1 //===- LiveDebugValues.cpp - Tracking Debug Value MIs ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This pass implements a data flow analysis that propagates debug location
10 /// information by inserting additional DBG_VALUE insts into the machine
11 /// instruction stream. Before running, each DBG_VALUE inst corresponds to a
12 /// source assignment of a variable. Afterwards, a DBG_VALUE inst specifies a
13 /// variable location for the current basic block (see SourceLevelDebugging.rst).
15 /// This is a separate pass from DbgValueHistoryCalculator to facilitate
16 /// testing and improve modularity.
18 /// Each variable location is represented by a VarLoc object that identifies the
19 /// source variable, its current machine-location, and the DBG_VALUE inst that
20 /// specifies the location. Each VarLoc is indexed in the (function-scope)
21 /// VarLocMap, giving each VarLoc a unique index. Rather than operate directly
22 /// on machine locations, the dataflow analysis in this pass identifies
23 /// locations by their index in the VarLocMap, meaning all the variable
24 /// locations in a block can be described by a sparse vector of VarLocMap
27 //===----------------------------------------------------------------------===//
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/PostOrderIterator.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/SparseBitVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/UniqueVector.h"
37 #include "llvm/CodeGen/LexicalScopes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineMemOperand.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/PseudoSourceValue.h"
47 #include "llvm/CodeGen/RegisterScavenging.h"
48 #include "llvm/CodeGen/TargetFrameLowering.h"
49 #include "llvm/CodeGen/TargetInstrInfo.h"
50 #include "llvm/CodeGen/TargetLowering.h"
51 #include "llvm/CodeGen/TargetPassConfig.h"
52 #include "llvm/CodeGen/TargetRegisterInfo.h"
53 #include "llvm/CodeGen/TargetSubtargetInfo.h"
54 #include "llvm/Config/llvm-config.h"
55 #include "llvm/IR/DIBuilder.h"
56 #include "llvm/IR/DebugInfoMetadata.h"
57 #include "llvm/IR/DebugLoc.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/raw_ostream.h"
77 #define DEBUG_TYPE "livedebugvalues"
79 STATISTIC(NumInserted
, "Number of DBG_VALUE instructions inserted");
80 STATISTIC(NumRemoved
, "Number of DBG_VALUE instructions removed");
82 // If @MI is a DBG_VALUE with debug value described by a defined
83 // register, returns the number of this register. In the other case, returns 0.
84 static Register
isDbgValueDescribedByReg(const MachineInstr
&MI
) {
85 assert(MI
.isDebugValue() && "expected a DBG_VALUE");
86 assert(MI
.getNumOperands() == 4 && "malformed DBG_VALUE");
87 // If location of variable is described using a register (directly
88 // or indirectly), this register is always a first operand.
89 return MI
.getOperand(0).isReg() ? MI
.getOperand(0).getReg() : Register();
94 class LiveDebugValues
: public MachineFunctionPass
{
96 const TargetRegisterInfo
*TRI
;
97 const TargetInstrInfo
*TII
;
98 const TargetFrameLowering
*TFI
;
99 BitVector CalleeSavedRegs
;
102 enum struct TransferKind
{ TransferCopy
, TransferSpill
, TransferRestore
};
104 /// Keeps track of lexical scopes associated with a user value's source
106 class UserValueScopes
{
109 SmallPtrSet
<const MachineBasicBlock
*, 4> LBlocks
;
112 UserValueScopes(DebugLoc D
, LexicalScopes
&L
) : DL(std::move(D
)), LS(L
) {}
114 /// Return true if current scope dominates at least one machine
115 /// instruction in a given machine basic block.
116 bool dominates(MachineBasicBlock
*MBB
) {
118 LS
.getMachineBasicBlocks(DL
, LBlocks
);
119 return LBlocks
.count(MBB
) != 0 || LS
.dominates(DL
, MBB
);
123 using FragmentInfo
= DIExpression::FragmentInfo
;
124 using OptFragmentInfo
= Optional
<DIExpression::FragmentInfo
>;
126 /// Storage for identifying a potentially inlined instance of a variable,
127 /// or a fragment thereof.
128 class DebugVariable
{
129 const DILocalVariable
*Variable
;
130 OptFragmentInfo Fragment
;
131 const DILocation
*InlinedAt
;
133 /// Fragment that will overlap all other fragments. Used as default when
134 /// caller demands a fragment.
135 static const FragmentInfo DefaultFragment
;
138 DebugVariable(const DILocalVariable
*Var
, OptFragmentInfo
&&FragmentInfo
,
139 const DILocation
*InlinedAt
)
140 : Variable(Var
), Fragment(FragmentInfo
), InlinedAt(InlinedAt
) {}
142 DebugVariable(const DILocalVariable
*Var
, OptFragmentInfo
&FragmentInfo
,
143 const DILocation
*InlinedAt
)
144 : Variable(Var
), Fragment(FragmentInfo
), InlinedAt(InlinedAt
) {}
146 DebugVariable(const DILocalVariable
*Var
, const DIExpression
*DIExpr
,
147 const DILocation
*InlinedAt
)
148 : DebugVariable(Var
, DIExpr
->getFragmentInfo(), InlinedAt
) {}
150 DebugVariable(const MachineInstr
&MI
)
151 : DebugVariable(MI
.getDebugVariable(),
152 MI
.getDebugExpression()->getFragmentInfo(),
153 MI
.getDebugLoc()->getInlinedAt()) {}
155 const DILocalVariable
*getVar() const { return Variable
; }
156 const OptFragmentInfo
&getFragment() const { return Fragment
; }
157 const DILocation
*getInlinedAt() const { return InlinedAt
; }
159 const FragmentInfo
getFragmentDefault() const {
160 return Fragment
.getValueOr(DefaultFragment
);
163 static bool isFragmentDefault(FragmentInfo
&F
) {
164 return F
== DefaultFragment
;
167 bool operator==(const DebugVariable
&Other
) const {
168 return std::tie(Variable
, Fragment
, InlinedAt
) ==
169 std::tie(Other
.Variable
, Other
.Fragment
, Other
.InlinedAt
);
172 bool operator<(const DebugVariable
&Other
) const {
173 return std::tie(Variable
, Fragment
, InlinedAt
) <
174 std::tie(Other
.Variable
, Other
.Fragment
, Other
.InlinedAt
);
178 friend struct llvm::DenseMapInfo
<DebugVariable
>;
180 /// A pair of debug variable and value location.
182 // The location at which a spilled variable resides. It consists of a
183 // register and an offset.
187 bool operator==(const SpillLoc
&Other
) const {
188 return SpillBase
== Other
.SpillBase
&& SpillOffset
== Other
.SpillOffset
;
192 /// Identity of the variable at this location.
193 const DebugVariable Var
;
195 /// The expression applied to this location.
196 const DIExpression
*Expr
;
198 /// DBG_VALUE to clone var/expr information from if this location
200 const MachineInstr
&MI
;
202 mutable UserValueScopes UVS
;
209 } Kind
= InvalidKind
;
211 /// The value location. Stored separately to avoid repeatedly
212 /// extracting it from MI.
