304 // SelectionDAGISel code
305 //===----------------------------------------------------------------------===//
307 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
308 CodeGenOpt::Level OL) :
309 MachineFunctionPass(ID), TM(tm),
310 FuncInfo(new FunctionLoweringInfo()),
311 SwiftError(new SwiftErrorValueTracking()),
312 CurDAG(new SelectionDAG(tm, OL)),
313 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, *SwiftError, OL)),
314 AA(), GFI(),
315 OptLevel(OL),
316 DAGSize(0) {
317 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
318 initializeBranchProbabilityInfoWrapperPassPass(
319 *PassRegistry::getPassRegistry());
320 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
321 initializeTargetLibraryInfoWrapperPassPass(
322 *PassRegistry::getPassRegistry());
325 SelectionDAGISel::~SelectionDAGISel() {
326 delete SDB;
327 delete CurDAG;
328 delete FuncInfo;
329 delete SwiftError;
332 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
333 if (OptLevel != CodeGenOpt::None)
334 AU.addRequired<AAResultsWrapperPass>();
335 AU.addRequired<GCModuleInfo>();
336 AU.addRequired<StackProtector>();
337 AU.addPreserved<GCModuleInfo>();
338 AU.addRequired<TargetLibraryInfoWrapperPass>();
339 AU.addRequired<TargetTransformInfoWrapperPass>();
340 if (UseMBPI && OptLevel != CodeGenOpt::None)
341 AU.addRequired<BranchProbabilityInfoWrapperPass>();
342 MachineFunctionPass::getAnalysisUsage(AU);
345 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
346 /// may trap on it. In this case we have to split the edge so that the path
347 /// through the predecessor block that doesn't go to the phi block doesn't
348 /// execute the possibly trapping instruction. If available, we pass domtree
349 /// and loop info to be updated when we split critical edges. This is because
350 /// SelectionDAGISel preserves these analyses.
351 /// This is required for correctness, so it must be done at -O0.
353 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
354 LoopInfo *LI) {
355 // Loop for blocks with phi nodes.
356 for (BasicBlock &BB : Fn) {
357 PHINode *PN = dyn_cast<PHINode>(BB.begin());
358 if (!PN) continue;
360 ReprocessBlock:
361 // For each block with a PHI node, check to see if any of the input values
362 // are potentially trapping constant expressions. Constant expressions are
363 // the only potentially trapping value that can occur as the argument to a
364 // PHI.
365 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
366 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
367 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
368 if (!CE || !CE->canTrap()) continue;
370 // The only case we have to worry about is when the edge is critical.
371 // Since this block has a PHI Node, we assume it has multiple input
372 // edges: check to see if the pred has multiple successors.
373 BasicBlock *Pred = PN->getIncomingBlock(i);
374 if (Pred->getTerminator()->getNumSuccessors() == 1)
375 continue;
377 // Okay, we have to split this edge.
378 SplitCriticalEdge(
379 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
380 CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
381 goto ReprocessBlock;
386 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
387 MachineModuleInfo &MMI) {
388 // Only needed for MSVC
389 if (!TT.isWindowsMSVCEnvironment())
390 return;
392 // If it's already set, nothing to do.
393 if (MMI.usesMSVCFloatingPoint())
394 return;
396 for (const Instruction &I : instructions(F)) {
397 if (I.getType()->isFPOrFPVectorTy()) {
398 MMI.setUsesMSVCFloatingPoint(true);
399 return;
401 for (const auto &Op : I.operands()) {
402 if (Op->getType()->isFPOrFPVectorTy()) {
403 MMI.setUsesMSVCFloatingPoint(true);
404 return;
410 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
411 // If we already selected that function, we do not need to run SDISel.
412 if (mf.getProperties().hasProperty(
413 MachineFunctionProperties::Property::Selected))
414 return false;
415 // Do some sanity-checking on the command-line options.
416 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
417 "-fast-isel-abort > 0 requires -fast-isel");
419 const Function &Fn = mf.getFunction();
420 MF = &mf;
422 // Reset the target options before resetting the optimization
423 // level below.
424 // FIXME: This is a horrible hack and should be processed via
425 // codegen looking at the optimization level explicitly when
426 // it wants to look at it.
427 TM.resetTargetOptions(Fn);
428 // Reset OptLevel to None for optnone functions.
429 CodeGenOpt::Level NewOptLevel = OptLevel;
430 if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
431 NewOptLevel = CodeGenOpt::None;
432 OptLevelChanger OLC(*this, NewOptLevel);
434 TII = MF->getSubtarget().getInstrInfo();
435 TLI = MF->getSubtarget().getTargetLowering();
436 RegInfo = &MF->getRegInfo();
437 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn);
438 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
439 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
440 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
441 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
442 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
443 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
445 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
447 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
449 CurDAG->init(*MF, *ORE, this, LibInfo,
450 getAnalysisIfAvailable<LegacyDivergenceAnalysis>());
451 FuncInfo->set(Fn, *MF, CurDAG);
452 SwiftError->setFunction(*MF);
454 // Now get the optional analyzes if we want to.
455 // This is based on the possibly changed OptLevel (after optnone is taken
456 // into account). That's unfortunate but OK because it just means we won't
457 // ask for passes that have been required anyway.
459 if (UseMBPI && OptLevel != CodeGenOpt::None)
460 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
461 else
462 FuncInfo->BPI = nullptr;
464 if (OptLevel != CodeGenOpt::None)
465 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
466 else
467 AA = nullptr;
469 SDB->init(GFI, AA, LibInfo);
471 MF->setHasInlineAsm(false);
473 FuncInfo->SplitCSR = false;
475 // We split CSR if the target supports it for the given function
476 // and the function has only return exits.
477 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
478 FuncInfo->SplitCSR = true;
480 // Collect all the return blocks.
481 for (const BasicBlock &BB : Fn) {
482 if (!succ_empty(&BB))
483 continue;
485 const Instruction *Term = BB.getTerminator();
486 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
487 continue;
489 // Bail out if the exit block is not Return nor Unreachable.
490 FuncInfo->SplitCSR = false;
491 break;
495 MachineBasicBlock *EntryMBB = &MF->front();
496 if (FuncInfo->SplitCSR)
497 // This performs initialization so lowering for SplitCSR will be correct.
498 TLI->initializeSplitCSR(EntryMBB);
500 SelectAllBasicBlocks(Fn);
501 if (FastISelFailed && EnableFastISelFallbackReport) {
502 DiagnosticInfoISelFallback DiagFallback(Fn);
503 Fn.getContext().diagnose(DiagFallback);
506 // Replace forward-declared registers with the registers containing
507 // the desired value.
508 // Note: it is important that this happens **before** the call to
509 // EmitLiveInCopies, since implementations can skip copies of unused
510 // registers. If we don't apply the reg fixups before, some registers may
511 // appear as unused and will be skipped, resulting in bad MI.
512 MachineRegisterInfo &MRI = MF->getRegInfo();
513 for (DenseMap<unsigned, unsigned>::iterator I = FuncInfo->RegFixups.begin(),
514 E = FuncInfo->RegFixups.end();
515 I != E; ++I) {
516 unsigned From = I->first;
517 unsigned To = I->second;
518 // If To is also scheduled to be replaced, find what its ultimate
519 // replacement is.
520 while (true) {
521 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
522 if (J == E)
523 break;
524 To = J->second;
526 // Make sure the new register has a sufficiently constrained register class.
527 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
528 MRI.constrainRegClass(To, MRI.getRegClass(From));
529 // Replace it.
531 // Replacing one register with another won't touch the kill flags.
532 // We need to conservatively clear the kill flags as a kill on the old
533 // register might dominate existing uses of the new register.
534 if (!MRI.use_empty(To))
535 MRI.clearKillFlags(From);
536 MRI.replaceRegWith(From, To);
539 // If the first basic block in the function has live ins that need to be
540 // copied into vregs, emit the copies into the top of the block before
541 // emitting the code for the block.
542 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
543 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
545 // Insert copies in the entry block and the return blocks.
546 if (FuncInfo->SplitCSR) {
547 SmallVector<MachineBasicBlock*, 4> Returns;
548 // Collect all the return blocks.
549 for (MachineBasicBlock &MBB : mf) {
550 if (!MBB.succ_empty())
551 continue;
553 MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
554 if (Term != MBB.end() && Term->isReturn()) {
555 Returns.push_back(&MBB);
556 continue;
559 TLI->insertCopiesSplitCSR(EntryMBB, Returns);
562 DenseMap<unsigned, unsigned> LiveInMap;
563 if (!FuncInfo->ArgDbgValues.empty())
564 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
565 if (LI.second)
566 LiveInMap.insert(LI);
568 // Insert DBG_VALUE instructions for function arguments to the entry block.
569 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
570 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
571 bool hasFI = MI->getOperand(0).isFI();
572 Register Reg =
573 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
574 if (Register::isPhysicalRegister(Reg))
575 EntryMBB->insert(EntryMBB->begin(), MI);
576 else {
577 MachineInstr *Def = RegInfo->getVRegDef(Reg);
578 if (Def) {
579 MachineBasicBlock::iterator InsertPos = Def;
580 // FIXME: VR def may not be in entry block.
581 Def->getParent()->insert(std::next(InsertPos), MI);
582 } else
583 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
584 << Register::virtReg2Index(Reg) << "\n");
587 // If Reg is live-in then update debug info to track its copy in a vreg.
588 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
589 if (LDI != LiveInMap.end()) {
590 assert(!hasFI && "There's no handling of frame pointer updating here yet "
591 "- add if needed");
592 MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
593 MachineBasicBlock::iterator InsertPos = Def;
594 const MDNode *Variable = MI->getDebugVariable();
595 const MDNode *Expr = MI->getDebugExpression();
596 DebugLoc DL = MI->getDebugLoc();
597 bool IsIndirect = MI->isIndirectDebugValue();
598 if (IsIndirect)
599 assert(MI->getOperand(1).getImm() == 0 &&
600 "DBG_VALUE with nonzero offset");
601 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
602 "Expected inlined-at fields to agree");
603 // Def is never a terminator here, so it is ok to increment InsertPos.
604 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
605 IsIndirect, LDI->second, Variable, Expr);
607 // If this vreg is directly copied into an exported register then
608 // that COPY instructions also need DBG_VALUE, if it is the only
609 // user of LDI->second.
610 MachineInstr *CopyUseMI = nullptr;
611 for (MachineRegisterInfo::use_instr_iterator
612 UI = RegInfo->use_instr_begin(LDI->second),
613 E = RegInfo->use_instr_end(); UI != E; ) {
614 MachineInstr *UseMI = &*(UI++);
615 if (UseMI->isDebugValue()) continue;
616 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
617 CopyUseMI = UseMI; continue;
619 // Otherwise this is another use or second copy use.
620 CopyUseMI = nullptr; break;
622 if (CopyUseMI) {
623 // Use MI's debug location, which describes where Variable was
624 // declared, rather than whatever is attached to CopyUseMI.
625 MachineInstr *NewMI =
626 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
627 CopyUseMI->getOperand(0).getReg(), Variable, Expr);
628 MachineBasicBlock::iterator Pos = CopyUseMI;
629 EntryMBB->insertAfter(Pos, NewMI);
634 // Determine if there are any calls in this machine function.
635 MachineFrameInfo &MFI = MF->getFrameInfo();
636 for (const auto &MBB : *MF) {
637 if (MFI.hasCalls() && MF->hasInlineAsm())
638 break;
640 for (const auto &MI : MBB) {
641 const MCInstrDesc &MCID = TII->get(MI.getOpcode());
642 if ((MCID.isCall() && !MCID.isReturn()) ||
643 MI.isStackAligningInlineAsm()) {
644 MFI.setHasCalls(true);
646 if (MI.isInlineAsm()) {
647 MF->setHasInlineAsm(true);
652 // Determine if there is a call to setjmp in the machine function.
653 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
655 // Determine if floating point is used for msvc
656 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
658 // Replace forward-declared registers with the registers containing
659 // the desired value.
660 for (DenseMap<unsigned, unsigned>::iterator
661 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
662 I != E; ++I) {
663 unsigned From = I->first;
664 unsigned To = I->second;
665 // If To is also scheduled to be replaced, find what its ultimate
666 // replacement is.
667 while (true) {
668 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
669 if (J == E) break;
670 To = J->second;
672 // Make sure the new register has a sufficiently constrained register class.
673 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
674 MRI.constrainRegClass(To, MRI.getRegClass(From));
675 // Replace it.
678 // Replacing one register with another won't touch the kill flags.
679 // We need to conservatively clear the kill flags as a kill on the old
680 // register might dominate existing uses of the new register.
681 if (!MRI.use_empty(To))
682 MRI.clearKillFlags(From);
683 MRI.replaceRegWith(From, To);
686 TLI->finalizeLowering(*MF);
688 // Release function-specific state. SDB and CurDAG are already cleared
689 // at this point.
690 FuncInfo->clear();
692 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
693 LLVM_DEBUG(MF->print(dbgs()));
695 return true;
698 static void reportFastISelFailure(MachineFunction &MF,
699 OptimizationRemarkEmitter &ORE,
700 OptimizationRemarkMissed &R,
701 bool ShouldAbort) {
702 // Print the function name explicitly if we don't have a debug location (which
703 // makes the diagnostic less useful) or if we're going to emit a raw error.
