[MIParser] Set RegClassOrRegBank during instruction parsing
[llvm-complete.git] / lib / CodeGen / GlobalISel / CombinerHelper.cpp
blob854769d283f778fb1dc6a2e4e652f9ae78879a58
1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
9 #include "llvm/CodeGen/GlobalISel/Combiner.h"
10 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
11 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
12 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
13 #include "llvm/CodeGen/GlobalISel/Utils.h"
14 #include "llvm/CodeGen/MachineDominators.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstr.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/TargetInstrInfo.h"
19 #include "llvm/CodeGen/TargetLowering.h"
20 #include "llvm/Target/TargetMachine.h"
22 #define DEBUG_TYPE "gi-combiner"
24 using namespace llvm;
26 // Option to allow testing of the combiner while no targets know about indexed
27 // addressing.
28 static cl::opt<bool>
29 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false),
30 cl::desc("Force all indexed operations to be "
31 "legal for the GlobalISel combiner"));
34 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer,
35 MachineIRBuilder &B, GISelKnownBits *KB,
36 MachineDominatorTree *MDT)
37 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer),
38 KB(KB), MDT(MDT) {
39 (void)this->KB;
42 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg,
43 Register ToReg) const {
44 Observer.changingAllUsesOfReg(MRI, FromReg);
46 if (MRI.constrainRegAttrs(ToReg, FromReg))
47 MRI.replaceRegWith(FromReg, ToReg);
48 else
49 Builder.buildCopy(ToReg, FromReg);
51 Observer.finishedChangingAllUsesOfReg();
54 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI,
55 MachineOperand &FromRegOp,
56 Register ToReg) const {
57 assert(FromRegOp.getParent() && "Expected an operand in an MI");
58 Observer.changingInstr(*FromRegOp.getParent());
60 FromRegOp.setReg(ToReg);
62 Observer.changedInstr(*FromRegOp.getParent());
65 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) {
66 if (matchCombineCopy(MI)) {
67 applyCombineCopy(MI);
68 return true;
70 return false;
72 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) {
73 if (MI.getOpcode() != TargetOpcode::COPY)
74 return false;
75 Register DstReg = MI.getOperand(0).getReg();
76 Register SrcReg = MI.getOperand(1).getReg();
77 LLT DstTy = MRI.getType(DstReg);
78 LLT SrcTy = MRI.getType(SrcReg);
79 // Simple Copy Propagation.
80 // a(sx) = COPY b(sx) -> Replace all uses of a with b.
81 if (DstTy.isValid() && SrcTy.isValid() && DstTy == SrcTy)
82 return true;
83 return false;
85 void CombinerHelper::applyCombineCopy(MachineInstr &MI) {
86 Register DstReg = MI.getOperand(0).getReg();
87 Register SrcReg = MI.getOperand(1).getReg();
88 MI.eraseFromParent();
89 replaceRegWith(MRI, DstReg, SrcReg);
92 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) {
93 bool IsUndef = false;
94 SmallVector<Register, 4> Ops;
95 if (matchCombineConcatVectors(MI, IsUndef, Ops)) {
96 applyCombineConcatVectors(MI, IsUndef, Ops);
97 return true;
99 return false;
102 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef,
103 SmallVectorImpl<Register> &Ops) {
104 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
105 "Invalid instruction");
106 IsUndef = true;
107 MachineInstr *Undef = nullptr;
109 // Walk over all the operands of concat vectors and check if they are
110 // build_vector themselves or undef.
111 // Then collect their operands in Ops.
112 for (const MachineOperand &MO : MI.operands()) {
113 // Skip the instruction definition.
114 if (MO.isDef())
115 continue;
116 Register Reg = MO.getReg();
117 MachineInstr *Def = MRI.getVRegDef(Reg);
118 assert(Def && "Operand not defined");
119 switch (Def->getOpcode()) {
120 case TargetOpcode::G_BUILD_VECTOR:
121 IsUndef = false;
122 // Remember the operands of the build_vector to fold
123 // them into the yet-to-build flattened concat vectors.
124 for (const MachineOperand &BuildVecMO : Def->operands()) {
125 // Skip the definition.
126 if (BuildVecMO.isDef())
127 continue;
128 Ops.push_back(BuildVecMO.getReg());
130 break;
131 case TargetOpcode::G_IMPLICIT_DEF: {
132 LLT OpType = MRI.getType(Reg);
133 // Keep one undef value for all the undef operands.
134 if (!Undef) {
135 Builder.setInsertPt(*MI.getParent(), MI);
136 Undef = Builder.buildUndef(OpType.getScalarType());
138 assert(MRI.getType(Undef->getOperand(0).getReg()) ==
139 OpType.getScalarType() &&
140 "All undefs should have the same type");
141 // Break the undef vector in as many scalar elements as needed
142 // for the flattening.
143 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements();
144 EltIdx != EltEnd; ++EltIdx)
145 Ops.push_back(Undef->getOperand(0).getReg());
146 break;
148 default:
149 return false;
152 return true;
154 void CombinerHelper::applyCombineConcatVectors(
155 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) {
156 // We determined that the concat_vectors can be flatten.
157 // Generate the flattened build_vector.
158 Register DstReg = MI.getOperand(0).getReg();
159 Builder.setInsertPt(*MI.getParent(), MI);
160 Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
162 // Note: IsUndef is sort of redundant. We could have determine it by
163 // checking that at all Ops are undef. Alternatively, we could have
164 // generate a build_vector of undefs and rely on another combine to
165 // clean that up. For now, given we already gather this information
166 // in tryCombineConcatVectors, just save compile time and issue the
167 // right thing.
