[MIParser] Set RegClassOrRegBank during instruction parsing
[llvm-complete.git] / tools / llvm-exegesis / lib / Latency.cpp
blob45a0e7e362dbbad9cc4fefb21e82e5d257661dda
1 //===-- Latency.cpp ---------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "Latency.h"
11 #include "Assembler.h"
12 #include "BenchmarkRunner.h"
13 #include "MCInstrDescView.h"
14 #include "PerfHelper.h"
15 #include "Target.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/MC/MCInst.h"
18 #include "llvm/MC/MCInstBuilder.h"
19 #include "llvm/Support/FormatVariadic.h"
21 namespace llvm {
22 namespace exegesis {
24 struct ExecutionClass {
25 ExecutionMode Mask;
26 const char *Description;
27 } static const kExecutionClasses[] = {
28 {ExecutionMode::ALWAYS_SERIAL_IMPLICIT_REGS_ALIAS |
29 ExecutionMode::ALWAYS_SERIAL_TIED_REGS_ALIAS,
30 "Repeating a single implicitly serial instruction"},
31 {ExecutionMode::SERIAL_VIA_EXPLICIT_REGS,
32 "Repeating a single explicitly serial instruction"},
33 {ExecutionMode::SERIAL_VIA_MEMORY_INSTR |
34 ExecutionMode::SERIAL_VIA_NON_MEMORY_INSTR,
35 "Repeating two instructions"},
38 static constexpr size_t kMaxAliasingInstructions = 10;
40 static std::vector<Instruction>
41 computeAliasingInstructions(const LLVMState &State, const Instruction &Instr,
42 size_t MaxAliasingInstructions,
43 const BitVector &ForbiddenRegisters) {
44 // Randomly iterate the set of instructions.
45 std::vector<unsigned> Opcodes;
46 Opcodes.resize(State.getInstrInfo().getNumOpcodes());
47 std::iota(Opcodes.begin(), Opcodes.end(), 0U);
48 std::shuffle(Opcodes.begin(), Opcodes.end(), randomGenerator());
50 std::vector<Instruction> AliasingInstructions;
51 for (const unsigned OtherOpcode : Opcodes) {
52 if (OtherOpcode == Instr.Description->getOpcode())
53 continue;
54 const Instruction &OtherInstr = State.getIC().getInstr(OtherOpcode);
55 if (OtherInstr.hasMemoryOperands())
56 continue;
57 if (Instr.hasAliasingRegistersThrough(OtherInstr, ForbiddenRegisters))
58 AliasingInstructions.push_back(OtherInstr);
59 if (AliasingInstructions.size() >= MaxAliasingInstructions)
60 break;
62 return AliasingInstructions;
65 static ExecutionMode getExecutionModes(const Instruction &Instr,
66 const BitVector &ForbiddenRegisters) {
67 ExecutionMode EM = ExecutionMode::UNKNOWN;
68 if (Instr.hasAliasingImplicitRegisters())
69 EM |= ExecutionMode::ALWAYS_SERIAL_IMPLICIT_REGS_ALIAS;
70 if (Instr.hasTiedRegisters())
71 EM |= ExecutionMode::ALWAYS_SERIAL_TIED_REGS_ALIAS;
72 if (Instr.hasMemoryOperands())
73 EM |= ExecutionMode::SERIAL_VIA_MEMORY_INSTR;
74 else {
75 if (Instr.hasAliasingRegisters(ForbiddenRegisters))
76 EM |= ExecutionMode::SERIAL_VIA_EXPLICIT_REGS;
77 if (Instr.hasOneUseOrOneDef())
78 EM |= ExecutionMode::SERIAL_VIA_NON_MEMORY_INSTR;
80 return EM;
83 static void appendCodeTemplates(const LLVMState &State,
84 const Instruction &Instr,
85 const BitVector &ForbiddenRegisters,
86 ExecutionMode ExecutionModeBit,
87 StringRef ExecutionClassDescription,
88 std::vector<CodeTemplate> &CodeTemplates) {
89 assert(isEnumValue(ExecutionModeBit) && "Bit must be a power of two");
90 switch (ExecutionModeBit) {
91 case ExecutionMode::ALWAYS_SERIAL_IMPLICIT_REGS_ALIAS:
92 // Nothing to do, the instruction is always serial.
93 LLVM_FALLTHROUGH;
94 case ExecutionMode::ALWAYS_SERIAL_TIED_REGS_ALIAS: {
95 // Picking whatever value for the tied variable will make the instruction
96 // serial.
97 CodeTemplate CT;
98 CT.Execution = ExecutionModeBit;
99 CT.Info = ExecutionClassDescription;
100 CT.Instructions.push_back(Instr);
101 CodeTemplates.push_back(std::move(CT));
102 return;
104 case ExecutionMode::SERIAL_VIA_MEMORY_INSTR: {
105 // Select back-to-back memory instruction.
