[MIParser] Set RegClassOrRegBank during instruction parsing
[llvm-complete.git] / lib / CodeGen / MIRParser / MIParser.cpp
blob6498acc9fa512cfb02170aa37b826ed003bcc61c
1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the parsing of machine instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/MIRParser/MIParser.h"
14 #include "MILexer.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
31 #include "llvm/CodeGen/MIRPrinter.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSubtargetInfo.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSlotTracker.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/IR/ValueSymbolTable.h"
58 #include "llvm/MC/LaneBitmask.h"
59 #include "llvm/MC/MCContext.h"
60 #include "llvm/MC/MCDwarf.h"
61 #include "llvm/MC/MCInstrDesc.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/BranchProbability.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/LowLevelTypeImpl.h"
68 #include "llvm/Support/MemoryBuffer.h"
69 #include "llvm/Support/SMLoc.h"
70 #include "llvm/Support/SourceMgr.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Target/TargetIntrinsicInfo.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cctype>
77 #include <cstddef>
78 #include <cstdint>
79 #include <limits>
80 #include <string>
81 #include <utility>
83 using namespace llvm;
85 void PerTargetMIParsingState::setTarget(
86 const TargetSubtargetInfo &NewSubtarget) {
88 // If the subtarget changed, over conservatively assume everything is invalid.
89 if (&Subtarget == &NewSubtarget)
90 return;
92 Names2InstrOpCodes.clear();
93 Names2Regs.clear();
94 Names2RegMasks.clear();
95 Names2SubRegIndices.clear();
96 Names2TargetIndices.clear();
97 Names2DirectTargetFlags.clear();
98 Names2BitmaskTargetFlags.clear();
99 Names2MMOTargetFlags.clear();
101 initNames2RegClasses();
102 initNames2RegBanks();
105 void PerTargetMIParsingState::initNames2Regs() {
106 if (!Names2Regs.empty())
107 return;
109 // The '%noreg' register is the register 0.
110 Names2Regs.insert(std::make_pair("noreg", 0));
111 const auto *TRI = Subtarget.getRegisterInfo();
112 assert(TRI && "Expected target register info");
114 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
115 bool WasInserted =
116 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
117 .second;
118 (void)WasInserted;
119 assert(WasInserted && "Expected registers to be unique case-insensitively");
123 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName,
124 unsigned &Reg) {
125 initNames2Regs();
126 auto RegInfo = Names2Regs.find(RegName);
127 if (RegInfo == Names2Regs.end())
128 return true;
129 Reg = RegInfo->getValue();
130 return false;
133 void PerTargetMIParsingState::initNames2InstrOpCodes() {
134 if (!Names2InstrOpCodes.empty())
135 return;
136 const auto *TII = Subtarget.getInstrInfo();
137 assert(TII && "Expected target instruction info");
138 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
139 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
142 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName,
143 unsigned &OpCode) {
144 initNames2InstrOpCodes();
145 auto InstrInfo = Names2InstrOpCodes.find(InstrName);
146 if (InstrInfo == Names2InstrOpCodes.end())
147 return true;
148 OpCode = InstrInfo->getValue();
149 return false;
152 void PerTargetMIParsingState::initNames2RegMasks() {
153 if (!Names2RegMasks.empty())
154 return;
155 const auto *TRI = Subtarget.getRegisterInfo();
156 assert(TRI && "Expected target register info");
157 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
158 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
159 assert(RegMasks.size() == RegMaskNames.size());
160 for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
161 Names2RegMasks.insert(
162 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
165 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) {
166 initNames2RegMasks();
167 auto RegMaskInfo = Names2RegMasks.find(Identifier);
168 if (RegMaskInfo == Names2RegMasks.end())
169 return nullptr;
170 return RegMaskInfo->getValue();
173 void PerTargetMIParsingState::initNames2SubRegIndices() {
174 if (!Names2SubRegIndices.empty())
175 return;
176 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
177 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
178 Names2SubRegIndices.insert(
179 std::make_pair(TRI->getSubRegIndexName(I), I));
182 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) {
183 initNames2SubRegIndices();
184 auto SubRegInfo = Names2SubRegIndices.find(Name);
185 if (SubRegInfo == Names2SubRegIndices.end())
186 return 0;
187 return SubRegInfo->getValue();
190 void PerTargetMIParsingState::initNames2TargetIndices() {
191 if (!Names2TargetIndices.empty())
192 return;
193 const auto *TII = Subtarget.getInstrInfo();
194 assert(TII && "Expected target instruction info");
195 auto Indices = TII->getSerializableTargetIndices();
196 for (const auto &I : Indices)
197 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
200 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) {
201 initNames2TargetIndices();
202 auto IndexInfo = Names2TargetIndices.find(Name);
203 if (IndexInfo == Names2TargetIndices.end())
204 return true;
205 Index = IndexInfo->second;
206 return false;
209 void PerTargetMIParsingState::initNames2DirectTargetFlags() {
210 if (!Names2DirectTargetFlags.empty())
211 return;
213 const auto *TII = Subtarget.getInstrInfo();
214 assert(TII && "Expected target instruction info");
215 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
216 for (const auto &I : Flags)
217 Names2DirectTargetFlags.insert(
218 std::make_pair(StringRef(I.second), I.first));
221 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name,
222 unsigned &Flag) {
223 initNames2DirectTargetFlags();
224 auto FlagInfo = Names2DirectTargetFlags.find(Name);
225 if (FlagInfo == Names2DirectTargetFlags.end())
226 return true;
227 Flag = FlagInfo->second;
228 return false;
231 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() {
232 if (!Names2BitmaskTargetFlags.empty())
233 return;
235 const auto *TII = Subtarget.getInstrInfo();
236 assert(TII && "Expected target instruction info");
237 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
238 for (const auto &I : Flags)
239 Names2BitmaskTargetFlags.insert(
240 std::make_pair(StringRef(I.second), I.first));
243 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name,
244 unsigned &Flag) {
245 initNames2BitmaskTargetFlags();
246 auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
247 if (FlagInfo == Names2BitmaskTargetFlags.end())
248 return true;
249 Flag = FlagInfo->second;
250 return false;
253 void PerTargetMIParsingState::initNames2MMOTargetFlags() {
254 if (!Names2MMOTargetFlags.empty())
255 return;
257 const auto *TII = Subtarget.getInstrInfo();
258 assert(TII && "Expected target instruction info");
259 auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
260 for (const auto &I : Flags)
261 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first));
264 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name,
265 MachineMemOperand::Flags &Flag) {
266 initNames2MMOTargetFlags();
267 auto FlagInfo = Names2MMOTargetFlags.find(Name);
268 if (FlagInfo == Names2MMOTargetFlags.end())
269 return true;
270 Flag = FlagInfo->second;
271 return false;
274 void PerTargetMIParsingState::initNames2RegClasses() {
275 if (!Names2RegClasses.empty())
276 return;
278 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
279 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) {
280 const auto *RC = TRI->getRegClass(I);
281 Names2RegClasses.insert(
282 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC));
286 void PerTargetMIParsingState::initNames2RegBanks() {
287 if (!Names2RegBanks.empty())
288 return;
290 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo();
291 // If the target does not support GlobalISel, we may not have a
292 // register bank info.
293 if (!RBI)
294 return;
296 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) {
297 const auto &RegBank = RBI->getRegBank(I);
298 Names2RegBanks.insert(
299 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank));
303 const TargetRegisterClass *
304 PerTargetMIParsingState::getRegClass(StringRef Name) {
305 auto RegClassInfo = Names2RegClasses.find(Name);
306 if (RegClassInfo == Names2RegClasses.end())
307 return nullptr;
308 return RegClassInfo->getValue();
311 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) {
312 auto RegBankInfo = Names2RegBanks.find(Name);
313 if (RegBankInfo == Names2RegBanks.end())
314 return nullptr;
315 return RegBankInfo->getValue();
318 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
319 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T)
320 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) {
323 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
324 auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
325 if (I.second) {
326 MachineRegisterInfo &MRI = MF.getRegInfo();
327 VRegInfo *Info = new (Allocator) VRegInfo;
328 Info->VReg = MRI.createIncompleteVirtualRegister();
329 I.first->second = Info;
331 return *I.first->second;
334 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
335 assert(RegName != "" && "Expected named reg.");
337 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
338 if (I.second) {
339 VRegInfo *Info = new (Allocator) VRegInfo;
340 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
341 I.first->second = Info;
343 return *I.first->second;
346 namespace {
348 /// A wrapper struct around the 'MachineOperand' struct that includes a source
349 /// range and other attributes.
350 struct ParsedMachineOperand {
351 MachineOperand Operand;
352 StringRef::iterator Begin;
353 StringRef::iterator End;
354 Optional<unsigned> TiedDefIdx;
356 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
357 StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
358 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
359 if (TiedDefIdx)
360 assert(Operand.isReg() && Operand.isUse() &&
361 "Only used register operands can be tied");
365 class MIParser {
366 MachineFunction &MF;
367 SMDiagnostic &Error;
368 StringRef Source, CurrentSource;
369 MIToken Token;
370 PerFunctionMIParsingState &PFS;
371 /// Maps from slot numbers to function's unnamed basic blocks.
372 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
373 /// Maps from slot numbers to function's unnamed values.
374 DenseMap<unsigned, const Value *> Slots2Values;
376 public:
377 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
378 StringRef Source);
380 /// \p SkipChar gives the number of characters to skip before looking
381 /// for the next token.
382 void lex(unsigned SkipChar = 0);
384 /// Report an error at the current location with the given message.
386 /// This function always return true.
387 bool error(const Twine &Msg);
389 /// Report an error at the given location with the given message.
391 /// This function always return true.
392 bool error(StringRef::iterator Loc, const Twine &Msg);
394 bool
395 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
396 bool parseBasicBlocks();
397 bool parse(MachineInstr *&MI);
398 bool parseStandaloneMBB(MachineBasicBlock *&MBB);
399 bool parseStandaloneNamedRegister(unsigned &Reg);
400 bool parseStandaloneVirtualRegister(VRegInfo *&Info);
401 bool parseStandaloneRegister(unsigned &Reg);
402 bool parseStandaloneStackObject(int &FI);
403 bool parseStandaloneMDNode(MDNode *&Node);
405 bool
406 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
407 bool parseBasicBlock(MachineBasicBlock &MBB,
408 MachineBasicBlock *&AddFalthroughFrom);
409 bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
410 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
412 bool parseNamedRegister(unsigned &Reg);
413 bool parseVirtualRegister(VRegInfo *&Info);
414 bool parseNamedVirtualRegister(VRegInfo *&Info);
415 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
416 bool parseRegisterFlag(unsigned &Flags);
417 bool parseRegisterClassOrBank(VRegInfo &RegInfo);
418 bool parseSubRegisterIndex(unsigned &SubReg);
419 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
420 bool parseRegisterOperand(MachineOperand &Dest,
421 Optional<unsigned> &TiedDefIdx, bool IsDef = false);
422 bool parseImmediateOperand(MachineOperand &Dest);
423 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
424 const Constant *&C);
425 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
426 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
427 bool parseTypedImmediateOperand(MachineOperand &Dest);
428 bool parseFPImmediateOperand(MachineOperand &Dest);
429 bool parseMBBReference(MachineBasicBlock *&MBB);
430 bool parseMBBOperand(MachineOperand &Dest);
431 bool parseStackFrameIndex(int &FI);
432 bool parseStackObjectOperand(MachineOperand &Dest);
433 bool parseFixedStackFrameIndex(int &FI);
434 bool parseFixedStackObjectOperand(MachineOperand &Dest);
435 bool parseGlobalValue(GlobalValue *&GV);
436 bool parseGlobalAddressOperand(MachineOperand &Dest);
437 bool parseConstantPoolIndexOperand(MachineOperand &Dest);
438 bool parseSubRegisterIndexOperand(MachineOperand &Dest);
439 bool parseJumpTableIndexOperand(MachineOperand &Dest);
440 bool parseExternalSymbolOperand(MachineOperand &Dest);
441 bool parseMCSymbolOperand(MachineOperand &Dest);
442 bool parseMDNode(MDNode *&Node);
443 bool parseDIExpression(MDNode *&Expr);
444 bool parseDILocation(MDNode *&Expr);
445 bool parseMetadataOperand(MachineOperand &Dest);
446 bool parseCFIOffset(int &Offset);
447 bool parseCFIRegister(unsigned &Reg);
448 bool parseCFIEscapeValues(std::string& Values);
449 bool parseCFIOperand(MachineOperand &Dest);
450 bool parseIRBlock(BasicBlock *&BB, const Function &F);
451 bool parseBlockAddressOperand(MachineOperand &Dest);
452 bool parseIntrinsicOperand(MachineOperand &Dest);
453 bool parsePredicateOperand(MachineOperand &Dest);
454 bool parseShuffleMaskOperand(MachineOperand &Dest);
455 bool parseTargetIndexOperand(MachineOperand &Dest);
456 bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
457 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
458 bool parseMachineOperand(MachineOperand &Dest,
459 Optional<unsigned> &TiedDefIdx);
460 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
461 Optional<unsigned> &TiedDefIdx);
462 bool parseOffset(int64_t &Offset);
463 bool parseAlignment(unsigned &Alignment);
464 bool parseAddrspace(unsigned &Addrspace);
465 bool parseOperandsOffset(MachineOperand &Op);
466 bool parseIRValue(const Value *&V);
467 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
468 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
469 bool parseMachinePointerInfo(MachinePointerInfo &Dest);
470 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
471 bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
472 bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
473 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
475 private:
476 /// Convert the integer literal in the current token into an unsigned integer.