168 if (IsUndef)
169 Builder.buildUndef(NewDstReg);
170 else
171 Builder.buildBuildVector(NewDstReg, Ops);
172 MI.eraseFromParent();
173 replaceRegWith(MRI, DstReg, NewDstReg);
176 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) {
177 SmallVector<Register, 4> Ops;
178 if (matchCombineShuffleVector(MI, Ops)) {
179 applyCombineShuffleVector(MI, Ops);
180 return true;
182 return false;
185 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI,
186 SmallVectorImpl<Register> &Ops) {
187 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
188 "Invalid instruction kind");
189 LLT DstType = MRI.getType(MI.getOperand(0).getReg());
190 Register Src1 = MI.getOperand(1).getReg();
191 LLT SrcType = MRI.getType(Src1);
192 unsigned DstNumElts = DstType.getNumElements();
193 unsigned SrcNumElts = SrcType.getNumElements();
195 // If the resulting vector is smaller than the size of the source
196 // vectors being concatenated, we won't be able to replace the
197 // shuffle vector into a concat_vectors.
199 // Note: We may still be able to produce a concat_vectors fed by
200 // extract_vector_elt and so on. It is less clear that would
201 // be better though, so don't bother for now.
202 if (DstNumElts < 2 * SrcNumElts)
203 return false;
205 // Check that the shuffle mask can be broken evenly between the
206 // different sources.
207 if (DstNumElts % SrcNumElts != 0)
208 return false;
210 // Mask length is a multiple of the source vector length.
211 // Check if the shuffle is some kind of concatenation of the input
212 // vectors.
213 unsigned NumConcat = DstNumElts / SrcNumElts;
214 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
215 SmallVector<int, 8> Mask;
216 ShuffleVectorInst::getShuffleMask(MI.getOperand(3).getShuffleMask(), Mask);
217 for (unsigned i = 0; i != DstNumElts; ++i) {
218 int Idx = Mask[i];
219 // Undef value.
220 if (Idx < 0)
221 continue;
222 // Ensure the indices in each SrcType sized piece are sequential and that
223 // the same source is used for the whole piece.
224 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
225 (ConcatSrcs[i / SrcNumElts] >= 0 &&
226 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts)))
227 return false;
228 // Remember which source this index came from.
229 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
232 // The shuffle is concatenating multiple vectors together.
233 // Collect the different operands for that.
234 Register UndefReg;
235 Register Src2 = MI.getOperand(2).getReg();
236 for (auto Src : ConcatSrcs) {
237 if (Src < 0) {
238 if (!UndefReg) {
239 Builder.setInsertPt(*MI.getParent(), MI);
240 UndefReg = Builder.buildUndef(SrcType).getReg(0);
242 Ops.push_back(UndefReg);
243 } else if (Src == 0)
244 Ops.push_back(Src1);
245 else
246 Ops.push_back(Src2);
248 return true;
251 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI,
252 const ArrayRef<Register> Ops) {
253 Register DstReg = MI.getOperand(0).getReg();
254 Builder.setInsertPt(*MI.getParent(), MI);
255 Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
257 Builder.buildConcatVectors(NewDstReg, Ops);
259 MI.eraseFromParent();
260 replaceRegWith(MRI, DstReg, NewDstReg);
263 namespace {
265 /// Select a preference between two uses. CurrentUse is the current preference
266 /// while *ForCandidate is attributes of the candidate under consideration.
267 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse,
268 const LLT &TyForCandidate,
269 unsigned OpcodeForCandidate,
270 MachineInstr *MIForCandidate) {
271 if (!CurrentUse.Ty.isValid()) {
272 if (CurrentUse.ExtendOpcode == OpcodeForCandidate ||
273 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT)
274 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
275 return CurrentUse;
278 // We permit the extend to hoist through basic blocks but this is only
279 // sensible if the target has extending loads. If you end up lowering back
280 // into a load and extend during the legalizer then the end result is
281 // hoisting the extend up to the load.
283 // Prefer defined extensions to undefined extensions as these are more
284 // likely to reduce the number of instructions.
285 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT &&
286 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT)
287 return CurrentUse;
288 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT &&
289 OpcodeForCandidate != TargetOpcode::G_ANYEXT)
290 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
292 // Prefer sign extensions to zero extensions as sign-extensions tend to be
293 // more expensive.
294 if (CurrentUse.Ty == TyForCandidate) {
295 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT &&
296 OpcodeForCandidate == TargetOpcode::G_ZEXT)
297 return CurrentUse;
298 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT &&
299 OpcodeForCandidate == TargetOpcode::G_SEXT)
300 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
303 // This is potentially target specific. We've chosen the largest type
304 // because G_TRUNC is usually free. One potential catch with this is that
305 // some targets have a reduced number of larger registers than smaller
306 // registers and this choice potentially increases the live-range for the
307 // larger value.
308 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) {
309 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
311 return CurrentUse;
314 /// Find a suitable place to insert some instructions and insert them. This
315 /// function accounts for special cases like inserting before a PHI node.
316 /// The current strategy for inserting before PHI's is to duplicate the
317 /// instructions for each predecessor. However, while that's ok for G_TRUNC
318 /// on most targets since it generally requires no code, other targets/cases may
319 /// want to try harder to find a dominating block.
320 static void InsertInsnsWithoutSideEffectsBeforeUse(
321 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO,
322 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator,
323 MachineOperand &UseMO)>
324 Inserter) {
325 MachineInstr &UseMI = *UseMO.getParent();
327 MachineBasicBlock *InsertBB = UseMI.getParent();
329 // If the use is a PHI then we want the predecessor block instead.
330 if (UseMI.isPHI()) {
331 MachineOperand *PredBB = std::next(&UseMO);
332 InsertBB = PredBB->getMBB();
335 // If the block is the same block as the def then we want to insert just after
336 // the def instead of at the start of the block.