704 if (!R.getLocation().isValid() || ShouldAbort)
705 R << (" (in function: " + MF.getName() + ")").str();
707 if (ShouldAbort)
708 report_fatal_error(R.getMsg());
710 ORE.emit(R);
713 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
714 BasicBlock::const_iterator End,
715 bool &HadTailCall) {
716 // Allow creating illegal types during DAG building for the basic block.
717 CurDAG->NewNodesMustHaveLegalTypes = false;
719 // Lower the instructions. If a call is emitted as a tail call, cease emitting
720 // nodes for this block.
721 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
722 if (!ElidedArgCopyInstrs.count(&*I))
723 SDB->visit(*I);
726 // Make sure the root of the DAG is up-to-date.
727 CurDAG->setRoot(SDB->getControlRoot());
728 HadTailCall = SDB->HasTailCall;
729 SDB->resolveOrClearDbgInfo();
730 SDB->clear();
732 // Final step, emit the lowered DAG as machine code.
733 CodeGenAndEmitDAG();
736 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
737 SmallPtrSet<SDNode*, 16> VisitedNodes;
738 SmallVector<SDNode*, 128> Worklist;
740 Worklist.push_back(CurDAG->getRoot().getNode());
742 KnownBits Known;
744 do {
745 SDNode *N = Worklist.pop_back_val();
747 // If we've already seen this node, ignore it.
748 if (!VisitedNodes.insert(N).second)
749 continue;
751 // Otherwise, add all chain operands to the worklist.
752 for (const SDValue &Op : N->op_values())
753 if (Op.getValueType() == MVT::Other)
754 Worklist.push_back(Op.getNode());
756 // If this is a CopyToReg with a vreg dest, process it.
757 if (N->getOpcode() != ISD::CopyToReg)
758 continue;
760 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
761 if (!Register::isVirtualRegister(DestReg))
762 continue;
764 // Ignore non-integer values.
765 SDValue Src = N->getOperand(2);
766 EVT SrcVT = Src.getValueType();
767 if (!SrcVT.isInteger())
768 continue;
770 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
771 Known = CurDAG->computeKnownBits(Src);
772 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
773 } while (!Worklist.empty());
776 void SelectionDAGISel::CodeGenAndEmitDAG() {
777 StringRef GroupName = "sdag";
778 StringRef GroupDescription = "Instruction Selection and Scheduling";
779 std::string BlockName;
780 bool MatchFilterBB = false; (void)MatchFilterBB;
781 #ifndef NDEBUG
782 TargetTransformInfo &TTI =
783 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
784 #endif
786 // Pre-type legalization allow creation of any node types.
787 CurDAG->NewNodesMustHaveLegalTypes = false;
789 #ifndef NDEBUG
790 MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
791 FilterDAGBasicBlockName ==
792 FuncInfo->MBB->getBasicBlock()->getName());
793 #endif
794 #ifdef NDEBUG
795 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
796 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
797 ViewSUnitDAGs)
798 #endif
800 BlockName =
801 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
803 LLVM_DEBUG(dbgs() << "Initial selection DAG: "
804 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
805 << "'\n";
806 CurDAG->dump());
808 if (ViewDAGCombine1 && MatchFilterBB)
809 CurDAG->viewGraph("dag-combine1 input for " + BlockName);
811 // Run the DAG combiner in pre-legalize mode.
813 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
814 GroupDescription, TimePassesIsEnabled);
815 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
818 #ifndef NDEBUG
819 if (TTI.hasBranchDivergence())
820 CurDAG->VerifyDAGDiverence();
821 #endif
823 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
824 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
825 << "'\n";
826 CurDAG->dump());
828 // Second step, hack on the DAG until it only uses operations and types that
829 // the target supports.
830 if (ViewLegalizeTypesDAGs && MatchFilterBB)
831 CurDAG->viewGraph("legalize-types input for " + BlockName);
833 bool Changed;
835 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
836 GroupDescription, TimePassesIsEnabled);
837 Changed = CurDAG->LegalizeTypes();
840 #ifndef NDEBUG
841 if (TTI.hasBranchDivergence())
842 CurDAG->VerifyDAGDiverence();
843 #endif
845 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
846 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
847 << "'\n";
848 CurDAG->dump());
850 // Only allow creation of legal node types.
851 CurDAG->NewNodesMustHaveLegalTypes = true;
853 if (Changed) {
854 if (ViewDAGCombineLT && MatchFilterBB)
855 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
857 // Run the DAG combiner in post-type-legalize mode.
859 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
860 GroupName, GroupDescription, TimePassesIsEnabled);
861 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
864 #ifndef NDEBUG
865 if (TTI.hasBranchDivergence())
866 CurDAG->VerifyDAGDiverence();
867 #endif
869 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
870 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
871 << "'\n";
872 CurDAG->dump());
876 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
877 GroupDescription, TimePassesIsEnabled);
878 Changed = CurDAG->LegalizeVectors();
881 if (Changed) {
882 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
883 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
884 << "'\n";
885 CurDAG->dump());
888 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
889 GroupDescription, TimePassesIsEnabled);
890 CurDAG->LegalizeTypes();
893 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
894 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
895 << "'\n";
896 CurDAG->dump());
898 if (ViewDAGCombineLT && MatchFilterBB)
899 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
901 // Run the DAG combiner in post-type-legalize mode.
903 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
904 GroupName, GroupDescription, TimePassesIsEnabled);
905 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
908 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
909 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
910 << "'\n";
911 CurDAG->dump());
913 #ifndef NDEBUG
914 if (TTI.hasBranchDivergence())
915 CurDAG->VerifyDAGDiverence();
916 #endif
919 if (ViewLegalizeDAGs && MatchFilterBB)
920 CurDAG->viewGraph("legalize input for " + BlockName);
923 NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
924 GroupDescription, TimePassesIsEnabled);
925 CurDAG->Legalize();
928 #ifndef NDEBUG
929 if (TTI.hasBranchDivergence())
930 CurDAG->VerifyDAGDiverence();
931 #endif
933 LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
934 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
935 << "'\n";
936 CurDAG->dump());
938 if (ViewDAGCombine2 && MatchFilterBB)
939 CurDAG->viewGraph("dag-combine2 input for " + BlockName);
941 // Run the DAG combiner in post-legalize mode.
943 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
944 GroupDescription, TimePassesIsEnabled);
945 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
948 #ifndef NDEBUG
949 if (TTI.hasBranchDivergence())
950 CurDAG->VerifyDAGDiverence();
951 #endif
953 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
954 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
955 << "'\n";
956 CurDAG->dump());
958 if (OptLevel != CodeGenOpt::None)
959 ComputeLiveOutVRegInfo();
961 if (ViewISelDAGs && MatchFilterBB)
962 CurDAG->viewGraph("isel input for " + BlockName);
964 // Third, instruction select all of the operations to machine code, adding the
965 // code to the MachineBasicBlock.
967 NamedRegionTimer T("isel", "Instruction Selection", GroupName,
968 GroupDescription, TimePassesIsEnabled);
969 DoInstructionSelection();
972 LLVM_DEBUG(dbgs() << "Selected selection DAG: "
973 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
974 << "'\n";
975 CurDAG->dump());
977 if (ViewSchedDAGs && MatchFilterBB)
978 CurDAG->viewGraph("scheduler input for " + BlockName);
980 // Schedule machine code.
981 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
983 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
984 GroupDescription, TimePassesIsEnabled);
985 Scheduler->Run(CurDAG, FuncInfo->MBB);
988 if (ViewSUnitDAGs && MatchFilterBB)
989 Scheduler->viewGraph();
991 // Emit machine code to BB. This can change 'BB' to the last block being
992 // inserted into.
993 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
995 NamedRegionTimer T("emit", "Instruction Creation", GroupName,
996 GroupDescription, TimePassesIsEnabled);
998 // FuncInfo->InsertPt is passed by reference and set to the end of the
999 // scheduled instructions.
1000 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
1003 // If the block was split, make sure we update any references that are used to
1004 // update PHI nodes later on.
1005 if (FirstMBB != LastMBB)
1006 SDB->UpdateSplitBlock(FirstMBB, LastMBB);
1008 // Free the scheduler state.
1010 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
1011 GroupDescription, TimePassesIsEnabled);
1012 delete Scheduler;
1015 // Free the SelectionDAG state, now that we're finished with it.
1016 CurDAG->clear();
1019 namespace {
1021 /// ISelUpdater - helper class to handle updates of the instruction selection
1022 /// graph.
1023 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
1024 SelectionDAG::allnodes_iterator &ISelPosition;
1026 public:
1027 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
1028 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
1030 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1031 /// deleted is the current ISelPosition node, update ISelPosition.
1033 void NodeDeleted(SDNode *N, SDNode *E) override {
1034 if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1035 ++ISelPosition;
1039 } // end anonymous namespace
1041 // This function is used to enforce the topological node id property
1042 // property leveraged during Instruction selection. Before selection all
1043 // nodes are given a non-negative id such that all nodes have a larger id than
1044 // their operands. As this holds transitively we can prune checks that a node N
1045 // is a predecessor of M another by not recursively checking through M's
1046 // operands if N's ID is larger than M's ID. This is significantly improves
1047 // performance of for various legality checks (e.g. IsLegalToFold /
1048 // UpdateChains).
1050 // However, when we fuse multiple nodes into a single node
1051 // during selection we may induce a predecessor relationship between inputs and
1052 // outputs of distinct nodes being merged violating the topological property.
1053 // Should a fused node have a successor which has yet to be selected, our
1054 // legality checks would be incorrect. To avoid this we mark all unselected
1055 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
1056 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1057 // We use bit-negation to more clearly enforce that node id -1 can only be
1058 // achieved by selected nodes). As the conversion is reversable the original Id,
1059 // topological pruning can still be leveraged when looking for unselected nodes.
1060 // This method is call internally in all ISel replacement calls.
1061 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1062 SmallVector<SDNode *, 4> Nodes;
1063 Nodes.push_back(Node);
1065 while (!Nodes.empty()) {
1066 SDNode *N = Nodes.pop_back_val();
1067 for (auto *U : N->uses()) {
1068 auto UId = U->getNodeId();
1069 if (UId > 0) {
1070 InvalidateNodeId(U);
1071 Nodes.push_back(U);
1077 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
1078 // NodeId with the equivalent node id which is invalid for topological
1079 // pruning.
1080 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1081 int InvalidId = -(N->getNodeId() + 1);
1082 N->setNodeId(InvalidId);
1085 // getUninvalidatedNodeId - get original uninvalidated node id.
1086 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1087 int Id = N->getNodeId();
1088 if (Id < -1)
1089 return -(Id + 1);
1090 return Id;
1093 void SelectionDAGISel::DoInstructionSelection() {
1094 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1095 << printMBBReference(*FuncInfo->MBB) << " '"
1096 << FuncInfo->MBB->getName() << "'\n");
1098 PreprocessISelDAG();
1100 // Select target instructions for the DAG.
1102 // Number all nodes with a topological order and set DAGSize.
1103 DAGSize = CurDAG->AssignTopologicalOrder();
1105 // Create a dummy node (which is not added to allnodes), that adds
1106 // a reference to the root node, preventing it from being deleted,
1107 // and tracking any changes of the root.
1108 HandleSDNode Dummy(CurDAG->getRoot());
1109 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1110 ++ISelPosition;
1112 // Make sure that ISelPosition gets properly updated when nodes are deleted
1113 // in calls made from this function.
1114 ISelUpdater ISU(*CurDAG, ISelPosition);
1116 // The AllNodes list is now topological-sorted. Visit the
1117 // nodes by starting at the end of the list (the root of the
1118 // graph) and preceding back toward the beginning (the entry
1119 // node).
1120 while (ISelPosition != CurDAG->allnodes_begin()) {
1121 SDNode *Node = &*--ISelPosition;
1122 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1123 // but there are currently some corner cases that it misses. Also, this
1124 // makes it theoretically possible to disable the DAGCombiner.
1125 if (Node->use_empty())
1126 continue;
1128 #ifndef NDEBUG
1129 SmallVector<SDNode *, 4> Nodes;
1130 Nodes.push_back(Node);
1132 while (!Nodes.empty()) {
1133 auto N = Nodes.pop_back_val();
1134 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1135 continue;
1136 for (const SDValue &Op : N->op_values()) {
1137 if (Op->getOpcode() == ISD::TokenFactor)
1138 Nodes.push_back(Op.getNode());
1139 else {
1140 // We rely on topological ordering of node ids for checking for
1141 // cycles when fusing nodes during selection. All unselected nodes
1142 // successors of an already selected node should have a negative id.
1143 // This assertion will catch such cases. If this assertion triggers
1144 // it is likely you using DAG-level Value/Node replacement functions
1145 // (versus equivalent ISEL replacement) in backend-specific
1146 // selections. See comment in EnforceNodeIdInvariant for more
1147 // details.
1148 assert(Op->getNodeId() != -1 &&
1149 "Node has already selected predecessor node");
1153 #endif
1155 // When we are using non-default rounding modes or FP exception behavior
1156 // FP operations are represented by StrictFP pseudo-operations. For
1157 // targets that do not (yet) understand strict FP operations directly,
1158 // we convert them to normal FP opcodes instead at this point. This
1159 // will allow them to be handled by existing target-specific instruction
1160 // selectors.
