[MIParser] Set RegClassOrRegBank during instruction parsing
[llvm-complete.git] / lib / CodeGen / StackColoring.cpp
blob641b54205d62d180e19cdac4919e096b68ee341a
1 //===- StackColoring.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the stack-coloring optimization that looks for
10 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
11 // which represent the possible lifetime of stack slots. It attempts to
12 // merge disjoint stack slots and reduce the used stack space.
13 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
15 // TODO: In the future we plan to improve stack coloring in the following ways:
16 // 1. Allow merging multiple small slots into a single larger slot at different
17 // offsets.
18 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
19 // spill slots.
21 //===----------------------------------------------------------------------===//
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/CodeGen/LiveInterval.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SlotIndexes.h"
41 #include "llvm/CodeGen/TargetOpcodes.h"
42 #include "llvm/CodeGen/WinEHFuncInfo.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Use.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <limits>
60 #include <memory>
61 #include <utility>
63 using namespace llvm;
65 #define DEBUG_TYPE "stack-coloring"
67 static cl::opt<bool>
68 DisableColoring("no-stack-coloring",
69 cl::init(false), cl::Hidden,
70 cl::desc("Disable stack coloring"));
72 /// The user may write code that uses allocas outside of the declared lifetime
73 /// zone. This can happen when the user returns a reference to a local
74 /// data-structure. We can detect these cases and decide not to optimize the
75 /// code. If this flag is enabled, we try to save the user. This option
76 /// is treated as overriding LifetimeStartOnFirstUse below.
77 static cl::opt<bool>
78 ProtectFromEscapedAllocas("protect-from-escaped-allocas",
79 cl::init(false), cl::Hidden,
80 cl::desc("Do not optimize lifetime zones that "
81 "are broken"));
83 /// Enable enhanced dataflow scheme for lifetime analysis (treat first
84 /// use of stack slot as start of slot lifetime, as opposed to looking
85 /// for LIFETIME_START marker). See "Implementation notes" below for
86 /// more info.
87 static cl::opt<bool>
88 LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
89 cl::init(true), cl::Hidden,
90 cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
93 STATISTIC(NumMarkerSeen, "Number of lifetime markers found.");
94 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
95 STATISTIC(StackSlotMerged, "Number of stack slot merged.");
96 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
98 //===----------------------------------------------------------------------===//
99 // StackColoring Pass
100 //===----------------------------------------------------------------------===//
102 // Stack Coloring reduces stack usage by merging stack slots when they
103 // can't be used together. For example, consider the following C program:
105 // void bar(char *, int);
106 // void foo(bool var) {
107 // A: {
108 // char z[4096];
109 // bar(z, 0);
110 // }
112 // char *p;
113 // char x[4096];
114 // char y[4096];
115 // if (var) {
116 // p = x;
117 // } else {
118 // bar(y, 1);
119 // p = y + 1024;
120 // }
121 // B:
122 // bar(p, 2);
123 // }
125 // Naively-compiled, this program would use 12k of stack space. However, the
126 // stack slot corresponding to `z` is always destroyed before either of the
127 // stack slots for `x` or `y` are used, and then `x` is only used if `var`
128 // is true, while `y` is only used if `var` is false. So in no time are 2
129 // of the stack slots used together, and therefore we can merge them,
130 // compiling the function using only a single 4k alloca:
132 // void foo(bool var) { // equivalent
133 // char x[4096];
134 // char *p;
135 // bar(x, 0);
136 // if (var) {
137 // p = x;
138 // } else {
139 // bar(x, 1);
140 // p = x + 1024;
141 // }
142 // bar(p, 2);
143 // }
145 // This is an important optimization if we want stack space to be under
146 // control in large functions, both open-coded ones and ones created by
147 // inlining.
149 // Implementation Notes:
150 // ---------------------
152 // An important part of the above reasoning is that `z` can't be accessed
153 // while the latter 2 calls to `bar` are running. This is justified because
154 // `z`'s lifetime is over after we exit from block `A:`, so any further
155 // accesses to it would be UB. The way we represent this information
156 // in LLVM is by having frontends delimit blocks with `lifetime.start`
157 // and `lifetime.end` intrinsics.
159 // The effect of these intrinsics seems to be as follows (maybe I should
160 // specify this in the reference?):
162 // L1) at start, each stack-slot is marked as *out-of-scope*, unless no
163 // lifetime intrinsic refers to that stack slot, in which case
164 // it is marked as *in-scope*.
165 // L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
166 // the stack slot is overwritten with `undef`.
167 // L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
168 // L4) on function exit, all stack slots are marked as *out-of-scope*.
169 // L5) `lifetime.end` is a no-op when called on a slot that is already
170 // *out-of-scope*.
171 // L6) memory accesses to *out-of-scope* stack slots are UB.
172 // L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
173 // are invalidated, unless the slot is "degenerate". This is used to
174 // justify not marking slots as in-use until the pointer to them is
175 // used, but feels a bit hacky in the presence of things like LICM. See
176 // the "Degenerate Slots" section for more details.
178 // Now, let's ground stack coloring on these rules. We'll define a slot
179 // as *in-use* at a (dynamic) point in execution if it either can be
180 // written to at that point, or if it has a live and non-undef content
181 // at that point.
183 // Obviously, slots that are never *in-use* together can be merged, and
184 // in our example `foo`, the slots for `x`, `y` and `z` are never
185 // in-use together (of course, sometimes slots that *are* in-use together
186 // might still be mergable, but we don't care about that here).