337 if (InsertBB == DefMI.getParent()) {
338 MachineBasicBlock::iterator InsertPt = &DefMI;
339 Inserter(InsertBB, std::next(InsertPt), UseMO);
340 return;
343 // Otherwise we want the start of the BB
344 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO);
346 } // end anonymous namespace
348 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) {
349 PreferredTuple Preferred;
350 if (matchCombineExtendingLoads(MI, Preferred)) {
351 applyCombineExtendingLoads(MI, Preferred);
352 return true;
354 return false;
357 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI,
358 PreferredTuple &Preferred) {
359 // We match the loads and follow the uses to the extend instead of matching
360 // the extends and following the def to the load. This is because the load
361 // must remain in the same position for correctness (unless we also add code
362 // to find a safe place to sink it) whereas the extend is freely movable.
363 // It also prevents us from duplicating the load for the volatile case or just
364 // for performance.
366 if (MI.getOpcode() != TargetOpcode::G_LOAD &&
367 MI.getOpcode() != TargetOpcode::G_SEXTLOAD &&
368 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD)
369 return false;
371 auto &LoadValue = MI.getOperand(0);
372 assert(LoadValue.isReg() && "Result wasn't a register?");
374 LLT LoadValueTy = MRI.getType(LoadValue.getReg());
375 if (!LoadValueTy.isScalar())
376 return false;
378 // Most architectures are going to legalize <s8 loads into at least a 1 byte
379 // load, and the MMOs can only describe memory accesses in multiples of bytes.
380 // If we try to perform extload combining on those, we can end up with
381 // %a(s8) = extload %ptr (load 1 byte from %ptr)
382 // ... which is an illegal extload instruction.
383 if (LoadValueTy.getSizeInBits() < 8)
384 return false;
386 // For non power-of-2 types, they will very likely be legalized into multiple
387 // loads. Don't bother trying to match them into extending loads.
388 if (!isPowerOf2_32(LoadValueTy.getSizeInBits()))
389 return false;
391 // Find the preferred type aside from the any-extends (unless it's the only
392 // one) and non-extending ops. We'll emit an extending load to that type and
393 // and emit a variant of (extend (trunc X)) for the others according to the
394 // relative type sizes. At the same time, pick an extend to use based on the
395 // extend involved in the chosen type.
396 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD
397 ? TargetOpcode::G_ANYEXT
398 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD
399 ? TargetOpcode::G_SEXT
400 : TargetOpcode::G_ZEXT;
401 Preferred = {LLT(), PreferredOpcode, nullptr};
402 for (auto &UseMI : MRI.use_instructions(LoadValue.getReg())) {
403 if (UseMI.getOpcode() == TargetOpcode::G_SEXT ||
404 UseMI.getOpcode() == TargetOpcode::G_ZEXT ||
405 UseMI.getOpcode() == TargetOpcode::G_ANYEXT) {
406 Preferred = ChoosePreferredUse(Preferred,
407 MRI.getType(UseMI.getOperand(0).getReg()),
408 UseMI.getOpcode(), &UseMI);
412 // There were no extends
413 if (!Preferred.MI)
414 return false;
415 // It should be impossible to chose an extend without selecting a different
416 // type since by definition the result of an extend is larger.
417 assert(Preferred.Ty != LoadValueTy && "Extending to same type?");
419 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI);
420 return true;
423 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI,
424 PreferredTuple &Preferred) {
425 // Rewrite the load to the chosen extending load.
426 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg();
428 // Inserter to insert a truncate back to the original type at a given point
429 // with some basic CSE to limit truncate duplication to one per BB.
430 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns;
431 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB,
432 MachineBasicBlock::iterator InsertBefore,
433 MachineOperand &UseMO) {
434 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB);
435 if (PreviouslyEmitted) {
436 Observer.changingInstr(*UseMO.getParent());
437 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg());
438 Observer.changedInstr(*UseMO.getParent());
439 return;
442 Builder.setInsertPt(*InsertIntoBB, InsertBefore);
443 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg());
444 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg);
445 EmittedInsns[InsertIntoBB] = NewMI;
446 replaceRegOpWith(MRI, UseMO, NewDstReg);
449 Observer.changingInstr(MI);
450 MI.setDesc(
451 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT
452 ? TargetOpcode::G_SEXTLOAD
453 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT
454 ? TargetOpcode::G_ZEXTLOAD
455 : TargetOpcode::G_LOAD));
457 // Rewrite all the uses to fix up the types.
458 auto &LoadValue = MI.getOperand(0);
459 SmallVector<MachineOperand *, 4> Uses;
460 for (auto &UseMO : MRI.use_operands(LoadValue.getReg()))
461 Uses.push_back(&UseMO);
463 for (auto *UseMO : Uses) {
464 MachineInstr *UseMI = UseMO->getParent();
466 // If the extend is compatible with the preferred extend then we should fix
467 // up the type and extend so that it uses the preferred use.
468 if (UseMI->getOpcode() == Preferred.ExtendOpcode ||
469 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) {
470 Register UseDstReg = UseMI->getOperand(0).getReg();
471 MachineOperand &UseSrcMO = UseMI->getOperand(1);
472 const LLT &UseDstTy = MRI.getType(UseDstReg);
473 if (UseDstReg != ChosenDstReg) {
474 if (Preferred.Ty == UseDstTy) {
475 // If the use has the same type as the preferred use, then merge
476 // the vregs and erase the extend. For example:
477 // %1:_(s8) = G_LOAD ...
478 // %2:_(s32) = G_SEXT %1(s8)
479 // %3:_(s32) = G_ANYEXT %1(s8)
480 // ... = ... %3(s32)
481 // rewrites to:
482 // %2:_(s32) = G_SEXTLOAD ...