1161 if (Node->isStrictFPOpcode() &&
1162 (TLI->getOperationAction(Node->getOpcode(), Node->getValueType(0))
1163 != TargetLowering::Legal))
1164 Node = CurDAG->mutateStrictFPToFP(Node);
1166 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1167 Node->dump(CurDAG));
1169 Select(Node);
1172 CurDAG->setRoot(Dummy.getValue());
1175 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1177 PostprocessISelDAG();
1180 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1181 for (const User *U : CPI->users()) {
1182 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1183 Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1184 if (IID == Intrinsic::eh_exceptionpointer ||
1185 IID == Intrinsic::eh_exceptioncode)
1186 return true;
1189 return false;
1192 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1193 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1194 // and store the mapping in the function.
1195 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1196 const CatchPadInst *CPI) {
1197 MachineFunction *MF = MBB->getParent();
1198 // In case of single catch (...), we don't emit LSDA, so we don't need
1199 // this information.
1200 bool IsSingleCatchAllClause =
1201 CPI->getNumArgOperands() == 1 &&
1202 cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1203 if (!IsSingleCatchAllClause) {
1204 // Create a mapping from landing pad label to landing pad index.
1205 bool IntrFound = false;
1206 for (const User *U : CPI->users()) {
1207 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1208 Intrinsic::ID IID = Call->getIntrinsicID();
1209 if (IID == Intrinsic::wasm_landingpad_index) {
1210 Value *IndexArg = Call->getArgOperand(1);
1211 int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1212 MF->setWasmLandingPadIndex(MBB, Index);
1213 IntrFound = true;
1214 break;
1218 assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1219 (void)IntrFound;
1223 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1224 /// do other setup for EH landing-pad blocks.
1225 bool SelectionDAGISel::PrepareEHLandingPad() {
1226 MachineBasicBlock *MBB = FuncInfo->MBB;
1227 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1228 const BasicBlock *LLVMBB = MBB->getBasicBlock();
1229 const TargetRegisterClass *PtrRC =
1230 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1232 auto Pers = classifyEHPersonality(PersonalityFn);
1234 // Catchpads have one live-in register, which typically holds the exception
1235 // pointer or code.
1236 if (isFuncletEHPersonality(Pers)) {
1237 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1238 if (hasExceptionPointerOrCodeUser(CPI)) {
1239 // Get or create the virtual register to hold the pointer or code. Mark
1240 // the live in physreg and copy into the vreg.
1241 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1242 assert(EHPhysReg && "target lacks exception pointer register");
1243 MBB->addLiveIn(EHPhysReg);
1244 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1245 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1246 TII->get(TargetOpcode::COPY), VReg)
1247 .addReg(EHPhysReg, RegState::Kill);
1250 return true;
1253 // Add a label to mark the beginning of the landing pad. Deletion of the
1254 // landing pad can thus be detected via the MachineModuleInfo.
1255 MCSymbol *Label = MF->addLandingPad(MBB);
1257 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1258 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1259 .addSym(Label);
1261 if (Pers == EHPersonality::Wasm_CXX) {
1262 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1263 mapWasmLandingPadIndex(MBB, CPI);
1264 } else {
1265 // Assign the call site to the landing pad's begin label.
1266 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1267 // Mark exception register as live in.
1268 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1269 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1270 // Mark exception selector register as live in.
1271 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1272 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1275 return true;
1278 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1279 /// side-effect free and is either dead or folded into a generated instruction.
1280 /// Return false if it needs to be emitted.
1281 static bool isFoldedOrDeadInstruction(const Instruction *I,
1282 FunctionLoweringInfo *FuncInfo) {
1283 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1284 !I->isTerminator() && // Terminators aren't folded.
1285 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1286 !I->isEHPad() && // EH pad instructions aren't folded.
1287 !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
1290 /// Collect llvm.dbg.declare information. This is done after argument lowering
1291 /// in case the declarations refer to arguments.
1292 static void processDbgDeclares(FunctionLoweringInfo *FuncInfo) {
1293 MachineFunction *MF = FuncInfo->MF;
1294 const DataLayout &DL = MF->getDataLayout();
1295 for (const BasicBlock &BB : *FuncInfo->Fn) {
1296 for (const Instruction &I : BB) {
1297 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1298 if (!DI)
1299 continue;
1301 assert(DI->getVariable() && "Missing variable");
1302 assert(DI->getDebugLoc() && "Missing location");
1303 const Value *Address = DI->getAddress();
1304 if (!Address)
1305 continue;
1307 // Look through casts and constant offset GEPs. These mostly come from
1308 // inalloca.
1309 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1310 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1312 // Check if the variable is a static alloca or a byval or inalloca
1313 // argument passed in memory. If it is not, then we will ignore this
1314 // intrinsic and handle this during isel like dbg.value.
1315 int FI = std::numeric_limits<int>::max();
1316 if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1317 auto SI = FuncInfo->StaticAllocaMap.find(AI);
1318 if (SI != FuncInfo->StaticAllocaMap.end())
1319 FI = SI->second;
1320 } else if (const auto *Arg = dyn_cast<Argument>(Address))
1321 FI = FuncInfo->getArgumentFrameIndex(Arg);
1323 if (FI == std::numeric_limits<int>::max())
1324 continue;
1326 DIExpression *Expr = DI->getExpression();
1327 if (Offset.getBoolValue())
1328 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
1329 Offset.getZExtValue());
1330 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1335 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1336 FastISelFailed = false;
1337 // Initialize the Fast-ISel state, if needed.
1338 FastISel *FastIS = nullptr;
1339 if (TM.Options.EnableFastISel) {
1340 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1341 FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1344 ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1346 // Lower arguments up front. An RPO iteration always visits the entry block
1347 // first.
1348 assert(*RPOT.begin() == &Fn.getEntryBlock());
1349 ++NumEntryBlocks;
1351 // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1352 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1353 FuncInfo->InsertPt = FuncInfo->MBB->begin();
1355 CurDAG->setFunctionLoweringInfo(FuncInfo);
1357 if (!FastIS) {
1358 LowerArguments(Fn);
1359 } else {
1360 // See if fast isel can lower the arguments.
1361 FastIS->startNewBlock();
1362 if (!FastIS->lowerArguments()) {
1363 FastISelFailed = true;
1364 // Fast isel failed to lower these arguments
1365 ++NumFastIselFailLowerArguments;
1367 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1368 Fn.getSubprogram(),
1369 &Fn.getEntryBlock());
1370 R << "FastISel didn't lower all arguments: "
1371 << ore::NV("Prototype", Fn.getType());
1372 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1374 // Use SelectionDAG argument lowering
1375 LowerArguments(Fn);
1376 CurDAG->setRoot(SDB->getControlRoot());
1377 SDB->clear();
1378 CodeGenAndEmitDAG();
1381 // If we inserted any instructions at the beginning, make a note of
1382 // where they are, so we can be sure to emit subsequent instructions
1383 // after them.
1384 if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1385 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1386 else
1387 FastIS->setLastLocalValue(nullptr);
1390 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
1392 if (FastIS && Inserted)
1393 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1395 processDbgDeclares(FuncInfo);
1397 // Iterate over all basic blocks in the function.
1398 StackProtector &SP = getAnalysis<StackProtector>();
1399 for (const BasicBlock *LLVMBB : RPOT) {
1400 if (OptLevel != CodeGenOpt::None) {
1401 bool AllPredsVisited = true;
1402 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1403 PI != PE; ++PI) {
1404 if (!FuncInfo->VisitedBBs.count(*PI)) {
1405 AllPredsVisited = false;
1406 break;
1410 if (AllPredsVisited) {
1411 for (const PHINode &PN : LLVMBB->phis())
1412 FuncInfo->ComputePHILiveOutRegInfo(&PN);
1413 } else {
1414 for (const PHINode &PN : LLVMBB->phis())
1415 FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1418 FuncInfo->VisitedBBs.insert(LLVMBB);
1421 BasicBlock::const_iterator const Begin =
1422 LLVMBB->getFirstNonPHI()->getIterator();
1423 BasicBlock::const_iterator const End = LLVMBB->end();
1424 BasicBlock::const_iterator BI = End;
1426 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1427 if (!FuncInfo->MBB)
1428 continue; // Some blocks like catchpads have no code or MBB.
1430 // Insert new instructions after any phi or argument setup code.
1431 FuncInfo->InsertPt = FuncInfo->MBB->end();
1433 // Setup an EH landing-pad block.
1434 FuncInfo->ExceptionPointerVirtReg = 0;
1435 FuncInfo->ExceptionSelectorVirtReg = 0;
1436 if (LLVMBB->isEHPad())
1437 if (!PrepareEHLandingPad())
1438 continue;
1440 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1441 if (FastIS) {
1442 if (LLVMBB != &Fn.getEntryBlock())
1443 FastIS->startNewBlock();
1445 unsigned NumFastIselRemaining = std::distance(Begin, End);
1447 // Pre-assign swifterror vregs.
1448 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
1450 // Do FastISel on as many instructions as possible.
1451 for (; BI != Begin; --BI) {
1452 const Instruction *Inst = &*std::prev(BI);
1454 // If we no longer require this instruction, skip it.
1455 if (isFoldedOrDeadInstruction(Inst, FuncInfo) ||
1456 ElidedArgCopyInstrs.count(Inst)) {
1457 --NumFastIselRemaining;
1458 continue;
1461 // Bottom-up: reset the insert pos at the top, after any local-value
1462 // instructions.
1463 FastIS->recomputeInsertPt();
1465 // Try to select the instruction with FastISel.
1466 if (FastIS->selectInstruction(Inst)) {
1467 --NumFastIselRemaining;
1468 ++NumFastIselSuccess;
1469 // If fast isel succeeded, skip over all the folded instructions, and
1470 // then see if there is a load right before the selected instructions.
1471 // Try to fold the load if so.
1472 const Instruction *BeforeInst = Inst;
1473 while (BeforeInst != &*Begin) {
1474 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1475 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1476 break;
1478 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1479 BeforeInst->hasOneUse() &&
1480 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1481 // If we succeeded, don't re-select the load.
1482 BI = std::next(BasicBlock::const_iterator(BeforeInst));
1483 --NumFastIselRemaining;
1484 ++NumFastIselSuccess;
1486 continue;
1489 FastISelFailed = true;
1491 // Then handle certain instructions as single-LLVM-Instruction blocks.
1492 // We cannot separate out GCrelocates to their own blocks since we need
1493 // to keep track of gc-relocates for a particular gc-statepoint. This is
1494 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1495 // visitGCRelocate.
1496 if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst) &&
1497 !isGCResult(Inst)) {
1498 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1499 Inst->getDebugLoc(), LLVMBB);
1501 R << "FastISel missed call";
1503 if (R.isEnabled() || EnableFastISelAbort) {
1504 std::string InstStrStorage;
1505 raw_string_ostream InstStr(InstStrStorage);
1506 InstStr << *Inst;
1508 R << ": " << InstStr.str();
1511 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1513 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1514 !Inst->use_empty()) {
1515 unsigned &R = FuncInfo->ValueMap[Inst];
1516 if (!R)
1517 R = FuncInfo->CreateRegs(Inst);
1520 bool HadTailCall = false;
1521 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1522 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1524 // If the call was emitted as a tail call, we're done with the block.
1525 // We also need to delete any previously emitted instructions.
1526 if (HadTailCall) {
1527 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1528 --BI;
1529 break;
1532 // Recompute NumFastIselRemaining as Selection DAG instruction
1533 // selection may have handled the call, input args, etc.
1534 unsigned RemainingNow = std::distance(Begin, BI);
1535 NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1536 NumFastIselRemaining = RemainingNow;
1537 continue;
1540 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1541 Inst->getDebugLoc(), LLVMBB);
1543 bool ShouldAbort = EnableFastISelAbort;
1544 if (Inst->isTerminator()) {
1545 // Use a different message for terminator misses.
1546 R << "FastISel missed terminator";
1547 // Don't abort for terminator unless the level is really high
1548 ShouldAbort = (EnableFastISelAbort > 2);
1549 } else {
1550 R << "FastISel missed";
1553 if (R.isEnabled() || EnableFastISelAbort) {
1554 std::string InstStrStorage;
1555 raw_string_ostream InstStr(InstStrStorage);
1556 InstStr << *Inst;
1557 R << ": " << InstStr.str();
1560 reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1562 NumFastIselFailures += NumFastIselRemaining;
1563 break;
1566 FastIS->recomputeInsertPt();
1569 if (SP.shouldEmitSDCheck(*LLVMBB)) {
1570 bool FunctionBasedInstrumentation =
1571 TLI->getSSPStackGuardCheck(*Fn.getParent());
1572 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1573 FunctionBasedInstrumentation);
1576 if (Begin != BI)
1577 ++NumDAGBlocks;
1578 else
1579 ++NumFastIselBlocks;
1581 if (Begin != BI) {
1582 // Run SelectionDAG instruction selection on the remainder of the block
1583 // not handled by FastISel. If FastISel is not run, this is the entire
1584 // block.
1585 bool HadTailCall;
1586 SelectBasicBlock(Begin, BI, HadTailCall);
1588 // But if FastISel was run, we already selected some of the block.
1589 // If we emitted a tail-call, we need to delete any previously emitted
1590 // instruction that follows it.
