1 // Copyright 2007, Google Inc.
2 // All rights reserved.
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 // Author: wan@google.com (Zhanyong Wan)
32 // Google Mock - a framework for writing C++ mock classes.
34 // This file implements some commonly used actions.
36 // IWYU pragma: private, include "gmock/gmock.h"
38 #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
39 #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
48 #include "gmock/internal/gmock-internal-utils.h"
49 #include "gmock/internal/gmock-port.h"
51 #if GTEST_HAS_STD_TYPE_TRAITS_ // Defined by gtest-port.h via gmock-port.h.
52 #include <type_traits>
57 // To implement an action Foo, define:
58 // 1. a class FooAction that implements the ActionInterface interface, and
59 // 2. a factory function that creates an Action object from a
62 // The two-level delegation design follows that of Matcher, providing
63 // consistency for extension developers. It also eases ownership
64 // management as Action objects can now be copied like plain values.
68 template <typename F1
, typename F2
>
71 // BuiltInDefaultValueGetter<T, true>::Get() returns a
72 // default-constructed T value. BuiltInDefaultValueGetter<T,
73 // false>::Get() crashes with an error.
75 // This primary template is used when kDefaultConstructible is true.
76 template <typename T
, bool kDefaultConstructible
>
77 struct BuiltInDefaultValueGetter
{
78 static T
Get() { return T(); }
81 struct BuiltInDefaultValueGetter
<T
, false> {
83 Assert(false, __FILE__
, __LINE__
,
84 "Default action undefined for the function return type.");
85 return internal::Invalid
<T
>();
86 // The above statement will never be reached, but is required in
87 // order for this function to compile.
91 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
92 // for type T, which is NULL when T is a raw pointer type, 0 when T is
93 // a numeric type, false when T is bool, or "" when T is string or
94 // std::string. In addition, in C++11 and above, it turns a
95 // default-constructed T value if T is default constructible. For any
96 // other type T, the built-in default T value is undefined, and the
97 // function will abort the process.
99 class BuiltInDefaultValue
{
101 #if GTEST_HAS_STD_TYPE_TRAITS_
102 // This function returns true iff type T has a built-in default value.
103 static bool Exists() {
104 return ::std::is_default_constructible
<T
>::value
;
108 return BuiltInDefaultValueGetter
<
109 T
, ::std::is_default_constructible
<T
>::value
>::Get();
112 #else // GTEST_HAS_STD_TYPE_TRAITS_
113 // This function returns true iff type T has a built-in default value.
114 static bool Exists() {
119 return BuiltInDefaultValueGetter
<T
, false>::Get();
122 #endif // GTEST_HAS_STD_TYPE_TRAITS_
125 // This partial specialization says that we use the same built-in
126 // default value for T and const T.
127 template <typename T
>
128 class BuiltInDefaultValue
<const T
> {
130 static bool Exists() { return BuiltInDefaultValue
<T
>::Exists(); }
131 static T
Get() { return BuiltInDefaultValue
<T
>::Get(); }
134 // This partial specialization defines the default values for pointer
136 template <typename T
>
137 class BuiltInDefaultValue
<T
*> {
139 static bool Exists() { return true; }
140 static T
* Get() { return NULL
; }
143 // The following specializations define the default values for
144 // specific types we care about.
145 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
147 class BuiltInDefaultValue<type> { \
149 static bool Exists() { return true; } \
150 static type Get() { return value; } \
153 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
154 #if GTEST_HAS_GLOBAL_STRING
155 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string
, "");
156 #endif // GTEST_HAS_GLOBAL_STRING
157 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string
, "");
158 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
159 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
160 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
161 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
163 // There's no need for a default action for signed wchar_t, as that
164 // type is the same as wchar_t for gcc, and invalid for MSVC.
166 // There's also no need for a default action for unsigned wchar_t, as
167 // that type is the same as unsigned int for gcc, and invalid for
169 #if GMOCK_WCHAR_T_IS_NATIVE_
170 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
173 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
174 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
175 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
176 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
177 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
178 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
179 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64
, 0);
180 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64
, 0);
181 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
182 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
184 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
186 } // namespace internal
188 // When an unexpected function call is encountered, Google Mock will
189 // let it return a default value if the user has specified one for its
190 // return type, or if the return type has a built-in default value;
191 // otherwise Google Mock won't know what value to return and will have
192 // to abort the process.
194 // The DefaultValue<T> class allows a user to specify the
195 // default value for a type T that is both copyable and publicly
196 // destructible (i.e. anything that can be used as a function return
197 // type). The usage is:
199 // // Sets the default value for type T to be foo.