483 // ... = ... %2(s32)
484 replaceRegWith(MRI, UseDstReg, ChosenDstReg);
485 Observer.erasingInstr(*UseMO->getParent());
486 UseMO->getParent()->eraseFromParent();
487 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) {
488 // If the preferred size is smaller, then keep the extend but extend
489 // from the result of the extending load. For example:
490 // %1:_(s8) = G_LOAD ...
491 // %2:_(s32) = G_SEXT %1(s8)
492 // %3:_(s64) = G_ANYEXT %1(s8)
493 // ... = ... %3(s64)
494 /// rewrites to:
495 // %2:_(s32) = G_SEXTLOAD ...
496 // %3:_(s64) = G_ANYEXT %2:_(s32)
497 // ... = ... %3(s64)
498 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg);
499 } else {
500 // If the preferred size is large, then insert a truncate. For
501 // example:
502 // %1:_(s8) = G_LOAD ...
503 // %2:_(s64) = G_SEXT %1(s8)
504 // %3:_(s32) = G_ZEXT %1(s8)
505 // ... = ... %3(s32)
506 /// rewrites to:
507 // %2:_(s64) = G_SEXTLOAD ...
508 // %4:_(s8) = G_TRUNC %2:_(s32)
509 // %3:_(s64) = G_ZEXT %2:_(s8)
510 // ... = ... %3(s64)
511 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO,
512 InsertTruncAt);
514 continue;
516 // The use is (one of) the uses of the preferred use we chose earlier.
517 // We're going to update the load to def this value later so just erase
518 // the old extend.
519 Observer.erasingInstr(*UseMO->getParent());
520 UseMO->getParent()->eraseFromParent();
521 continue;
524 // The use isn't an extend. Truncate back to the type we originally loaded.
525 // This is free on many targets.
526 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt);
529 MI.getOperand(0).setReg(ChosenDstReg);
530 Observer.changedInstr(MI);
533 bool CombinerHelper::isPredecessor(MachineInstr &DefMI, MachineInstr &UseMI) {
534 assert(DefMI.getParent() == UseMI.getParent());
535 if (&DefMI == &UseMI)
536 return false;
538 // Loop through the basic block until we find one of the instructions.
539 MachineBasicBlock::const_iterator I = DefMI.getParent()->begin();
540 for (; &*I != &DefMI && &*I != &UseMI; ++I)
541 return &*I == &DefMI;
543 llvm_unreachable("Block must contain instructions");
546 bool CombinerHelper::dominates(MachineInstr &DefMI, MachineInstr &UseMI) {
547 if (MDT)
548 return MDT->dominates(&DefMI, &UseMI);
549 else if (DefMI.getParent() != UseMI.getParent())
550 return false;
552 return isPredecessor(DefMI, UseMI);
555 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr,
556 Register &Base, Register &Offset) {
557 auto &MF = *MI.getParent()->getParent();
558 const auto &TLI = *MF.getSubtarget().getTargetLowering();
560 #ifndef NDEBUG
561 unsigned Opcode = MI.getOpcode();
562 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
563 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
564 #endif
566 Base = MI.getOperand(1).getReg();
567 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base);
568 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
569 return false;
571 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI);
573 for (auto &Use : MRI.use_instructions(Base)) {
574 if (Use.getOpcode() != TargetOpcode::G_GEP)
575 continue;
577 Offset = Use.getOperand(2).getReg();
578 if (!ForceLegalIndexing &&
579 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) {
580 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: "
581 << Use);
582 continue;
585 // Make sure the offset calculation is before the potentially indexed op.
586 // FIXME: we really care about dependency here. The offset calculation might
587 // be movable.
588 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset);
589 if (!OffsetDef || !dominates(*OffsetDef, MI)) {
590 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: "
591 << Use);
592 continue;
595 // FIXME: check whether all uses of Base are load/store with foldable
596 // addressing modes. If so, using the normal addr-modes is better than
597 // forming an indexed one.
599 bool MemOpDominatesAddrUses = true;
600 for (auto &GEPUse : MRI.use_instructions(Use.getOperand(0).getReg())) {
601 if (!dominates(MI, GEPUse)) {
602 MemOpDominatesAddrUses = false;
603 break;
607 if (!MemOpDominatesAddrUses) {
608 LLVM_DEBUG(
609 dbgs() << " Ignoring candidate as memop does not dominate uses: "
610 << Use);
611 continue;
614 LLVM_DEBUG(dbgs() << " Found match: " << Use);
615 Addr = Use.getOperand(0).getReg();
616 return true;
619 return false;
622 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr,
623 Register &Base, Register &Offset) {
624 auto &MF = *MI.getParent()->getParent();
625 const auto &TLI = *MF.getSubtarget().getTargetLowering();
627 #ifndef NDEBUG
628 unsigned Opcode = MI.getOpcode();
629 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
630 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
631 #endif
633 Addr = MI.getOperand(1).getReg();
634 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_GEP, Addr, MRI);
635 if (!AddrDef || MRI.hasOneUse(Addr))
636 return false;
638 Base = AddrDef->getOperand(1).getReg();
639 Offset = AddrDef->getOperand(2).getReg();
641 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI);
643 if (!ForceLegalIndexing &&
644 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) {
645 LLVM_DEBUG(dbgs() << " Skipping, not legal for target");
646 return false;
649 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI);
650 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
651 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway.");
652 return false;
655 if (MI.getOpcode() == TargetOpcode::G_STORE) {
656 // Would require a copy.
657 if (Base == MI.getOperand(0).getReg()) {
658 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway.");
659 return false;
662 // We're expecting one use of Addr in MI, but it could also be the
663 // value stored, which isn't actually dominated by the instruction.