215 SpillLoc SpillLocation
;
218 const ConstantFP
*FPImm
;
219 const ConstantInt
*CImm
;
222 VarLoc(const MachineInstr
&MI
, LexicalScopes
&LS
)
223 : Var(MI
), Expr(MI
.getDebugExpression()), MI(MI
),
224 UVS(MI
.getDebugLoc(), LS
) {
225 static_assert((sizeof(Loc
) == sizeof(uint64_t)),
226 "hash does not cover all members of Loc");
227 assert(MI
.isDebugValue() && "not a DBG_VALUE");
228 assert(MI
.getNumOperands() == 4 && "malformed DBG_VALUE");
229 if (int RegNo
= isDbgValueDescribedByReg(MI
)) {
230 Kind
= MI
.isDebugEntryValue() ? EntryValueKind
: RegisterKind
;
232 } else if (MI
.getOperand(0).isImm()) {
233 Kind
= ImmediateKind
;
234 Loc
.Immediate
= MI
.getOperand(0).getImm();
235 } else if (MI
.getOperand(0).isFPImm()) {
236 Kind
= ImmediateKind
;
237 Loc
.FPImm
= MI
.getOperand(0).getFPImm();
238 } else if (MI
.getOperand(0).isCImm()) {
239 Kind
= ImmediateKind
;
240 Loc
.CImm
= MI
.getOperand(0).getCImm();
242 assert((Kind
!= ImmediateKind
|| !MI
.isDebugEntryValue()) &&
243 "entry values must be register locations");
246 /// Take the variable and machine-location in DBG_VALUE MI, and build an
247 /// entry location using the given expression.
248 static VarLoc
CreateEntryLoc(const MachineInstr
&MI
, LexicalScopes
&LS
,
249 const DIExpression
*EntryExpr
) {
251 VL
.Kind
= EntryValueKind
;
256 /// Copy the register location in DBG_VALUE MI, updating the register to
258 static VarLoc
CreateCopyLoc(const MachineInstr
&MI
, LexicalScopes
&LS
,
261 assert(VL
.Kind
== RegisterKind
);
262 VL
.Loc
.RegNo
= NewReg
;
266 /// Take the variable described by DBG_VALUE MI, and create a VarLoc
267 /// locating it in the specified spill location.
268 static VarLoc
CreateSpillLoc(const MachineInstr
&MI
, unsigned SpillBase
,
269 int SpillOffset
, LexicalScopes
&LS
) {
271 assert(VL
.Kind
== RegisterKind
);
272 VL
.Kind
= SpillLocKind
;
273 VL
.Loc
.SpillLocation
= {SpillBase
, SpillOffset
};
277 /// Create a DBG_VALUE representing this VarLoc in the given function.
278 /// Copies variable-specific information such as DILocalVariable and
279 /// inlining information from the original DBG_VALUE instruction, which may
280 /// have been several transfers ago.
281 MachineInstr
*BuildDbgValue(MachineFunction
&MF
) const {
282 const DebugLoc
&DbgLoc
= MI
.getDebugLoc();
283 bool Indirect
= MI
.isIndirectDebugValue();
284 const auto &IID
= MI
.getDesc();
285 const DILocalVariable
*Var
= MI
.getDebugVariable();
286 const DIExpression
*DIExpr
= MI
.getDebugExpression();
290 // An entry value is a register location -- but with an updated
292 return BuildMI(MF
, DbgLoc
, IID
, Indirect
, Loc
.RegNo
, Var
, Expr
);
294 // Register locations are like the source DBG_VALUE, but with the
295 // register number from this VarLoc.
296 return BuildMI(MF
, DbgLoc
, IID
, Indirect
, Loc
.RegNo
, Var
, DIExpr
);
298 // Spills are indirect DBG_VALUEs, with a base register and offset.
299 // Use the original DBG_VALUEs expression to build the spilt location
300 // on top of. FIXME: spill locations created before this pass runs
301 // are not recognized, and not handled here.
302 auto *SpillExpr
= DIExpression::prepend(
303 DIExpr
, DIExpression::ApplyOffset
, Loc
.SpillLocation
.SpillOffset
);
304 unsigned Base
= Loc
.SpillLocation
.SpillBase
;
305 return BuildMI(MF
, DbgLoc
, IID
, true, Base
, Var
, SpillExpr
);
307 case ImmediateKind
: {
308 MachineOperand MO
= MI
.getOperand(0);
309 return BuildMI(MF
, DbgLoc
, IID
, Indirect
, MO
, Var
, DIExpr
);
312 llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc");
314 llvm_unreachable("Unrecognized LiveDebugValues.VarLoc.Kind enum");
317 /// Is the Loc field a constant or constant object?
318 bool isConstant() const { return Kind
== ImmediateKind
; }
320 /// If this variable is described by a register, return it,
321 /// otherwise return 0.
322 unsigned isDescribedByReg() const {
323 if (Kind
== RegisterKind
)
328 /// Determine whether the lexical scope of this value's debug location
330 bool dominates(MachineBasicBlock
&MBB
) const { return UVS
.dominates(&MBB
); }
332 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
334 void dump(const TargetRegisterInfo
*TRI
, raw_ostream
&Out
= dbgs()) const {
339 dbgs() << printReg(Loc
.RegNo
, TRI
);
342 dbgs() << printReg(Loc
.SpillLocation
.SpillBase
, TRI
);
343 dbgs() << "[" << Loc
.SpillLocation
.SpillOffset
<< "]";
346 dbgs() << Loc
.Immediate
;
349 llvm_unreachable("Invalid VarLoc in dump method");
352 dbgs() << ", \"" << Var
.getVar()->getName() << "\", " << *Expr
<< ", ";
353 if (Var
.getInlinedAt())
354 dbgs() << "!" << Var
.getInlinedAt()->getMetadataID() << ")\n";
356 dbgs() << "(null))\n";
360 bool operator==(const VarLoc
&Other
) const {
361 return Kind
== Other
.Kind
&& Var
== Other
.Var
&&
362 Loc
.Hash
== Other
.Loc
.Hash
&& Expr
== Other
.Expr
;
365 /// This operator guarantees that VarLocs are sorted by Variable first.
366 bool operator<(const VarLoc
&Other
) const {
367 return std::tie(Var
, Kind
, Loc
.Hash
, Expr
) <
368 std::tie(Other
.Var
, Other
.Kind
, Other
.Loc
.Hash
, Other
.Expr
);
372 using DebugParamMap
= SmallDenseMap
<const DILocalVariable
*, MachineInstr
*>;
373 using VarLocMap
= UniqueVector
<VarLoc
>;
374 using VarLocSet
= SparseBitVector
<>;
375 using VarLocInMBB
= SmallDenseMap
<const MachineBasicBlock
*, VarLocSet
>;
376 struct TransferDebugPair
{
377 MachineInstr
*TransferInst
; /// Instruction where this transfer occurs.
378 unsigned LocationID
; /// Location number for the transfer dest.
380 using TransferMap
= SmallVector
<TransferDebugPair
, 4>;
382 // Types for recording sets of variable fragments that overlap. For a given
383 // local variable, we record all other fragments of that variable that could
384 // overlap it, to reduce search time.
385 using FragmentOfVar
=
386 std::pair
<const DILocalVariable
*, DIExpression::FragmentInfo
>;
388 DenseMap
<FragmentOfVar
, SmallVector
<DIExpression::FragmentInfo
, 1>>;
390 // Helper while building OverlapMap, a map of all fragments seen for a given
392 using VarToFragments
=
393 DenseMap
<const DILocalVariable
*, SmallSet
<FragmentInfo
, 4>>;
395 /// This holds the working set of currently open ranges. For fast
396 /// access, this is done both as a set of VarLocIDs, and a map of
397 /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
398 /// previous open ranges for the same variable.
