[MIParser] Set RegClassOrRegBank during instruction parsing
[llvm-complete.git] / tools / llvm-readobj / ELFDumper.cpp
blob57144882c4b44fc52b846dbe43e0f36836b827d2
1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "Error.h"
17 #include "ObjDumper.h"
18 #include "StackMapPrinter.h"
19 #include "llvm-readobj.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/PointerIntPair.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
33 #include "llvm/BinaryFormat/ELF.h"
34 #include "llvm/Demangle/Demangle.h"
35 #include "llvm/Object/ELF.h"
36 #include "llvm/Object/ELFObjectFile.h"
37 #include "llvm/Object/ELFTypes.h"
38 #include "llvm/Object/Error.h"
39 #include "llvm/Object/ObjectFile.h"
40 #include "llvm/Object/RelocationResolver.h"
41 #include "llvm/Object/StackMapParser.h"
42 #include "llvm/Support/AMDGPUMetadata.h"
43 #include "llvm/Support/ARMAttributeParser.h"
44 #include "llvm/Support/ARMBuildAttributes.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Endian.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/FormatVariadic.h"
51 #include "llvm/Support/FormattedStream.h"
52 #include "llvm/Support/LEB128.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/MipsABIFlags.h"
55 #include "llvm/Support/ScopedPrinter.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <cinttypes>
59 #include <cstddef>
60 #include <cstdint>
61 #include <cstdlib>
62 #include <iterator>
63 #include <memory>
64 #include <string>
65 #include <system_error>
66 #include <unordered_set>
67 #include <vector>
69 using namespace llvm;
70 using namespace llvm::object;
71 using namespace ELF;
73 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
74 case ns::enum: \
75 return #enum;
77 #define ENUM_ENT(enum, altName) \
78 { #enum, altName, ELF::enum }
80 #define ENUM_ENT_1(enum) \
81 { #enum, #enum, ELF::enum }
83 #define LLVM_READOBJ_PHDR_ENUM(ns, enum) \
84 case ns::enum: \
85 return std::string(#enum).substr(3);
87 #define TYPEDEF_ELF_TYPES(ELFT) \
88 using ELFO = ELFFile<ELFT>; \
89 using Elf_Addr = typename ELFT::Addr; \
90 using Elf_Shdr = typename ELFT::Shdr; \
91 using Elf_Sym = typename ELFT::Sym; \
92 using Elf_Dyn = typename ELFT::Dyn; \
93 using Elf_Dyn_Range = typename ELFT::DynRange; \
94 using Elf_Rel = typename ELFT::Rel; \
95 using Elf_Rela = typename ELFT::Rela; \
96 using Elf_Relr = typename ELFT::Relr; \
97 using Elf_Rel_Range = typename ELFT::RelRange; \
98 using Elf_Rela_Range = typename ELFT::RelaRange; \
99 using Elf_Relr_Range = typename ELFT::RelrRange; \
100 using Elf_Phdr = typename ELFT::Phdr; \
101 using Elf_Half = typename ELFT::Half; \
102 using Elf_Ehdr = typename ELFT::Ehdr; \
103 using Elf_Word = typename ELFT::Word; \
104 using Elf_Hash = typename ELFT::Hash; \
105 using Elf_GnuHash = typename ELFT::GnuHash; \
106 using Elf_Note = typename ELFT::Note; \
107 using Elf_Sym_Range = typename ELFT::SymRange; \
108 using Elf_Versym = typename ELFT::Versym; \
109 using Elf_Verneed = typename ELFT::Verneed; \
110 using Elf_Vernaux = typename ELFT::Vernaux; \
111 using Elf_Verdef = typename ELFT::Verdef; \
112 using Elf_Verdaux = typename ELFT::Verdaux; \
113 using Elf_CGProfile = typename ELFT::CGProfile; \
114 using uintX_t = typename ELFT::uint;
116 namespace {
118 template <class ELFT> class DumpStyle;
120 /// Represents a contiguous uniform range in the file. We cannot just create a
121 /// range directly because when creating one of these from the .dynamic table
122 /// the size, entity size and virtual address are different entries in arbitrary
123 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
124 struct DynRegionInfo {
125 DynRegionInfo(StringRef ObjName) : FileName(ObjName) {}
126 DynRegionInfo(const void *A, uint64_t S, uint64_t ES, StringRef ObjName)
127 : Addr(A), Size(S), EntSize(ES), FileName(ObjName) {}
129 /// Address in current address space.
130 const void *Addr = nullptr;
131 /// Size in bytes of the region.
132 uint64_t Size = 0;
133 /// Size of each entity in the region.
134 uint64_t EntSize = 0;
136 /// Name of the file. Used for error reporting.
137 StringRef FileName;
139 template <typename Type> ArrayRef<Type> getAsArrayRef() const {
140 const Type *Start = reinterpret_cast<const Type *>(Addr);
141 if (!Start)
142 return {Start, Start};
143 if (EntSize != sizeof(Type) || Size % EntSize) {
144 // TODO: Add a section index to this warning.
145 reportWarning(createError("invalid section size (" + Twine(Size) +
146 ") or entity size (" + Twine(EntSize) + ")"),
147 FileName);
148 return {Start, Start};
150 return {Start, Start + (Size / EntSize)};
154 template <typename ELFT> class ELFDumper : public ObjDumper {
155 public:
156 ELFDumper(const object::ELFObjectFile<ELFT> *ObjF, ScopedPrinter &Writer);
158 void printFileHeaders() override;
159 void printSectionHeaders() override;
160 void printRelocations() override;
161 void printDynamicRelocations() override;
162 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
163 void printHashSymbols() override;
164 void printUnwindInfo() override;
166 void printDynamicTable() override;
167 void printNeededLibraries() override;
168 void printProgramHeaders(bool PrintProgramHeaders,
169 cl::boolOrDefault PrintSectionMapping) override;
170 void printHashTable() override;
171 void printGnuHashTable() override;
172 void printLoadName() override;
173 void printVersionInfo() override;
174 void printGroupSections() override;
176 void printArchSpecificInfo() override;
178 void printStackMap() const override;
180 void printHashHistogram() override;
182 void printCGProfile() override;
183 void printAddrsig() override;
185 void printNotes() override;
187 void printELFLinkerOptions() override;
188 void printStackSizes() override;
190 const object::ELFObjectFile<ELFT> *getElfObject() const { return ObjF; };
192 private:
193 std::unique_ptr<DumpStyle<ELFT>> ELFDumperStyle;
195 TYPEDEF_ELF_TYPES(ELFT)
197 DynRegionInfo checkDRI(DynRegionInfo DRI) {
198 const ELFFile<ELFT> *Obj = ObjF->getELFFile();
199 if (DRI.Addr < Obj->base() ||
200 reinterpret_cast<const uint8_t *>(DRI.Addr) + DRI.Size >
201 Obj->base() + Obj->getBufSize())
202 reportError(errorCodeToError(llvm::object::object_error::parse_failed),
203 ObjF->getFileName());
204 return DRI;
207 DynRegionInfo createDRIFrom(const Elf_Phdr *P, uintX_t EntSize) {
208 return checkDRI({ObjF->getELFFile()->base() + P->p_offset, P->p_filesz,
209 EntSize, ObjF->getFileName()});
212 DynRegionInfo createDRIFrom(const Elf_Shdr *S) {
213 return checkDRI({ObjF->getELFFile()->base() + S->sh_offset, S->sh_size,
214 S->sh_entsize, ObjF->getFileName()});
217 void printAttributes();
218 void printMipsReginfo();
219 void printMipsOptions();
221 std::pair<const Elf_Phdr *, const Elf_Shdr *>
222 findDynamic(const ELFFile<ELFT> *Obj);
223 void loadDynamicTable(const ELFFile<ELFT> *Obj);
224 void parseDynamicTable();
226 StringRef getSymbolVersion(StringRef StrTab, const Elf_Sym *symb,
227 bool &IsDefault) const;
228 void LoadVersionMap() const;
229 void LoadVersionNeeds(const Elf_Shdr *ec) const;
230 void LoadVersionDefs(const Elf_Shdr *sec) const;
232 const object::ELFObjectFile<ELFT> *ObjF;
233 DynRegionInfo DynRelRegion;
234 DynRegionInfo DynRelaRegion;
235 DynRegionInfo DynRelrRegion;
236 DynRegionInfo DynPLTRelRegion;
237 DynRegionInfo DynSymRegion;
238 DynRegionInfo DynamicTable;
239 StringRef DynamicStringTable;
240 std::string SOName = "<Not found>";
241 const Elf_Hash *HashTable = nullptr;
242 const Elf_GnuHash *GnuHashTable = nullptr;
243 const Elf_Shdr *DotSymtabSec = nullptr;
244 const Elf_Shdr *DotCGProfileSec = nullptr;
245 const Elf_Shdr *DotAddrsigSec = nullptr;
246 StringRef DynSymtabName;
247 ArrayRef<Elf_Word> ShndxTable;
249 const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version
250 const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
251 const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
253 // Records for each version index the corresponding Verdef or Vernaux entry.
254 // This is filled the first time LoadVersionMap() is called.
255 class VersionMapEntry : public PointerIntPair<const void *, 1> {
256 public:
257 // If the integer is 0, this is an Elf_Verdef*.
258 // If the integer is 1, this is an Elf_Vernaux*.
259 VersionMapEntry() : PointerIntPair<const void *, 1>(nullptr, 0) {}
260 VersionMapEntry(const Elf_Verdef *verdef)
261 : PointerIntPair<const void *, 1>(verdef, 0) {}
262 VersionMapEntry(const Elf_Vernaux *vernaux)
263 : PointerIntPair<const void *, 1>(vernaux, 1) {}
265 bool isNull() const { return getPointer() == nullptr; }
266 bool isVerdef() const { return !isNull() && getInt() == 0; }
267 bool isVernaux() const { return !isNull() && getInt() == 1; }
268 const Elf_Verdef *getVerdef() const {
269 return isVerdef() ? (const Elf_Verdef *)getPointer() : nullptr;
271 const Elf_Vernaux *getVernaux() const {
272 return isVernaux() ? (const Elf_Vernaux *)getPointer() : nullptr;
275 mutable SmallVector<VersionMapEntry, 16> VersionMap;
277 public:
278 Elf_Dyn_Range dynamic_table() const {
279 // A valid .dynamic section contains an array of entries terminated
280 // with a DT_NULL entry. However, sometimes the section content may
281 // continue past the DT_NULL entry, so to dump the section correctly,
282 // we first find the end of the entries by iterating over them.
283 Elf_Dyn_Range Table = DynamicTable.getAsArrayRef<Elf_Dyn>();
285 size_t Size = 0;
286 while (Size < Table.size())
287 if (Table[Size++].getTag() == DT_NULL)
288 break;
290 return Table.slice(0, Size);
293 Elf_Sym_Range dynamic_symbols() const {
294 return DynSymRegion.getAsArrayRef<Elf_Sym>();
297 Elf_Rel_Range dyn_rels() const;
298 Elf_Rela_Range dyn_relas() const;
299 Elf_Relr_Range dyn_relrs() const;
300 std::string getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable,
301 bool IsDynamic) const;
302 void getSectionNameIndex(const Elf_Sym *Symbol, const Elf_Sym *FirstSym,
303 StringRef &SectionName,
304 unsigned &SectionIndex) const;
305 Expected<std::string> getStaticSymbolName(uint32_t Index) const;
306 std::string getDynamicString(uint64_t Value) const;
307 StringRef getSymbolVersionByIndex(StringRef StrTab,
308 uint32_t VersionSymbolIndex,
309 bool &IsDefault) const;
311 void printSymbolsHelper(bool IsDynamic) const;
312 void printDynamicEntry(raw_ostream &OS, uint64_t Type, uint64_t Value) const;
314 const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; }
315 const Elf_Shdr *getDotCGProfileSec() const { return DotCGProfileSec; }
316 const Elf_Shdr *getDotAddrsigSec() const { return DotAddrsigSec; }
317 ArrayRef<Elf_Word> getShndxTable() const { return ShndxTable; }
318 StringRef getDynamicStringTable() const { return DynamicStringTable; }
319 const DynRegionInfo &getDynRelRegion() const { return DynRelRegion; }
320 const DynRegionInfo &getDynRelaRegion() const { return DynRelaRegion; }
321 const DynRegionInfo &getDynRelrRegion() const { return DynRelrRegion; }
322 const DynRegionInfo &getDynPLTRelRegion() const { return DynPLTRelRegion; }
323 const DynRegionInfo &getDynamicTableRegion() const { return DynamicTable; }
324 const Elf_Hash *getHashTable() const { return HashTable; }
325 const Elf_GnuHash *getGnuHashTable() const { return GnuHashTable; }
328 template <class ELFT>
329 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
330 StringRef StrTable, SymtabName;
331 size_t Entries = 0;
332 Elf_Sym_Range Syms(nullptr, nullptr);
333 const ELFFile<ELFT> *Obj = ObjF->getELFFile();
334 if (IsDynamic) {
335 StrTable = DynamicStringTable;
336 Syms = dynamic_symbols();
337 SymtabName = DynSymtabName;
338 if (DynSymRegion.Addr)
339 Entries = DynSymRegion.Size / DynSymRegion.EntSize;
340 } else {
341 if (!DotSymtabSec)
342 return;
343 StrTable = unwrapOrError(ObjF->getFileName(),
344 Obj->getStringTableForSymtab(*DotSymtabSec));
345 Syms = unwrapOrError(ObjF->getFileName(), Obj->symbols(DotSymtabSec));
346 SymtabName =
347 unwrapOrError(ObjF->getFileName(), Obj->getSectionName(DotSymtabSec));
348 Entries = DotSymtabSec->getEntityCount();
350 if (Syms.begin() == Syms.end())
351 return;
353 // The st_other field has 2 logical parts. The first two bits hold the symbol
354 // visibility (STV_*) and the remainder hold other platform-specific values.
355 bool NonVisibilityBitsUsed = llvm::find_if(Syms, [](const Elf_Sym &S) {
356 return S.st_other & ~0x3;
357 }) != Syms.end();
359 ELFDumperStyle->printSymtabMessage(Obj, SymtabName, Entries,
360 NonVisibilityBitsUsed);
361 for (const auto &Sym : Syms)
362 ELFDumperStyle->printSymbol(Obj, &Sym, Syms.begin(), StrTable, IsDynamic,
363 NonVisibilityBitsUsed);
366 template <class ELFT> class MipsGOTParser;
368 template <typename ELFT> class DumpStyle {
369 public:
370 using Elf_Shdr = typename ELFT::Shdr;
371 using Elf_Sym = typename ELFT::Sym;
372 using Elf_Addr = typename ELFT::Addr;
374 DumpStyle(ELFDumper<ELFT> *Dumper) : Dumper(Dumper) {
375 FileName = this->Dumper->getElfObject()->getFileName();
377 // Dumper reports all non-critical errors as warnings.
378 // It does not print the same warning more than once.
379 WarningHandler = [this](const Twine &Msg) {
380 if (Warnings.insert(Msg.str()).second)
381 reportWarning(createError(Msg), FileName);
382 return Error::success();
386 virtual ~DumpStyle() = default;
388 virtual void printFileHeaders(const ELFFile<ELFT> *Obj) = 0;
389 virtual void printGroupSections(const ELFFile<ELFT> *Obj) = 0;
390 virtual void printRelocations(const ELFFile<ELFT> *Obj) = 0;
391 virtual void printSectionHeaders(const ELFFile<ELFT> *Obj) = 0;
392 virtual void printSymbols(const ELFFile<ELFT> *Obj, bool PrintSymbols,
393 bool PrintDynamicSymbols) = 0;
394 virtual void printHashSymbols(const ELFFile<ELFT> *Obj) {}
395 virtual void printDynamic(const ELFFile<ELFT> *Obj) {}
396 virtual void printDynamicRelocations(const ELFFile<ELFT> *Obj) = 0;
397 virtual void printSymtabMessage(const ELFFile<ELFT> *Obj, StringRef Name,
398 size_t Offset, bool NonVisibilityBitsUsed) {}
399 virtual void printSymbol(const ELFFile<ELFT> *Obj, const Elf_Sym *Symbol,
400 const Elf_Sym *FirstSym, StringRef StrTable,
401 bool IsDynamic, bool NonVisibilityBitsUsed) = 0;
402 virtual void printProgramHeaders(const ELFFile<ELFT> *Obj,
403 bool PrintProgramHeaders,
404 cl::boolOrDefault PrintSectionMapping) = 0;
405 virtual void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
406 const Elf_Shdr *Sec) = 0;
407 virtual void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
408 const Elf_Shdr *Sec) = 0;
409 virtual void printVersionDependencySection(const ELFFile<ELFT> *Obj,
410 const Elf_Shdr *Sec) = 0;
411 virtual void printHashHistogram(const ELFFile<ELFT> *Obj) = 0;
412 virtual void printCGProfile(const ELFFile<ELFT> *Obj) = 0;
413 virtual void printAddrsig(const ELFFile<ELFT> *Obj) = 0;
414 virtual void printNotes(const ELFFile<ELFT> *Obj) = 0;
415 virtual void printELFLinkerOptions(const ELFFile<ELFT> *Obj) = 0;
416 virtual void printStackSizes(const ELFObjectFile<ELFT> *Obj) = 0;
417 void printNonRelocatableStackSizes(const ELFObjectFile<ELFT> *Obj,
418 std::function<void()> PrintHeader);
419 void printRelocatableStackSizes(const ELFObjectFile<ELFT> *Obj,
420 std::function<void()> PrintHeader);
421 void printFunctionStackSize(const ELFObjectFile<ELFT> *Obj, uint64_t SymValue,
422 SectionRef FunctionSec,
423 const StringRef SectionName, DataExtractor Data,
424 uint64_t *Offset);
425 void printStackSize(const ELFObjectFile<ELFT> *Obj, RelocationRef Rel,
426 SectionRef FunctionSec,
427 const StringRef &StackSizeSectionName,
428 const RelocationResolver &Resolver, DataExtractor Data);
429 virtual void printStackSizeEntry(uint64_t Size, StringRef FuncName) = 0;
430 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
431 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
432 virtual void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) = 0;
433 const ELFDumper<ELFT> *dumper() const { return Dumper; }
435 protected:
436 std::function<Error(const Twine &Msg)> WarningHandler;
437 StringRef FileName;
439 private:
440 std::unordered_set<std::string> Warnings;
441 const ELFDumper<ELFT> *Dumper;
444 template <typename ELFT> class GNUStyle : public DumpStyle<ELFT> {
445 formatted_raw_ostream &OS;
447 public:
448 TYPEDEF_ELF_TYPES(ELFT)
450 GNUStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
451 : DumpStyle<ELFT>(Dumper),
452 OS(static_cast<formatted_raw_ostream&>(W.getOStream())) {
453 assert (&W.getOStream() == &llvm::fouts());
456 void printFileHeaders(const ELFO *Obj) override;
457 void printGroupSections(const ELFFile<ELFT> *Obj) override;
458 void printRelocations(const ELFO *Obj) override;
459 void printSectionHeaders(const ELFO *Obj) override;
460 void printSymbols(const ELFO *Obj, bool PrintSymbols,
461 bool PrintDynamicSymbols) override;
462 void printHashSymbols(const ELFO *Obj) override;
463 void printDynamic(const ELFFile<ELFT> *Obj) override;
464 void printDynamicRelocations(const ELFO *Obj) override;
465 void printSymtabMessage(const ELFO *Obj, StringRef Name, size_t Offset,
466 bool NonVisibilityBitsUsed) override;
467 void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders,
468 cl::boolOrDefault PrintSectionMapping) override;
469 void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
470 const Elf_Shdr *Sec) override;
471 void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
472 const Elf_Shdr *Sec) override;
473 void printVersionDependencySection(const ELFFile<ELFT> *Obj,
474 const Elf_Shdr *Sec) override;
475 void printHashHistogram(const ELFFile<ELFT> *Obj) override;
476 void printCGProfile(const ELFFile<ELFT> *Obj) override;
477 void printAddrsig(const ELFFile<ELFT> *Obj) override;
478 void printNotes(const ELFFile<ELFT> *Obj) override;
479 void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
480 void printStackSizes(const ELFObjectFile<ELFT> *Obj) override;
481 void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
482 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
483 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
484 void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) override;
486 private:
487 struct Field {
488 std::string Str;
489 unsigned Column;
491 Field(StringRef S, unsigned Col) : Str(S), Column(Col) {}
492 Field(unsigned Col) : Column(Col) {}
495 template <typename T, typename TEnum>
496 std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) {
497 for (const auto &EnumItem : EnumValues)
498 if (EnumItem.Value == Value)
499 return EnumItem.AltName;
500 return to_hexString(Value, false);
503 template <typename T, typename TEnum>
504 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
505 TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
506 TEnum EnumMask3 = {}) {
507 std::string Str;
508 for (const auto &Flag : EnumValues) {
509 if (Flag.Value == 0)
510 continue;
512 TEnum EnumMask{};
513 if (Flag.Value & EnumMask1)
514 EnumMask = EnumMask1;
515 else if (Flag.Value & EnumMask2)
516 EnumMask = EnumMask2;
517 else if (Flag.Value & EnumMask3)
518 EnumMask = EnumMask3;
519 bool IsEnum = (Flag.Value & EnumMask) != 0;
520 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
521 (IsEnum && (Value & EnumMask) == Flag.Value)) {
522 if (!Str.empty())
523 Str += ", ";
524 Str += Flag.AltName;
527 return Str;
530 formatted_raw_ostream &printField(struct Field F) {
531 if (F.Column != 0)
532 OS.PadToColumn(F.Column);
533 OS << F.Str;
534 OS.flush();
535 return OS;
537 void printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym, uint32_t Sym,
538 StringRef StrTable, uint32_t Bucket);
539 void printRelocHeader(unsigned SType);
540 void printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
541 const Elf_Rela &R, bool IsRela);
542 void printRelocation(const ELFO *Obj, const Elf_Sym *Sym,
543 StringRef SymbolName, const Elf_Rela &R, bool IsRela);
544 void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
545 StringRef StrTable, bool IsDynamic,
546 bool NonVisibilityBitsUsed) override;
547 std::string getSymbolSectionNdx(const ELFO *Obj, const Elf_Sym *Symbol,
548 const Elf_Sym *FirstSym);
549 void printDynamicRelocation(const ELFO *Obj, Elf_Rela R, bool IsRela);
550 bool checkTLSSections(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
551 bool checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
552 bool checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
553 bool checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
554 void printProgramHeaders(const ELFO *Obj);
555 void printSectionMapping(const ELFO *Obj);
558 template <typename ELFT> class LLVMStyle : public DumpStyle<ELFT> {
559 public:
560 TYPEDEF_ELF_TYPES(ELFT)
562 LLVMStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
563 : DumpStyle<ELFT>(Dumper), W(W) {}
565 void printFileHeaders(const ELFO *Obj) override;
566 void printGroupSections(const ELFFile<ELFT> *Obj) override;
567 void printRelocations(const ELFO *Obj) override;
568 void printRelocations(const Elf_Shdr *Sec, const ELFO *Obj);
569 void printSectionHeaders(const ELFO *Obj) override;
570 void printSymbols(const ELFO *Obj, bool PrintSymbols,
571 bool PrintDynamicSymbols) override;
572 void printDynamic(const ELFFile<ELFT> *Obj) override;
573 void printDynamicRelocations(const ELFO *Obj) override;
574 void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders,
575 cl::boolOrDefault PrintSectionMapping) override;
576 void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
577 const Elf_Shdr *Sec) override;
578 void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
579 const Elf_Shdr *Sec) override;
580 void printVersionDependencySection(const ELFFile<ELFT> *Obj,
581 const Elf_Shdr *Sec) override;
582 void printHashHistogram(const ELFFile<ELFT> *Obj) override;
583 void printCGProfile(const ELFFile<ELFT> *Obj) override;
584 void printAddrsig(const ELFFile<ELFT> *Obj) override;
585 void printNotes(const ELFFile<ELFT> *Obj) override;
586 void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
587 void printStackSizes(const ELFObjectFile<ELFT> *Obj) override;
588 void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
589 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
590 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
591 void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) override;
593 private:
594 void printRelocation(const ELFO *Obj, Elf_Rela Rel, const Elf_Shdr *SymTab);
595 void printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel);
596 void printSymbols(const ELFO *Obj);
597 void printDynamicSymbols(const ELFO *Obj);
598 void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
599 StringRef StrTable, bool IsDynamic,
600 bool /*NonVisibilityBitsUsed*/) override;
601 void printProgramHeaders(const ELFO *Obj);
602 void printSectionMapping(const ELFO *Obj) {}
604 ScopedPrinter &W;
607 } // end anonymous namespace
609 namespace llvm {
611 template <class ELFT>
612 static std::error_code createELFDumper(const ELFObjectFile<ELFT> *Obj,
613 ScopedPrinter &Writer,
614 std::unique_ptr<ObjDumper> &Result) {
615 Result.reset(new ELFDumper<ELFT>(Obj, Writer));
616 return readobj_error::success;
619 std::error_code createELFDumper(const object::ObjectFile *Obj,
620 ScopedPrinter &Writer,
621 std::unique_ptr<ObjDumper> &Result) {
622 // Little-endian 32-bit
623 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
624 return createELFDumper(ELFObj, Writer, Result);
626 // Big-endian 32-bit
627 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
628 return createELFDumper(ELFObj, Writer, Result);
630 // Little-endian 64-bit
631 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
632 return createELFDumper(ELFObj, Writer, Result);
634 // Big-endian 64-bit
635 if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj))
636 return createELFDumper(ELFObj, Writer, Result);
638 return readobj_error::unsupported_obj_file_format;
641 } // end namespace llvm
643 // Iterate through the versions needed section, and place each Elf_Vernaux
644 // in the VersionMap according to its index.
645 template <class ELFT>
646 void ELFDumper<ELFT>::LoadVersionNeeds(const Elf_Shdr *Sec) const {
647 unsigned VerneedSize = Sec->sh_size; // Size of section in bytes
648 unsigned VerneedEntries = Sec->sh_info; // Number of Verneed entries
649 const uint8_t *VerneedStart = reinterpret_cast<const uint8_t *>(
650 ObjF->getELFFile()->base() + Sec->sh_offset);
651 const uint8_t *VerneedEnd = VerneedStart + VerneedSize;
652 // The first Verneed entry is at the start of the section.
653 const uint8_t *VerneedBuf = VerneedStart;
654 for (unsigned VerneedIndex = 0; VerneedIndex < VerneedEntries;
655 ++VerneedIndex) {
656 if (VerneedBuf + sizeof(Elf_Verneed) > VerneedEnd)
657 report_fatal_error("Section ended unexpectedly while scanning "
658 "version needed records.");
659 const Elf_Verneed *Verneed =
660 reinterpret_cast<const Elf_Verneed *>(VerneedBuf);
661 if (Verneed->vn_version != ELF::VER_NEED_CURRENT)
662 report_fatal_error("Unexpected verneed version");
663 // Iterate through the Vernaux entries
664 const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux;
665 for (unsigned VernauxIndex = 0; VernauxIndex < Verneed->vn_cnt;
666 ++VernauxIndex) {
667 if (VernauxBuf + sizeof(Elf_Vernaux) > VerneedEnd)
668 report_fatal_error("Section ended unexpected while scanning auxiliary "
669 "version needed records.");
670 const Elf_Vernaux *Vernaux =
671 reinterpret_cast<const Elf_Vernaux *>(VernauxBuf);
672 size_t Index = Vernaux->vna_other & ELF::VERSYM_VERSION;
673 if (Index >= VersionMap.size())
674 VersionMap.resize(Index + 1);
675 VersionMap[Index] = VersionMapEntry(Vernaux);
676 VernauxBuf += Vernaux->vna_next;
678 VerneedBuf += Verneed->vn_next;
682 // Iterate through the version definitions, and place each Elf_Verdef
683 // in the VersionMap according to its index.