200 // DefaultValue<T>::Set(foo);
201 template <typename T
>
204 // Sets the default value for type T; requires T to be
205 // copy-constructable and have a public destructor.
206 static void Set(T x
) {
208 producer_
= new FixedValueProducer(x
);
211 // Provides a factory function to be called to generate the default value.
212 // This method can be used even if T is only move-constructible, but it is not
213 // limited to that case.
214 typedef T (*FactoryFunction
)();
215 static void SetFactory(FactoryFunction factory
) {
217 producer_
= new FactoryValueProducer(factory
);
220 // Unsets the default value for type T.
221 static void Clear() {
226 // Returns true iff the user has set the default value for type T.
227 static bool IsSet() { return producer_
!= NULL
; }
229 // Returns true if T has a default return value set by the user or there
230 // exists a built-in default value.
231 static bool Exists() {
232 return IsSet() || internal::BuiltInDefaultValue
<T
>::Exists();
235 // Returns the default value for type T if the user has set one;
236 // otherwise returns the built-in default value. Requires that Exists()
237 // is true, which ensures that the return value is well-defined.
239 return producer_
== NULL
?
240 internal::BuiltInDefaultValue
<T
>::Get() : producer_
->Produce();
244 class ValueProducer
{
246 virtual ~ValueProducer() {}
247 virtual T
Produce() = 0;
250 class FixedValueProducer
: public ValueProducer
{
252 explicit FixedValueProducer(T value
) : value_(value
) {}
253 virtual T
Produce() { return value_
; }
257 GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer
);
260 class FactoryValueProducer
: public ValueProducer
{
262 explicit FactoryValueProducer(FactoryFunction factory
)
263 : factory_(factory
) {}
264 virtual T
Produce() { return factory_(); }
267 const FactoryFunction factory_
;
268 GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer
);
271 static ValueProducer
* producer_
;
274 // This partial specialization allows a user to set default values for
276 template <typename T
>
277 class DefaultValue
<T
&> {
279 // Sets the default value for type T&.
280 static void Set(T
& x
) { // NOLINT
284 // Unsets the default value for type T&.
285 static void Clear() {
289 // Returns true iff the user has set the default value for type T&.
290 static bool IsSet() { return address_
!= NULL
; }
292 // Returns true if T has a default return value set by the user or there
293 // exists a built-in default value.
294 static bool Exists() {
295 return IsSet() || internal::BuiltInDefaultValue
<T
&>::Exists();
298 // Returns the default value for type T& if the user has set one;
299 // otherwise returns the built-in default value if there is one;
300 // otherwise aborts the process.
302 return address_
== NULL
?
303 internal::BuiltInDefaultValue
<T
&>::Get() : *address_
;
310 // This specialization allows DefaultValue<void>::Get() to
313 class DefaultValue
<void> {
315 static bool Exists() { return true; }
319 // Points to the user-set default value for type T.
320 template <typename T
>
321 typename DefaultValue
<T
>::ValueProducer
* DefaultValue
<T
>::producer_
= NULL
;
323 // Points to the user-set default value for type T&.
324 template <typename T
>
325 T
* DefaultValue
<T
&>::address_
= NULL
;
327 // Implement this interface to define an action for function type F.
328 template <typename F
>
329 class ActionInterface
{
331 typedef typename
internal::Function
<F
>::Result Result
;
332 typedef typename
internal::Function
<F
>::ArgumentTuple ArgumentTuple
;
335 virtual ~ActionInterface() {}
337 // Performs the action. This method is not const, as in general an
338 // action can have side effects and be stateful. For example, a
339 // get-the-next-element-from-the-collection action will need to
340 // remember the current element.
341 virtual Result
Perform(const ArgumentTuple
& args
) = 0;
344 GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface
);
347 // An Action<F> is a copyable and IMMUTABLE (except by assignment)
348 // object that represents an action to be taken when a mock function
349 // of type F is called. The implementation of Action<T> is just a
350 // linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
351 // Don't inherit from Action!
353 // You can view an object implementing ActionInterface<F> as a
354 // concrete action (including its current state), and an Action<F>
355 // object as a handle to it.
356 template <typename F
>
359 typedef typename
internal::Function
<F
>::Result Result
;
360 typedef typename
internal::Function
<F
>::ArgumentTuple ArgumentTuple
;
362 // Constructs a null Action. Needed for storing Action objects in
364 Action() : impl_(NULL
) {}
366 // Constructs an Action from its implementation. A NULL impl is
367 // used to represent the "do-default" action.
