[MIParser] Set RegClassOrRegBank during instruction parsing
[llvm-complete.git] / lib / CodeGen / LiveIntervals.cpp
blob2989930ad09362f168511745849a2ead56a135c1
1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LiveInterval analysis pass which is used
10 /// by the Linear Scan Register allocator. This pass linearizes the
11 /// basic blocks of the function in DFS order and computes live intervals for
12 /// each virtual and physical register.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveInterval.h"
24 #include "llvm/CodeGen/LiveRangeCalc.h"
25 #include "llvm/CodeGen/LiveVariables.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/CodeGen/SlotIndexes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/CodeGen/VirtRegMap.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/MC/LaneBitmask.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/BlockFrequency.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <iterator>
53 #include <tuple>
54 #include <utility>
56 using namespace llvm;
58 #define DEBUG_TYPE "regalloc"
60 char LiveIntervals::ID = 0;
61 char &llvm::LiveIntervalsID = LiveIntervals::ID;
62 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
63 "Live Interval Analysis", false, false)
64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
65 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
66 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
67 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
68 "Live Interval Analysis", false, false)
70 #ifndef NDEBUG
71 static cl::opt<bool> EnablePrecomputePhysRegs(
72 "precompute-phys-liveness", cl::Hidden,
73 cl::desc("Eagerly compute live intervals for all physreg units."));
74 #else
75 static bool EnablePrecomputePhysRegs = false;
76 #endif // NDEBUG
78 namespace llvm {
80 cl::opt<bool> UseSegmentSetForPhysRegs(
81 "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
82 cl::desc(
83 "Use segment set for the computation of the live ranges of physregs."));
85 } // end namespace llvm
87 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
88 AU.setPreservesCFG();
89 AU.addRequired<AAResultsWrapperPass>();
90 AU.addPreserved<AAResultsWrapperPass>();
91 AU.addPreserved<LiveVariables>();
92 AU.addPreservedID(MachineLoopInfoID);
93 AU.addRequiredTransitiveID(MachineDominatorsID);
94 AU.addPreservedID(MachineDominatorsID);
95 AU.addPreserved<SlotIndexes>();
96 AU.addRequiredTransitive<SlotIndexes>();
97 MachineFunctionPass::getAnalysisUsage(AU);
100 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
101 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
104 LiveIntervals::~LiveIntervals() {
105 delete LRCalc;
108 void LiveIntervals::releaseMemory() {
109 // Free the live intervals themselves.
110 for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
111 delete VirtRegIntervals[Register::index2VirtReg(i)];
112 VirtRegIntervals.clear();
113 RegMaskSlots.clear();
114 RegMaskBits.clear();
115 RegMaskBlocks.clear();
117 for (LiveRange *LR : RegUnitRanges)
118 delete LR;
119 RegUnitRanges.clear();
121 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
122 VNInfoAllocator.Reset();
125 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
126 MF = &fn;
127 MRI = &MF->getRegInfo();
128 TRI = MF->getSubtarget().getRegisterInfo();
129 TII = MF->getSubtarget().getInstrInfo();
130 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
131 Indexes = &getAnalysis<SlotIndexes>();
132 DomTree = &getAnalysis<MachineDominatorTree>();
134 if (!LRCalc)
135 LRCalc = new LiveRangeCalc();
137 // Allocate space for all virtual registers.
138 VirtRegIntervals.resize(MRI->getNumVirtRegs());
140 computeVirtRegs();
141 computeRegMasks();
142 computeLiveInRegUnits();
144 if (EnablePrecomputePhysRegs) {
145 // For stress testing, precompute live ranges of all physical register
146 // units, including reserved registers.
147 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
148 getRegUnit(i);
150 LLVM_DEBUG(dump());
151 return true;
154 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
155 OS << "********** INTERVALS **********\n";
157 // Dump the regunits.
158 for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
159 if (LiveRange *LR = RegUnitRanges[Unit])
160 OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
162 // Dump the virtregs.
163 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
164 unsigned Reg = Register::index2VirtReg(i);
165 if (hasInterval(Reg))
166 OS << getInterval(Reg) << '\n';
169 OS << "RegMasks:";
170 for (SlotIndex Idx : RegMaskSlots)
171 OS << ' ' << Idx;
172 OS << '\n';
174 printInstrs(OS);
177 void LiveIntervals::printInstrs(raw_ostream &OS) const {
178 OS << "********** MACHINEINSTRS **********\n";
179 MF->print(OS, Indexes);
182 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
183 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
184 printInstrs(dbgs());
186 #endif
188 LiveInterval* LiveIntervals::createInterval(unsigned reg) {
189 float Weight = Register::isPhysicalRegister(reg) ? huge_valf : 0.0F;
190 return new LiveInterval(reg, Weight);
193 /// Compute the live interval of a virtual register, based on defs and uses.
194 void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
195 assert(LRCalc && "LRCalc not initialized.");
196 assert(LI.empty() && "Should only compute empty intervals.");
197 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
198 LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg));
199 computeDeadValues(LI, nullptr);
202 void LiveIntervals::computeVirtRegs() {
203 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
204 unsigned Reg = Register::index2VirtReg(i);
205 if (MRI->reg_nodbg_empty(Reg))
206 continue;
207 createAndComputeVirtRegInterval(Reg);
211 void LiveIntervals::computeRegMasks() {
212 RegMaskBlocks.resize(MF->getNumBlockIDs());
214 // Find all instructions with regmask operands.
215 for (const MachineBasicBlock &MBB : *MF) {
216 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
217 RMB.first = RegMaskSlots.size();
219 // Some block starts, such as EH funclets, create masks.
220 if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
221 RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
222 RegMaskBits.push_back(Mask);
225 for (const MachineInstr &MI : MBB) {
226 for (const MachineOperand &MO : MI.operands()) {
227 if (!MO.isRegMask())
228 continue;
229 RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
230 RegMaskBits.push_back(MO.getRegMask());
234 // Some block ends, such as funclet returns, create masks. Put the mask on
235 // the last instruction of the block, because MBB slot index intervals are
236 // half-open.
237 if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
238 assert(!MBB.empty() && "empty return block?");
239 RegMaskSlots.push_back(
240 Indexes->getInstructionIndex(MBB.back()).getRegSlot());
241 RegMaskBits.push_back(Mask);
244 // Compute the number of register mask instructions in this block.
245 RMB.second = RegMaskSlots.size() - RMB.first;
249 //===----------------------------------------------------------------------===//
250 // Register Unit Liveness
251 //===----------------------------------------------------------------------===//
253 // Fixed interference typically comes from ABI boundaries: Function arguments
254 // and return values are passed in fixed registers, and so are exception
255 // pointers entering landing pads. Certain instructions require values to be
256 // present in specific registers. That is also represented through fixed
257 // interference.