684 template <class ELFT>
685 void ELFDumper<ELFT>::LoadVersionDefs(const Elf_Shdr *Sec) const {
686 unsigned VerdefSize = Sec->sh_size; // Size of section in bytes
687 unsigned VerdefEntries = Sec->sh_info; // Number of Verdef entries
688 const uint8_t *VerdefStart = reinterpret_cast<const uint8_t *>(
689 ObjF->getELFFile()->base() + Sec->sh_offset);
690 const uint8_t *VerdefEnd = VerdefStart + VerdefSize;
691 // The first Verdef entry is at the start of the section.
692 const uint8_t *VerdefBuf = VerdefStart;
693 for (unsigned VerdefIndex = 0; VerdefIndex < VerdefEntries; ++VerdefIndex) {
694 if (VerdefBuf + sizeof(Elf_Verdef) > VerdefEnd)
695 report_fatal_error("Section ended unexpectedly while scanning "
696 "version definitions.");
697 const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(VerdefBuf);
698 if (Verdef->vd_version != ELF::VER_DEF_CURRENT)
699 report_fatal_error("Unexpected verdef version");
700 size_t Index = Verdef->vd_ndx & ELF::VERSYM_VERSION;
701 if (Index >= VersionMap.size())
702 VersionMap.resize(Index + 1);
703 VersionMap[Index] = VersionMapEntry(Verdef);
704 VerdefBuf += Verdef->vd_next;
708 template <class ELFT> void ELFDumper<ELFT>::LoadVersionMap() const {
709 // If there is no dynamic symtab or version table, there is nothing to do.
710 if (!DynSymRegion.Addr || !SymbolVersionSection)
711 return;
713 // Has the VersionMap already been loaded?
714 if (!VersionMap.empty())
715 return;
717 // The first two version indexes are reserved.
718 // Index 0 is LOCAL, index 1 is GLOBAL.
719 VersionMap.push_back(VersionMapEntry());
720 VersionMap.push_back(VersionMapEntry());
722 if (SymbolVersionDefSection)
723 LoadVersionDefs(SymbolVersionDefSection);
725 if (SymbolVersionNeedSection)
726 LoadVersionNeeds(SymbolVersionNeedSection);
729 template <typename ELFT>
730 StringRef ELFDumper<ELFT>::getSymbolVersion(StringRef StrTab,
731 const Elf_Sym *Sym,
732 bool &IsDefault) const {
733 // This is a dynamic symbol. Look in the GNU symbol version table.
734 if (!SymbolVersionSection) {
735 // No version table.
736 IsDefault = false;
737 return "";
740 // Determine the position in the symbol table of this entry.
741 size_t EntryIndex = (reinterpret_cast<uintptr_t>(Sym) -
742 reinterpret_cast<uintptr_t>(DynSymRegion.Addr)) /
743 sizeof(Elf_Sym);
745 // Get the corresponding version index entry.
746 const Elf_Versym *Versym = unwrapOrError(
747 ObjF->getFileName(), ObjF->getELFFile()->template getEntry<Elf_Versym>(
748 SymbolVersionSection, EntryIndex));
749 return this->getSymbolVersionByIndex(StrTab, Versym->vs_index, IsDefault);
752 static std::string maybeDemangle(StringRef Name) {
753 return opts::Demangle ? demangle(Name) : Name.str();
756 template <typename ELFT>
757 Expected<std::string>
758 ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
759 const ELFFile<ELFT> *Obj = ObjF->getELFFile();
760 Expected<const typename ELFT::Sym *> SymOrErr =
761 Obj->getSymbol(DotSymtabSec, Index);
762 if (!SymOrErr)
763 return SymOrErr.takeError();
765 Expected<StringRef> StrTabOrErr = Obj->getStringTableForSymtab(*DotSymtabSec);
766 if (!StrTabOrErr)
767 return StrTabOrErr.takeError();
769 Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
770 if (!NameOrErr)
771 return NameOrErr.takeError();
772 return maybeDemangle(*NameOrErr);
775 template <typename ELFT>
776 StringRef ELFDumper<ELFT>::getSymbolVersionByIndex(StringRef StrTab,
777 uint32_t SymbolVersionIndex,
778 bool &IsDefault) const {
779 size_t VersionIndex = SymbolVersionIndex & VERSYM_VERSION;
781 // Special markers for unversioned symbols.
782 if (VersionIndex == VER_NDX_LOCAL || VersionIndex == VER_NDX_GLOBAL) {
783 IsDefault = false;
784 return "";
787 // Lookup this symbol in the version table.
788 LoadVersionMap();
789 if (VersionIndex >= VersionMap.size() || VersionMap[VersionIndex].isNull())
790 reportError(createError("Invalid version entry"), ObjF->getFileName());
791 const VersionMapEntry &Entry = VersionMap[VersionIndex];
793 // Get the version name string.
794 size_t NameOffset;
795 if (Entry.isVerdef()) {
796 // The first Verdaux entry holds the name.
797 NameOffset = Entry.getVerdef()->getAux()->vda_name;
798 IsDefault = !(SymbolVersionIndex & VERSYM_HIDDEN);
799 } else {
800 NameOffset = Entry.getVernaux()->vna_name;
801 IsDefault = false;
803 if (NameOffset >= StrTab.size())
804 reportError(createError("Invalid string offset"), ObjF->getFileName());
805 return StrTab.data() + NameOffset;
808 template <typename ELFT>
809 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym *Symbol,
810 StringRef StrTable,
811 bool IsDynamic) const {
812 std::string SymbolName = maybeDemangle(
813 unwrapOrError(ObjF->getFileName(), Symbol->getName(StrTable)));
815 if (SymbolName.empty() && Symbol->getType() == ELF::STT_SECTION) {
816 unsigned SectionIndex;
817 StringRef SectionName;
818 Elf_Sym_Range Syms = unwrapOrError(
819 ObjF->getFileName(), ObjF->getELFFile()->symbols(DotSymtabSec));
820 getSectionNameIndex(Symbol, Syms.begin(), SectionName, SectionIndex);
821 return SectionName;
824 if (!IsDynamic)
825 return SymbolName;
827 bool IsDefault;
828 StringRef Version = getSymbolVersion(StrTable, &*Symbol, IsDefault);
829 if (!Version.empty()) {
830 SymbolName += (IsDefault ? "@@" : "@");
831 SymbolName += Version;
833 return SymbolName;
836 template <typename ELFT>
837 void ELFDumper<ELFT>::getSectionNameIndex(const Elf_Sym *Symbol,
838 const Elf_Sym *FirstSym,
839 StringRef &SectionName,
840 unsigned &SectionIndex) const {
841 SectionIndex = Symbol->st_shndx;
842 if (Symbol->isUndefined())
843 SectionName = "Undefined";
844 else if (Symbol->isProcessorSpecific())
845 SectionName = "Processor Specific";
846 else if (Symbol->isOSSpecific())
847 SectionName = "Operating System Specific";
848 else if (Symbol->isAbsolute())
849 SectionName = "Absolute";
850 else if (Symbol->isCommon())
851 SectionName = "Common";
852 else if (Symbol->isReserved() && SectionIndex != SHN_XINDEX)
853 SectionName = "Reserved";
854 else {
855 if (SectionIndex == SHN_XINDEX)
856 SectionIndex = unwrapOrError(ObjF->getFileName(),
857 object::getExtendedSymbolTableIndex<ELFT>(
858 Symbol, FirstSym, ShndxTable));
859 const ELFFile<ELFT> *Obj = ObjF->getELFFile();
860 const typename ELFT::Shdr *Sec =
861 unwrapOrError(ObjF->getFileName(), Obj->getSection(SectionIndex));
862 SectionName = unwrapOrError(ObjF->getFileName(), Obj->getSectionName(Sec));
866 template <class ELFO>
867 static const typename ELFO::Elf_Shdr *
868 findNotEmptySectionByAddress(const ELFO *Obj, StringRef FileName,
869 uint64_t Addr) {
870 for (const auto &Shdr : unwrapOrError(FileName, Obj->sections()))
871 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
872 return &Shdr;
873 return nullptr;
876 template <class ELFO>
877 static const typename ELFO::Elf_Shdr *
878 findSectionByName(const ELFO &Obj, StringRef FileName, StringRef Name) {
879 for (const auto &Shdr : unwrapOrError(FileName, Obj.sections()))
880 if (Name == unwrapOrError(FileName, Obj.getSectionName(&Shdr)))
881 return &Shdr;
882 return nullptr;
885 static const EnumEntry<unsigned> ElfClass[] = {
886 {"None", "none", ELF::ELFCLASSNONE},
887 {"32-bit", "ELF32", ELF::ELFCLASS32},
888 {"64-bit", "ELF64", ELF::ELFCLASS64},
891 static const EnumEntry<unsigned> ElfDataEncoding[] = {
892 {"None", "none", ELF::ELFDATANONE},
893 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
894 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB},
897 static const EnumEntry<unsigned> ElfObjectFileType[] = {
898 {"None", "NONE (none)", ELF::ET_NONE},
899 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL},
900 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC},
901 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
902 {"Core", "CORE (Core file)", ELF::ET_CORE},
905 static const EnumEntry<unsigned> ElfOSABI[] = {
906 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE},
907 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX},
908 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD},
909 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX},
910 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD},
911 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS},
912 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX},
913 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX},
914 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD},
915 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64},
916 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO},
917 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD},
918 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS},
919 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
920 {"AROS", "AROS", ELF::ELFOSABI_AROS},
921 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS},
922 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI},
923 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE}
926 static const EnumEntry<unsigned> SymVersionFlags[] = {
927 {"Base", "BASE", VER_FLG_BASE},
928 {"Weak", "WEAK", VER_FLG_WEAK},
929 {"Info", "INFO", VER_FLG_INFO}};
931 static const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
932 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA},
933 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL},
934 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
937 static const EnumEntry<unsigned> ARMElfOSABI[] = {
938 {"ARM", "ARM", ELF::ELFOSABI_ARM}
941 static const EnumEntry<unsigned> C6000ElfOSABI[] = {
942 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
943 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX}
946 static const EnumEntry<unsigned> ElfMachineType[] = {
947 ENUM_ENT(EM_NONE, "None"),
948 ENUM_ENT(EM_M32, "WE32100"),
949 ENUM_ENT(EM_SPARC, "Sparc"),
950 ENUM_ENT(EM_386, "Intel 80386"),
951 ENUM_ENT(EM_68K, "MC68000"),
952 ENUM_ENT(EM_88K, "MC88000"),
953 ENUM_ENT(EM_IAMCU, "EM_IAMCU"),
954 ENUM_ENT(EM_860, "Intel 80860"),
955 ENUM_ENT(EM_MIPS, "MIPS R3000"),
956 ENUM_ENT(EM_S370, "IBM System/370"),
957 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"),
958 ENUM_ENT(EM_PARISC, "HPPA"),
959 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"),
960 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"),
961 ENUM_ENT(EM_960, "Intel 80960"),
962 ENUM_ENT(EM_PPC, "PowerPC"),
963 ENUM_ENT(EM_PPC64, "PowerPC64"),
964 ENUM_ENT(EM_S390, "IBM S/390"),
965 ENUM_ENT(EM_SPU, "SPU"),
966 ENUM_ENT(EM_V800, "NEC V800 series"),
967 ENUM_ENT(EM_FR20, "Fujistsu FR20"),
968 ENUM_ENT(EM_RH32, "TRW RH-32"),
969 ENUM_ENT(EM_RCE, "Motorola RCE"),
970 ENUM_ENT(EM_ARM, "ARM"),
971 ENUM_ENT(EM_ALPHA, "EM_ALPHA"),
972 ENUM_ENT(EM_SH, "Hitachi SH"),
973 ENUM_ENT(EM_SPARCV9, "Sparc v9"),
974 ENUM_ENT(EM_TRICORE, "Siemens Tricore"),
975 ENUM_ENT(EM_ARC, "ARC"),
976 ENUM_ENT(EM_H8_300, "Hitachi H8/300"),
977 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"),
978 ENUM_ENT(EM_H8S, "Hitachi H8S"),
979 ENUM_ENT(EM_H8_500, "Hitachi H8/500"),
980 ENUM_ENT(EM_IA_64, "Intel IA-64"),
981 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"),
982 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"),
983 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"),
984 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"),
985 ENUM_ENT(EM_PCP, "Siemens PCP"),
986 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"),
987 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"),
988 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"),
989 ENUM_ENT(EM_ME16, "Toyota ME16 processor"),
990 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"),
991 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"),
992 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"),
993 ENUM_ENT(EM_PDSP, "Sony DSP processor"),
994 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"),
995 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"),
996 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"),
997 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
998 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"),
999 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"),
1000 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"),
1001 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"),
1002 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"),
1003 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"),
1004 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"),
1005 ENUM_ENT(EM_VAX, "Digital VAX"),
1006 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"),
1007 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"),
1008 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"),
1009 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"),
1010 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"),
1011 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"),
1012 ENUM_ENT(EM_PRISM, "Vitesse Prism"),
1013 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"),
1014 ENUM_ENT(EM_FR30, "Fujitsu FR30"),
1015 ENUM_ENT(EM_D10V, "Mitsubishi D10V"),
1016 ENUM_ENT(EM_D30V, "Mitsubishi D30V"),
1017 ENUM_ENT(EM_V850, "NEC v850"),
1018 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"),
1019 ENUM_ENT(EM_MN10300, "Matsushita MN10300"),
1020 ENUM_ENT(EM_MN10200, "Matsushita MN10200"),
1021 ENUM_ENT(EM_PJ, "picoJava"),
1022 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"),
1023 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"),
1024 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"),
1025 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"),
1026 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"),
1027 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"),
1028 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"),
1029 ENUM_ENT(EM_SNP1K, "EM_SNP1K"),
1030 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"),
1031 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"),
1032 ENUM_ENT(EM_MAX, "MAX Processor"),
1033 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"),
1034 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"),
1035 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"),
1036 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"),
1037 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"),
1038 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"),
1039 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"),
1040 ENUM_ENT(EM_UNICORE, "Unicore"),
1041 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"),
1042 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"),
1043 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"),
1044 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"),
1045 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"),
1046 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"),
1047 ENUM_ENT(EM_M16C, "Renesas M16C"),
1048 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"),
1049 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"),
1050 ENUM_ENT(EM_M32C, "Renesas M32C"),
1051 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"),
1052 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"),
1053 ENUM_ENT(EM_SHARC, "EM_SHARC"),
1054 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"),
1055 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"),
1056 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"),
1057 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"),
1058 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1059 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"),
1060 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"),
1061 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"),
1062 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"),
1063 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"),
1064 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"),
1065 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"),
1066 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"),
1067 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"),
1068 ENUM_ENT(EM_8051, "Intel 8051 and variants"),
1069 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"),
1070 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"),
1071 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"),
1072 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"),
1073 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1074 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"),
1075 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"),
1076 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"),
1077 ENUM_ENT(EM_RX, "Renesas RX"),
1078 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"),
1079 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"),
1080 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"),
1081 ENUM_ENT(EM_CR16, "Xilinx MicroBlaze"),
1082 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"),
1083 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"),
1084 ENUM_ENT(EM_L10M, "EM_L10M"),
1085 ENUM_ENT(EM_K10M, "EM_K10M"),
1086 ENUM_ENT(EM_AARCH64, "AArch64"),
1087 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"),
1088 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"),
1089 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"),
1090 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"),
1091 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"),
1092 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"),
1093 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"),
1094 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"),
1095 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"),
1096 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"),
1097 ENUM_ENT(EM_OPEN8, "EM_OPEN8"),
1098 ENUM_ENT(EM_RL78, "Renesas RL78"),
1099 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"),
1100 ENUM_ENT(EM_78KOR, "EM_78KOR"),
1101 ENUM_ENT(EM_56800EX, "EM_56800EX"),
1102 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"),
1103 ENUM_ENT(EM_RISCV, "RISC-V"),
1104 ENUM_ENT(EM_LANAI, "EM_LANAI"),
1105 ENUM_ENT(EM_BPF, "EM_BPF"),
1108 static const EnumEntry<unsigned> ElfSymbolBindings[] = {
1109 {"Local", "LOCAL", ELF::STB_LOCAL},
1110 {"Global", "GLOBAL", ELF::STB_GLOBAL},
1111 {"Weak", "WEAK", ELF::STB_WEAK},
1112 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1114 static const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1115 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT},
1116 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL},
1117 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN},
1118 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1120 static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1121 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL }
1124 static const char *getGroupType(uint32_t Flag) {
1125 if (Flag & ELF::GRP_COMDAT)
1126 return "COMDAT";
1127 else
1128 return "(unknown)";
1131 static const EnumEntry<unsigned> ElfSectionFlags[] = {
1132 ENUM_ENT(SHF_WRITE, "W"),
1133 ENUM_ENT(SHF_ALLOC, "A"),
1134 ENUM_ENT(SHF_EXCLUDE, "E"),
1135 ENUM_ENT(SHF_EXECINSTR, "X"),
1136 ENUM_ENT(SHF_MERGE, "M"),
1137 ENUM_ENT(SHF_STRINGS, "S"),
1138 ENUM_ENT(SHF_INFO_LINK, "I"),
1139 ENUM_ENT(SHF_LINK_ORDER, "L"),
1140 ENUM_ENT(SHF_OS_NONCONFORMING, "o"),
1141 ENUM_ENT(SHF_GROUP, "G"),
1142 ENUM_ENT(SHF_TLS, "T"),
1143 ENUM_ENT(SHF_MASKOS, "o"),
1144 ENUM_ENT(SHF_MASKPROC, "p"),
1145 ENUM_ENT_1(SHF_COMPRESSED),
1148 static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1149 LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_CP_SECTION),
1150 LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_DP_SECTION)
1153 static const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1154 LLVM_READOBJ_ENUM_ENT(ELF, SHF_ARM_PURECODE)
1157 static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1158 LLVM_READOBJ_ENUM_ENT(ELF, SHF_HEX_GPREL)
1161 static const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1162 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NODUPES),
1163 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NAMES ),
1164 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_LOCAL ),
1165 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NOSTRIP),
1166 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_GPREL ),
1167 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_MERGE ),
1168 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_ADDR ),
1169 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_STRING )
1172 static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1173 LLVM_READOBJ_ENUM_ENT(ELF, SHF_X86_64_LARGE)
1176 static std::string getGNUFlags(uint64_t Flags) {
1177 std::string Str;
1178 for (auto Entry : ElfSectionFlags) {
1179 uint64_t Flag = Entry.Value & Flags;
1180 Flags &= ~Entry.Value;
1181 switch (Flag) {
1182 case ELF::SHF_WRITE:
1183 case ELF::SHF_ALLOC:
1184 case ELF::SHF_EXECINSTR:
1185 case ELF::SHF_MERGE:
1186 case ELF::SHF_STRINGS:
1187 case ELF::SHF_INFO_LINK:
1188 case ELF::SHF_LINK_ORDER:
1189 case ELF::SHF_OS_NONCONFORMING:
1190 case ELF::SHF_GROUP:
1191 case ELF::SHF_TLS:
1192 case ELF::SHF_EXCLUDE:
1193 Str += Entry.AltName;
1194 break;
1195 default:
1196 if (Flag & ELF::SHF_MASKOS)
1197 Str += "o";
1198 else if (Flag & ELF::SHF_MASKPROC)
1199 Str += "p";
1200 else if (Flag)
1201 Str += "x";
1204 return Str;
1207 static const char *getElfSegmentType(unsigned Arch, unsigned Type) {
1208 // Check potentially overlapped processor-specific
1209 // program header type.
1210 switch (Arch) {
1211 case ELF::EM_ARM:
1212 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1213 break;
1214 case ELF::EM_MIPS:
1215 case ELF::EM_MIPS_RS3_LE:
1216 switch (Type) {
1217 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1218 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1219 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1220 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1222 break;
1225 switch (Type) {
1226 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL );
1227 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD );
1228 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1229 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP );
1230 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE );
1231 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB );
1232 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR );
1233 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS );
1235 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1236 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1238 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1239 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1241 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1242 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1243 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1245 default:
1246 return "";
1250 static std::string getElfPtType(unsigned Arch, unsigned Type) {
1251 switch (Type) {
1252 LLVM_READOBJ_PHDR_ENUM(ELF, PT_NULL)
1253 LLVM_READOBJ_PHDR_ENUM(ELF, PT_LOAD)
1254 LLVM_READOBJ_PHDR_ENUM(ELF, PT_DYNAMIC)
1255 LLVM_READOBJ_PHDR_ENUM(ELF, PT_INTERP)
1256 LLVM_READOBJ_PHDR_ENUM(ELF, PT_NOTE)
1257 LLVM_READOBJ_PHDR_ENUM(ELF, PT_SHLIB)
1258 LLVM_READOBJ_PHDR_ENUM(ELF, PT_PHDR)
1259 LLVM_READOBJ_PHDR_ENUM(ELF, PT_TLS)
1260 LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_EH_FRAME)
1261 LLVM_READOBJ_PHDR_ENUM(ELF, PT_SUNW_UNWIND)
1262 LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_STACK)
1263 LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_RELRO)
1264 default:
1265 // All machine specific PT_* types
1266 switch (Arch) {
1267 case ELF::EM_ARM:
1268 if (Type == ELF::PT_ARM_EXIDX)
1269 return "EXIDX";
1270 break;
1271 case ELF::EM_MIPS:
1272 case ELF::EM_MIPS_RS3_LE:
1273 switch (Type) {
1274 case PT_MIPS_REGINFO:
1275 return "REGINFO";
1276 case PT_MIPS_RTPROC:
1277 return "RTPROC";
1278 case PT_MIPS_OPTIONS:
1279 return "OPTIONS";
1280 case PT_MIPS_ABIFLAGS:
1281 return "ABIFLAGS";
1283 break;
1286 return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1289 static const EnumEntry<unsigned> ElfSegmentFlags[] = {
1290 LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1291 LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1292 LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1295 static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1296 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1297 ENUM_ENT(EF_MIPS_PIC, "pic"),
1298 ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1299 ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1300 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1301 ENUM_ENT(EF_MIPS_FP64, "fp64"),
1302 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1303 ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1304 ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1305 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1306 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1307 ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1308 ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1309 ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1310 ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1311 ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1312 ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1313 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1314 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1315 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1316 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1317 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1318 ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1319 ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1320 ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1321 ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1322 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1323 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1324 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1325 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1326 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1327 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1328 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1329 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1330 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1331 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1332 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1333 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1334 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1335 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1336 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1337 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1338 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1341 static const EnumEntry<unsigned> ElfHeaderAMDGPUFlags[] = {
1342 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1343 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1344 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1345 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1346 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1347 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1348 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1349 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1350 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1351 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1352 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1353 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1354 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1355 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1356 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1357 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1358 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1359 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1360 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1361 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1362 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1363 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1364 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1365 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1366 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1367 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1368 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1369 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1370 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1371 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1372 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1373 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1374 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1375 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1376 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1377 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1378 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1379 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_XNACK),
1380 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_SRAM_ECC)
1383 static const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1384 ENUM_ENT(EF_RISCV_RVC, "RVC"),
1385 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1386 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1387 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1388 ENUM_ENT(EF_RISCV_RVE, "RVE")
1391 static const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1392 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1393 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1394 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1397 static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1398 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1399 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1400 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1401 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1404 static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1405 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1406 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1407 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1410 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1411 switch (Odk) {
1412 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1413 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1414 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1415 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1416 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1417 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1418 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1419 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1420 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1421 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1422 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1423 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1424 default:
1425 return "Unknown";
1429 template <typename ELFT>
1430 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1431 ELFDumper<ELFT>::findDynamic(const ELFFile<ELFT> *Obj) {
1432 // Try to locate the PT_DYNAMIC header.
1433 const Elf_Phdr *DynamicPhdr = nullptr;
1434 for (const Elf_Phdr &Phdr :
1435 unwrapOrError(ObjF->getFileName(), Obj->program_headers())) {
1436 if (Phdr.p_type != ELF::PT_DYNAMIC)
1437 continue;
1438 DynamicPhdr = &Phdr;
1439 break;
1442 // Try to locate the .dynamic section in the sections header table.
1443 const Elf_Shdr *DynamicSec = nullptr;
1444 for (const Elf_Shdr &Sec :
1445 unwrapOrError(ObjF->getFileName(), Obj->sections())) {
1446 if (Sec.sh_type != ELF::SHT_DYNAMIC)
1447 continue;
1448 DynamicSec = &Sec;
1449 break;
1452 if (DynamicPhdr && DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1453 ObjF->getMemoryBufferRef().getBufferSize()) {
1454 reportWarning(
1455 createError(
1456 "PT_DYNAMIC segment offset + size exceeds the size of the file"),
1457 ObjF->getFileName());
1458 // Don't use the broken dynamic header.
1459 DynamicPhdr = nullptr;
1462 if (DynamicPhdr && DynamicSec) {
1463 StringRef Name =
1464 unwrapOrError(ObjF->getFileName(), Obj->getSectionName(DynamicSec));
1465 if (DynamicSec->sh_addr + DynamicSec->sh_size >
1466 DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1467 DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1468 reportWarning(createError("The SHT_DYNAMIC section '" + Name +
1469 "' is not contained within the "
1470 "PT_DYNAMIC segment"),
1471 ObjF->getFileName());
1473 if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1474 reportWarning(createError("The SHT_DYNAMIC section '" + Name +
1475 "' is not at the start of "
1476 "PT_DYNAMIC segment"),
1477 ObjF->getFileName());
1480 return std::make_pair(DynamicPhdr, DynamicSec);
1483 template <typename ELFT>
1484 void ELFDumper<ELFT>::loadDynamicTable(const ELFFile<ELFT> *Obj) {
1485 const Elf_Phdr *DynamicPhdr;
1486 const Elf_Shdr *DynamicSec;
1487 std::tie(DynamicPhdr, DynamicSec) = findDynamic(Obj);
1488 if (!DynamicPhdr && !DynamicSec)
1489 return;
1491 DynRegionInfo FromPhdr(ObjF->getFileName());
1492 bool IsPhdrTableValid = false;
1493 if (DynamicPhdr) {
1494 FromPhdr = createDRIFrom(DynamicPhdr, sizeof(Elf_Dyn));
1495 IsPhdrTableValid = !FromPhdr.getAsArrayRef<Elf_Dyn>().empty();
1498 // Locate the dynamic table described in a section header.
1499 // Ignore sh_entsize and use the expected value for entry size explicitly.
1500 // This allows us to dump dynamic sections with a broken sh_entsize
1501 // field.
1502 DynRegionInfo FromSec(ObjF->getFileName());
1503 bool IsSecTableValid = false;
1504 if (DynamicSec) {
1505 FromSec =
1506 checkDRI({ObjF->getELFFile()->base() + DynamicSec->sh_offset,
1507 DynamicSec->sh_size, sizeof(Elf_Dyn), ObjF->getFileName()});
1508 IsSecTableValid = !FromSec.getAsArrayRef<Elf_Dyn>().empty();
1511 // When we only have information from one of the SHT_DYNAMIC section header or
1512 // PT_DYNAMIC program header, just use that.
1513 if (!DynamicPhdr || !DynamicSec) {
1514 if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1515 DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1516 parseDynamicTable();
1517 } else {
1518 reportWarning(createError("no valid dynamic table was found"),
1519 ObjF->getFileName());
1521 return;
1524 // At this point we have tables found from the section header and from the
1525 // dynamic segment. Usually they match, but we have to do sanity checks to
1526 // verify that.
1528 if (FromPhdr.Addr != FromSec.Addr)
1529 reportWarning(createError("SHT_DYNAMIC section header and PT_DYNAMIC "
1530 "program header disagree about "
1531 "the location of the dynamic table"),
1532 ObjF->getFileName());
1534 if (!IsPhdrTableValid && !IsSecTableValid) {
1535 reportWarning(createError("no valid dynamic table was found"),
1536 ObjF->getFileName());
1537 return;
1540 // Information in the PT_DYNAMIC program header has priority over the information
1541 // in a section header.