106 // TODO: Implement me.
107 return;
109 case ExecutionMode::SERIAL_VIA_EXPLICIT_REGS: {
110 // Making the execution of this instruction serial by selecting one def
111 // register to alias with one use register.
112 const AliasingConfigurations SelfAliasing(Instr, Instr);
113 assert(!SelfAliasing.empty() && !SelfAliasing.hasImplicitAliasing() &&
114 "Instr must alias itself explicitly");
115 InstructionTemplate IT(Instr);
116 // This is a self aliasing instruction so defs and uses are from the same
117 // instance, hence twice IT in the following call.
118 setRandomAliasing(SelfAliasing, IT, IT);
119 CodeTemplate CT;
120 CT.Execution = ExecutionModeBit;
121 CT.Info = ExecutionClassDescription;
122 CT.Instructions.push_back(std::move(IT));
123 CodeTemplates.push_back(std::move(CT));
124 return;
126 case ExecutionMode::SERIAL_VIA_NON_MEMORY_INSTR: {
127 // Select back-to-back non-memory instruction.
128 for (const auto OtherInstr : computeAliasingInstructions(
129 State, Instr, kMaxAliasingInstructions, ForbiddenRegisters)) {
130 const AliasingConfigurations Forward(Instr, OtherInstr);
131 const AliasingConfigurations Back(OtherInstr, Instr);
132 InstructionTemplate ThisIT(Instr);
133 InstructionTemplate OtherIT(OtherInstr);
134 if (!Forward.hasImplicitAliasing())
135 setRandomAliasing(Forward, ThisIT, OtherIT);
136 if (!Back.hasImplicitAliasing())
137 setRandomAliasing(Back, OtherIT, ThisIT);
138 CodeTemplate CT;
139 CT.Execution = ExecutionModeBit;
140 CT.Info = ExecutionClassDescription;
141 CT.Instructions.push_back(std::move(ThisIT));
142 CT.Instructions.push_back(std::move(OtherIT));
143 CodeTemplates.push_back(std::move(CT));
145 return;
147 default:
148 llvm_unreachable("Unhandled enum value");
152 LatencySnippetGenerator::~LatencySnippetGenerator() = default;
154 Expected<std::vector<CodeTemplate>>
155 LatencySnippetGenerator::generateCodeTemplates(
156 const Instruction &Instr, const BitVector &ForbiddenRegisters) const {
157 std::vector<CodeTemplate> Results;
158 const ExecutionMode EM = getExecutionModes(Instr, ForbiddenRegisters);
159 for (const auto EC : kExecutionClasses) {
160 for (const auto ExecutionModeBit : getExecutionModeBits(EM & EC.Mask))
161 appendCodeTemplates(State, Instr, ForbiddenRegisters, ExecutionModeBit,
162 EC.Description, Results);
163 if (!Results.empty())
164 break;
166 if (Results.empty())
167 return make_error<Failure>(
168 "No strategy found to make the execution serial");
169 return std::move(Results);
172 LatencyBenchmarkRunner::LatencyBenchmarkRunner(const LLVMState &State,
173 InstructionBenchmark::ModeE Mode)
174 : BenchmarkRunner(State, Mode) {
175 assert((Mode == InstructionBenchmark::Latency ||
176 Mode == InstructionBenchmark::InverseThroughput) &&
177 "invalid mode");
180 LatencyBenchmarkRunner::~LatencyBenchmarkRunner() = default;
182 Expected<std::vector<BenchmarkMeasure>> LatencyBenchmarkRunner::runMeasurements(
183 const FunctionExecutor &Executor) const {
184 // Cycle measurements include some overhead from the kernel. Repeat the
185 // measure several times and take the minimum value.
186 constexpr const int NumMeasurements = 30;
187 int64_t MinValue = std::numeric_limits<int64_t>::max();
188 const char *CounterName = State.getPfmCounters().CycleCounter;
189 if (!CounterName)
190 report_fatal_error("sched model does not define a cycle counter");
191 for (size_t I = 0; I < NumMeasurements; ++I) {
192 auto ExpectedCounterValue = Executor.runAndMeasure(CounterName);
193 if (!ExpectedCounterValue)
194 return ExpectedCounterValue.takeError();
195 if (*ExpectedCounterValue < MinValue)
196 MinValue = *ExpectedCounterValue;
198 std::vector<BenchmarkMeasure> Result;
199 switch (Mode) {
200 case InstructionBenchmark::Latency:
201 Result = {BenchmarkMeasure::Create("latency", MinValue)};
202 break;
203 case InstructionBenchmark::InverseThroughput:
204 Result = {BenchmarkMeasure::Create("inverse_throughput", MinValue)};
205 break;
206 default:
207 break;
209 return std::move(Result);
212 } // namespace exegesis
213 } // namespace llvm