664 if (MI.getOperand(0).getReg() == Addr) {
665 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses");
666 return false;
670 // FIXME: check whether all uses of the base pointer are constant GEPs. That
671 // might allow us to end base's liveness here by adjusting the constant.
673 for (auto &UseMI : MRI.use_instructions(Addr)) {
674 if (!dominates(MI, UseMI)) {
675 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses.");
676 return false;
680 return true;
683 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) {
684 unsigned Opcode = MI.getOpcode();
685 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD &&
686 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE)
687 return false;
689 bool IsStore = Opcode == TargetOpcode::G_STORE;
690 Register Addr, Base, Offset;
691 bool IsPre = findPreIndexCandidate(MI, Addr, Base, Offset);
692 if (!IsPre && !findPostIndexCandidate(MI, Addr, Base, Offset))
693 return false;
696 unsigned NewOpcode;
697 switch (Opcode) {
698 case TargetOpcode::G_LOAD:
699 NewOpcode = TargetOpcode::G_INDEXED_LOAD;
700 break;
701 case TargetOpcode::G_SEXTLOAD:
702 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD;
703 break;
704 case TargetOpcode::G_ZEXTLOAD:
705 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD;
706 break;
707 case TargetOpcode::G_STORE:
708 NewOpcode = TargetOpcode::G_INDEXED_STORE;
709 break;
710 default:
711 llvm_unreachable("Unknown load/store opcode");
714 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(Addr);
715 MachineIRBuilder MIRBuilder(MI);
716 auto MIB = MIRBuilder.buildInstr(NewOpcode);
717 if (IsStore) {
718 MIB.addDef(Addr);
719 MIB.addUse(MI.getOperand(0).getReg());
720 } else {
721 MIB.addDef(MI.getOperand(0).getReg());
722 MIB.addDef(Addr);
725 MIB.addUse(Base);
726 MIB.addUse(Offset);
727 MIB.addImm(IsPre);
728 MI.eraseFromParent();
729 AddrDef.eraseFromParent();
731 LLVM_DEBUG(dbgs() << " Combinined to indexed operation");
732 return true;
735 bool CombinerHelper::matchElideBrByInvertingCond(MachineInstr &MI) {
736 if (MI.getOpcode() != TargetOpcode::G_BR)
737 return false;
739 // Try to match the following:
740 // bb1:
741 // %c(s32) = G_ICMP pred, %a, %b
742 // %c1(s1) = G_TRUNC %c(s32)
743 // G_BRCOND %c1, %bb2
744 // G_BR %bb3
745 // bb2:
746 // ...
747 // bb3:
749 // The above pattern does not have a fall through to the successor bb2, always
750 // resulting in a branch no matter which path is taken. Here we try to find
751 // and replace that pattern with conditional branch to bb3 and otherwise
752 // fallthrough to bb2.
754 MachineBasicBlock *MBB = MI.getParent();
755 MachineBasicBlock::iterator BrIt(MI);
756 if (BrIt == MBB->begin())
757 return false;
758 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator");
760 MachineInstr *BrCond = &*std::prev(BrIt);
761 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND)
762 return false;
764 // Check that the next block is the conditional branch target.
765 if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB()))
766 return false;
768 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg());
769 if (!CmpMI || CmpMI->getOpcode() != TargetOpcode::G_ICMP ||
770 !MRI.hasOneUse(CmpMI->getOperand(0).getReg()))
771 return false;
772 return true;
775 bool CombinerHelper::tryElideBrByInvertingCond(MachineInstr &MI) {
776 if (!matchElideBrByInvertingCond(MI))
777 return false;
778 applyElideBrByInvertingCond(MI);
779 return true;
782 void CombinerHelper::applyElideBrByInvertingCond(MachineInstr &MI) {
783 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB();
784 MachineBasicBlock::iterator BrIt(MI);
785 MachineInstr *BrCond = &*std::prev(BrIt);
786 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg());
788 CmpInst::Predicate InversePred = CmpInst::getInversePredicate(
789 (CmpInst::Predicate)CmpMI->getOperand(1).getPredicate());
791 // Invert the G_ICMP condition.
792 Observer.changingInstr(*CmpMI);
793 CmpMI->getOperand(1).setPredicate(InversePred);
794 Observer.changedInstr(*CmpMI);
796 // Change the conditional branch target.
797 Observer.changingInstr(*BrCond);
798 BrCond->getOperand(1).setMBB(BrTarget);
799 Observer.changedInstr(*BrCond);
800 MI.eraseFromParent();
803 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
804 // On Darwin, -Os means optimize for size without hurting performance, so
805 // only really optimize for size when -Oz (MinSize) is used.
806 if (MF.getTarget().getTargetTriple().isOSDarwin())
807 return MF.getFunction().hasMinSize();
808 return MF.getFunction().hasOptSize();
811 // Returns a list of types to use for memory op lowering in MemOps. A partial
812 // port of findOptimalMemOpLowering in TargetLowering.
813 static bool findGISelOptimalMemOpLowering(
814 std::vector<LLT> &MemOps, unsigned Limit, uint64_t Size, unsigned DstAlign,
815 unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
816 bool AllowOverlap, unsigned DstAS, unsigned SrcAS,
817 const AttributeList &FuncAttributes, const TargetLowering &TLI) {
818 // If 'SrcAlign' is zero, that means the memory operation does not need to
819 // load the value, i.e. memset or memcpy from constant string. Otherwise,
820 // it's the inferred alignment of the source. 'DstAlign', on the other hand,
821 // is the specified alignment of the memory operation. If it is zero, that
822 // means it's possible to change the alignment of the destination.