1542 if (IsPhdrTableValid) {
1543 if (!IsSecTableValid)
1544 reportWarning(
1545 createError(
1546 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used"),
1547 ObjF->getFileName());
1548 DynamicTable = FromPhdr;
1549 } else {
1550 reportWarning(
1551 createError(
1552 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used"),
1553 ObjF->getFileName());
1554 DynamicTable = FromSec;
1557 parseDynamicTable();
1560 template <typename ELFT>
1561 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> *ObjF,
1562 ScopedPrinter &Writer)
1563 : ObjDumper(Writer), ObjF(ObjF), DynRelRegion(ObjF->getFileName()),
1564 DynRelaRegion(ObjF->getFileName()), DynRelrRegion(ObjF->getFileName()),
1565 DynPLTRelRegion(ObjF->getFileName()), DynSymRegion(ObjF->getFileName()),
1566 DynamicTable(ObjF->getFileName()) {
1567 const ELFFile<ELFT> *Obj = ObjF->getELFFile();
1568 for (const Elf_Shdr &Sec :
1569 unwrapOrError(ObjF->getFileName(), Obj->sections())) {
1570 switch (Sec.sh_type) {
1571 case ELF::SHT_SYMTAB:
1572 if (!DotSymtabSec)
1573 DotSymtabSec = &Sec;
1574 break;
1575 case ELF::SHT_DYNSYM:
1576 if (!DynSymRegion.Size) {
1577 DynSymRegion = createDRIFrom(&Sec);
1578 // This is only used (if Elf_Shdr present)for naming section in GNU
1579 // style
1580 DynSymtabName =
1581 unwrapOrError(ObjF->getFileName(), Obj->getSectionName(&Sec));
1583 if (Expected<StringRef> E = Obj->getStringTableForSymtab(Sec))
1584 DynamicStringTable = *E;
1585 else
1586 reportWarning(E.takeError(), ObjF->getFileName());
1588 break;
1589 case ELF::SHT_SYMTAB_SHNDX:
1590 ShndxTable = unwrapOrError(ObjF->getFileName(), Obj->getSHNDXTable(Sec));
1591 break;
1592 case ELF::SHT_GNU_versym:
1593 if (!SymbolVersionSection)
1594 SymbolVersionSection = &Sec;
1595 break;
1596 case ELF::SHT_GNU_verdef:
1597 if (!SymbolVersionDefSection)
1598 SymbolVersionDefSection = &Sec;
1599 break;
1600 case ELF::SHT_GNU_verneed:
1601 if (!SymbolVersionNeedSection)
1602 SymbolVersionNeedSection = &Sec;
1603 break;
1604 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
1605 if (!DotCGProfileSec)
1606 DotCGProfileSec = &Sec;
1607 break;
1608 case ELF::SHT_LLVM_ADDRSIG:
1609 if (!DotAddrsigSec)
1610 DotAddrsigSec = &Sec;
1611 break;
1615 loadDynamicTable(Obj);
1617 if (opts::Output == opts::GNU)
1618 ELFDumperStyle.reset(new GNUStyle<ELFT>(Writer, this));
1619 else
1620 ELFDumperStyle.reset(new LLVMStyle<ELFT>(Writer, this));
1623 static const char *getTypeString(unsigned Arch, uint64_t Type) {
1624 #define DYNAMIC_TAG(n, v)
1625 switch (Arch) {
1627 case EM_AARCH64:
1628 switch (Type) {
1629 #define AARCH64_DYNAMIC_TAG(name, value) \
1630 case DT_##name: \
1631 return #name;
1632 #include "llvm/BinaryFormat/DynamicTags.def"
1633 #undef AARCH64_DYNAMIC_TAG
1635 break;
1637 case EM_HEXAGON:
1638 switch (Type) {
1639 #define HEXAGON_DYNAMIC_TAG(name, value) \
1640 case DT_##name: \
1641 return #name;
1642 #include "llvm/BinaryFormat/DynamicTags.def"
1643 #undef HEXAGON_DYNAMIC_TAG
1645 break;
1647 case EM_MIPS:
1648 switch (Type) {
1649 #define MIPS_DYNAMIC_TAG(name, value) \
1650 case DT_##name: \
1651 return #name;
1652 #include "llvm/BinaryFormat/DynamicTags.def"
1653 #undef MIPS_DYNAMIC_TAG
1655 break;
1657 case EM_PPC64:
1658 switch (Type) {
1659 #define PPC64_DYNAMIC_TAG(name, value) \
1660 case DT_##name: \
1661 return #name;
1662 #include "llvm/BinaryFormat/DynamicTags.def"
1663 #undef PPC64_DYNAMIC_TAG
1665 break;
1667 #undef DYNAMIC_TAG
1668 switch (Type) {
1669 // Now handle all dynamic tags except the architecture specific ones
1670 #define AARCH64_DYNAMIC_TAG(name, value)
1671 #define MIPS_DYNAMIC_TAG(name, value)
1672 #define HEXAGON_DYNAMIC_TAG(name, value)
1673 #define PPC64_DYNAMIC_TAG(name, value)
1674 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
1675 #define DYNAMIC_TAG_MARKER(name, value)
1676 #define DYNAMIC_TAG(name, value) \
1677 case DT_##name: \
1678 return #name;
1679 #include "llvm/BinaryFormat/DynamicTags.def"
1680 #undef DYNAMIC_TAG
1681 #undef AARCH64_DYNAMIC_TAG
1682 #undef MIPS_DYNAMIC_TAG
1683 #undef HEXAGON_DYNAMIC_TAG
1684 #undef PPC64_DYNAMIC_TAG
1685 #undef DYNAMIC_TAG_MARKER
1686 default:
1687 return "unknown";
1691 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
1692 auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
1693 auto MappedAddrOrError = ObjF->getELFFile()->toMappedAddr(VAddr);
1694 if (!MappedAddrOrError) {
1695 Error Err =
1696 createError("Unable to parse DT_" +
1697 Twine(getTypeString(
1698 ObjF->getELFFile()->getHeader()->e_machine, Tag)) +
1699 ": " + llvm::toString(MappedAddrOrError.takeError()));
1701 reportWarning(std::move(Err), ObjF->getFileName());
1702 return nullptr;
1704 return MappedAddrOrError.get();
1707 uint64_t SONameOffset = 0;
1708 const char *StringTableBegin = nullptr;
1709 uint64_t StringTableSize = 0;
1710 for (const Elf_Dyn &Dyn : dynamic_table()) {
1711 switch (Dyn.d_tag) {
1712 case ELF::DT_HASH:
1713 HashTable = reinterpret_cast<const Elf_Hash *>(
1714 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1715 break;
1716 case ELF::DT_GNU_HASH:
1717 GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
1718 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1719 break;
1720 case ELF::DT_STRTAB:
1721 StringTableBegin = reinterpret_cast<const char *>(
1722 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1723 break;
1724 case ELF::DT_STRSZ:
1725 StringTableSize = Dyn.getVal();
1726 break;
1727 case ELF::DT_SYMTAB: {
1728 // Often we find the information about the dynamic symbol table
1729 // location in the SHT_DYNSYM section header. However, the value in
1730 // DT_SYMTAB has priority, because it is used by dynamic loaders to
1731 // locate .dynsym at runtime. The location we find in the section header
1732 // and the location we find here should match. If we can't map the
1733 // DT_SYMTAB value to an address (e.g. when there are no program headers), we
1734 // ignore its value.
1735 if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
1736 // EntSize is non-zero if the dynamic symbol table has been found via a
1737 // section header.
1738 if (DynSymRegion.EntSize && VA != DynSymRegion.Addr)
1739 reportWarning(
1740 createError(
1741 "SHT_DYNSYM section header and DT_SYMTAB disagree about "
1742 "the location of the dynamic symbol table"),
1743 ObjF->getFileName());
1745 DynSymRegion.Addr = VA;
1746 DynSymRegion.EntSize = sizeof(Elf_Sym);
1748 break;
1750 case ELF::DT_RELA:
1751 DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1752 break;
1753 case ELF::DT_RELASZ:
1754 DynRelaRegion.Size = Dyn.getVal();
1755 break;
1756 case ELF::DT_RELAENT:
1757 DynRelaRegion.EntSize = Dyn.getVal();
1758 break;
1759 case ELF::DT_SONAME:
1760 SONameOffset = Dyn.getVal();
1761 break;
1762 case ELF::DT_REL:
1763 DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1764 break;
1765 case ELF::DT_RELSZ:
1766 DynRelRegion.Size = Dyn.getVal();
1767 break;
1768 case ELF::DT_RELENT:
1769 DynRelRegion.EntSize = Dyn.getVal();
1770 break;
1771 case ELF::DT_RELR:
1772 case ELF::DT_ANDROID_RELR:
1773 DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1774 break;
1775 case ELF::DT_RELRSZ:
1776 case ELF::DT_ANDROID_RELRSZ:
1777 DynRelrRegion.Size = Dyn.getVal();
1778 break;
1779 case ELF::DT_RELRENT:
1780 case ELF::DT_ANDROID_RELRENT:
1781 DynRelrRegion.EntSize = Dyn.getVal();
1782 break;
1783 case ELF::DT_PLTREL:
1784 if (Dyn.getVal() == DT_REL)
1785 DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
1786 else if (Dyn.getVal() == DT_RELA)
1787 DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
1788 else
1789 reportError(createError(Twine("unknown DT_PLTREL value of ") +
1790 Twine((uint64_t)Dyn.getVal())),
1791 ObjF->getFileName());
1792 break;
1793 case ELF::DT_JMPREL:
1794 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1795 break;
1796 case ELF::DT_PLTRELSZ:
1797 DynPLTRelRegion.Size = Dyn.getVal();
1798 break;
1801 if (StringTableBegin)
1802 DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
1803 SOName = getDynamicString(SONameOffset);
1806 template <typename ELFT>
1807 typename ELFDumper<ELFT>::Elf_Rel_Range ELFDumper<ELFT>::dyn_rels() const {
1808 return DynRelRegion.getAsArrayRef<Elf_Rel>();
1811 template <typename ELFT>
1812 typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const {
1813 return DynRelaRegion.getAsArrayRef<Elf_Rela>();
1816 template <typename ELFT>
1817 typename ELFDumper<ELFT>::Elf_Relr_Range ELFDumper<ELFT>::dyn_relrs() const {
1818 return DynRelrRegion.getAsArrayRef<Elf_Relr>();
1821 template <class ELFT> void ELFDumper<ELFT>::printFileHeaders() {
1822 ELFDumperStyle->printFileHeaders(ObjF->getELFFile());
1825 template <class ELFT> void ELFDumper<ELFT>::printSectionHeaders() {
1826 ELFDumperStyle->printSectionHeaders(ObjF->getELFFile());
1829 template <class ELFT> void ELFDumper<ELFT>::printRelocations() {
1830 ELFDumperStyle->printRelocations(ObjF->getELFFile());
1833 template <class ELFT>
1834 void ELFDumper<ELFT>::printProgramHeaders(
1835 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
1836 ELFDumperStyle->printProgramHeaders(ObjF->getELFFile(), PrintProgramHeaders,
1837 PrintSectionMapping);
1840 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
1841 // Dump version symbol section.
1842 ELFDumperStyle->printVersionSymbolSection(ObjF->getELFFile(),
1843 SymbolVersionSection);
1845 // Dump version definition section.
1846 ELFDumperStyle->printVersionDefinitionSection(ObjF->getELFFile(),
1847 SymbolVersionDefSection);
1849 // Dump version dependency section.
1850 ELFDumperStyle->printVersionDependencySection(ObjF->getELFFile(),
1851 SymbolVersionNeedSection);
1854 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocations() {
1855 ELFDumperStyle->printDynamicRelocations(ObjF->getELFFile());
1858 template <class ELFT>
1859 void ELFDumper<ELFT>::printSymbols(bool PrintSymbols,
1860 bool PrintDynamicSymbols) {
1861 ELFDumperStyle->printSymbols(ObjF->getELFFile(), PrintSymbols,
1862 PrintDynamicSymbols);
1865 template <class ELFT> void ELFDumper<ELFT>::printHashSymbols() {
1866 ELFDumperStyle->printHashSymbols(ObjF->getELFFile());
1869 template <class ELFT> void ELFDumper<ELFT>::printHashHistogram() {
1870 ELFDumperStyle->printHashHistogram(ObjF->getELFFile());
1873 template <class ELFT> void ELFDumper<ELFT>::printCGProfile() {
1874 ELFDumperStyle->printCGProfile(ObjF->getELFFile());
1877 template <class ELFT> void ELFDumper<ELFT>::printNotes() {
1878 ELFDumperStyle->printNotes(ObjF->getELFFile());
1881 template <class ELFT> void ELFDumper<ELFT>::printELFLinkerOptions() {
1882 ELFDumperStyle->printELFLinkerOptions(ObjF->getELFFile());
1885 template <class ELFT> void ELFDumper<ELFT>::printStackSizes() {
1886 ELFDumperStyle->printStackSizes(ObjF);
1889 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
1890 { #enum, prefix##_##enum }
1892 static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
1893 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
1894 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
1895 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
1896 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
1897 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
1900 static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
1901 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
1902 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
1903 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
1904 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
1905 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
1906 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
1907 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
1908 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
1909 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
1910 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
1911 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
1912 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
1913 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
1914 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
1915 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
1916 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
1917 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
1918 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
1919 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
1920 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
1921 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
1922 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
1923 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
1924 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
1925 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
1926 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON)
1929 static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
1930 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
1931 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
1932 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
1933 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
1934 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
1935 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
1936 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
1937 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
1938 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
1939 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
1940 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
1941 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
1942 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
1943 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
1944 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
1945 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
1948 #undef LLVM_READOBJ_DT_FLAG_ENT
1950 template <typename T, typename TFlag>
1951 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
1952 using FlagEntry = EnumEntry<TFlag>;
1953 using FlagVector = SmallVector<FlagEntry, 10>;
1954 FlagVector SetFlags;
1956 for (const auto &Flag : Flags) {
1957 if (Flag.Value == 0)
1958 continue;
1960 if ((Value & Flag.Value) == Flag.Value)
1961 SetFlags.push_back(Flag);
1964 for (const auto &Flag : SetFlags) {
1965 OS << Flag.Name << " ";
1969 template <class ELFT>
1970 void ELFDumper<ELFT>::printDynamicEntry(raw_ostream &OS, uint64_t Type,
1971 uint64_t Value) const {
1972 const char *ConvChar =
1973 (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
1975 // Handle custom printing of architecture specific tags
1976 switch (ObjF->getELFFile()->getHeader()->e_machine) {
1977 case EM_AARCH64:
1978 switch (Type) {
1979 case DT_AARCH64_BTI_PLT:
1980 case DT_AARCH64_PAC_PLT:
1981 OS << Value;
1982 return;
1983 default:
1984 break;
1986 break;
1987 case EM_HEXAGON:
1988 switch (Type) {
1989 case DT_HEXAGON_VER:
1990 OS << Value;
1991 return;
1992 case DT_HEXAGON_SYMSZ:
1993 case DT_HEXAGON_PLT:
1994 OS << format(ConvChar, Value);
1995 return;
1996 default:
1997 break;
1999 break;
2000 case EM_MIPS:
2001 switch (Type) {
2002 case DT_MIPS_RLD_VERSION:
2003 case DT_MIPS_LOCAL_GOTNO:
2004 case DT_MIPS_SYMTABNO:
2005 case DT_MIPS_UNREFEXTNO:
2006 OS << Value;
2007 return;
2008 case DT_MIPS_TIME_STAMP:
2009 case DT_MIPS_ICHECKSUM:
2010 case DT_MIPS_IVERSION:
2011 case DT_MIPS_BASE_ADDRESS:
2012 case DT_MIPS_MSYM:
2013 case DT_MIPS_CONFLICT:
2014 case DT_MIPS_LIBLIST:
2015 case DT_MIPS_CONFLICTNO:
2016 case DT_MIPS_LIBLISTNO:
2017 case DT_MIPS_GOTSYM:
2018 case DT_MIPS_HIPAGENO:
2019 case DT_MIPS_RLD_MAP:
2020 case DT_MIPS_DELTA_CLASS:
2021 case DT_MIPS_DELTA_CLASS_NO:
2022 case DT_MIPS_DELTA_INSTANCE:
2023 case DT_MIPS_DELTA_RELOC:
2024 case DT_MIPS_DELTA_RELOC_NO:
2025 case DT_MIPS_DELTA_SYM:
2026 case DT_MIPS_DELTA_SYM_NO:
2027 case DT_MIPS_DELTA_CLASSSYM:
2028 case DT_MIPS_DELTA_CLASSSYM_NO:
2029 case DT_MIPS_CXX_FLAGS:
2030 case DT_MIPS_PIXIE_INIT:
2031 case DT_MIPS_SYMBOL_LIB:
2032 case DT_MIPS_LOCALPAGE_GOTIDX:
2033 case DT_MIPS_LOCAL_GOTIDX:
2034 case DT_MIPS_HIDDEN_GOTIDX:
2035 case DT_MIPS_PROTECTED_GOTIDX:
2036 case DT_MIPS_OPTIONS:
2037 case DT_MIPS_INTERFACE:
2038 case DT_MIPS_DYNSTR_ALIGN:
2039 case DT_MIPS_INTERFACE_SIZE:
2040 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2041 case DT_MIPS_PERF_SUFFIX:
2042 case DT_MIPS_COMPACT_SIZE:
2043 case DT_MIPS_GP_VALUE:
2044 case DT_MIPS_AUX_DYNAMIC:
2045 case DT_MIPS_PLTGOT:
2046 case DT_MIPS_RWPLT:
2047 case DT_MIPS_RLD_MAP_REL:
2048 OS << format(ConvChar, Value);
2049 return;
2050 case DT_MIPS_FLAGS:
2051 printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS);
2052 return;
2053 default:
2054 break;
2056 break;
2057 default:
2058 break;
2061 switch (Type) {
2062 case DT_PLTREL:
2063 if (Value == DT_REL) {
2064 OS << "REL";
2065 break;
2066 } else if (Value == DT_RELA) {
2067 OS << "RELA";
2068 break;
2070 LLVM_FALLTHROUGH;
2071 case DT_PLTGOT:
2072 case DT_HASH:
2073 case DT_STRTAB:
2074 case DT_SYMTAB:
2075 case DT_RELA:
2076 case DT_INIT:
2077 case DT_FINI:
2078 case DT_REL:
2079 case DT_JMPREL:
2080 case DT_INIT_ARRAY:
2081 case DT_FINI_ARRAY:
2082 case DT_PREINIT_ARRAY:
2083 case DT_DEBUG:
2084 case DT_VERDEF:
2085 case DT_VERNEED:
2086 case DT_VERSYM:
2087 case DT_GNU_HASH:
2088 case DT_NULL:
2089 OS << format(ConvChar, Value);
2090 break;
2091 case DT_RELACOUNT:
2092 case DT_RELCOUNT:
2093 case DT_VERDEFNUM:
2094 case DT_VERNEEDNUM:
2095 OS << Value;
2096 break;
2097 case DT_PLTRELSZ:
2098 case DT_RELASZ:
2099 case DT_RELAENT:
2100 case DT_STRSZ:
2101 case DT_SYMENT:
2102 case DT_RELSZ:
2103 case DT_RELENT:
2104 case DT_INIT_ARRAYSZ:
2105 case DT_FINI_ARRAYSZ:
2106 case DT_PREINIT_ARRAYSZ:
2107 case DT_ANDROID_RELSZ:
2108 case DT_ANDROID_RELASZ:
2109 OS << Value << " (bytes)";
2110 break;
2111 case DT_NEEDED:
2112 case DT_SONAME:
2113 case DT_AUXILIARY:
2114 case DT_USED:
2115 case DT_FILTER:
2116 case DT_RPATH:
2117 case DT_RUNPATH: {
2118 const std::map<uint64_t, const char*> TagNames = {
2119 {DT_NEEDED, "Shared library"},
2120 {DT_SONAME, "Library soname"},
2121 {DT_AUXILIARY, "Auxiliary library"},
2122 {DT_USED, "Not needed object"},
2123 {DT_FILTER, "Filter library"},
2124 {DT_RPATH, "Library rpath"},
2125 {DT_RUNPATH, "Library runpath"},
2127 OS << TagNames.at(Type) << ": [" << getDynamicString(Value) << "]";
2128 break;
2130 case DT_FLAGS:
2131 printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS);
2132 break;
2133 case DT_FLAGS_1:
2134 printFlags(Value, makeArrayRef(ElfDynamicDTFlags1), OS);
2135 break;
2136 default:
2137 OS << format(ConvChar, Value);
2138 break;
2142 template <class ELFT>
2143 std::string ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2144 if (DynamicStringTable.empty())
2145 return "<String table is empty or was not found>";
2146 if (Value < DynamicStringTable.size())
2147 return DynamicStringTable.data() + Value;
2148 return Twine("<Invalid offset 0x" + utohexstr(Value) + ">").str();
2151 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2152 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2153 Ctx.printUnwindInformation();
2156 namespace {
2158 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2159 const ELFFile<ELF32LE> *Obj = ObjF->getELFFile();
2160 const unsigned Machine = Obj->getHeader()->e_machine;
2161 if (Machine == EM_ARM) {
2162 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF->getFileName(),
2163 DotSymtabSec);
2164 Ctx.PrintUnwindInformation();
2166 DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2167 Ctx.printUnwindInformation();
2170 } // end anonymous namespace
2172 template <class ELFT> void ELFDumper<ELFT>::printDynamicTable() {
2173 ELFDumperStyle->printDynamic(ObjF->getELFFile());
2176 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2177 ListScope D(W, "NeededLibraries");
2179 std::vector<std::string> Libs;
2180 for (const auto &Entry : dynamic_table())
2181 if (Entry.d_tag == ELF::DT_NEEDED)
2182 Libs.push_back(getDynamicString(Entry.d_un.d_val));
2184 llvm::stable_sort(Libs);
2186 for (const auto &L : Libs)
2187 W.startLine() << L << "\n";
2190 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2191 DictScope D(W, "HashTable");
2192 if (!HashTable)
2193 return;
2194 W.printNumber("Num Buckets", HashTable->nbucket);
2195 W.printNumber("Num Chains", HashTable->nchain);
2196 W.printList("Buckets", HashTable->buckets());
2197 W.printList("Chains", HashTable->chains());
2200 template <typename ELFT> void ELFDumper<ELFT>::printGnuHashTable() {
2201 DictScope D(W, "GnuHashTable");
2202 if (!GnuHashTable)
2203 return;
2204 W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2205 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2206 W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2207 W.printNumber("Shift Count", GnuHashTable->shift2);
2208 W.printHexList("Bloom Filter", GnuHashTable->filter());
2209 W.printList("Buckets", GnuHashTable->buckets());
2210 Elf_Sym_Range Syms = dynamic_symbols();
2211 unsigned NumSyms = std::distance(Syms.begin(), Syms.end());
2212 if (!NumSyms)
2213 reportError(createError("No dynamic symbol section"), ObjF->getFileName());
2214 W.printHexList("Values", GnuHashTable->values(NumSyms));
2217 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2218 W.printString("LoadName", SOName);
2221 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2222 const ELFFile<ELFT> *Obj = ObjF->getELFFile();
2223 switch (Obj->getHeader()->e_machine) {
2224 case EM_ARM:
2225 printAttributes();
2226 break;
2227 case EM_MIPS: {
2228 ELFDumperStyle->printMipsABIFlags(ObjF);
2229 printMipsOptions();
2230 printMipsReginfo();
2232 MipsGOTParser<ELFT> Parser(Obj, ObjF->getFileName(), dynamic_table(),
2233 dynamic_symbols());
2234 if (Parser.hasGot())
2235 ELFDumperStyle->printMipsGOT(Parser);
2236 if (Parser.hasPlt())
2237 ELFDumperStyle->printMipsPLT(Parser);
2238 break;
2240 default:
2241 break;
2245 template <class ELFT> void ELFDumper<ELFT>::printAttributes() {
2246 W.startLine() << "Attributes not implemented.\n";
2249 namespace {
2251 template <> void ELFDumper<ELF32LE>::printAttributes() {
2252 const ELFFile<ELF32LE> *Obj = ObjF->getELFFile();
2253 if (Obj->getHeader()->e_machine != EM_ARM) {
2254 W.startLine() << "Attributes not implemented.\n";
2255 return;
2258 DictScope BA(W, "BuildAttributes");
2259 for (const ELFO::Elf_Shdr &Sec :
2260 unwrapOrError(ObjF->getFileName(), Obj->sections())) {
2261 if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES)
2262 continue;
2264 ArrayRef<uint8_t> Contents =
2265 unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(&Sec));
2266 if (Contents[0] != ARMBuildAttrs::Format_Version) {
2267 errs() << "unrecognised FormatVersion: 0x"
2268 << Twine::utohexstr(Contents[0]) << '\n';
2269 continue;
2272 W.printHex("FormatVersion", Contents[0]);
2273 if (Contents.size() == 1)
2274 continue;
2276 ARMAttributeParser(&W).Parse(Contents, true);
2280 template <class ELFT> class MipsGOTParser {
2281 public:
2282 TYPEDEF_ELF_TYPES(ELFT)
2283 using Entry = typename ELFO::Elf_Addr;
2284 using Entries = ArrayRef<Entry>;
2286 const bool IsStatic;
2287 const ELFO * const Obj;
2289 MipsGOTParser(const ELFO *Obj, StringRef FileName, Elf_Dyn_Range DynTable,
2290 Elf_Sym_Range DynSyms);
2292 bool hasGot() const { return !GotEntries.empty(); }
2293 bool hasPlt() const { return !PltEntries.empty(); }
2295 uint64_t getGp() const;
2297 const Entry *getGotLazyResolver() const;
2298 const Entry *getGotModulePointer() const;
2299 const Entry *getPltLazyResolver() const;
2300 const Entry *getPltModulePointer() const;
2302 Entries getLocalEntries() const;
2303 Entries getGlobalEntries() const;
2304 Entries getOtherEntries() const;
2305 Entries getPltEntries() const;
2307 uint64_t getGotAddress(const Entry * E) const;
2308 int64_t getGotOffset(const Entry * E) const;
2309 const Elf_Sym *getGotSym(const Entry *E) const;
2311 uint64_t getPltAddress(const Entry * E) const;
2312 const Elf_Sym *getPltSym(const Entry *E) const;
2314 StringRef getPltStrTable() const { return PltStrTable; }
2316 private:
2317 const Elf_Shdr *GotSec;
2318 size_t LocalNum;
2319 size_t GlobalNum;
2321 const Elf_Shdr *PltSec;
2322 const Elf_Shdr *PltRelSec;
2323 const Elf_Shdr *PltSymTable;
2324 StringRef FileName;
2326 Elf_Sym_Range GotDynSyms;
2327 StringRef PltStrTable;
2329 Entries GotEntries;
2330 Entries PltEntries;
2333 } // end anonymous namespace
2335 template <class ELFT>
2336 MipsGOTParser<ELFT>::MipsGOTParser(const ELFO *Obj, StringRef FileName,
2337 Elf_Dyn_Range DynTable,
2338 Elf_Sym_Range DynSyms)
2339 : IsStatic(DynTable.empty()), Obj(Obj), GotSec(nullptr), LocalNum(0),
2340 GlobalNum(0), PltSec(nullptr), PltRelSec(nullptr), PltSymTable(nullptr),
2341 FileName(FileName) {
2342 // See "Global Offset Table" in Chapter 5 in the following document
2343 // for detailed GOT description.
2344 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2346 // Find static GOT secton.
