[MIParser] Set RegClassOrRegBank during instruction parsing
[llvm-complete.git] / lib / Support / FoldingSet.cpp
blobce6f196e1060f7d857d5466034997293e66244c4
1 //===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a hash set that can be used to remove duplication of
10 // nodes in a graph.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/FoldingSet.h"
15 #include "llvm/ADT/Hashing.h"
16 #include "llvm/Support/Allocator.h"
17 #include "llvm/Support/ErrorHandling.h"
18 #include "llvm/Support/Host.h"
19 #include "llvm/Support/MathExtras.h"
20 #include <cassert>
21 #include <cstring>
22 using namespace llvm;
24 //===----------------------------------------------------------------------===//
25 // FoldingSetNodeIDRef Implementation
27 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
28 /// used to lookup the node in the FoldingSetBase.
29 unsigned FoldingSetNodeIDRef::ComputeHash() const {
30 return static_cast<unsigned>(hash_combine_range(Data, Data+Size));
33 bool FoldingSetNodeIDRef::operator==(FoldingSetNodeIDRef RHS) const {
34 if (Size != RHS.Size) return false;
35 return memcmp(Data, RHS.Data, Size*sizeof(*Data)) == 0;
38 /// Used to compare the "ordering" of two nodes as defined by the
39 /// profiled bits and their ordering defined by memcmp().
40 bool FoldingSetNodeIDRef::operator<(FoldingSetNodeIDRef RHS) const {
41 if (Size != RHS.Size)
42 return Size < RHS.Size;
43 return memcmp(Data, RHS.Data, Size*sizeof(*Data)) < 0;
46 //===----------------------------------------------------------------------===//
47 // FoldingSetNodeID Implementation
49 /// Add* - Add various data types to Bit data.
50 ///
51 void FoldingSetNodeID::AddPointer(const void *Ptr) {
52 // Note: this adds pointers to the hash using sizes and endianness that
53 // depend on the host. It doesn't matter, however, because hashing on
54 // pointer values is inherently unstable. Nothing should depend on the
55 // ordering of nodes in the folding set.
56 static_assert(sizeof(uintptr_t) <= sizeof(unsigned long long),
57 "unexpected pointer size");
58 AddInteger(reinterpret_cast<uintptr_t>(Ptr));
60 void FoldingSetNodeID::AddInteger(signed I) {
61 Bits.push_back(I);
63 void FoldingSetNodeID::AddInteger(unsigned I) {
64 Bits.push_back(I);
66 void FoldingSetNodeID::AddInteger(long I) {
67 AddInteger((unsigned long)I);
69 void FoldingSetNodeID::AddInteger(unsigned long I) {
70 if (sizeof(long) == sizeof(int))
71 AddInteger(unsigned(I));
72 else if (sizeof(long) == sizeof(long long)) {
73 AddInteger((unsigned long long)I);
74 } else {
75 llvm_unreachable("unexpected sizeof(long)");
78 void FoldingSetNodeID::AddInteger(long long I) {
79 AddInteger((unsigned long long)I);
81 void FoldingSetNodeID::AddInteger(unsigned long long I) {
82 AddInteger(unsigned(I));
83 AddInteger(unsigned(I >> 32));
86 void FoldingSetNodeID::AddString(StringRef String) {
87 unsigned Size = String.size();
88 Bits.push_back(Size);
89 if (!Size) return;
91 unsigned Units = Size / 4;
92 unsigned Pos = 0;
93 const unsigned *Base = (const unsigned*) String.data();
95 // If the string is aligned do a bulk transfer.
96 if (!((intptr_t)Base & 3)) {
97 Bits.append(Base, Base + Units);
98 Pos = (Units + 1) * 4;
99 } else {
100 // Otherwise do it the hard way.
101 // To be compatible with above bulk transfer, we need to take endianness
102 // into account.
103 static_assert(sys::IsBigEndianHost || sys::IsLittleEndianHost,
104 "Unexpected host endianness");
105 if (sys::IsBigEndianHost) {
106 for (Pos += 4; Pos <= Size; Pos += 4) {
107 unsigned V = ((unsigned char)String[Pos - 4] << 24) |
108 ((unsigned char)String[Pos - 3] << 16) |
109 ((unsigned char)String[Pos - 2] << 8) |
110 (unsigned char)String[Pos - 1];
111 Bits.push_back(V);
113 } else { // Little-endian host
114 for (Pos += 4; Pos <= Size; Pos += 4) {
115 unsigned V = ((unsigned char)String[Pos - 1] << 24) |
116 ((unsigned char)String[Pos - 2] << 16) |
117 ((unsigned char)String[Pos - 3] << 8) |
118 (unsigned char)String[Pos - 4];
119 Bits.push_back(V);
124 // With the leftover bits.