188 // In this implementation, we successively merge pairs of slots that are
189 // not *in-use* together. We could be smarter - for example, we could merge
190 // a single large slot with 2 small slots, or we could construct the
191 // interference graph and run a "smart" graph coloring algorithm, but with
192 // that aside, how do we find out whether a pair of slots might be *in-use*
193 // together?
195 // From our rules, we see that *out-of-scope* slots are never *in-use*,
196 // and from (L7) we see that "non-degenerate" slots remain non-*in-use*
197 // until their address is taken. Therefore, we can approximate slot activity
198 // using dataflow.
200 // A subtle point: naively, we might try to figure out which pairs of
201 // stack-slots interfere by propagating `S in-use` through the CFG for every
202 // stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
203 // which they are both *in-use*.
205 // That is sound, but overly conservative in some cases: in our (artificial)
206 // example `foo`, either `x` or `y` might be in use at the label `B:`, but
207 // as `x` is only in use if we came in from the `var` edge and `y` only
208 // if we came from the `!var` edge, they still can't be in use together.
209 // See PR32488 for an important real-life case.
211 // If we wanted to find all points of interference precisely, we could
212 // propagate `S in-use` and `S&T in-use` predicates through the CFG. That
213 // would be precise, but requires propagating `O(n^2)` dataflow facts.
215 // However, we aren't interested in the *set* of points of interference
216 // between 2 stack slots, only *whether* there *is* such a point. So we
217 // can rely on a little trick: for `S` and `T` to be in-use together,
218 // one of them needs to become in-use while the other is in-use (or
219 // they might both become in use simultaneously). We can check this
220 // by also keeping track of the points at which a stack slot might *start*
221 // being in-use.
223 // Exact first use:
224 // ----------------
226 // Consider the following motivating example:
228 // int foo() {
229 // char b1[1024], b2[1024];
230 // if (...) {
231 // char b3[1024];
232 // <uses of b1, b3>;
233 // return x;
234 // } else {
235 // char b4[1024], b5[1024];
236 // <uses of b2, b4, b5>;
237 // return y;
238 // }
239 // }
241 // In the code above, "b3" and "b4" are declared in distinct lexical
242 // scopes, meaning that it is easy to prove that they can share the
243 // same stack slot. Variables "b1" and "b2" are declared in the same
244 // scope, meaning that from a lexical point of view, their lifetimes
245 // overlap. From a control flow pointer of view, however, the two
246 // variables are accessed in disjoint regions of the CFG, thus it
247 // should be possible for them to share the same stack slot. An ideal
248 // stack allocation for the function above would look like:
250 // slot 0: b1, b2
251 // slot 1: b3, b4
252 // slot 2: b5
254 // Achieving this allocation is tricky, however, due to the way
255 // lifetime markers are inserted. Here is a simplified view of the
256 // control flow graph for the code above:
258 // +------ block 0 -------+
259 // 0| LIFETIME_START b1, b2 |
260 // 1| <test 'if' condition> |
261 // +-----------------------+
262 // ./ \.
263 // +------ block 1 -------+ +------ block 2 -------+
264 // 2| LIFETIME_START b3 | 5| LIFETIME_START b4, b5 |
265 // 3| <uses of b1, b3> | 6| <uses of b2, b4, b5> |
266 // 4| LIFETIME_END b3 | 7| LIFETIME_END b4, b5 |
267 // +-----------------------+ +-----------------------+
268 // \. /.
269 // +------ block 3 -------+
270 // 8| <cleanupcode> |
271 // 9| LIFETIME_END b1, b2 |
272 // 10| return |
273 // +-----------------------+
275 // If we create live intervals for the variables above strictly based
276 // on the lifetime markers, we'll get the set of intervals on the
277 // left. If we ignore the lifetime start markers and instead treat a
278 // variable's lifetime as beginning with the first reference to the
279 // var, then we get the intervals on the right.
281 // LIFETIME_START First Use
282 // b1: [0,9] [3,4] [8,9]
283 // b2: [0,9] [6,9]
284 // b3: [2,4] [3,4]
285 // b4: [5,7] [6,7]
286 // b5: [5,7] [6,7]
288 // For the intervals on the left, the best we can do is overlap two
289 // variables (b3 and b4, for example); this gives us a stack size of
290 // 4*1024 bytes, not ideal. When treating first-use as the start of a
291 // lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
292 // byte stack (better).
294 // Degenerate Slots:
295 // -----------------
297 // Relying entirely on first-use of stack slots is problematic,
298 // however, due to the fact that optimizations can sometimes migrate
299 // uses of a variable outside of its lifetime start/end region. Here
300 // is an example:
302 // int bar() {
303 // char b1[1024], b2[1024];
304 // if (...) {
305 // <uses of b2>
306 // return y;
307 // } else {
308 // <uses of b1>
309 // while (...) {
310 // char b3[1024];
311 // <uses of b3>
312 // }
313 // }
314 // }
316 // Before optimization, the control flow graph for the code above
317 // might look like the following:
319 // +------ block 0 -------+
320 // 0| LIFETIME_START b1, b2 |
321 // 1| <test 'if' condition> |
322 // +-----------------------+
323 // ./ \.
324 // +------ block 1 -------+ +------- block 2 -------+
325 // 2| <uses of b2> | 3| <uses of b1> |
326 // +-----------------------+ +-----------------------+
327 // | |
328 // | +------- block 3 -------+ <-\.