2347 if (IsStatic) {
2348 GotSec = findSectionByName(*Obj, FileName, ".got");
2349 if (!GotSec)
2350 return;
2352 ArrayRef<uint8_t> Content =
2353 unwrapOrError(FileName, Obj->getSectionContents(GotSec));
2354 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2355 Content.size() / sizeof(Entry));
2356 LocalNum = GotEntries.size();
2357 return;
2360 // Lookup dynamic table tags which define GOT/PLT layouts.
2361 Optional<uint64_t> DtPltGot;
2362 Optional<uint64_t> DtLocalGotNum;
2363 Optional<uint64_t> DtGotSym;
2364 Optional<uint64_t> DtMipsPltGot;
2365 Optional<uint64_t> DtJmpRel;
2366 for (const auto &Entry : DynTable) {
2367 switch (Entry.getTag()) {
2368 case ELF::DT_PLTGOT:
2369 DtPltGot = Entry.getVal();
2370 break;
2371 case ELF::DT_MIPS_LOCAL_GOTNO:
2372 DtLocalGotNum = Entry.getVal();
2373 break;
2374 case ELF::DT_MIPS_GOTSYM:
2375 DtGotSym = Entry.getVal();
2376 break;
2377 case ELF::DT_MIPS_PLTGOT:
2378 DtMipsPltGot = Entry.getVal();
2379 break;
2380 case ELF::DT_JMPREL:
2381 DtJmpRel = Entry.getVal();
2382 break;
2386 // Find dynamic GOT section.
2387 if (DtPltGot || DtLocalGotNum || DtGotSym) {
2388 if (!DtPltGot)
2389 report_fatal_error("Cannot find PLTGOT dynamic table tag.");
2390 if (!DtLocalGotNum)
2391 report_fatal_error("Cannot find MIPS_LOCAL_GOTNO dynamic table tag.");
2392 if (!DtGotSym)
2393 report_fatal_error("Cannot find MIPS_GOTSYM dynamic table tag.");
2395 size_t DynSymTotal = DynSyms.size();
2396 if (*DtGotSym > DynSymTotal)
2397 reportError(
2398 createError("MIPS_GOTSYM exceeds a number of dynamic symbols"),
2399 FileName);
2401 GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
2402 if (!GotSec)
2403 reportError(createError("There is no not empty GOT section at 0x" +
2404 Twine::utohexstr(*DtPltGot)),
2405 FileName);
2407 LocalNum = *DtLocalGotNum;
2408 GlobalNum = DynSymTotal - *DtGotSym;
2410 ArrayRef<uint8_t> Content =
2411 unwrapOrError(FileName, Obj->getSectionContents(GotSec));
2412 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2413 Content.size() / sizeof(Entry));
2414 GotDynSyms = DynSyms.drop_front(*DtGotSym);
2417 // Find PLT section.
2418 if (DtMipsPltGot || DtJmpRel) {
2419 if (!DtMipsPltGot)
2420 report_fatal_error("Cannot find MIPS_PLTGOT dynamic table tag.");
2421 if (!DtJmpRel)
2422 report_fatal_error("Cannot find JMPREL dynamic table tag.");
2424 PltSec = findNotEmptySectionByAddress(Obj, FileName, * DtMipsPltGot);
2425 if (!PltSec)
2426 report_fatal_error("There is no not empty PLTGOT section at 0x " +
2427 Twine::utohexstr(*DtMipsPltGot));
2429 PltRelSec = findNotEmptySectionByAddress(Obj, FileName, * DtJmpRel);
2430 if (!PltRelSec)
2431 report_fatal_error("There is no not empty RELPLT section at 0x" +
2432 Twine::utohexstr(*DtJmpRel));
2434 ArrayRef<uint8_t> PltContent =
2435 unwrapOrError(FileName, Obj->getSectionContents(PltSec));
2436 PltEntries = Entries(reinterpret_cast<const Entry *>(PltContent.data()),
2437 PltContent.size() / sizeof(Entry));
2439 PltSymTable = unwrapOrError(FileName, Obj->getSection(PltRelSec->sh_link));
2440 PltStrTable =
2441 unwrapOrError(FileName, Obj->getStringTableForSymtab(*PltSymTable));
2445 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
2446 return GotSec->sh_addr + 0x7ff0;
2449 template <class ELFT>
2450 const typename MipsGOTParser<ELFT>::Entry *
2451 MipsGOTParser<ELFT>::getGotLazyResolver() const {
2452 return LocalNum > 0 ? &GotEntries[0] : nullptr;
2455 template <class ELFT>
2456 const typename MipsGOTParser<ELFT>::Entry *
2457 MipsGOTParser<ELFT>::getGotModulePointer() const {
2458 if (LocalNum < 2)
2459 return nullptr;
2460 const Entry &E = GotEntries[1];
2461 if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
2462 return nullptr;
2463 return &E;
2466 template <class ELFT>
2467 typename MipsGOTParser<ELFT>::Entries
2468 MipsGOTParser<ELFT>::getLocalEntries() const {
2469 size_t Skip = getGotModulePointer() ? 2 : 1;
2470 if (LocalNum - Skip <= 0)
2471 return Entries();
2472 return GotEntries.slice(Skip, LocalNum - Skip);
2475 template <class ELFT>
2476 typename MipsGOTParser<ELFT>::Entries
2477 MipsGOTParser<ELFT>::getGlobalEntries() const {
2478 if (GlobalNum == 0)
2479 return Entries();
2480 return GotEntries.slice(LocalNum, GlobalNum);
2483 template <class ELFT>
2484 typename MipsGOTParser<ELFT>::Entries
2485 MipsGOTParser<ELFT>::getOtherEntries() const {
2486 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
2487 if (OtherNum == 0)
2488 return Entries();
2489 return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
2492 template <class ELFT>
2493 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
2494 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2495 return GotSec->sh_addr + Offset;
2498 template <class ELFT>
2499 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
2500 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2501 return Offset - 0x7ff0;
2504 template <class ELFT>
2505 const typename MipsGOTParser<ELFT>::Elf_Sym *
2506 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
2507 int64_t Offset = std::distance(GotEntries.data(), E);
2508 return &GotDynSyms[Offset - LocalNum];
2511 template <class ELFT>
2512 const typename MipsGOTParser<ELFT>::Entry *
2513 MipsGOTParser<ELFT>::getPltLazyResolver() const {
2514 return PltEntries.empty() ? nullptr : &PltEntries[0];
2517 template <class ELFT>
2518 const typename MipsGOTParser<ELFT>::Entry *
2519 MipsGOTParser<ELFT>::getPltModulePointer() const {
2520 return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
2523 template <class ELFT>
2524 typename MipsGOTParser<ELFT>::Entries
2525 MipsGOTParser<ELFT>::getPltEntries() const {
2526 if (PltEntries.size() <= 2)
2527 return Entries();
2528 return PltEntries.slice(2, PltEntries.size() - 2);
2531 template <class ELFT>
2532 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
2533 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
2534 return PltSec->sh_addr + Offset;
2537 template <class ELFT>
2538 const typename MipsGOTParser<ELFT>::Elf_Sym *
2539 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
2540 int64_t Offset = std::distance(getPltEntries().data(), E);
2541 if (PltRelSec->sh_type == ELF::SHT_REL) {
2542 Elf_Rel_Range Rels = unwrapOrError(FileName, Obj->rels(PltRelSec));
2543 return unwrapOrError(FileName,
2544 Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
2545 } else {
2546 Elf_Rela_Range Rels = unwrapOrError(FileName, Obj->relas(PltRelSec));
2547 return unwrapOrError(FileName,
2548 Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
2552 static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
2553 {"None", Mips::AFL_EXT_NONE},
2554 {"Broadcom SB-1", Mips::AFL_EXT_SB1},
2555 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
2556 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
2557 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
2558 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
2559 {"LSI R4010", Mips::AFL_EXT_4010},
2560 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
2561 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
2562 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
2563 {"MIPS R4650", Mips::AFL_EXT_4650},
2564 {"MIPS R5900", Mips::AFL_EXT_5900},
2565 {"MIPS R10000", Mips::AFL_EXT_10000},
2566 {"NEC VR4100", Mips::AFL_EXT_4100},
2567 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
2568 {"NEC VR4120", Mips::AFL_EXT_4120},
2569 {"NEC VR5400", Mips::AFL_EXT_5400},
2570 {"NEC VR5500", Mips::AFL_EXT_5500},
2571 {"RMI Xlr", Mips::AFL_EXT_XLR},
2572 {"Toshiba R3900", Mips::AFL_EXT_3900}
2575 static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
2576 {"DSP", Mips::AFL_ASE_DSP},
2577 {"DSPR2", Mips::AFL_ASE_DSPR2},
2578 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
2579 {"MCU", Mips::AFL_ASE_MCU},
2580 {"MDMX", Mips::AFL_ASE_MDMX},
2581 {"MIPS-3D", Mips::AFL_ASE_MIPS3D},
2582 {"MT", Mips::AFL_ASE_MT},
2583 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
2584 {"VZ", Mips::AFL_ASE_VIRT},
2585 {"MSA", Mips::AFL_ASE_MSA},
2586 {"MIPS16", Mips::AFL_ASE_MIPS16},
2587 {"microMIPS", Mips::AFL_ASE_MICROMIPS},
2588 {"XPA", Mips::AFL_ASE_XPA},
2589 {"CRC", Mips::AFL_ASE_CRC},
2590 {"GINV", Mips::AFL_ASE_GINV},
2593 static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
2594 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
2595 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
2596 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
2597 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
2598 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
2599 Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
2600 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
2601 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
2602 {"Hard float compat (32-bit CPU, 64-bit FPU)",
2603 Mips::Val_GNU_MIPS_ABI_FP_64A}
2606 static const EnumEntry<unsigned> ElfMipsFlags1[] {
2607 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
2610 static int getMipsRegisterSize(uint8_t Flag) {
2611 switch (Flag) {
2612 case Mips::AFL_REG_NONE:
2613 return 0;
2614 case Mips::AFL_REG_32:
2615 return 32;
2616 case Mips::AFL_REG_64:
2617 return 64;
2618 case Mips::AFL_REG_128:
2619 return 128;
2620 default:
2621 return -1;
2625 template <class ELFT>
2626 static void printMipsReginfoData(ScopedPrinter &W,
2627 const Elf_Mips_RegInfo<ELFT> &Reginfo) {
2628 W.printHex("GP", Reginfo.ri_gp_value);
2629 W.printHex("General Mask", Reginfo.ri_gprmask);
2630 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
2631 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
2632 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
2633 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
2636 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
2637 const ELFFile<ELFT> *Obj = ObjF->getELFFile();
2638 const Elf_Shdr *Shdr = findSectionByName(*Obj, ObjF->getFileName(), ".reginfo");
2639 if (!Shdr) {
2640 W.startLine() << "There is no .reginfo section in the file.\n";
2641 return;
2643 ArrayRef<uint8_t> Sec =
2644 unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
2645 if (Sec.size() != sizeof(Elf_Mips_RegInfo<ELFT>)) {
2646 W.startLine() << "The .reginfo section has a wrong size.\n";
2647 return;
2650 DictScope GS(W, "MIPS RegInfo");
2651 auto *Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(Sec.data());
2652 printMipsReginfoData(W, *Reginfo);
2655 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
2656 const ELFFile<ELFT> *Obj = ObjF->getELFFile();
2657 const Elf_Shdr *Shdr =
2658 findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.options");
2659 if (!Shdr) {
2660 W.startLine() << "There is no .MIPS.options section in the file.\n";
2661 return;
2664 DictScope GS(W, "MIPS Options");
2666 ArrayRef<uint8_t> Sec =
2667 unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
2668 while (!Sec.empty()) {
2669 if (Sec.size() < sizeof(Elf_Mips_Options<ELFT>)) {
2670 W.startLine() << "The .MIPS.options section has a wrong size.\n";
2671 return;
2673 auto *O = reinterpret_cast<const Elf_Mips_Options<ELFT> *>(Sec.data());
2674 DictScope GS(W, getElfMipsOptionsOdkType(O->kind));
2675 switch (O->kind) {
2676 case ODK_REGINFO:
2677 printMipsReginfoData(W, O->getRegInfo());
2678 break;
2679 default:
2680 W.startLine() << "Unsupported MIPS options tag.\n";
2681 break;
2683 Sec = Sec.slice(O->size);
2687 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
2688 const ELFFile<ELFT> *Obj = ObjF->getELFFile();
2689 const Elf_Shdr *StackMapSection = nullptr;
2690 for (const auto &Sec : unwrapOrError(ObjF->getFileName(), Obj->sections())) {
2691 StringRef Name =
2692 unwrapOrError(ObjF->getFileName(), Obj->getSectionName(&Sec));
2693 if (Name == ".llvm_stackmaps") {
2694 StackMapSection = &Sec;
2695 break;
2699 if (!StackMapSection)
2700 return;
2702 ArrayRef<uint8_t> StackMapContentsArray = unwrapOrError(
2703 ObjF->getFileName(), Obj->getSectionContents(StackMapSection));
2705 prettyPrintStackMap(
2706 W, StackMapParser<ELFT::TargetEndianness>(StackMapContentsArray));
2709 template <class ELFT> void ELFDumper<ELFT>::printGroupSections() {
2710 ELFDumperStyle->printGroupSections(ObjF->getELFFile());
2713 template <class ELFT> void ELFDumper<ELFT>::printAddrsig() {
2714 ELFDumperStyle->printAddrsig(ObjF->getELFFile());
2717 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
2718 StringRef Str2) {
2719 OS.PadToColumn(2u);
2720 OS << Str1;
2721 OS.PadToColumn(37u);
2722 OS << Str2 << "\n";
2723 OS.flush();
2726 template <class ELFT>
2727 static std::string getSectionHeadersNumString(const ELFFile<ELFT> *Obj,
2728 StringRef FileName) {
2729 const typename ELFT::Ehdr *ElfHeader = Obj->getHeader();
2730 if (ElfHeader->e_shnum != 0)
2731 return to_string(ElfHeader->e_shnum);
2733 ArrayRef<typename ELFT::Shdr> Arr = unwrapOrError(FileName, Obj->sections());
2734 if (Arr.empty())
2735 return "0";
2736 return "0 (" + to_string(Arr[0].sh_size) + ")";
2739 template <class ELFT>
2740 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> *Obj,
2741 StringRef FileName) {
2742 const typename ELFT::Ehdr *ElfHeader = Obj->getHeader();
2743 if (ElfHeader->e_shstrndx != SHN_XINDEX)
2744 return to_string(ElfHeader->e_shstrndx);
2746 ArrayRef<typename ELFT::Shdr> Arr = unwrapOrError(FileName, Obj->sections());
2747 if (Arr.empty())
2748 return "65535 (corrupt: out of range)";
2749 return to_string(ElfHeader->e_shstrndx) + " (" + to_string(Arr[0].sh_link) +
2750 ")";
2753 template <class ELFT> void GNUStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
2754 const Elf_Ehdr *e = Obj->getHeader();
2755 OS << "ELF Header:\n";
2756 OS << " Magic: ";
2757 std::string Str;
2758 for (int i = 0; i < ELF::EI_NIDENT; i++)
2759 OS << format(" %02x", static_cast<int>(e->e_ident[i]));
2760 OS << "\n";
2761 Str = printEnum(e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
2762 printFields(OS, "Class:", Str);
2763 Str = printEnum(e->e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
2764 printFields(OS, "Data:", Str);
2765 OS.PadToColumn(2u);
2766 OS << "Version:";
2767 OS.PadToColumn(37u);
2768 OS << to_hexString(e->e_ident[ELF::EI_VERSION]);
2769 if (e->e_version == ELF::EV_CURRENT)
2770 OS << " (current)";
2771 OS << "\n";
2772 Str = printEnum(e->e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
2773 printFields(OS, "OS/ABI:", Str);
2774 Str = "0x" + to_hexString(e->e_ident[ELF::EI_ABIVERSION]);
2775 printFields(OS, "ABI Version:", Str);
2776 Str = printEnum(e->e_type, makeArrayRef(ElfObjectFileType));
2777 printFields(OS, "Type:", Str);
2778 Str = printEnum(e->e_machine, makeArrayRef(ElfMachineType));
2779 printFields(OS, "Machine:", Str);
2780 Str = "0x" + to_hexString(e->e_version);
2781 printFields(OS, "Version:", Str);
2782 Str = "0x" + to_hexString(e->e_entry);
2783 printFields(OS, "Entry point address:", Str);
2784 Str = to_string(e->e_phoff) + " (bytes into file)";
2785 printFields(OS, "Start of program headers:", Str);
2786 Str = to_string(e->e_shoff) + " (bytes into file)";
2787 printFields(OS, "Start of section headers:", Str);
2788 std::string ElfFlags;
2789 if (e->e_machine == EM_MIPS)
2790 ElfFlags =
2791 printFlags(e->e_flags, makeArrayRef(ElfHeaderMipsFlags),
2792 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
2793 unsigned(ELF::EF_MIPS_MACH));
2794 else if (e->e_machine == EM_RISCV)
2795 ElfFlags = printFlags(e->e_flags, makeArrayRef(ElfHeaderRISCVFlags));
2796 Str = "0x" + to_hexString(e->e_flags);
2797 if (!ElfFlags.empty())
2798 Str = Str + ", " + ElfFlags;
2799 printFields(OS, "Flags:", Str);
2800 Str = to_string(e->e_ehsize) + " (bytes)";
2801 printFields(OS, "Size of this header:", Str);
2802 Str = to_string(e->e_phentsize) + " (bytes)";
2803 printFields(OS, "Size of program headers:", Str);
2804 Str = to_string(e->e_phnum);
2805 printFields(OS, "Number of program headers:", Str);
2806 Str = to_string(e->e_shentsize) + " (bytes)";
2807 printFields(OS, "Size of section headers:", Str);
2808 Str = getSectionHeadersNumString(Obj, this->FileName);
2809 printFields(OS, "Number of section headers:", Str);
2810 Str = getSectionHeaderTableIndexString(Obj, this->FileName);
2811 printFields(OS, "Section header string table index:", Str);
2814 namespace {
2815 struct GroupMember {
2816 StringRef Name;
2817 uint64_t Index;
2820 struct GroupSection {
2821 StringRef Name;
2822 std::string Signature;
2823 uint64_t ShName;
2824 uint64_t Index;
2825 uint32_t Link;
2826 uint32_t Info;
2827 uint32_t Type;
2828 std::vector<GroupMember> Members;
2831 template <class ELFT>
2832 std::vector<GroupSection> getGroups(const ELFFile<ELFT> *Obj,
2833 StringRef FileName) {
2834 using Elf_Shdr = typename ELFT::Shdr;
2835 using Elf_Sym = typename ELFT::Sym;
2836 using Elf_Word = typename ELFT::Word;
2838 std::vector<GroupSection> Ret;
2839 uint64_t I = 0;
2840 for (const Elf_Shdr &Sec : unwrapOrError(FileName, Obj->sections())) {
2841 ++I;
2842 if (Sec.sh_type != ELF::SHT_GROUP)
2843 continue;
2845 const Elf_Shdr *Symtab =
2846 unwrapOrError(FileName, Obj->getSection(Sec.sh_link));
2847 StringRef StrTable =
2848 unwrapOrError(FileName, Obj->getStringTableForSymtab(*Symtab));
2849 const Elf_Sym *Sym = unwrapOrError(
2850 FileName, Obj->template getEntry<Elf_Sym>(Symtab, Sec.sh_info));
2851 auto Data = unwrapOrError(
2852 FileName, Obj->template getSectionContentsAsArray<Elf_Word>(&Sec));
2854 StringRef Name = unwrapOrError(FileName, Obj->getSectionName(&Sec));
2855 StringRef Signature = StrTable.data() + Sym->st_name;
2856 Ret.push_back({Name,
2857 maybeDemangle(Signature),
2858 Sec.sh_name,
2859 I - 1,
2860 Sec.sh_link,
2861 Sec.sh_info,
2862 Data[0],
2863 {}});
2865 std::vector<GroupMember> &GM = Ret.back().Members;
2866 for (uint32_t Ndx : Data.slice(1)) {
2867 auto Sec = unwrapOrError(FileName, Obj->getSection(Ndx));
2868 const StringRef Name = unwrapOrError(FileName, Obj->getSectionName(Sec));
2869 GM.push_back({Name, Ndx});
2872 return Ret;
2875 DenseMap<uint64_t, const GroupSection *>
2876 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
2877 DenseMap<uint64_t, const GroupSection *> Ret;
2878 for (const GroupSection &G : Groups)
2879 for (const GroupMember &GM : G.Members)
2880 Ret.insert({GM.Index, &G});
2881 return Ret;
2884 } // namespace
2886 template <class ELFT> void GNUStyle<ELFT>::printGroupSections(const ELFO *Obj) {
2887 std::vector<GroupSection> V = getGroups<ELFT>(Obj, this->FileName);
2888 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
2889 for (const GroupSection &G : V) {
2890 OS << "\n"
2891 << getGroupType(G.Type) << " group section ["
2892 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
2893 << "] contains " << G.Members.size() << " sections:\n"
2894 << " [Index] Name\n";
2895 for (const GroupMember &GM : G.Members) {
2896 const GroupSection *MainGroup = Map[GM.Index];
2897 if (MainGroup != &G) {
2898 OS.flush();
2899 errs() << "Error: section [" << format_decimal(GM.Index, 5)
2900 << "] in group section [" << format_decimal(G.Index, 5)
2901 << "] already in group section ["
2902 << format_decimal(MainGroup->Index, 5) << "]";
2903 errs().flush();
2904 continue;
2906 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n";
2910 if (V.empty())
2911 OS << "There are no section groups in this file.\n";
2914 template <class ELFT>
2915 void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
2916 const Elf_Rela &R, bool IsRela) {
2917 const Elf_Sym *Sym =
2918 unwrapOrError(this->FileName, Obj->getRelocationSymbol(&R, SymTab));
2919 std::string TargetName;
2920 if (Sym && Sym->getType() == ELF::STT_SECTION) {
2921 const Elf_Shdr *Sec = unwrapOrError(
2922 this->FileName,
2923 Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
2924 TargetName = unwrapOrError(this->FileName, Obj->getSectionName(Sec));
2925 } else if (Sym) {
2926 StringRef StrTable =
2927 unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*SymTab));
2928 TargetName = this->dumper()->getFullSymbolName(
2929 Sym, StrTable, SymTab->sh_type == SHT_DYNSYM /* IsDynamic */);
2931 printRelocation(Obj, Sym, TargetName, R, IsRela);
2934 template <class ELFT>
2935 void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Sym *Sym,
2936 StringRef SymbolName, const Elf_Rela &R,
2937 bool IsRela) {
2938 // First two fields are bit width dependent. The rest of them are fixed width.
2939 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
2940 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
2941 unsigned Width = ELFT::Is64Bits ? 16 : 8;
2943 Fields[0].Str = to_string(format_hex_no_prefix(R.r_offset, Width));
2944 Fields[1].Str = to_string(format_hex_no_prefix(R.r_info, Width));
2946 SmallString<32> RelocName;
2947 Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName);
2948 Fields[2].Str = RelocName.c_str();
2950 if (Sym && (!SymbolName.empty() || Sym->getValue() != 0))
2951 Fields[3].Str = to_string(format_hex_no_prefix(Sym->getValue(), Width));
2953 Fields[4].Str = SymbolName;
2954 for (const Field &F : Fields)
2955 printField(F);
2957 std::string Addend;
2958 if (IsRela) {
2959 int64_t RelAddend = R.r_addend;
2960 if (!SymbolName.empty()) {
2961 if (R.r_addend < 0) {
2962 Addend = " - ";
2963 RelAddend = std::abs(RelAddend);
2964 } else
2965 Addend = " + ";
2968 Addend += to_hexString(RelAddend, false);
2970 OS << Addend << "\n";
2973 template <class ELFT> void GNUStyle<ELFT>::printRelocHeader(unsigned SType) {
2974 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
2975 bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
2976 if (ELFT::Is64Bits)
2977 OS << " ";
2978 else
2979 OS << " ";
2980 if (IsRelr && opts::RawRelr)
2981 OS << "Data ";
2982 else
2983 OS << "Offset";
2984 if (ELFT::Is64Bits)
2985 OS << " Info Type"
2986 << " Symbol's Value Symbol's Name";
2987 else
2988 OS << " Info Type Sym. Value Symbol's Name";
2989 if (IsRela)
2990 OS << " + Addend";
2991 OS << "\n";
2994 template <class ELFT> void GNUStyle<ELFT>::printRelocations(const ELFO *Obj) {
2995 bool HasRelocSections = false;
2996 for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
2997 if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA &&
2998 Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL &&
2999 Sec.sh_type != ELF::SHT_ANDROID_RELA &&
3000 Sec.sh_type != ELF::SHT_ANDROID_RELR)
3001 continue;
3002 HasRelocSections = true;
3003 StringRef Name = unwrapOrError(this->FileName, Obj->getSectionName(&Sec));
3004 unsigned Entries = Sec.getEntityCount();
3005 std::vector<Elf_Rela> AndroidRelas;
3006 if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3007 Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3008 // Android's packed relocation section needs to be unpacked first
3009 // to get the actual number of entries.
3010 AndroidRelas = unwrapOrError(this->FileName, Obj->android_relas(&Sec));
3011 Entries = AndroidRelas.size();
3013 std::vector<Elf_Rela> RelrRelas;
3014 if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3015 Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3016 // .relr.dyn relative relocation section needs to be unpacked first
3017 // to get the actual number of entries.
3018 Elf_Relr_Range Relrs = unwrapOrError(this->FileName, Obj->relrs(&Sec));
3019 RelrRelas = unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
3020 Entries = RelrRelas.size();
3022 uintX_t Offset = Sec.sh_offset;
3023 OS << "\nRelocation section '" << Name << "' at offset 0x"
3024 << to_hexString(Offset, false) << " contains " << Entries
3025 << " entries:\n";
3026 printRelocHeader(Sec.sh_type);
3027 const Elf_Shdr *SymTab =
3028 unwrapOrError(this->FileName, Obj->getSection(Sec.sh_link));
3029 switch (Sec.sh_type) {
3030 case ELF::SHT_REL:
3031 for (const auto &R : unwrapOrError(this->FileName, Obj->rels(&Sec))) {
3032 Elf_Rela Rela;
3033 Rela.r_offset = R.r_offset;
3034 Rela.r_info = R.r_info;
3035 Rela.r_addend = 0;
3036 printRelocation(Obj, SymTab, Rela, false);
3038 break;
3039 case ELF::SHT_RELA:
3040 for (const auto &R : unwrapOrError(this->FileName, Obj->relas(&Sec)))
3041 printRelocation(Obj, SymTab, R, true);
3042 break;
3043 case ELF::SHT_RELR:
3044 case ELF::SHT_ANDROID_RELR:
3045 if (opts::RawRelr)
3046 for (const auto &R : unwrapOrError(this->FileName, Obj->relrs(&Sec)))
3047 OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8))
3048 << "\n";
3049 else
3050 for (const auto &R : RelrRelas)
3051 printRelocation(Obj, SymTab, R, false);
3052 break;
3053 case ELF::SHT_ANDROID_REL:
3054 case ELF::SHT_ANDROID_RELA:
3055 for (const auto &R : AndroidRelas)
3056 printRelocation(Obj, SymTab, R, Sec.sh_type == ELF::SHT_ANDROID_RELA);
3057 break;
3060 if (!HasRelocSections)
3061 OS << "\nThere are no relocations in this file.\n";
3064 // Print the offset of a particular section from anyone of the ranges:
3065 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3066 // If 'Type' does not fall within any of those ranges, then a string is
3067 // returned as '<unknown>' followed by the type value.