368 explicit Action(ActionInterface
<F
>* impl
) : impl_(impl
) {}
371 Action(const Action
& action
) : impl_(action
.impl_
) {}
373 // This constructor allows us to turn an Action<Func> object into an
374 // Action<F>, as long as F's arguments can be implicitly converted
375 // to Func's and Func's return type can be implicitly converted to
377 template <typename Func
>
378 explicit Action(const Action
<Func
>& action
);
380 // Returns true iff this is the DoDefault() action.
381 bool IsDoDefault() const { return impl_
.get() == NULL
; }
383 // Performs the action. Note that this method is const even though
384 // the corresponding method in ActionInterface is not. The reason
385 // is that a const Action<F> means that it cannot be re-bound to
386 // another concrete action, not that the concrete action it binds to
387 // cannot change state. (Think of the difference between a const
388 // pointer and a pointer to const.)
389 Result
Perform(const ArgumentTuple
& args
) const {
391 !IsDoDefault(), __FILE__
, __LINE__
,
392 "You are using DoDefault() inside a composite action like "
393 "DoAll() or WithArgs(). This is not supported for technical "
394 "reasons. Please instead spell out the default action, or "
395 "assign the default action to an Action variable and use "
396 "the variable in various places.");
397 return impl_
->Perform(args
);
401 template <typename F1
, typename F2
>
402 friend class internal::ActionAdaptor
;
404 internal::linked_ptr
<ActionInterface
<F
> > impl_
;
407 // The PolymorphicAction class template makes it easy to implement a
408 // polymorphic action (i.e. an action that can be used in mock
409 // functions of than one type, e.g. Return()).
411 // To define a polymorphic action, a user first provides a COPYABLE
412 // implementation class that has a Perform() method template:
416 // template <typename Result, typename ArgumentTuple>
417 // Result Perform(const ArgumentTuple& args) const {
418 // // Processes the arguments and returns a result, using
419 // // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
424 // Then the user creates the polymorphic action using
425 // MakePolymorphicAction(object) where object has type FooAction. See
426 // the definition of Return(void) and SetArgumentPointee<N>(value) for
427 // complete examples.
428 template <typename Impl
>
429 class PolymorphicAction
{
431 explicit PolymorphicAction(const Impl
& impl
) : impl_(impl
) {}
433 template <typename F
>
434 operator Action
<F
>() const {
435 return Action
<F
>(new MonomorphicImpl
<F
>(impl_
));
439 template <typename F
>
440 class MonomorphicImpl
: public ActionInterface
<F
> {
442 typedef typename
internal::Function
<F
>::Result Result
;
443 typedef typename
internal::Function
<F
>::ArgumentTuple ArgumentTuple
;
445 explicit MonomorphicImpl(const Impl
& impl
) : impl_(impl
) {}
447 virtual Result
Perform(const ArgumentTuple
& args
) {
448 return impl_
.template Perform
<Result
>(args
);
454 GTEST_DISALLOW_ASSIGN_(MonomorphicImpl
);
459 GTEST_DISALLOW_ASSIGN_(PolymorphicAction
);
462 // Creates an Action from its implementation and returns it. The
463 // created Action object owns the implementation.
464 template <typename F
>
465 Action
<F
> MakeAction(ActionInterface
<F
>* impl
) {
466 return Action
<F
>(impl
);
469 // Creates a polymorphic action from its implementation. This is
470 // easier to use than the PolymorphicAction<Impl> constructor as it
471 // doesn't require you to explicitly write the template argument, e.g.
473 // MakePolymorphicAction(foo);
475 // PolymorphicAction<TypeOfFoo>(foo);
476 template <typename Impl
>
477 inline PolymorphicAction
<Impl
> MakePolymorphicAction(const Impl
& impl
) {
478 return PolymorphicAction
<Impl
>(impl
);
483 // Allows an Action<F2> object to pose as an Action<F1>, as long as F2
484 // and F1 are compatible.
485 template <typename F1
, typename F2
>
486 class ActionAdaptor
: public ActionInterface
<F1
> {
488 typedef typename
internal::Function
<F1
>::Result Result
;
489 typedef typename
internal::Function
<F1
>::ArgumentTuple ArgumentTuple
;
491 explicit ActionAdaptor(const Action
<F2
>& from
) : impl_(from
.impl_
) {}
493 virtual Result
Perform(const ArgumentTuple
& args
) {
494 return impl_
->Perform(args
);
498 const internal::linked_ptr
<ActionInterface
<F2
> > impl_
;
500 GTEST_DISALLOW_ASSIGN_(ActionAdaptor
);
503 // Helper struct to specialize ReturnAction to execute a move instead of a copy
504 // on return. Useful for move-only types, but could be used on any type.