478 /// Return true if an error occurred.
479 bool getUnsigned(unsigned &Result);
481 /// Convert the integer literal in the current token into an uint64.
483 /// Return true if an error occurred.
484 bool getUint64(uint64_t &Result);
486 /// Convert the hexadecimal literal in the current token into an unsigned
487 /// APInt with a minimum bitwidth required to represent the value.
489 /// Return true if the literal does not represent an integer value.
490 bool getHexUint(APInt &Result);
492 /// If the current token is of the given kind, consume it and return false.
493 /// Otherwise report an error and return true.
494 bool expectAndConsume(MIToken::TokenKind TokenKind);
496 /// If the current token is of the given kind, consume it and return true.
497 /// Otherwise return false.
498 bool consumeIfPresent(MIToken::TokenKind TokenKind);
500 bool parseInstruction(unsigned &OpCode, unsigned &Flags);
502 bool assignRegisterTies(MachineInstr &MI,
503 ArrayRef<ParsedMachineOperand> Operands);
505 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
506 const MCInstrDesc &MCID);
508 const BasicBlock *getIRBlock(unsigned Slot);
509 const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
511 const Value *getIRValue(unsigned Slot);
513 /// Get or create an MCSymbol for a given name.
514 MCSymbol *getOrCreateMCSymbol(StringRef Name);
516 /// parseStringConstant
517 /// ::= StringConstant
518 bool parseStringConstant(std::string &Result);
521 } // end anonymous namespace
523 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
524 StringRef Source)
525 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
528 void MIParser::lex(unsigned SkipChar) {
529 CurrentSource = lexMIToken(
530 CurrentSource.data() + SkipChar, Token,
531 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
534 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
536 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
537 const SourceMgr &SM = *PFS.SM;
538 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
539 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
540 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
541 // Create an ordinary diagnostic when the source manager's buffer is the
542 // source string.
543 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
544 return true;
546 // Create a diagnostic for a YAML string literal.
547 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
548 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
549 Source, None, None);
550 return true;
553 static const char *toString(MIToken::TokenKind TokenKind) {
554 switch (TokenKind) {
555 case MIToken::comma:
556 return "','";
557 case MIToken::equal:
558 return "'='";
559 case MIToken::colon:
560 return "':'";
561 case MIToken::lparen:
562 return "'('";
563 case MIToken::rparen:
564 return "')'";
565 default:
566 return "<unknown token>";
570 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
571 if (Token.isNot(TokenKind))
572 return error(Twine("expected ") + toString(TokenKind));
573 lex();
574 return false;
577 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
578 if (Token.isNot(TokenKind))
579 return false;
580 lex();
581 return true;
584 bool MIParser::parseBasicBlockDefinition(
585 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
586 assert(Token.is(MIToken::MachineBasicBlockLabel));
587 unsigned ID = 0;
588 if (getUnsigned(ID))
589 return true;
590 auto Loc = Token.location();
591 auto Name = Token.stringValue();
592 lex();
593 bool HasAddressTaken = false;
594 bool IsLandingPad = false;
595 unsigned Alignment = 0;
596 BasicBlock *BB = nullptr;
597 if (consumeIfPresent(MIToken::lparen)) {
598 do {
599 // TODO: Report an error when multiple same attributes are specified.
600 switch (Token.kind()) {
601 case MIToken::kw_address_taken:
602 HasAddressTaken = true;
603 lex();
604 break;
605 case MIToken::kw_landing_pad:
606 IsLandingPad = true;
607 lex();
608 break;
609 case MIToken::kw_align:
610 if (parseAlignment(Alignment))
611 return true;
612 break;
613 case MIToken::IRBlock:
614 // TODO: Report an error when both name and ir block are specified.
615 if (parseIRBlock(BB, MF.getFunction()))
616 return true;
617 lex();
618 break;
619 default:
620 break;
622 } while (consumeIfPresent(MIToken::comma));
623 if (expectAndConsume(MIToken::rparen))
624 return true;
626 if (expectAndConsume(MIToken::colon))
627 return true;
629 if (!Name.empty()) {
630 BB = dyn_cast_or_null<BasicBlock>(
631 MF.getFunction().getValueSymbolTable()->lookup(Name));
632 if (!BB)
633 return error(Loc, Twine("basic block '") + Name +
634 "' is not defined in the function '" +
635 MF.getName() + "'");
637 auto *MBB = MF.CreateMachineBasicBlock(BB);
638 MF.insert(MF.end(), MBB);
639 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
640 if (!WasInserted)
641 return error(Loc, Twine("redefinition of machine basic block with id #") +
642 Twine(ID));
643 if (Alignment)
644 MBB->setAlignment(Align(Alignment));
645 if (HasAddressTaken)
646 MBB->setHasAddressTaken();
647 MBB->setIsEHPad(IsLandingPad);
648 return false;
651 bool MIParser::parseBasicBlockDefinitions(
652 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
653 lex();
654 // Skip until the first machine basic block.
655 while (Token.is(MIToken::Newline))
656 lex();
657 if (Token.isErrorOrEOF())
658 return Token.isError();
659 if (Token.isNot(MIToken::MachineBasicBlockLabel))
660 return error("expected a basic block definition before instructions");
661 unsigned BraceDepth = 0;
662 do {
663 if (parseBasicBlockDefinition(MBBSlots))
664 return true;
665 bool IsAfterNewline = false;
666 // Skip until the next machine basic block.
667 while (true) {
668 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
669 Token.isErrorOrEOF())
670 break;
671 else if (Token.is(MIToken::MachineBasicBlockLabel))
672 return error("basic block definition should be located at the start of "
673 "the line");
674 else if (consumeIfPresent(MIToken::Newline)) {
675 IsAfterNewline = true;
676 continue;
678 IsAfterNewline = false;
679 if (Token.is(MIToken::lbrace))
680 ++BraceDepth;
681 if (Token.is(MIToken::rbrace)) {
682 if (!BraceDepth)
683 return error("extraneous closing brace ('}')");
684 --BraceDepth;
686 lex();
688 // Verify that we closed all of the '{' at the end of a file or a block.
689 if (!Token.isError() && BraceDepth)
690 return error("expected '}'"); // FIXME: Report a note that shows '{'.
691 } while (!Token.isErrorOrEOF());
692 return Token.isError();
695 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
696 assert(Token.is(MIToken::kw_liveins));
697 lex();
698 if (expectAndConsume(MIToken::colon))
699 return true;
700 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
701 return false;
702 do {
703 if (Token.isNot(MIToken::NamedRegister))
704 return error("expected a named register");
705 unsigned Reg = 0;
706 if (parseNamedRegister(Reg))
707 return true;
708 lex();
709 LaneBitmask Mask = LaneBitmask::getAll();
710 if (consumeIfPresent(MIToken::colon)) {
711 // Parse lane mask.
712 if (Token.isNot(MIToken::IntegerLiteral) &&
713 Token.isNot(MIToken::HexLiteral))
714 return error("expected a lane mask");
715 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
716 "Use correct get-function for lane mask");
717 LaneBitmask::Type V;
718 if (getUnsigned(V))
719 return error("invalid lane mask value");
720 Mask = LaneBitmask(V);
721 lex();
723 MBB.addLiveIn(Reg, Mask);
724 } while (consumeIfPresent(MIToken::comma));
725 return false;
728 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
729 assert(Token.is(MIToken::kw_successors));
730 lex();
731 if (expectAndConsume(MIToken::colon))
732 return true;
733 if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
734 return false;
735 do {
736 if (Token.isNot(MIToken::MachineBasicBlock))
737 return error("expected a machine basic block reference");
738 MachineBasicBlock *SuccMBB = nullptr;
739 if (parseMBBReference(SuccMBB))
740 return true;
741 lex();
742 unsigned Weight = 0;
743 if (consumeIfPresent(MIToken::lparen)) {
744 if (Token.isNot(MIToken::IntegerLiteral) &&
745 Token.isNot(MIToken::HexLiteral))
746 return error("expected an integer literal after '('");
747 if (getUnsigned(Weight))
748 return true;
749 lex();
750 if (expectAndConsume(MIToken::rparen))
751 return true;
753 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
754 } while (consumeIfPresent(MIToken::comma));
755 MBB.normalizeSuccProbs();
756 return false;
759 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
760 MachineBasicBlock *&AddFalthroughFrom) {
761 // Skip the definition.
762 assert(Token.is(MIToken::MachineBasicBlockLabel));
763 lex();
764 if (consumeIfPresent(MIToken::lparen)) {
765 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
766 lex();
767 consumeIfPresent(MIToken::rparen);
769 consumeIfPresent(MIToken::colon);
771 // Parse the liveins and successors.
772 // N.B: Multiple lists of successors and liveins are allowed and they're
773 // merged into one.
774 // Example:
775 // liveins: %edi
776 // liveins: %esi
778 // is equivalent to
779 // liveins: %edi, %esi
780 bool ExplicitSuccessors = false;
781 while (true) {
782 if (Token.is(MIToken::kw_successors)) {
783 if (parseBasicBlockSuccessors(MBB))
784 return true;
785 ExplicitSuccessors = true;
786 } else if (Token.is(MIToken::kw_liveins)) {
787 if (parseBasicBlockLiveins(MBB))
788 return true;
789 } else if (consumeIfPresent(MIToken::Newline)) {
790 continue;
791 } else
792 break;
793 if (!Token.isNewlineOrEOF())
794 return error("expected line break at the end of a list");
795 lex();
798 // Parse the instructions.
799 bool IsInBundle = false;
800 MachineInstr *PrevMI = nullptr;
801 while (!Token.is(MIToken::MachineBasicBlockLabel) &&
802 !Token.is(MIToken::Eof)) {
803 if (consumeIfPresent(MIToken::Newline))
804 continue;
805 if (consumeIfPresent(MIToken::rbrace)) {
806 // The first parsing pass should verify that all closing '}' have an
807 // opening '{'.
808 assert(IsInBundle);
809 IsInBundle = false;
810 continue;
812 MachineInstr *MI = nullptr;
813 if (parse(MI))
814 return true;
815 MBB.insert(MBB.end(), MI);
816 if (IsInBundle) {
817 PrevMI->setFlag(MachineInstr::BundledSucc);
818 MI->setFlag(MachineInstr::BundledPred);
820 PrevMI = MI;
821 if (Token.is(MIToken::lbrace)) {
822 if (IsInBundle)
823 return error("nested instruction bundles are not allowed");
824 lex();
825 // This instruction is the start of the bundle.
826 MI->setFlag(MachineInstr::BundledSucc);
827 IsInBundle = true;
828 if (!Token.is(MIToken::Newline))
829 // The next instruction can be on the same line.