125 unsigned V = 0;
126 // Pos will have overshot size by 4 - #bytes left over.
127 // No need to take endianness into account here - this is always executed.
128 switch (Pos - Size) {
129 case 1: V = (V << 8) | (unsigned char)String[Size - 3]; LLVM_FALLTHROUGH;
130 case 2: V = (V << 8) | (unsigned char)String[Size - 2]; LLVM_FALLTHROUGH;
131 case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break;
132 default: return; // Nothing left.
135 Bits.push_back(V);
138 // AddNodeID - Adds the Bit data of another ID to *this.
139 void FoldingSetNodeID::AddNodeID(const FoldingSetNodeID &ID) {
140 Bits.append(ID.Bits.begin(), ID.Bits.end());
143 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to
144 /// lookup the node in the FoldingSetBase.
145 unsigned FoldingSetNodeID::ComputeHash() const {
146 return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash();
149 /// operator== - Used to compare two nodes to each other.
151 bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS) const {
152 return *this == FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
155 /// operator== - Used to compare two nodes to each other.
157 bool FoldingSetNodeID::operator==(FoldingSetNodeIDRef RHS) const {
158 return FoldingSetNodeIDRef(Bits.data(), Bits.size()) == RHS;
161 /// Used to compare the "ordering" of two nodes as defined by the
162 /// profiled bits and their ordering defined by memcmp().
163 bool FoldingSetNodeID::operator<(const FoldingSetNodeID &RHS) const {
164 return *this < FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
167 bool FoldingSetNodeID::operator<(FoldingSetNodeIDRef RHS) const {
168 return FoldingSetNodeIDRef(Bits.data(), Bits.size()) < RHS;
171 /// Intern - Copy this node's data to a memory region allocated from the
172 /// given allocator and return a FoldingSetNodeIDRef describing the
173 /// interned data.
174 FoldingSetNodeIDRef
175 FoldingSetNodeID::Intern(BumpPtrAllocator &Allocator) const {
176 unsigned *New = Allocator.Allocate<unsigned>(Bits.size());
177 std::uninitialized_copy(Bits.begin(), Bits.end(), New);
178 return FoldingSetNodeIDRef(New, Bits.size());
181 //===----------------------------------------------------------------------===//
182 /// Helper functions for FoldingSetBase.
184 /// GetNextPtr - In order to save space, each bucket is a
185 /// singly-linked-list. In order to make deletion more efficient, we make
186 /// the list circular, so we can delete a node without computing its hash.
187 /// The problem with this is that the start of the hash buckets are not
188 /// Nodes. If NextInBucketPtr is a bucket pointer, this method returns null:
189 /// use GetBucketPtr when this happens.
190 static FoldingSetBase::Node *GetNextPtr(void *NextInBucketPtr) {
191 // The low bit is set if this is the pointer back to the bucket.
192 if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1)
193 return nullptr;
195 return static_cast<FoldingSetBase::Node*>(NextInBucketPtr);
199 /// testing.
200 static void **GetBucketPtr(void *NextInBucketPtr) {
201 intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr);
202 assert((Ptr & 1) && "Not a bucket pointer");
203 return reinterpret_cast<void**>(Ptr & ~intptr_t(1));
206 /// GetBucketFor - Hash the specified node ID and return the hash bucket for
207 /// the specified ID.
208 static void **GetBucketFor(unsigned Hash, void **Buckets, unsigned NumBuckets) {
209 // NumBuckets is always a power of 2.
210 unsigned BucketNum = Hash & (NumBuckets-1);
211 return Buckets + BucketNum;
214 /// AllocateBuckets - Allocated initialized bucket memory.
215 static void **AllocateBuckets(unsigned NumBuckets) {
216 void **Buckets = static_cast<void**>(safe_calloc(NumBuckets + 1,
217 sizeof(void*)));
218 // Set the very last bucket to be a non-null "pointer".