823 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
824 // not need to be loaded.
825 if (SrcAlign != 0 && SrcAlign < DstAlign)
826 return false;
828 LLT Ty = TLI.getOptimalMemOpLLT(Size, DstAlign, SrcAlign, IsMemset,
829 ZeroMemset, MemcpyStrSrc, FuncAttributes);
831 if (Ty == LLT()) {
832 // Use the largest scalar type whose alignment constraints are satisfied.
833 // We only need to check DstAlign here as SrcAlign is always greater or
834 // equal to DstAlign (or zero).
835 Ty = LLT::scalar(64);
836 while (DstAlign && DstAlign < Ty.getSizeInBytes() &&
837 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, DstAlign))
838 Ty = LLT::scalar(Ty.getSizeInBytes());
839 assert(Ty.getSizeInBits() > 0 && "Could not find valid type");
840 // FIXME: check for the largest legal type we can load/store to.
843 unsigned NumMemOps = 0;
844 while (Size != 0) {
845 unsigned TySize = Ty.getSizeInBytes();
846 while (TySize > Size) {
847 // For now, only use non-vector load / store's for the left-over pieces.
848 LLT NewTy = Ty;
849 // FIXME: check for mem op safety and legality of the types. Not all of
850 // SDAGisms map cleanly to GISel concepts.
851 if (NewTy.isVector())
852 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
853 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1));
854 unsigned NewTySize = NewTy.getSizeInBytes();
855 assert(NewTySize > 0 && "Could not find appropriate type");
857 // If the new LLT cannot cover all of the remaining bits, then consider
858 // issuing a (or a pair of) unaligned and overlapping load / store.
859 bool Fast;
860 // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
861 MVT VT = getMVTForLLT(Ty);
862 if (NumMemOps && AllowOverlap && NewTySize < Size &&
863 TLI.allowsMisalignedMemoryAccesses(
864 VT, DstAS, DstAlign, MachineMemOperand::MONone, &Fast) &&
865 Fast)
866 TySize = Size;
867 else {
868 Ty = NewTy;
869 TySize = NewTySize;
873 if (++NumMemOps > Limit)
874 return false;
876 MemOps.push_back(Ty);
877 Size -= TySize;
880 return true;
883 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
884 if (Ty.isVector())
885 return VectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
886 Ty.getNumElements());
887 return IntegerType::get(C, Ty.getSizeInBits());
890 // Get a vectorized representation of the memset value operand, GISel edition.
891 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
892 MachineRegisterInfo &MRI = *MIB.getMRI();
893 unsigned NumBits = Ty.getScalarSizeInBits();
894 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
895 if (!Ty.isVector() && ValVRegAndVal) {
896 unsigned KnownVal = ValVRegAndVal->Value;
897 APInt Scalar = APInt(8, KnownVal);
898 APInt SplatVal = APInt::getSplat(NumBits, Scalar);
899 return MIB.buildConstant(Ty, SplatVal).getReg(0);
901 // FIXME: for vector types create a G_BUILD_VECTOR.
902 if (Ty.isVector())
903 return Register();
905 // Extend the byte value to the larger type, and then multiply by a magic
906 // value 0x010101... in order to replicate it across every byte.
907 LLT ExtType = Ty.getScalarType();
908 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
909 if (NumBits > 8) {
910 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
911 auto MagicMI = MIB.buildConstant(ExtType, Magic);
912 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
915 assert(ExtType == Ty && "Vector memset value type not supported yet");
916 return Val;
919 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, Register Val,
920 unsigned KnownLen, unsigned Align,
921 bool IsVolatile) {
922 auto &MF = *MI.getParent()->getParent();
923 const auto &TLI = *MF.getSubtarget().getTargetLowering();
924 auto &DL = MF.getDataLayout();
925 LLVMContext &C = MF.getFunction().getContext();
927 assert(KnownLen != 0 && "Have a zero length memset length!");
929 bool DstAlignCanChange = false;
930 MachineFrameInfo &MFI = MF.getFrameInfo();
931 bool OptSize = shouldLowerMemFuncForSize(MF);
933 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
934 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
935 DstAlignCanChange = true;
937 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
938 std::vector<LLT> MemOps;
940 const auto &DstMMO = **MI.memoperands_begin();
941 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
943 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
944 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;
946 if (!findGISelOptimalMemOpLowering(
947 MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Align), 0,
948 /*IsMemset=*/true,
949 /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false,
950 /*AllowOverlap=*/!IsVolatile, DstPtrInfo.getAddrSpace(), ~0u,
951 MF.getFunction().getAttributes(), TLI))
952 return false;
954 if (DstAlignCanChange) {
955 // Get an estimate of the type from the LLT.
956 Type *IRTy = getTypeForLLT(MemOps[0], C);
957 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy);
958 if (NewAlign > Align) {
959 Align = NewAlign;
960 unsigned FI = FIDef->getOperand(1).getIndex();
961 // Give the stack frame object a larger alignment if needed.
962 if (MFI.getObjectAlignment(FI) < Align)
963 MFI.setObjectAlignment(FI, Align);
967 MachineIRBuilder MIB(MI);
968 // Find the largest store and generate the bit pattern for it.
969 LLT LargestTy = MemOps[0];
970 for (unsigned i = 1; i < MemOps.size(); i++)
971 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
972 LargestTy = MemOps[i];
974 // The memset stored value is always defined as an s8, so in order to make it
975 // work with larger store types we need to repeat the bit pattern across the
976 // wider type.
977 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);
979 if (!MemSetValue)
980 return false;
982 // Generate the stores. For each store type in the list, we generate the
983 // matching store of that type to the destination address.