3068 static std::string getSectionTypeOffsetString(unsigned Type) {
3069 if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3070 return "LOOS+0x" + to_hexString(Type - SHT_LOOS);
3071 else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3072 return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC);
3073 else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3074 return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER);
3075 return "0x" + to_hexString(Type) + ": <unknown>";
3078 static std::string getSectionTypeString(unsigned Arch, unsigned Type) {
3079 using namespace ELF;
3081 switch (Arch) {
3082 case EM_ARM:
3083 switch (Type) {
3084 case SHT_ARM_EXIDX:
3085 return "ARM_EXIDX";
3086 case SHT_ARM_PREEMPTMAP:
3087 return "ARM_PREEMPTMAP";
3088 case SHT_ARM_ATTRIBUTES:
3089 return "ARM_ATTRIBUTES";
3090 case SHT_ARM_DEBUGOVERLAY:
3091 return "ARM_DEBUGOVERLAY";
3092 case SHT_ARM_OVERLAYSECTION:
3093 return "ARM_OVERLAYSECTION";
3095 break;
3096 case EM_X86_64:
3097 switch (Type) {
3098 case SHT_X86_64_UNWIND:
3099 return "X86_64_UNWIND";
3101 break;
3102 case EM_MIPS:
3103 case EM_MIPS_RS3_LE:
3104 switch (Type) {
3105 case SHT_MIPS_REGINFO:
3106 return "MIPS_REGINFO";
3107 case SHT_MIPS_OPTIONS:
3108 return "MIPS_OPTIONS";
3109 case SHT_MIPS_DWARF:
3110 return "MIPS_DWARF";
3111 case SHT_MIPS_ABIFLAGS:
3112 return "MIPS_ABIFLAGS";
3114 break;
3116 switch (Type) {
3117 case SHT_NULL:
3118 return "NULL";
3119 case SHT_PROGBITS:
3120 return "PROGBITS";
3121 case SHT_SYMTAB:
3122 return "SYMTAB";
3123 case SHT_STRTAB:
3124 return "STRTAB";
3125 case SHT_RELA:
3126 return "RELA";
3127 case SHT_HASH:
3128 return "HASH";
3129 case SHT_DYNAMIC:
3130 return "DYNAMIC";
3131 case SHT_NOTE:
3132 return "NOTE";
3133 case SHT_NOBITS:
3134 return "NOBITS";
3135 case SHT_REL:
3136 return "REL";
3137 case SHT_SHLIB:
3138 return "SHLIB";
3139 case SHT_DYNSYM:
3140 return "DYNSYM";
3141 case SHT_INIT_ARRAY:
3142 return "INIT_ARRAY";
3143 case SHT_FINI_ARRAY:
3144 return "FINI_ARRAY";
3145 case SHT_PREINIT_ARRAY:
3146 return "PREINIT_ARRAY";
3147 case SHT_GROUP:
3148 return "GROUP";
3149 case SHT_SYMTAB_SHNDX:
3150 return "SYMTAB SECTION INDICES";
3151 case SHT_ANDROID_REL:
3152 return "ANDROID_REL";
3153 case SHT_ANDROID_RELA:
3154 return "ANDROID_RELA";
3155 case SHT_RELR:
3156 case SHT_ANDROID_RELR:
3157 return "RELR";
3158 case SHT_LLVM_ODRTAB:
3159 return "LLVM_ODRTAB";
3160 case SHT_LLVM_LINKER_OPTIONS:
3161 return "LLVM_LINKER_OPTIONS";
3162 case SHT_LLVM_CALL_GRAPH_PROFILE:
3163 return "LLVM_CALL_GRAPH_PROFILE";
3164 case SHT_LLVM_ADDRSIG:
3165 return "LLVM_ADDRSIG";
3166 case SHT_LLVM_DEPENDENT_LIBRARIES:
3167 return "LLVM_DEPENDENT_LIBRARIES";
3168 case SHT_LLVM_SYMPART:
3169 return "LLVM_SYMPART";
3170 case SHT_LLVM_PART_EHDR:
3171 return "LLVM_PART_EHDR";
3172 case SHT_LLVM_PART_PHDR:
3173 return "LLVM_PART_PHDR";
3174 // FIXME: Parse processor specific GNU attributes
3175 case SHT_GNU_ATTRIBUTES:
3176 return "ATTRIBUTES";
3177 case SHT_GNU_HASH:
3178 return "GNU_HASH";
3179 case SHT_GNU_verdef:
3180 return "VERDEF";
3181 case SHT_GNU_verneed:
3182 return "VERNEED";
3183 case SHT_GNU_versym:
3184 return "VERSYM";
3185 default:
3186 return getSectionTypeOffsetString(Type);
3188 return "";
3191 template <class ELFT>
3192 void GNUStyle<ELFT>::printSectionHeaders(const ELFO *Obj) {
3193 unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3194 ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
3195 OS << "There are " << to_string(Sections.size())
3196 << " section headers, starting at offset "
3197 << "0x" << to_hexString(Obj->getHeader()->e_shoff, false) << ":\n\n";
3198 OS << "Section Headers:\n";
3199 Field Fields[11] = {
3200 {"[Nr]", 2}, {"Name", 7}, {"Type", 25},
3201 {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias},
3202 {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3203 {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3204 for (auto &F : Fields)
3205 printField(F);
3206 OS << "\n";
3208 const ELFObjectFile<ELFT> *ElfObj = this->dumper()->getElfObject();
3209 size_t SectionIndex = 0;
3210 for (const Elf_Shdr &Sec : Sections) {
3211 Fields[0].Str = to_string(SectionIndex);
3212 Fields[1].Str = unwrapOrError<StringRef>(
3213 ElfObj->getFileName(), Obj->getSectionName(&Sec, this->WarningHandler));
3214 Fields[2].Str =
3215 getSectionTypeString(Obj->getHeader()->e_machine, Sec.sh_type);
3216 Fields[3].Str =
3217 to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3218 Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3219 Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3220 Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3221 Fields[7].Str = getGNUFlags(Sec.sh_flags);
3222 Fields[8].Str = to_string(Sec.sh_link);
3223 Fields[9].Str = to_string(Sec.sh_info);
3224 Fields[10].Str = to_string(Sec.sh_addralign);
3226 OS.PadToColumn(Fields[0].Column);
3227 OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3228 for (int i = 1; i < 7; i++)
3229 printField(Fields[i]);
3230 OS.PadToColumn(Fields[7].Column);
3231 OS << right_justify(Fields[7].Str, 3);
3232 OS.PadToColumn(Fields[8].Column);
3233 OS << right_justify(Fields[8].Str, 2);
3234 OS.PadToColumn(Fields[9].Column);
3235 OS << right_justify(Fields[9].Str, 3);
3236 OS.PadToColumn(Fields[10].Column);
3237 OS << right_justify(Fields[10].Str, 2);
3238 OS << "\n";
3239 ++SectionIndex;
3241 OS << "Key to Flags:\n"
3242 << " W (write), A (alloc), X (execute), M (merge), S (strings), l "
3243 "(large)\n"
3244 << " I (info), L (link order), G (group), T (TLS), E (exclude),\
3245 x (unknown)\n"
3246 << " O (extra OS processing required) o (OS specific),\
3247 p (processor specific)\n";
3250 template <class ELFT>
3251 void GNUStyle<ELFT>::printSymtabMessage(const ELFO *Obj, StringRef Name,
3252 size_t Entries,
3253 bool NonVisibilityBitsUsed) {
3254 if (!Name.empty())
3255 OS << "\nSymbol table '" << Name << "' contains " << Entries
3256 << " entries:\n";
3257 else
3258 OS << "\n Symbol table for image:\n";
3260 if (ELFT::Is64Bits)
3261 OS << " Num: Value Size Type Bind Vis";
3262 else
3263 OS << " Num: Value Size Type Bind Vis";
3265 if (NonVisibilityBitsUsed)
3266 OS << " ";
3267 OS << " Ndx Name\n";
3270 template <class ELFT>
3271 std::string GNUStyle<ELFT>::getSymbolSectionNdx(const ELFO *Obj,
3272 const Elf_Sym *Symbol,
3273 const Elf_Sym *FirstSym) {
3274 unsigned SectionIndex = Symbol->st_shndx;
3275 switch (SectionIndex) {
3276 case ELF::SHN_UNDEF:
3277 return "UND";
3278 case ELF::SHN_ABS:
3279 return "ABS";
3280 case ELF::SHN_COMMON:
3281 return "COM";
3282 case ELF::SHN_XINDEX:
3283 return to_string(format_decimal(
3284 unwrapOrError(this->FileName,
3285 object::getExtendedSymbolTableIndex<ELFT>(
3286 Symbol, FirstSym, this->dumper()->getShndxTable())),
3287 3));
3288 default:
3289 // Find if:
3290 // Processor specific
3291 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
3292 return std::string("PRC[0x") +
3293 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3294 // OS specific
3295 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
3296 return std::string("OS[0x") +
3297 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3298 // Architecture reserved:
3299 if (SectionIndex >= ELF::SHN_LORESERVE &&
3300 SectionIndex <= ELF::SHN_HIRESERVE)
3301 return std::string("RSV[0x") +
3302 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3303 // A normal section with an index
3304 return to_string(format_decimal(SectionIndex, 3));
3308 template <class ELFT>
3309 void GNUStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
3310 const Elf_Sym *FirstSym, StringRef StrTable,
3311 bool IsDynamic, bool NonVisibilityBitsUsed) {
3312 static int Idx = 0;
3313 static bool Dynamic = true;
3315 // If this function was called with a different value from IsDynamic
3316 // from last call, happens when we move from dynamic to static symbol
3317 // table, "Num" field should be reset.
3318 if (!Dynamic != !IsDynamic) {
3319 Idx = 0;
3320 Dynamic = false;
3323 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3324 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias,
3325 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
3326 Fields[0].Str = to_string(format_decimal(Idx++, 6)) + ":";
3327 Fields[1].Str = to_string(
3328 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
3329 Fields[2].Str = to_string(format_decimal(Symbol->st_size, 5));
3331 unsigned char SymbolType = Symbol->getType();
3332 if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
3333 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3334 Fields[3].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3335 else
3336 Fields[3].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
3338 Fields[4].Str =
3339 printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3340 Fields[5].Str =
3341 printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities));
3342 if (Symbol->st_other & ~0x3)
3343 Fields[5].Str +=
3344 " [<other: " + to_string(format_hex(Symbol->st_other, 2)) + ">]";
3346 Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
3347 Fields[6].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym);
3349 Fields[7].Str =
3350 this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
3351 for (auto &Entry : Fields)
3352 printField(Entry);
3353 OS << "\n";
3356 template <class ELFT>
3357 void GNUStyle<ELFT>::printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym,
3358 uint32_t Sym, StringRef StrTable,
3359 uint32_t Bucket) {
3360 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3361 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias,
3362 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
3363 Fields[0].Str = to_string(format_decimal(Sym, 5));
3364 Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
3366 const auto Symbol = FirstSym + Sym;
3367 Fields[2].Str = to_string(
3368 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
3369 Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
3371 unsigned char SymbolType = Symbol->getType();
3372 if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
3373 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3374 Fields[4].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3375 else
3376 Fields[4].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
3378 Fields[5].Str =
3379 printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3380 Fields[6].Str =
3381 printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities));
3382 Fields[7].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym);
3383 Fields[8].Str = this->dumper()->getFullSymbolName(Symbol, StrTable, true);
3385 for (auto &Entry : Fields)
3386 printField(Entry);
3387 OS << "\n";
3390 template <class ELFT>
3391 void GNUStyle<ELFT>::printSymbols(const ELFO *Obj, bool PrintSymbols,
3392 bool PrintDynamicSymbols) {
3393 if (!PrintSymbols && !PrintDynamicSymbols)
3394 return;
3395 // GNU readelf prints both the .dynsym and .symtab with --symbols.
3396 this->dumper()->printSymbolsHelper(true);
3397 if (PrintSymbols)
3398 this->dumper()->printSymbolsHelper(false);
3401 template <class ELFT> void GNUStyle<ELFT>::printHashSymbols(const ELFO *Obj) {
3402 if (this->dumper()->getDynamicStringTable().empty())
3403 return;
3404 auto StringTable = this->dumper()->getDynamicStringTable();
3405 auto DynSyms = this->dumper()->dynamic_symbols();
3407 // Try printing .hash
3408 if (auto SysVHash = this->dumper()->getHashTable()) {
3409 OS << "\n Symbol table of .hash for image:\n";
3410 if (ELFT::Is64Bits)
3411 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3412 else
3413 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3414 OS << "\n";
3416 auto Buckets = SysVHash->buckets();
3417 auto Chains = SysVHash->chains();
3418 for (uint32_t Buc = 0; Buc < SysVHash->nbucket; Buc++) {
3419 if (Buckets[Buc] == ELF::STN_UNDEF)
3420 continue;
3421 std::vector<bool> Visited(SysVHash->nchain);
3422 for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash->nchain; Ch = Chains[Ch]) {
3423 if (Ch == ELF::STN_UNDEF)
3424 break;
3426 if (Visited[Ch]) {
3427 reportWarning(
3428 createError(".hash section is invalid: bucket " + Twine(Ch) +
3429 ": a cycle was detected in the linked chain"),
3430 this->FileName);
3431 break;
3434 printHashedSymbol(Obj, &DynSyms[0], Ch, StringTable, Buc);
3435 Visited[Ch] = true;
3440 // Try printing .gnu.hash
3441 if (auto GnuHash = this->dumper()->getGnuHashTable()) {
3442 OS << "\n Symbol table of .gnu.hash for image:\n";
3443 if (ELFT::Is64Bits)
3444 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3445 else
3446 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3447 OS << "\n";
3448 auto Buckets = GnuHash->buckets();
3449 for (uint32_t Buc = 0; Buc < GnuHash->nbuckets; Buc++) {
3450 if (Buckets[Buc] == ELF::STN_UNDEF)
3451 continue;
3452 uint32_t Index = Buckets[Buc];
3453 uint32_t GnuHashable = Index - GnuHash->symndx;
3454 // Print whole chain
3455 while (true) {
3456 printHashedSymbol(Obj, &DynSyms[0], Index++, StringTable, Buc);
3457 // Chain ends at symbol with stopper bit
3458 if ((GnuHash->values(DynSyms.size())[GnuHashable++] & 1) == 1)
3459 break;
3465 static inline std::string printPhdrFlags(unsigned Flag) {
3466 std::string Str;
3467 Str = (Flag & PF_R) ? "R" : " ";
3468 Str += (Flag & PF_W) ? "W" : " ";
3469 Str += (Flag & PF_X) ? "E" : " ";
3470 return Str;
3473 // SHF_TLS sections are only in PT_TLS, PT_LOAD or PT_GNU_RELRO
3474 // PT_TLS must only have SHF_TLS sections
3475 template <class ELFT>
3476 bool GNUStyle<ELFT>::checkTLSSections(const Elf_Phdr &Phdr,
3477 const Elf_Shdr &Sec) {
3478 return (((Sec.sh_flags & ELF::SHF_TLS) &&
3479 ((Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
3480 (Phdr.p_type == ELF::PT_GNU_RELRO))) ||
3481 (!(Sec.sh_flags & ELF::SHF_TLS) && Phdr.p_type != ELF::PT_TLS));
3484 // Non-SHT_NOBITS must have its offset inside the segment
3485 // Only non-zero section can be at end of segment
3486 template <class ELFT>
3487 bool GNUStyle<ELFT>::checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
3488 if (Sec.sh_type == ELF::SHT_NOBITS)
3489 return true;
3490 bool IsSpecial =
3491 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
3492 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3493 auto SectionSize =
3494 (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
3495 if (Sec.sh_offset >= Phdr.p_offset)
3496 return ((Sec.sh_offset + SectionSize <= Phdr.p_filesz + Phdr.p_offset)
3497 /*only non-zero sized sections at end*/
3498 && (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz));
3499 return false;
3502 // SHF_ALLOC must have VMA inside segment
3503 // Only non-zero section can be at end of segment
3504 template <class ELFT>
3505 bool GNUStyle<ELFT>::checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
3506 if (!(Sec.sh_flags & ELF::SHF_ALLOC))
3507 return true;
3508 bool IsSpecial =
3509 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
3510 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3511 auto SectionSize =
3512 (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
3513 if (Sec.sh_addr >= Phdr.p_vaddr)
3514 return ((Sec.sh_addr + SectionSize <= Phdr.p_vaddr + Phdr.p_memsz) &&
3515 (Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz));
3516 return false;
3519 // No section with zero size must be at start or end of PT_DYNAMIC
3520 template <class ELFT>
3521 bool GNUStyle<ELFT>::checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
3522 if (Phdr.p_type != ELF::PT_DYNAMIC || Sec.sh_size != 0 || Phdr.p_memsz == 0)
3523 return true;
3524 // Is section within the phdr both based on offset and VMA ?
3525 return ((Sec.sh_type == ELF::SHT_NOBITS) ||
3526 (Sec.sh_offset > Phdr.p_offset &&
3527 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz)) &&
3528 (!(Sec.sh_flags & ELF::SHF_ALLOC) ||
3529 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz));
3532 template <class ELFT>
3533 void GNUStyle<ELFT>::printProgramHeaders(
3534 const ELFO *Obj, bool PrintProgramHeaders,
3535 cl::boolOrDefault PrintSectionMapping) {
3536 if (PrintProgramHeaders)
3537 printProgramHeaders(Obj);
3539 // Display the section mapping along with the program headers, unless
3540 // -section-mapping is explicitly set to false.
3541 if (PrintSectionMapping != cl::BOU_FALSE)
3542 printSectionMapping(Obj);
3545 template <class ELFT>
3546 void GNUStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
3547 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3548 const Elf_Ehdr *Header = Obj->getHeader();
3549 Field Fields[8] = {2, 17, 26, 37 + Bias,
3550 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
3551 OS << "\nElf file type is "
3552 << printEnum(Header->e_type, makeArrayRef(ElfObjectFileType)) << "\n"
3553 << "Entry point " << format_hex(Header->e_entry, 3) << "\n"
3554 << "There are " << Header->e_phnum << " program headers,"
3555 << " starting at offset " << Header->e_phoff << "\n\n"
3556 << "Program Headers:\n";
3557 if (ELFT::Is64Bits)
3558 OS << " Type Offset VirtAddr PhysAddr "
3559 << " FileSiz MemSiz Flg Align\n";
3560 else
3561 OS << " Type Offset VirtAddr PhysAddr FileSiz "
3562 << "MemSiz Flg Align\n";
3564 unsigned Width = ELFT::Is64Bits ? 18 : 10;
3565 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
3566 for (const auto &Phdr :
3567 unwrapOrError(this->FileName, Obj->program_headers())) {
3568 Fields[0].Str = getElfPtType(Header->e_machine, Phdr.p_type);
3569 Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
3570 Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
3571 Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
3572 Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
3573 Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
3574 Fields[6].Str = printPhdrFlags(Phdr.p_flags);
3575 Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
3576 for (auto Field : Fields)
3577 printField(Field);
3578 if (Phdr.p_type == ELF::PT_INTERP) {
3579 OS << "\n [Requesting program interpreter: ";
3580 OS << reinterpret_cast<const char *>(Obj->base()) + Phdr.p_offset << "]";
3582 OS << "\n";
3586 template <class ELFT>
3587 void GNUStyle<ELFT>::printSectionMapping(const ELFO *Obj) {
3588 OS << "\n Section to Segment mapping:\n Segment Sections...\n";
3589 DenseSet<const Elf_Shdr *> BelongsToSegment;
3590 int Phnum = 0;
3591 for (const Elf_Phdr &Phdr :
3592 unwrapOrError(this->FileName, Obj->program_headers())) {
3593 std::string Sections;
3594 OS << format(" %2.2d ", Phnum++);
3595 for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
3596 // Check if each section is in a segment and then print mapping.
3597 // readelf additionally makes sure it does not print zero sized sections
3598 // at end of segments and for PT_DYNAMIC both start and end of section
3599 // .tbss must only be shown in PT_TLS section.
3600 bool TbssInNonTLS = (Sec.sh_type == ELF::SHT_NOBITS) &&
3601 ((Sec.sh_flags & ELF::SHF_TLS) != 0) &&
3602 Phdr.p_type != ELF::PT_TLS;
3603 if (!TbssInNonTLS && checkTLSSections(Phdr, Sec) &&
3604 checkoffsets(Phdr, Sec) && checkVMA(Phdr, Sec) &&
3605 checkPTDynamic(Phdr, Sec) && (Sec.sh_type != ELF::SHT_NULL)) {
3606 Sections +=
3607 unwrapOrError(this->FileName, Obj->getSectionName(&Sec)).str() +
3608 " ";
3609 BelongsToSegment.insert(&Sec);
3612 OS << Sections << "\n";
3613 OS.flush();
3616 // Display sections that do not belong to a segment.
3617 std::string Sections;
3618 for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
3619 if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
3620 Sections +=
3621 unwrapOrError(this->FileName, Obj->getSectionName(&Sec)).str() + ' ';
3623 if (!Sections.empty()) {
3624 OS << " None " << Sections << '\n';
3625 OS.flush();
3629 namespace {
3630 template <class ELFT> struct RelSymbol {
3631 const typename ELFT::Sym *Sym;
3632 std::string Name;
3635 template <class ELFT>
3636 RelSymbol<ELFT> getSymbolForReloc(const ELFFile<ELFT> *Obj, StringRef FileName,
3637 const ELFDumper<ELFT> *Dumper,
3638 const typename ELFT::Rela &Reloc) {
3639 uint32_t SymIndex = Reloc.getSymbol(Obj->isMips64EL());
3640 const typename ELFT::Sym *Sym = Dumper->dynamic_symbols().begin() + SymIndex;
3641 Expected<StringRef> ErrOrName = Sym->getName(Dumper->getDynamicStringTable());
3643 std::string Name;
3644 if (ErrOrName) {
3645 Name = maybeDemangle(*ErrOrName);
3646 } else {
3647 reportWarning(
3648 createError("unable to get name of the dynamic symbol with index " +
3649 Twine(SymIndex) + ": " + toString(ErrOrName.takeError())),
3650 FileName);
3651 Name = "<corrupt>";
3654 return {Sym, std::move(Name)};
3656 } // namespace
3658 template <class ELFT>
3659 void GNUStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela R,
3660 bool IsRela) {
3661 RelSymbol<ELFT> S = getSymbolForReloc(Obj, this->FileName, this->dumper(), R);
3662 printRelocation(Obj, S.Sym, S.Name, R, IsRela);
3665 template <class ELFT> void GNUStyle<ELFT>::printDynamic(const ELFO *Obj) {
3666 Elf_Dyn_Range Table = this->dumper()->dynamic_table();
3667 if (Table.empty())
3668 return;
3670 const DynRegionInfo &DynamicTableRegion =
3671 this->dumper()->getDynamicTableRegion();
3673 OS << "Dynamic section at offset "
3674 << format_hex(reinterpret_cast<const uint8_t *>(DynamicTableRegion.Addr) -
3675 Obj->base(),
3677 << " contains " << Table.size() << " entries:\n";
3679 bool Is64 = ELFT::Is64Bits;
3680 if (Is64)
3681 OS << " Tag Type Name/Value\n";
3682 else
3683 OS << " Tag Type Name/Value\n";
3684 for (auto Entry : Table) {
3685 uintX_t Tag = Entry.getTag();
3686 std::string TypeString = std::string("(") +
3687 getTypeString(Obj->getHeader()->e_machine, Tag) +
3688 ")";
3689 OS << " " << format_hex(Tag, Is64 ? 18 : 10)
3690 << format(" %-20s ", TypeString.c_str());
3691 this->dumper()->printDynamicEntry(OS, Tag, Entry.getVal());
3692 OS << "\n";
3696 template <class ELFT>
3697 void GNUStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
3698 const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
3699 const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
3700 const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion();
3701 const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
3702 if (DynRelaRegion.Size > 0) {
3703 OS << "\n'RELA' relocation section at offset "
3704 << format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion.Addr) -
3705 Obj->base(),
3707 << " contains " << DynRelaRegion.Size << " bytes:\n";
3708 printRelocHeader(ELF::SHT_RELA);
3709 for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
3710 printDynamicRelocation(Obj, Rela, true);
3712 if (DynRelRegion.Size > 0) {
3713 OS << "\n'REL' relocation section at offset "
3714 << format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion.Addr) -
3715 Obj->base(),
3717 << " contains " << DynRelRegion.Size << " bytes:\n";
3718 printRelocHeader(ELF::SHT_REL);
3719 for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
3720 Elf_Rela Rela;
3721 Rela.r_offset = Rel.r_offset;
3722 Rela.r_info = Rel.r_info;
3723 Rela.r_addend = 0;
3724 printDynamicRelocation(Obj, Rela, false);
3727 if (DynRelrRegion.Size > 0) {
3728 OS << "\n'RELR' relocation section at offset "
3729 << format_hex(reinterpret_cast<const uint8_t *>(DynRelrRegion.Addr) -
3730 Obj->base(),
3732 << " contains " << DynRelrRegion.Size << " bytes:\n";
3733 printRelocHeader(ELF::SHT_REL);
3734 Elf_Relr_Range Relrs = this->dumper()->dyn_relrs();
3735 std::vector<Elf_Rela> RelrRelas =
3736 unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
3737 for (const Elf_Rela &Rela : RelrRelas) {
3738 printDynamicRelocation(Obj, Rela, false);
3741 if (DynPLTRelRegion.Size) {
3742 OS << "\n'PLT' relocation section at offset "
3743 << format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion.Addr) -
3744 Obj->base(),
3746 << " contains " << DynPLTRelRegion.Size << " bytes:\n";
3748 if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
3749 printRelocHeader(ELF::SHT_RELA);
3750 for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
3751 printDynamicRelocation(Obj, Rela, true);
3752 } else {
3753 printRelocHeader(ELF::SHT_REL);
3754 for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
3755 Elf_Rela Rela;
3756 Rela.r_offset = Rel.r_offset;
3757 Rela.r_info = Rel.r_info;
3758 Rela.r_addend = 0;
3759 printDynamicRelocation(Obj, Rela, false);
3764 template <class ELFT>
3765 static void printGNUVersionSectionProlog(formatted_raw_ostream &OS,
3766 const Twine &Name, unsigned EntriesNum,
3767 const ELFFile<ELFT> *Obj,
3768 const typename ELFT::Shdr *Sec,
3769 StringRef FileName) {
3770 StringRef SecName = unwrapOrError(FileName, Obj->getSectionName(Sec));
3771 OS << Name << " section '" << SecName << "' "
3772 << "contains " << EntriesNum << " entries:\n";
3774 const typename ELFT::Shdr *SymTab =
3775 unwrapOrError(FileName, Obj->getSection(Sec->sh_link));
3776 StringRef SymTabName = unwrapOrError(FileName, Obj->getSectionName(SymTab));
3777 OS << " Addr: " << format_hex_no_prefix(Sec->sh_addr, 16)
3778 << " Offset: " << format_hex(Sec->sh_offset, 8)
3779 << " Link: " << Sec->sh_link << " (" << SymTabName << ")\n";
3782 template <class ELFT>
3783 void GNUStyle<ELFT>::printVersionSymbolSection(const ELFFile<ELFT> *Obj,
3784 const Elf_Shdr *Sec) {
3785 if (!Sec)
3786 return;
3788 unsigned Entries = Sec->sh_size / sizeof(Elf_Versym);
3789 printGNUVersionSectionProlog(OS, "Version symbols", Entries, Obj, Sec,
3790 this->FileName);
3792 const uint8_t *VersymBuf =
3793 reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset);
3794 const ELFDumper<ELFT> *Dumper = this->dumper();
3795 StringRef StrTable = Dumper->getDynamicStringTable();
3797 // readelf prints 4 entries per line.