219 Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
220 return Buckets;
223 //===----------------------------------------------------------------------===//
224 // FoldingSetBase Implementation
226 void FoldingSetBase::anchor() {}
228 FoldingSetBase::FoldingSetBase(unsigned Log2InitSize) {
229 assert(5 < Log2InitSize && Log2InitSize < 32 &&
230 "Initial hash table size out of range");
231 NumBuckets = 1 << Log2InitSize;
232 Buckets = AllocateBuckets(NumBuckets);
233 NumNodes = 0;
236 FoldingSetBase::FoldingSetBase(FoldingSetBase &&Arg)
237 : Buckets(Arg.Buckets), NumBuckets(Arg.NumBuckets), NumNodes(Arg.NumNodes) {
238 Arg.Buckets = nullptr;
239 Arg.NumBuckets = 0;
240 Arg.NumNodes = 0;
243 FoldingSetBase &FoldingSetBase::operator=(FoldingSetBase &&RHS) {
244 free(Buckets); // This may be null if the set is in a moved-from state.
245 Buckets = RHS.Buckets;
246 NumBuckets = RHS.NumBuckets;
247 NumNodes = RHS.NumNodes;
248 RHS.Buckets = nullptr;
249 RHS.NumBuckets = 0;
250 RHS.NumNodes = 0;
251 return *this;
254 FoldingSetBase::~FoldingSetBase() {
255 free(Buckets);
258 void FoldingSetBase::clear() {
259 // Set all but the last bucket to null pointers.
260 memset(Buckets, 0, NumBuckets*sizeof(void*));
262 // Set the very last bucket to be a non-null "pointer".
263 Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
265 // Reset the node count to zero.
266 NumNodes = 0;
269 void FoldingSetBase::GrowBucketCount(unsigned NewBucketCount) {
270 assert((NewBucketCount > NumBuckets) && "Can't shrink a folding set with GrowBucketCount");
271 assert(isPowerOf2_32(NewBucketCount) && "Bad bucket count!");
272 void **OldBuckets = Buckets;
273 unsigned OldNumBuckets = NumBuckets;
275 // Clear out new buckets.
276 Buckets = AllocateBuckets(NewBucketCount);
277 // Set NumBuckets only if allocation of new buckets was successful.
278 NumBuckets = NewBucketCount;
279 NumNodes = 0;
281 // Walk the old buckets, rehashing nodes into their new place.
282 FoldingSetNodeID TempID;
283 for (unsigned i = 0; i != OldNumBuckets; ++i) {
284 void *Probe = OldBuckets[i];
285 if (!Probe) continue;
286 while (Node *NodeInBucket = GetNextPtr(Probe)) {
287 // Figure out the next link, remove NodeInBucket from the old link.
288 Probe = NodeInBucket->getNextInBucket();
289 NodeInBucket->SetNextInBucket(nullptr);
291 // Insert the node into the new bucket, after recomputing the hash.
292 InsertNode(NodeInBucket,
293 GetBucketFor(ComputeNodeHash(NodeInBucket, TempID),
294 Buckets, NumBuckets));
295 TempID.clear();
299 free(OldBuckets);
302 /// GrowHashTable - Double the size of the hash table and rehash everything.
304 void FoldingSetBase::GrowHashTable() {
305 GrowBucketCount(NumBuckets * 2);
308 void FoldingSetBase::reserve(unsigned EltCount) {
309 // This will give us somewhere between EltCount / 2 and
310 // EltCount buckets. This puts us in the load factor
311 // range of 1.0 - 2.0.
312 if(EltCount < capacity())
313 return;
314 GrowBucketCount(PowerOf2Floor(EltCount));
317 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
318 /// return it. If not, return the insertion token that will make insertion
319 /// faster.
320 FoldingSetBase::Node *
321 FoldingSetBase::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
322 void *&InsertPos) {
323 unsigned IDHash = ID.ComputeHash();
324 void **Bucket = GetBucketFor(IDHash, Buckets, NumBuckets);
325 void *Probe = *Bucket;
327 InsertPos = nullptr;
329 FoldingSetNodeID TempID;
330 while (Node *NodeInBucket = GetNextPtr(Probe)) {
331 if (NodeEquals(NodeInBucket, ID, IDHash, TempID))
332 return NodeInBucket;
333 TempID.clear();
335 Probe = NodeInBucket->getNextInBucket();
338 // Didn't find the node, return null with the bucket as the InsertPos.