984 LLT PtrTy = MRI.getType(Dst);
985 unsigned DstOff = 0;
986 unsigned Size = KnownLen;
987 for (unsigned I = 0; I < MemOps.size(); I++) {
988 LLT Ty = MemOps[I];
989 unsigned TySize = Ty.getSizeInBytes();
990 if (TySize > Size) {
991 // Issuing an unaligned load / store pair that overlaps with the previous
992 // pair. Adjust the offset accordingly.
993 assert(I == MemOps.size() - 1 && I != 0);
994 DstOff -= TySize - Size;
997 // If this store is smaller than the largest store see whether we can get
998 // the smaller value for free with a truncate.
999 Register Value = MemSetValue;
1000 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
1001 MVT VT = getMVTForLLT(Ty);
1002 MVT LargestVT = getMVTForLLT(LargestTy);
1003 if (!LargestTy.isVector() && !Ty.isVector() &&
1004 TLI.isTruncateFree(LargestVT, VT))
1005 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
1006 else
1007 Value = getMemsetValue(Val, Ty, MIB);
1008 if (!Value)
1009 return false;
1012 auto *StoreMMO =
1013 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes());
1015 Register Ptr = Dst;
1016 if (DstOff != 0) {
1017 auto Offset =
1018 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
1019 Ptr = MIB.buildGEP(PtrTy, Dst, Offset).getReg(0);
1022 MIB.buildStore(Value, Ptr, *StoreMMO);
1023 DstOff += Ty.getSizeInBytes();
1024 Size -= TySize;
1027 MI.eraseFromParent();
1028 return true;
1032 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst,
1033 Register Src, unsigned KnownLen,
1034 unsigned DstAlign, unsigned SrcAlign,
1035 bool IsVolatile) {
1036 auto &MF = *MI.getParent()->getParent();
1037 const auto &TLI = *MF.getSubtarget().getTargetLowering();
1038 auto &DL = MF.getDataLayout();
1039 LLVMContext &C = MF.getFunction().getContext();
1041 assert(KnownLen != 0 && "Have a zero length memcpy length!");
1043 bool DstAlignCanChange = false;
1044 MachineFrameInfo &MFI = MF.getFrameInfo();
1045 bool OptSize = shouldLowerMemFuncForSize(MF);
1046 unsigned Alignment = MinAlign(DstAlign, SrcAlign);
1048 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
1049 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
1050 DstAlignCanChange = true;
1052 // FIXME: infer better src pointer alignment like SelectionDAG does here.
1053 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
1054 // if the memcpy is in a tail call position.
1056 unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize);
1057 std::vector<LLT> MemOps;
1059 const auto &DstMMO = **MI.memoperands_begin();
1060 const auto &SrcMMO = **std::next(MI.memoperands_begin());
1061 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
1062 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
1064 if (!findGISelOptimalMemOpLowering(
1065 MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Alignment),
1066 SrcAlign,
1067 /*IsMemset=*/false,
1068 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
1069 /*AllowOverlap=*/!IsVolatile, DstPtrInfo.getAddrSpace(),
1070 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI))
1071 return false;
1073 if (DstAlignCanChange) {
1074 // Get an estimate of the type from the LLT.
1075 Type *IRTy = getTypeForLLT(MemOps[0], C);
1076 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy);
1078 // Don't promote to an alignment that would require dynamic stack
1079 // realignment.
1080 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1081 if (!TRI->needsStackRealignment(MF))
1082 while (NewAlign > Alignment &&
1083 DL.exceedsNaturalStackAlignment(Align(NewAlign)))
1084 NewAlign /= 2;
1086 if (NewAlign > Alignment) {
1087 Alignment = NewAlign;
1088 unsigned FI = FIDef->getOperand(1).getIndex();
1089 // Give the stack frame object a larger alignment if needed.
1090 if (MFI.getObjectAlignment(FI) < Alignment)
1091 MFI.setObjectAlignment(FI, Alignment);
1095 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n");
1097 MachineIRBuilder MIB(MI);
1098 // Now we need to emit a pair of load and stores for each of the types we've
1099 // collected. I.e. for each type, generate a load from the source pointer of
1100 // that type width, and then generate a corresponding store to the dest buffer
1101 // of that value loaded. This can result in a sequence of loads and stores
1102 // mixed types, depending on what the target specifies as good types to use.
1103 unsigned CurrOffset = 0;
1104 LLT PtrTy = MRI.getType(Src);
1105 unsigned Size = KnownLen;
1106 for (auto CopyTy : MemOps) {
1107 // Issuing an unaligned load / store pair that overlaps with the previous
1108 // pair. Adjust the offset accordingly.
1109 if (CopyTy.getSizeInBytes() > Size)
1110 CurrOffset -= CopyTy.getSizeInBytes() - Size;
1112 // Construct MMOs for the accesses.
1113 auto *LoadMMO =
1114 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
1115 auto *StoreMMO =
1116 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
1118 // Create the load.
1119 Register LoadPtr = Src;
1120 Register Offset;
1121 if (CurrOffset != 0) {
1122 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset)
1123 .getReg(0);
1124 LoadPtr = MIB.buildGEP(PtrTy, Src, Offset).getReg(0);
1126 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);
1128 // Create the store.