830 continue;
832 assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
833 lex();
836 // Construct successor list by searching for basic block machine operands.
837 if (!ExplicitSuccessors) {
838 SmallVector<MachineBasicBlock*,4> Successors;
839 bool IsFallthrough;
840 guessSuccessors(MBB, Successors, IsFallthrough);
841 for (MachineBasicBlock *Succ : Successors)
842 MBB.addSuccessor(Succ);
844 if (IsFallthrough) {
845 AddFalthroughFrom = &MBB;
846 } else {
847 MBB.normalizeSuccProbs();
851 return false;
854 bool MIParser::parseBasicBlocks() {
855 lex();
856 // Skip until the first machine basic block.
857 while (Token.is(MIToken::Newline))
858 lex();
859 if (Token.isErrorOrEOF())
860 return Token.isError();
861 // The first parsing pass should have verified that this token is a MBB label
862 // in the 'parseBasicBlockDefinitions' method.
863 assert(Token.is(MIToken::MachineBasicBlockLabel));
864 MachineBasicBlock *AddFalthroughFrom = nullptr;
865 do {
866 MachineBasicBlock *MBB = nullptr;
867 if (parseMBBReference(MBB))
868 return true;
869 if (AddFalthroughFrom) {
870 if (!AddFalthroughFrom->isSuccessor(MBB))
871 AddFalthroughFrom->addSuccessor(MBB);
872 AddFalthroughFrom->normalizeSuccProbs();
873 AddFalthroughFrom = nullptr;
875 if (parseBasicBlock(*MBB, AddFalthroughFrom))
876 return true;
877 // The method 'parseBasicBlock' should parse the whole block until the next
878 // block or the end of file.
879 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
880 } while (Token.isNot(MIToken::Eof));
881 return false;
884 bool MIParser::parse(MachineInstr *&MI) {
885 // Parse any register operands before '='
886 MachineOperand MO = MachineOperand::CreateImm(0);
887 SmallVector<ParsedMachineOperand, 8> Operands;
888 while (Token.isRegister() || Token.isRegisterFlag()) {
889 auto Loc = Token.location();
890 Optional<unsigned> TiedDefIdx;
891 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
892 return true;
893 Operands.push_back(
894 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
895 if (Token.isNot(MIToken::comma))
896 break;
897 lex();
899 if (!Operands.empty() && expectAndConsume(MIToken::equal))
900 return true;
902 unsigned OpCode, Flags = 0;
903 if (Token.isError() || parseInstruction(OpCode, Flags))
904 return true;
906 // Parse the remaining machine operands.
907 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
908 Token.isNot(MIToken::kw_post_instr_symbol) &&
909 Token.isNot(MIToken::kw_debug_location) &&
910 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
911 auto Loc = Token.location();
912 Optional<unsigned> TiedDefIdx;
913 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
914 return true;
915 if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg())
916 MO.setIsDebug();
917 Operands.push_back(
918 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
919 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
920 Token.is(MIToken::lbrace))
921 break;
922 if (Token.isNot(MIToken::comma))
923 return error("expected ',' before the next machine operand");
924 lex();
927 MCSymbol *PreInstrSymbol = nullptr;
928 if (Token.is(MIToken::kw_pre_instr_symbol))
929 if (parsePreOrPostInstrSymbol(PreInstrSymbol))
930 return true;
931 MCSymbol *PostInstrSymbol = nullptr;
932 if (Token.is(MIToken::kw_post_instr_symbol))
933 if (parsePreOrPostInstrSymbol(PostInstrSymbol))
934 return true;
936 DebugLoc DebugLocation;
937 if (Token.is(MIToken::kw_debug_location)) {
938 lex();
939 MDNode *Node = nullptr;
940 if (Token.is(MIToken::exclaim)) {
941 if (parseMDNode(Node))
942 return true;
943 } else if (Token.is(MIToken::md_dilocation)) {
944 if (parseDILocation(Node))
945 return true;
946 } else
947 return error("expected a metadata node after 'debug-location'");
948 if (!isa<DILocation>(Node))
949 return error("referenced metadata is not a DILocation");
950 DebugLocation = DebugLoc(Node);
953 // Parse the machine memory operands.
954 SmallVector<MachineMemOperand *, 2> MemOperands;
955 if (Token.is(MIToken::coloncolon)) {
956 lex();
957 while (!Token.isNewlineOrEOF()) {
958 MachineMemOperand *MemOp = nullptr;
959 if (parseMachineMemoryOperand(MemOp))
960 return true;
961 MemOperands.push_back(MemOp);
962 if (Token.isNewlineOrEOF())
963 break;
964 if (Token.isNot(MIToken::comma))
965 return error("expected ',' before the next machine memory operand");
966 lex();
970 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
971 if (!MCID.isVariadic()) {
972 // FIXME: Move the implicit operand verification to the machine verifier.
973 if (verifyImplicitOperands(Operands, MCID))
974 return true;
977 // TODO: Check for extraneous machine operands.
978 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
979 MI->setFlags(Flags);
980 for (const auto &Operand : Operands)
981 MI->addOperand(MF, Operand.Operand);
982 if (assignRegisterTies(*MI, Operands))
983 return true;
984 if (PreInstrSymbol)
985 MI->setPreInstrSymbol(MF, PreInstrSymbol);
986 if (PostInstrSymbol)
987 MI->setPostInstrSymbol(MF, PostInstrSymbol);
988 if (!MemOperands.empty())
989 MI->setMemRefs(MF, MemOperands);
990 return false;
993 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
994 lex();
995 if (Token.isNot(MIToken::MachineBasicBlock))
996 return error("expected a machine basic block reference");
997 if (parseMBBReference(MBB))
998 return true;
999 lex();
1000 if (Token.isNot(MIToken::Eof))
1001 return error(
1002 "expected end of string after the machine basic block reference");
1003 return false;
1006 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
1007 lex();
1008 if (Token.isNot(MIToken::NamedRegister))
1009 return error("expected a named register");
1010 if (parseNamedRegister(Reg))
1011 return true;
1012 lex();
1013 if (Token.isNot(MIToken::Eof))
1014 return error("expected end of string after the register reference");
1015 return false;
1018 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
1019 lex();
1020 if (Token.isNot(MIToken::VirtualRegister))
1021 return error("expected a virtual register");
1022 if (parseVirtualRegister(Info))
1023 return true;
1024 lex();
1025 if (Token.isNot(MIToken::Eof))
1026 return error("expected end of string after the register reference");
1027 return false;
1030 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
1031 lex();
1032 if (Token.isNot(MIToken::NamedRegister) &&
1033 Token.isNot(MIToken::VirtualRegister))
1034 return error("expected either a named or virtual register");
1036 VRegInfo *Info;
1037 if (parseRegister(Reg, Info))
1038 return true;
1040 lex();
1041 if (Token.isNot(MIToken::Eof))
1042 return error("expected end of string after the register reference");
1043 return false;
1046 bool MIParser::parseStandaloneStackObject(int &FI) {
1047 lex();
1048 if (Token.isNot(MIToken::StackObject))
1049 return error("expected a stack object");
1050 if (parseStackFrameIndex(FI))
1051 return true;
1052 if (Token.isNot(MIToken::Eof))
1053 return error("expected end of string after the stack object reference");
1054 return false;
1057 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
1058 lex();
1059 if (Token.is(MIToken::exclaim)) {
1060 if (parseMDNode(Node))
1061 return true;
1062 } else if (Token.is(MIToken::md_diexpr)) {
1063 if (parseDIExpression(Node))
1064 return true;
1065 } else if (Token.is(MIToken::md_dilocation)) {
1066 if (parseDILocation(Node))
1067 return true;
1068 } else
1069 return error("expected a metadata node");
1070 if (Token.isNot(MIToken::Eof))
1071 return error("expected end of string after the metadata node");
1072 return false;
1075 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
1076 assert(MO.isImplicit());
1077 return MO.isDef() ? "implicit-def" : "implicit";
1080 static std::string getRegisterName(const TargetRegisterInfo *TRI,
1081 unsigned Reg) {
1082 assert(Register::isPhysicalRegister(Reg) && "expected phys reg");
1083 return StringRef(TRI->getName(Reg)).lower();
1086 /// Return true if the parsed machine operands contain a given machine operand.
1087 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
1088 ArrayRef<ParsedMachineOperand> Operands) {
1089 for (const auto &I : Operands) {
1090 if (ImplicitOperand.isIdenticalTo(I.Operand))
1091 return true;
1093 return false;
1096 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
1097 const MCInstrDesc &MCID) {
1098 if (MCID.isCall())
1099 // We can't verify call instructions as they can contain arbitrary implicit
1100 // register and register mask operands.
1101 return false;
1103 // Gather all the expected implicit operands.
1104 SmallVector<MachineOperand, 4> ImplicitOperands;
1105 if (MCID.ImplicitDefs)
1106 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
1107 ImplicitOperands.push_back(
1108 MachineOperand::CreateReg(*ImpDefs, true, true));
1109 if (MCID.ImplicitUses)
1110 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
1111 ImplicitOperands.push_back(
1112 MachineOperand::CreateReg(*ImpUses, false, true));
1114 const auto *TRI = MF.getSubtarget().getRegisterInfo();
1115 assert(TRI && "Expected target register info");
1116 for (const auto &I : ImplicitOperands) {
1117 if (isImplicitOperandIn(I, Operands))
1118 continue;
1119 return error(Operands.empty() ? Token.location() : Operands.back().End,
1120 Twine("missing implicit register operand '") +
1121 printImplicitRegisterFlag(I) + " $" +
1122 getRegisterName(TRI, I.getReg()) + "'");
1124 return false;
1127 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
1128 // Allow frame and fast math flags for OPCODE
1129 while (Token.is(MIToken::kw_frame_setup) ||
1130 Token.is(MIToken::kw_frame_destroy) ||
1131 Token.is(MIToken::kw_nnan) ||
1132 Token.is(MIToken::kw_ninf) ||
1133 Token.is(MIToken::kw_nsz) ||
1134 Token.is(MIToken::kw_arcp) ||
1135 Token.is(MIToken::kw_contract) ||
1136 Token.is(MIToken::kw_afn) ||
1137 Token.is(MIToken::kw_reassoc) ||
1138 Token.is(MIToken::kw_nuw) ||
1139 Token.is(MIToken::kw_nsw) ||
1140 Token.is(MIToken::kw_exact) ||
1141 Token.is(MIToken::kw_fpexcept)) {
1142 // Mine frame and fast math flags
1143 if (Token.is(MIToken::kw_frame_setup))
1144 Flags |= MachineInstr::FrameSetup;
1145 if (Token.is(MIToken::kw_frame_destroy))
1146 Flags |= MachineInstr::FrameDestroy;
1147 if (Token.is(MIToken::kw_nnan))
1148 Flags |= MachineInstr::FmNoNans;
1149 if (Token.is(MIToken::kw_ninf))
1150 Flags |= MachineInstr::FmNoInfs;
1151 if (Token.is(MIToken::kw_nsz))
1152 Flags |= MachineInstr::FmNsz;
1153 if (Token.is(MIToken::kw_arcp))
1154 Flags |= MachineInstr::FmArcp;
1155 if (Token.is(MIToken::kw_contract))
1156 Flags |= MachineInstr::FmContract;
1157 if (Token.is(MIToken::kw_afn))
1158 Flags |= MachineInstr::FmAfn;
1159 if (Token.is(MIToken::kw_reassoc))
1160 Flags |= MachineInstr::FmReassoc;
1161 if (Token.is(MIToken::kw_nuw))
1162 Flags |= MachineInstr::NoUWrap;
1163 if (Token.is(MIToken::kw_nsw))
1164 Flags |= MachineInstr::NoSWrap;
1165 if (Token.is(MIToken::kw_exact))
1166 Flags |= MachineInstr::IsExact;
1167 if (Token.is(MIToken::kw_fpexcept))
1168 Flags |= MachineInstr::FPExcept;
1170 lex();
1172 if (Token.isNot(MIToken::Identifier))
1173 return error("expected a machine instruction");
1174 StringRef InstrName = Token.stringValue();
1175 if (PFS.Target.parseInstrName(InstrName, OpCode))
1176 return error(Twine("unknown machine instruction name '") + InstrName + "'");
1177 lex();
1178 return false;
1181 bool MIParser::parseNamedRegister(unsigned &Reg) {
1182 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1183 StringRef Name = Token.stringValue();
1184 if (PFS.Target.getRegisterByName(Name, Reg))
1185 return error(Twine("unknown register name '") + Name + "'");
1186 return false;
1189 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1190 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1191 StringRef Name = Token.stringValue();
1192 // TODO: Check that the VReg name is not the same as a physical register name.