1591 if (HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1592 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1595 if (FastIS)
1596 FastIS->finishBasicBlock();
1597 FinishBasicBlock();
1598 FuncInfo->PHINodesToUpdate.clear();
1599 ElidedArgCopyInstrs.clear();
1602 SP.copyToMachineFrameInfo(MF->getFrameInfo());
1604 SwiftError->propagateVRegs();
1606 delete FastIS;
1607 SDB->clearDanglingDebugInfo();
1608 SDB->SPDescriptor.resetPerFunctionState();
1611 /// Given that the input MI is before a partial terminator sequence TSeq, return
1612 /// true if M + TSeq also a partial terminator sequence.
1614 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1615 /// lowering copy vregs into physical registers, which are then passed into
1616 /// terminator instructors so we can satisfy ABI constraints. A partial
1617 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1618 /// may be the whole terminator sequence).
1619 static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1620 // If we do not have a copy or an implicit def, we return true if and only if
1621 // MI is a debug value.
1622 if (!MI.isCopy() && !MI.isImplicitDef())
1623 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1624 // physical registers if there is debug info associated with the terminator
1625 // of our mbb. We want to include said debug info in our terminator
1626 // sequence, so we return true in that case.
1627 return MI.isDebugValue();
1629 // We have left the terminator sequence if we are not doing one of the
1630 // following:
1632 // 1. Copying a vreg into a physical register.
1633 // 2. Copying a vreg into a vreg.
1634 // 3. Defining a register via an implicit def.
1636 // OPI should always be a register definition...
1637 MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1638 if (!OPI->isReg() || !OPI->isDef())
1639 return false;
1641 // Defining any register via an implicit def is always ok.
1642 if (MI.isImplicitDef())
1643 return true;
1645 // Grab the copy source...
1646 MachineInstr::const_mop_iterator OPI2 = OPI;
1647 ++OPI2;
1648 assert(OPI2 != MI.operands_end()
1649 && "Should have a copy implying we should have 2 arguments.");
1651 // Make sure that the copy dest is not a vreg when the copy source is a
1652 // physical register.
1653 if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) &&
1654 Register::isPhysicalRegister(OPI2->getReg())))
1655 return false;
1657 return true;
1660 /// Find the split point at which to splice the end of BB into its success stack
1661 /// protector check machine basic block.
1663 /// On many platforms, due to ABI constraints, terminators, even before register
1664 /// allocation, use physical registers. This creates an issue for us since
1665 /// physical registers at this point can not travel across basic
1666 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1667 /// when they enter functions and moves them through a sequence of copies back
1668 /// into the physical registers right before the terminator creating a
1669 /// ``Terminator Sequence''. This function is searching for the beginning of the
1670 /// terminator sequence so that we can ensure that we splice off not just the
1671 /// terminator, but additionally the copies that move the vregs into the
1672 /// physical registers.
1673 static MachineBasicBlock::iterator
1674 FindSplitPointForStackProtector(MachineBasicBlock *BB) {
1675 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1677 if (SplitPoint == BB->begin())
1678 return SplitPoint;
1680 MachineBasicBlock::iterator Start = BB->begin();
1681 MachineBasicBlock::iterator Previous = SplitPoint;
1682 --Previous;
1684 while (MIIsInTerminatorSequence(*Previous)) {
1685 SplitPoint = Previous;
1686 if (Previous == Start)
1687 break;
1688 --Previous;
1691 return SplitPoint;
1694 void
1695 SelectionDAGISel::FinishBasicBlock() {
1696 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1697 << FuncInfo->PHINodesToUpdate.size() << "\n";
1698 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1699 ++i) dbgs()
1700 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1701 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1703 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1704 // PHI nodes in successors.
1705 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1706 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1707 assert(PHI->isPHI() &&
1708 "This is not a machine PHI node that we are updating!");
1709 if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1710 continue;
1711 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1714 // Handle stack protector.
1715 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1716 // The target provides a guard check function. There is no need to
1717 // generate error handling code or to split current basic block.
1718 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1720 // Add load and check to the basicblock.
1721 FuncInfo->MBB = ParentMBB;
1722 FuncInfo->InsertPt =
1723 FindSplitPointForStackProtector(ParentMBB);
1724 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1725 CurDAG->setRoot(SDB->getRoot());
1726 SDB->clear();
1727 CodeGenAndEmitDAG();
1729 // Clear the Per-BB State.
1730 SDB->SPDescriptor.resetPerBBState();
1731 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1732 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1733 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1735 // Find the split point to split the parent mbb. At the same time copy all
1736 // physical registers used in the tail of parent mbb into virtual registers
1737 // before the split point and back into physical registers after the split
1738 // point. This prevents us needing to deal with Live-ins and many other
1739 // register allocation issues caused by us splitting the parent mbb. The
1740 // register allocator will clean up said virtual copies later on.
1741 MachineBasicBlock::iterator SplitPoint =
1742 FindSplitPointForStackProtector(ParentMBB);
1744 // Splice the terminator of ParentMBB into SuccessMBB.
1745 SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1746 SplitPoint,
1747 ParentMBB->end());
1749 // Add compare/jump on neq/jump to the parent BB.
1750 FuncInfo->MBB = ParentMBB;
1751 FuncInfo->InsertPt = ParentMBB->end();
1752 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1753 CurDAG->setRoot(SDB->getRoot());
1754 SDB->clear();
1755 CodeGenAndEmitDAG();
1757 // CodeGen Failure MBB if we have not codegened it yet.
1758 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1759 if (FailureMBB->empty()) {
1760 FuncInfo->MBB = FailureMBB;
1761 FuncInfo->InsertPt = FailureMBB->end();
1762 SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1763 CurDAG->setRoot(SDB->getRoot());
1764 SDB->clear();
1765 CodeGenAndEmitDAG();
1768 // Clear the Per-BB State.
1769 SDB->SPDescriptor.resetPerBBState();
1772 // Lower each BitTestBlock.
1773 for (auto &BTB : SDB->SL->BitTestCases) {
1774 // Lower header first, if it wasn't already lowered
1775 if (!BTB.Emitted) {
1776 // Set the current basic block to the mbb we wish to insert the code into
1777 FuncInfo->MBB = BTB.Parent;
1778 FuncInfo->InsertPt = FuncInfo->MBB->end();
1779 // Emit the code
1780 SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1781 CurDAG->setRoot(SDB->getRoot());
1782 SDB->clear();
1783 CodeGenAndEmitDAG();
1786 BranchProbability UnhandledProb = BTB.Prob;
1787 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1788 UnhandledProb -= BTB.Cases[j].ExtraProb;
1789 // Set the current basic block to the mbb we wish to insert the code into
1790 FuncInfo->MBB = BTB.Cases[j].ThisBB;
1791 FuncInfo->InsertPt = FuncInfo->MBB->end();
1792 // Emit the code
1794 // If all cases cover a contiguous range, it is not necessary to jump to
1795 // the default block after the last bit test fails. This is because the
1796 // range check during bit test header creation has guaranteed that every
1797 // case here doesn't go outside the range. In this case, there is no need
1798 // to perform the last bit test, as it will always be true. Instead, make
1799 // the second-to-last bit-test fall through to the target of the last bit
1800 // test, and delete the last bit test.
1802 MachineBasicBlock *NextMBB;
1803 if (BTB.ContiguousRange && j + 2 == ej) {
1804 // Second-to-last bit-test with contiguous range: fall through to the
1805 // target of the final bit test.
1806 NextMBB = BTB.Cases[j + 1].TargetBB;
1807 } else if (j + 1 == ej) {
1808 // For the last bit test, fall through to Default.
1809 NextMBB = BTB.Default;
1810 } else {
1811 // Otherwise, fall through to the next bit test.
1812 NextMBB = BTB.Cases[j + 1].ThisBB;
1815 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1816 FuncInfo->MBB);
1818 CurDAG->setRoot(SDB->getRoot());
1819 SDB->clear();
1820 CodeGenAndEmitDAG();
1822 if (BTB.ContiguousRange && j + 2 == ej) {
1823 // Since we're not going to use the final bit test, remove it.
1824 BTB.Cases.pop_back();
1825 break;
1829 // Update PHI Nodes
1830 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1831 pi != pe; ++pi) {
1832 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1833 MachineBasicBlock *PHIBB = PHI->getParent();
1834 assert(PHI->isPHI() &&
1835 "This is not a machine PHI node that we are updating!");
1836 // This is "default" BB. We have two jumps to it. From "header" BB and
1837 // from last "case" BB, unless the latter was skipped.
1838 if (PHIBB == BTB.Default) {
1839 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
1840 if (!BTB.ContiguousRange) {
1841 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1842 .addMBB(BTB.Cases.back().ThisBB);
1845 // One of "cases" BB.
1846 for (unsigned j = 0, ej = BTB.Cases.size();
1847 j != ej; ++j) {
1848 MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
1849 if (cBB->isSuccessor(PHIBB))
1850 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1854 SDB->SL->BitTestCases.clear();
1856 // If the JumpTable record is filled in, then we need to emit a jump table.
1857 // Updating the PHI nodes is tricky in this case, since we need to determine
1858 // whether the PHI is a successor of the range check MBB or the jump table MBB
1859 for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
1860 // Lower header first, if it wasn't already lowered
1861 if (!SDB->SL->JTCases[i].first.Emitted) {
1862 // Set the current basic block to the mbb we wish to insert the code into
1863 FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
1864 FuncInfo->InsertPt = FuncInfo->MBB->end();
1865 // Emit the code
1866 SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
1867 SDB->SL->JTCases[i].first, FuncInfo->MBB);
1868 CurDAG->setRoot(SDB->getRoot());
1869 SDB->clear();
1870 CodeGenAndEmitDAG();
1873 // Set the current basic block to the mbb we wish to insert the code into
1874 FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
1875 FuncInfo->InsertPt = FuncInfo->MBB->end();
1876 // Emit the code
1877 SDB->visitJumpTable(SDB->SL->JTCases[i].second);
1878 CurDAG->setRoot(SDB->getRoot());
1879 SDB->clear();
1880 CodeGenAndEmitDAG();
1882 // Update PHI Nodes
1883 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1884 pi != pe; ++pi) {
1885 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1886 MachineBasicBlock *PHIBB = PHI->getParent();
1887 assert(PHI->isPHI() &&
1888 "This is not a machine PHI node that we are updating!");
1889 // "default" BB. We can go there only from header BB.
1890 if (PHIBB == SDB->SL->JTCases[i].second.Default)
1891 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1892 .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
1893 // JT BB. Just iterate over successors here
1894 if (FuncInfo->MBB->isSuccessor(PHIBB))
1895 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1898 SDB->SL->JTCases.clear();
1900 // If we generated any switch lowering information, build and codegen any
1901 // additional DAGs necessary.
1902 for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
1903 // Set the current basic block to the mbb we wish to insert the code into
1904 FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
1905 FuncInfo->InsertPt = FuncInfo->MBB->end();
1907 // Determine the unique successors.
1908 SmallVector<MachineBasicBlock *, 2> Succs;
1909 Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
1910 if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
1911 Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
1913 // Emit the code. Note that this could result in FuncInfo->MBB being split.
1914 SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
1915 CurDAG->setRoot(SDB->getRoot());
1916 SDB->clear();
1917 CodeGenAndEmitDAG();
1919 // Remember the last block, now that any splitting is done, for use in
1920 // populating PHI nodes in successors.
1921 MachineBasicBlock *ThisBB = FuncInfo->MBB;
1923 // Handle any PHI nodes in successors of this chunk, as if we were coming
1924 // from the original BB before switch expansion. Note that PHI nodes can
1925 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1926 // handle them the right number of times.
1927 for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1928 FuncInfo->MBB = Succs[i];
1929 FuncInfo->InsertPt = FuncInfo->MBB->end();
1930 // FuncInfo->MBB may have been removed from the CFG if a branch was
1931 // constant folded.
1932 if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1933 for (MachineBasicBlock::iterator
1934 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1935 MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1936 MachineInstrBuilder PHI(*MF, MBBI);
1937 // This value for this PHI node is recorded in PHINodesToUpdate.
1938 for (unsigned pn = 0; ; ++pn) {
1939 assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1940 "Didn't find PHI entry!");
1941 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1942 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1943 break;
1950 SDB->SL->SwitchCases.clear();
1953 /// Create the scheduler. If a specific scheduler was specified
1954 /// via the SchedulerRegistry, use it, otherwise select the
1955 /// one preferred by the target.
1957 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1958 return ISHeuristic(this, OptLevel);
1961 //===----------------------------------------------------------------------===//
1962 // Helper functions used by the generated instruction selector.
1963 //===----------------------------------------------------------------------===//
1964 // Calls to these methods are generated by tblgen.
1966 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
1967 /// the dag combiner simplified the 255, we still want to match. RHS is the
1968 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1969 /// specified in the .td file (e.g. 255).
1970 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1971 int64_t DesiredMaskS) const {
1972 const APInt &ActualMask = RHS->getAPIntValue();
1973 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1975 // If the actual mask exactly matches, success!
1976 if (ActualMask == DesiredMask)
1977 return true;
1979 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1980 if (!ActualMask.isSubsetOf(DesiredMask))
1981 return false;
1983 // Otherwise, the DAG Combiner may have proven that the value coming in is
1984 // either already zero or is not demanded. Check for known zero input bits.