505 template <typename T
>
506 struct ByMoveWrapper
{
507 explicit ByMoveWrapper(T value
) : payload(internal::move(value
)) {}
511 // Implements the polymorphic Return(x) action, which can be used in
512 // any function that returns the type of x, regardless of the argument
515 // Note: The value passed into Return must be converted into
516 // Function<F>::Result when this action is cast to Action<F> rather than
517 // when that action is performed. This is important in scenarios like
519 // MOCK_METHOD1(Method, T(U));
524 // EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
527 // In the example above the variable x holds reference to foo which leaves
528 // scope and gets destroyed. If copying X just copies a reference to foo,
529 // that copy will be left with a hanging reference. If conversion to T
530 // makes a copy of foo, the above code is safe. To support that scenario, we
531 // need to make sure that the type conversion happens inside the EXPECT_CALL
532 // statement, and conversion of the result of Return to Action<T(U)> is a
533 // good place for that.
535 template <typename R
>
538 // Constructs a ReturnAction object from the value to be returned.
539 // 'value' is passed by value instead of by const reference in order
540 // to allow Return("string literal") to compile.
541 explicit ReturnAction(R value
) : value_(new R(internal::move(value
))) {}
543 // This template type conversion operator allows Return(x) to be
544 // used in ANY function that returns x's type.
545 template <typename F
>
546 operator Action
<F
>() const {
547 // Assert statement belongs here because this is the best place to verify
548 // conditions on F. It produces the clearest error messages
549 // in most compilers.
550 // Impl really belongs in this scope as a local class but can't
551 // because MSVC produces duplicate symbols in different translation units
552 // in this case. Until MS fixes that bug we put Impl into the class scope
553 // and put the typedef both here (for use in assert statement) and
554 // in the Impl class. But both definitions must be the same.
555 typedef typename Function
<F
>::Result Result
;
556 GTEST_COMPILE_ASSERT_(
557 !is_reference
<Result
>::value
,
558 use_ReturnRef_instead_of_Return_to_return_a_reference
);
559 return Action
<F
>(new Impl
<R
, F
>(value_
));
563 // Implements the Return(x) action for a particular function type F.
564 template <typename R_
, typename F
>
565 class Impl
: public ActionInterface
<F
> {
567 typedef typename Function
<F
>::Result Result
;
568 typedef typename Function
<F
>::ArgumentTuple ArgumentTuple
;
570 // The implicit cast is necessary when Result has more than one
571 // single-argument constructor (e.g. Result is std::vector<int>) and R
572 // has a type conversion operator template. In that case, value_(value)
573 // won't compile as the compiler doesn't known which constructor of
574 // Result to call. ImplicitCast_ forces the compiler to convert R to
575 // Result without considering explicit constructors, thus resolving the
576 // ambiguity. value_ is then initialized using its copy constructor.
577 explicit Impl(const linked_ptr
<R
>& value
)
578 : value_before_cast_(*value
),
579 value_(ImplicitCast_
<Result
>(value_before_cast_
)) {}
581 virtual Result
Perform(const ArgumentTuple
&) { return value_
; }
584 GTEST_COMPILE_ASSERT_(!is_reference
<Result
>::value
,
585 Result_cannot_be_a_reference_type
);
586 // We save the value before casting just in case it is being cast to a
588 R value_before_cast_
;
591 GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl
);
594 // Partially specialize for ByMoveWrapper. This version of ReturnAction will
595 // move its contents instead.
596 template <typename R_
, typename F
>
597 class Impl
<ByMoveWrapper
<R_
>, F
> : public ActionInterface
<F
> {
599 typedef typename Function
<F
>::Result Result
;
600 typedef typename Function
<F
>::ArgumentTuple ArgumentTuple
;
602 explicit Impl(const linked_ptr
<R
>& wrapper
)
603 : performed_(false), wrapper_(wrapper
) {}
605 virtual Result
Perform(const ArgumentTuple
&) {
606 GTEST_CHECK_(!performed_
)
607 << "A ByMove() action should only be performed once.";
609 return internal::move(wrapper_
->payload
);
614 const linked_ptr
<R
> wrapper_
;
616 GTEST_DISALLOW_ASSIGN_(Impl
);
619 const linked_ptr
<R
> value_
;
621 GTEST_DISALLOW_ASSIGN_(ReturnAction
);
624 // Implements the ReturnNull() action.
625 class ReturnNullAction
{
627 // Allows ReturnNull() to be used in any pointer-returning function. In C++11
628 // this is enforced by returning nullptr, and in non-C++11 by asserting a
629 // pointer type on compile time.