399 class OpenRangesSet
{
401 SmallDenseMap
<DebugVariable
, unsigned, 8> Vars
;
402 OverlapMap
&OverlappingFragments
;
405 OpenRangesSet(OverlapMap
&_OLapMap
) : OverlappingFragments(_OLapMap
) {}
407 const VarLocSet
&getVarLocs() const { return VarLocs
; }
409 /// Terminate all open ranges for Var by removing it from the set.
410 void erase(DebugVariable Var
);
412 /// Terminate all open ranges listed in \c KillSet by removing
413 /// them from the set.
414 void erase(const VarLocSet
&KillSet
, const VarLocMap
&VarLocIDs
) {
415 VarLocs
.intersectWithComplement(KillSet
);
416 for (unsigned ID
: KillSet
)
417 Vars
.erase(VarLocIDs
[ID
].Var
);
420 /// Insert a new range into the set.
421 void insert(unsigned VarLocID
, DebugVariable Var
) {
422 VarLocs
.set(VarLocID
);
423 Vars
.insert({Var
, VarLocID
});
426 /// Insert a set of ranges.
427 void insertFromLocSet(const VarLocSet
&ToLoad
, const VarLocMap
&Map
) {
428 for (unsigned Id
: ToLoad
) {
429 const VarLoc
&Var
= Map
[Id
];
440 /// Return whether the set is empty or not.
442 assert(Vars
.empty() == VarLocs
.empty() && "open ranges are inconsistent");
443 return VarLocs
.empty();
447 /// Tests whether this instruction is a spill to a stack location.
448 bool isSpillInstruction(const MachineInstr
&MI
, MachineFunction
*MF
);
450 /// Decide if @MI is a spill instruction and return true if it is. We use 2
451 /// criteria to make this decision:
452 /// - Is this instruction a store to a spill slot?
453 /// - Is there a register operand that is both used and killed?
454 /// TODO: Store optimization can fold spills into other stores (including
455 /// other spills). We do not handle this yet (more than one memory operand).
456 bool isLocationSpill(const MachineInstr
&MI
, MachineFunction
*MF
,
459 /// If a given instruction is identified as a spill, return the spill location
460 /// and set \p Reg to the spilled register.
461 Optional
<VarLoc::SpillLoc
> isRestoreInstruction(const MachineInstr
&MI
,
464 /// Given a spill instruction, extract the register and offset used to
465 /// address the spill location in a target independent way.
466 VarLoc::SpillLoc
extractSpillBaseRegAndOffset(const MachineInstr
&MI
);
467 void insertTransferDebugPair(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
468 TransferMap
&Transfers
, VarLocMap
&VarLocIDs
,
469 unsigned OldVarID
, TransferKind Kind
,
470 unsigned NewReg
= 0);
472 void transferDebugValue(const MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
473 VarLocMap
&VarLocIDs
);
474 void transferSpillOrRestoreInst(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
475 VarLocMap
&VarLocIDs
, TransferMap
&Transfers
);
476 void emitEntryValues(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
477 VarLocMap
&VarLocIDs
, TransferMap
&Transfers
,
478 DebugParamMap
&DebugEntryVals
,
479 SparseBitVector
<> &KillSet
);
480 void transferRegisterCopy(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
481 VarLocMap
&VarLocIDs
, TransferMap
&Transfers
);
482 void transferRegisterDef(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
483 VarLocMap
&VarLocIDs
, TransferMap
&Transfers
,
484 DebugParamMap
&DebugEntryVals
);
485 bool transferTerminator(MachineBasicBlock
*MBB
, OpenRangesSet
&OpenRanges
,
486 VarLocInMBB
&OutLocs
, const VarLocMap
&VarLocIDs
);
488 void process(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
489 VarLocInMBB
&OutLocs
, VarLocMap
&VarLocIDs
,
490 TransferMap
&Transfers
, DebugParamMap
&DebugEntryVals
,
491 OverlapMap
&OverlapFragments
,
492 VarToFragments
&SeenFragments
);
494 void accumulateFragmentMap(MachineInstr
&MI
, VarToFragments
&SeenFragments
,
495 OverlapMap
&OLapMap
);
497 bool join(MachineBasicBlock
&MBB
, VarLocInMBB
&OutLocs
, VarLocInMBB
&InLocs
,
498 const VarLocMap
&VarLocIDs
,
499 SmallPtrSet
<const MachineBasicBlock
*, 16> &Visited
,
500 SmallPtrSetImpl
<const MachineBasicBlock
*> &ArtificialBlocks
,
501 VarLocInMBB
&PendingInLocs
);
503 /// Create DBG_VALUE insts for inlocs that have been propagated but
504 /// had their instruction creation deferred.
505 void flushPendingLocs(VarLocInMBB
&PendingInLocs
, VarLocMap
&VarLocIDs
);
507 bool ExtendRanges(MachineFunction
&MF
);
512 /// Default construct and initialize the pass.
515 /// Tell the pass manager which passes we depend on and what
516 /// information we preserve.
517 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
519 MachineFunctionProperties
getRequiredProperties() const override
{
520 return MachineFunctionProperties().set(
521 MachineFunctionProperties::Property::NoVRegs
);
524 /// Print to ostream with a message.
525 void printVarLocInMBB(const MachineFunction
&MF
, const VarLocInMBB
&V
,
526 const VarLocMap
&VarLocIDs
, const char *msg
,
527 raw_ostream
&Out
) const;
529 /// Calculate the liveness information for the given machine function.
530 bool runOnMachineFunction(MachineFunction
&MF
) override
;
533 } // end anonymous namespace
537 template <> struct DenseMapInfo
<LiveDebugValues::DebugVariable
> {
538 using DV
= LiveDebugValues::DebugVariable
;
539 using OptFragmentInfo
= LiveDebugValues::OptFragmentInfo
;
540 using FragmentInfo
= LiveDebugValues::FragmentInfo
;
542 // Empty key: no key should be generated that has no DILocalVariable.
543 static inline DV
getEmptyKey() {
544 return DV(nullptr, OptFragmentInfo(), nullptr);
547 // Difference in tombstone is that the Optional is meaningful
548 static inline DV
getTombstoneKey() {
549 return DV(nullptr, OptFragmentInfo({0, 0}), nullptr);
552 static unsigned getHashValue(const DV
&D
) {
554 const OptFragmentInfo
&Fragment
= D
.getFragment();
556 HV
= DenseMapInfo
<FragmentInfo
>::getHashValue(*Fragment
);
558 return hash_combine(D
.getVar(), HV
, D
.getInlinedAt());
561 static bool isEqual(const DV
&A
, const DV
&B
) { return A
== B
; }
566 //===----------------------------------------------------------------------===//
568 //===----------------------------------------------------------------------===//
570 const DIExpression::FragmentInfo
571 LiveDebugValues::DebugVariable::DefaultFragment
= {
572 std::numeric_limits
<uint64_t>::max(),
573 std::numeric_limits
<uint64_t>::min()};
575 char LiveDebugValues::ID
= 0;
577 char &llvm::LiveDebugValuesID
= LiveDebugValues::ID
;
579 INITIALIZE_PASS(LiveDebugValues
, DEBUG_TYPE
, "Live DEBUG_VALUE analysis",
582 /// Default construct and initialize the pass.