329 // | 4| <while condition> | |
330 // | +-----------------------+ |
331 // | / | |
332 // | / +------- block 4 -------+
333 // \ / 5| LIFETIME_START b3 | |
334 // \ / 6| <uses of b3> | |
335 // \ / 7| LIFETIME_END b3 | |
336 // \ | +------------------------+ |
337 // \ | \ /
338 // +------ block 5 -----+ \---------------
339 // 8| <cleanupcode> |
340 // 9| LIFETIME_END b1, b2 |
341 // 10| return |
342 // +---------------------+
344 // During optimization, however, it can happen that an instruction
345 // computing an address in "b3" (for example, a loop-invariant GEP) is
346 // hoisted up out of the loop from block 4 to block 2. [Note that
347 // this is not an actual load from the stack, only an instruction that
348 // computes the address to be loaded]. If this happens, there is now a
349 // path leading from the first use of b3 to the return instruction
350 // that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
351 // now larger than if we were computing live intervals strictly based
352 // on lifetime markers. In the example above, this lengthened lifetime
353 // would mean that it would appear illegal to overlap b3 with b2.
355 // To deal with this such cases, the code in ::collectMarkers() below
356 // tries to identify "degenerate" slots -- those slots where on a single
357 // forward pass through the CFG we encounter a first reference to slot
358 // K before we hit the slot K lifetime start marker. For such slots,
359 // we fall back on using the lifetime start marker as the beginning of
360 // the variable's lifetime. NB: with this implementation, slots can
361 // appear degenerate in cases where there is unstructured control flow:
363 // if (q) goto mid;
364 // if (x > 9) {
365 // int b[100];
366 // memcpy(&b[0], ...);
367 // mid: b[k] = ...;
368 // abc(&b);
369 // }
371 // If in RPO ordering chosen to walk the CFG we happen to visit the b[k]
372 // before visiting the memcpy block (which will contain the lifetime start
373 // for "b" then it will appear that 'b' has a degenerate lifetime.
376 namespace {
378 /// StackColoring - A machine pass for merging disjoint stack allocations,
379 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
380 class StackColoring : public MachineFunctionPass {
381 MachineFrameInfo *MFI;
382 MachineFunction *MF;
384 /// A class representing liveness information for a single basic block.
385 /// Each bit in the BitVector represents the liveness property
386 /// for a different stack slot.
387 struct BlockLifetimeInfo {
388 /// Which slots BEGINs in each basic block.
389 BitVector Begin;
391 /// Which slots ENDs in each basic block.
392 BitVector End;
394 /// Which slots are marked as LIVE_IN, coming into each basic block.
395 BitVector LiveIn;
397 /// Which slots are marked as LIVE_OUT, coming out of each basic block.
398 BitVector LiveOut;
401 /// Maps active slots (per bit) for each basic block.
402 using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>;
403 LivenessMap BlockLiveness;
405 /// Maps serial numbers to basic blocks.
406 DenseMap<const MachineBasicBlock *, int> BasicBlocks;
408 /// Maps basic blocks to a serial number.
409 SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering;
411 /// Maps slots to their use interval. Outside of this interval, slots
412 /// values are either dead or `undef` and they will not be written to.
413 SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
415 /// Maps slots to the points where they can become in-use.
416 SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts;
418 /// VNInfo is used for the construction of LiveIntervals.
419 VNInfo::Allocator VNInfoAllocator;
421 /// SlotIndex analysis object.
422 SlotIndexes *Indexes;
424 /// The list of lifetime markers found. These markers are to be removed
425 /// once the coloring is done.
426 SmallVector<MachineInstr*, 8> Markers;
428 /// Record the FI slots for which we have seen some sort of
429 /// lifetime marker (either start or end).
430 BitVector InterestingSlots;
432 /// FI slots that need to be handled conservatively (for these
433 /// slots lifetime-start-on-first-use is disabled).
434 BitVector ConservativeSlots;
436 /// Number of iterations taken during data flow analysis.
437 unsigned NumIterations;
439 public:
440 static char ID;
442 StackColoring() : MachineFunctionPass(ID) {
443 initializeStackColoringPass(*PassRegistry::getPassRegistry());
446 void getAnalysisUsage(AnalysisUsage &AU) const override;
447 bool runOnMachineFunction(MachineFunction &Func) override;
449 private:
450 /// Used in collectMarkers
451 using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>;
453 /// Debug.
454 void dump() const;
455 void dumpIntervals() const;
456 void dumpBB(MachineBasicBlock *MBB) const;
457 void dumpBV(const char *tag, const BitVector &BV) const;
459 /// Removes all of the lifetime marker instructions from the function.
460 /// \returns true if any markers were removed.
461 bool removeAllMarkers();
463 /// Scan the machine function and find all of the lifetime markers.
464 /// Record the findings in the BEGIN and END vectors.
465 /// \returns the number of markers found.
466 unsigned collectMarkers(unsigned NumSlot);
468 /// Perform the dataflow calculation and calculate the lifetime for each of
469 /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
470 /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
471 /// in and out blocks.
472 void calculateLocalLiveness();
474 /// Returns TRUE if we're using the first-use-begins-lifetime method for
475 /// this slot (if FALSE, then the start marker is treated as start of lifetime).
476 bool applyFirstUse(int Slot) {
477 if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
478 return false;
479 if (ConservativeSlots.test(Slot))
480 return false;
481 return true;
484 /// Examines the specified instruction and returns TRUE if the instruction
485 /// represents the start or end of an interesting lifetime. The slot or slots
486 /// starting or ending are added to the vector "slots" and "isStart" is set
487 /// accordingly.