630 template <typename Result
, typename ArgumentTuple
>
631 static Result
Perform(const ArgumentTuple
&) {
635 GTEST_COMPILE_ASSERT_(internal::is_pointer
<Result
>::value
,
636 ReturnNull_can_be_used_to_return_a_pointer_only
);
638 #endif // GTEST_LANG_CXX11
642 // Implements the Return() action.
643 class ReturnVoidAction
{
645 // Allows Return() to be used in any void-returning function.
646 template <typename Result
, typename ArgumentTuple
>
647 static void Perform(const ArgumentTuple
&) {
648 CompileAssertTypesEqual
<void, Result
>();
652 // Implements the polymorphic ReturnRef(x) action, which can be used
653 // in any function that returns a reference to the type of x,
654 // regardless of the argument types.
655 template <typename T
>
656 class ReturnRefAction
{
658 // Constructs a ReturnRefAction object from the reference to be returned.
659 explicit ReturnRefAction(T
& ref
) : ref_(ref
) {} // NOLINT
661 // This template type conversion operator allows ReturnRef(x) to be
662 // used in ANY function that returns a reference to x's type.
663 template <typename F
>
664 operator Action
<F
>() const {
665 typedef typename Function
<F
>::Result Result
;
666 // Asserts that the function return type is a reference. This
667 // catches the user error of using ReturnRef(x) when Return(x)
668 // should be used, and generates some helpful error message.
669 GTEST_COMPILE_ASSERT_(internal::is_reference
<Result
>::value
,
670 use_Return_instead_of_ReturnRef_to_return_a_value
);
671 return Action
<F
>(new Impl
<F
>(ref_
));
675 // Implements the ReturnRef(x) action for a particular function type F.
676 template <typename F
>
677 class Impl
: public ActionInterface
<F
> {
679 typedef typename Function
<F
>::Result Result
;
680 typedef typename Function
<F
>::ArgumentTuple ArgumentTuple
;
682 explicit Impl(T
& ref
) : ref_(ref
) {} // NOLINT
684 virtual Result
Perform(const ArgumentTuple
&) {
691 GTEST_DISALLOW_ASSIGN_(Impl
);
696 GTEST_DISALLOW_ASSIGN_(ReturnRefAction
);
699 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
700 // used in any function that returns a reference to the type of x,
701 // regardless of the argument types.
702 template <typename T
>
703 class ReturnRefOfCopyAction
{
705 // Constructs a ReturnRefOfCopyAction object from the reference to
707 explicit ReturnRefOfCopyAction(const T
& value
) : value_(value
) {} // NOLINT
709 // This template type conversion operator allows ReturnRefOfCopy(x) to be
710 // used in ANY function that returns a reference to x's type.
711 template <typename F
>
712 operator Action
<F
>() const {
713 typedef typename Function
<F
>::Result Result
;
714 // Asserts that the function return type is a reference. This
715 // catches the user error of using ReturnRefOfCopy(x) when Return(x)
716 // should be used, and generates some helpful error message.
717 GTEST_COMPILE_ASSERT_(
718 internal::is_reference
<Result
>::value
,
719 use_Return_instead_of_ReturnRefOfCopy_to_return_a_value
);
720 return Action
<F
>(new Impl
<F
>(value_
));
724 // Implements the ReturnRefOfCopy(x) action for a particular function type F.
725 template <typename F
>
726 class Impl
: public ActionInterface
<F
> {
728 typedef typename Function
<F
>::Result Result
;
729 typedef typename Function
<F
>::ArgumentTuple ArgumentTuple
;
731 explicit Impl(const T
& value
) : value_(value
) {} // NOLINT
733 virtual Result
Perform(const ArgumentTuple
&) {
740 GTEST_DISALLOW_ASSIGN_(Impl
);
745 GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction
);
748 // Implements the polymorphic DoDefault() action.
749 class DoDefaultAction
{
751 // This template type conversion operator allows DoDefault() to be
752 // used in any function.
753 template <typename F
>
754 operator Action
<F
>() const { return Action
<F
>(NULL
); }
757 // Implements the Assign action to set a given pointer referent to a
759 template <typename T1
, typename T2
>
762 AssignAction(T1
* ptr
, T2 value
) : ptr_(ptr
), value_(value
) {}
764 template <typename Result
, typename ArgumentTuple
>
765 void Perform(const ArgumentTuple
& /* args */) const {
773 GTEST_DISALLOW_ASSIGN_(AssignAction
);
776 #if !GTEST_OS_WINDOWS_MOBILE
778 // Implements the SetErrnoAndReturn action to simulate return from
779 // various system calls and libc functions.