260 /// Compute the live range of a register unit, based on the uses and defs of
261 /// aliasing registers. The range should be empty, or contain only dead
262 /// phi-defs from ABI blocks.
263 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
264 assert(LRCalc && "LRCalc not initialized.");
265 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
267 // The physregs aliasing Unit are the roots and their super-registers.
268 // Create all values as dead defs before extending to uses. Note that roots
269 // may share super-registers. That's OK because createDeadDefs() is
270 // idempotent. It is very rare for a register unit to have multiple roots, so
271 // uniquing super-registers is probably not worthwhile.
272 bool IsReserved = false;
273 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
274 bool IsRootReserved = true;
275 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
276 Super.isValid(); ++Super) {
277 unsigned Reg = *Super;
278 if (!MRI->reg_empty(Reg))
279 LRCalc->createDeadDefs(LR, Reg);
280 // A register unit is considered reserved if all its roots and all their
281 // super registers are reserved.
282 if (!MRI->isReserved(Reg))
283 IsRootReserved = false;
285 IsReserved |= IsRootReserved;
287 assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
288 "reserved computation mismatch");
290 // Now extend LR to reach all uses.
291 // Ignore uses of reserved registers. We only track defs of those.
292 if (!IsReserved) {
293 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
294 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
295 Super.isValid(); ++Super) {
296 unsigned Reg = *Super;
297 if (!MRI->reg_empty(Reg))
298 LRCalc->extendToUses(LR, Reg);
303 // Flush the segment set to the segment vector.
304 if (UseSegmentSetForPhysRegs)
305 LR.flushSegmentSet();
308 /// Precompute the live ranges of any register units that are live-in to an ABI
309 /// block somewhere. Register values can appear without a corresponding def when
310 /// entering the entry block or a landing pad.
311 void LiveIntervals::computeLiveInRegUnits() {
312 RegUnitRanges.resize(TRI->getNumRegUnits());
313 LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
315 // Keep track of the live range sets allocated.
316 SmallVector<unsigned, 8> NewRanges;
318 // Check all basic blocks for live-ins.
319 for (const MachineBasicBlock &MBB : *MF) {
320 // We only care about ABI blocks: Entry + landing pads.
321 if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
322 continue;
324 // Create phi-defs at Begin for all live-in registers.
325 SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
326 LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
327 for (const auto &LI : MBB.liveins()) {
328 for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
329 unsigned Unit = *Units;
330 LiveRange *LR = RegUnitRanges[Unit];
331 if (!LR) {
332 // Use segment set to speed-up initial computation of the live range.
333 LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
334 NewRanges.push_back(Unit);
336 VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
337 (void)VNI;
338 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
341 LLVM_DEBUG(dbgs() << '\n');
343 LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
345 // Compute the 'normal' part of the ranges.
346 for (unsigned Unit : NewRanges)
347 computeRegUnitRange(*RegUnitRanges[Unit], Unit);
350 static void createSegmentsForValues(LiveRange &LR,
351 iterator_range<LiveInterval::vni_iterator> VNIs) {
352 for (VNInfo *VNI : VNIs) {
353 if (VNI->isUnused())
354 continue;
355 SlotIndex Def = VNI->def;
356 LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
360 void LiveIntervals::extendSegmentsToUses(LiveRange &Segments,
361 ShrinkToUsesWorkList &WorkList,
362 unsigned Reg, LaneBitmask LaneMask) {
363 // Keep track of the PHIs that are in use.
364 SmallPtrSet<VNInfo*, 8> UsedPHIs;
365 // Blocks that have already been added to WorkList as live-out.
366 SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
368 auto getSubRange = [](const LiveInterval &I, LaneBitmask M)
369 -> const LiveRange& {
370 if (M.none())
371 return I;
372 for (const LiveInterval::SubRange &SR : I.subranges()) {
373 if ((SR.LaneMask & M).any()) {
374 assert(SR.LaneMask == M && "Expecting lane masks to match exactly");
375 return SR;
378 llvm_unreachable("Subrange for mask not found");
381 const LiveInterval &LI = getInterval(Reg);
382 const LiveRange &OldRange = getSubRange(LI, LaneMask);
384 // Extend intervals to reach all uses in WorkList.
385 while (!WorkList.empty()) {
386 SlotIndex Idx = WorkList.back().first;
387 VNInfo *VNI = WorkList.back().second;
388 WorkList.pop_back();
389 const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot());
390 SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB);
392 // Extend the live range for VNI to be live at Idx.
393 if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) {
394 assert(ExtVNI == VNI && "Unexpected existing value number");
395 (void)ExtVNI;
396 // Is this a PHIDef we haven't seen before?
397 if (!VNI->isPHIDef() || VNI->def != BlockStart ||
398 !UsedPHIs.insert(VNI).second)
399 continue;
400 // The PHI is live, make sure the predecessors are live-out.
401 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
402 if (!LiveOut.insert(Pred).second)
403 continue;
404 SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
405 // A predecessor is not required to have a live-out value for a PHI.
406 if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
407 WorkList.push_back(std::make_pair(Stop, PVNI));
409 continue;
412 // VNI is live-in to MBB.
413 LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
414 Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
416 // Make sure VNI is live-out from the predecessors.
417 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
418 if (!LiveOut.insert(Pred).second)
419 continue;
420 SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
421 if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) {
422 assert(OldVNI == VNI && "Wrong value out of predecessor");
423 (void)OldVNI;
424 WorkList.push_back(std::make_pair(Stop, VNI));
425 } else {
426 #ifndef NDEBUG
427 // There was no old VNI. Verify that Stop is jointly dominated
428 // by <undef>s for this live range.
429 assert(LaneMask.any() &&
430 "Missing value out of predecessor for main range");
431 SmallVector<SlotIndex,8> Undefs;
432 LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
433 assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) &&
434 "Missing value out of predecessor for subrange");
435 #endif
441 bool LiveIntervals::shrinkToUses(LiveInterval *li,
442 SmallVectorImpl<MachineInstr*> *dead) {
443 LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n');
444 assert(Register::isVirtualRegister(li->reg) &&
445 "Can only shrink virtual registers");
447 // Shrink subregister live ranges.
448 bool NeedsCleanup = false;
449 for (LiveInterval::SubRange &S : li->subranges()) {
450 shrinkToUses(S, li->reg);
451 if (S.empty())
452 NeedsCleanup = true;
454 if (NeedsCleanup)
455 li->removeEmptySubRanges();
457 // Find all the values used, including PHI kills.
458 ShrinkToUsesWorkList WorkList;
460 // Visit all instructions reading li->reg.