488 /// \returns True if inst contains a lifetime start or end
489 bool isLifetimeStartOrEnd(const MachineInstr &MI,
490 SmallVector<int, 4> &slots,
491 bool &isStart);
493 /// Construct the LiveIntervals for the slots.
494 void calculateLiveIntervals(unsigned NumSlots);
496 /// Go over the machine function and change instructions which use stack
497 /// slots to use the joint slots.
498 void remapInstructions(DenseMap<int, int> &SlotRemap);
500 /// The input program may contain instructions which are not inside lifetime
501 /// markers. This can happen due to a bug in the compiler or due to a bug in
502 /// user code (for example, returning a reference to a local variable).
503 /// This procedure checks all of the instructions in the function and
504 /// invalidates lifetime ranges which do not contain all of the instructions
505 /// which access that frame slot.
506 void removeInvalidSlotRanges();
508 /// Map entries which point to other entries to their destination.
509 /// A->B->C becomes A->C.
510 void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
513 } // end anonymous namespace
515 char StackColoring::ID = 0;
517 char &llvm::StackColoringID = StackColoring::ID;
519 INITIALIZE_PASS_BEGIN(StackColoring, DEBUG_TYPE,
520 "Merge disjoint stack slots", false, false)
521 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
522 INITIALIZE_PASS_END(StackColoring, DEBUG_TYPE,
523 "Merge disjoint stack slots", false, false)
525 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
526 AU.addRequired<SlotIndexes>();
527 MachineFunctionPass::getAnalysisUsage(AU);
530 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
531 LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
532 const BitVector &BV) const {
533 dbgs() << tag << " : { ";
534 for (unsigned I = 0, E = BV.size(); I != E; ++I)
535 dbgs() << BV.test(I) << " ";
536 dbgs() << "}\n";
539 LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
540 LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
541 assert(BI != BlockLiveness.end() && "Block not found");
542 const BlockLifetimeInfo &BlockInfo = BI->second;
544 dumpBV("BEGIN", BlockInfo.Begin);
545 dumpBV("END", BlockInfo.End);
546 dumpBV("LIVE_IN", BlockInfo.LiveIn);
547 dumpBV("LIVE_OUT", BlockInfo.LiveOut);
550 LLVM_DUMP_METHOD void StackColoring::dump() const {
551 for (MachineBasicBlock *MBB : depth_first(MF)) {
552 dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
553 << MBB->getName() << "]\n";
554 dumpBB(MBB);
558 LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
559 for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
560 dbgs() << "Interval[" << I << "]:\n";
561 Intervals[I]->dump();
564 #endif
566 static inline int getStartOrEndSlot(const MachineInstr &MI)
568 assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
569 MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
570 "Expected LIFETIME_START or LIFETIME_END op");
571 const MachineOperand &MO = MI.getOperand(0);
572 int Slot = MO.getIndex();
573 if (Slot >= 0)
574 return Slot;
575 return -1;
578 // At the moment the only way to end a variable lifetime is with
579 // a VARIABLE_LIFETIME op (which can't contain a start). If things
580 // change and the IR allows for a single inst that both begins
581 // and ends lifetime(s), this interface will need to be reworked.
582 bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
583 SmallVector<int, 4> &slots,
584 bool &isStart) {
585 if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
586 MI.getOpcode() == TargetOpcode::LIFETIME_END) {
587 int Slot = getStartOrEndSlot(MI);
588 if (Slot < 0)
589 return false;
590 if (!InterestingSlots.test(Slot))
591 return false;
592 slots.push_back(Slot);
593 if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
594 isStart = false;
595 return true;
597 if (!applyFirstUse(Slot)) {
598 isStart = true;
599 return true;
601 } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
602 if (!MI.isDebugInstr()) {
603 bool found = false;
604 for (const MachineOperand &MO : MI.operands()) {
605 if (!MO.isFI())
606 continue;
607 int Slot = MO.getIndex();
608 if (Slot<0)
609 continue;
610 if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
611 slots.push_back(Slot);
612 found = true;
615 if (found) {
616 isStart = true;
617 return true;
621 return false;
624 unsigned StackColoring::collectMarkers(unsigned NumSlot) {
625 unsigned MarkersFound = 0;
626 BlockBitVecMap SeenStartMap;
627 InterestingSlots.clear();
628 InterestingSlots.resize(NumSlot);
629 ConservativeSlots.clear();
630 ConservativeSlots.resize(NumSlot);
632 // number of start and end lifetime ops for each slot
633 SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
634 SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
636 // Step 1: collect markers and populate the "InterestingSlots"
637 // and "ConservativeSlots" sets.
638 for (MachineBasicBlock *MBB : depth_first(MF)) {
639 // Compute the set of slots for which we've seen a START marker but have
640 // not yet seen an END marker at this point in the walk (e.g. on entry
641 // to this bb).
642 BitVector BetweenStartEnd;
643 BetweenStartEnd.resize(NumSlot);
644 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
645 PE = MBB->pred_end(); PI != PE; ++PI) {
646 BlockBitVecMap::const_iterator I = SeenStartMap.find(*PI);
647 if (I != SeenStartMap.end()) {
648 BetweenStartEnd |= I->second;
652 // Walk the instructions in the block to look for start/end ops.