1193 // If it is, then print a warning (when warnings are implemented).
1194 Info = &PFS.getVRegInfoNamed(Name);
1195 return false;
1198 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1199 if (Token.is(MIToken::NamedVirtualRegister))
1200 return parseNamedVirtualRegister(Info);
1201 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1202 unsigned ID;
1203 if (getUnsigned(ID))
1204 return true;
1205 Info = &PFS.getVRegInfo(ID);
1206 return false;
1209 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
1210 switch (Token.kind()) {
1211 case MIToken::underscore:
1212 Reg = 0;
1213 return false;
1214 case MIToken::NamedRegister:
1215 return parseNamedRegister(Reg);
1216 case MIToken::NamedVirtualRegister:
1217 case MIToken::VirtualRegister:
1218 if (parseVirtualRegister(Info))
1219 return true;
1220 Reg = Info->VReg;
1221 return false;
1222 // TODO: Parse other register kinds.
1223 default:
1224 llvm_unreachable("The current token should be a register");
1228 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1229 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1230 return error("expected '_', register class, or register bank name");
1231 StringRef::iterator Loc = Token.location();
1232 StringRef Name = Token.stringValue();
1234 // Was it a register class?
1235 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name);
1236 if (RC) {
1237 lex();
1239 switch (RegInfo.Kind) {
1240 case VRegInfo::UNKNOWN:
1241 case VRegInfo::NORMAL:
1242 RegInfo.Kind = VRegInfo::NORMAL;
1243 if (RegInfo.Explicit && RegInfo.D.RC != RC) {
1244 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1245 return error(Loc, Twine("conflicting register classes, previously: ") +
1246 Twine(TRI.getRegClassName(RegInfo.D.RC)));
1248 RegInfo.D.RC = RC;
1249 RegInfo.Explicit = true;
1250 return false;
1252 case VRegInfo::GENERIC:
1253 case VRegInfo::REGBANK:
1254 return error(Loc, "register class specification on generic register");
1256 llvm_unreachable("Unexpected register kind");
1259 // Should be a register bank or a generic register.
1260 const RegisterBank *RegBank = nullptr;
1261 if (Name != "_") {
1262 RegBank = PFS.Target.getRegBank(Name);
1263 if (!RegBank)
1264 return error(Loc, "expected '_', register class, or register bank name");
1267 lex();
1269 switch (RegInfo.Kind) {
1270 case VRegInfo::UNKNOWN:
1271 case VRegInfo::GENERIC:
1272 case VRegInfo::REGBANK:
1273 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1274 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1275 return error(Loc, "conflicting generic register banks");
1276 RegInfo.D.RegBank = RegBank;
1277 RegInfo.Explicit = true;
1278 return false;
1280 case VRegInfo::NORMAL:
1281 return error(Loc, "register bank specification on normal register");
1283 llvm_unreachable("Unexpected register kind");
1286 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1287 const unsigned OldFlags = Flags;
1288 switch (Token.kind()) {
1289 case MIToken::kw_implicit:
1290 Flags |= RegState::Implicit;
1291 break;
1292 case MIToken::kw_implicit_define:
1293 Flags |= RegState::ImplicitDefine;
1294 break;
1295 case MIToken::kw_def:
1296 Flags |= RegState::Define;
1297 break;
1298 case MIToken::kw_dead:
1299 Flags |= RegState::Dead;
1300 break;
1301 case MIToken::kw_killed:
1302 Flags |= RegState::Kill;
1303 break;
1304 case MIToken::kw_undef:
1305 Flags |= RegState::Undef;
1306 break;
1307 case MIToken::kw_internal:
1308 Flags |= RegState::InternalRead;
1309 break;
1310 case MIToken::kw_early_clobber:
1311 Flags |= RegState::EarlyClobber;
1312 break;
1313 case MIToken::kw_debug_use:
1314 Flags |= RegState::Debug;
1315 break;
1316 case MIToken::kw_renamable:
1317 Flags |= RegState::Renamable;
1318 break;
1319 default:
1320 llvm_unreachable("The current token should be a register flag");
1322 if (OldFlags == Flags)
1323 // We know that the same flag is specified more than once when the flags
1324 // weren't modified.
1325 return error("duplicate '" + Token.stringValue() + "' register flag");
1326 lex();
1327 return false;
1330 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1331 assert(Token.is(MIToken::dot));
1332 lex();
1333 if (Token.isNot(MIToken::Identifier))
1334 return error("expected a subregister index after '.'");
1335 auto Name = Token.stringValue();
1336 SubReg = PFS.Target.getSubRegIndex(Name);
1337 if (!SubReg)
1338 return error(Twine("use of unknown subregister index '") + Name + "'");
1339 lex();
1340 return false;
1343 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1344 if (!consumeIfPresent(MIToken::kw_tied_def))
1345 return true;
1346 if (Token.isNot(MIToken::IntegerLiteral))
1347 return error("expected an integer literal after 'tied-def'");
1348 if (getUnsigned(TiedDefIdx))
1349 return true;
1350 lex();
1351 if (expectAndConsume(MIToken::rparen))
1352 return true;
1353 return false;
1356 bool MIParser::assignRegisterTies(MachineInstr &MI,
1357 ArrayRef<ParsedMachineOperand> Operands) {
1358 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1359 for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1360 if (!Operands[I].TiedDefIdx)
1361 continue;
1362 // The parser ensures that this operand is a register use, so we just have
1363 // to check the tied-def operand.
1364 unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1365 if (DefIdx >= E)
1366 return error(Operands[I].Begin,
1367 Twine("use of invalid tied-def operand index '" +
1368 Twine(DefIdx) + "'; instruction has only ") +
1369 Twine(E) + " operands");
1370 const auto &DefOperand = Operands[DefIdx].Operand;
1371 if (!DefOperand.isReg() || !DefOperand.isDef())
1372 // FIXME: add note with the def operand.
1373 return error(Operands[I].Begin,
1374 Twine("use of invalid tied-def operand index '") +
1375 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1376 " isn't a defined register");
1377 // Check that the tied-def operand wasn't tied elsewhere.
1378 for (const auto &TiedPair : TiedRegisterPairs) {
1379 if (TiedPair.first == DefIdx)
1380 return error(Operands[I].Begin,
1381 Twine("the tied-def operand #") + Twine(DefIdx) +
1382 " is already tied with another register operand");
1384 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1386 // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1387 // indices must be less than tied max.
1388 for (const auto &TiedPair : TiedRegisterPairs)
1389 MI.tieOperands(TiedPair.first, TiedPair.second);
1390 return false;
1393 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1394 Optional<unsigned> &TiedDefIdx,
1395 bool IsDef) {
1396 unsigned Flags = IsDef ? RegState::Define : 0;
1397 while (Token.isRegisterFlag()) {
1398 if (parseRegisterFlag(Flags))
1399 return true;
1401 if (!Token.isRegister())
1402 return error("expected a register after register flags");
1403 unsigned Reg;
1404 VRegInfo *RegInfo;
1405 if (parseRegister(Reg, RegInfo))
1406 return true;
1407 lex();
1408 unsigned SubReg = 0;
1409 if (Token.is(MIToken::dot)) {
1410 if (parseSubRegisterIndex(SubReg))
1411 return true;
1412 if (!Register::isVirtualRegister(Reg))
1413 return error("subregister index expects a virtual register");
1415 if (Token.is(MIToken::colon)) {
1416 if (!Register::isVirtualRegister(Reg))
1417 return error("register class specification expects a virtual register");
1418 lex();
1419 if (parseRegisterClassOrBank(*RegInfo))
1420 return true;
1422 MachineRegisterInfo &MRI = MF.getRegInfo();
1423 if ((Flags & RegState::Define) == 0) {
1424 if (consumeIfPresent(MIToken::lparen)) {
1425 unsigned Idx;
1426 if (!parseRegisterTiedDefIndex(Idx))
1427 TiedDefIdx = Idx;
1428 else {
1429 // Try a redundant low-level type.
1430 LLT Ty;
1431 if (parseLowLevelType(Token.location(), Ty))
1432 return error("expected tied-def or low-level type after '('");
1434 if (expectAndConsume(MIToken::rparen))
1435 return true;
1437 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1438 return error("inconsistent type for generic virtual register");
1440 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1441 MRI.setType(Reg, Ty);
1444 } else if (consumeIfPresent(MIToken::lparen)) {
1445 // Virtual registers may have a tpe with GlobalISel.
1446 if (!Register::isVirtualRegister(Reg))
1447 return error("unexpected type on physical register");
1449 LLT Ty;
1450 if (parseLowLevelType(Token.location(), Ty))
1451 return true;
1453 if (expectAndConsume(MIToken::rparen))
1454 return true;
1456 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1457 return error("inconsistent type for generic virtual register");
1459 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1460 MRI.setType(Reg, Ty);
1461 } else if (Register::isVirtualRegister(Reg)) {
1462 // Generic virtual registers must have a type.
1463 // If we end up here this means the type hasn't been specified and
1464 // this is bad!
1465 if (RegInfo->Kind == VRegInfo::GENERIC ||
1466 RegInfo->Kind == VRegInfo::REGBANK)
1467 return error("generic virtual registers must have a type");
1469 Dest = MachineOperand::CreateReg(
1470 Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1471 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1472 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1473 Flags & RegState::InternalRead, Flags & RegState::Renamable);
1475 return false;
1478 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1479 assert(Token.is(MIToken::IntegerLiteral));
1480 const APSInt &Int = Token.integerValue();
1481 if (Int.getMinSignedBits() > 64)
1482 return error("integer literal is too large to be an immediate operand");
1483 Dest = MachineOperand::CreateImm(Int.getExtValue());
1484 lex();
1485 return false;
1488 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1489 const Constant *&C) {
1490 auto Source = StringValue.str(); // The source has to be null terminated.
1491 SMDiagnostic Err;
1492 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(),
1493 &PFS.IRSlots);
1494 if (!C)
1495 return error(Loc + Err.getColumnNo(), Err.getMessage());
1496 return false;
1499 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1500 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1501 return true;
1502 lex();
1503 return false;
1506 // See LLT implemntation for bit size limits.
1507 static bool verifyScalarSize(uint64_t Size) {
1508 return Size != 0 && isUInt<16>(Size);
1511 static bool verifyVectorElementCount(uint64_t NumElts) {
1512 return NumElts != 0 && isUInt<16>(NumElts);
1515 static bool verifyAddrSpace(uint64_t AddrSpace) {
1516 return isUInt<24>(AddrSpace);
1519 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1520 if (Token.range().front() == 's' || Token.range().front() == 'p') {
1521 StringRef SizeStr = Token.range().drop_front();
1522 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1523 return error("expected integers after 's'/'p' type character");
1526 if (Token.range().front() == 's') {
1527 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1528 if (!verifyScalarSize(ScalarSize))
1529 return error("invalid size for scalar type");
1531 Ty = LLT::scalar(ScalarSize);
1532 lex();
1533 return false;
1534 } else if (Token.range().front() == 'p') {
1535 const DataLayout &DL = MF.getDataLayout();
1536 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1537 if (!verifyAddrSpace(AS))
1538 return error("invalid address space number");
1540 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1541 lex();
1542 return false;
1545 // Now we're looking for a vector.