461 unsigned Reg = li->reg;
462 for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
463 if (UseMI.isDebugValue() || !UseMI.readsVirtualRegister(Reg))
464 continue;
465 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
466 LiveQueryResult LRQ = li->Query(Idx);
467 VNInfo *VNI = LRQ.valueIn();
468 if (!VNI) {
469 // This shouldn't happen: readsVirtualRegister returns true, but there is
470 // no live value. It is likely caused by a target getting <undef> flags
471 // wrong.
472 LLVM_DEBUG(
473 dbgs() << Idx << '\t' << UseMI
474 << "Warning: Instr claims to read non-existent value in "
475 << *li << '\n');
476 continue;
478 // Special case: An early-clobber tied operand reads and writes the
479 // register one slot early.
480 if (VNInfo *DefVNI = LRQ.valueDefined())
481 Idx = DefVNI->def;
483 WorkList.push_back(std::make_pair(Idx, VNI));
486 // Create new live ranges with only minimal live segments per def.
487 LiveRange NewLR;
488 createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
489 extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone());
491 // Move the trimmed segments back.
492 li->segments.swap(NewLR.segments);
494 // Handle dead values.
495 bool CanSeparate = computeDeadValues(*li, dead);
496 LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n');
497 return CanSeparate;
500 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
501 SmallVectorImpl<MachineInstr*> *dead) {
502 bool MayHaveSplitComponents = false;
503 for (VNInfo *VNI : LI.valnos) {
504 if (VNI->isUnused())
505 continue;
506 SlotIndex Def = VNI->def;
507 LiveRange::iterator I = LI.FindSegmentContaining(Def);
508 assert(I != LI.end() && "Missing segment for VNI");
510 // Is the register live before? Otherwise we may have to add a read-undef
511 // flag for subregister defs.
512 unsigned VReg = LI.reg;
513 if (MRI->shouldTrackSubRegLiveness(VReg)) {
514 if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
515 MachineInstr *MI = getInstructionFromIndex(Def);
516 MI->setRegisterDefReadUndef(VReg);
520 if (I->end != Def.getDeadSlot())
521 continue;
522 if (VNI->isPHIDef()) {
523 // This is a dead PHI. Remove it.
524 VNI->markUnused();
525 LI.removeSegment(I);
526 LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
527 MayHaveSplitComponents = true;
528 } else {
529 // This is a dead def. Make sure the instruction knows.
530 MachineInstr *MI = getInstructionFromIndex(Def);
531 assert(MI && "No instruction defining live value");
532 MI->addRegisterDead(LI.reg, TRI);
533 if (dead && MI->allDefsAreDead()) {
534 LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
535 dead->push_back(MI);
539 return MayHaveSplitComponents;
542 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg) {
543 LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n');
544 assert(Register::isVirtualRegister(Reg) &&
545 "Can only shrink virtual registers");
546 // Find all the values used, including PHI kills.
547 ShrinkToUsesWorkList WorkList;
549 // Visit all instructions reading Reg.
550 SlotIndex LastIdx;
551 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
552 // Skip "undef" uses.
553 if (!MO.readsReg())
554 continue;
555 // Maybe the operand is for a subregister we don't care about.
556 unsigned SubReg = MO.getSubReg();
557 if (SubReg != 0) {
558 LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
559 if ((LaneMask & SR.LaneMask).none())
560 continue;
562 // We only need to visit each instruction once.
563 MachineInstr *UseMI = MO.getParent();
564 SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
565 if (Idx == LastIdx)
566 continue;
567 LastIdx = Idx;
569 LiveQueryResult LRQ = SR.Query(Idx);
570 VNInfo *VNI = LRQ.valueIn();
571 // For Subranges it is possible that only undef values are left in that
572 // part of the subregister, so there is no real liverange at the use
573 if (!VNI)
574 continue;
576 // Special case: An early-clobber tied operand reads and writes the
577 // register one slot early.
578 if (VNInfo *DefVNI = LRQ.valueDefined())
579 Idx = DefVNI->def;
581 WorkList.push_back(std::make_pair(Idx, VNI));
584 // Create a new live ranges with only minimal live segments per def.
585 LiveRange NewLR;
586 createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
587 extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask);
589 // Move the trimmed ranges back.
590 SR.segments.swap(NewLR.segments);
592 // Remove dead PHI value numbers
593 for (VNInfo *VNI : SR.valnos) {
594 if (VNI->isUnused())
595 continue;
596 const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
597 assert(Segment != nullptr && "Missing segment for VNI");
598 if (Segment->end != VNI->def.getDeadSlot())
599 continue;
600 if (VNI->isPHIDef()) {
601 // This is a dead PHI. Remove it.
602 LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def
603 << " may separate interval\n");
604 VNI->markUnused();
605 SR.removeSegment(*Segment);
609 LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n');
612 void LiveIntervals::extendToIndices(LiveRange &LR,
613 ArrayRef<SlotIndex> Indices,
614 ArrayRef<SlotIndex> Undefs) {
615 assert(LRCalc && "LRCalc not initialized.");
616 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
617 for (SlotIndex Idx : Indices)
618 LRCalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
621 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
622 SmallVectorImpl<SlotIndex> *EndPoints) {
623 LiveQueryResult LRQ = LR.Query(Kill);
624 VNInfo *VNI = LRQ.valueOutOrDead();
625 if (!VNI)
626 return;
628 MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
629 SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
631 // If VNI isn't live out from KillMBB, the value is trivially pruned.
632 if (LRQ.endPoint() < MBBEnd) {
633 LR.removeSegment(Kill, LRQ.endPoint());
634 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
635 return;
638 // VNI is live out of KillMBB.
639 LR.removeSegment(Kill, MBBEnd);
640 if (EndPoints) EndPoints->push_back(MBBEnd);
642 // Find all blocks that are reachable from KillMBB without leaving VNI's live
643 // range. It is possible that KillMBB itself is reachable, so start a DFS
644 // from each successor.
645 using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
646 VisitedTy Visited;
647 for (MachineBasicBlock *Succ : KillMBB->successors()) {
648 for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
649 I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
650 I != E;) {
651 MachineBasicBlock *MBB = *I;
653 // Check if VNI is live in to MBB.
654 SlotIndex MBBStart, MBBEnd;
655 std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
656 LiveQueryResult LRQ = LR.Query(MBBStart);
657 if (LRQ.valueIn() != VNI) {
658 // This block isn't part of the VNI segment. Prune the search.
659 I.skipChildren();
660 continue;
663 // Prune the search if VNI is killed in MBB.
664 if (LRQ.endPoint() < MBBEnd) {
665 LR.removeSegment(MBBStart, LRQ.endPoint());
666 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
667 I.skipChildren();
668 continue;
671 // VNI is live through MBB.