780 template <typename T
>
781 class SetErrnoAndReturnAction
{
783 SetErrnoAndReturnAction(int errno_value
, T result
)
784 : errno_(errno_value
),
786 template <typename Result
, typename ArgumentTuple
>
787 Result
Perform(const ArgumentTuple
& /* args */) const {
796 GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction
);
799 #endif // !GTEST_OS_WINDOWS_MOBILE
801 // Implements the SetArgumentPointee<N>(x) action for any function
802 // whose N-th argument (0-based) is a pointer to x's type. The
803 // template parameter kIsProto is true iff type A is ProtocolMessage,
804 // proto2::Message, or a sub-class of those.
805 template <size_t N
, typename A
, bool kIsProto
>
806 class SetArgumentPointeeAction
{
808 // Constructs an action that sets the variable pointed to by the
809 // N-th function argument to 'value'.
810 explicit SetArgumentPointeeAction(const A
& value
) : value_(value
) {}
812 template <typename Result
, typename ArgumentTuple
>
813 void Perform(const ArgumentTuple
& args
) const {
814 CompileAssertTypesEqual
<void, Result
>();
815 *::testing::get
<N
>(args
) = value_
;
821 GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction
);
824 template <size_t N
, typename Proto
>
825 class SetArgumentPointeeAction
<N
, Proto
, true> {
827 // Constructs an action that sets the variable pointed to by the
828 // N-th function argument to 'proto'. Both ProtocolMessage and
829 // proto2::Message have the CopyFrom() method, so the same
830 // implementation works for both.
831 explicit SetArgumentPointeeAction(const Proto
& proto
) : proto_(new Proto
) {
832 proto_
->CopyFrom(proto
);
835 template <typename Result
, typename ArgumentTuple
>
836 void Perform(const ArgumentTuple
& args
) const {
837 CompileAssertTypesEqual
<void, Result
>();
838 ::testing::get
<N
>(args
)->CopyFrom(*proto_
);
842 const internal::linked_ptr
<Proto
> proto_
;
844 GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction
);
847 // Implements the InvokeWithoutArgs(f) action. The template argument
848 // FunctionImpl is the implementation type of f, which can be either a
849 // function pointer or a functor. InvokeWithoutArgs(f) can be used as an
850 // Action<F> as long as f's type is compatible with F (i.e. f can be
851 // assigned to a tr1::function<F>).
852 template <typename FunctionImpl
>
853 class InvokeWithoutArgsAction
{
855 // The c'tor makes a copy of function_impl (either a function
856 // pointer or a functor).
857 explicit InvokeWithoutArgsAction(FunctionImpl function_impl
)
858 : function_impl_(function_impl
) {}
860 // Allows InvokeWithoutArgs(f) to be used as any action whose type is
861 // compatible with f.
862 template <typename Result
, typename ArgumentTuple
>
863 Result
Perform(const ArgumentTuple
&) { return function_impl_(); }
866 FunctionImpl function_impl_
;
868 GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction
);
871 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
872 template <class Class
, typename MethodPtr
>
873 class InvokeMethodWithoutArgsAction
{
875 InvokeMethodWithoutArgsAction(Class
* obj_ptr
, MethodPtr method_ptr
)
876 : obj_ptr_(obj_ptr
), method_ptr_(method_ptr
) {}
878 template <typename Result
, typename ArgumentTuple
>
879 Result
Perform(const ArgumentTuple
&) const {
880 return (obj_ptr_
->*method_ptr_
)();
884 Class
* const obj_ptr_
;
885 const MethodPtr method_ptr_
;
887 GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction
);
890 // Implements the IgnoreResult(action) action.
891 template <typename A
>
892 class IgnoreResultAction
{
894 explicit IgnoreResultAction(const A
& action
) : action_(action
) {}
896 template <typename F
>
897 operator Action
<F
>() const {
898 // Assert statement belongs here because this is the best place to verify
899 // conditions on F. It produces the clearest error messages
900 // in most compilers.
901 // Impl really belongs in this scope as a local class but can't
902 // because MSVC produces duplicate symbols in different translation units
903 // in this case. Until MS fixes that bug we put Impl into the class scope
904 // and put the typedef both here (for use in assert statement) and
905 // in the Impl class. But both definitions must be the same.
906 typedef typename
internal::Function
<F
>::Result Result
;
908 // Asserts at compile time that F returns void.
909 CompileAssertTypesEqual
<void, Result
>();
911 return Action
<F
>(new Impl
<F
>(action_
));
915 template <typename F
>
916 class Impl
: public ActionInterface
<F
> {
918 typedef typename
internal::Function
<F
>::Result Result
;
919 typedef typename
internal::Function
<F
>::ArgumentTuple ArgumentTuple
;
921 explicit Impl(const A
& action
) : action_(action
) {}
923 virtual void Perform(const ArgumentTuple
& args
) {
924 // Performs the action and ignores its result.