1546 if (Token.isNot(MIToken::less))
1547 return error(Loc,
1548 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1549 lex();
1551 if (Token.isNot(MIToken::IntegerLiteral))
1552 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1553 uint64_t NumElements = Token.integerValue().getZExtValue();
1554 if (!verifyVectorElementCount(NumElements))
1555 return error("invalid number of vector elements");
1557 lex();
1559 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1560 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1561 lex();
1563 if (Token.range().front() != 's' && Token.range().front() != 'p')
1564 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1565 StringRef SizeStr = Token.range().drop_front();
1566 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1567 return error("expected integers after 's'/'p' type character");
1569 if (Token.range().front() == 's') {
1570 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1571 if (!verifyScalarSize(ScalarSize))
1572 return error("invalid size for scalar type");
1573 Ty = LLT::scalar(ScalarSize);
1574 } else if (Token.range().front() == 'p') {
1575 const DataLayout &DL = MF.getDataLayout();
1576 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1577 if (!verifyAddrSpace(AS))
1578 return error("invalid address space number");
1580 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1581 } else
1582 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1583 lex();
1585 if (Token.isNot(MIToken::greater))
1586 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1587 lex();
1589 Ty = LLT::vector(NumElements, Ty);
1590 return false;
1593 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1594 assert(Token.is(MIToken::Identifier));
1595 StringRef TypeStr = Token.range();
1596 if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1597 TypeStr.front() != 'p')
1598 return error(
1599 "a typed immediate operand should start with one of 'i', 's', or 'p'");
1600 StringRef SizeStr = Token.range().drop_front();
1601 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1602 return error("expected integers after 'i'/'s'/'p' type character");
1604 auto Loc = Token.location();
1605 lex();
1606 if (Token.isNot(MIToken::IntegerLiteral)) {
1607 if (Token.isNot(MIToken::Identifier) ||
1608 !(Token.range() == "true" || Token.range() == "false"))
1609 return error("expected an integer literal");
1611 const Constant *C = nullptr;
1612 if (parseIRConstant(Loc, C))
1613 return true;
1614 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1615 return false;
1618 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1619 auto Loc = Token.location();
1620 lex();
1621 if (Token.isNot(MIToken::FloatingPointLiteral) &&
1622 Token.isNot(MIToken::HexLiteral))
1623 return error("expected a floating point literal");
1624 const Constant *C = nullptr;
1625 if (parseIRConstant(Loc, C))
1626 return true;
1627 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1628 return false;
1631 bool MIParser::getUnsigned(unsigned &Result) {
1632 if (Token.hasIntegerValue()) {
1633 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1634 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1635 if (Val64 == Limit)
1636 return error("expected 32-bit integer (too large)");
1637 Result = Val64;
1638 return false;
1640 if (Token.is(MIToken::HexLiteral)) {
1641 APInt A;
1642 if (getHexUint(A))
1643 return true;
1644 if (A.getBitWidth() > 32)
1645 return error("expected 32-bit integer (too large)");
1646 Result = A.getZExtValue();
1647 return false;
1649 return true;
1652 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1653 assert(Token.is(MIToken::MachineBasicBlock) ||
1654 Token.is(MIToken::MachineBasicBlockLabel));
1655 unsigned Number;
1656 if (getUnsigned(Number))
1657 return true;
1658 auto MBBInfo = PFS.MBBSlots.find(Number);
1659 if (MBBInfo == PFS.MBBSlots.end())
1660 return error(Twine("use of undefined machine basic block #") +
1661 Twine(Number));
1662 MBB = MBBInfo->second;
1663 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1664 // we drop the <irname> from the bb.<id>.<irname> format.
1665 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1666 return error(Twine("the name of machine basic block #") + Twine(Number) +
1667 " isn't '" + Token.stringValue() + "'");
1668 return false;
1671 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1672 MachineBasicBlock *MBB;
1673 if (parseMBBReference(MBB))
1674 return true;
1675 Dest = MachineOperand::CreateMBB(MBB);
1676 lex();
1677 return false;
1680 bool MIParser::parseStackFrameIndex(int &FI) {
1681 assert(Token.is(MIToken::StackObject));
1682 unsigned ID;
1683 if (getUnsigned(ID))
1684 return true;
1685 auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1686 if (ObjectInfo == PFS.StackObjectSlots.end())
1687 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1688 "'");
1689 StringRef Name;
1690 if (const auto *Alloca =
1691 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1692 Name = Alloca->getName();
1693 if (!Token.stringValue().empty() && Token.stringValue() != Name)
1694 return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1695 "' isn't '" + Token.stringValue() + "'");
1696 lex();
1697 FI = ObjectInfo->second;
1698 return false;
1701 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1702 int FI;
1703 if (parseStackFrameIndex(FI))
1704 return true;
1705 Dest = MachineOperand::CreateFI(FI);
1706 return false;
1709 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1710 assert(Token.is(MIToken::FixedStackObject));
1711 unsigned ID;
1712 if (getUnsigned(ID))
1713 return true;
1714 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1715 if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1716 return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1717 Twine(ID) + "'");
1718 lex();
1719 FI = ObjectInfo->second;
1720 return false;
1723 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1724 int FI;
1725 if (parseFixedStackFrameIndex(FI))
1726 return true;
1727 Dest = MachineOperand::CreateFI(FI);
1728 return false;
1731 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1732 switch (Token.kind()) {
1733 case MIToken::NamedGlobalValue: {
1734 const Module *M = MF.getFunction().getParent();
1735 GV = M->getNamedValue(Token.stringValue());
1736 if (!GV)
1737 return error(Twine("use of undefined global value '") + Token.range() +
1738 "'");
1739 break;
1741 case MIToken::GlobalValue: {
1742 unsigned GVIdx;
1743 if (getUnsigned(GVIdx))
1744 return true;
1745 if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1746 return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1747 "'");
1748 GV = PFS.IRSlots.GlobalValues[GVIdx];
1749 break;
1751 default:
1752 llvm_unreachable("The current token should be a global value");
1754 return false;
1757 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1758 GlobalValue *GV = nullptr;
1759 if (parseGlobalValue(GV))
1760 return true;
1761 lex();
1762 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1763 if (parseOperandsOffset(Dest))
1764 return true;
1765 return false;
1768 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1769 assert(Token.is(MIToken::ConstantPoolItem));
1770 unsigned ID;
1771 if (getUnsigned(ID))
1772 return true;
1773 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1774 if (ConstantInfo == PFS.ConstantPoolSlots.end())
1775 return error("use of undefined constant '%const." + Twine(ID) + "'");
1776 lex();
1777 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1778 if (parseOperandsOffset(Dest))
1779 return true;
1780 return false;
1783 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1784 assert(Token.is(MIToken::JumpTableIndex));
1785 unsigned ID;
1786 if (getUnsigned(ID))
1787 return true;
1788 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1789 if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1790 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1791 lex();
1792 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1793 return false;
1796 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1797 assert(Token.is(MIToken::ExternalSymbol));
1798 const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1799 lex();
1800 Dest = MachineOperand::CreateES(Symbol);
1801 if (parseOperandsOffset(Dest))
1802 return true;
1803 return false;
1806 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
1807 assert(Token.is(MIToken::MCSymbol));
1808 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
1809 lex();
1810 Dest = MachineOperand::CreateMCSymbol(Symbol);
1811 if (parseOperandsOffset(Dest))
1812 return true;
1813 return false;
1816 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1817 assert(Token.is(MIToken::SubRegisterIndex));
1818 StringRef Name = Token.stringValue();
1819 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue());
1820 if (SubRegIndex == 0)
1821 return error(Twine("unknown subregister index '") + Name + "'");
1822 lex();
1823 Dest = MachineOperand::CreateImm(SubRegIndex);
1824 return false;
1827 bool MIParser::parseMDNode(MDNode *&Node) {
1828 assert(Token.is(MIToken::exclaim));
1830 auto Loc = Token.location();
1831 lex();
1832 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1833 return error("expected metadata id after '!'");
1834 unsigned ID;
1835 if (getUnsigned(ID))
1836 return true;
1837 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1838 if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1839 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1840 lex();
1841 Node = NodeInfo->second.get();
1842 return false;
1845 bool MIParser::parseDIExpression(MDNode *&Expr) {
1846 assert(Token.is(MIToken::md_diexpr));
1847 lex();
1849 // FIXME: Share this parsing with the IL parser.
1850 SmallVector<uint64_t, 8> Elements;
1852 if (expectAndConsume(MIToken::lparen))
1853 return true;
1855 if (Token.isNot(MIToken::rparen)) {
1856 do {
1857 if (Token.is(MIToken::Identifier)) {
1858 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
1859 lex();
1860 Elements.push_back(Op);
1861 continue;
1863 if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) {
1864 lex();
1865 Elements.push_back(Enc);
1866 continue;
1868 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
1871 if (Token.isNot(MIToken::IntegerLiteral) ||
1872 Token.integerValue().isSigned())
1873 return error("expected unsigned integer");
1875 auto &U = Token.integerValue();
1876 if (U.ugt(UINT64_MAX))
1877 return error("element too large, limit is " + Twine(UINT64_MAX));
1878 Elements.push_back(U.getZExtValue());
1879 lex();
1881 } while (consumeIfPresent(MIToken::comma));
1884 if (expectAndConsume(MIToken::rparen))
1885 return true;
1887 Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
1888 return false;
1891 bool MIParser::parseDILocation(MDNode *&Loc) {
1892 assert(Token.is(MIToken::md_dilocation));
1893 lex();
1895 bool HaveLine = false;
1896 unsigned Line = 0;
1897 unsigned Column = 0;
1898 MDNode *Scope = nullptr;
1899 MDNode *InlinedAt = nullptr;
1900 bool ImplicitCode = false;
1902 if (expectAndConsume(MIToken::lparen))
1903 return true;
1905 if (Token.isNot(MIToken::rparen)) {
1906 do {
1907 if (Token.is(MIToken::Identifier)) {
1908 if (Token.stringValue() == "line") {
1909 lex();
1910 if (expectAndConsume(MIToken::colon))
1911 return true;
1912 if (Token.isNot(MIToken::IntegerLiteral) ||
1913 Token.integerValue().isSigned())
1914 return error("expected unsigned integer");
1915 Line = Token.integerValue().getZExtValue();
1916 HaveLine = true;
1917 lex();
1918 continue;
1920 if (Token.stringValue() == "column") {
1921 lex();
1922 if (expectAndConsume(MIToken::colon))
1923 return true;
1924 if (Token.isNot(MIToken::IntegerLiteral) ||
1925 Token.integerValue().isSigned())
1926 return error("expected unsigned integer");
1927 Column = Token.integerValue().getZExtValue();
1928 lex();
1929 continue;
1931 if (Token.stringValue() == "scope") {
1932 lex();
1933 if (expectAndConsume(MIToken::colon))
1934 return true;
1935 if (parseMDNode(Scope))
1936 return error("expected metadata node");
1937 if (!isa<DIScope>(Scope))
1938 return error("expected DIScope node");
1939 continue;
1941 if (Token.stringValue() == "inlinedAt") {
1942 lex();
1943 if (expectAndConsume(MIToken::colon))
1944 return true;
1945 if (Token.is(MIToken::exclaim)) {
1946 if (parseMDNode(InlinedAt))
1947 return true;
1948 } else if (Token.is(MIToken::md_dilocation)) {
1949 if (parseDILocation(InlinedAt))
1950 return true;
1951 } else
1952 return error("expected metadata node");
1953 if (!isa<DILocation>(InlinedAt))
1954 return error("expected DILocation node");
1955 continue;
1957 if (Token.stringValue() == "isImplicitCode") {
1958 lex();
1959 if (expectAndConsume(MIToken::colon))
1960 return true;
1961 if (!Token.is(MIToken::Identifier))
1962 return error("expected true/false");
1963 // As far as I can see, we don't have any existing need for parsing
1964 // true/false in MIR yet. Do it ad-hoc until there's something else
1965 // that needs it.