672 LR.removeSegment(MBBStart, MBBEnd);
673 if (EndPoints) EndPoints->push_back(MBBEnd);
674 ++I;
679 //===----------------------------------------------------------------------===//
680 // Register allocator hooks.
683 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
684 // Keep track of regunit ranges.
685 SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
686 // Keep track of subregister ranges.
687 SmallVector<std::pair<const LiveInterval::SubRange*,
688 LiveRange::const_iterator>, 4> SRs;
690 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
691 unsigned Reg = Register::index2VirtReg(i);
692 if (MRI->reg_nodbg_empty(Reg))
693 continue;
694 const LiveInterval &LI = getInterval(Reg);
695 if (LI.empty())
696 continue;
698 // Find the regunit intervals for the assigned register. They may overlap
699 // the virtual register live range, cancelling any kills.
700 RU.clear();
701 for (MCRegUnitIterator Unit(VRM->getPhys(Reg), TRI); Unit.isValid();
702 ++Unit) {
703 const LiveRange &RURange = getRegUnit(*Unit);
704 if (RURange.empty())
705 continue;
706 RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
709 if (MRI->subRegLivenessEnabled()) {
710 SRs.clear();
711 for (const LiveInterval::SubRange &SR : LI.subranges()) {
712 SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
716 // Every instruction that kills Reg corresponds to a segment range end
717 // point.
718 for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
719 ++RI) {
720 // A block index indicates an MBB edge.
721 if (RI->end.isBlock())
722 continue;
723 MachineInstr *MI = getInstructionFromIndex(RI->end);
724 if (!MI)
725 continue;
727 // Check if any of the regunits are live beyond the end of RI. That could
728 // happen when a physreg is defined as a copy of a virtreg:
730 // %eax = COPY %5
731 // FOO %5 <--- MI, cancel kill because %eax is live.
732 // BAR killed %eax
734 // There should be no kill flag on FOO when %5 is rewritten as %eax.
735 for (auto &RUP : RU) {
736 const LiveRange &RURange = *RUP.first;
737 LiveRange::const_iterator &I = RUP.second;
738 if (I == RURange.end())
739 continue;
740 I = RURange.advanceTo(I, RI->end);
741 if (I == RURange.end() || I->start >= RI->end)
742 continue;
743 // I is overlapping RI.
744 goto CancelKill;
747 if (MRI->subRegLivenessEnabled()) {
748 // When reading a partial undefined value we must not add a kill flag.
749 // The regalloc might have used the undef lane for something else.
750 // Example:
751 // %1 = ... ; R32: %1
752 // %2:high16 = ... ; R64: %2
753 // = read killed %2 ; R64: %2
754 // = read %1 ; R32: %1
755 // The <kill> flag is correct for %2, but the register allocator may
756 // assign R0L to %1, and R0 to %2 because the low 32bits of R0
757 // are actually never written by %2. After assignment the <kill>
758 // flag at the read instruction is invalid.
759 LaneBitmask DefinedLanesMask;
760 if (!SRs.empty()) {
761 // Compute a mask of lanes that are defined.
762 DefinedLanesMask = LaneBitmask::getNone();
763 for (auto &SRP : SRs) {
764 const LiveInterval::SubRange &SR = *SRP.first;
765 LiveRange::const_iterator &I = SRP.second;
766 if (I == SR.end())
767 continue;
768 I = SR.advanceTo(I, RI->end);
769 if (I == SR.end() || I->start >= RI->end)
770 continue;
771 // I is overlapping RI
772 DefinedLanesMask |= SR.LaneMask;
774 } else
775 DefinedLanesMask = LaneBitmask::getAll();
777 bool IsFullWrite = false;
778 for (const MachineOperand &MO : MI->operands()) {
779 if (!MO.isReg() || MO.getReg() != Reg)
780 continue;
781 if (MO.isUse()) {
782 // Reading any undefined lanes?
783 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
784 if ((UseMask & ~DefinedLanesMask).any())
785 goto CancelKill;
786 } else if (MO.getSubReg() == 0) {
787 // Writing to the full register?
788 assert(MO.isDef());
789 IsFullWrite = true;
793 // If an instruction writes to a subregister, a new segment starts in
794 // the LiveInterval. But as this is only overriding part of the register
795 // adding kill-flags is not correct here after registers have been
796 // assigned.
797 if (!IsFullWrite) {
798 // Next segment has to be adjacent in the subregister write case.
799 LiveRange::const_iterator N = std::next(RI);
800 if (N != LI.end() && N->start == RI->end)
801 goto CancelKill;
805 MI->addRegisterKilled(Reg, nullptr);
806 continue;
807 CancelKill:
808 MI->clearRegisterKills(Reg, nullptr);
813 MachineBasicBlock*
814 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
815 // A local live range must be fully contained inside the block, meaning it is
816 // defined and killed at instructions, not at block boundaries. It is not
817 // live in or out of any block.
819 // It is technically possible to have a PHI-defined live range identical to a
820 // single block, but we are going to return false in that case.
822 SlotIndex Start = LI.beginIndex();
823 if (Start.isBlock())
824 return nullptr;
826 SlotIndex Stop = LI.endIndex();
827 if (Stop.isBlock())
828 return nullptr;
830 // getMBBFromIndex doesn't need to search the MBB table when both indexes
831 // belong to proper instructions.
832 MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
833 MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
834 return MBB1 == MBB2 ? MBB1 : nullptr;
837 bool
838 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
839 for (const VNInfo *PHI : LI.valnos) {
840 if (PHI->isUnused() || !PHI->isPHIDef())
841 continue;
842 const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
843 // Conservatively return true instead of scanning huge predecessor lists.
844 if (PHIMBB->pred_size() > 100)
845 return true;
846 for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
847 if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
848 return true;
850 return false;
853 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
854 const MachineBlockFrequencyInfo *MBFI,
855 const MachineInstr &MI) {
856 return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
859 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
860 const MachineBlockFrequencyInfo *MBFI,
861 const MachineBasicBlock *MBB) {
862 BlockFrequency Freq = MBFI->getBlockFreq(MBB);
863 const float Scale = 1.0f / MBFI->getEntryFreq();
864 return (isDef + isUse) * (Freq.getFrequency() * Scale);
867 LiveRange::Segment
868 LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr &startInst) {
869 LiveInterval& Interval = createEmptyInterval(reg);
870 VNInfo *VN = Interval.getNextValue(
871 SlotIndex(getInstructionIndex(startInst).getRegSlot()),
872 getVNInfoAllocator());
873 LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
874 getMBBEndIdx(startInst.getParent()), VN);
875 Interval.addSegment(S);
877 return S;
880 //===----------------------------------------------------------------------===//
881 // Register mask functions
882 //===----------------------------------------------------------------------===//
884 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
885 BitVector &UsableRegs) {
886 if (LI.empty())
887 return false;
888 LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
890 // Use a smaller arrays for local live ranges.