583 LiveDebugValues::LiveDebugValues() : MachineFunctionPass(ID
) {
584 initializeLiveDebugValuesPass(*PassRegistry::getPassRegistry());
587 /// Tell the pass manager which passes we depend on and what information we
589 void LiveDebugValues::getAnalysisUsage(AnalysisUsage
&AU
) const {
590 AU
.setPreservesCFG();
591 MachineFunctionPass::getAnalysisUsage(AU
);
594 /// Erase a variable from the set of open ranges, and additionally erase any
595 /// fragments that may overlap it.
596 void LiveDebugValues::OpenRangesSet::erase(DebugVariable Var
) {
598 auto DoErase
= [this](DebugVariable VarToErase
) {
599 auto It
= Vars
.find(VarToErase
);
600 if (It
!= Vars
.end()) {
601 unsigned ID
= It
->second
;
607 // Erase the variable/fragment that ends here.
610 // Extract the fragment. Interpret an empty fragment as one that covers all
612 FragmentInfo ThisFragment
= Var
.getFragmentDefault();
614 // There may be fragments that overlap the designated fragment. Look them up
615 // in the pre-computed overlap map, and erase them too.
616 auto MapIt
= OverlappingFragments
.find({Var
.getVar(), ThisFragment
});
617 if (MapIt
!= OverlappingFragments
.end()) {
618 for (auto Fragment
: MapIt
->second
) {
619 LiveDebugValues::OptFragmentInfo FragmentHolder
;
620 if (!DebugVariable::isFragmentDefault(Fragment
))
621 FragmentHolder
= LiveDebugValues::OptFragmentInfo(Fragment
);
622 DoErase({Var
.getVar(), FragmentHolder
, Var
.getInlinedAt()});
627 //===----------------------------------------------------------------------===//
628 // Debug Range Extension Implementation
629 //===----------------------------------------------------------------------===//
632 void LiveDebugValues::printVarLocInMBB(const MachineFunction
&MF
,
633 const VarLocInMBB
&V
,
634 const VarLocMap
&VarLocIDs
,
636 raw_ostream
&Out
) const {
637 Out
<< '\n' << msg
<< '\n';
638 for (const MachineBasicBlock
&BB
: MF
) {
639 const VarLocSet
&L
= V
.lookup(&BB
);
642 Out
<< "MBB: " << BB
.getNumber() << ":\n";
643 for (unsigned VLL
: L
) {
644 const VarLoc
&VL
= VarLocIDs
[VLL
];
645 Out
<< " Var: " << VL
.Var
.getVar()->getName();
654 LiveDebugValues::VarLoc::SpillLoc
655 LiveDebugValues::extractSpillBaseRegAndOffset(const MachineInstr
&MI
) {
656 assert(MI
.hasOneMemOperand() &&
657 "Spill instruction does not have exactly one memory operand?");
658 auto MMOI
= MI
.memoperands_begin();
659 const PseudoSourceValue
*PVal
= (*MMOI
)->getPseudoValue();
660 assert(PVal
->kind() == PseudoSourceValue::FixedStack
&&
661 "Inconsistent memory operand in spill instruction");
662 int FI
= cast
<FixedStackPseudoSourceValue
>(PVal
)->getFrameIndex();
663 const MachineBasicBlock
*MBB
= MI
.getParent();
665 int Offset
= TFI
->getFrameIndexReference(*MBB
->getParent(), FI
, Reg
);
666 return {Reg
, Offset
};
669 /// End all previous ranges related to @MI and start a new range from @MI
670 /// if it is a DBG_VALUE instr.
671 void LiveDebugValues::transferDebugValue(const MachineInstr
&MI
,
672 OpenRangesSet
&OpenRanges
,
673 VarLocMap
&VarLocIDs
) {
674 if (!MI
.isDebugValue())
676 const DILocalVariable
*Var
= MI
.getDebugVariable();
677 const DIExpression
*Expr
= MI
.getDebugExpression();
678 const DILocation
*DebugLoc
= MI
.getDebugLoc();
679 const DILocation
*InlinedAt
= DebugLoc
->getInlinedAt();
680 assert(Var
->isValidLocationForIntrinsic(DebugLoc
) &&
681 "Expected inlined-at fields to agree");
683 // End all previous ranges of Var.
684 DebugVariable
V(Var
, Expr
, InlinedAt
);
687 // Add the VarLoc to OpenRanges from this DBG_VALUE.
689 if (isDbgValueDescribedByReg(MI
) || MI
.getOperand(0).isImm() ||
690 MI
.getOperand(0).isFPImm() || MI
.getOperand(0).isCImm()) {
691 // Use normal VarLoc constructor for registers and immediates.
693 ID
= VarLocIDs
.insert(VL
);
694 OpenRanges
.insert(ID
, VL
.Var
);
695 } else if (MI
.hasOneMemOperand()) {
696 llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?");
698 // This must be an undefined location. We should leave OpenRanges closed.
699 assert(MI
.getOperand(0).isReg() && MI
.getOperand(0).getReg() == 0 &&
700 "Unexpected non-undef DBG_VALUE encountered");
704 void LiveDebugValues::emitEntryValues(MachineInstr
&MI
,
705 OpenRangesSet
&OpenRanges
,
706 VarLocMap
&VarLocIDs
,
707 TransferMap
&Transfers
,
708 DebugParamMap
&DebugEntryVals
,
709 SparseBitVector
<> &KillSet
) {
710 for (unsigned ID
: KillSet
) {
711 if (!VarLocIDs
[ID
].Var
.getVar()->isParameter())
714 const MachineInstr
*CurrDebugInstr
= &VarLocIDs
[ID
].MI
;
716 // If parameter's DBG_VALUE is not in the map that means we can't
717 // generate parameter's entry value.
718 if (!DebugEntryVals
.count(CurrDebugInstr
->getDebugVariable()))
721 auto ParamDebugInstr
= DebugEntryVals
[CurrDebugInstr
->getDebugVariable()];
722 DIExpression
*NewExpr
= DIExpression::prepend(
723 ParamDebugInstr
->getDebugExpression(), DIExpression::EntryValue
);
725 VarLoc EntryLoc
= VarLoc::CreateEntryLoc(*ParamDebugInstr
, LS
, NewExpr
);
727 unsigned EntryValLocID
= VarLocIDs
.insert(EntryLoc
);
728 Transfers
.push_back({&MI
, EntryValLocID
});
729 OpenRanges
.insert(EntryValLocID
, EntryLoc
.Var
);
733 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
734 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with
735 /// new VarLoc. If \p NewReg is different than default zero value then the
736 /// new location will be register location created by the copy like instruction,
737 /// otherwise it is variable's location on the stack.
738 void LiveDebugValues::insertTransferDebugPair(
739 MachineInstr
&MI
, OpenRangesSet
&OpenRanges
, TransferMap
&Transfers
,
740 VarLocMap
&VarLocIDs
, unsigned OldVarID
, TransferKind Kind
,
742 const MachineInstr
*DebugInstr
= &VarLocIDs
[OldVarID
].MI
;
744 auto ProcessVarLoc
= [&MI
, &OpenRanges
, &Transfers
, &DebugInstr
,
745 &VarLocIDs
](VarLoc
&VL
) {
746 unsigned LocId
= VarLocIDs
.insert(VL
);
748 // Close this variable's previous location range.
749 DebugVariable
V(*DebugInstr
);
752 // Record the new location as an open range, and a postponed transfer
753 // inserting a DBG_VALUE for this location.
754 OpenRanges
.insert(LocId
, VL
.Var
);
755 TransferDebugPair MIP
= {&MI
, LocId
};
756 Transfers
.push_back(MIP
);
759 // End all previous ranges of Var.