1985 APInt NeededMask = DesiredMask & ~ActualMask;
1986 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1987 return true;
1989 // TODO: check to see if missing bits are just not demanded.
1991 // Otherwise, this pattern doesn't match.
1992 return false;
1995 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
1996 /// the dag combiner simplified the 255, we still want to match. RHS is the
1997 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1998 /// specified in the .td file (e.g. 255).
1999 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
2000 int64_t DesiredMaskS) const {
2001 const APInt &ActualMask = RHS->getAPIntValue();
2002 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2004 // If the actual mask exactly matches, success!
2005 if (ActualMask == DesiredMask)
2006 return true;
2008 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2009 if (!ActualMask.isSubsetOf(DesiredMask))
2010 return false;
2012 // Otherwise, the DAG Combiner may have proven that the value coming in is
2013 // either already zero or is not demanded. Check for known zero input bits.
2014 APInt NeededMask = DesiredMask & ~ActualMask;
2015 KnownBits Known = CurDAG->computeKnownBits(LHS);
2017 // If all the missing bits in the or are already known to be set, match!
2018 if (NeededMask.isSubsetOf(Known.One))
2019 return true;
2021 // TODO: check to see if missing bits are just not demanded.
2023 // Otherwise, this pattern doesn't match.
2024 return false;
2027 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2028 /// by tblgen. Others should not call it.
2029 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2030 const SDLoc &DL) {
2031 std::vector<SDValue> InOps;
2032 std::swap(InOps, Ops);
2034 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2035 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
2036 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
2037 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
2039 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2040 if (InOps[e-1].getValueType() == MVT::Glue)
2041 --e; // Don't process a glue operand if it is here.
2043 while (i != e) {
2044 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2045 if (!InlineAsm::isMemKind(Flags)) {
2046 // Just skip over this operand, copying the operands verbatim.
2047 Ops.insert(Ops.end(), InOps.begin()+i,
2048 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2049 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2050 } else {
2051 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2052 "Memory operand with multiple values?");
2054 unsigned TiedToOperand;
2055 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2056 // We need the constraint ID from the operand this is tied to.
2057 unsigned CurOp = InlineAsm::Op_FirstOperand;
2058 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2059 for (; TiedToOperand; --TiedToOperand) {
2060 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2061 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2065 // Otherwise, this is a memory operand. Ask the target to select it.
2066 std::vector<SDValue> SelOps;
2067 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2068 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2069 report_fatal_error("Could not match memory address. Inline asm"
2070 " failure!");
2072 // Add this to the output node.
2073 unsigned NewFlags =
2074 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2075 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2076 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2077 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2078 i += 2;
2082 // Add the glue input back if present.
2083 if (e != InOps.size())
2084 Ops.push_back(InOps.back());
2087 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2088 /// SDNode.
2090 static SDNode *findGlueUse(SDNode *N) {
2091 unsigned FlagResNo = N->getNumValues()-1;
2092 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2093 SDUse &Use = I.getUse();
2094 if (Use.getResNo() == FlagResNo)
2095 return Use.getUser();
2097 return nullptr;
2100 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2101 /// beyond "ImmedUse". We may ignore chains as they are checked separately.
2102 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2103 bool IgnoreChains) {
2104 SmallPtrSet<const SDNode *, 16> Visited;
2105 SmallVector<const SDNode *, 16> WorkList;
2106 // Only check if we have non-immediate uses of Def.
2107 if (ImmedUse->isOnlyUserOf(Def))
2108 return false;
2110 // We don't care about paths to Def that go through ImmedUse so mark it
2111 // visited and mark non-def operands as used.
2112 Visited.insert(ImmedUse);
2113 for (const SDValue &Op : ImmedUse->op_values()) {
2114 SDNode *N = Op.getNode();
2115 // Ignore chain deps (they are validated by
2116 // HandleMergeInputChains) and immediate uses
2117 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2118 continue;
2119 if (!Visited.insert(N).second)
2120 continue;
2121 WorkList.push_back(N);
2124 // Initialize worklist to operands of Root.
2125 if (Root != ImmedUse) {
2126 for (const SDValue &Op : Root->op_values()) {
2127 SDNode *N = Op.getNode();
2128 // Ignore chains (they are validated by HandleMergeInputChains)
2129 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2130 continue;
2131 if (!Visited.insert(N).second)
2132 continue;
2133 WorkList.push_back(N);
2137 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2140 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2141 /// operand node N of U during instruction selection that starts at Root.
2142 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2143 SDNode *Root) const {
2144 if (OptLevel == CodeGenOpt::None) return false;
2145 return N.hasOneUse();
2148 /// IsLegalToFold - Returns true if the specific operand node N of
2149 /// U can be folded during instruction selection that starts at Root.
2150 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2151 CodeGenOpt::Level OptLevel,
2152 bool IgnoreChains) {
2153 if (OptLevel == CodeGenOpt::None) return false;
2155 // If Root use can somehow reach N through a path that that doesn't contain
2156 // U then folding N would create a cycle. e.g. In the following
2157 // diagram, Root can reach N through X. If N is folded into Root, then
2158 // X is both a predecessor and a successor of U.
2160 // [N*] //
2161 // ^ ^ //
2162 // / \ //
2163 // [U*] [X]? //
2164 // ^ ^ //
2165 // \ / //
2166 // \ / //
2167 // [Root*] //
2169 // * indicates nodes to be folded together.
2171 // If Root produces glue, then it gets (even more) interesting. Since it
2172 // will be "glued" together with its glue use in the scheduler, we need to
2173 // check if it might reach N.
2175 // [N*] //
2176 // ^ ^ //
2177 // / \ //
2178 // [U*] [X]? //
2179 // ^ ^ //
2180 // \ \ //
2181 // \ | //
2182 // [Root*] | //
2183 // ^ | //
2184 // f | //
2185 // | / //
2186 // [Y] / //
2187 // ^ / //
2188 // f / //
2189 // | / //
2190 // [GU] //
2192 // If GU (glue use) indirectly reaches N (the load), and Root folds N
2193 // (call it Fold), then X is a predecessor of GU and a successor of
2194 // Fold. But since Fold and GU are glued together, this will create
2195 // a cycle in the scheduling graph.
2197 // If the node has glue, walk down the graph to the "lowest" node in the
2198 // glueged set.
2199 EVT VT = Root->getValueType(Root->getNumValues()-1);
2200 while (VT == MVT::Glue) {
2201 SDNode *GU = findGlueUse(Root);
2202 if (!GU)
2203 break;
2204 Root = GU;
2205 VT = Root->getValueType(Root->getNumValues()-1);
2207 // If our query node has a glue result with a use, we've walked up it. If
2208 // the user (which has already been selected) has a chain or indirectly uses
2209 // the chain, HandleMergeInputChains will not consider it. Because of
2210 // this, we cannot ignore chains in this predicate.
2211 IgnoreChains = false;
2214 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2217 void SelectionDAGISel::Select_INLINEASM(SDNode *N, bool Branch) {
2218 SDLoc DL(N);
2220 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2221 SelectInlineAsmMemoryOperands(Ops, DL);
2223 const EVT VTs[] = {MVT::Other, MVT::Glue};
2224 SDValue New = CurDAG->getNode(Branch ? ISD::INLINEASM_BR : ISD::INLINEASM, DL, VTs, Ops);
2225 New->setNodeId(-1);
2226 ReplaceUses(N, New.getNode());
2227 CurDAG->RemoveDeadNode(N);
2230 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2231 SDLoc dl(Op);
2232 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2233 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2234 unsigned Reg =
2235 TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0),
2236 *CurDAG);
2237 SDValue New = CurDAG->getCopyFromReg(
2238 Op->getOperand(0), dl, Reg, Op->getValueType(0));
2239 New->setNodeId(-1);
2240 ReplaceUses(Op, New.getNode());
2241 CurDAG->RemoveDeadNode(Op);
2244 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2245 SDLoc dl(Op);
2246 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2247 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2248 unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
2249 Op->getOperand(2).getValueType(),
2250 *CurDAG);
2251 SDValue New = CurDAG->getCopyToReg(
2252 Op->getOperand(0), dl, Reg, Op->getOperand(2));
2253 New->setNodeId(-1);
2254 ReplaceUses(Op, New.getNode());
2255 CurDAG->RemoveDeadNode(Op);
2258 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2259 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2262 /// GetVBR - decode a vbr encoding whose top bit is set.
2263 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
2264 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2265 assert(Val >= 128 && "Not a VBR");
2266 Val &= 127; // Remove first vbr bit.
2268 unsigned Shift = 7;
2269 uint64_t NextBits;
2270 do {
2271 NextBits = MatcherTable[Idx++];
2272 Val |= (NextBits&127) << Shift;
2273 Shift += 7;
2274 } while (NextBits & 128);
2276 return Val;
2279 /// When a match is complete, this method updates uses of interior chain results
2280 /// to use the new results.
2281 void SelectionDAGISel::UpdateChains(
2282 SDNode *NodeToMatch, SDValue InputChain,
2283 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2284 SmallVector<SDNode*, 4> NowDeadNodes;
2286 // Now that all the normal results are replaced, we replace the chain and
2287 // glue results if present.
2288 if (!ChainNodesMatched.empty()) {
2289 assert(InputChain.getNode() &&
2290 "Matched input chains but didn't produce a chain");
2291 // Loop over all of the nodes we matched that produced a chain result.
2292 // Replace all the chain results with the final chain we ended up with.
2293 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2294 SDNode *ChainNode = ChainNodesMatched[i];
2295 // If ChainNode is null, it's because we replaced it on a previous
2296 // iteration and we cleared it out of the map. Just skip it.
2297 if (!ChainNode)
2298 continue;
2300 assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2301 "Deleted node left in chain");
2303 // Don't replace the results of the root node if we're doing a
2304 // MorphNodeTo.
2305 if (ChainNode == NodeToMatch && isMorphNodeTo)
2306 continue;
2308 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2309 if (ChainVal.getValueType() == MVT::Glue)
2310 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2311 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2312 SelectionDAG::DAGNodeDeletedListener NDL(
2313 *CurDAG, [&](SDNode *N, SDNode *E) {
2314 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2315 static_cast<SDNode *>(nullptr));
2317 if (ChainNode->getOpcode() != ISD::TokenFactor)
2318 ReplaceUses(ChainVal, InputChain);
2320 // If the node became dead and we haven't already seen it, delete it.
2321 if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2322 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
2323 NowDeadNodes.push_back(ChainNode);
2327 if (!NowDeadNodes.empty())
2328 CurDAG->RemoveDeadNodes(NowDeadNodes);
2330 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2333 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2334 /// operation for when the pattern matched at least one node with a chains. The
2335 /// input vector contains a list of all of the chained nodes that we match. We
2336 /// must determine if this is a valid thing to cover (i.e. matching it won't
2337 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2338 /// be used as the input node chain for the generated nodes.
2339 static SDValue
2340 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2341 SelectionDAG *CurDAG) {
2343 SmallPtrSet<const SDNode *, 16> Visited;
2344 SmallVector<const SDNode *, 8> Worklist;
2345 SmallVector<SDValue, 3> InputChains;
2346 unsigned int Max = 8192;
2348 // Quick exit on trivial merge.
2349 if (ChainNodesMatched.size() == 1)
2350 return ChainNodesMatched[0]->getOperand(0);
2352 // Add chains that aren't already added (internal). Peek through
2353 // token factors.
2354 std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2355 if (V.getValueType() != MVT::Other)
2356 return;
2357 if (V->getOpcode() == ISD::EntryToken)
2358 return;
2359 if (!Visited.insert(V.getNode()).second)
2360 return;
2361 if (V->getOpcode() == ISD::TokenFactor) {
2362 for (const SDValue &Op : V->op_values())
2363 AddChains(Op);
2364 } else
2365 InputChains.push_back(V);
2368 for (auto *N : ChainNodesMatched) {
2369 Worklist.push_back(N);
2370 Visited.insert(N);
2373 while (!Worklist.empty())
2374 AddChains(Worklist.pop_back_val()->getOperand(0));
2376 // Skip the search if there are no chain dependencies.
2377 if (InputChains.size() == 0)
2378 return CurDAG->getEntryNode();
2380 // If one of these chains is a successor of input, we must have a
2381 // node that is both the predecessor and successor of the
2382 // to-be-merged nodes. Fail.
2383 Visited.clear();
2384 for (SDValue V : InputChains)
2385 Worklist.push_back(V.getNode());
2387 for (auto *N : ChainNodesMatched)
2388 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2389 return SDValue();
2391 // Return merged chain.
2392 if (InputChains.size() == 1)
2393 return InputChains[0];
2394 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2395 MVT::Other, InputChains);
2398 /// MorphNode - Handle morphing a node in place for the selector.
2399 SDNode *SelectionDAGISel::
2400 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2401 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2402 // It is possible we're using MorphNodeTo to replace a node with no
2403 // normal results with one that has a normal result (or we could be
2404 // adding a chain) and the input could have glue and chains as well.
2405 // In this case we need to shift the operands down.
2406 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2407 // than the old isel though.