653 for (MachineInstr &MI : *MBB) {
654 if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
655 MI.getOpcode() == TargetOpcode::LIFETIME_END) {
656 int Slot = getStartOrEndSlot(MI);
657 if (Slot < 0)
658 continue;
659 InterestingSlots.set(Slot);
660 if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
661 BetweenStartEnd.set(Slot);
662 NumStartLifetimes[Slot] += 1;
663 } else {
664 BetweenStartEnd.reset(Slot);
665 NumEndLifetimes[Slot] += 1;
667 const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
668 if (Allocation) {
669 LLVM_DEBUG(dbgs() << "Found a lifetime ");
670 LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
671 ? "start"
672 : "end"));
673 LLVM_DEBUG(dbgs() << " marker for slot #" << Slot);
674 LLVM_DEBUG(dbgs()
675 << " with allocation: " << Allocation->getName() << "\n");
677 Markers.push_back(&MI);
678 MarkersFound += 1;
679 } else {
680 for (const MachineOperand &MO : MI.operands()) {
681 if (!MO.isFI())
682 continue;
683 int Slot = MO.getIndex();
684 if (Slot < 0)
685 continue;
686 if (! BetweenStartEnd.test(Slot)) {
687 ConservativeSlots.set(Slot);
692 BitVector &SeenStart = SeenStartMap[MBB];
693 SeenStart |= BetweenStartEnd;
695 if (!MarkersFound) {
696 return 0;
699 // PR27903: slots with multiple start or end lifetime ops are not
700 // safe to enable for "lifetime-start-on-first-use".
701 for (unsigned slot = 0; slot < NumSlot; ++slot)
702 if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1)
703 ConservativeSlots.set(slot);
704 LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots));
706 // Step 2: compute begin/end sets for each block
708 // NOTE: We use a depth-first iteration to ensure that we obtain a
709 // deterministic numbering.
710 for (MachineBasicBlock *MBB : depth_first(MF)) {
711 // Assign a serial number to this basic block.
712 BasicBlocks[MBB] = BasicBlockNumbering.size();
713 BasicBlockNumbering.push_back(MBB);
715 // Keep a reference to avoid repeated lookups.
716 BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
718 BlockInfo.Begin.resize(NumSlot);
719 BlockInfo.End.resize(NumSlot);
721 SmallVector<int, 4> slots;
722 for (MachineInstr &MI : *MBB) {
723 bool isStart = false;
724 slots.clear();
725 if (isLifetimeStartOrEnd(MI, slots, isStart)) {
726 if (!isStart) {
727 assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
728 int Slot = slots[0];
729 if (BlockInfo.Begin.test(Slot)) {
730 BlockInfo.Begin.reset(Slot);
732 BlockInfo.End.set(Slot);
733 } else {
734 for (auto Slot : slots) {
735 LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot);
736 LLVM_DEBUG(dbgs()
737 << " at " << printMBBReference(*MBB) << " index ");
738 LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
739 const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
740 if (Allocation) {
741 LLVM_DEBUG(dbgs()
742 << " with allocation: " << Allocation->getName());
744 LLVM_DEBUG(dbgs() << "\n");
745 if (BlockInfo.End.test(Slot)) {
746 BlockInfo.End.reset(Slot);
748 BlockInfo.Begin.set(Slot);
755 // Update statistics.
756 NumMarkerSeen += MarkersFound;
757 return MarkersFound;
760 void StackColoring::calculateLocalLiveness() {
761 unsigned NumIters = 0;
762 bool changed = true;
763 while (changed) {
764 changed = false;
765 ++NumIters;
767 for (const MachineBasicBlock *BB : BasicBlockNumbering) {
768 // Use an iterator to avoid repeated lookups.
769 LivenessMap::iterator BI = BlockLiveness.find(BB);
770 assert(BI != BlockLiveness.end() && "Block not found");
771 BlockLifetimeInfo &BlockInfo = BI->second;
773 // Compute LiveIn by unioning together the LiveOut sets of all preds.
774 BitVector LocalLiveIn;
775 for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
776 PE = BB->pred_end(); PI != PE; ++PI) {
777 LivenessMap::const_iterator I = BlockLiveness.find(*PI);
778 // PR37130: transformations prior to stack coloring can
779 // sometimes leave behind statically unreachable blocks; these
780 // can be safely skipped here.
781 if (I != BlockLiveness.end())
782 LocalLiveIn |= I->second.LiveOut;
785 // Compute LiveOut by subtracting out lifetimes that end in this
786 // block, then adding in lifetimes that begin in this block. If
787 // we have both BEGIN and END markers in the same basic block
788 // then we know that the BEGIN marker comes after the END,
789 // because we already handle the case where the BEGIN comes
790 // before the END when collecting the markers (and building the
791 // BEGIN/END vectors).
792 BitVector LocalLiveOut = LocalLiveIn;
793 LocalLiveOut.reset(BlockInfo.End);
794 LocalLiveOut |= BlockInfo.Begin;
796 // Update block LiveIn set, noting whether it has changed.
797 if (LocalLiveIn.test(BlockInfo.LiveIn)) {
798 changed = true;
799 BlockInfo.LiveIn |= LocalLiveIn;
802 // Update block LiveOut set, noting whether it has changed.
803 if (LocalLiveOut.test(BlockInfo.LiveOut)) {
804 changed = true;
805 BlockInfo.LiveOut |= LocalLiveOut;
808 } // while changed.
810 NumIterations = NumIters;
813 void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
814 SmallVector<SlotIndex, 16> Starts;
815 SmallVector<bool, 16> DefinitelyInUse;
817 // For each block, find which slots are active within this block
818 // and update the live intervals.
819 for (const MachineBasicBlock &MBB : *MF) {
820 Starts.clear();
821 Starts.resize(NumSlots);
822 DefinitelyInUse.clear();
823 DefinitelyInUse.resize(NumSlots);
825 // Start the interval of the slots that we previously found to be 'in-use'.