760 OpenRanges
.erase(VarLocIDs
[OldVarID
].Var
);
762 case TransferKind::TransferCopy
: {
764 "No register supplied when handling a copy of a debug value");
765 // Create a DBG_VALUE instruction to describe the Var in its new
766 // register location.
767 VarLoc VL
= VarLoc::CreateCopyLoc(*DebugInstr
, LS
, NewReg
);
770 dbgs() << "Creating VarLoc for register copy:";
775 case TransferKind::TransferSpill
: {
776 // Create a DBG_VALUE instruction to describe the Var in its spilled
778 VarLoc::SpillLoc SpillLocation
= extractSpillBaseRegAndOffset(MI
);
779 VarLoc VL
= VarLoc::CreateSpillLoc(*DebugInstr
, SpillLocation
.SpillBase
,
780 SpillLocation
.SpillOffset
, LS
);
783 dbgs() << "Creating VarLoc for spill:";
788 case TransferKind::TransferRestore
: {
790 "No register supplied when handling a restore of a debug value");
791 MachineFunction
*MF
= MI
.getMF();
792 DIBuilder
DIB(*const_cast<Function
&>(MF
->getFunction()).getParent());
793 // DebugInstr refers to the pre-spill location, therefore we can reuse
795 VarLoc VL
= VarLoc::CreateCopyLoc(*DebugInstr
, LS
, NewReg
);
798 dbgs() << "Creating VarLoc for restore:";
804 llvm_unreachable("Invalid transfer kind");
807 /// A definition of a register may mark the end of a range.
808 void LiveDebugValues::transferRegisterDef(
809 MachineInstr
&MI
, OpenRangesSet
&OpenRanges
, VarLocMap
&VarLocIDs
,
810 TransferMap
&Transfers
, DebugParamMap
&DebugEntryVals
) {
811 MachineFunction
*MF
= MI
.getMF();
812 const TargetLowering
*TLI
= MF
->getSubtarget().getTargetLowering();
813 unsigned SP
= TLI
->getStackPointerRegisterToSaveRestore();
814 SparseBitVector
<> KillSet
;
815 for (const MachineOperand
&MO
: MI
.operands()) {
816 // Determine whether the operand is a register def. Assume that call
817 // instructions never clobber SP, because some backends (e.g., AArch64)
818 // never list SP in the regmask.
819 if (MO
.isReg() && MO
.isDef() && MO
.getReg() &&
820 Register::isPhysicalRegister(MO
.getReg()) &&
821 !(MI
.isCall() && MO
.getReg() == SP
)) {
822 // Remove ranges of all aliased registers.
823 for (MCRegAliasIterator
RAI(MO
.getReg(), TRI
, true); RAI
.isValid(); ++RAI
)
824 for (unsigned ID
: OpenRanges
.getVarLocs())
825 if (VarLocIDs
[ID
].isDescribedByReg() == *RAI
)
827 } else if (MO
.isRegMask()) {
828 // Remove ranges of all clobbered registers. Register masks don't usually
829 // list SP as preserved. While the debug info may be off for an
830 // instruction or two around callee-cleanup calls, transferring the
831 // DEBUG_VALUE across the call is still a better user experience.
832 for (unsigned ID
: OpenRanges
.getVarLocs()) {
833 unsigned Reg
= VarLocIDs
[ID
].isDescribedByReg();
834 if (Reg
&& Reg
!= SP
&& MO
.clobbersPhysReg(Reg
))
839 OpenRanges
.erase(KillSet
, VarLocIDs
);
841 if (auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>()) {
842 auto &TM
= TPC
->getTM
<TargetMachine
>();
843 if (TM
.Options
.EnableDebugEntryValues
)
844 emitEntryValues(MI
, OpenRanges
, VarLocIDs
, Transfers
, DebugEntryVals
,
849 bool LiveDebugValues::isSpillInstruction(const MachineInstr
&MI
,
850 MachineFunction
*MF
) {
851 // TODO: Handle multiple stores folded into one.
852 if (!MI
.hasOneMemOperand())
855 if (!MI
.getSpillSize(TII
) && !MI
.getFoldedSpillSize(TII
))
856 return false; // This is not a spill instruction, since no valid size was
857 // returned from either function.
862 bool LiveDebugValues::isLocationSpill(const MachineInstr
&MI
,
863 MachineFunction
*MF
, unsigned &Reg
) {
864 if (!isSpillInstruction(MI
, MF
))
867 auto isKilledReg
= [&](const MachineOperand MO
, unsigned &Reg
) {
868 if (!MO
.isReg() || !MO
.isUse()) {
876 for (const MachineOperand
&MO
: MI
.operands()) {
877 // In a spill instruction generated by the InlineSpiller the spilled
878 // register has its kill flag set.
879 if (isKilledReg(MO
, Reg
))
882 // Check whether next instruction kills the spilled register.
883 // FIXME: Current solution does not cover search for killed register in
884 // bundles and instructions further down the chain.
885 auto NextI
= std::next(MI
.getIterator());
886 // Skip next instruction that points to basic block end iterator.
887 if (MI
.getParent()->end() == NextI
)
890 for (const MachineOperand
&MONext
: NextI
->operands()) {
891 // Return true if we came across the register from the
892 // previous spill instruction that is killed in NextI.
893 if (isKilledReg(MONext
, RegNext
) && RegNext
== Reg
)
898 // Return false if we didn't find spilled register.
902 Optional
<LiveDebugValues::VarLoc::SpillLoc
>
903 LiveDebugValues::isRestoreInstruction(const MachineInstr
&MI
,
904 MachineFunction
*MF
, unsigned &Reg
) {
905 if (!MI
.hasOneMemOperand())
908 // FIXME: Handle folded restore instructions with more than one memory
910 if (MI
.getRestoreSize(TII
)) {
911 Reg
= MI
.getOperand(0).getReg();
912 return extractSpillBaseRegAndOffset(MI
);
917 /// A spilled register may indicate that we have to end the current range of
918 /// a variable and create a new one for the spill location.
919 /// A restored register may indicate the reverse situation.
920 /// We don't want to insert any instructions in process(), so we just create
921 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
922 /// It will be inserted into the BB when we're done iterating over the
924 void LiveDebugValues::transferSpillOrRestoreInst(MachineInstr
&MI
,
925 OpenRangesSet
&OpenRanges
,
926 VarLocMap
&VarLocIDs
,
927 TransferMap
&Transfers
) {
928 MachineFunction
*MF
= MI
.getMF();
931 Optional
<VarLoc::SpillLoc
> Loc
;
933 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI
.dump(););
935 // First, if there are any DBG_VALUEs pointing at a spill slot that is
936 // written to, then close the variable location. The value in memory
937 // will have changed.
939 if (isSpillInstruction(MI
, MF
)) {
940 Loc
= extractSpillBaseRegAndOffset(MI
);
941 for (unsigned ID
: OpenRanges
.getVarLocs()) {
942 const VarLoc
&VL
= VarLocIDs
[ID
];
943 if (VL
.Kind
== VarLoc::SpillLocKind
&& VL
.Loc
.SpillLocation
== *Loc
) {
944 // This location is overwritten by the current instruction -- terminate
945 // the open range, and insert an explicit DBG_VALUE $noreg.
947 // Doing this at a later stage would require re-interpreting all
948 // DBG_VALUes and DIExpressions to identify whether they point at
949 // memory, and then analysing all memory writes to see if they
950 // overwrite that memory, which is expensive.