3798 for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
3799 OS << " " << format_hex_no_prefix(VersymRow, 3) << ":";
3801 for (uint64_t VersymIndex = 0;
3802 (VersymIndex < 4) && (VersymIndex + VersymRow) < Entries;
3803 ++VersymIndex) {
3804 const Elf_Versym *Versym =
3805 reinterpret_cast<const Elf_Versym *>(VersymBuf);
3806 switch (Versym->vs_index) {
3807 case 0:
3808 OS << " 0 (*local*) ";
3809 break;
3810 case 1:
3811 OS << " 1 (*global*) ";
3812 break;
3813 default:
3814 OS << format("%4x%c", Versym->vs_index & VERSYM_VERSION,
3815 Versym->vs_index & VERSYM_HIDDEN ? 'h' : ' ');
3817 bool IsDefault = true;
3818 std::string VersionName = Dumper->getSymbolVersionByIndex(
3819 StrTable, Versym->vs_index, IsDefault);
3821 if (!VersionName.empty())
3822 VersionName = "(" + VersionName + ")";
3823 else
3824 VersionName = "(*invalid*)";
3825 OS << left_justify(VersionName, 13);
3827 VersymBuf += sizeof(Elf_Versym);
3829 OS << '\n';
3831 OS << '\n';
3834 static std::string versionFlagToString(unsigned Flags) {
3835 if (Flags == 0)
3836 return "none";
3838 std::string Ret;
3839 auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
3840 if (!(Flags & Flag))
3841 return;
3842 if (!Ret.empty())
3843 Ret += " | ";
3844 Ret += Name;
3845 Flags &= ~Flag;
3848 AddFlag(VER_FLG_BASE, "BASE");
3849 AddFlag(VER_FLG_WEAK, "WEAK");
3850 AddFlag(VER_FLG_INFO, "INFO");
3851 AddFlag(~0, "<unknown>");
3852 return Ret;
3855 template <class ELFT>
3856 void GNUStyle<ELFT>::printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
3857 const Elf_Shdr *Sec) {
3858 if (!Sec)
3859 return;
3861 unsigned VerDefsNum = Sec->sh_info;
3862 printGNUVersionSectionProlog(OS, "Version definition", VerDefsNum, Obj, Sec,
3863 this->FileName);
3865 const Elf_Shdr *StrTabSec =
3866 unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link));
3867 StringRef StringTable(
3868 reinterpret_cast<const char *>(Obj->base() + StrTabSec->sh_offset),
3869 (size_t)StrTabSec->sh_size);
3871 const uint8_t *VerdefBuf =
3872 unwrapOrError(this->FileName, Obj->getSectionContents(Sec)).data();
3873 const uint8_t *Begin = VerdefBuf;
3875 while (VerDefsNum--) {
3876 const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(VerdefBuf);
3877 OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u",
3878 VerdefBuf - Begin, (unsigned)Verdef->vd_version,
3879 versionFlagToString(Verdef->vd_flags).c_str(),
3880 (unsigned)Verdef->vd_ndx, (unsigned)Verdef->vd_cnt);
3882 const uint8_t *VerdauxBuf = VerdefBuf + Verdef->vd_aux;
3883 const Elf_Verdaux *Verdaux =
3884 reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf);
3885 OS << format(" Name: %s\n",
3886 StringTable.drop_front(Verdaux->vda_name).data());
3888 for (unsigned I = 1; I < Verdef->vd_cnt; ++I) {
3889 VerdauxBuf += Verdaux->vda_next;
3890 Verdaux = reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf);
3891 OS << format(" 0x%04x: Parent %u: %s\n", VerdauxBuf - Begin, I,
3892 StringTable.drop_front(Verdaux->vda_name).data());
3895 VerdefBuf += Verdef->vd_next;
3897 OS << '\n';
3900 template <class ELFT>
3901 void GNUStyle<ELFT>::printVersionDependencySection(const ELFFile<ELFT> *Obj,
3902 const Elf_Shdr *Sec) {
3903 if (!Sec)
3904 return;
3906 unsigned VerneedNum = Sec->sh_info;
3907 printGNUVersionSectionProlog(OS, "Version needs", VerneedNum, Obj, Sec,
3908 this->FileName);
3910 ArrayRef<uint8_t> SecData =
3911 unwrapOrError(this->FileName, Obj->getSectionContents(Sec));
3913 const Elf_Shdr *StrTabSec =
3914 unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link));
3915 StringRef StringTable = {
3916 reinterpret_cast<const char *>(Obj->base() + StrTabSec->sh_offset),
3917 (size_t)StrTabSec->sh_size};
3919 const uint8_t *VerneedBuf = SecData.data();
3920 for (unsigned I = 0; I < VerneedNum; ++I) {
3921 const Elf_Verneed *Verneed =
3922 reinterpret_cast<const Elf_Verneed *>(VerneedBuf);
3924 OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n",
3925 reinterpret_cast<const uint8_t *>(Verneed) - SecData.begin(),
3926 (unsigned)Verneed->vn_version,
3927 StringTable.drop_front(Verneed->vn_file).data(),
3928 (unsigned)Verneed->vn_cnt);
3930 const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux;
3931 for (unsigned J = 0; J < Verneed->vn_cnt; ++J) {
3932 const Elf_Vernaux *Vernaux =
3933 reinterpret_cast<const Elf_Vernaux *>(VernauxBuf);
3935 OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n",
3936 reinterpret_cast<const uint8_t *>(Vernaux) - SecData.begin(),
3937 StringTable.drop_front(Vernaux->vna_name).data(),
3938 versionFlagToString(Vernaux->vna_flags).c_str(),
3939 (unsigned)Vernaux->vna_other);
3940 VernauxBuf += Vernaux->vna_next;
3942 VerneedBuf += Verneed->vn_next;
3944 OS << '\n';
3947 // Hash histogram shows statistics of how efficient the hash was for the
3948 // dynamic symbol table. The table shows number of hash buckets for different
3949 // lengths of chains as absolute number and percentage of the total buckets.
3950 // Additionally cumulative coverage of symbols for each set of buckets.
3951 template <class ELFT>
3952 void GNUStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
3953 // Print histogram for .hash section
3954 if (const Elf_Hash *HashTable = this->dumper()->getHashTable()) {
3955 size_t NBucket = HashTable->nbucket;
3956 size_t NChain = HashTable->nchain;
3957 ArrayRef<Elf_Word> Buckets = HashTable->buckets();
3958 ArrayRef<Elf_Word> Chains = HashTable->chains();
3959 size_t TotalSyms = 0;
3960 // If hash table is correct, we have at least chains with 0 length
3961 size_t MaxChain = 1;
3962 size_t CumulativeNonZero = 0;
3964 if (NChain == 0 || NBucket == 0)
3965 return;
3967 std::vector<size_t> ChainLen(NBucket, 0);
3968 // Go over all buckets and and note chain lengths of each bucket (total
3969 // unique chain lengths).
3970 for (size_t B = 0; B < NBucket; B++) {
3971 std::vector<bool> Visited(NChain);
3972 for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
3973 if (C == ELF::STN_UNDEF)
3974 break;
3975 if (Visited[C]) {
3976 reportWarning(
3977 createError(".hash section is invalid: bucket " + Twine(C) +
3978 ": a cycle was detected in the linked chain"),
3979 this->FileName);
3980 break;
3982 Visited[C] = true;
3983 if (MaxChain <= ++ChainLen[B])
3984 MaxChain++;
3986 TotalSyms += ChainLen[B];
3989 if (!TotalSyms)
3990 return;
3992 std::vector<size_t> Count(MaxChain, 0) ;
3993 // Count how long is the chain for each bucket
3994 for (size_t B = 0; B < NBucket; B++)
3995 ++Count[ChainLen[B]];
3996 // Print Number of buckets with each chain lengths and their cumulative
3997 // coverage of the symbols
3998 OS << "Histogram for bucket list length (total of " << NBucket
3999 << " buckets)\n"
4000 << " Length Number % of total Coverage\n";
4001 for (size_t I = 0; I < MaxChain; I++) {
4002 CumulativeNonZero += Count[I] * I;
4003 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
4004 (Count[I] * 100.0) / NBucket,
4005 (CumulativeNonZero * 100.0) / TotalSyms);
4009 // Print histogram for .gnu.hash section
4010 if (const Elf_GnuHash *GnuHashTable = this->dumper()->getGnuHashTable()) {
4011 size_t NBucket = GnuHashTable->nbuckets;
4012 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
4013 unsigned NumSyms = this->dumper()->dynamic_symbols().size();
4014 if (!NumSyms)
4015 return;
4016 ArrayRef<Elf_Word> Chains = GnuHashTable->values(NumSyms);
4017 size_t Symndx = GnuHashTable->symndx;
4018 size_t TotalSyms = 0;
4019 size_t MaxChain = 1;
4020 size_t CumulativeNonZero = 0;
4022 if (Chains.empty() || NBucket == 0)
4023 return;
4025 std::vector<size_t> ChainLen(NBucket, 0);
4027 for (size_t B = 0; B < NBucket; B++) {
4028 if (!Buckets[B])
4029 continue;
4030 size_t Len = 1;
4031 for (size_t C = Buckets[B] - Symndx;
4032 C < Chains.size() && (Chains[C] & 1) == 0; C++)
4033 if (MaxChain < ++Len)
4034 MaxChain++;
4035 ChainLen[B] = Len;
4036 TotalSyms += Len;
4038 MaxChain++;
4040 if (!TotalSyms)
4041 return;
4043 std::vector<size_t> Count(MaxChain, 0) ;
4044 for (size_t B = 0; B < NBucket; B++)
4045 ++Count[ChainLen[B]];
4046 // Print Number of buckets with each chain lengths and their cumulative
4047 // coverage of the symbols
4048 OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4049 << " buckets)\n"
4050 << " Length Number % of total Coverage\n";
4051 for (size_t I = 0; I <MaxChain; I++) {
4052 CumulativeNonZero += Count[I] * I;
4053 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
4054 (Count[I] * 100.0) / NBucket,
4055 (CumulativeNonZero * 100.0) / TotalSyms);
4060 template <class ELFT>
4061 void GNUStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) {
4062 OS << "GNUStyle::printCGProfile not implemented\n";
4065 template <class ELFT>
4066 void GNUStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) {
4067 reportError(createError("--addrsig: not implemented"), this->FileName);
4070 static StringRef getGenericNoteTypeName(const uint32_t NT) {
4071 static const struct {
4072 uint32_t ID;
4073 const char *Name;
4074 } Notes[] = {
4075 {ELF::NT_VERSION, "NT_VERSION (version)"},
4076 {ELF::NT_ARCH, "NT_ARCH (architecture)"},
4077 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
4078 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
4081 for (const auto &Note : Notes)
4082 if (Note.ID == NT)
4083 return Note.Name;
4085 return "";
4088 static StringRef getCoreNoteTypeName(const uint32_t NT) {
4089 static const struct {
4090 uint32_t ID;
4091 const char *Name;
4092 } Notes[] = {
4093 {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
4094 {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
4095 {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
4096 {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
4097 {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
4098 {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
4099 {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
4100 {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
4101 {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
4102 {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
4103 {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
4105 {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
4106 {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
4107 {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
4108 {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
4109 {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
4110 {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
4111 {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
4112 {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
4113 {ELF::NT_PPC_TM_CFPR,
4114 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
4115 {ELF::NT_PPC_TM_CVMX,
4116 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
4117 {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
4118 {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
4119 {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
4120 {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
4121 {ELF::NT_PPC_TM_CDSCR,
4122 "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
4124 {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
4125 {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
4126 {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
4128 {ELF::NT_S390_HIGH_GPRS,
4129 "NT_S390_HIGH_GPRS (s390 upper register halves)"},
4130 {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
4131 {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
4132 {ELF::NT_S390_TODPREG,
4133 "NT_S390_TODPREG (s390 TOD programmable register)"},
4134 {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
4135 {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
4136 {ELF::NT_S390_LAST_BREAK,
4137 "NT_S390_LAST_BREAK (s390 last breaking event address)"},
4138 {ELF::NT_S390_SYSTEM_CALL,
4139 "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
4140 {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
4141 {ELF::NT_S390_VXRS_LOW,
4142 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
4143 {ELF::NT_S390_VXRS_HIGH,
4144 "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
4145 {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
4146 {ELF::NT_S390_GS_BC,
4147 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
4149 {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
4150 {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
4151 {ELF::NT_ARM_HW_BREAK,
4152 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
4153 {ELF::NT_ARM_HW_WATCH,
4154 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
4156 {ELF::NT_FILE, "NT_FILE (mapped files)"},
4157 {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
4158 {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
4161 for (const auto &Note : Notes)
4162 if (Note.ID == NT)
4163 return Note.Name;
4165 return "";
4168 static std::string getGNUNoteTypeName(const uint32_t NT) {
4169 static const struct {
4170 uint32_t ID;
4171 const char *Name;
4172 } Notes[] = {
4173 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
4174 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
4175 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
4176 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
4177 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
4180 for (const auto &Note : Notes)
4181 if (Note.ID == NT)
4182 return std::string(Note.Name);
4184 std::string string;
4185 raw_string_ostream OS(string);
4186 OS << format("Unknown note type (0x%08x)", NT);
4187 return OS.str();
4190 static std::string getFreeBSDNoteTypeName(const uint32_t NT) {
4191 static const struct {
4192 uint32_t ID;
4193 const char *Name;
4194 } Notes[] = {
4195 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
4196 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
4197 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
4198 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
4199 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
4200 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
4201 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
4202 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
4203 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
4204 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
4205 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
4208 for (const auto &Note : Notes)
4209 if (Note.ID == NT)
4210 return std::string(Note.Name);
4212 std::string string;
4213 raw_string_ostream OS(string);
4214 OS << format("Unknown note type (0x%08x)", NT);
4215 return OS.str();
4218 static std::string getAMDNoteTypeName(const uint32_t NT) {
4219 static const struct {
4220 uint32_t ID;
4221 const char *Name;
4222 } Notes[] = {{ELF::NT_AMD_AMDGPU_HSA_METADATA,
4223 "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"},
4224 {ELF::NT_AMD_AMDGPU_ISA, "NT_AMD_AMDGPU_ISA (ISA Version)"},
4225 {ELF::NT_AMD_AMDGPU_PAL_METADATA,
4226 "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"}};
4228 for (const auto &Note : Notes)
4229 if (Note.ID == NT)
4230 return std::string(Note.Name);
4232 std::string string;
4233 raw_string_ostream OS(string);
4234 OS << format("Unknown note type (0x%08x)", NT);
4235 return OS.str();
4238 static std::string getAMDGPUNoteTypeName(const uint32_t NT) {
4239 if (NT == ELF::NT_AMDGPU_METADATA)
4240 return std::string("NT_AMDGPU_METADATA (AMDGPU Metadata)");
4242 std::string string;
4243 raw_string_ostream OS(string);
4244 OS << format("Unknown note type (0x%08x)", NT);
4245 return OS.str();
4248 template <typename ELFT>
4249 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
4250 ArrayRef<uint8_t> Data) {
4251 std::string str;
4252 raw_string_ostream OS(str);
4253 uint32_t PrData;
4254 auto DumpBit = [&](uint32_t Flag, StringRef Name) {
4255 if (PrData & Flag) {
4256 PrData &= ~Flag;
4257 OS << Name;
4258 if (PrData)
4259 OS << ", ";
4263 switch (Type) {
4264 default:
4265 OS << format("<application-specific type 0x%x>", Type);
4266 return OS.str();
4267 case GNU_PROPERTY_STACK_SIZE: {
4268 OS << "stack size: ";
4269 if (DataSize == sizeof(typename ELFT::uint))
4270 OS << formatv("{0:x}",
4271 (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
4272 else
4273 OS << format("<corrupt length: 0x%x>", DataSize);
4274 return OS.str();
4276 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
4277 OS << "no copy on protected";
4278 if (DataSize)
4279 OS << format(" <corrupt length: 0x%x>", DataSize);
4280 return OS.str();
4281 case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
4282 case GNU_PROPERTY_X86_FEATURE_1_AND:
4283 OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
4284 : "x86 feature: ");
4285 if (DataSize != 4) {
4286 OS << format("<corrupt length: 0x%x>", DataSize);
4287 return OS.str();
4289 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4290 if (PrData == 0) {
4291 OS << "<None>";
4292 return OS.str();
4294 if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
4295 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
4296 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
4297 } else {
4298 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
4299 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
4301 if (PrData)
4302 OS << format("<unknown flags: 0x%x>", PrData);
4303 return OS.str();
4304 case GNU_PROPERTY_X86_ISA_1_NEEDED:
4305 case GNU_PROPERTY_X86_ISA_1_USED:
4306 OS << "x86 ISA "
4307 << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
4308 if (DataSize != 4) {
4309 OS << format("<corrupt length: 0x%x>", DataSize);
4310 return OS.str();
4312 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4313 if (PrData == 0) {
4314 OS << "<None>";
4315 return OS.str();
4317 DumpBit(GNU_PROPERTY_X86_ISA_1_CMOV, "CMOV");
4318 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE, "SSE");
4319 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE2, "SSE2");
4320 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE3, "SSE3");
4321 DumpBit(GNU_PROPERTY_X86_ISA_1_SSSE3, "SSSE3");
4322 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_1, "SSE4_1");
4323 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_2, "SSE4_2");
4324 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX, "AVX");
4325 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX2, "AVX2");
4326 DumpBit(GNU_PROPERTY_X86_ISA_1_FMA, "FMA");
4327 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512F, "AVX512F");
4328 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512CD, "AVX512CD");
4329 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512ER, "AVX512ER");
4330 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512PF, "AVX512PF");
4331 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512VL, "AVX512VL");
4332 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512DQ, "AVX512DQ");
4333 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512BW, "AVX512BW");
4334 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS, "AVX512_4FMAPS");
4335 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW, "AVX512_4VNNIW");
4336 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_BITALG, "AVX512_BITALG");
4337 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_IFMA, "AVX512_IFMA");
4338 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI, "AVX512_VBMI");
4339 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2, "AVX512_VBMI2");
4340 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VNNI, "AVX512_VNNI");
4341 if (PrData)
4342 OS << format("<unknown flags: 0x%x>", PrData);
4343 return OS.str();
4344 break;
4345 case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
4346 case GNU_PROPERTY_X86_FEATURE_2_USED:
4347 OS << "x86 feature "
4348 << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
4349 if (DataSize != 4) {
4350 OS << format("<corrupt length: 0x%x>", DataSize);
4351 return OS.str();
4353 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4354 if (PrData == 0) {
4355 OS << "<None>";
4356 return OS.str();
4358 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
4359 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
4360 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
4361 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
4362 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
4363 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
4364 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
4365 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
4366 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
4367 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
4368 if (PrData)
4369 OS << format("<unknown flags: 0x%x>", PrData);
4370 return OS.str();
4374 template <typename ELFT>
4375 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
4376 using Elf_Word = typename ELFT::Word;
4378 SmallVector<std::string, 4> Properties;
4379 while (Arr.size() >= 8) {
4380 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
4381 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
4382 Arr = Arr.drop_front(8);
4384 // Take padding size into account if present.
4385 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
4386 std::string str;
4387 raw_string_ostream OS(str);
4388 if (Arr.size() < PaddedSize) {
4389 OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
4390 Properties.push_back(OS.str());
4391 break;
4393 Properties.push_back(
4394 getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
4395 Arr = Arr.drop_front(PaddedSize);
4398 if (!Arr.empty())
4399 Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
4401 return Properties;
4404 struct GNUAbiTag {
4405 std::string OSName;
4406 std::string ABI;
4407 bool IsValid;
4410 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
4411 typedef typename ELFT::Word Elf_Word;
4413 ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
4414 reinterpret_cast<const Elf_Word *>(Desc.end()));
4416 if (Words.size() < 4)
4417 return {"", "", /*IsValid=*/false};
4419 static const char *OSNames[] = {
4420 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
4422 StringRef OSName = "Unknown";
4423 if (Words[0] < array_lengthof(OSNames))
4424 OSName = OSNames[Words[0]];
4425 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
4426 std::string str;
4427 raw_string_ostream ABI(str);
4428 ABI << Major << "." << Minor << "." << Patch;
4429 return {OSName, ABI.str(), /*IsValid=*/true};
4432 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
4433 std::string str;
4434 raw_string_ostream OS(str);
4435 for (const auto &B : Desc)
4436 OS << format_hex_no_prefix(B, 2);
4437 return OS.str();
4440 static StringRef getGNUGoldVersion(ArrayRef<uint8_t> Desc) {
4441 return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
4444 template <typename ELFT>
4445 static void printGNUNote(raw_ostream &OS, uint32_t NoteType,
4446 ArrayRef<uint8_t> Desc) {
4447 switch (NoteType) {
4448 default:
4449 return;
4450 case ELF::NT_GNU_ABI_TAG: {
4451 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
4452 if (!AbiTag.IsValid)
4453 OS << " <corrupt GNU_ABI_TAG>";
4454 else
4455 OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
4456 break;
4458 case ELF::NT_GNU_BUILD_ID: {
4459 OS << " Build ID: " << getGNUBuildId(Desc);
4460 break;
4462 case ELF::NT_GNU_GOLD_VERSION:
4463 OS << " Version: " << getGNUGoldVersion(Desc);
4464 break;
4465 case ELF::NT_GNU_PROPERTY_TYPE_0:
4466 OS << " Properties:";
4467 for (const auto &Property : getGNUPropertyList<ELFT>(Desc))
4468 OS << " " << Property << "\n";
4469 break;
4471 OS << '\n';
4474 struct AMDNote {
4475 std::string Type;
4476 std::string Value;
4479 template <typename ELFT>
4480 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
4481 switch (NoteType) {
4482 default:
4483 return {"", ""};
4484 case ELF::NT_AMD_AMDGPU_HSA_METADATA:
4485 return {
4486 "HSA Metadata",
4487 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
4488 case ELF::NT_AMD_AMDGPU_ISA:
4489 return {
4490 "ISA Version",
4491 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
4495 struct AMDGPUNote {
4496 std::string Type;
4497 std::string Value;
4500 template <typename ELFT>
4501 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
4502 switch (NoteType) {
4503 default:
4504 return {"", ""};
4505 case ELF::NT_AMDGPU_METADATA: {
4506 auto MsgPackString =
4507 StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
4508 msgpack::Document MsgPackDoc;
4509 if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
4510 return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
4512 AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
4513 if (!Verifier.verify(MsgPackDoc.getRoot()))
4514 return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
4516 std::string HSAMetadataString;
4517 raw_string_ostream StrOS(HSAMetadataString);
4518 MsgPackDoc.toYAML(StrOS);
4520 return {"AMDGPU Metadata", StrOS.str()};
4525 struct CoreFileMapping {
4526 uint64_t Start, End, Offset;
4527 StringRef Filename;
4530 struct CoreNote {
4531 uint64_t PageSize;
4532 std::vector<CoreFileMapping> Mappings;
4535 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
4536 // Expected format of the NT_FILE note description:
4537 // 1. # of file mappings (call it N)
4538 // 2. Page size
4539 // 3. N (start, end, offset) triples
4540 // 4. N packed filenames (null delimited)
4541 // Each field is an Elf_Addr, except for filenames which are char* strings.
4543 CoreNote Ret;
4544 const int Bytes = Desc.getAddressSize();
4546 if (!Desc.isValidOffsetForAddress(2))
4547 return createStringError(object_error::parse_failed,
4548 "malformed note: header too short");
4549 if (Desc.getData().back() != 0)
4550 return createStringError(object_error::parse_failed,
4551 "malformed note: not NUL terminated");
4553 uint64_t DescOffset = 0;
4554 uint64_t FileCount = Desc.getAddress(&DescOffset);
4555 Ret.PageSize = Desc.getAddress(&DescOffset);
4557 if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
4558 return createStringError(object_error::parse_failed,
4559 "malformed note: too short for number of files");
4561 uint64_t FilenamesOffset = 0;
4562 DataExtractor Filenames(
4563 Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
4564 Desc.isLittleEndian(), Desc.getAddressSize());
4566 Ret.Mappings.resize(FileCount);
4567 for (CoreFileMapping &Mapping : Ret.Mappings) {
4568 if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
4569 return createStringError(object_error::parse_failed,
4570 "malformed note: too few filenames");
4571 Mapping.Start = Desc.getAddress(&DescOffset);
4572 Mapping.End = Desc.getAddress(&DescOffset);
4573 Mapping.Offset = Desc.getAddress(&DescOffset);
4574 Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
4577 return Ret;
4580 template <typename ELFT>
4581 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
4582 // Length of "0x<address>" string.
4583 const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
4585 OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n';
4586 OS << " " << right_justify("Start", FieldWidth) << " "
4587 << right_justify("End", FieldWidth) << " "
4588 << right_justify("Page Offset", FieldWidth) << '\n';
4589 for (const CoreFileMapping &Mapping : Note.Mappings) {
4590 OS << " " << format_hex(Mapping.Start, FieldWidth) << " "
4591 << format_hex(Mapping.End, FieldWidth) << " "
4592 << format_hex(Mapping.Offset, FieldWidth) << "\n "
4593 << Mapping.Filename << '\n';
4597 template <class ELFT>
4598 void GNUStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
4599 auto PrintHeader = [&](const typename ELFT::Off Offset,
4600 const typename ELFT::Addr Size) {
4601 OS << "Displaying notes found at file offset " << format_hex(Offset, 10)
4602 << " with length " << format_hex(Size, 10) << ":\n"
4603 << " Owner Data size \tDescription\n";
4606 auto ProcessNote = [&](const Elf_Note &Note) {
4607 StringRef Name = Note.getName();
4608 ArrayRef<uint8_t> Descriptor = Note.getDesc();
4609 Elf_Word Type = Note.getType();
4611 // Print the note owner/type.
4612 OS << " " << left_justify(Name, 20) << ' '
4613 << format_hex(Descriptor.size(), 10) << '\t';
4614 if (Name == "GNU") {
4615 OS << getGNUNoteTypeName(Type) << '\n';
4616 } else if (Name == "FreeBSD") {
4617 OS << getFreeBSDNoteTypeName(Type) << '\n';
4618 } else if (Name == "AMD") {
4619 OS << getAMDNoteTypeName(Type) << '\n';
4620 } else if (Name == "AMDGPU") {
4621 OS << getAMDGPUNoteTypeName(Type) << '\n';
4622 } else {
4623 StringRef NoteType = Obj->getHeader()->e_type == ELF::ET_CORE
4624 ? getCoreNoteTypeName(Type)
4625 : getGenericNoteTypeName(Type);
4626 if (!NoteType.empty())
4627 OS << NoteType << '\n';
4628 else
4629 OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
4632 // Print the description, or fallback to printing raw bytes for unknown
4633 // owners.
4634 if (Name == "GNU") {
4635 printGNUNote<ELFT>(OS, Type, Descriptor);
4636 } else if (Name == "AMD") {
4637 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
4638 if (!N.Type.empty())
4639 OS << " " << N.Type << ":\n " << N.Value << '\n';
4640 } else if (Name == "AMDGPU") {
4641 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
4642 if (!N.Type.empty())
4643 OS << " " << N.Type << ":\n " << N.Value << '\n';
4644 } else if (Name == "CORE") {
4645 if (Type == ELF::NT_FILE) {
4646 DataExtractor DescExtractor(Descriptor,
4647 ELFT::TargetEndianness == support::little,
4648 sizeof(Elf_Addr));
4649 Expected<CoreNote> Note = readCoreNote(DescExtractor);
4650 if (Note)
4651 printCoreNote<ELFT>(OS, *Note);
4652 else
4653 reportWarning(Note.takeError(), this->FileName);
4655 } else if (!Descriptor.empty()) {
4656 OS << " description data:";
4657 for (uint8_t B : Descriptor)
4658 OS << " " << format("%02x", B);
4659 OS << '\n';
4663 ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
4664 if (Obj->getHeader()->e_type != ELF::ET_CORE && !Sections.empty()) {
4665 for (const auto &S : Sections) {
4666 if (S.sh_type != SHT_NOTE)
4667 continue;
4668 PrintHeader(S.sh_offset, S.sh_size);
4669 Error Err = Error::success();
4670 for (const auto &Note : Obj->notes(S, Err))
4671 ProcessNote(Note);
4672 if (Err)
4673 reportError(std::move(Err), this->FileName);
4675 } else {
4676 for (const auto &P :
4677 unwrapOrError(this->FileName, Obj->program_headers())) {
4678 if (P.p_type != PT_NOTE)
4679 continue;
4680 PrintHeader(P.p_offset, P.p_filesz);
4681 Error Err = Error::success();
4682 for (const auto &Note : Obj->notes(P, Err))
4683 ProcessNote(Note);
4684 if (Err)
4685 reportError(std::move(Err), this->FileName);
4690 template <class ELFT>
4691 void GNUStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
4692 OS << "printELFLinkerOptions not implemented!\n";
4695 // Used for printing section names in places where possible errors can be
4696 // ignored.