1129 Register StorePtr =
1130 CurrOffset == 0 ? Dst : MIB.buildGEP(PtrTy, Dst, Offset).getReg(0);
1131 MIB.buildStore(LdVal, StorePtr, *StoreMMO);
1132 CurrOffset += CopyTy.getSizeInBytes();
1133 Size -= CopyTy.getSizeInBytes();
1136 MI.eraseFromParent();
1137 return true;
1140 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst,
1141 Register Src, unsigned KnownLen,
1142 unsigned DstAlign, unsigned SrcAlign,
1143 bool IsVolatile) {
1144 auto &MF = *MI.getParent()->getParent();
1145 const auto &TLI = *MF.getSubtarget().getTargetLowering();
1146 auto &DL = MF.getDataLayout();
1147 LLVMContext &C = MF.getFunction().getContext();
1149 assert(KnownLen != 0 && "Have a zero length memmove length!");
1151 bool DstAlignCanChange = false;
1152 MachineFrameInfo &MFI = MF.getFrameInfo();
1153 bool OptSize = shouldLowerMemFuncForSize(MF);
1154 unsigned Alignment = MinAlign(DstAlign, SrcAlign);
1156 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
1157 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
1158 DstAlignCanChange = true;
1160 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
1161 std::vector<LLT> MemOps;
1163 const auto &DstMMO = **MI.memoperands_begin();
1164 const auto &SrcMMO = **std::next(MI.memoperands_begin());
1165 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
1166 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
1168 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
1169 // to a bug in it's findOptimalMemOpLowering implementation. For now do the
1170 // same thing here.
1171 if (!findGISelOptimalMemOpLowering(
1172 MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Alignment),
1173 SrcAlign,
1174 /*IsMemset=*/false,
1175 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
1176 /*AllowOverlap=*/false, DstPtrInfo.getAddrSpace(),
1177 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI))
1178 return false;
1180 if (DstAlignCanChange) {
1181 // Get an estimate of the type from the LLT.
1182 Type *IRTy = getTypeForLLT(MemOps[0], C);
1183 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy);
1185 // Don't promote to an alignment that would require dynamic stack
1186 // realignment.
1187 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1188 if (!TRI->needsStackRealignment(MF))
1189 while (NewAlign > Alignment &&
1190 DL.exceedsNaturalStackAlignment(Align(NewAlign)))
1191 NewAlign /= 2;
1193 if (NewAlign > Alignment) {
1194 Alignment = NewAlign;
1195 unsigned FI = FIDef->getOperand(1).getIndex();
1196 // Give the stack frame object a larger alignment if needed.
1197 if (MFI.getObjectAlignment(FI) < Alignment)
1198 MFI.setObjectAlignment(FI, Alignment);
1202 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n");
1204 MachineIRBuilder MIB(MI);
1205 // Memmove requires that we perform the loads first before issuing the stores.
1206 // Apart from that, this loop is pretty much doing the same thing as the
1207 // memcpy codegen function.
1208 unsigned CurrOffset = 0;
1209 LLT PtrTy = MRI.getType(Src);
1210 SmallVector<Register, 16> LoadVals;
1211 for (auto CopyTy : MemOps) {
1212 // Construct MMO for the load.
1213 auto *LoadMMO =
1214 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
1216 // Create the load.
1217 Register LoadPtr = Src;
1218 if (CurrOffset != 0) {
1219 auto Offset =
1220 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
1221 LoadPtr = MIB.buildGEP(PtrTy, Src, Offset).getReg(0);
1223 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
1224 CurrOffset += CopyTy.getSizeInBytes();
1227 CurrOffset = 0;
1228 for (unsigned I = 0; I < MemOps.size(); ++I) {
1229 LLT CopyTy = MemOps[I];
1230 // Now store the values loaded.
1231 auto *StoreMMO =
1232 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
1234 Register StorePtr = Dst;
1235 if (CurrOffset != 0) {
1236 auto Offset =
1237 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
1238 StorePtr = MIB.buildGEP(PtrTy, Dst, Offset).getReg(0);
1240 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
1241 CurrOffset += CopyTy.getSizeInBytes();
1243 MI.eraseFromParent();
1244 return true;
1247 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
1248 // This combine is fairly complex so it's not written with a separate
1249 // matcher function.
1250 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
1251 Intrinsic::ID ID = (Intrinsic::ID)MI.getIntrinsicID();
1252 assert((ID == Intrinsic::memcpy || ID == Intrinsic::memmove ||
1253 ID == Intrinsic::memset) &&
1254 "Expected a memcpy like intrinsic");
1256 auto MMOIt = MI.memoperands_begin();
1257 const MachineMemOperand *MemOp = *MMOIt;
1258 bool IsVolatile = MemOp->isVolatile();
1259 // Don't try to optimize volatile.
1260 if (IsVolatile)
1261 return false;
1263 unsigned DstAlign = MemOp->getBaseAlignment();
1264 unsigned SrcAlign = 0;
1265 Register Dst = MI.getOperand(1).getReg();
1266 Register Src = MI.getOperand(2).getReg();
1267 Register Len = MI.getOperand(3).getReg();
1269 if (ID != Intrinsic::memset) {
1270 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI");
1271 MemOp = *(++MMOIt);
1272 SrcAlign = MemOp->getBaseAlignment();
1275 // See if this is a constant length copy
1276 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI);
1277 if (!LenVRegAndVal)
1278 return false; // Leave it to the legalizer to lower it to a libcall.
1279 unsigned KnownLen = LenVRegAndVal->Value;
1281 if (KnownLen == 0) {
1282 MI.eraseFromParent();
1283 return true;
1286 if (MaxLen && KnownLen > MaxLen)
1287 return false;
1289 if (ID == Intrinsic::memcpy)
1290 return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
1291 if (ID == Intrinsic::memmove)
1292 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
1293 if (ID == Intrinsic::memset)
1294 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
1295 return false;
1298 bool CombinerHelper::tryCombine(MachineInstr &MI) {
1299 if (tryCombineCopy(MI))
1300 return true;
1301 if (tryCombineExtendingLoads(MI))
1302 return true;
1303 if (tryCombineIndexedLoadStore(MI))
1304 return true;
1305 return false;