891 ArrayRef<SlotIndex> Slots;
892 ArrayRef<const uint32_t*> Bits;
893 if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
894 Slots = getRegMaskSlotsInBlock(MBB->getNumber());
895 Bits = getRegMaskBitsInBlock(MBB->getNumber());
896 } else {
897 Slots = getRegMaskSlots();
898 Bits = getRegMaskBits();
901 // We are going to enumerate all the register mask slots contained in LI.
902 // Start with a binary search of RegMaskSlots to find a starting point.
903 ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start);
904 ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
906 // No slots in range, LI begins after the last call.
907 if (SlotI == SlotE)
908 return false;
910 bool Found = false;
911 while (true) {
912 assert(*SlotI >= LiveI->start);
913 // Loop over all slots overlapping this segment.
914 while (*SlotI < LiveI->end) {
915 // *SlotI overlaps LI. Collect mask bits.
916 if (!Found) {
917 // This is the first overlap. Initialize UsableRegs to all ones.
918 UsableRegs.clear();
919 UsableRegs.resize(TRI->getNumRegs(), true);
920 Found = true;
922 // Remove usable registers clobbered by this mask.
923 UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
924 if (++SlotI == SlotE)
925 return Found;
927 // *SlotI is beyond the current LI segment.
928 LiveI = LI.advanceTo(LiveI, *SlotI);
929 if (LiveI == LiveE)
930 return Found;
931 // Advance SlotI until it overlaps.
932 while (*SlotI < LiveI->start)
933 if (++SlotI == SlotE)
934 return Found;
938 //===----------------------------------------------------------------------===//
939 // IntervalUpdate class.
940 //===----------------------------------------------------------------------===//
942 /// Toolkit used by handleMove to trim or extend live intervals.
943 class LiveIntervals::HMEditor {
944 private:
945 LiveIntervals& LIS;
946 const MachineRegisterInfo& MRI;
947 const TargetRegisterInfo& TRI;
948 SlotIndex OldIdx;
949 SlotIndex NewIdx;
950 SmallPtrSet<LiveRange*, 8> Updated;
951 bool UpdateFlags;
953 public:
954 HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
955 const TargetRegisterInfo& TRI,
956 SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
957 : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
958 UpdateFlags(UpdateFlags) {}
960 // FIXME: UpdateFlags is a workaround that creates live intervals for all
961 // physregs, even those that aren't needed for regalloc, in order to update
962 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
963 // flags, and postRA passes will use a live register utility instead.
964 LiveRange *getRegUnitLI(unsigned Unit) {
965 if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
966 return &LIS.getRegUnit(Unit);
967 return LIS.getCachedRegUnit(Unit);
970 /// Update all live ranges touched by MI, assuming a move from OldIdx to
971 /// NewIdx.
972 void updateAllRanges(MachineInstr *MI) {
973 LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": "
974 << *MI);
975 bool hasRegMask = false;
976 for (MachineOperand &MO : MI->operands()) {
977 if (MO.isRegMask())
978 hasRegMask = true;
979 if (!MO.isReg())
980 continue;
981 if (MO.isUse()) {
982 if (!MO.readsReg())
983 continue;
984 // Aggressively clear all kill flags.
985 // They are reinserted by VirtRegRewriter.
986 MO.setIsKill(false);
989 Register Reg = MO.getReg();
990 if (!Reg)
991 continue;
992 if (Register::isVirtualRegister(Reg)) {
993 LiveInterval &LI = LIS.getInterval(Reg);
994 if (LI.hasSubRanges()) {
995 unsigned SubReg = MO.getSubReg();
996 LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
997 : MRI.getMaxLaneMaskForVReg(Reg);
998 for (LiveInterval::SubRange &S : LI.subranges()) {
999 if ((S.LaneMask & LaneMask).none())
1000 continue;
1001 updateRange(S, Reg, S.LaneMask);
1004 updateRange(LI, Reg, LaneBitmask::getNone());
1005 continue;
1008 // For physregs, only update the regunits that actually have a
1009 // precomputed live range.
1010 for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
1011 if (LiveRange *LR = getRegUnitLI(*Units))
1012 updateRange(*LR, *Units, LaneBitmask::getNone());
1014 if (hasRegMask)
1015 updateRegMaskSlots();
1018 private:
1019 /// Update a single live range, assuming an instruction has been moved from
1020 /// OldIdx to NewIdx.
1021 void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
1022 if (!Updated.insert(&LR).second)
1023 return;
1024 LLVM_DEBUG({
1025 dbgs() << " ";
1026 if (Register::isVirtualRegister(Reg)) {
1027 dbgs() << printReg(Reg);
1028 if (LaneMask.any())
1029 dbgs() << " L" << PrintLaneMask(LaneMask);
1030 } else {
1031 dbgs() << printRegUnit(Reg, &TRI);
1033 dbgs() << ":\t" << LR << '\n';
1035 if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1036 handleMoveDown(LR);
1037 else
1038 handleMoveUp(LR, Reg, LaneMask);
1039 LLVM_DEBUG(dbgs() << " -->\t" << LR << '\n');
1040 LR.verify();
1043 /// Update LR to reflect an instruction has been moved downwards from OldIdx
1044 /// to NewIdx (OldIdx < NewIdx).
1045 void handleMoveDown(LiveRange &LR) {
1046 LiveRange::iterator E = LR.end();
1047 // Segment going into OldIdx.
1048 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1050 // No value live before or after OldIdx? Nothing to do.
1051 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1052 return;
1054 LiveRange::iterator OldIdxOut;
1055 // Do we have a value live-in to OldIdx?
1056 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1057 // If the live-in value already extends to NewIdx, there is nothing to do.
1058 if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
1059 return;
1060 // Aggressively remove all kill flags from the old kill point.
1061 // Kill flags shouldn't be used while live intervals exist, they will be
1062 // reinserted by VirtRegRewriter.
1063 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
1064 for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1065 if (MO->isReg() && MO->isUse())
1066 MO->setIsKill(false);
1068 // Is there a def before NewIdx which is not OldIdx?
1069 LiveRange::iterator Next = std::next(OldIdxIn);
1070 if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
1071 SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1072 // If we are here then OldIdx was just a use but not a def. We only have
1073 // to ensure liveness extends to NewIdx.
1074 LiveRange::iterator NewIdxIn =
1075 LR.advanceTo(Next, NewIdx.getBaseIndex());
1076 // Extend the segment before NewIdx if necessary.
1077 if (NewIdxIn == E ||
1078 !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
1079 LiveRange::iterator Prev = std::prev(NewIdxIn);
1080 Prev->end = NewIdx.getRegSlot();
1082 // Extend OldIdxIn.