952 // At this stage, we already know which DBG_VALUEs are for spills and
953 // where they are located; it's best to fix handle overwrites now.
955 VarLoc UndefVL
= VarLoc::CreateCopyLoc(VL
.MI
, LS
, 0);
956 unsigned UndefLocID
= VarLocIDs
.insert(UndefVL
);
957 Transfers
.push_back({&MI
, UndefLocID
});
960 OpenRanges
.erase(KillSet
, VarLocIDs
);
963 // Try to recognise spill and restore instructions that may create a new
964 // variable location.
965 if (isLocationSpill(MI
, MF
, Reg
)) {
966 TKind
= TransferKind::TransferSpill
;
967 LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI
.dump(););
968 LLVM_DEBUG(dbgs() << "Register: " << Reg
<< " " << printReg(Reg
, TRI
)
971 if (!(Loc
= isRestoreInstruction(MI
, MF
, Reg
)))
973 TKind
= TransferKind::TransferRestore
;
974 LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI
.dump(););
975 LLVM_DEBUG(dbgs() << "Register: " << Reg
<< " " << printReg(Reg
, TRI
)
978 // Check if the register or spill location is the location of a debug value.
979 for (unsigned ID
: OpenRanges
.getVarLocs()) {
980 if (TKind
== TransferKind::TransferSpill
&&
981 VarLocIDs
[ID
].isDescribedByReg() == Reg
) {
982 LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg
, TRI
) << '('
983 << VarLocIDs
[ID
].Var
.getVar()->getName() << ")\n");
984 } else if (TKind
== TransferKind::TransferRestore
&&
985 VarLocIDs
[ID
].Kind
== VarLoc::SpillLocKind
&&
986 VarLocIDs
[ID
].Loc
.SpillLocation
== *Loc
) {
987 LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg
, TRI
) << '('
988 << VarLocIDs
[ID
].Var
.getVar()->getName() << ")\n");
991 insertTransferDebugPair(MI
, OpenRanges
, Transfers
, VarLocIDs
, ID
, TKind
,
997 /// If \p MI is a register copy instruction, that copies a previously tracked
998 /// value from one register to another register that is callee saved, we
999 /// create new DBG_VALUE instruction described with copy destination register.
1000 void LiveDebugValues::transferRegisterCopy(MachineInstr
&MI
,
1001 OpenRangesSet
&OpenRanges
,
1002 VarLocMap
&VarLocIDs
,
1003 TransferMap
&Transfers
) {
1004 const MachineOperand
*SrcRegOp
, *DestRegOp
;
1006 if (!TII
->isCopyInstr(MI
, SrcRegOp
, DestRegOp
) || !SrcRegOp
->isKill() ||
1007 !DestRegOp
->isDef())
1010 auto isCalleSavedReg
= [&](unsigned Reg
) {
1011 for (MCRegAliasIterator
RAI(Reg
, TRI
, true); RAI
.isValid(); ++RAI
)
1012 if (CalleeSavedRegs
.test(*RAI
))
1017 Register SrcReg
= SrcRegOp
->getReg();
1018 Register DestReg
= DestRegOp
->getReg();
1020 // We want to recognize instructions where destination register is callee
1021 // saved register. If register that could be clobbered by the call is
1022 // included, there would be a great chance that it is going to be clobbered
1023 // soon. It is more likely that previous register location, which is callee
1024 // saved, is going to stay unclobbered longer, even if it is killed.
1025 if (!isCalleSavedReg(DestReg
))
1028 for (unsigned ID
: OpenRanges
.getVarLocs()) {
1029 if (VarLocIDs
[ID
].isDescribedByReg() == SrcReg
) {
1030 insertTransferDebugPair(MI
, OpenRanges
, Transfers
, VarLocIDs
, ID
,
1031 TransferKind::TransferCopy
, DestReg
);
1037 /// Terminate all open ranges at the end of the current basic block.
1038 bool LiveDebugValues::transferTerminator(MachineBasicBlock
*CurMBB
,
1039 OpenRangesSet
&OpenRanges
,
1040 VarLocInMBB
&OutLocs
,
1041 const VarLocMap
&VarLocIDs
) {
1042 bool Changed
= false;
1044 LLVM_DEBUG(for (unsigned ID
1045 : OpenRanges
.getVarLocs()) {
1046 // Copy OpenRanges to OutLocs, if not already present.
1047 dbgs() << "Add to OutLocs in MBB #" << CurMBB
->getNumber() << ": ";
1048 VarLocIDs
[ID
].dump(TRI
);
1050 VarLocSet
&VLS
= OutLocs
[CurMBB
];
1051 Changed
= VLS
!= OpenRanges
.getVarLocs();
1052 // New OutLocs set may be different due to spill, restore or register
1053 // copy instruction processing.
1055 VLS
= OpenRanges
.getVarLocs();
1060 /// Accumulate a mapping between each DILocalVariable fragment and other
1061 /// fragments of that DILocalVariable which overlap. This reduces work during
1062 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1063 /// known-to-overlap fragments are present".
1064 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1066 /// \param SeenFragments Map from DILocalVariable to all fragments of that
1067 /// Variable which are known to exist.
1068 /// \param OverlappingFragments The overlap map being constructed, from one
1069 /// Var/Fragment pair to a vector of fragments known to overlap.
1070 void LiveDebugValues::accumulateFragmentMap(MachineInstr
&MI
,
1071 VarToFragments
&SeenFragments
,
1072 OverlapMap
&OverlappingFragments
) {
1073 DebugVariable
MIVar(MI
);
1074 FragmentInfo ThisFragment
= MIVar
.getFragmentDefault();
1076 // If this is the first sighting of this variable, then we are guaranteed
1077 // there are currently no overlapping fragments either. Initialize the set
1078 // of seen fragments, record no overlaps for the current one, and return.
1079 auto SeenIt
= SeenFragments
.find(MIVar
.getVar());
1080 if (SeenIt
== SeenFragments
.end()) {
1081 SmallSet
<FragmentInfo
, 4> OneFragment
;
1082 OneFragment
.insert(ThisFragment
);
1083 SeenFragments
.insert({MIVar
.getVar(), OneFragment
});
1085 OverlappingFragments
.insert({{MIVar
.getVar(), ThisFragment
}, {}});
1089 // If this particular Variable/Fragment pair already exists in the overlap
1090 // map, it has already been accounted for.
1092 OverlappingFragments
.insert({{MIVar
.getVar(), ThisFragment
}, {}});
1093 if (!IsInOLapMap
.second
)
1096 auto &ThisFragmentsOverlaps
= IsInOLapMap
.first
->second
;
1097 auto &AllSeenFragments
= SeenIt
->second
;
1099 // Otherwise, examine all other seen fragments for this variable, with "this"
1100 // fragment being a previously unseen fragment. Record any pair of
1101 // overlapping fragments.
1102 for (auto &ASeenFragment
: AllSeenFragments
) {
1103 // Does this previously seen fragment overlap?
1104 if (DIExpression::fragmentsOverlap(ThisFragment
, ASeenFragment
)) {
1105 // Yes: Mark the current fragment as being overlapped.
1106 ThisFragmentsOverlaps
.push_back(ASeenFragment
);
1107 // Mark the previously seen fragment as being overlapped by the current
1109 auto ASeenFragmentsOverlaps
=
1110 OverlappingFragments
.find({MIVar
.getVar(), ASeenFragment
});
1111 assert(ASeenFragmentsOverlaps
!= OverlappingFragments
.end() &&
1112 "Previously seen var fragment has no vector of overlaps");
1113 ASeenFragmentsOverlaps
->second
.push_back(ThisFragment
);
1117 AllSeenFragments
.insert(ThisFragment
);
1120 /// This routine creates OpenRanges and OutLocs.