4697 static StringRef getSectionName(const SectionRef &Sec) {
4698 Expected<StringRef> NameOrErr = Sec.getName();
4699 if (NameOrErr)
4700 return *NameOrErr;
4701 consumeError(NameOrErr.takeError());
4702 return "<?>";
4705 // Used for printing symbol names in places where possible errors can be
4706 // ignored.
4707 static std::string getSymbolName(const ELFSymbolRef &Sym) {
4708 Expected<StringRef> NameOrErr = Sym.getName();
4709 if (NameOrErr)
4710 return maybeDemangle(*NameOrErr);
4711 consumeError(NameOrErr.takeError());
4712 return "<?>";
4715 template <class ELFT>
4716 void DumpStyle<ELFT>::printFunctionStackSize(
4717 const ELFObjectFile<ELFT> *Obj, uint64_t SymValue, SectionRef FunctionSec,
4718 const StringRef SectionName, DataExtractor Data, uint64_t *Offset) {
4719 // This function ignores potentially erroneous input, unless it is directly
4720 // related to stack size reporting.
4721 SymbolRef FuncSym;
4722 for (const ELFSymbolRef &Symbol : Obj->symbols()) {
4723 Expected<uint64_t> SymAddrOrErr = Symbol.getAddress();
4724 if (!SymAddrOrErr) {
4725 consumeError(SymAddrOrErr.takeError());
4726 continue;
4728 if (Symbol.getELFType() == ELF::STT_FUNC && *SymAddrOrErr == SymValue) {
4729 // Check if the symbol is in the right section.
4730 if (FunctionSec.containsSymbol(Symbol)) {
4731 FuncSym = Symbol;
4732 break;
4737 std::string FuncName = "?";
4738 // A valid SymbolRef has a non-null object file pointer.
4739 if (FuncSym.BasicSymbolRef::getObject())
4740 FuncName = getSymbolName(FuncSym);
4741 else
4742 reportWarning(
4743 createError("could not identify function symbol for stack size entry"),
4744 Obj->getFileName());
4746 // Extract the size. The expectation is that Offset is pointing to the right
4747 // place, i.e. past the function address.
4748 uint64_t PrevOffset = *Offset;
4749 uint64_t StackSize = Data.getULEB128(Offset);
4750 // getULEB128() does not advance Offset if it is not able to extract a valid
4751 // integer.
4752 if (*Offset == PrevOffset)
4753 reportError(
4754 createStringError(object_error::parse_failed,
4755 "could not extract a valid stack size in section %s",
4756 SectionName.data()),
4757 Obj->getFileName());
4759 printStackSizeEntry(StackSize, FuncName);
4762 template <class ELFT>
4763 void GNUStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) {
4764 OS.PadToColumn(2);
4765 OS << format_decimal(Size, 11);
4766 OS.PadToColumn(18);
4767 OS << FuncName << "\n";
4770 template <class ELFT>
4771 void DumpStyle<ELFT>::printStackSize(const ELFObjectFile<ELFT> *Obj,
4772 RelocationRef Reloc,
4773 SectionRef FunctionSec,
4774 const StringRef &StackSizeSectionName,
4775 const RelocationResolver &Resolver,
4776 DataExtractor Data) {
4777 // This function ignores potentially erroneous input, unless it is directly
4778 // related to stack size reporting.
4779 object::symbol_iterator RelocSym = Reloc.getSymbol();
4780 uint64_t RelocSymValue = 0;
4781 StringRef FileStr = Obj->getFileName();
4782 if (RelocSym != Obj->symbol_end()) {
4783 // Ensure that the relocation symbol is in the function section, i.e. the
4784 // section where the functions whose stack sizes we are reporting are
4785 // located.
4786 auto SectionOrErr = RelocSym->getSection();
4787 if (!SectionOrErr) {
4788 reportWarning(
4789 createError("cannot identify the section for relocation symbol '" +
4790 getSymbolName(*RelocSym) + "'"),
4791 FileStr);
4792 consumeError(SectionOrErr.takeError());
4793 } else if (*SectionOrErr != FunctionSec) {
4794 reportWarning(createError("relocation symbol '" +
4795 getSymbolName(*RelocSym) +
4796 "' is not in the expected section"),
4797 FileStr);
4798 // Pretend that the symbol is in the correct section and report its
4799 // stack size anyway.
4800 FunctionSec = **SectionOrErr;
4803 Expected<uint64_t> RelocSymValueOrErr = RelocSym->getValue();
4804 if (RelocSymValueOrErr)
4805 RelocSymValue = *RelocSymValueOrErr;
4806 else
4807 consumeError(RelocSymValueOrErr.takeError());
4810 uint64_t Offset = Reloc.getOffset();
4811 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1))
4812 reportError(
4813 createStringError(object_error::parse_failed,
4814 "found invalid relocation offset into section %s "
4815 "while trying to extract a stack size entry",
4816 StackSizeSectionName.data()),
4817 FileStr);
4819 uint64_t Addend = Data.getAddress(&Offset);
4820 uint64_t SymValue = Resolver(Reloc, RelocSymValue, Addend);
4821 this->printFunctionStackSize(Obj, SymValue, FunctionSec, StackSizeSectionName,
4822 Data, &Offset);
4825 template <class ELFT>
4826 void DumpStyle<ELFT>::printNonRelocatableStackSizes(
4827 const ELFObjectFile<ELFT> *Obj, std::function<void()> PrintHeader) {
4828 // This function ignores potentially erroneous input, unless it is directly
4829 // related to stack size reporting.
4830 const ELFFile<ELFT> *EF = Obj->getELFFile();
4831 StringRef FileStr = Obj->getFileName();
4832 for (const SectionRef &Sec : Obj->sections()) {
4833 StringRef SectionName = getSectionName(Sec);
4834 if (SectionName != ".stack_sizes")
4835 continue;
4836 PrintHeader();
4837 const Elf_Shdr *ElfSec = Obj->getSection(Sec.getRawDataRefImpl());
4838 ArrayRef<uint8_t> Contents =
4839 unwrapOrError(this->FileName, EF->getSectionContents(ElfSec));
4840 DataExtractor Data(Contents, Obj->isLittleEndian(), sizeof(Elf_Addr));
4841 // A .stack_sizes section header's sh_link field is supposed to point
4842 // to the section that contains the functions whose stack sizes are
4843 // described in it.
4844 const Elf_Shdr *FunctionELFSec =
4845 unwrapOrError(this->FileName, EF->getSection(ElfSec->sh_link));
4846 uint64_t Offset = 0;
4847 while (Offset < Contents.size()) {
4848 // The function address is followed by a ULEB representing the stack
4849 // size. Check for an extra byte before we try to process the entry.
4850 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
4851 reportError(
4852 createStringError(
4853 object_error::parse_failed,
4854 "section %s ended while trying to extract a stack size entry",
4855 SectionName.data()),
4856 FileStr);
4858 uint64_t SymValue = Data.getAddress(&Offset);
4859 printFunctionStackSize(Obj, SymValue, Obj->toSectionRef(FunctionELFSec),
4860 SectionName, Data, &Offset);
4865 template <class ELFT>
4866 void DumpStyle<ELFT>::printRelocatableStackSizes(
4867 const ELFObjectFile<ELFT> *Obj, std::function<void()> PrintHeader) {
4868 const ELFFile<ELFT> *EF = Obj->getELFFile();
4870 // Build a map between stack size sections and their corresponding relocation
4871 // sections.
4872 llvm::MapVector<SectionRef, SectionRef> StackSizeRelocMap;
4873 const SectionRef NullSection{};
4875 for (const SectionRef &Sec : Obj->sections()) {
4876 StringRef SectionName;
4877 if (Expected<StringRef> NameOrErr = Sec.getName())
4878 SectionName = *NameOrErr;
4879 else
4880 consumeError(NameOrErr.takeError());
4882 // A stack size section that we haven't encountered yet is mapped to the
4883 // null section until we find its corresponding relocation section.
4884 if (SectionName == ".stack_sizes")
4885 if (StackSizeRelocMap.count(Sec) == 0) {
4886 StackSizeRelocMap[Sec] = NullSection;
4887 continue;
4890 // Check relocation sections if they are relocating contents of a
4891 // stack sizes section.
4892 const Elf_Shdr *ElfSec = Obj->getSection(Sec.getRawDataRefImpl());
4893 uint32_t SectionType = ElfSec->sh_type;
4894 if (SectionType != ELF::SHT_RELA && SectionType != ELF::SHT_REL)
4895 continue;
4897 Expected<section_iterator> RelSecOrErr = Sec.getRelocatedSection();
4898 if (!RelSecOrErr)
4899 reportError(createStringError(object_error::parse_failed,
4900 "%s: failed to get a relocated section: %s",
4901 SectionName.data(),
4902 toString(RelSecOrErr.takeError()).c_str()),
4903 Obj->getFileName());
4905 const Elf_Shdr *ContentsSec =
4906 Obj->getSection((*RelSecOrErr)->getRawDataRefImpl());
4907 Expected<StringRef> ContentsSectionNameOrErr =
4908 EF->getSectionName(ContentsSec);
4909 if (!ContentsSectionNameOrErr) {
4910 consumeError(ContentsSectionNameOrErr.takeError());
4911 continue;
4913 if (*ContentsSectionNameOrErr != ".stack_sizes")
4914 continue;
4915 // Insert a mapping from the stack sizes section to its relocation section.
4916 StackSizeRelocMap[Obj->toSectionRef(ContentsSec)] = Sec;
4919 for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
4920 PrintHeader();
4921 const SectionRef &StackSizesSec = StackSizeMapEntry.first;
4922 const SectionRef &RelocSec = StackSizeMapEntry.second;
4924 // Warn about stack size sections without a relocation section.
4925 StringRef StackSizeSectionName = getSectionName(StackSizesSec);
4926 if (RelocSec == NullSection) {
4927 reportWarning(createError("section " + StackSizeSectionName +
4928 " does not have a corresponding "
4929 "relocation section"),
4930 Obj->getFileName());
4931 continue;
4934 // A .stack_sizes section header's sh_link field is supposed to point
4935 // to the section that contains the functions whose stack sizes are
4936 // described in it.
4937 const Elf_Shdr *StackSizesELFSec =
4938 Obj->getSection(StackSizesSec.getRawDataRefImpl());
4939 const SectionRef FunctionSec = Obj->toSectionRef(unwrapOrError(
4940 this->FileName, EF->getSection(StackSizesELFSec->sh_link)));
4942 bool (*IsSupportedFn)(uint64_t);
4943 RelocationResolver Resolver;
4944 std::tie(IsSupportedFn, Resolver) = getRelocationResolver(*Obj);
4945 auto Contents = unwrapOrError(this->FileName, StackSizesSec.getContents());
4946 DataExtractor Data(Contents, Obj->isLittleEndian(), sizeof(Elf_Addr));
4947 for (const RelocationRef &Reloc : RelocSec.relocations()) {
4948 if (!IsSupportedFn || !IsSupportedFn(Reloc.getType()))
4949 reportError(createStringError(
4950 object_error::parse_failed,
4951 "unsupported relocation type in section %s: %s",
4952 getSectionName(RelocSec).data(),
4953 EF->getRelocationTypeName(Reloc.getType()).data()),
4954 Obj->getFileName());
4955 this->printStackSize(Obj, Reloc, FunctionSec, StackSizeSectionName,
4956 Resolver, Data);
4961 template <class ELFT>
4962 void GNUStyle<ELFT>::printStackSizes(const ELFObjectFile<ELFT> *Obj) {
4963 bool HeaderHasBeenPrinted = false;
4964 auto PrintHeader = [&]() {
4965 if (HeaderHasBeenPrinted)
4966 return;
4967 OS << "\nStack Sizes:\n";
4968 OS.PadToColumn(9);
4969 OS << "Size";
4970 OS.PadToColumn(18);
4971 OS << "Function\n";
4972 HeaderHasBeenPrinted = true;
4975 // For non-relocatable objects, look directly for sections whose name starts
4976 // with .stack_sizes and process the contents.
4977 if (Obj->isRelocatableObject())
4978 this->printRelocatableStackSizes(Obj, PrintHeader);
4979 else
4980 this->printNonRelocatableStackSizes(Obj, PrintHeader);
4983 template <class ELFT>
4984 void GNUStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
4985 size_t Bias = ELFT::Is64Bits ? 8 : 0;
4986 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
4987 OS.PadToColumn(2);
4988 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
4989 OS.PadToColumn(11 + Bias);
4990 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
4991 OS.PadToColumn(22 + Bias);
4992 OS << format_hex_no_prefix(*E, 8 + Bias);
4993 OS.PadToColumn(31 + 2 * Bias);
4994 OS << Purpose << "\n";
4997 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
4998 OS << " Canonical gp value: "
4999 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
5001 OS << " Reserved entries:\n";
5002 if (ELFT::Is64Bits)
5003 OS << " Address Access Initial Purpose\n";
5004 else
5005 OS << " Address Access Initial Purpose\n";
5006 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
5007 if (Parser.getGotModulePointer())
5008 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
5010 if (!Parser.getLocalEntries().empty()) {
5011 OS << "\n";
5012 OS << " Local entries:\n";
5013 if (ELFT::Is64Bits)
5014 OS << " Address Access Initial\n";
5015 else
5016 OS << " Address Access Initial\n";
5017 for (auto &E : Parser.getLocalEntries())
5018 PrintEntry(&E, "");
5021 if (Parser.IsStatic)
5022 return;
5024 if (!Parser.getGlobalEntries().empty()) {
5025 OS << "\n";
5026 OS << " Global entries:\n";
5027 if (ELFT::Is64Bits)
5028 OS << " Address Access Initial Sym.Val."
5029 << " Type Ndx Name\n";
5030 else
5031 OS << " Address Access Initial Sym.Val. Type Ndx Name\n";
5032 for (auto &E : Parser.getGlobalEntries()) {
5033 const Elf_Sym *Sym = Parser.getGotSym(&E);
5034 std::string SymName = this->dumper()->getFullSymbolName(
5035 Sym, this->dumper()->getDynamicStringTable(), false);
5037 OS.PadToColumn(2);
5038 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
5039 OS.PadToColumn(11 + Bias);
5040 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
5041 OS.PadToColumn(22 + Bias);
5042 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
5043 OS.PadToColumn(31 + 2 * Bias);
5044 OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
5045 OS.PadToColumn(40 + 3 * Bias);
5046 OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
5047 OS.PadToColumn(48 + 3 * Bias);
5048 OS << getSymbolSectionNdx(Parser.Obj, Sym,
5049 this->dumper()->dynamic_symbols().begin());
5050 OS.PadToColumn(52 + 3 * Bias);
5051 OS << SymName << "\n";
5055 if (!Parser.getOtherEntries().empty())
5056 OS << "\n Number of TLS and multi-GOT entries "
5057 << Parser.getOtherEntries().size() << "\n";
5060 template <class ELFT>
5061 void GNUStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
5062 size_t Bias = ELFT::Is64Bits ? 8 : 0;
5063 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
5064 OS.PadToColumn(2);
5065 OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
5066 OS.PadToColumn(11 + Bias);
5067 OS << format_hex_no_prefix(*E, 8 + Bias);
5068 OS.PadToColumn(20 + 2 * Bias);
5069 OS << Purpose << "\n";
5072 OS << "PLT GOT:\n\n";
5074 OS << " Reserved entries:\n";
5075 OS << " Address Initial Purpose\n";
5076 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
5077 if (Parser.getPltModulePointer())
5078 PrintEntry(Parser.getPltModulePointer(), "Module pointer");
5080 if (!Parser.getPltEntries().empty()) {
5081 OS << "\n";
5082 OS << " Entries:\n";
5083 OS << " Address Initial Sym.Val. Type Ndx Name\n";
5084 for (auto &E : Parser.getPltEntries()) {
5085 const Elf_Sym *Sym = Parser.getPltSym(&E);
5086 std::string SymName = this->dumper()->getFullSymbolName(
5087 Sym, this->dumper()->getDynamicStringTable(), false);
5089 OS.PadToColumn(2);
5090 OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
5091 OS.PadToColumn(11 + Bias);
5092 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
5093 OS.PadToColumn(20 + 2 * Bias);
5094 OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
5095 OS.PadToColumn(29 + 3 * Bias);
5096 OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
5097 OS.PadToColumn(37 + 3 * Bias);
5098 OS << getSymbolSectionNdx(Parser.Obj, Sym,
5099 this->dumper()->dynamic_symbols().begin());
5100 OS.PadToColumn(41 + 3 * Bias);
5101 OS << SymName << "\n";
5106 template <class ELFT>
5107 void GNUStyle<ELFT>::printMipsABIFlags(const ELFObjectFile<ELFT> *ObjF) {
5108 const ELFFile<ELFT> *Obj = ObjF->getELFFile();
5109 const Elf_Shdr *Shdr =
5110 findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.abiflags");
5111 if (!Shdr)
5112 return;
5114 ArrayRef<uint8_t> Sec =
5115 unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
5116 if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
5117 reportError(createError(".MIPS.abiflags section has a wrong size"),
5118 ObjF->getFileName());
5120 auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data());
5122 OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
5123 OS << "ISA: MIPS" << int(Flags->isa_level);
5124 if (Flags->isa_rev > 1)
5125 OS << "r" << int(Flags->isa_rev);
5126 OS << "\n";
5127 OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
5128 OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
5129 OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
5130 OS << "FP ABI: " << printEnum(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType))
5131 << "\n";
5132 OS << "ISA Extension: "
5133 << printEnum(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n";
5134 if (Flags->ases == 0)
5135 OS << "ASEs: None\n";
5136 else
5137 // FIXME: Print each flag on a separate line.
5138 OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags))
5139 << "\n";
5140 OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
5141 OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
5142 OS << "\n";
5145 template <class ELFT> void LLVMStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
5146 const Elf_Ehdr *E = Obj->getHeader();
5148 DictScope D(W, "ElfHeader");
5150 DictScope D(W, "Ident");
5151 W.printBinary("Magic", makeArrayRef(E->e_ident).slice(ELF::EI_MAG0, 4));
5152 W.printEnum("Class", E->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
5153 W.printEnum("DataEncoding", E->e_ident[ELF::EI_DATA],
5154 makeArrayRef(ElfDataEncoding));
5155 W.printNumber("FileVersion", E->e_ident[ELF::EI_VERSION]);
5157 auto OSABI = makeArrayRef(ElfOSABI);
5158 if (E->e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
5159 E->e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
5160 switch (E->e_machine) {
5161 case ELF::EM_AMDGPU:
5162 OSABI = makeArrayRef(AMDGPUElfOSABI);
5163 break;
5164 case ELF::EM_ARM:
5165 OSABI = makeArrayRef(ARMElfOSABI);
5166 break;
5167 case ELF::EM_TI_C6000:
5168 OSABI = makeArrayRef(C6000ElfOSABI);
5169 break;
5172 W.printEnum("OS/ABI", E->e_ident[ELF::EI_OSABI], OSABI);
5173 W.printNumber("ABIVersion", E->e_ident[ELF::EI_ABIVERSION]);
5174 W.printBinary("Unused", makeArrayRef(E->e_ident).slice(ELF::EI_PAD));
5177 W.printEnum("Type", E->e_type, makeArrayRef(ElfObjectFileType));
5178 W.printEnum("Machine", E->e_machine, makeArrayRef(ElfMachineType));
5179 W.printNumber("Version", E->e_version);
5180 W.printHex("Entry", E->e_entry);
5181 W.printHex("ProgramHeaderOffset", E->e_phoff);
5182 W.printHex("SectionHeaderOffset", E->e_shoff);
5183 if (E->e_machine == EM_MIPS)
5184 W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderMipsFlags),
5185 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
5186 unsigned(ELF::EF_MIPS_MACH));
5187 else if (E->e_machine == EM_AMDGPU)
5188 W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderAMDGPUFlags),
5189 unsigned(ELF::EF_AMDGPU_MACH));
5190 else if (E->e_machine == EM_RISCV)
5191 W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderRISCVFlags));
5192 else
5193 W.printFlags("Flags", E->e_flags);
5194 W.printNumber("HeaderSize", E->e_ehsize);
5195 W.printNumber("ProgramHeaderEntrySize", E->e_phentsize);
5196 W.printNumber("ProgramHeaderCount", E->e_phnum);
5197 W.printNumber("SectionHeaderEntrySize", E->e_shentsize);
5198 W.printString("SectionHeaderCount",
5199 getSectionHeadersNumString(Obj, this->FileName));
5200 W.printString("StringTableSectionIndex",
5201 getSectionHeaderTableIndexString(Obj, this->FileName));
5205 template <class ELFT>
5206 void LLVMStyle<ELFT>::printGroupSections(const ELFO *Obj) {
5207 DictScope Lists(W, "Groups");
5208 std::vector<GroupSection> V = getGroups<ELFT>(Obj, this->FileName);
5209 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
5210 for (const GroupSection &G : V) {
5211 DictScope D(W, "Group");
5212 W.printNumber("Name", G.Name, G.ShName);
5213 W.printNumber("Index", G.Index);
5214 W.printNumber("Link", G.Link);
5215 W.printNumber("Info", G.Info);
5216 W.printHex("Type", getGroupType(G.Type), G.Type);
5217 W.startLine() << "Signature: " << G.Signature << "\n";
5219 ListScope L(W, "Section(s) in group");
5220 for (const GroupMember &GM : G.Members) {
5221 const GroupSection *MainGroup = Map[GM.Index];
5222 if (MainGroup != &G) {
5223 W.flush();
5224 errs() << "Error: " << GM.Name << " (" << GM.Index
5225 << ") in a group " + G.Name + " (" << G.Index
5226 << ") is already in a group " + MainGroup->Name + " ("
5227 << MainGroup->Index << ")\n";
5228 errs().flush();
5229 continue;
5231 W.startLine() << GM.Name << " (" << GM.Index << ")\n";
5235 if (V.empty())
5236 W.startLine() << "There are no group sections in the file.\n";
5239 template <class ELFT> void LLVMStyle<ELFT>::printRelocations(const ELFO *Obj) {
5240 ListScope D(W, "Relocations");
5242 int SectionNumber = -1;
5243 for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
5244 ++SectionNumber;
5246 if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA &&
5247 Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL &&
5248 Sec.sh_type != ELF::SHT_ANDROID_RELA &&
5249 Sec.sh_type != ELF::SHT_ANDROID_RELR)
5250 continue;
5252 StringRef Name = unwrapOrError(this->FileName, Obj->getSectionName(&Sec));
5254 W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
5255 W.indent();
5257 printRelocations(&Sec, Obj);
5259 W.unindent();
5260 W.startLine() << "}\n";
5264 template <class ELFT>
5265 void LLVMStyle<ELFT>::printRelocations(const Elf_Shdr *Sec, const ELFO *Obj) {
5266 const Elf_Shdr *SymTab =
5267 unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link));
5269 switch (Sec->sh_type) {
5270 case ELF::SHT_REL:
5271 for (const Elf_Rel &R : unwrapOrError(this->FileName, Obj->rels(Sec))) {
5272 Elf_Rela Rela;
5273 Rela.r_offset = R.r_offset;
5274 Rela.r_info = R.r_info;
5275 Rela.r_addend = 0;
5276 printRelocation(Obj, Rela, SymTab);
5278 break;
5279 case ELF::SHT_RELA:
5280 for (const Elf_Rela &R : unwrapOrError(this->FileName, Obj->relas(Sec)))
5281 printRelocation(Obj, R, SymTab);
5282 break;
5283 case ELF::SHT_RELR:
5284 case ELF::SHT_ANDROID_RELR: {
5285 Elf_Relr_Range Relrs = unwrapOrError(this->FileName, Obj->relrs(Sec));
5286 if (opts::RawRelr) {
5287 for (const Elf_Relr &R : Relrs)
5288 W.startLine() << W.hex(R) << "\n";
5289 } else {
5290 std::vector<Elf_Rela> RelrRelas =
5291 unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
5292 for (const Elf_Rela &R : RelrRelas)
5293 printRelocation(Obj, R, SymTab);
5295 break;
5297 case ELF::SHT_ANDROID_REL:
5298 case ELF::SHT_ANDROID_RELA:
5299 for (const Elf_Rela &R :
5300 unwrapOrError(this->FileName, Obj->android_relas(Sec)))
5301 printRelocation(Obj, R, SymTab);
5302 break;
5306 template <class ELFT>
5307 void LLVMStyle<ELFT>::printRelocation(const ELFO *Obj, Elf_Rela Rel,
5308 const Elf_Shdr *SymTab) {
5309 SmallString<32> RelocName;
5310 Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
5311 std::string TargetName;
5312 const Elf_Sym *Sym =
5313 unwrapOrError(this->FileName, Obj->getRelocationSymbol(&Rel, SymTab));
5314 if (Sym && Sym->getType() == ELF::STT_SECTION) {
5315 const Elf_Shdr *Sec = unwrapOrError(
5316 this->FileName,
5317 Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
5318 TargetName = unwrapOrError(this->FileName, Obj->getSectionName(Sec));
5319 } else if (Sym) {
5320 StringRef StrTable =
5321 unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*SymTab));
5322 TargetName = this->dumper()->getFullSymbolName(
5323 Sym, StrTable, SymTab->sh_type == SHT_DYNSYM /* IsDynamic */);
5326 if (opts::ExpandRelocs) {
5327 DictScope Group(W, "Relocation");
5328 W.printHex("Offset", Rel.r_offset);
5329 W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
5330 W.printNumber("Symbol", !TargetName.empty() ? TargetName : "-",
5331 Rel.getSymbol(Obj->isMips64EL()));
5332 W.printHex("Addend", Rel.r_addend);
5333 } else {
5334 raw_ostream &OS = W.startLine();
5335 OS << W.hex(Rel.r_offset) << " " << RelocName << " "
5336 << (!TargetName.empty() ? TargetName : "-") << " " << W.hex(Rel.r_addend)
5337 << "\n";
5341 template <class ELFT>
5342 void LLVMStyle<ELFT>::printSectionHeaders(const ELFO *Obj) {
5343 ListScope SectionsD(W, "Sections");
5345 int SectionIndex = -1;
5346 ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
5347 const ELFObjectFile<ELFT> *ElfObj = this->dumper()->getElfObject();
5348 for (const Elf_Shdr &Sec : Sections) {
5349 StringRef Name = unwrapOrError(
5350 ElfObj->getFileName(), Obj->getSectionName(&Sec, this->WarningHandler));
5351 DictScope SectionD(W, "Section");
5352 W.printNumber("Index", ++SectionIndex);
5353 W.printNumber("Name", Name, Sec.sh_name);
5354 W.printHex(
5355 "Type",
5356 object::getELFSectionTypeName(Obj->getHeader()->e_machine, Sec.sh_type),
5357 Sec.sh_type);
5358 std::vector<EnumEntry<unsigned>> SectionFlags(std::begin(ElfSectionFlags),
5359 std::end(ElfSectionFlags));
5360 switch (Obj->getHeader()->e_machine) {
5361 case EM_ARM:
5362 SectionFlags.insert(SectionFlags.end(), std::begin(ElfARMSectionFlags),
5363 std::end(ElfARMSectionFlags));
5364 break;
5365 case EM_HEXAGON:
5366 SectionFlags.insert(SectionFlags.end(),
5367 std::begin(ElfHexagonSectionFlags),
5368 std::end(ElfHexagonSectionFlags));
5369 break;
5370 case EM_MIPS:
5371 SectionFlags.insert(SectionFlags.end(), std::begin(ElfMipsSectionFlags),
5372 std::end(ElfMipsSectionFlags));
5373 break;
5374 case EM_X86_64:
5375 SectionFlags.insert(SectionFlags.end(), std::begin(ElfX86_64SectionFlags),
5376 std::end(ElfX86_64SectionFlags));
5377 break;
5378 case EM_XCORE:
5379 SectionFlags.insert(SectionFlags.end(), std::begin(ElfXCoreSectionFlags),
5380 std::end(ElfXCoreSectionFlags));
5381 break;
5382 default:
5383 // Nothing to do.