1083 OldIdxIn->end = Next->start;
1084 return;
1087 // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1088 // invalid by overlapping ranges.
1089 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1090 OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
1091 // If this was not a kill, then there was no def and we're done.
1092 if (!isKill)
1093 return;
1095 // Did we have a Def at OldIdx?
1096 OldIdxOut = Next;
1097 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1098 return;
1099 } else {
1100 OldIdxOut = OldIdxIn;
1103 // If we are here then there is a Definition at OldIdx. OldIdxOut points
1104 // to the segment starting there.
1105 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1106 "No def?");
1107 VNInfo *OldIdxVNI = OldIdxOut->valno;
1108 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1110 // If the defined value extends beyond NewIdx, just move the beginning
1111 // of the segment to NewIdx.
1112 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1113 if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
1114 OldIdxVNI->def = NewIdxDef;
1115 OldIdxOut->start = OldIdxVNI->def;
1116 return;
1119 // If we are here then we have a Definition at OldIdx which ends before
1120 // NewIdx.
1122 // Is there an existing Def at NewIdx?
1123 LiveRange::iterator AfterNewIdx
1124 = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
1125 bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1126 if (!OldIdxDefIsDead &&
1127 SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
1128 // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1129 VNInfo *DefVNI;
1130 if (OldIdxOut != LR.begin() &&
1131 !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
1132 OldIdxOut->start)) {
1133 // There is no gap between OldIdxOut and its predecessor anymore,
1134 // merge them.
1135 LiveRange::iterator IPrev = std::prev(OldIdxOut);
1136 DefVNI = OldIdxVNI;
1137 IPrev->end = OldIdxOut->end;
1138 } else {
1139 // The value is live in to OldIdx
1140 LiveRange::iterator INext = std::next(OldIdxOut);
1141 assert(INext != E && "Must have following segment");
1142 // We merge OldIdxOut and its successor. As we're dealing with subreg
1143 // reordering, there is always a successor to OldIdxOut in the same BB
1144 // We don't need INext->valno anymore and will reuse for the new segment
1145 // we create later.
1146 DefVNI = OldIdxVNI;
1147 INext->start = OldIdxOut->end;
1148 INext->valno->def = INext->start;
1150 // If NewIdx is behind the last segment, extend that and append a new one.
1151 if (AfterNewIdx == E) {
1152 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1153 // one position.
1154 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1155 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1156 std::copy(std::next(OldIdxOut), E, OldIdxOut);
1157 // The last segment is undefined now, reuse it for a dead def.
1158 LiveRange::iterator NewSegment = std::prev(E);
1159 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1160 DefVNI);
1161 DefVNI->def = NewIdxDef;
1163 LiveRange::iterator Prev = std::prev(NewSegment);
1164 Prev->end = NewIdxDef;
1165 } else {
1166 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1167 // one position.
1168 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1169 // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1170 std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
1171 LiveRange::iterator Prev = std::prev(AfterNewIdx);
1172 // We have two cases:
1173 if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
1174 // Case 1: NewIdx is inside a liverange. Split this liverange at
1175 // NewIdxDef into the segment "Prev" followed by "NewSegment".
1176 LiveRange::iterator NewSegment = AfterNewIdx;
1177 *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
1178 Prev->valno->def = NewIdxDef;
1180 *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
1181 DefVNI->def = Prev->start;
1182 } else {
1183 // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1184 // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1185 *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
1186 DefVNI->def = NewIdxDef;
1187 assert(DefVNI != AfterNewIdx->valno);
1190 return;
1193 if (AfterNewIdx != E &&
1194 SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
1195 // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1196 // that value.
1197 assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
1198 LR.removeValNo(OldIdxVNI);
1199 } else {
1200 // There was no existing def at NewIdx. We need to create a dead def
1201 // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1202 // a new segment at the place where we want to construct the dead def.
1203 // |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1204 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1205 assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
1206 std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
1207 // We can reuse OldIdxVNI now.
1208 LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
1209 VNInfo *NewSegmentVNI = OldIdxVNI;
1210 NewSegmentVNI->def = NewIdxDef;
1211 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1212 NewSegmentVNI);
1216 /// Update LR to reflect an instruction has been moved upwards from OldIdx
1217 /// to NewIdx (NewIdx < OldIdx).
1218 void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
1219 LiveRange::iterator E = LR.end();
1220 // Segment going into OldIdx.
1221 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1223 // No value live before or after OldIdx? Nothing to do.
1224 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1225 return;
1227 LiveRange::iterator OldIdxOut;
1228 // Do we have a value live-in to OldIdx?
1229 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1230 // If the live-in value isn't killed here, then we have no Def at
1231 // OldIdx, moreover the value must be live at NewIdx so there is nothing
1232 // to do.
1233 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1234 if (!isKill)
1235 return;
1237 // At this point we have to move OldIdxIn->end back to the nearest
1238 // previous use or (dead-)def but no further than NewIdx.
1239 SlotIndex DefBeforeOldIdx
1240 = std::max(OldIdxIn->start.getDeadSlot(),
1241 NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
1242 OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
1244 // Did we have a Def at OldIdx? If not we are done now.
1245 OldIdxOut = std::next(OldIdxIn);
1246 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1247 return;
1248 } else {
1249 OldIdxOut = OldIdxIn;
1250 OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
1253 // If we are here then there is a Definition at OldIdx. OldIdxOut points
1254 // to the segment starting there.
1255 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1256 "No def?");
1257 VNInfo *OldIdxVNI = OldIdxOut->valno;
1258 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1259 bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1261 // Is there an existing def at NewIdx?
1262 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1263 LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
1264 if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
1265 assert(NewIdxOut->valno != OldIdxVNI &&
1266 "Same value defined more than once?");
1267 // If OldIdx was a dead def remove it.
1268 if (!OldIdxDefIsDead) {
1269 // Remove segment starting at NewIdx and move begin of OldIdxOut to
1270 // NewIdx so it can take its place.
1271 OldIdxVNI->def = NewIdxDef;
1272 OldIdxOut->start = NewIdxDef;
1273 LR.removeValNo(NewIdxOut->valno);
1274 } else {
1275 // Simply remove the dead def at OldIdx.
1276 LR.removeValNo(OldIdxVNI);
1278 } else {
1279 // Previously nothing was live after NewIdx, so all we have to do now is
1280 // move the begin of OldIdxOut to NewIdx.
1281 if (!OldIdxDefIsDead) {
1282 // Do we have any intermediate Defs between OldIdx and NewIdx?
1283 if (OldIdxIn != E &&
1284 SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
1285 // OldIdx is not a dead def and NewIdx is before predecessor start.