925 action_
.Perform(args
);
929 // Type OriginalFunction is the same as F except that its return
930 // type is IgnoredValue.
931 typedef typename
internal::Function
<F
>::MakeResultIgnoredValue
934 const Action
<OriginalFunction
> action_
;
936 GTEST_DISALLOW_ASSIGN_(Impl
);
941 GTEST_DISALLOW_ASSIGN_(IgnoreResultAction
);
944 // A ReferenceWrapper<T> object represents a reference to type T,
945 // which can be either const or not. It can be explicitly converted
946 // from, and implicitly converted to, a T&. Unlike a reference,
947 // ReferenceWrapper<T> can be copied and can survive template type
948 // inference. This is used to support by-reference arguments in the
949 // InvokeArgument<N>(...) action. The idea was from "reference
950 // wrappers" in tr1, which we don't have in our source tree yet.
951 template <typename T
>
952 class ReferenceWrapper
{
954 // Constructs a ReferenceWrapper<T> object from a T&.
955 explicit ReferenceWrapper(T
& l_value
) : pointer_(&l_value
) {} // NOLINT
957 // Allows a ReferenceWrapper<T> object to be implicitly converted to
959 operator T
&() const { return *pointer_
; }
964 // Allows the expression ByRef(x) to be printed as a reference to x.
965 template <typename T
>
966 void PrintTo(const ReferenceWrapper
<T
>& ref
, ::std::ostream
* os
) {
968 UniversalPrinter
<T
&>::Print(value
, os
);
971 // Does two actions sequentially. Used for implementing the DoAll(a1,
973 template <typename Action1
, typename Action2
>
976 DoBothAction(Action1 action1
, Action2 action2
)
977 : action1_(action1
), action2_(action2
) {}
979 // This template type conversion operator allows DoAll(a1, ..., a_n)
980 // to be used in ANY function of compatible type.
981 template <typename F
>
982 operator Action
<F
>() const {
983 return Action
<F
>(new Impl
<F
>(action1_
, action2_
));
987 // Implements the DoAll(...) action for a particular function type F.
988 template <typename F
>
989 class Impl
: public ActionInterface
<F
> {
991 typedef typename Function
<F
>::Result Result
;
992 typedef typename Function
<F
>::ArgumentTuple ArgumentTuple
;
993 typedef typename Function
<F
>::MakeResultVoid VoidResult
;
995 Impl(const Action
<VoidResult
>& action1
, const Action
<F
>& action2
)
996 : action1_(action1
), action2_(action2
) {}
998 virtual Result
Perform(const ArgumentTuple
& args
) {
999 action1_
.Perform(args
);
1000 return action2_
.Perform(args
);
1004 const Action
<VoidResult
> action1_
;
1005 const Action
<F
> action2_
;
1007 GTEST_DISALLOW_ASSIGN_(Impl
);
1013 GTEST_DISALLOW_ASSIGN_(DoBothAction
);
1016 } // namespace internal
1018 // An Unused object can be implicitly constructed from ANY value.
1019 // This is handy when defining actions that ignore some or all of the
1020 // mock function arguments. For example, given
1022 // MOCK_METHOD3(Foo, double(const string& label, double x, double y));
1023 // MOCK_METHOD3(Bar, double(int index, double x, double y));
1027 // double DistanceToOriginWithLabel(const string& label, double x, double y) {
1028 // return sqrt(x*x + y*y);
1030 // double DistanceToOriginWithIndex(int index, double x, double y) {
1031 // return sqrt(x*x + y*y);
1034 // EXEPCT_CALL(mock, Foo("abc", _, _))
1035 // .WillOnce(Invoke(DistanceToOriginWithLabel));
1036 // EXEPCT_CALL(mock, Bar(5, _, _))
1037 // .WillOnce(Invoke(DistanceToOriginWithIndex));
1041 // // We can declare any uninteresting argument as Unused.
1042 // double DistanceToOrigin(Unused, double x, double y) {
1043 // return sqrt(x*x + y*y);
1046 // EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
1047 // EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
1048 typedef internal::IgnoredValue Unused
;
1050 // This constructor allows us to turn an Action<From> object into an
1051 // Action<To>, as long as To's arguments can be implicitly converted
1052 // to From's and From's return type cann be implicitly converted to
1054 template <typename To
>
1055 template <typename From
>
1056 Action
<To
>::Action(const Action
<From
>& from
)
1057 : impl_(new internal::ActionAdaptor
<To
, From
>(from
)) {}
1059 // Creates an action that returns 'value'. 'value' is passed by value
1060 // instead of const reference - otherwise Return("string literal")
1061 // will trigger a compiler error about using array as initializer.