826 BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
827 for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
828 pos = MBBLiveness.LiveIn.find_next(pos)) {
829 Starts[pos] = Indexes->getMBBStartIdx(&MBB);
832 // Create the interval for the basic blocks containing lifetime begin/end.
833 for (const MachineInstr &MI : MBB) {
834 SmallVector<int, 4> slots;
835 bool IsStart = false;
836 if (!isLifetimeStartOrEnd(MI, slots, IsStart))
837 continue;
838 SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
839 for (auto Slot : slots) {
840 if (IsStart) {
841 // If a slot is already definitely in use, we don't have to emit
842 // a new start marker because there is already a pre-existing
843 // one.
844 if (!DefinitelyInUse[Slot]) {
845 LiveStarts[Slot].push_back(ThisIndex);
846 DefinitelyInUse[Slot] = true;
848 if (!Starts[Slot].isValid())
849 Starts[Slot] = ThisIndex;
850 } else {
851 if (Starts[Slot].isValid()) {
852 VNInfo *VNI = Intervals[Slot]->getValNumInfo(0);
853 Intervals[Slot]->addSegment(
854 LiveInterval::Segment(Starts[Slot], ThisIndex, VNI));
855 Starts[Slot] = SlotIndex(); // Invalidate the start index
856 DefinitelyInUse[Slot] = false;
862 // Finish up started segments
863 for (unsigned i = 0; i < NumSlots; ++i) {
864 if (!Starts[i].isValid())
865 continue;
867 SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB);
868 VNInfo *VNI = Intervals[i]->getValNumInfo(0);
869 Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI));
874 bool StackColoring::removeAllMarkers() {
875 unsigned Count = 0;
876 for (MachineInstr *MI : Markers) {
877 MI->eraseFromParent();
878 Count++;
880 Markers.clear();
882 LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n");
883 return Count;
886 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
887 unsigned FixedInstr = 0;
888 unsigned FixedMemOp = 0;
889 unsigned FixedDbg = 0;
891 // Remap debug information that refers to stack slots.
892 for (auto &VI : MF->getVariableDbgInfo()) {
893 if (!VI.Var)
894 continue;
895 if (SlotRemap.count(VI.Slot)) {
896 LLVM_DEBUG(dbgs() << "Remapping debug info for ["
897 << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
898 VI.Slot = SlotRemap[VI.Slot];
899 FixedDbg++;
903 // Keep a list of *allocas* which need to be remapped.
904 DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
906 // Keep a list of allocas which has been affected by the remap.
907 SmallPtrSet<const AllocaInst*, 32> MergedAllocas;
909 for (const std::pair<int, int> &SI : SlotRemap) {
910 const AllocaInst *From = MFI->getObjectAllocation(SI.first);
911 const AllocaInst *To = MFI->getObjectAllocation(SI.second);
912 assert(To && From && "Invalid allocation object");
913 Allocas[From] = To;
915 // AA might be used later for instruction scheduling, and we need it to be
916 // able to deduce the correct aliasing releationships between pointers
917 // derived from the alloca being remapped and the target of that remapping.
918 // The only safe way, without directly informing AA about the remapping
919 // somehow, is to directly update the IR to reflect the change being made
920 // here.
921 Instruction *Inst = const_cast<AllocaInst *>(To);
922 if (From->getType() != To->getType()) {
923 BitCastInst *Cast = new BitCastInst(Inst, From->getType());
924 Cast->insertAfter(Inst);
925 Inst = Cast;
928 // We keep both slots to maintain AliasAnalysis metadata later.
929 MergedAllocas.insert(From);
930 MergedAllocas.insert(To);
932 // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf
933 // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure
934 // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
935 MachineFrameInfo::SSPLayoutKind FromKind
936 = MFI->getObjectSSPLayout(SI.first);
937 MachineFrameInfo::SSPLayoutKind ToKind = MFI->getObjectSSPLayout(SI.second);
938 if (FromKind != MachineFrameInfo::SSPLK_None &&
939 (ToKind == MachineFrameInfo::SSPLK_None ||
940 (ToKind != MachineFrameInfo::SSPLK_LargeArray &&
941 FromKind != MachineFrameInfo::SSPLK_AddrOf)))
942 MFI->setObjectSSPLayout(SI.second, FromKind);
944 // The new alloca might not be valid in a llvm.dbg.declare for this
945 // variable, so undef out the use to make the verifier happy.
946 AllocaInst *FromAI = const_cast<AllocaInst *>(From);
947 if (FromAI->isUsedByMetadata())
948 ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
949 for (auto &Use : FromAI->uses()) {
950 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
951 if (BCI->isUsedByMetadata())
952 ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
955 // Note that this will not replace uses in MMOs (which we'll update below),
956 // or anywhere else (which is why we won't delete the original
957 // instruction).
958 FromAI->replaceAllUsesWith(Inst);
961 // Remap all instructions to the new stack slots.
962 for (MachineBasicBlock &BB : *MF)
963 for (MachineInstr &I : BB) {
964 // Skip lifetime markers. We'll remove them soon.
965 if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
966 I.getOpcode() == TargetOpcode::LIFETIME_END)
967 continue;
969 // Update the MachineMemOperand to use the new alloca.
970 for (MachineMemOperand *MMO : I.memoperands()) {
971 // We've replaced IR-level uses of the remapped allocas, so we only
972 // need to replace direct uses here.
973 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
974 if (!AI)
975 continue;
977 if (!Allocas.count(AI))
978 continue;
980 MMO->setValue(Allocas[AI]);
981 FixedMemOp++;
984 // Update all of the machine instruction operands.