1286 LiveRange::iterator NewIdxIn = NewIdxOut;
1287 assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
1288 const SlotIndex SplitPos = NewIdxDef;
1289 OldIdxVNI = OldIdxIn->valno;
1291 SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end;
1292 LiveRange::iterator Prev = std::prev(OldIdxIn);
1293 if (OldIdxIn != LR.begin() &&
1294 SlotIndex::isEarlierInstr(NewIdx, Prev->end)) {
1295 // If the segment before OldIdx read a value defined earlier than
1296 // NewIdx, the moved instruction also reads and forwards that
1297 // value. Extend the lifetime of the new def point.
1299 // Extend to where the previous range started, unless there is
1300 // another redef first.
1301 NewDefEndPoint = std::min(OldIdxIn->start,
1302 std::next(NewIdxOut)->start);
1305 // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1306 OldIdxOut->valno->def = OldIdxIn->start;
1307 *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
1308 OldIdxOut->valno);
1309 // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1310 // We Slide [NewIdxIn, OldIdxIn) down one position.
1311 // |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1312 // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1313 std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
1314 // NewIdxIn is now considered undef so we can reuse it for the moved
1315 // value.
1316 LiveRange::iterator NewSegment = NewIdxIn;
1317 LiveRange::iterator Next = std::next(NewSegment);
1318 if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1319 // There is no gap between NewSegment and its predecessor.
1320 *NewSegment = LiveRange::Segment(Next->start, SplitPos,
1321 Next->valno);
1323 *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI);
1324 Next->valno->def = SplitPos;
1325 } else {
1326 // There is a gap between NewSegment and its predecessor
1327 // Value becomes live in.
1328 *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
1329 NewSegment->valno->def = SplitPos;
1331 } else {
1332 // Leave the end point of a live def.
1333 OldIdxOut->start = NewIdxDef;
1334 OldIdxVNI->def = NewIdxDef;
1335 if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
1336 OldIdxIn->end = NewIdx.getRegSlot();
1338 } else if (OldIdxIn != E
1339 && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx)
1340 && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) {
1341 // OldIdxVNI is a dead def that has been moved into the middle of
1342 // another value in LR. That can happen when LR is a whole register,
1343 // but the dead def is a write to a subreg that is dead at NewIdx.
1344 // The dead def may have been moved across other values
1345 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1346 // down one position.
1347 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1348 // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1349 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1350 // Modify the segment at NewIdxOut and the following segment to meet at
1351 // the point of the dead def, with the following segment getting
1352 // OldIdxVNI as its value number.
1353 *NewIdxOut = LiveRange::Segment(
1354 NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno);
1355 *(NewIdxOut + 1) = LiveRange::Segment(
1356 NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI);
1357 OldIdxVNI->def = NewIdxDef;
1358 // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1359 for (auto Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx)
1360 Idx->valno = OldIdxVNI;
1361 // Aggressively remove all dead flags from the former dead definition.
1362 // Kill/dead flags shouldn't be used while live intervals exist; they
1363 // will be reinserted by VirtRegRewriter.
1364 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx))
1365 for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1366 if (MO->isReg() && !MO->isUse())
1367 MO->setIsDead(false);
1368 } else {
1369 // OldIdxVNI is a dead def. It may have been moved across other values
1370 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1371 // down one position.
1372 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1373 // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1374 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1375 // OldIdxVNI can be reused now to build a new dead def segment.
1376 LiveRange::iterator NewSegment = NewIdxOut;
1377 VNInfo *NewSegmentVNI = OldIdxVNI;
1378 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1379 NewSegmentVNI);
1380 NewSegmentVNI->def = NewIdxDef;
1385 void updateRegMaskSlots() {
1386 SmallVectorImpl<SlotIndex>::iterator RI =
1387 llvm::lower_bound(LIS.RegMaskSlots, OldIdx);
1388 assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1389 "No RegMask at OldIdx.");
1390 *RI = NewIdx.getRegSlot();
1391 assert((RI == LIS.RegMaskSlots.begin() ||
1392 SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1393 "Cannot move regmask instruction above another call");
1394 assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1395 SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1396 "Cannot move regmask instruction below another call");
1399 // Return the last use of reg between NewIdx and OldIdx.
1400 SlotIndex findLastUseBefore(SlotIndex Before, unsigned Reg,
1401 LaneBitmask LaneMask) {
1402 if (Register::isVirtualRegister(Reg)) {
1403 SlotIndex LastUse = Before;
1404 for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1405 if (MO.isUndef())
1406 continue;
1407 unsigned SubReg = MO.getSubReg();
1408 if (SubReg != 0 && LaneMask.any()
1409 && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
1410 continue;
1412 const MachineInstr &MI = *MO.getParent();
1413 SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1414 if (InstSlot > LastUse && InstSlot < OldIdx)
1415 LastUse = InstSlot.getRegSlot();
1417 return LastUse;
1420 // This is a regunit interval, so scanning the use list could be very
1421 // expensive. Scan upwards from OldIdx instead.
1422 assert(Before < OldIdx && "Expected upwards move");
1423 SlotIndexes *Indexes = LIS.getSlotIndexes();
1424 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
1426 // OldIdx may not correspond to an instruction any longer, so set MII to
1427 // point to the next instruction after OldIdx, or MBB->end().
1428 MachineBasicBlock::iterator MII = MBB->end();
1429 if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1430 Indexes->getNextNonNullIndex(OldIdx)))
1431 if (MI->getParent() == MBB)
1432 MII = MI;
1434 MachineBasicBlock::iterator Begin = MBB->begin();
1435 while (MII != Begin) {
1436 if ((--MII)->isDebugInstr())
1437 continue;
1438 SlotIndex Idx = Indexes->getInstructionIndex(*MII);
1440 // Stop searching when Before is reached.
1441 if (!SlotIndex::isEarlierInstr(Before, Idx))
1442 return Before;
1444 // Check if MII uses Reg.
1445 for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
1446 if (MO->isReg() && !MO->isUndef() &&
1447 Register::isPhysicalRegister(MO->getReg()) &&
1448 TRI.hasRegUnit(MO->getReg(), Reg))
1449 return Idx.getRegSlot();
1451 // Didn't reach Before. It must be the first instruction in the block.
1452 return Before;
1456 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
1457 // It is fine to move a bundle as a whole, but not an individual instruction
1458 // inside it.