5384 break;
5386 W.printFlags("Flags", Sec.sh_flags, makeArrayRef(SectionFlags));
5387 W.printHex("Address", Sec.sh_addr);
5388 W.printHex("Offset", Sec.sh_offset);
5389 W.printNumber("Size", Sec.sh_size);
5390 W.printNumber("Link", Sec.sh_link);
5391 W.printNumber("Info", Sec.sh_info);
5392 W.printNumber("AddressAlignment", Sec.sh_addralign);
5393 W.printNumber("EntrySize", Sec.sh_entsize);
5395 if (opts::SectionRelocations) {
5396 ListScope D(W, "Relocations");
5397 printRelocations(&Sec, Obj);
5400 if (opts::SectionSymbols) {
5401 ListScope D(W, "Symbols");
5402 const Elf_Shdr *Symtab = this->dumper()->getDotSymtabSec();
5403 StringRef StrTable =
5404 unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*Symtab));
5406 for (const Elf_Sym &Sym :
5407 unwrapOrError(this->FileName, Obj->symbols(Symtab))) {
5408 const Elf_Shdr *SymSec = unwrapOrError(
5409 this->FileName,
5410 Obj->getSection(&Sym, Symtab, this->dumper()->getShndxTable()));
5411 if (SymSec == &Sec)
5412 printSymbol(
5413 Obj, &Sym,
5414 unwrapOrError(this->FileName, Obj->symbols(Symtab)).begin(),
5415 StrTable, false, false);
5419 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
5420 ArrayRef<uint8_t> Data =
5421 unwrapOrError(this->FileName, Obj->getSectionContents(&Sec));
5422 W.printBinaryBlock(
5423 "SectionData",
5424 StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
5429 template <class ELFT>
5430 void LLVMStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
5431 const Elf_Sym *First, StringRef StrTable,
5432 bool IsDynamic,
5433 bool /*NonVisibilityBitsUsed*/) {
5434 unsigned SectionIndex = 0;
5435 StringRef SectionName;
5436 this->dumper()->getSectionNameIndex(Symbol, First, SectionName, SectionIndex);
5437 std::string FullSymbolName =
5438 this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
5439 unsigned char SymbolType = Symbol->getType();
5441 DictScope D(W, "Symbol");
5442 W.printNumber("Name", FullSymbolName, Symbol->st_name);
5443 W.printHex("Value", Symbol->st_value);
5444 W.printNumber("Size", Symbol->st_size);
5445 W.printEnum("Binding", Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
5446 if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
5447 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
5448 W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
5449 else
5450 W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
5451 if (Symbol->st_other == 0)
5452 // Usually st_other flag is zero. Do not pollute the output
5453 // by flags enumeration in that case.
5454 W.printNumber("Other", 0);
5455 else {
5456 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
5457 std::end(ElfSymOtherFlags));
5458 if (Obj->getHeader()->e_machine == EM_MIPS) {
5459 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
5460 // flag overlapped with other ST_MIPS_xxx flags. So consider both
5461 // cases separately.
5462 if ((Symbol->st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
5463 SymOtherFlags.insert(SymOtherFlags.end(),
5464 std::begin(ElfMips16SymOtherFlags),
5465 std::end(ElfMips16SymOtherFlags));
5466 else
5467 SymOtherFlags.insert(SymOtherFlags.end(),
5468 std::begin(ElfMipsSymOtherFlags),
5469 std::end(ElfMipsSymOtherFlags));
5471 W.printFlags("Other", Symbol->st_other, makeArrayRef(SymOtherFlags), 0x3u);
5473 W.printHex("Section", SectionName, SectionIndex);
5476 template <class ELFT>
5477 void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj, bool PrintSymbols,
5478 bool PrintDynamicSymbols) {
5479 if (PrintSymbols)
5480 printSymbols(Obj);
5481 if (PrintDynamicSymbols)
5482 printDynamicSymbols(Obj);
5485 template <class ELFT> void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj) {
5486 ListScope Group(W, "Symbols");
5487 this->dumper()->printSymbolsHelper(false);
5490 template <class ELFT>
5491 void LLVMStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) {
5492 ListScope Group(W, "DynamicSymbols");
5493 this->dumper()->printSymbolsHelper(true);
5496 template <class ELFT> void LLVMStyle<ELFT>::printDynamic(const ELFFile<ELFT> *Obj) {
5497 Elf_Dyn_Range Table = this->dumper()->dynamic_table();
5498 if (Table.empty())
5499 return;
5501 raw_ostream &OS = W.getOStream();
5502 W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
5504 bool Is64 = ELFT::Is64Bits;
5505 if (Is64)
5506 W.startLine() << " Tag Type Name/Value\n";
5507 else
5508 W.startLine() << " Tag Type Name/Value\n";
5509 for (auto Entry : Table) {
5510 uintX_t Tag = Entry.getTag();
5511 W.startLine() << " " << format_hex(Tag, Is64 ? 18 : 10, true) << " "
5512 << format("%-21s",
5513 getTypeString(Obj->getHeader()->e_machine, Tag));
5514 this->dumper()->printDynamicEntry(OS, Tag, Entry.getVal());
5515 OS << "\n";
5518 W.startLine() << "]\n";
5521 template <class ELFT>
5522 void LLVMStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
5523 const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
5524 const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
5525 const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion();
5526 const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
5527 if (DynRelRegion.Size && DynRelaRegion.Size)
5528 report_fatal_error("There are both REL and RELA dynamic relocations");
5529 W.startLine() << "Dynamic Relocations {\n";
5530 W.indent();
5531 if (DynRelaRegion.Size > 0)
5532 for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
5533 printDynamicRelocation(Obj, Rela);
5534 else
5535 for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
5536 Elf_Rela Rela;
5537 Rela.r_offset = Rel.r_offset;
5538 Rela.r_info = Rel.r_info;
5539 Rela.r_addend = 0;
5540 printDynamicRelocation(Obj, Rela);
5542 if (DynRelrRegion.Size > 0) {
5543 Elf_Relr_Range Relrs = this->dumper()->dyn_relrs();
5544 std::vector<Elf_Rela> RelrRelas =
5545 unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
5546 for (const Elf_Rela &Rela : RelrRelas)
5547 printDynamicRelocation(Obj, Rela);
5549 if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela))
5550 for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
5551 printDynamicRelocation(Obj, Rela);
5552 else
5553 for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
5554 Elf_Rela Rela;
5555 Rela.r_offset = Rel.r_offset;
5556 Rela.r_info = Rel.r_info;
5557 Rela.r_addend = 0;
5558 printDynamicRelocation(Obj, Rela);
5560 W.unindent();
5561 W.startLine() << "}\n";
5564 template <class ELFT>
5565 void LLVMStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel) {
5566 SmallString<32> RelocName;
5567 Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
5568 std::string SymbolName =
5569 getSymbolForReloc(Obj, this->FileName, this->dumper(), Rel).Name;
5571 if (opts::ExpandRelocs) {
5572 DictScope Group(W, "Relocation");
5573 W.printHex("Offset", Rel.r_offset);
5574 W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
5575 W.printString("Symbol", !SymbolName.empty() ? SymbolName : "-");
5576 W.printHex("Addend", Rel.r_addend);
5577 } else {
5578 raw_ostream &OS = W.startLine();
5579 OS << W.hex(Rel.r_offset) << " " << RelocName << " "
5580 << (!SymbolName.empty() ? SymbolName : "-") << " " << W.hex(Rel.r_addend)
5581 << "\n";
5585 template <class ELFT>
5586 void LLVMStyle<ELFT>::printProgramHeaders(
5587 const ELFO *Obj, bool PrintProgramHeaders,
5588 cl::boolOrDefault PrintSectionMapping) {
5589 if (PrintProgramHeaders)
5590 printProgramHeaders(Obj);
5591 if (PrintSectionMapping == cl::BOU_TRUE)
5592 printSectionMapping(Obj);
5595 template <class ELFT>
5596 void LLVMStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
5597 ListScope L(W, "ProgramHeaders");
5599 for (const Elf_Phdr &Phdr :
5600 unwrapOrError(this->FileName, Obj->program_headers())) {
5601 DictScope P(W, "ProgramHeader");
5602 W.printHex("Type",
5603 getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type),
5604 Phdr.p_type);
5605 W.printHex("Offset", Phdr.p_offset);
5606 W.printHex("VirtualAddress", Phdr.p_vaddr);
5607 W.printHex("PhysicalAddress", Phdr.p_paddr);
5608 W.printNumber("FileSize", Phdr.p_filesz);
5609 W.printNumber("MemSize", Phdr.p_memsz);
5610 W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
5611 W.printNumber("Alignment", Phdr.p_align);
5615 template <class ELFT>
5616 void LLVMStyle<ELFT>::printVersionSymbolSection(const ELFFile<ELFT> *Obj,
5617 const Elf_Shdr *Sec) {
5618 ListScope SS(W, "VersionSymbols");
5619 if (!Sec)
5620 return;
5622 const uint8_t *VersymBuf =
5623 reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset);
5624 const ELFDumper<ELFT> *Dumper = this->dumper();
5625 StringRef StrTable = Dumper->getDynamicStringTable();
5627 // Same number of entries in the dynamic symbol table (DT_SYMTAB).
5628 for (const Elf_Sym &Sym : Dumper->dynamic_symbols()) {
5629 DictScope S(W, "Symbol");
5630 const Elf_Versym *Versym = reinterpret_cast<const Elf_Versym *>(VersymBuf);
5631 std::string FullSymbolName =
5632 Dumper->getFullSymbolName(&Sym, StrTable, true /* IsDynamic */);
5633 W.printNumber("Version", Versym->vs_index & VERSYM_VERSION);
5634 W.printString("Name", FullSymbolName);
5635 VersymBuf += sizeof(Elf_Versym);
5639 template <class ELFT>
5640 void LLVMStyle<ELFT>::printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
5641 const Elf_Shdr *Sec) {
5642 ListScope SD(W, "VersionDefinitions");
5643 if (!Sec)
5644 return;
5646 const uint8_t *SecStartAddress =
5647 reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset);
5648 const uint8_t *SecEndAddress = SecStartAddress + Sec->sh_size;
5649 const uint8_t *VerdefBuf = SecStartAddress;
5650 const Elf_Shdr *StrTab =
5651 unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link));
5653 unsigned VerDefsNum = Sec->sh_info;
5654 while (VerDefsNum--) {
5655 if (VerdefBuf + sizeof(Elf_Verdef) > SecEndAddress)
5656 // FIXME: report_fatal_error is not a good way to report error. We should
5657 // emit a parsing error here and below.
5658 report_fatal_error("invalid offset in the section");
5660 const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(VerdefBuf);
5661 DictScope Def(W, "Definition");
5662 W.printNumber("Version", Verdef->vd_version);
5663 W.printEnum("Flags", Verdef->vd_flags, makeArrayRef(SymVersionFlags));
5664 W.printNumber("Index", Verdef->vd_ndx);
5665 W.printNumber("Hash", Verdef->vd_hash);
5666 W.printString("Name", StringRef(reinterpret_cast<const char *>(
5667 Obj->base() + StrTab->sh_offset +
5668 Verdef->getAux()->vda_name)));
5669 if (!Verdef->vd_cnt)
5670 report_fatal_error("at least one definition string must exist");
5671 if (Verdef->vd_cnt > 2)
5672 report_fatal_error("more than one predecessor is not expected");
5674 if (Verdef->vd_cnt == 2) {
5675 const uint8_t *VerdauxBuf =
5676 VerdefBuf + Verdef->vd_aux + Verdef->getAux()->vda_next;
5677 const Elf_Verdaux *Verdaux =
5678 reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf);
5679 W.printString("Predecessor",
5680 StringRef(reinterpret_cast<const char *>(
5681 Obj->base() + StrTab->sh_offset + Verdaux->vda_name)));
5683 VerdefBuf += Verdef->vd_next;
5687 template <class ELFT>
5688 void LLVMStyle<ELFT>::printVersionDependencySection(const ELFFile<ELFT> *Obj,
5689 const Elf_Shdr *Sec) {
5690 ListScope SD(W, "VersionRequirements");
5691 if (!Sec)
5692 return;
5694 const uint8_t *SecData =
5695 reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset);
5696 const Elf_Shdr *StrTab =
5697 unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link));
5699 const uint8_t *VerneedBuf = SecData;
5700 unsigned VerneedNum = Sec->sh_info;
5701 for (unsigned I = 0; I < VerneedNum; ++I) {
5702 const Elf_Verneed *Verneed =
5703 reinterpret_cast<const Elf_Verneed *>(VerneedBuf);
5704 DictScope Entry(W, "Dependency");
5705 W.printNumber("Version", Verneed->vn_version);
5706 W.printNumber("Count", Verneed->vn_cnt);
5707 W.printString("FileName",
5708 StringRef(reinterpret_cast<const char *>(
5709 Obj->base() + StrTab->sh_offset + Verneed->vn_file)));
5711 const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux;
5712 ListScope L(W, "Entries");
5713 for (unsigned J = 0; J < Verneed->vn_cnt; ++J) {
5714 const Elf_Vernaux *Vernaux =
5715 reinterpret_cast<const Elf_Vernaux *>(VernauxBuf);
5716 DictScope Entry(W, "Entry");
5717 W.printNumber("Hash", Vernaux->vna_hash);
5718 W.printEnum("Flags", Vernaux->vna_flags, makeArrayRef(SymVersionFlags));
5719 W.printNumber("Index", Vernaux->vna_other);
5720 W.printString("Name",
5721 StringRef(reinterpret_cast<const char *>(
5722 Obj->base() + StrTab->sh_offset + Vernaux->vna_name)));
5723 VernauxBuf += Vernaux->vna_next;
5725 VerneedBuf += Verneed->vn_next;
5729 template <class ELFT>
5730 void LLVMStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
5731 W.startLine() << "Hash Histogram not implemented!\n";
5734 template <class ELFT>
5735 void LLVMStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) {
5736 ListScope L(W, "CGProfile");
5737 if (!this->dumper()->getDotCGProfileSec())
5738 return;
5739 auto CGProfile = unwrapOrError(
5740 this->FileName, Obj->template getSectionContentsAsArray<Elf_CGProfile>(
5741 this->dumper()->getDotCGProfileSec()));
5742 for (const Elf_CGProfile &CGPE : CGProfile) {
5743 DictScope D(W, "CGProfileEntry");
5744 W.printNumber(
5745 "From",
5746 unwrapOrError(this->FileName,
5747 this->dumper()->getStaticSymbolName(CGPE.cgp_from)),
5748 CGPE.cgp_from);
5749 W.printNumber(
5750 "To",
5751 unwrapOrError(this->FileName,
5752 this->dumper()->getStaticSymbolName(CGPE.cgp_to)),
5753 CGPE.cgp_to);
5754 W.printNumber("Weight", CGPE.cgp_weight);
5758 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
5759 std::vector<uint64_t> Ret;
5760 const uint8_t *Cur = Data.begin();
5761 const uint8_t *End = Data.end();
5762 while (Cur != End) {
5763 unsigned Size;
5764 const char *Err;
5765 Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
5766 if (Err)
5767 return createError(Err);
5768 Cur += Size;
5770 return Ret;
5773 template <class ELFT>
5774 void LLVMStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) {
5775 ListScope L(W, "Addrsig");
5776 if (!this->dumper()->getDotAddrsigSec())
5777 return;
5778 ArrayRef<uint8_t> Contents = unwrapOrError(
5779 this->FileName,
5780 Obj->getSectionContents(this->dumper()->getDotAddrsigSec()));
5781 Expected<std::vector<uint64_t>> V = toULEB128Array(Contents);
5782 if (!V) {
5783 reportWarning(V.takeError(), this->FileName);
5784 return;
5787 for (uint64_t Sym : *V) {
5788 Expected<std::string> NameOrErr = this->dumper()->getStaticSymbolName(Sym);
5789 if (NameOrErr) {
5790 W.printNumber("Sym", *NameOrErr, Sym);
5791 continue;
5793 reportWarning(NameOrErr.takeError(), this->FileName);
5794 W.printNumber("Sym", "<?>", Sym);
5798 template <typename ELFT>
5799 static void printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
5800 ScopedPrinter &W) {
5801 switch (NoteType) {
5802 default:
5803 return;
5804 case ELF::NT_GNU_ABI_TAG: {
5805 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5806 if (!AbiTag.IsValid) {
5807 W.printString("ABI", "<corrupt GNU_ABI_TAG>");
5808 } else {
5809 W.printString("OS", AbiTag.OSName);
5810 W.printString("ABI", AbiTag.ABI);
5812 break;
5814 case ELF::NT_GNU_BUILD_ID: {
5815 W.printString("Build ID", getGNUBuildId(Desc));
5816 break;
5818 case ELF::NT_GNU_GOLD_VERSION:
5819 W.printString("Version", getGNUGoldVersion(Desc));
5820 break;
5821 case ELF::NT_GNU_PROPERTY_TYPE_0:
5822 ListScope D(W, "Property");
5823 for (const auto &Property : getGNUPropertyList<ELFT>(Desc))
5824 W.printString(Property);
5825 break;
5829 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
5830 W.printNumber("Page Size", Note.PageSize);
5831 for (const CoreFileMapping &Mapping : Note.Mappings) {
5832 ListScope D(W, "Mapping");
5833 W.printHex("Start", Mapping.Start);
5834 W.printHex("End", Mapping.End);
5835 W.printHex("Offset", Mapping.Offset);
5836 W.printString("Filename", Mapping.Filename);
5840 template <class ELFT>
5841 void LLVMStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
5842 ListScope L(W, "Notes");
5844 auto PrintHeader = [&](const typename ELFT::Off Offset,
5845 const typename ELFT::Addr Size) {
5846 W.printHex("Offset", Offset);
5847 W.printHex("Size", Size);
5850 auto ProcessNote = [&](const Elf_Note &Note) {
5851 DictScope D2(W, "Note");
5852 StringRef Name = Note.getName();
5853 ArrayRef<uint8_t> Descriptor = Note.getDesc();
5854 Elf_Word Type = Note.getType();
5856 // Print the note owner/type.
5857 W.printString("Owner", Name);
5858 W.printHex("Data size", Descriptor.size());
5859 if (Name == "GNU") {
5860 W.printString("Type", getGNUNoteTypeName(Type));
5861 } else if (Name == "FreeBSD") {
5862 W.printString("Type", getFreeBSDNoteTypeName(Type));
5863 } else if (Name == "AMD") {
5864 W.printString("Type", getAMDNoteTypeName(Type));
5865 } else if (Name == "AMDGPU") {
5866 W.printString("Type", getAMDGPUNoteTypeName(Type));
5867 } else {
5868 StringRef NoteType = Obj->getHeader()->e_type == ELF::ET_CORE
5869 ? getCoreNoteTypeName(Type)
5870 : getGenericNoteTypeName(Type);
5871 if (!NoteType.empty())
5872 W.printString("Type", NoteType);
5873 else
5874 W.printString("Type",
5875 "Unknown (" + to_string(format_hex(Type, 10)) + ")");
5878 // Print the description, or fallback to printing raw bytes for unknown
5879 // owners.
5880 if (Name == "GNU") {
5881 printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W);
5882 } else if (Name == "AMD") {
5883 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5884 if (!N.Type.empty())
5885 W.printString(N.Type, N.Value);
5886 } else if (Name == "AMDGPU") {
5887 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5888 if (!N.Type.empty())
5889 W.printString(N.Type, N.Value);
5890 } else if (Name == "CORE") {
5891 if (Type == ELF::NT_FILE) {
5892 DataExtractor DescExtractor(Descriptor,
5893 ELFT::TargetEndianness == support::little,
5894 sizeof(Elf_Addr));
5895 Expected<CoreNote> Note = readCoreNote(DescExtractor);
5896 if (Note)
5897 printCoreNoteLLVMStyle(*Note, W);
5898 else
5899 reportWarning(Note.takeError(), this->FileName);
5901 } else if (!Descriptor.empty()) {
5902 W.printBinaryBlock("Description data", Descriptor);
5906 ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
5907 if (Obj->getHeader()->e_type != ELF::ET_CORE && !Sections.empty()) {
5908 for (const auto &S : Sections) {
5909 if (S.sh_type != SHT_NOTE)
5910 continue;
5911 DictScope D(W, "NoteSection");
5912 PrintHeader(S.sh_offset, S.sh_size);
5913 Error Err = Error::success();
5914 for (const auto &Note : Obj->notes(S, Err))
5915 ProcessNote(Note);
5916 if (Err)
5917 reportError(std::move(Err), this->FileName);
5919 } else {
5920 for (const auto &P :
5921 unwrapOrError(this->FileName, Obj->program_headers())) {
5922 if (P.p_type != PT_NOTE)
5923 continue;
5924 DictScope D(W, "NoteSection");
5925 PrintHeader(P.p_offset, P.p_filesz);
5926 Error Err = Error::success();
5927 for (const auto &Note : Obj->notes(P, Err))
5928 ProcessNote(Note);
5929 if (Err)
5930 reportError(std::move(Err), this->FileName);
5935 template <class ELFT>
5936 void LLVMStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
5937 ListScope L(W, "LinkerOptions");
5939 for (const Elf_Shdr &Shdr : unwrapOrError(this->FileName, Obj->sections())) {
5940 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
5941 continue;
5943 ArrayRef<uint8_t> Contents =
5944 unwrapOrError(this->FileName, Obj->getSectionContents(&Shdr));
5945 for (const uint8_t *P = Contents.begin(), *E = Contents.end(); P < E; ) {
5946 StringRef Key = StringRef(reinterpret_cast<const char *>(P));
5947 StringRef Value =
5948 StringRef(reinterpret_cast<const char *>(P) + Key.size() + 1);
5950 W.printString(Key, Value);
5952 P = P + Key.size() + Value.size() + 2;
5957 template <class ELFT>
5958 void LLVMStyle<ELFT>::printStackSizes(const ELFObjectFile<ELFT> *Obj) {
5959 ListScope L(W, "StackSizes");
5960 if (Obj->isRelocatableObject())
5961 this->printRelocatableStackSizes(Obj, []() {});
5962 else
5963 this->printNonRelocatableStackSizes(Obj, []() {});
5966 template <class ELFT>
5967 void LLVMStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) {
5968 DictScope D(W, "Entry");
5969 W.printString("Function", FuncName);
5970 W.printHex("Size", Size);
5973 template <class ELFT>
5974 void LLVMStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
5975 auto PrintEntry = [&](const Elf_Addr *E) {
5976 W.printHex("Address", Parser.getGotAddress(E));
5977 W.printNumber("Access", Parser.getGotOffset(E));
5978 W.printHex("Initial", *E);
5981 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
5983 W.printHex("Canonical gp value", Parser.getGp());
5985 ListScope RS(W, "Reserved entries");
5987 DictScope D(W, "Entry");
5988 PrintEntry(Parser.getGotLazyResolver());
5989 W.printString("Purpose", StringRef("Lazy resolver"));
5992 if (Parser.getGotModulePointer()) {
5993 DictScope D(W, "Entry");
5994 PrintEntry(Parser.getGotModulePointer());
5995 W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
5999 ListScope LS(W, "Local entries");
6000 for (auto &E : Parser.getLocalEntries()) {
6001 DictScope D(W, "Entry");
6002 PrintEntry(&E);
6006 if (Parser.IsStatic)
6007 return;
6010 ListScope GS(W, "Global entries");
6011 for (auto &E : Parser.getGlobalEntries()) {
6012 DictScope D(W, "Entry");
6014 PrintEntry(&E);
6016 const Elf_Sym *Sym = Parser.getGotSym(&E);
6017 W.printHex("Value", Sym->st_value);
6018 W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
6020 unsigned SectionIndex = 0;
6021 StringRef SectionName;
6022 this->dumper()->getSectionNameIndex(
6023 Sym, this->dumper()->dynamic_symbols().begin(), SectionName,
6024 SectionIndex);
6025 W.printHex("Section", SectionName, SectionIndex);
6027 std::string SymName = this->dumper()->getFullSymbolName(
6028 Sym, this->dumper()->getDynamicStringTable(), true);
6029 W.printNumber("Name", SymName, Sym->st_name);
6033 W.printNumber("Number of TLS and multi-GOT entries",
6034 uint64_t(Parser.getOtherEntries().size()));
6037 template <class ELFT>
6038 void LLVMStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6039 auto PrintEntry = [&](const Elf_Addr *E) {
6040 W.printHex("Address", Parser.getPltAddress(E));
6041 W.printHex("Initial", *E);
6044 DictScope GS(W, "PLT GOT");
6047 ListScope RS(W, "Reserved entries");
6049 DictScope D(W, "Entry");
6050 PrintEntry(Parser.getPltLazyResolver());
6051 W.printString("Purpose", StringRef("PLT lazy resolver"));
6054 if (auto E = Parser.getPltModulePointer()) {
6055 DictScope D(W, "Entry");
6056 PrintEntry(E);
6057 W.printString("Purpose", StringRef("Module pointer"));
6061 ListScope LS(W, "Entries");
6062 for (auto &E : Parser.getPltEntries()) {
6063 DictScope D(W, "Entry");
6064 PrintEntry(&E);
6066 const Elf_Sym *Sym = Parser.getPltSym(&E);
6067 W.printHex("Value", Sym->st_value);
6068 W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
6070 unsigned SectionIndex = 0;
6071 StringRef SectionName;
6072 this->dumper()->getSectionNameIndex(
6073 Sym, this->dumper()->dynamic_symbols().begin(), SectionName,
6074 SectionIndex);
6075 W.printHex("Section", SectionName, SectionIndex);
6077 std::string SymName =
6078 this->dumper()->getFullSymbolName(Sym, Parser.getPltStrTable(), true);
6079 W.printNumber("Name", SymName, Sym->st_name);
6084 template <class ELFT>
6085 void LLVMStyle<ELFT>::printMipsABIFlags(const ELFObjectFile<ELFT> *ObjF) {
6086 const ELFFile<ELFT> *Obj = ObjF->getELFFile();
6087 const Elf_Shdr *Shdr =
6088 findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.abiflags");
6089 if (!Shdr) {
6090 W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
6091 return;
6093 ArrayRef<uint8_t> Sec =
6094 unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
6095 if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) {
6096 W.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
6097 return;
6100 auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data());
6102 raw_ostream &OS = W.getOStream();
6103 DictScope GS(W, "MIPS ABI Flags");
6105 W.printNumber("Version", Flags->version);
6106 W.startLine() << "ISA: ";
6107 if (Flags->isa_rev <= 1)
6108 OS << format("MIPS%u", Flags->isa_level);
6109 else
6110 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
6111 OS << "\n";
6112 W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
6113 W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
6114 W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
6115 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
6116 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
6117 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
6118 W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
6119 W.printHex("Flags 2", Flags->flags2);