2408 int OldGlueResultNo = -1, OldChainResultNo = -1;
2410 unsigned NTMNumResults = Node->getNumValues();
2411 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2412 OldGlueResultNo = NTMNumResults-1;
2413 if (NTMNumResults != 1 &&
2414 Node->getValueType(NTMNumResults-2) == MVT::Other)
2415 OldChainResultNo = NTMNumResults-2;
2416 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2417 OldChainResultNo = NTMNumResults-1;
2419 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2420 // that this deletes operands of the old node that become dead.
2421 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2423 // MorphNodeTo can operate in two ways: if an existing node with the
2424 // specified operands exists, it can just return it. Otherwise, it
2425 // updates the node in place to have the requested operands.
2426 if (Res == Node) {
2427 // If we updated the node in place, reset the node ID. To the isel,
2428 // this should be just like a newly allocated machine node.
2429 Res->setNodeId(-1);
2432 unsigned ResNumResults = Res->getNumValues();
2433 // Move the glue if needed.
2434 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2435 (unsigned)OldGlueResultNo != ResNumResults-1)
2436 ReplaceUses(SDValue(Node, OldGlueResultNo),
2437 SDValue(Res, ResNumResults - 1));
2439 if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2440 --ResNumResults;
2442 // Move the chain reference if needed.
2443 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2444 (unsigned)OldChainResultNo != ResNumResults-1)
2445 ReplaceUses(SDValue(Node, OldChainResultNo),
2446 SDValue(Res, ResNumResults - 1));
2448 // Otherwise, no replacement happened because the node already exists. Replace
2449 // Uses of the old node with the new one.
2450 if (Res != Node) {
2451 ReplaceNode(Node, Res);
2452 } else {
2453 EnforceNodeIdInvariant(Res);
2456 return Res;
2459 /// CheckSame - Implements OP_CheckSame.
2460 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2461 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2462 SDValue N,
2463 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2464 // Accept if it is exactly the same as a previously recorded node.
2465 unsigned RecNo = MatcherTable[MatcherIndex++];
2466 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2467 return N == RecordedNodes[RecNo].first;
2470 /// CheckChildSame - Implements OP_CheckChildXSame.
2471 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2472 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2473 SDValue N,
2474 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes,
2475 unsigned ChildNo) {
2476 if (ChildNo >= N.getNumOperands())
2477 return false; // Match fails if out of range child #.
2478 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2479 RecordedNodes);
2482 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2483 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2484 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2485 const SelectionDAGISel &SDISel) {
2486 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2489 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2490 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2491 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2492 const SelectionDAGISel &SDISel, SDNode *N) {
2493 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2496 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2497 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2498 SDNode *N) {
2499 uint16_t Opc = MatcherTable[MatcherIndex++];
2500 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2501 return N->getOpcode() == Opc;
2504 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2505 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2506 const TargetLowering *TLI, const DataLayout &DL) {
2507 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2508 if (N.getValueType() == VT) return true;
2510 // Handle the case when VT is iPTR.
2511 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2514 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2515 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2516 SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2517 unsigned ChildNo) {
2518 if (ChildNo >= N.getNumOperands())
2519 return false; // Match fails if out of range child #.
2520 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2521 DL);
2524 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2525 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2526 SDValue N) {
2527 return cast<CondCodeSDNode>(N)->get() ==
2528 (ISD::CondCode)MatcherTable[MatcherIndex++];
2531 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2532 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2533 SDValue N) {
2534 if (2 >= N.getNumOperands())
2535 return false;
2536 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2539 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2540 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2541 SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2542 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2543 if (cast<VTSDNode>(N)->getVT() == VT)
2544 return true;
2546 // Handle the case when VT is iPTR.
2547 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2550 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2551 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2552 SDValue N) {
2553 int64_t Val = MatcherTable[MatcherIndex++];
2554 if (Val & 128)
2555 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2557 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2558 return C && C->getSExtValue() == Val;
2561 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2562 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2563 SDValue N, unsigned ChildNo) {
2564 if (ChildNo >= N.getNumOperands())
2565 return false; // Match fails if out of range child #.
2566 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2569 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2570 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2571 SDValue N, const SelectionDAGISel &SDISel) {
2572 int64_t Val = MatcherTable[MatcherIndex++];
2573 if (Val & 128)
2574 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2576 if (N->getOpcode() != ISD::AND) return false;
2578 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2579 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2582 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2583 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2584 SDValue N, const SelectionDAGISel &SDISel) {
2585 int64_t Val = MatcherTable[MatcherIndex++];
2586 if (Val & 128)
2587 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2589 if (N->getOpcode() != ISD::OR) return false;
2591 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2592 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2595 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2596 /// scope, evaluate the current node. If the current predicate is known to
2597 /// fail, set Result=true and return anything. If the current predicate is
2598 /// known to pass, set Result=false and return the MatcherIndex to continue
2599 /// with. If the current predicate is unknown, set Result=false and return the
2600 /// MatcherIndex to continue with.
2601 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2602 unsigned Index, SDValue N,
2603 bool &Result,
2604 const SelectionDAGISel &SDISel,
2605 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2606 switch (Table[Index++]) {
2607 default:
2608 Result = false;
2609 return Index-1; // Could not evaluate this predicate.
2610 case SelectionDAGISel::OPC_CheckSame:
2611 Result = !::CheckSame(Table, Index, N, RecordedNodes);
2612 return Index;
2613 case SelectionDAGISel::OPC_CheckChild0Same:
2614 case SelectionDAGISel::OPC_CheckChild1Same:
2615 case SelectionDAGISel::OPC_CheckChild2Same:
2616 case SelectionDAGISel::OPC_CheckChild3Same:
2617 Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2618 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2619 return Index;
2620 case SelectionDAGISel::OPC_CheckPatternPredicate:
2621 Result = !::CheckPatternPredicate(Table, Index, SDISel);
2622 return Index;
2623 case SelectionDAGISel::OPC_CheckPredicate:
2624 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2625 return Index;
2626 case SelectionDAGISel::OPC_CheckOpcode:
2627 Result = !::CheckOpcode(Table, Index, N.getNode());
2628 return Index;
2629 case SelectionDAGISel::OPC_CheckType:
2630 Result = !::CheckType(Table, Index, N, SDISel.TLI,
2631 SDISel.CurDAG->getDataLayout());
2632 return Index;
2633 case SelectionDAGISel::OPC_CheckTypeRes: {
2634 unsigned Res = Table[Index++];
2635 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2636 SDISel.CurDAG->getDataLayout());
2637 return Index;
2639 case SelectionDAGISel::OPC_CheckChild0Type:
2640 case SelectionDAGISel::OPC_CheckChild1Type:
2641 case SelectionDAGISel::OPC_CheckChild2Type:
2642 case SelectionDAGISel::OPC_CheckChild3Type:
2643 case SelectionDAGISel::OPC_CheckChild4Type:
2644 case SelectionDAGISel::OPC_CheckChild5Type:
2645 case SelectionDAGISel::OPC_CheckChild6Type:
2646 case SelectionDAGISel::OPC_CheckChild7Type:
2647 Result = !::CheckChildType(
2648 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2649 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2650 return Index;
2651 case SelectionDAGISel::OPC_CheckCondCode:
2652 Result = !::CheckCondCode(Table, Index, N);
2653 return Index;
2654 case SelectionDAGISel::OPC_CheckChild2CondCode:
2655 Result = !::CheckChild2CondCode(Table, Index, N);
2656 return Index;
2657 case SelectionDAGISel::OPC_CheckValueType:
2658 Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2659 SDISel.CurDAG->getDataLayout());
2660 return Index;
2661 case SelectionDAGISel::OPC_CheckInteger:
2662 Result = !::CheckInteger(Table, Index, N);
2663 return Index;
2664 case SelectionDAGISel::OPC_CheckChild0Integer:
2665 case SelectionDAGISel::OPC_CheckChild1Integer:
2666 case SelectionDAGISel::OPC_CheckChild2Integer:
2667 case SelectionDAGISel::OPC_CheckChild3Integer:
2668 case SelectionDAGISel::OPC_CheckChild4Integer:
2669 Result = !::CheckChildInteger(Table, Index, N,
2670 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2671 return Index;
2672 case SelectionDAGISel::OPC_CheckAndImm:
2673 Result = !::CheckAndImm(Table, Index, N, SDISel);
2674 return Index;
2675 case SelectionDAGISel::OPC_CheckOrImm:
2676 Result = !::CheckOrImm(Table, Index, N, SDISel);
2677 return Index;
2681 namespace {
2683 struct MatchScope {
2684 /// FailIndex - If this match fails, this is the index to continue with.
2685 unsigned FailIndex;
2687 /// NodeStack - The node stack when the scope was formed.
2688 SmallVector<SDValue, 4> NodeStack;
2690 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2691 unsigned NumRecordedNodes;
2693 /// NumMatchedMemRefs - The number of matched memref entries.
2694 unsigned NumMatchedMemRefs;
2696 /// InputChain/InputGlue - The current chain/glue
2697 SDValue InputChain, InputGlue;
2699 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2700 bool HasChainNodesMatched;
2703 /// \A DAG update listener to keep the matching state
2704 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2705 /// change the DAG while matching. X86 addressing mode matcher is an example
2706 /// for this.
2707 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2709 SDNode **NodeToMatch;
2710 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2711 SmallVectorImpl<MatchScope> &MatchScopes;
2713 public:
2714 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2715 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2716 SmallVectorImpl<MatchScope> &MS)
2717 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2718 RecordedNodes(RN), MatchScopes(MS) {}
2720 void NodeDeleted(SDNode *N, SDNode *E) override {
2721 // Some early-returns here to avoid the search if we deleted the node or
2722 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2723 // do, so it's unnecessary to update matching state at that point).
2724 // Neither of these can occur currently because we only install this
2725 // update listener during matching a complex patterns.
2726 if (!E || E->isMachineOpcode())
2727 return;
2728 // Check if NodeToMatch was updated.
2729 if (N == *NodeToMatch)
2730 *NodeToMatch = E;
2731 // Performing linear search here does not matter because we almost never
2732 // run this code. You'd have to have a CSE during complex pattern
2733 // matching.
2734 for (auto &I : RecordedNodes)
2735 if (I.first.getNode() == N)
2736 I.first.setNode(E);
2738 for (auto &I : MatchScopes)
2739 for (auto &J : I.NodeStack)
2740 if (J.getNode() == N)
2741 J.setNode(E);
2745 } // end anonymous namespace
2747 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2748 const unsigned char *MatcherTable,
2749 unsigned TableSize) {
2750 // FIXME: Should these even be selected? Handle these cases in the caller?
2751 switch (NodeToMatch->getOpcode()) {
2752 default:
2753 break;
2754 case ISD::EntryToken: // These nodes remain the same.
2755 case ISD::BasicBlock:
2756 case ISD::Register:
2757 case ISD::RegisterMask:
2758 case ISD::HANDLENODE:
2759 case ISD::MDNODE_SDNODE:
2760 case ISD::TargetConstant:
2761 case ISD::TargetConstantFP:
2762 case ISD::TargetConstantPool:
2763 case ISD::TargetFrameIndex:
2764 case ISD::TargetExternalSymbol:
2765 case ISD::MCSymbol:
2766 case ISD::TargetBlockAddress:
2767 case ISD::TargetJumpTable:
2768 case ISD::TargetGlobalTLSAddress:
2769 case ISD::TargetGlobalAddress:
2770 case ISD::TokenFactor:
2771 case ISD::CopyFromReg:
2772 case ISD::CopyToReg:
2773 case ISD::EH_LABEL:
2774 case ISD::ANNOTATION_LABEL:
2775 case ISD::LIFETIME_START:
2776 case ISD::LIFETIME_END:
2777 NodeToMatch->setNodeId(-1); // Mark selected.
2778 return;
2779 case ISD::AssertSext:
2780 case ISD::AssertZext:
2781 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2782 CurDAG->RemoveDeadNode(NodeToMatch);
2783 return;
2784 case ISD::INLINEASM:
2785 case ISD::INLINEASM_BR:
2786 Select_INLINEASM(NodeToMatch,
2787 NodeToMatch->getOpcode() == ISD::INLINEASM_BR);
2788 return;
2789 case ISD::READ_REGISTER:
2790 Select_READ_REGISTER(NodeToMatch);
2791 return;
2792 case ISD::WRITE_REGISTER:
2793 Select_WRITE_REGISTER(NodeToMatch);
2794 return;
2795 case ISD::UNDEF:
2796 Select_UNDEF(NodeToMatch);
2797 return;
2800 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2802 // Set up the node stack with NodeToMatch as the only node on the stack.
2803 SmallVector<SDValue, 8> NodeStack;
2804 SDValue N = SDValue(NodeToMatch, 0);
2805 NodeStack.push_back(N);
2807 // MatchScopes - Scopes used when matching, if a match failure happens, this
2808 // indicates where to continue checking.
2809 SmallVector<MatchScope, 8> MatchScopes;
2811 // RecordedNodes - This is the set of nodes that have been recorded by the
2812 // state machine. The second value is the parent of the node, or null if the
2813 // root is recorded.
2814 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2816 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2817 // pattern.
2818 SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2820 // These are the current input chain and glue for use when generating nodes.
2821 // Various Emit operations change these. For example, emitting a copytoreg
2822 // uses and updates these.
2823 SDValue InputChain, InputGlue;
2825 // ChainNodesMatched - If a pattern matches nodes that have input/output
2826 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2827 // which ones they are. The result is captured into this list so that we can
2828 // update the chain results when the pattern is complete.