1966 if (Token.stringValue() == "true")
1967 ImplicitCode = true;
1968 else if (Token.stringValue() == "false")
1969 ImplicitCode = false;
1970 else
1971 return error("expected true/false");
1972 lex();
1973 continue;
1976 return error(Twine("invalid DILocation argument '") +
1977 Token.stringValue() + "'");
1978 } while (consumeIfPresent(MIToken::comma));
1981 if (expectAndConsume(MIToken::rparen))
1982 return true;
1984 if (!HaveLine)
1985 return error("DILocation requires line number");
1986 if (!Scope)
1987 return error("DILocation requires a scope");
1989 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
1990 InlinedAt, ImplicitCode);
1991 return false;
1994 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1995 MDNode *Node = nullptr;
1996 if (Token.is(MIToken::exclaim)) {
1997 if (parseMDNode(Node))
1998 return true;
1999 } else if (Token.is(MIToken::md_diexpr)) {
2000 if (parseDIExpression(Node))
2001 return true;
2003 Dest = MachineOperand::CreateMetadata(Node);
2004 return false;
2007 bool MIParser::parseCFIOffset(int &Offset) {
2008 if (Token.isNot(MIToken::IntegerLiteral))
2009 return error("expected a cfi offset");
2010 if (Token.integerValue().getMinSignedBits() > 32)
2011 return error("expected a 32 bit integer (the cfi offset is too large)");
2012 Offset = (int)Token.integerValue().getExtValue();
2013 lex();
2014 return false;
2017 bool MIParser::parseCFIRegister(unsigned &Reg) {
2018 if (Token.isNot(MIToken::NamedRegister))
2019 return error("expected a cfi register");
2020 unsigned LLVMReg;
2021 if (parseNamedRegister(LLVMReg))
2022 return true;
2023 const auto *TRI = MF.getSubtarget().getRegisterInfo();
2024 assert(TRI && "Expected target register info");
2025 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
2026 if (DwarfReg < 0)
2027 return error("invalid DWARF register");
2028 Reg = (unsigned)DwarfReg;
2029 lex();
2030 return false;
2033 bool MIParser::parseCFIEscapeValues(std::string &Values) {
2034 do {
2035 if (Token.isNot(MIToken::HexLiteral))
2036 return error("expected a hexadecimal literal");
2037 unsigned Value;
2038 if (getUnsigned(Value))
2039 return true;
2040 if (Value > UINT8_MAX)
2041 return error("expected a 8-bit integer (too large)");
2042 Values.push_back(static_cast<uint8_t>(Value));
2043 lex();
2044 } while (consumeIfPresent(MIToken::comma));
2045 return false;
2048 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
2049 auto Kind = Token.kind();
2050 lex();
2051 int Offset;
2052 unsigned Reg;
2053 unsigned CFIIndex;
2054 switch (Kind) {
2055 case MIToken::kw_cfi_same_value:
2056 if (parseCFIRegister(Reg))
2057 return true;
2058 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
2059 break;
2060 case MIToken::kw_cfi_offset:
2061 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2062 parseCFIOffset(Offset))
2063 return true;
2064 CFIIndex =
2065 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
2066 break;
2067 case MIToken::kw_cfi_rel_offset:
2068 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2069 parseCFIOffset(Offset))
2070 return true;
2071 CFIIndex = MF.addFrameInst(
2072 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
2073 break;
2074 case MIToken::kw_cfi_def_cfa_register:
2075 if (parseCFIRegister(Reg))
2076 return true;
2077 CFIIndex =
2078 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
2079 break;
2080 case MIToken::kw_cfi_def_cfa_offset:
2081 if (parseCFIOffset(Offset))
2082 return true;
2083 // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
2084 CFIIndex = MF.addFrameInst(
2085 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
2086 break;
2087 case MIToken::kw_cfi_adjust_cfa_offset:
2088 if (parseCFIOffset(Offset))
2089 return true;
2090 CFIIndex = MF.addFrameInst(
2091 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
2092 break;
2093 case MIToken::kw_cfi_def_cfa:
2094 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2095 parseCFIOffset(Offset))
2096 return true;
2097 // NB: MCCFIInstruction::createDefCfa negates the offset.
2098 CFIIndex =
2099 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
2100 break;
2101 case MIToken::kw_cfi_remember_state:
2102 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
2103 break;
2104 case MIToken::kw_cfi_restore:
2105 if (parseCFIRegister(Reg))
2106 return true;
2107 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
2108 break;
2109 case MIToken::kw_cfi_restore_state:
2110 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
2111 break;
2112 case MIToken::kw_cfi_undefined:
2113 if (parseCFIRegister(Reg))
2114 return true;
2115 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
2116 break;
2117 case MIToken::kw_cfi_register: {
2118 unsigned Reg2;
2119 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2120 parseCFIRegister(Reg2))
2121 return true;
2123 CFIIndex =
2124 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
2125 break;
2127 case MIToken::kw_cfi_window_save:
2128 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
2129 break;
2130 case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2131 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
2132 break;
2133 case MIToken::kw_cfi_escape: {
2134 std::string Values;
2135 if (parseCFIEscapeValues(Values))
2136 return true;
2137 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
2138 break;
2140 default:
2141 // TODO: Parse the other CFI operands.
2142 llvm_unreachable("The current token should be a cfi operand");
2144 Dest = MachineOperand::CreateCFIIndex(CFIIndex);
2145 return false;
2148 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
2149 switch (Token.kind()) {
2150 case MIToken::NamedIRBlock: {
2151 BB = dyn_cast_or_null<BasicBlock>(
2152 F.getValueSymbolTable()->lookup(Token.stringValue()));
2153 if (!BB)
2154 return error(Twine("use of undefined IR block '") + Token.range() + "'");
2155 break;
2157 case MIToken::IRBlock: {
2158 unsigned SlotNumber = 0;
2159 if (getUnsigned(SlotNumber))
2160 return true;
2161 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
2162 if (!BB)
2163 return error(Twine("use of undefined IR block '%ir-block.") +
2164 Twine(SlotNumber) + "'");
2165 break;
2167 default:
2168 llvm_unreachable("The current token should be an IR block reference");
2170 return false;
2173 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
2174 assert(Token.is(MIToken::kw_blockaddress));
2175 lex();
2176 if (expectAndConsume(MIToken::lparen))
2177 return true;
2178 if (Token.isNot(MIToken::GlobalValue) &&
2179 Token.isNot(MIToken::NamedGlobalValue))
2180 return error("expected a global value");
2181 GlobalValue *GV = nullptr;
2182 if (parseGlobalValue(GV))
2183 return true;
2184 auto *F = dyn_cast<Function>(GV);
2185 if (!F)
2186 return error("expected an IR function reference");
2187 lex();
2188 if (expectAndConsume(MIToken::comma))
2189 return true;
2190 BasicBlock *BB = nullptr;
2191 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
2192 return error("expected an IR block reference");
2193 if (parseIRBlock(BB, *F))
2194 return true;
2195 lex();
2196 if (expectAndConsume(MIToken::rparen))
2197 return true;
2198 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
2199 if (parseOperandsOffset(Dest))
2200 return true;
2201 return false;
2204 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2205 assert(Token.is(MIToken::kw_intrinsic));
2206 lex();
2207 if (expectAndConsume(MIToken::lparen))
2208 return error("expected syntax intrinsic(@llvm.whatever)");
2210 if (Token.isNot(MIToken::NamedGlobalValue))
2211 return error("expected syntax intrinsic(@llvm.whatever)");
2213 std::string Name = Token.stringValue();
2214 lex();
2216 if (expectAndConsume(MIToken::rparen))
2217 return error("expected ')' to terminate intrinsic name");
2219 // Find out what intrinsic we're dealing with, first try the global namespace
2220 // and then the target's private intrinsics if that fails.
2221 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
2222 Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
2223 if (ID == Intrinsic::not_intrinsic && TII)
2224 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
2226 if (ID == Intrinsic::not_intrinsic)
2227 return error("unknown intrinsic name");
2228 Dest = MachineOperand::CreateIntrinsicID(ID);
2230 return false;
2233 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2234 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2235 bool IsFloat = Token.is(MIToken::kw_floatpred);
2236 lex();
2238 if (expectAndConsume(MIToken::lparen))
2239 return error("expected syntax intpred(whatever) or floatpred(whatever");
2241 if (Token.isNot(MIToken::Identifier))
2242 return error("whatever");
2244 CmpInst::Predicate Pred;
2245 if (IsFloat) {
2246 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2247 .Case("false", CmpInst::FCMP_FALSE)
2248 .Case("oeq", CmpInst::FCMP_OEQ)
2249 .Case("ogt", CmpInst::FCMP_OGT)
2250 .Case("oge", CmpInst::FCMP_OGE)
2251 .Case("olt", CmpInst::FCMP_OLT)
2252 .Case("ole", CmpInst::FCMP_OLE)
2253 .Case("one", CmpInst::FCMP_ONE)
2254 .Case("ord", CmpInst::FCMP_ORD)
2255 .Case("uno", CmpInst::FCMP_UNO)
2256 .Case("ueq", CmpInst::FCMP_UEQ)
2257 .Case("ugt", CmpInst::FCMP_UGT)
2258 .Case("uge", CmpInst::FCMP_UGE)
2259 .Case("ult", CmpInst::FCMP_ULT)
2260 .Case("ule", CmpInst::FCMP_ULE)
2261 .Case("une", CmpInst::FCMP_UNE)
2262 .Case("true", CmpInst::FCMP_TRUE)
2263 .Default(CmpInst::BAD_FCMP_PREDICATE);
2264 if (!CmpInst::isFPPredicate(Pred))
2265 return error("invalid floating-point predicate");
2266 } else {
2267 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2268 .Case("eq", CmpInst::ICMP_EQ)
2269 .Case("ne", CmpInst::ICMP_NE)
2270 .Case("sgt", CmpInst::ICMP_SGT)
2271 .Case("sge", CmpInst::ICMP_SGE)
2272 .Case("slt", CmpInst::ICMP_SLT)
2273 .Case("sle", CmpInst::ICMP_SLE)
2274 .Case("ugt", CmpInst::ICMP_UGT)
2275 .Case("uge", CmpInst::ICMP_UGE)
2276 .Case("ult", CmpInst::ICMP_ULT)
2277 .Case("ule", CmpInst::ICMP_ULE)
2278 .Default(CmpInst::BAD_ICMP_PREDICATE);
2279 if (!CmpInst::isIntPredicate(Pred))
2280 return error("invalid integer predicate");
2283 lex();
2284 Dest = MachineOperand::CreatePredicate(Pred);
2285 if (expectAndConsume(MIToken::rparen))
2286 return error("predicate should be terminated by ')'.");
2288 return false;
2291 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) {
2292 assert(Token.is(MIToken::kw_shufflemask));
2294 lex();
2295 if (expectAndConsume(MIToken::lparen))
2296 return error("expected syntax shufflemask(<integer or undef>, ...)");
2298 SmallVector<Constant *, 32> ShufMask;
2299 LLVMContext &Ctx = MF.getFunction().getContext();
2300 Type *I32Ty = Type::getInt32Ty(Ctx);
2302 bool AllZero = true;
2303 bool AllUndef = true;
2305 do {
2306 if (Token.is(MIToken::kw_undef)) {
2307 ShufMask.push_back(UndefValue::get(I32Ty));
2308 AllZero = false;
2309 } else if (Token.is(MIToken::IntegerLiteral)) {
2310 AllUndef = false;
2311 const APSInt &Int = Token.integerValue();
2312 if (!Int.isNullValue())
2313 AllZero = false;
2314 ShufMask.push_back(ConstantInt::get(I32Ty, Int.getExtValue()));
2315 } else
2316 return error("expected integer constant");
2318 lex();
2319 } while (consumeIfPresent(MIToken::comma));
2321 if (expectAndConsume(MIToken::rparen))
2322 return error("shufflemask should be terminated by ')'.");
2324 if (AllZero || AllUndef) {
2325 VectorType *VT = VectorType::get(I32Ty, ShufMask.size());
2326 Constant *C = AllZero ? Constant::getNullValue(VT) : UndefValue::get(VT);
2327 Dest = MachineOperand::CreateShuffleMask(C);
2328 } else
2329 Dest = MachineOperand::CreateShuffleMask(ConstantVector::get(ShufMask));
2331 return false;
2334 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2335 assert(Token.is(MIToken::kw_target_index));
2336 lex();
2337 if (expectAndConsume(MIToken::lparen))
2338 return true;
2339 if (Token.isNot(MIToken::Identifier))
2340 return error("expected the name of the target index");
2341 int Index = 0;
2342 if (PFS.Target.getTargetIndex(Token.stringValue(), Index))
2343 return error("use of undefined target index '" + Token.stringValue() + "'");
2344 lex();
2345 if (expectAndConsume(MIToken::rparen))
2346 return true;
2347 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
2348 if (parseOperandsOffset(Dest))
2349 return true;
2350 return false;
2353 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2354 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2355 lex();
2356 if (expectAndConsume(MIToken::lparen))
2357 return true;
2359 uint32_t *Mask = MF.allocateRegMask();
2360 while (true) {
2361 if (Token.isNot(MIToken::NamedRegister))
2362 return error("expected a named register");
2363 unsigned Reg;
2364 if (parseNamedRegister(Reg))
2365 return true;
2366 lex();
2367 Mask[Reg / 32] |= 1U << (Reg % 32);
2368 // TODO: Report an error if the same register is used more than once.