1459 assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) &&
1460 "Cannot move instruction in bundle");
1461 SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1462 Indexes->removeMachineInstrFromMaps(MI);
1463 SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1464 assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
1465 OldIndex < getMBBEndIdx(MI.getParent()) &&
1466 "Cannot handle moves across basic block boundaries.");
1468 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1469 HME.updateAllRanges(&MI);
1472 void LiveIntervals::handleMoveIntoBundle(MachineInstr &MI,
1473 MachineInstr &BundleStart,
1474 bool UpdateFlags) {
1475 SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1476 SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1477 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1478 HME.updateAllRanges(&MI);
1481 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1482 const MachineBasicBlock::iterator End,
1483 const SlotIndex endIdx,
1484 LiveRange &LR, const unsigned Reg,
1485 LaneBitmask LaneMask) {
1486 LiveInterval::iterator LII = LR.find(endIdx);
1487 SlotIndex lastUseIdx;
1488 if (LII == LR.begin()) {
1489 // This happens when the function is called for a subregister that only
1490 // occurs _after_ the range that is to be repaired.
1491 return;
1493 if (LII != LR.end() && LII->start < endIdx)
1494 lastUseIdx = LII->end;
1495 else
1496 --LII;
1498 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1499 --I;
1500 MachineInstr &MI = *I;
1501 if (MI.isDebugInstr())
1502 continue;
1504 SlotIndex instrIdx = getInstructionIndex(MI);
1505 bool isStartValid = getInstructionFromIndex(LII->start);
1506 bool isEndValid = getInstructionFromIndex(LII->end);
1508 // FIXME: This doesn't currently handle early-clobber or multiple removed
1509 // defs inside of the region to repair.
1510 for (MachineInstr::mop_iterator OI = MI.operands_begin(),
1511 OE = MI.operands_end();
1512 OI != OE; ++OI) {
1513 const MachineOperand &MO = *OI;
1514 if (!MO.isReg() || MO.getReg() != Reg)
1515 continue;
1517 unsigned SubReg = MO.getSubReg();
1518 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1519 if ((Mask & LaneMask).none())
1520 continue;
1522 if (MO.isDef()) {
1523 if (!isStartValid) {
1524 if (LII->end.isDead()) {
1525 SlotIndex prevStart;
1526 if (LII != LR.begin())
1527 prevStart = std::prev(LII)->start;
1529 // FIXME: This could be more efficient if there was a
1530 // removeSegment method that returned an iterator.
1531 LR.removeSegment(*LII, true);
1532 if (prevStart.isValid())
1533 LII = LR.find(prevStart);
1534 else
1535 LII = LR.begin();
1536 } else {
1537 LII->start = instrIdx.getRegSlot();
1538 LII->valno->def = instrIdx.getRegSlot();
1539 if (MO.getSubReg() && !MO.isUndef())
1540 lastUseIdx = instrIdx.getRegSlot();
1541 else
1542 lastUseIdx = SlotIndex();
1543 continue;
1547 if (!lastUseIdx.isValid()) {
1548 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1549 LiveRange::Segment S(instrIdx.getRegSlot(),
1550 instrIdx.getDeadSlot(), VNI);
1551 LII = LR.addSegment(S);
1552 } else if (LII->start != instrIdx.getRegSlot()) {
1553 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1554 LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1555 LII = LR.addSegment(S);
1558 if (MO.getSubReg() && !MO.isUndef())
1559 lastUseIdx = instrIdx.getRegSlot();
1560 else
1561 lastUseIdx = SlotIndex();
1562 } else if (MO.isUse()) {
1563 // FIXME: This should probably be handled outside of this branch,
1564 // either as part of the def case (for defs inside of the region) or
1565 // after the loop over the region.
1566 if (!isEndValid && !LII->end.isBlock())
1567 LII->end = instrIdx.getRegSlot();
1568 if (!lastUseIdx.isValid())
1569 lastUseIdx = instrIdx.getRegSlot();
1575 void
1576 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1577 MachineBasicBlock::iterator Begin,
1578 MachineBasicBlock::iterator End,
1579 ArrayRef<unsigned> OrigRegs) {
1580 // Find anchor points, which are at the beginning/end of blocks or at
1581 // instructions that already have indexes.
1582 while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin))
1583 --Begin;
1584 while (End != MBB->end() && !Indexes->hasIndex(*End))
1585 ++End;
1587 SlotIndex endIdx;
1588 if (End == MBB->end())
1589 endIdx = getMBBEndIdx(MBB).getPrevSlot();
1590 else
1591 endIdx = getInstructionIndex(*End);
1593 Indexes->repairIndexesInRange(MBB, Begin, End);
1595 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1596 --I;
1597 MachineInstr &MI = *I;
1598 if (MI.isDebugInstr())
1599 continue;
1600 for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
1601 MOE = MI.operands_end();
1602 MOI != MOE; ++MOI) {
1603 if (MOI->isReg() && Register::isVirtualRegister(MOI->getReg()) &&
1604 !hasInterval(MOI->getReg())) {
1605 createAndComputeVirtRegInterval(MOI->getReg());
1610 for (unsigned Reg : OrigRegs) {
1611 if (!Register::isVirtualRegister(Reg))
1612 continue;
1614 LiveInterval &LI = getInterval(Reg);
1615 // FIXME: Should we support undefs that gain defs?
1616 if (!LI.hasAtLeastOneValue())
1617 continue;
1619 for (LiveInterval::SubRange &S : LI.subranges())
1620 repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
1622 repairOldRegInRange(Begin, End, endIdx, LI, Reg);
1626 void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
1627 for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
1628 if (LiveRange *LR = getCachedRegUnit(*Unit))
1629 if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1630 LR->removeValNo(VNI);
1634 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1635 // LI may not have the main range computed yet, but its subranges may
1636 // be present.
1637 VNInfo *VNI = LI.getVNInfoAt(Pos);
1638 if (VNI != nullptr) {
1639 assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
1640 LI.removeValNo(VNI);
1643 // Also remove the value defined in subranges.
1644 for (LiveInterval::SubRange &S : LI.subranges()) {
1645 if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1646 if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
1647 S.removeValNo(SVNI);
1649 LI.removeEmptySubRanges();
1652 void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1653 SmallVectorImpl<LiveInterval*> &SplitLIs) {
1654 ConnectedVNInfoEqClasses ConEQ(*this);
1655 unsigned NumComp = ConEQ.Classify(LI);
1656 if (NumComp <= 1)
1657 return;
1658 LLVM_DEBUG(dbgs() << " Split " << NumComp << " components: " << LI << '\n');
1659 unsigned Reg = LI.reg;
1660 const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
1661 for (unsigned I = 1; I < NumComp; ++I) {
1662 Register NewVReg = MRI->createVirtualRegister(RegClass);
1663 LiveInterval &NewLI = createEmptyInterval(NewVReg);
1664 SplitLIs.push_back(&NewLI);
1666 ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1669 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
1670 assert(LRCalc && "LRCalc not initialized.");
1671 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
1672 LRCalc->constructMainRangeFromSubranges(LI);