2829 SmallVector<SDNode*, 3> ChainNodesMatched;
2831 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2833 // Determine where to start the interpreter. Normally we start at opcode #0,
2834 // but if the state machine starts with an OPC_SwitchOpcode, then we
2835 // accelerate the first lookup (which is guaranteed to be hot) with the
2836 // OpcodeOffset table.
2837 unsigned MatcherIndex = 0;
2839 if (!OpcodeOffset.empty()) {
2840 // Already computed the OpcodeOffset table, just index into it.
2841 if (N.getOpcode() < OpcodeOffset.size())
2842 MatcherIndex = OpcodeOffset[N.getOpcode()];
2843 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n");
2845 } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2846 // Otherwise, the table isn't computed, but the state machine does start
2847 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2848 // is the first time we're selecting an instruction.
2849 unsigned Idx = 1;
2850 while (true) {
2851 // Get the size of this case.
2852 unsigned CaseSize = MatcherTable[Idx++];
2853 if (CaseSize & 128)
2854 CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2855 if (CaseSize == 0) break;
2857 // Get the opcode, add the index to the table.
2858 uint16_t Opc = MatcherTable[Idx++];
2859 Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2860 if (Opc >= OpcodeOffset.size())
2861 OpcodeOffset.resize((Opc+1)*2);
2862 OpcodeOffset[Opc] = Idx;
2863 Idx += CaseSize;
2866 // Okay, do the lookup for the first opcode.
2867 if (N.getOpcode() < OpcodeOffset.size())
2868 MatcherIndex = OpcodeOffset[N.getOpcode()];
2871 while (true) {
2872 assert(MatcherIndex < TableSize && "Invalid index");
2873 #ifndef NDEBUG
2874 unsigned CurrentOpcodeIndex = MatcherIndex;
2875 #endif
2876 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2877 switch (Opcode) {
2878 case OPC_Scope: {
2879 // Okay, the semantics of this operation are that we should push a scope
2880 // then evaluate the first child. However, pushing a scope only to have
2881 // the first check fail (which then pops it) is inefficient. If we can
2882 // determine immediately that the first check (or first several) will
2883 // immediately fail, don't even bother pushing a scope for them.
2884 unsigned FailIndex;
2886 while (true) {
2887 unsigned NumToSkip = MatcherTable[MatcherIndex++];
2888 if (NumToSkip & 128)
2889 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2890 // Found the end of the scope with no match.
2891 if (NumToSkip == 0) {
2892 FailIndex = 0;
2893 break;
2896 FailIndex = MatcherIndex+NumToSkip;
2898 unsigned MatcherIndexOfPredicate = MatcherIndex;
2899 (void)MatcherIndexOfPredicate; // silence warning.
2901 // If we can't evaluate this predicate without pushing a scope (e.g. if
2902 // it is a 'MoveParent') or if the predicate succeeds on this node, we
2903 // push the scope and evaluate the full predicate chain.
2904 bool Result;
2905 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2906 Result, *this, RecordedNodes);
2907 if (!Result)
2908 break;
2910 LLVM_DEBUG(
2911 dbgs() << " Skipped scope entry (due to false predicate) at "
2912 << "index " << MatcherIndexOfPredicate << ", continuing at "
2913 << FailIndex << "\n");
2914 ++NumDAGIselRetries;
2916 // Otherwise, we know that this case of the Scope is guaranteed to fail,
2917 // move to the next case.
2918 MatcherIndex = FailIndex;
2921 // If the whole scope failed to match, bail.
2922 if (FailIndex == 0) break;
2924 // Push a MatchScope which indicates where to go if the first child fails
2925 // to match.
2926 MatchScope NewEntry;
2927 NewEntry.FailIndex = FailIndex;
2928 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2929 NewEntry.NumRecordedNodes = RecordedNodes.size();
2930 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2931 NewEntry.InputChain = InputChain;
2932 NewEntry.InputGlue = InputGlue;
2933 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2934 MatchScopes.push_back(NewEntry);
2935 continue;
2937 case OPC_RecordNode: {
2938 // Remember this node, it may end up being an operand in the pattern.
2939 SDNode *Parent = nullptr;
2940 if (NodeStack.size() > 1)
2941 Parent = NodeStack[NodeStack.size()-2].getNode();
2942 RecordedNodes.push_back(std::make_pair(N, Parent));
2943 continue;
2946 case OPC_RecordChild0: case OPC_RecordChild1:
2947 case OPC_RecordChild2: case OPC_RecordChild3:
2948 case OPC_RecordChild4: case OPC_RecordChild5:
2949 case OPC_RecordChild6: case OPC_RecordChild7: {
2950 unsigned ChildNo = Opcode-OPC_RecordChild0;
2951 if (ChildNo >= N.getNumOperands())
2952 break; // Match fails if out of range child #.
2954 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2955 N.getNode()));
2956 continue;
2958 case OPC_RecordMemRef:
2959 if (auto *MN = dyn_cast<MemSDNode>(N))
2960 MatchedMemRefs.push_back(MN->getMemOperand());
2961 else {
2962 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
2963 dbgs() << '\n');
2966 continue;
2968 case OPC_CaptureGlueInput:
2969 // If the current node has an input glue, capture it in InputGlue.
2970 if (N->getNumOperands() != 0 &&
2971 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2972 InputGlue = N->getOperand(N->getNumOperands()-1);
2973 continue;
2975 case OPC_MoveChild: {
2976 unsigned ChildNo = MatcherTable[MatcherIndex++];
2977 if (ChildNo >= N.getNumOperands())
2978 break; // Match fails if out of range child #.
2979 N = N.getOperand(ChildNo);
2980 NodeStack.push_back(N);
2981 continue;
2984 case OPC_MoveChild0: case OPC_MoveChild1:
2985 case OPC_MoveChild2: case OPC_MoveChild3:
2986 case OPC_MoveChild4: case OPC_MoveChild5:
2987 case OPC_MoveChild6: case OPC_MoveChild7: {
2988 unsigned ChildNo = Opcode-OPC_MoveChild0;
2989 if (ChildNo >= N.getNumOperands())
2990 break; // Match fails if out of range child #.
2991 N = N.getOperand(ChildNo);
2992 NodeStack.push_back(N);
2993 continue;
2996 case OPC_MoveParent:
2997 // Pop the current node off the NodeStack.
2998 NodeStack.pop_back();
2999 assert(!NodeStack.empty() && "Node stack imbalance!");
3000 N = NodeStack.back();
3001 continue;
3003 case OPC_CheckSame:
3004 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3005 continue;
3007 case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3008 case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3009 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3010 Opcode-OPC_CheckChild0Same))
3011 break;
3012 continue;
3014 case OPC_CheckPatternPredicate:
3015 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3016 continue;
3017 case OPC_CheckPredicate:
3018 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3019 N.getNode()))
3020 break;
3021 continue;
3022 case OPC_CheckPredicateWithOperands: {
3023 unsigned OpNum = MatcherTable[MatcherIndex++];
3024 SmallVector<SDValue, 8> Operands;
3026 for (unsigned i = 0; i < OpNum; ++i)
3027 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3029 unsigned PredNo = MatcherTable[MatcherIndex++];
3030 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3031 break;
3032 continue;
3034 case OPC_CheckComplexPat: {
3035 unsigned CPNum = MatcherTable[MatcherIndex++];
3036 unsigned RecNo = MatcherTable[MatcherIndex++];
3037 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3039 // If target can modify DAG during matching, keep the matching state
3040 // consistent.
3041 std::unique_ptr<MatchStateUpdater> MSU;
3042 if (ComplexPatternFuncMutatesDAG())
3043 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3044 MatchScopes));
3046 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3047 RecordedNodes[RecNo].first, CPNum,
3048 RecordedNodes))
3049 break;
3050 continue;
3052 case OPC_CheckOpcode:
3053 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3054 continue;
3056 case OPC_CheckType:
3057 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3058 CurDAG->getDataLayout()))
3059 break;
3060 continue;
3062 case OPC_CheckTypeRes: {
3063 unsigned Res = MatcherTable[MatcherIndex++];
3064 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3065 CurDAG->getDataLayout()))
3066 break;
3067 continue;
3070 case OPC_SwitchOpcode: {
3071 unsigned CurNodeOpcode = N.getOpcode();
3072 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3073 unsigned CaseSize;
3074 while (true) {
3075 // Get the size of this case.
3076 CaseSize = MatcherTable[MatcherIndex++];
3077 if (CaseSize & 128)
3078 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3079 if (CaseSize == 0) break;
3081 uint16_t Opc = MatcherTable[MatcherIndex++];
3082 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3084 // If the opcode matches, then we will execute this case.
3085 if (CurNodeOpcode == Opc)
3086 break;
3088 // Otherwise, skip over this case.
3089 MatcherIndex += CaseSize;
3092 // If no cases matched, bail out.
3093 if (CaseSize == 0) break;
3095 // Otherwise, execute the case we found.
3096 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to "
3097 << MatcherIndex << "\n");
3098 continue;
3101 case OPC_SwitchType: {
3102 MVT CurNodeVT = N.getSimpleValueType();
3103 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3104 unsigned CaseSize;
3105 while (true) {
3106 // Get the size of this case.
3107 CaseSize = MatcherTable[MatcherIndex++];
3108 if (CaseSize & 128)
3109 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3110 if (CaseSize == 0) break;
3112 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3113 if (CaseVT == MVT::iPTR)
3114 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3116 // If the VT matches, then we will execute this case.
3117 if (CurNodeVT == CaseVT)
3118 break;
3120 // Otherwise, skip over this case.
3121 MatcherIndex += CaseSize;
3124 // If no cases matched, bail out.
3125 if (CaseSize == 0) break;
3127 // Otherwise, execute the case we found.
3128 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3129 << "] from " << SwitchStart << " to " << MatcherIndex
3130 << '\n');
3131 continue;
3133 case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3134 case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3135 case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3136 case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3137 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3138 CurDAG->getDataLayout(),
3139 Opcode - OPC_CheckChild0Type))
3140 break;
3141 continue;
3142 case OPC_CheckCondCode:
3143 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3144 continue;
3145 case OPC_CheckChild2CondCode:
3146 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3147 continue;
3148 case OPC_CheckValueType:
3149 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3150 CurDAG->getDataLayout()))
3151 break;
3152 continue;
3153 case OPC_CheckInteger:
3154 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3155 continue;
3156 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3157 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3158 case OPC_CheckChild4Integer:
3159 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3160 Opcode-OPC_CheckChild0Integer)) break;
3161 continue;
3162 case OPC_CheckAndImm:
3163 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3164 continue;
3165 case OPC_CheckOrImm:
3166 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3167 continue;
3168 case OPC_CheckImmAllOnesV:
3169 if (!ISD::isBuildVectorAllOnes(N.getNode())) break;
3170 continue;
3171 case OPC_CheckImmAllZerosV:
3172 if (!ISD::isBuildVectorAllZeros(N.getNode())) break;
3173 continue;
3175 case OPC_CheckFoldableChainNode: {
3176 assert(NodeStack.size() != 1 && "No parent node");
3177 // Verify that all intermediate nodes between the root and this one have
3178 // a single use.
3179 bool HasMultipleUses = false;
3180 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
3181 if (!NodeStack[i].getNode()->hasOneUse()) {
3182 HasMultipleUses = true;
3183 break;
3185 if (HasMultipleUses) break;
3187 // Check to see that the target thinks this is profitable to fold and that
3188 // we can fold it without inducing cycles in the graph.
3189 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3190 NodeToMatch) ||
3191 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3192 NodeToMatch, OptLevel,
3193 true/*We validate our own chains*/))
3194 break;
3196 continue;
3198 case OPC_EmitInteger: {
3199 MVT::SimpleValueType VT =
3200 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3201 int64_t Val = MatcherTable[MatcherIndex++];
3202 if (Val & 128)
3203 Val = GetVBR(Val, MatcherTable, MatcherIndex);
3204 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3205 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3206 VT), nullptr));
3207 continue;
3209 case OPC_EmitRegister: {
3210 MVT::SimpleValueType VT =
3211 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3212 unsigned RegNo = MatcherTable[MatcherIndex++];
3213 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3214 CurDAG->getRegister(RegNo, VT), nullptr));
3215 continue;
3217 case OPC_EmitRegister2: {
3218 // For targets w/ more than 256 register names, the register enum
3219 // values are stored in two bytes in the matcher table (just like
3220 // opcodes).
3221 MVT::SimpleValueType VT =
3222 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3223 unsigned RegNo = MatcherTable[MatcherIndex++];
3224 RegNo |= MatcherTable[MatcherIndex++] << 8;
3225 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3226 CurDAG->getRegister(RegNo, VT), nullptr));
3227 continue;
3230 case OPC_EmitConvertToTarget: {
3231 // Convert from IMM/FPIMM to target version.
3232 unsigned RecNo = MatcherTable[MatcherIndex++];
3233 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3234 SDValue Imm = RecordedNodes[RecNo].first;
3236 if (Imm->getOpcode() == ISD::Constant) {
3237 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3238 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3239 Imm.getValueType());
3240 } else if (Imm->getOpcode() == ISD::ConstantFP) {
3241 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3242 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3243 Imm.getValueType());
3246 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3247 continue;
3250 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
3251 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1
3252 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2
3253 // These are space-optimized forms of OPC_EmitMergeInputChains.