1121 void LiveDebugValues::process(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
1122 VarLocInMBB
&OutLocs
, VarLocMap
&VarLocIDs
,
1123 TransferMap
&Transfers
,
1124 DebugParamMap
&DebugEntryVals
,
1125 OverlapMap
&OverlapFragments
,
1126 VarToFragments
&SeenFragments
) {
1127 transferDebugValue(MI
, OpenRanges
, VarLocIDs
);
1128 transferRegisterDef(MI
, OpenRanges
, VarLocIDs
, Transfers
,
1130 transferRegisterCopy(MI
, OpenRanges
, VarLocIDs
, Transfers
);
1131 transferSpillOrRestoreInst(MI
, OpenRanges
, VarLocIDs
, Transfers
);
1134 /// This routine joins the analysis results of all incoming edges in @MBB by
1135 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
1136 /// source variable in all the predecessors of @MBB reside in the same location.
1137 bool LiveDebugValues::join(
1138 MachineBasicBlock
&MBB
, VarLocInMBB
&OutLocs
, VarLocInMBB
&InLocs
,
1139 const VarLocMap
&VarLocIDs
,
1140 SmallPtrSet
<const MachineBasicBlock
*, 16> &Visited
,
1141 SmallPtrSetImpl
<const MachineBasicBlock
*> &ArtificialBlocks
,
1142 VarLocInMBB
&PendingInLocs
) {
1143 LLVM_DEBUG(dbgs() << "join MBB: " << MBB
.getNumber() << "\n");
1144 bool Changed
= false;
1146 VarLocSet InLocsT
; // Temporary incoming locations.
1148 // For all predecessors of this MBB, find the set of VarLocs that
1151 for (auto p
: MBB
.predecessors()) {
1152 // Ignore backedges if we have not visited the predecessor yet. As the
1153 // predecessor hasn't yet had locations propagated into it, most locations
1154 // will not yet be valid, so treat them as all being uninitialized and
1155 // potentially valid. If a location guessed to be correct here is
1156 // invalidated later, we will remove it when we revisit this block.
1157 if (!Visited
.count(p
)) {
1158 LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p
->getNumber()
1162 auto OL
= OutLocs
.find(p
);
1163 // Join is null in case of empty OutLocs from any of the pred.
1164 if (OL
== OutLocs
.end())
1167 // Just copy over the Out locs to incoming locs for the first visited
1168 // predecessor, and for all other predecessors join the Out locs.
1170 InLocsT
= OL
->second
;
1172 InLocsT
&= OL
->second
;
1175 if (!InLocsT
.empty()) {
1176 for (auto ID
: InLocsT
)
1177 dbgs() << " gathered candidate incoming var: "
1178 << VarLocIDs
[ID
].Var
.getVar()->getName() << "\n";
1185 // Filter out DBG_VALUES that are out of scope.
1187 bool IsArtificial
= ArtificialBlocks
.count(&MBB
);
1188 if (!IsArtificial
) {
1189 for (auto ID
: InLocsT
) {
1190 if (!VarLocIDs
[ID
].dominates(MBB
)) {
1193 auto Name
= VarLocIDs
[ID
].Var
.getVar()->getName();
1194 dbgs() << " killing " << Name
<< ", it doesn't dominate MBB\n";
1199 InLocsT
.intersectWithComplement(KillSet
);
1201 // As we are processing blocks in reverse post-order we
1202 // should have processed at least one predecessor, unless it
1203 // is the entry block which has no predecessor.
1204 assert((NumVisited
|| MBB
.pred_empty()) &&
1205 "Should have processed at least one predecessor");
1207 VarLocSet
&ILS
= InLocs
[&MBB
];
1208 VarLocSet
&Pending
= PendingInLocs
[&MBB
];
1210 // New locations will have DBG_VALUE insts inserted at the start of the
1211 // block, after location propagation has finished. Record the insertions
1212 // that we need to perform in the Pending set.
1213 VarLocSet Diff
= InLocsT
;
1214 Diff
.intersectWithComplement(ILS
);
1215 for (auto ID
: Diff
) {
1222 // We may have lost locations by learning about a predecessor that either
1223 // loses or moves a variable. Find any locations in ILS that are not in the
1224 // new in-locations, and delete those.
1225 VarLocSet Removed
= ILS
;
1226 Removed
.intersectWithComplement(InLocsT
);
1227 for (auto ID
: Removed
) {
1237 void LiveDebugValues::flushPendingLocs(VarLocInMBB
&PendingInLocs
,
1238 VarLocMap
&VarLocIDs
) {
1239 // PendingInLocs records all locations propagated into blocks, which have
1240 // not had DBG_VALUE insts created. Go through and create those insts now.
1241 for (auto &Iter
: PendingInLocs
) {
1242 // Map is keyed on a constant pointer, unwrap it so we can insert insts.
1243 auto &MBB
= const_cast<MachineBasicBlock
&>(*Iter
.first
);
1244 VarLocSet
&Pending
= Iter
.second
;
1246 for (unsigned ID
: Pending
) {
1247 // The ID location is live-in to MBB -- work out what kind of machine
1248 // location it is and create a DBG_VALUE.
1249 const VarLoc
&DiffIt
= VarLocIDs
[ID
];
1250 MachineInstr
*MI
= DiffIt
.BuildDbgValue(*MBB
.getParent());
1251 MBB
.insert(MBB
.instr_begin(), MI
);
1254 LLVM_DEBUG(dbgs() << "Inserted: "; MI
->dump(););
1259 /// Calculate the liveness information for the given machine function and
1260 /// extend ranges across basic blocks.
1261 bool LiveDebugValues::ExtendRanges(MachineFunction
&MF
) {
1262 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
1264 bool Changed
= false;
1265 bool OLChanged
= false;
1266 bool MBBJoined
= false;
1268 VarLocMap VarLocIDs
; // Map VarLoc<>unique ID for use in bitvectors.
1269 OverlapMap OverlapFragments
; // Map of overlapping variable fragments
1270 OpenRangesSet
OpenRanges(OverlapFragments
);
1271 // Ranges that are open until end of bb.
1272 VarLocInMBB OutLocs
; // Ranges that exist beyond bb.
1273 VarLocInMBB InLocs
; // Ranges that are incoming after joining.
1274 TransferMap Transfers
; // DBG_VALUEs associated with spills.
1275 VarLocInMBB PendingInLocs
; // Ranges that are incoming after joining, but
1276 // that we have deferred creating DBG_VALUE insts
1279 VarToFragments SeenFragments
;
1281 // Blocks which are artificial, i.e. blocks which exclusively contain
1282 // instructions without locations, or with line 0 locations.
1283 SmallPtrSet
<const MachineBasicBlock
*, 16> ArtificialBlocks
;
1285 DenseMap
<unsigned int, MachineBasicBlock
*> OrderToBB
;
1286 DenseMap
<MachineBasicBlock
*, unsigned int> BBToOrder
;
1287 std::priority_queue
<unsigned int, std::vector
<unsigned int>,
1288 std::greater
<unsigned int>>
1290 std::priority_queue
<unsigned int, std::vector
<unsigned int>,
1291 std::greater
<unsigned int>>
1294 // Besides parameter's modification, check whether a DBG_VALUE is inlined
1295 // in order to deduce whether the variable that it tracks comes from
1296 // a different function. If that is the case we can't track its entry value.