2369 if (Token.isNot(MIToken::comma))
2370 break;
2371 lex();
2374 if (expectAndConsume(MIToken::rparen))
2375 return true;
2376 Dest = MachineOperand::CreateRegMask(Mask);
2377 return false;
2380 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2381 assert(Token.is(MIToken::kw_liveout));
2382 uint32_t *Mask = MF.allocateRegMask();
2383 lex();
2384 if (expectAndConsume(MIToken::lparen))
2385 return true;
2386 while (true) {
2387 if (Token.isNot(MIToken::NamedRegister))
2388 return error("expected a named register");
2389 unsigned Reg;
2390 if (parseNamedRegister(Reg))
2391 return true;
2392 lex();
2393 Mask[Reg / 32] |= 1U << (Reg % 32);
2394 // TODO: Report an error if the same register is used more than once.
2395 if (Token.isNot(MIToken::comma))
2396 break;
2397 lex();
2399 if (expectAndConsume(MIToken::rparen))
2400 return true;
2401 Dest = MachineOperand::CreateRegLiveOut(Mask);
2402 return false;
2405 bool MIParser::parseMachineOperand(MachineOperand &Dest,
2406 Optional<unsigned> &TiedDefIdx) {
2407 switch (Token.kind()) {
2408 case MIToken::kw_implicit:
2409 case MIToken::kw_implicit_define:
2410 case MIToken::kw_def:
2411 case MIToken::kw_dead:
2412 case MIToken::kw_killed:
2413 case MIToken::kw_undef:
2414 case MIToken::kw_internal:
2415 case MIToken::kw_early_clobber:
2416 case MIToken::kw_debug_use:
2417 case MIToken::kw_renamable:
2418 case MIToken::underscore:
2419 case MIToken::NamedRegister:
2420 case MIToken::VirtualRegister:
2421 case MIToken::NamedVirtualRegister:
2422 return parseRegisterOperand(Dest, TiedDefIdx);
2423 case MIToken::IntegerLiteral:
2424 return parseImmediateOperand(Dest);
2425 case MIToken::kw_half:
2426 case MIToken::kw_float:
2427 case MIToken::kw_double:
2428 case MIToken::kw_x86_fp80:
2429 case MIToken::kw_fp128:
2430 case MIToken::kw_ppc_fp128:
2431 return parseFPImmediateOperand(Dest);
2432 case MIToken::MachineBasicBlock:
2433 return parseMBBOperand(Dest);
2434 case MIToken::StackObject:
2435 return parseStackObjectOperand(Dest);
2436 case MIToken::FixedStackObject:
2437 return parseFixedStackObjectOperand(Dest);
2438 case MIToken::GlobalValue:
2439 case MIToken::NamedGlobalValue:
2440 return parseGlobalAddressOperand(Dest);
2441 case MIToken::ConstantPoolItem:
2442 return parseConstantPoolIndexOperand(Dest);
2443 case MIToken::JumpTableIndex:
2444 return parseJumpTableIndexOperand(Dest);
2445 case MIToken::ExternalSymbol:
2446 return parseExternalSymbolOperand(Dest);
2447 case MIToken::MCSymbol:
2448 return parseMCSymbolOperand(Dest);
2449 case MIToken::SubRegisterIndex:
2450 return parseSubRegisterIndexOperand(Dest);
2451 case MIToken::md_diexpr:
2452 case MIToken::exclaim:
2453 return parseMetadataOperand(Dest);
2454 case MIToken::kw_cfi_same_value:
2455 case MIToken::kw_cfi_offset:
2456 case MIToken::kw_cfi_rel_offset:
2457 case MIToken::kw_cfi_def_cfa_register:
2458 case MIToken::kw_cfi_def_cfa_offset:
2459 case MIToken::kw_cfi_adjust_cfa_offset:
2460 case MIToken::kw_cfi_escape:
2461 case MIToken::kw_cfi_def_cfa:
2462 case MIToken::kw_cfi_register:
2463 case MIToken::kw_cfi_remember_state:
2464 case MIToken::kw_cfi_restore:
2465 case MIToken::kw_cfi_restore_state:
2466 case MIToken::kw_cfi_undefined:
2467 case MIToken::kw_cfi_window_save:
2468 case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2469 return parseCFIOperand(Dest);
2470 case MIToken::kw_blockaddress:
2471 return parseBlockAddressOperand(Dest);
2472 case MIToken::kw_intrinsic:
2473 return parseIntrinsicOperand(Dest);
2474 case MIToken::kw_target_index:
2475 return parseTargetIndexOperand(Dest);
2476 case MIToken::kw_liveout:
2477 return parseLiveoutRegisterMaskOperand(Dest);
2478 case MIToken::kw_floatpred:
2479 case MIToken::kw_intpred:
2480 return parsePredicateOperand(Dest);
2481 case MIToken::kw_shufflemask:
2482 return parseShuffleMaskOperand(Dest);
2483 case MIToken::Error:
2484 return true;
2485 case MIToken::Identifier:
2486 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) {
2487 Dest = MachineOperand::CreateRegMask(RegMask);
2488 lex();
2489 break;
2490 } else if (Token.stringValue() == "CustomRegMask") {
2491 return parseCustomRegisterMaskOperand(Dest);
2492 } else
2493 return parseTypedImmediateOperand(Dest);
2494 default:
2495 // FIXME: Parse the MCSymbol machine operand.
2496 return error("expected a machine operand");
2498 return false;
2501 bool MIParser::parseMachineOperandAndTargetFlags(
2502 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
2503 unsigned TF = 0;
2504 bool HasTargetFlags = false;
2505 if (Token.is(MIToken::kw_target_flags)) {
2506 HasTargetFlags = true;
2507 lex();
2508 if (expectAndConsume(MIToken::lparen))
2509 return true;
2510 if (Token.isNot(MIToken::Identifier))
2511 return error("expected the name of the target flag");
2512 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) {
2513 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF))
2514 return error("use of undefined target flag '" + Token.stringValue() +
2515 "'");
2517 lex();
2518 while (Token.is(MIToken::comma)) {
2519 lex();
2520 if (Token.isNot(MIToken::Identifier))
2521 return error("expected the name of the target flag");
2522 unsigned BitFlag = 0;
2523 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2524 return error("use of undefined target flag '" + Token.stringValue() +
2525 "'");
2526 // TODO: Report an error when using a duplicate bit target flag.
2527 TF |= BitFlag;
2528 lex();
2530 if (expectAndConsume(MIToken::rparen))
2531 return true;
2533 auto Loc = Token.location();
2534 if (parseMachineOperand(Dest, TiedDefIdx))
2535 return true;
2536 if (!HasTargetFlags)
2537 return false;
2538 if (Dest.isReg())
2539 return error(Loc, "register operands can't have target flags");
2540 Dest.setTargetFlags(TF);
2541 return false;
2544 bool MIParser::parseOffset(int64_t &Offset) {
2545 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2546 return false;
2547 StringRef Sign = Token.range();
2548 bool IsNegative = Token.is(MIToken::minus);
2549 lex();
2550 if (Token.isNot(MIToken::IntegerLiteral))
2551 return error("expected an integer literal after '" + Sign + "'");
2552 if (Token.integerValue().getMinSignedBits() > 64)
2553 return error("expected 64-bit integer (too large)");
2554 Offset = Token.integerValue().getExtValue();
2555 if (IsNegative)
2556 Offset = -Offset;
2557 lex();
2558 return false;
2561 bool MIParser::parseAlignment(unsigned &Alignment) {
2562 assert(Token.is(MIToken::kw_align));
2563 lex();
2564 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2565 return error("expected an integer literal after 'align'");
2566 if (getUnsigned(Alignment))
2567 return true;
2568 lex();
2570 if (!isPowerOf2_32(Alignment))
2571 return error("expected a power-of-2 literal after 'align'");
2573 return false;
2576 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2577 assert(Token.is(MIToken::kw_addrspace));
2578 lex();
2579 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2580 return error("expected an integer literal after 'addrspace'");
2581 if (getUnsigned(Addrspace))
2582 return true;
2583 lex();
2584 return false;
2587 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2588 int64_t Offset = 0;
2589 if (parseOffset(Offset))
2590 return true;
2591 Op.setOffset(Offset);
2592 return false;
2595 bool MIParser::parseIRValue(const Value *&V) {
2596 switch (Token.kind()) {
2597 case MIToken::NamedIRValue: {
2598 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2599 break;
2601 case MIToken::IRValue: {
2602 unsigned SlotNumber = 0;
2603 if (getUnsigned(SlotNumber))
2604 return true;
2605 V = getIRValue(SlotNumber);
2606 break;
2608 case MIToken::NamedGlobalValue:
2609 case MIToken::GlobalValue: {
2610 GlobalValue *GV = nullptr;
2611 if (parseGlobalValue(GV))
2612 return true;
2613 V = GV;
2614 break;
2616 case MIToken::QuotedIRValue: {
2617 const Constant *C = nullptr;
2618 if (parseIRConstant(Token.location(), Token.stringValue(), C))
2619 return true;
2620 V = C;
2621 break;
2623 default:
2624 llvm_unreachable("The current token should be an IR block reference");
2626 if (!V)
2627 return error(Twine("use of undefined IR value '") + Token.range() + "'");
2628 return false;
2631 bool MIParser::getUint64(uint64_t &Result) {
2632 if (Token.hasIntegerValue()) {
2633 if (Token.integerValue().getActiveBits() > 64)
2634 return error("expected 64-bit integer (too large)");
2635 Result = Token.integerValue().getZExtValue();
2636 return false;
2638 if (Token.is(MIToken::HexLiteral)) {
2639 APInt A;
2640 if (getHexUint(A))
2641 return true;
2642 if (A.getBitWidth() > 64)
2643 return error("expected 64-bit integer (too large)");
2644 Result = A.getZExtValue();
2645 return false;
2647 return true;
2650 bool MIParser::getHexUint(APInt &Result) {
2651 assert(Token.is(MIToken::HexLiteral));
2652 StringRef S = Token.range();
2653 assert(S[0] == '0' && tolower(S[1]) == 'x');
2654 // This could be a floating point literal with a special prefix.
2655 if (!isxdigit(S[2]))
2656 return true;
2657 StringRef V = S.substr(2);
2658 APInt A(V.size()*4, V, 16);
2660 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2661 // sure it isn't the case before constructing result.
2662 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2663 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2664 return false;
2667 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2668 const auto OldFlags = Flags;
2669 switch (Token.kind()) {
2670 case MIToken::kw_volatile:
2671 Flags |= MachineMemOperand::MOVolatile;
2672 break;
2673 case MIToken::kw_non_temporal:
2674 Flags |= MachineMemOperand::MONonTemporal;
2675 break;
2676 case MIToken::kw_dereferenceable:
2677 Flags |= MachineMemOperand::MODereferenceable;
2678 break;
2679 case MIToken::kw_invariant:
2680 Flags |= MachineMemOperand::MOInvariant;
2681 break;
2682 case MIToken::StringConstant: {
2683 MachineMemOperand::Flags TF;
2684 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF))
2685 return error("use of undefined target MMO flag '" + Token.stringValue() +
2686 "'");
2687 Flags |= TF;
2688 break;
2690 default:
2691 llvm_unreachable("The current token should be a memory operand flag");
2693 if (OldFlags == Flags)
2694 // We know that the same flag is specified more than once when the flags
2695 // weren't modified.