985 for (MachineOperand &MO : I.operands()) {
986 if (!MO.isFI())
987 continue;
988 int FromSlot = MO.getIndex();
990 // Don't touch arguments.
991 if (FromSlot<0)
992 continue;
994 // Only look at mapped slots.
995 if (!SlotRemap.count(FromSlot))
996 continue;
998 // In a debug build, check that the instruction that we are modifying is
999 // inside the expected live range. If the instruction is not inside
1000 // the calculated range then it means that the alloca usage moved
1001 // outside of the lifetime markers, or that the user has a bug.
1002 // NOTE: Alloca address calculations which happen outside the lifetime
1003 // zone are okay, despite the fact that we don't have a good way
1004 // for validating all of the usages of the calculation.
1005 #ifndef NDEBUG
1006 bool TouchesMemory = I.mayLoad() || I.mayStore();
1007 // If we *don't* protect the user from escaped allocas, don't bother
1008 // validating the instructions.
1009 if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) {
1010 SlotIndex Index = Indexes->getInstructionIndex(I);
1011 const LiveInterval *Interval = &*Intervals[FromSlot];
1012 assert(Interval->find(Index) != Interval->end() &&
1013 "Found instruction usage outside of live range.");
1015 #endif
1017 // Fix the machine instructions.
1018 int ToSlot = SlotRemap[FromSlot];
1019 MO.setIndex(ToSlot);
1020 FixedInstr++;
1023 // We adjust AliasAnalysis information for merged stack slots.
1024 SmallVector<MachineMemOperand *, 2> NewMMOs;
1025 bool ReplaceMemOps = false;
1026 for (MachineMemOperand *MMO : I.memoperands()) {
1027 // If this memory location can be a slot remapped here,
1028 // we remove AA information.
1029 bool MayHaveConflictingAAMD = false;
1030 if (MMO->getAAInfo()) {
1031 if (const Value *MMOV = MMO->getValue()) {
1032 SmallVector<Value *, 4> Objs;
1033 getUnderlyingObjectsForCodeGen(MMOV, Objs, MF->getDataLayout());
1035 if (Objs.empty())
1036 MayHaveConflictingAAMD = true;
1037 else
1038 for (Value *V : Objs) {
1039 // If this memory location comes from a known stack slot
1040 // that is not remapped, we continue checking.
1041 // Otherwise, we need to invalidate AA infomation.
1042 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V);
1043 if (AI && MergedAllocas.count(AI)) {
1044 MayHaveConflictingAAMD = true;
1045 break;
1050 if (MayHaveConflictingAAMD) {
1051 NewMMOs.push_back(MF->getMachineMemOperand(MMO, AAMDNodes()));
1052 ReplaceMemOps = true;
1053 } else {
1054 NewMMOs.push_back(MMO);
1058 // If any memory operand is updated, set memory references of
1059 // this instruction.
1060 if (ReplaceMemOps)
1061 I.setMemRefs(*MF, NewMMOs);
1064 // Update the location of C++ catch objects for the MSVC personality routine.
1065 if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
1066 for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
1067 for (WinEHHandlerType &H : TBME.HandlerArray)
1068 if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
1069 SlotRemap.count(H.CatchObj.FrameIndex))
1070 H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
1072 LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n");
1073 LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n");
1074 LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n");
1077 void StackColoring::removeInvalidSlotRanges() {
1078 for (MachineBasicBlock &BB : *MF)
1079 for (MachineInstr &I : BB) {
1080 if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
1081 I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr())
1082 continue;
1084 // Some intervals are suspicious! In some cases we find address
1085 // calculations outside of the lifetime zone, but not actual memory
1086 // read or write. Memory accesses outside of the lifetime zone are a clear
1087 // violation, but address calculations are okay. This can happen when
1088 // GEPs are hoisted outside of the lifetime zone.
1089 // So, in here we only check instructions which can read or write memory.
1090 if (!I.mayLoad() && !I.mayStore())
1091 continue;
1093 // Check all of the machine operands.
1094 for (const MachineOperand &MO : I.operands()) {
1095 if (!MO.isFI())
1096 continue;
1098 int Slot = MO.getIndex();
1100 if (Slot<0)
1101 continue;
1103 if (Intervals[Slot]->empty())
1104 continue;
1106 // Check that the used slot is inside the calculated lifetime range.
1107 // If it is not, warn about it and invalidate the range.
1108 LiveInterval *Interval = &*Intervals[Slot];
1109 SlotIndex Index = Indexes->getInstructionIndex(I);
1110 if (Interval->find(Index) == Interval->end()) {
1111 Interval->clear();
1112 LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n");
1113 EscapedAllocas++;
1119 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
1120 unsigned NumSlots) {
1121 // Expunge slot remap map.
1122 for (unsigned i=0; i < NumSlots; ++i) {
1123 // If we are remapping i
1124 if (SlotRemap.count(i)) {
1125 int Target = SlotRemap[i];
1126 // As long as our target is mapped to something else, follow it.
1127 while (SlotRemap.count(Target)) {
1128 Target = SlotRemap[Target];
1129 SlotRemap[i] = Target;
1135 bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
1136 LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n"
1137 << "********** Function: " << Func.getName() << '\n');
1138 MF = &Func;
1139 MFI = &MF->getFrameInfo();
1140 Indexes = &getAnalysis<SlotIndexes>();
1141 BlockLiveness.clear();
1142 BasicBlocks.clear();
1143 BasicBlockNumbering.clear();
1144 Markers.clear();
1145 Intervals.clear();
1146 LiveStarts.clear();
1147 VNInfoAllocator.Reset();
1149 unsigned NumSlots = MFI->getObjectIndexEnd();
1151 // If there are no stack slots then there are no markers to remove.