1297 auto IsUnmodifiedFuncParam
= [&](const MachineInstr
&MI
) {
1298 auto *DIVar
= MI
.getDebugVariable();
1299 return DIVar
->isParameter() && DIVar
->isNotModified() &&
1300 !MI
.getDebugLoc()->getInlinedAt();
1303 const TargetLowering
*TLI
= MF
.getSubtarget().getTargetLowering();
1304 unsigned SP
= TLI
->getStackPointerRegisterToSaveRestore();
1305 Register FP
= TRI
->getFrameRegister(MF
);
1306 auto IsRegOtherThanSPAndFP
= [&](const MachineOperand
&Op
) -> bool {
1307 return Op
.isReg() && Op
.getReg() != SP
&& Op
.getReg() != FP
;
1310 // Working set of currently collected debug variables mapped to DBG_VALUEs
1311 // representing candidates for production of debug entry values.
1312 DebugParamMap DebugEntryVals
;
1314 MachineBasicBlock
&First_MBB
= *(MF
.begin());
1315 // Only in the case of entry MBB collect DBG_VALUEs representing
1316 // function parameters in order to generate debug entry values for them.
1317 // Currently, we generate debug entry values only for parameters that are
1318 // unmodified throughout the function and located in a register.
1319 // TODO: Add support for parameters that are described as fragments.
1320 // TODO: Add support for modified arguments that can be expressed
1321 // by using its entry value.
1322 // TODO: Add support for local variables that are expressed in terms of
1323 // parameters entry values.
1324 for (auto &MI
: First_MBB
)
1325 if (MI
.isDebugValue() && IsUnmodifiedFuncParam(MI
) &&
1326 !MI
.isIndirectDebugValue() && IsRegOtherThanSPAndFP(MI
.getOperand(0)) &&
1327 !DebugEntryVals
.count(MI
.getDebugVariable()) &&
1328 !MI
.getDebugExpression()->isFragment())
1329 DebugEntryVals
[MI
.getDebugVariable()] = &MI
;
1331 // Initialize per-block structures and scan for fragment overlaps.
1332 for (auto &MBB
: MF
) {
1333 PendingInLocs
[&MBB
] = VarLocSet();
1335 for (auto &MI
: MBB
) {
1336 if (MI
.isDebugValue())
1337 accumulateFragmentMap(MI
, SeenFragments
, OverlapFragments
);
1341 auto hasNonArtificialLocation
= [](const MachineInstr
&MI
) -> bool {
1342 if (const DebugLoc
&DL
= MI
.getDebugLoc())
1343 return DL
.getLine() != 0;
1346 for (auto &MBB
: MF
)
1347 if (none_of(MBB
.instrs(), hasNonArtificialLocation
))
1348 ArtificialBlocks
.insert(&MBB
);
1350 LLVM_DEBUG(printVarLocInMBB(MF
, OutLocs
, VarLocIDs
,
1351 "OutLocs after initialization", dbgs()));
1353 ReversePostOrderTraversal
<MachineFunction
*> RPOT(&MF
);
1354 unsigned int RPONumber
= 0;
1355 for (auto RI
= RPOT
.begin(), RE
= RPOT
.end(); RI
!= RE
; ++RI
) {
1356 OrderToBB
[RPONumber
] = *RI
;
1357 BBToOrder
[*RI
] = RPONumber
;
1358 Worklist
.push(RPONumber
);
1361 // This is a standard "union of predecessor outs" dataflow problem.
1362 // To solve it, we perform join() and process() using the two worklist method
1363 // until the ranges converge.
1364 // Ranges have converged when both worklists are empty.
1365 SmallPtrSet
<const MachineBasicBlock
*, 16> Visited
;
1366 while (!Worklist
.empty() || !Pending
.empty()) {
1367 // We track what is on the pending worklist to avoid inserting the same
1368 // thing twice. We could avoid this with a custom priority queue, but this
1369 // is probably not worth it.
1370 SmallPtrSet
<MachineBasicBlock
*, 16> OnPending
;
1371 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
1372 while (!Worklist
.empty()) {
1373 MachineBasicBlock
*MBB
= OrderToBB
[Worklist
.top()];
1375 MBBJoined
= join(*MBB
, OutLocs
, InLocs
, VarLocIDs
, Visited
,
1376 ArtificialBlocks
, PendingInLocs
);
1377 MBBJoined
|= Visited
.insert(MBB
).second
;
1381 // Now that we have started to extend ranges across BBs we need to
1382 // examine spill instructions to see whether they spill registers that
1383 // correspond to user variables.
1384 // First load any pending inlocs.
1385 OpenRanges
.insertFromLocSet(PendingInLocs
[MBB
], VarLocIDs
);
1386 for (auto &MI
: *MBB
)
1387 process(MI
, OpenRanges
, OutLocs
, VarLocIDs
, Transfers
,
1388 DebugEntryVals
, OverlapFragments
, SeenFragments
);
1389 OLChanged
|= transferTerminator(MBB
, OpenRanges
, OutLocs
, VarLocIDs
);
1391 LLVM_DEBUG(printVarLocInMBB(MF
, OutLocs
, VarLocIDs
,
1392 "OutLocs after propagating", dbgs()));
1393 LLVM_DEBUG(printVarLocInMBB(MF
, InLocs
, VarLocIDs
,
1394 "InLocs after propagating", dbgs()));
1398 for (auto s
: MBB
->successors())
1399 if (OnPending
.insert(s
).second
) {
1400 Pending
.push(BBToOrder
[s
]);
1405 Worklist
.swap(Pending
);
1406 // At this point, pending must be empty, since it was just the empty
1408 assert(Pending
.empty() && "Pending should be empty");
1411 // Add any DBG_VALUE instructions created by location transfers.
1412 for (auto &TR
: Transfers
) {
1413 MachineBasicBlock
*MBB
= TR
.TransferInst
->getParent();
1414 const VarLoc
&VL
= VarLocIDs
[TR
.LocationID
];
1415 MachineInstr
*MI
= VL
.BuildDbgValue(MF
);
1416 MBB
->insertAfterBundle(TR
.TransferInst
->getIterator(), MI
);
1420 // Deferred inlocs will not have had any DBG_VALUE insts created; do
1422 flushPendingLocs(PendingInLocs
, VarLocIDs
);
1424 LLVM_DEBUG(printVarLocInMBB(MF
, OutLocs
, VarLocIDs
, "Final OutLocs", dbgs()));
1425 LLVM_DEBUG(printVarLocInMBB(MF
, InLocs
, VarLocIDs
, "Final InLocs", dbgs()));
1429 bool LiveDebugValues::runOnMachineFunction(MachineFunction
&MF
) {
1430 if (!MF
.getFunction().getSubprogram())
1431 // LiveDebugValues will already have removed all DBG_VALUEs.
1434 // Skip functions from NoDebug compilation units.
1435 if (MF
.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
1436 DICompileUnit::NoDebug
)
1439 TRI
= MF
.getSubtarget().getRegisterInfo();
1440 TII
= MF
.getSubtarget().getInstrInfo();
1441 TFI
= MF
.getSubtarget().getFrameLowering();
1442 TFI
->determineCalleeSaves(MF
, CalleeSavedRegs
,
1443 std::make_unique
<RegScavenger
>().get());
1446 bool Changed
= ExtendRanges(MF
);