2696 return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2697 lex();
2698 return false;
2701 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2702 switch (Token.kind()) {
2703 case MIToken::kw_stack:
2704 PSV = MF.getPSVManager().getStack();
2705 break;
2706 case MIToken::kw_got:
2707 PSV = MF.getPSVManager().getGOT();
2708 break;
2709 case MIToken::kw_jump_table:
2710 PSV = MF.getPSVManager().getJumpTable();
2711 break;
2712 case MIToken::kw_constant_pool:
2713 PSV = MF.getPSVManager().getConstantPool();
2714 break;
2715 case MIToken::FixedStackObject: {
2716 int FI;
2717 if (parseFixedStackFrameIndex(FI))
2718 return true;
2719 PSV = MF.getPSVManager().getFixedStack(FI);
2720 // The token was already consumed, so use return here instead of break.
2721 return false;
2723 case MIToken::StackObject: {
2724 int FI;
2725 if (parseStackFrameIndex(FI))
2726 return true;
2727 PSV = MF.getPSVManager().getFixedStack(FI);
2728 // The token was already consumed, so use return here instead of break.
2729 return false;
2731 case MIToken::kw_call_entry:
2732 lex();
2733 switch (Token.kind()) {
2734 case MIToken::GlobalValue:
2735 case MIToken::NamedGlobalValue: {
2736 GlobalValue *GV = nullptr;
2737 if (parseGlobalValue(GV))
2738 return true;
2739 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2740 break;
2742 case MIToken::ExternalSymbol:
2743 PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2744 MF.createExternalSymbolName(Token.stringValue()));
2745 break;
2746 default:
2747 return error(
2748 "expected a global value or an external symbol after 'call-entry'");
2750 break;
2751 default:
2752 llvm_unreachable("The current token should be pseudo source value");
2754 lex();
2755 return false;
2758 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2759 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2760 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2761 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2762 Token.is(MIToken::kw_call_entry)) {
2763 const PseudoSourceValue *PSV = nullptr;
2764 if (parseMemoryPseudoSourceValue(PSV))
2765 return true;
2766 int64_t Offset = 0;
2767 if (parseOffset(Offset))
2768 return true;
2769 Dest = MachinePointerInfo(PSV, Offset);
2770 return false;
2772 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2773 Token.isNot(MIToken::GlobalValue) &&
2774 Token.isNot(MIToken::NamedGlobalValue) &&
2775 Token.isNot(MIToken::QuotedIRValue))
2776 return error("expected an IR value reference");
2777 const Value *V = nullptr;
2778 if (parseIRValue(V))
2779 return true;
2780 if (!V->getType()->isPointerTy())
2781 return error("expected a pointer IR value");
2782 lex();
2783 int64_t Offset = 0;
2784 if (parseOffset(Offset))
2785 return true;
2786 Dest = MachinePointerInfo(V, Offset);
2787 return false;
2790 bool MIParser::parseOptionalScope(LLVMContext &Context,
2791 SyncScope::ID &SSID) {
2792 SSID = SyncScope::System;
2793 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2794 lex();
2795 if (expectAndConsume(MIToken::lparen))
2796 return error("expected '(' in syncscope");
2798 std::string SSN;
2799 if (parseStringConstant(SSN))
2800 return true;
2802 SSID = Context.getOrInsertSyncScopeID(SSN);
2803 if (expectAndConsume(MIToken::rparen))
2804 return error("expected ')' in syncscope");
2807 return false;
2810 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2811 Order = AtomicOrdering::NotAtomic;
2812 if (Token.isNot(MIToken::Identifier))
2813 return false;
2815 Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2816 .Case("unordered", AtomicOrdering::Unordered)
2817 .Case("monotonic", AtomicOrdering::Monotonic)
2818 .Case("acquire", AtomicOrdering::Acquire)
2819 .Case("release", AtomicOrdering::Release)
2820 .Case("acq_rel", AtomicOrdering::AcquireRelease)
2821 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2822 .Default(AtomicOrdering::NotAtomic);
2824 if (Order != AtomicOrdering::NotAtomic) {
2825 lex();
2826 return false;
2829 return error("expected an atomic scope, ordering or a size specification");
2832 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2833 if (expectAndConsume(MIToken::lparen))
2834 return true;
2835 MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2836 while (Token.isMemoryOperandFlag()) {
2837 if (parseMemoryOperandFlag(Flags))
2838 return true;
2840 if (Token.isNot(MIToken::Identifier) ||
2841 (Token.stringValue() != "load" && Token.stringValue() != "store"))
2842 return error("expected 'load' or 'store' memory operation");
2843 if (Token.stringValue() == "load")
2844 Flags |= MachineMemOperand::MOLoad;
2845 else
2846 Flags |= MachineMemOperand::MOStore;
2847 lex();
2849 // Optional 'store' for operands that both load and store.
2850 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
2851 Flags |= MachineMemOperand::MOStore;
2852 lex();
2855 // Optional synchronization scope.
2856 SyncScope::ID SSID;
2857 if (parseOptionalScope(MF.getFunction().getContext(), SSID))
2858 return true;
2860 // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2861 AtomicOrdering Order, FailureOrder;
2862 if (parseOptionalAtomicOrdering(Order))
2863 return true;
2865 if (parseOptionalAtomicOrdering(FailureOrder))
2866 return true;
2868 if (Token.isNot(MIToken::IntegerLiteral) &&
2869 Token.isNot(MIToken::kw_unknown_size))
2870 return error("expected the size integer literal or 'unknown-size' after "
2871 "memory operation");
2872 uint64_t Size;
2873 if (Token.is(MIToken::IntegerLiteral)) {
2874 if (getUint64(Size))
2875 return true;
2876 } else if (Token.is(MIToken::kw_unknown_size)) {
2877 Size = MemoryLocation::UnknownSize;
2879 lex();
2881 MachinePointerInfo Ptr = MachinePointerInfo();
2882 if (Token.is(MIToken::Identifier)) {
2883 const char *Word =
2884 ((Flags & MachineMemOperand::MOLoad) &&
2885 (Flags & MachineMemOperand::MOStore))
2886 ? "on"
2887 : Flags & MachineMemOperand::MOLoad ? "from" : "into";
2888 if (Token.stringValue() != Word)
2889 return error(Twine("expected '") + Word + "'");
2890 lex();
2892 if (parseMachinePointerInfo(Ptr))
2893 return true;
2895 unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1);
2896 AAMDNodes AAInfo;
2897 MDNode *Range = nullptr;
2898 while (consumeIfPresent(MIToken::comma)) {
2899 switch (Token.kind()) {
2900 case MIToken::kw_align:
2901 if (parseAlignment(BaseAlignment))
2902 return true;
2903 break;
2904 case MIToken::kw_addrspace:
2905 if (parseAddrspace(Ptr.AddrSpace))
2906 return true;
2907 break;
2908 case MIToken::md_tbaa:
2909 lex();
2910 if (parseMDNode(AAInfo.TBAA))
2911 return true;
2912 break;
2913 case MIToken::md_alias_scope:
2914 lex();
2915 if (parseMDNode(AAInfo.Scope))
2916 return true;
2917 break;
2918 case MIToken::md_noalias:
2919 lex();
2920 if (parseMDNode(AAInfo.NoAlias))
2921 return true;
2922 break;
2923 case MIToken::md_range:
2924 lex();
2925 if (parseMDNode(Range))
2926 return true;
2927 break;
2928 // TODO: Report an error on duplicate metadata nodes.
2929 default:
2930 return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2931 "'!noalias' or '!range'");
2934 if (expectAndConsume(MIToken::rparen))
2935 return true;
2936 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2937 SSID, Order, FailureOrder);
2938 return false;
2941 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
2942 assert((Token.is(MIToken::kw_pre_instr_symbol) ||
2943 Token.is(MIToken::kw_post_instr_symbol)) &&
2944 "Invalid token for a pre- post-instruction symbol!");
2945 lex();
2946 if (Token.isNot(MIToken::MCSymbol))
2947 return error("expected a symbol after 'pre-instr-symbol'");
2948 Symbol = getOrCreateMCSymbol(Token.stringValue());
2949 lex();
2950 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
2951 Token.is(MIToken::lbrace))
2952 return false;
2953 if (Token.isNot(MIToken::comma))
2954 return error("expected ',' before the next machine operand");
2955 lex();
2956 return false;
2959 static void initSlots2BasicBlocks(
2960 const Function &F,
2961 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2962 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2963 MST.incorporateFunction(F);
2964 for (auto &BB : F) {
2965 if (BB.hasName())
2966 continue;
2967 int Slot = MST.getLocalSlot(&BB);
2968 if (Slot == -1)
2969 continue;
2970 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2974 static const BasicBlock *getIRBlockFromSlot(
2975 unsigned Slot,
2976 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2977 auto BlockInfo = Slots2BasicBlocks.find(Slot);
2978 if (BlockInfo == Slots2BasicBlocks.end())
2979 return nullptr;
2980 return BlockInfo->second;
2983 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2984 if (Slots2BasicBlocks.empty())
2985 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
2986 return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2989 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2990 if (&F == &MF.getFunction())
2991 return getIRBlock(Slot);
2992 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2993 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2994 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2997 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2998 DenseMap<unsigned, const Value *> &Slots2Values) {
2999 int Slot = MST.getLocalSlot(V);
3000 if (Slot == -1)
3001 return;
3002 Slots2Values.insert(std::make_pair(unsigned(Slot), V));
3005 /// Creates the mapping from slot numbers to function's unnamed IR values.
3006 static void initSlots2Values(const Function &F,
3007 DenseMap<unsigned, const Value *> &Slots2Values) {
3008 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
3009 MST.incorporateFunction(F);
3010 for (const auto &Arg : F.args())
3011 mapValueToSlot(&Arg, MST, Slots2Values);
3012 for (const auto &BB : F) {
3013 mapValueToSlot(&BB, MST, Slots2Values);
3014 for (const auto &I : BB)
3015 mapValueToSlot(&I, MST, Slots2Values);
3019 const Value *MIParser::getIRValue(unsigned Slot) {
3020 if (Slots2Values.empty())
3021 initSlots2Values(MF.getFunction(), Slots2Values);
3022 auto ValueInfo = Slots2Values.find(Slot);
3023 if (ValueInfo == Slots2Values.end())
3024 return nullptr;
3025 return ValueInfo->second;
3028 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
3029 // FIXME: Currently we can't recognize temporary or local symbols and call all
3030 // of the appropriate forms to create them. However, this handles basic cases
3031 // well as most of the special aspects are recognized by a prefix on their
3032 // name, and the input names should already be unique. For test cases, keeping
3033 // the symbol name out of the symbol table isn't terribly important.
3034 return MF.getContext().getOrCreateSymbol(Name);
3037 bool MIParser::parseStringConstant(std::string &Result) {
3038 if (Token.isNot(MIToken::StringConstant))
3039 return error("expected string constant");
3040 Result = Token.stringValue();
3041 lex();
3042 return false;
3045 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
3046 StringRef Src,
3047 SMDiagnostic &Error) {
3048 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
3051 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
3052 StringRef Src, SMDiagnostic &Error) {
3053 return MIParser(PFS, Error, Src).parseBasicBlocks();
3056 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
3057 MachineBasicBlock *&MBB, StringRef Src,
3058 SMDiagnostic &Error) {
3059 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
3062 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
3063 unsigned &Reg, StringRef Src,
3064 SMDiagnostic &Error) {
3065 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
3068 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
3069 unsigned &Reg, StringRef Src,
3070 SMDiagnostic &Error) {
3071 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
3074 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
3075 VRegInfo *&Info, StringRef Src,
3076 SMDiagnostic &Error) {
3077 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
3080 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
3081 int &FI, StringRef Src,
3082 SMDiagnostic &Error) {
3083 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3086 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
3087 MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3088 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);