339 InsertPos = Bucket;
340 return nullptr;
343 /// InsertNode - Insert the specified node into the folding set, knowing that it
344 /// is not already in the map. InsertPos must be obtained from
345 /// FindNodeOrInsertPos.
346 void FoldingSetBase::InsertNode(Node *N, void *InsertPos) {
347 assert(!N->getNextInBucket());
348 // Do we need to grow the hashtable?
349 if (NumNodes+1 > capacity()) {
350 GrowHashTable();
351 FoldingSetNodeID TempID;
352 InsertPos = GetBucketFor(ComputeNodeHash(N, TempID), Buckets, NumBuckets);
355 ++NumNodes;
357 /// The insert position is actually a bucket pointer.
358 void **Bucket = static_cast<void**>(InsertPos);
360 void *Next = *Bucket;
362 // If this is the first insertion into this bucket, its next pointer will be
363 // null. Pretend as if it pointed to itself, setting the low bit to indicate
364 // that it is a pointer to the bucket.
365 if (!Next)
366 Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1);
368 // Set the node's next pointer, and make the bucket point to the node.
369 N->SetNextInBucket(Next);
370 *Bucket = N;
373 /// RemoveNode - Remove a node from the folding set, returning true if one was
374 /// removed or false if the node was not in the folding set.
375 bool FoldingSetBase::RemoveNode(Node *N) {
376 // Because each bucket is a circular list, we don't need to compute N's hash
377 // to remove it.
378 void *Ptr = N->getNextInBucket();
379 if (!Ptr) return false; // Not in folding set.
381 --NumNodes;
382 N->SetNextInBucket(nullptr);
384 // Remember what N originally pointed to, either a bucket or another node.
385 void *NodeNextPtr = Ptr;
387 // Chase around the list until we find the node (or bucket) which points to N.
388 while (true) {
389 if (Node *NodeInBucket = GetNextPtr(Ptr)) {
390 // Advance pointer.
391 Ptr = NodeInBucket->getNextInBucket();
393 // We found a node that points to N, change it to point to N's next node,
394 // removing N from the list.
395 if (Ptr == N) {
396 NodeInBucket->SetNextInBucket(NodeNextPtr);
397 return true;
399 } else {
400 void **Bucket = GetBucketPtr(Ptr);
401 Ptr = *Bucket;
403 // If we found that the bucket points to N, update the bucket to point to
404 // whatever is next.
405 if (Ptr == N) {
406 *Bucket = NodeNextPtr;
407 return true;
413 /// GetOrInsertNode - If there is an existing simple Node exactly
414 /// equal to the specified node, return it. Otherwise, insert 'N' and it
415 /// instead.
416 FoldingSetBase::Node *FoldingSetBase::GetOrInsertNode(FoldingSetBase::Node *N) {
417 FoldingSetNodeID ID;
418 GetNodeProfile(N, ID);
419 void *IP;
420 if (Node *E = FindNodeOrInsertPos(ID, IP))
421 return E;
422 InsertNode(N, IP);
423 return N;
426 //===----------------------------------------------------------------------===//
427 // FoldingSetIteratorImpl Implementation
429 FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) {
430 // Skip to the first non-null non-self-cycle bucket.
431 while (*Bucket != reinterpret_cast<void*>(-1) &&
432 (!*Bucket || !GetNextPtr(*Bucket)))
433 ++Bucket;
435 NodePtr = static_cast<FoldingSetNode*>(*Bucket);
438 void FoldingSetIteratorImpl::advance() {
439 // If there is another link within this bucket, go to it.
440 void *Probe = NodePtr->getNextInBucket();
442 if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe))
443 NodePtr = NextNodeInBucket;
444 else {
445 // Otherwise, this is the last link in this bucket.
446 void **Bucket = GetBucketPtr(Probe);
448 // Skip to the next non-null non-self-cycle bucket.
449 do {
450 ++Bucket;
451 } while (*Bucket != reinterpret_cast<void*>(-1) &&
452 (!*Bucket || !GetNextPtr(*Bucket)));
454 NodePtr = static_cast<FoldingSetNode*>(*Bucket);
458 //===----------------------------------------------------------------------===//
459 // FoldingSetBucketIteratorImpl Implementation
461 FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) {
462 Ptr = (!*Bucket || !GetNextPtr(*Bucket)) ? (void*) Bucket : *Bucket;