3254 assert(!InputChain.getNode() &&
3255 "EmitMergeInputChains should be the first chain producing node");
3256 assert(ChainNodesMatched.empty() &&
3257 "Should only have one EmitMergeInputChains per match");
3259 // Read all of the chained nodes.
3260 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3261 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3262 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3264 // FIXME: What if other value results of the node have uses not matched
3265 // by this pattern?
3266 if (ChainNodesMatched.back() != NodeToMatch &&
3267 !RecordedNodes[RecNo].first.hasOneUse()) {
3268 ChainNodesMatched.clear();
3269 break;
3272 // Merge the input chains if they are not intra-pattern references.
3273 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3275 if (!InputChain.getNode())
3276 break; // Failed to merge.
3277 continue;
3280 case OPC_EmitMergeInputChains: {
3281 assert(!InputChain.getNode() &&
3282 "EmitMergeInputChains should be the first chain producing node");
3283 // This node gets a list of nodes we matched in the input that have
3284 // chains. We want to token factor all of the input chains to these nodes
3285 // together. However, if any of the input chains is actually one of the
3286 // nodes matched in this pattern, then we have an intra-match reference.
3287 // Ignore these because the newly token factored chain should not refer to
3288 // the old nodes.
3289 unsigned NumChains = MatcherTable[MatcherIndex++];
3290 assert(NumChains != 0 && "Can't TF zero chains");
3292 assert(ChainNodesMatched.empty() &&
3293 "Should only have one EmitMergeInputChains per match");
3295 // Read all of the chained nodes.
3296 for (unsigned i = 0; i != NumChains; ++i) {
3297 unsigned RecNo = MatcherTable[MatcherIndex++];
3298 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3299 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3301 // FIXME: What if other value results of the node have uses not matched
3302 // by this pattern?
3303 if (ChainNodesMatched.back() != NodeToMatch &&
3304 !RecordedNodes[RecNo].first.hasOneUse()) {
3305 ChainNodesMatched.clear();
3306 break;
3310 // If the inner loop broke out, the match fails.
3311 if (ChainNodesMatched.empty())
3312 break;
3314 // Merge the input chains if they are not intra-pattern references.
3315 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3317 if (!InputChain.getNode())
3318 break; // Failed to merge.
3320 continue;
3323 case OPC_EmitCopyToReg:
3324 case OPC_EmitCopyToReg2: {
3325 unsigned RecNo = MatcherTable[MatcherIndex++];
3326 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3327 unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3328 if (Opcode == OPC_EmitCopyToReg2)
3329 DestPhysReg |= MatcherTable[MatcherIndex++] << 8;
3331 if (!InputChain.getNode())
3332 InputChain = CurDAG->getEntryNode();
3334 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3335 DestPhysReg, RecordedNodes[RecNo].first,
3336 InputGlue);
3338 InputGlue = InputChain.getValue(1);
3339 continue;
3342 case OPC_EmitNodeXForm: {
3343 unsigned XFormNo = MatcherTable[MatcherIndex++];
3344 unsigned RecNo = MatcherTable[MatcherIndex++];
3345 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3346 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3347 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3348 continue;
3350 case OPC_Coverage: {
3351 // This is emitted right before MorphNode/EmitNode.
3352 // So it should be safe to assume that this node has been selected
3353 unsigned index = MatcherTable[MatcherIndex++];
3354 index |= (MatcherTable[MatcherIndex++] << 8);
3355 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3356 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3357 continue;
3360 case OPC_EmitNode: case OPC_MorphNodeTo:
3361 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2:
3362 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3363 uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3364 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3365 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3366 // Get the result VT list.
3367 unsigned NumVTs;
3368 // If this is one of the compressed forms, get the number of VTs based
3369 // on the Opcode. Otherwise read the next byte from the table.
3370 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3371 NumVTs = Opcode - OPC_MorphNodeTo0;
3372 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3373 NumVTs = Opcode - OPC_EmitNode0;
3374 else
3375 NumVTs = MatcherTable[MatcherIndex++];
3376 SmallVector<EVT, 4> VTs;
3377 for (unsigned i = 0; i != NumVTs; ++i) {
3378 MVT::SimpleValueType VT =
3379 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3380 if (VT == MVT::iPTR)
3381 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3382 VTs.push_back(VT);
3385 if (EmitNodeInfo & OPFL_Chain)
3386 VTs.push_back(MVT::Other);
3387 if (EmitNodeInfo & OPFL_GlueOutput)
3388 VTs.push_back(MVT::Glue);
3390 // This is hot code, so optimize the two most common cases of 1 and 2
3391 // results.
3392 SDVTList VTList;
3393 if (VTs.size() == 1)
3394 VTList = CurDAG->getVTList(VTs[0]);
3395 else if (VTs.size() == 2)
3396 VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3397 else
3398 VTList = CurDAG->getVTList(VTs);
3400 // Get the operand list.
3401 unsigned NumOps = MatcherTable[MatcherIndex++];
3402 SmallVector<SDValue, 8> Ops;
3403 for (unsigned i = 0; i != NumOps; ++i) {
3404 unsigned RecNo = MatcherTable[MatcherIndex++];
3405 if (RecNo & 128)
3406 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3408 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3409 Ops.push_back(RecordedNodes[RecNo].first);
3412 // If there are variadic operands to add, handle them now.
3413 if (EmitNodeInfo & OPFL_VariadicInfo) {
3414 // Determine the start index to copy from.
3415 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3416 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3417 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3418 "Invalid variadic node");
3419 // Copy all of the variadic operands, not including a potential glue
3420 // input.
3421 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3422 i != e; ++i) {
3423 SDValue V = NodeToMatch->getOperand(i);
3424 if (V.getValueType() == MVT::Glue) break;
3425 Ops.push_back(V);
3429 // If this has chain/glue inputs, add them.
3430 if (EmitNodeInfo & OPFL_Chain)
3431 Ops.push_back(InputChain);
3432 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3433 Ops.push_back(InputGlue);
3435 // Create the node.
3436 MachineSDNode *Res = nullptr;
3437 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3438 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3439 if (!IsMorphNodeTo) {
3440 // If this is a normal EmitNode command, just create the new node and
3441 // add the results to the RecordedNodes list.
3442 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3443 VTList, Ops);
3445 // Add all the non-glue/non-chain results to the RecordedNodes list.
3446 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3447 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3448 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3449 nullptr));
3451 } else {
3452 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3453 "NodeToMatch was removed partway through selection");
3454 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3455 SDNode *E) {
3456 CurDAG->salvageDebugInfo(*N);
3457 auto &Chain = ChainNodesMatched;
3458 assert((!E || !is_contained(Chain, N)) &&
3459 "Chain node replaced during MorphNode");
3460 Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
3462 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3463 Ops, EmitNodeInfo));
3466 // If the node had chain/glue results, update our notion of the current
3467 // chain and glue.
3468 if (EmitNodeInfo & OPFL_GlueOutput) {
3469 InputGlue = SDValue(Res, VTs.size()-1);
3470 if (EmitNodeInfo & OPFL_Chain)
3471 InputChain = SDValue(Res, VTs.size()-2);
3472 } else if (EmitNodeInfo & OPFL_Chain)
3473 InputChain = SDValue(Res, VTs.size()-1);
3475 // If the OPFL_MemRefs glue is set on this node, slap all of the
3476 // accumulated memrefs onto it.
3478 // FIXME: This is vastly incorrect for patterns with multiple outputs
3479 // instructions that access memory and for ComplexPatterns that match
3480 // loads.
3481 if (EmitNodeInfo & OPFL_MemRefs) {
3482 // Only attach load or store memory operands if the generated
3483 // instruction may load or store.
3484 const MCInstrDesc &MCID = TII->get(TargetOpc);
3485 bool mayLoad = MCID.mayLoad();
3486 bool mayStore = MCID.mayStore();
3488 // We expect to have relatively few of these so just filter them into a
3489 // temporary buffer so that we can easily add them to the instruction.
3490 SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
3491 for (MachineMemOperand *MMO : MatchedMemRefs) {
3492 if (MMO->isLoad()) {
3493 if (mayLoad)
3494 FilteredMemRefs.push_back(MMO);
3495 } else if (MMO->isStore()) {
3496 if (mayStore)
3497 FilteredMemRefs.push_back(MMO);
3498 } else {
3499 FilteredMemRefs.push_back(MMO);
3503 CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
3506 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3507 << " Dropping mem operands\n";
3508 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created")
3509 << " node: ";
3510 Res->dump(CurDAG););
3512 // If this was a MorphNodeTo then we're completely done!
3513 if (IsMorphNodeTo) {
3514 // Update chain uses.
3515 UpdateChains(Res, InputChain, ChainNodesMatched, true);
3516 return;
3518 continue;
3521 case OPC_CompleteMatch: {
3522 // The match has been completed, and any new nodes (if any) have been
3523 // created. Patch up references to the matched dag to use the newly
3524 // created nodes.
3525 unsigned NumResults = MatcherTable[MatcherIndex++];
3527 for (unsigned i = 0; i != NumResults; ++i) {
3528 unsigned ResSlot = MatcherTable[MatcherIndex++];
3529 if (ResSlot & 128)
3530 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3532 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3533 SDValue Res = RecordedNodes[ResSlot].first;
3535 assert(i < NodeToMatch->getNumValues() &&
3536 NodeToMatch->getValueType(i) != MVT::Other &&
3537 NodeToMatch->getValueType(i) != MVT::Glue &&
3538 "Invalid number of results to complete!");
3539 assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3540 NodeToMatch->getValueType(i) == MVT::iPTR ||
3541 Res.getValueType() == MVT::iPTR ||
3542 NodeToMatch->getValueType(i).getSizeInBits() ==
3543 Res.getValueSizeInBits()) &&
3544 "invalid replacement");
3545 ReplaceUses(SDValue(NodeToMatch, i), Res);
3548 // Update chain uses.
3549 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3551 // If the root node defines glue, we need to update it to the glue result.
3552 // TODO: This never happens in our tests and I think it can be removed /
3553 // replaced with an assert, but if we do it this the way the change is
3554 // NFC.
3555 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3556 MVT::Glue &&
3557 InputGlue.getNode())
3558 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3559 InputGlue);
3561 assert(NodeToMatch->use_empty() &&
3562 "Didn't replace all uses of the node?");
3563 CurDAG->RemoveDeadNode(NodeToMatch);
3565 return;
3569 // If the code reached this point, then the match failed. See if there is
3570 // another child to try in the current 'Scope', otherwise pop it until we
3571 // find a case to check.
3572 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
3573 << "\n");
3574 ++NumDAGIselRetries;
3575 while (true) {
3576 if (MatchScopes.empty()) {
3577 CannotYetSelect(NodeToMatch);
3578 return;
3581 // Restore the interpreter state back to the point where the scope was
3582 // formed.
3583 MatchScope &LastScope = MatchScopes.back();
3584 RecordedNodes.resize(LastScope.NumRecordedNodes);
3585 NodeStack.clear();
3586 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3587 N = NodeStack.back();
3589 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3590 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3591 MatcherIndex = LastScope.FailIndex;
3593 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n");
3595 InputChain = LastScope.InputChain;
3596 InputGlue = LastScope.InputGlue;
3597 if (!LastScope.HasChainNodesMatched)
3598 ChainNodesMatched.clear();
3600 // Check to see what the offset is at the new MatcherIndex. If it is zero
3601 // we have reached the end of this scope, otherwise we have another child
3602 // in the current scope to try.
3603 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3604 if (NumToSkip & 128)
3605 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3607 // If we have another child in this scope to match, update FailIndex and
3608 // try it.
3609 if (NumToSkip != 0) {
3610 LastScope.FailIndex = MatcherIndex+NumToSkip;
3611 break;
3614 // End of this scope, pop it and try the next child in the containing
3615 // scope.
3616 MatchScopes.pop_back();
3621 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3622 assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3623 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3624 if (!C)
3625 return false;
3627 // Detect when "or" is used to add an offset to a stack object.
3628 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3629 MachineFrameInfo &MFI = MF->getFrameInfo();
3630 unsigned A = MFI.getObjectAlignment(FN->getIndex());
3631 assert(isPowerOf2_32(A) && "Unexpected alignment");
3632 int32_t Off = C->getSExtValue();
3633 // If the alleged offset fits in the zero bits guaranteed by
3634 // the alignment, then this or is really an add.
3635 return (Off >= 0) && (((A - 1) & Off) == unsigned(Off));
3637 return false;
3640 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3641 std::string msg;
3642 raw_string_ostream Msg(msg);
3643 Msg << "Cannot select: ";
3645 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3646 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3647 N->getOpcode() != ISD::INTRINSIC_VOID) {
3648 N->printrFull(Msg, CurDAG);
3649 Msg << "\nIn function: " << MF->getName();
3650 } else {
3651 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3652 unsigned iid =
3653 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3654 if (iid < Intrinsic::num_intrinsics)
3655 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
3656 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3657 Msg << "target intrinsic %" << TII->getName(iid);
3658 else
3659 Msg << "unknown intrinsic #" << iid;
3661 report_fatal_error(Msg.str());
3664 char SelectionDAGISel::ID = 0;