1152 if (!NumSlots)
1153 return false;
1155 SmallVector<int, 8> SortedSlots;
1156 SortedSlots.reserve(NumSlots);
1157 Intervals.reserve(NumSlots);
1158 LiveStarts.resize(NumSlots);
1160 unsigned NumMarkers = collectMarkers(NumSlots);
1162 unsigned TotalSize = 0;
1163 LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots
1164 << " slots\n");
1165 LLVM_DEBUG(dbgs() << "Slot structure:\n");
1167 for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
1168 LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i)
1169 << " bytes.\n");
1170 TotalSize += MFI->getObjectSize(i);
1173 LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n");
1175 // Don't continue because there are not enough lifetime markers, or the
1176 // stack is too small, or we are told not to optimize the slots.
1177 if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
1178 skipFunction(Func.getFunction())) {
1179 LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n");
1180 return removeAllMarkers();
1183 for (unsigned i=0; i < NumSlots; ++i) {
1184 std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
1185 LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
1186 Intervals.push_back(std::move(LI));
1187 SortedSlots.push_back(i);
1190 // Calculate the liveness of each block.
1191 calculateLocalLiveness();
1192 LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
1193 LLVM_DEBUG(dump());
1195 // Propagate the liveness information.
1196 calculateLiveIntervals(NumSlots);
1197 LLVM_DEBUG(dumpIntervals());
1199 // Search for allocas which are used outside of the declared lifetime
1200 // markers.
1201 if (ProtectFromEscapedAllocas)
1202 removeInvalidSlotRanges();
1204 // Maps old slots to new slots.
1205 DenseMap<int, int> SlotRemap;
1206 unsigned RemovedSlots = 0;
1207 unsigned ReducedSize = 0;
1209 // Do not bother looking at empty intervals.
1210 for (unsigned I = 0; I < NumSlots; ++I) {
1211 if (Intervals[SortedSlots[I]]->empty())
1212 SortedSlots[I] = -1;
1215 // This is a simple greedy algorithm for merging allocas. First, sort the
1216 // slots, placing the largest slots first. Next, perform an n^2 scan and look
1217 // for disjoint slots. When you find disjoint slots, merge the samller one
1218 // into the bigger one and update the live interval. Remove the small alloca
1219 // and continue.
1221 // Sort the slots according to their size. Place unused slots at the end.
1222 // Use stable sort to guarantee deterministic code generation.
1223 llvm::stable_sort(SortedSlots, [this](int LHS, int RHS) {
1224 // We use -1 to denote a uninteresting slot. Place these slots at the end.
1225 if (LHS == -1)
1226 return false;
1227 if (RHS == -1)
1228 return true;
1229 // Sort according to size.
1230 return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
1233 for (auto &s : LiveStarts)
1234 llvm::sort(s);
1236 bool Changed = true;
1237 while (Changed) {
1238 Changed = false;
1239 for (unsigned I = 0; I < NumSlots; ++I) {
1240 if (SortedSlots[I] == -1)
1241 continue;
1243 for (unsigned J=I+1; J < NumSlots; ++J) {
1244 if (SortedSlots[J] == -1)
1245 continue;
1247 int FirstSlot = SortedSlots[I];
1248 int SecondSlot = SortedSlots[J];
1249 LiveInterval *First = &*Intervals[FirstSlot];
1250 LiveInterval *Second = &*Intervals[SecondSlot];
1251 auto &FirstS = LiveStarts[FirstSlot];
1252 auto &SecondS = LiveStarts[SecondSlot];
1253 assert(!First->empty() && !Second->empty() && "Found an empty range");
1255 // Merge disjoint slots. This is a little bit tricky - see the
1256 // Implementation Notes section for an explanation.
1257 if (!First->isLiveAtIndexes(SecondS) &&
1258 !Second->isLiveAtIndexes(FirstS)) {
1259 Changed = true;
1260 First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
1262 int OldSize = FirstS.size();
1263 FirstS.append(SecondS.begin(), SecondS.end());
1264 auto Mid = FirstS.begin() + OldSize;
1265 std::inplace_merge(FirstS.begin(), Mid, FirstS.end());
1267 SlotRemap[SecondSlot] = FirstSlot;
1268 SortedSlots[J] = -1;
1269 LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #"
1270 << SecondSlot << " together.\n");
1271 unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
1272 MFI->getObjectAlignment(SecondSlot));
1274 assert(MFI->getObjectSize(FirstSlot) >=
1275 MFI->getObjectSize(SecondSlot) &&
1276 "Merging a small object into a larger one");
1278 RemovedSlots+=1;
1279 ReducedSize += MFI->getObjectSize(SecondSlot);
1280 MFI->setObjectAlignment(FirstSlot, MaxAlignment);
1281 MFI->RemoveStackObject(SecondSlot);
1285 }// While changed.
1287 // Record statistics.
1288 StackSpaceSaved += ReducedSize;
1289 StackSlotMerged += RemovedSlots;
1290 LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved "
1291 << ReducedSize << " bytes\n");
1293 // Scan the entire function and update all machine operands that use frame
1294 // indices to use the remapped frame index.
1295 expungeSlotMap(SlotRemap, NumSlots);
1296 remapInstructions(SlotRemap);
1298 return removeAllMarkers();