1062 template <typename R
>
1063 internal::ReturnAction
<R
> Return(R value
) {
1064 return internal::ReturnAction
<R
>(internal::move(value
));
1067 // Creates an action that returns NULL.
1068 inline PolymorphicAction
<internal::ReturnNullAction
> ReturnNull() {
1069 return MakePolymorphicAction(internal::ReturnNullAction());
1072 // Creates an action that returns from a void function.
1073 inline PolymorphicAction
<internal::ReturnVoidAction
> Return() {
1074 return MakePolymorphicAction(internal::ReturnVoidAction());
1077 // Creates an action that returns the reference to a variable.
1078 template <typename R
>
1079 inline internal::ReturnRefAction
<R
> ReturnRef(R
& x
) { // NOLINT
1080 return internal::ReturnRefAction
<R
>(x
);
1083 // Creates an action that returns the reference to a copy of the
1084 // argument. The copy is created when the action is constructed and
1085 // lives as long as the action.
1086 template <typename R
>
1087 inline internal::ReturnRefOfCopyAction
<R
> ReturnRefOfCopy(const R
& x
) {
1088 return internal::ReturnRefOfCopyAction
<R
>(x
);
1091 // Modifies the parent action (a Return() action) to perform a move of the
1092 // argument instead of a copy.
1093 // Return(ByMove()) actions can only be executed once and will assert this
1095 template <typename R
>
1096 internal::ByMoveWrapper
<R
> ByMove(R x
) {
1097 return internal::ByMoveWrapper
<R
>(internal::move(x
));
1100 // Creates an action that does the default action for the give mock function.
1101 inline internal::DoDefaultAction
DoDefault() {
1102 return internal::DoDefaultAction();
1105 // Creates an action that sets the variable pointed by the N-th
1106 // (0-based) function argument to 'value'.
1107 template <size_t N
, typename T
>
1109 internal::SetArgumentPointeeAction
<
1110 N
, T
, internal::IsAProtocolMessage
<T
>::value
> >
1111 SetArgPointee(const T
& x
) {
1112 return MakePolymorphicAction(internal::SetArgumentPointeeAction
<
1113 N
, T
, internal::IsAProtocolMessage
<T
>::value
>(x
));
1116 #if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
1117 // This overload allows SetArgPointee() to accept a string literal.
1118 // GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
1119 // this overload from the templated version and emit a compile error.
1122 internal::SetArgumentPointeeAction
<N
, const char*, false> >
1123 SetArgPointee(const char* p
) {
1124 return MakePolymorphicAction(internal::SetArgumentPointeeAction
<
1125 N
, const char*, false>(p
));
1130 internal::SetArgumentPointeeAction
<N
, const wchar_t*, false> >
1131 SetArgPointee(const wchar_t* p
) {
1132 return MakePolymorphicAction(internal::SetArgumentPointeeAction
<
1133 N
, const wchar_t*, false>(p
));
1137 // The following version is DEPRECATED.
1138 template <size_t N
, typename T
>
1140 internal::SetArgumentPointeeAction
<
1141 N
, T
, internal::IsAProtocolMessage
<T
>::value
> >
1142 SetArgumentPointee(const T
& x
) {
1143 return MakePolymorphicAction(internal::SetArgumentPointeeAction
<
1144 N
, T
, internal::IsAProtocolMessage
<T
>::value
>(x
));
1147 // Creates an action that sets a pointer referent to a given value.
1148 template <typename T1
, typename T2
>
1149 PolymorphicAction
<internal::AssignAction
<T1
, T2
> > Assign(T1
* ptr
, T2 val
) {
1150 return MakePolymorphicAction(internal::AssignAction
<T1
, T2
>(ptr
, val
));
1153 #if !GTEST_OS_WINDOWS_MOBILE
1155 // Creates an action that sets errno and returns the appropriate error.
1156 template <typename T
>
1157 PolymorphicAction
<internal::SetErrnoAndReturnAction
<T
> >
1158 SetErrnoAndReturn(int errval
, T result
) {
1159 return MakePolymorphicAction(
1160 internal::SetErrnoAndReturnAction
<T
>(errval
, result
));
1163 #endif // !GTEST_OS_WINDOWS_MOBILE
1165 // Various overloads for InvokeWithoutArgs().
1167 // Creates an action that invokes 'function_impl' with no argument.
1168 template <typename FunctionImpl
>
1169 PolymorphicAction
<internal::InvokeWithoutArgsAction
<FunctionImpl
> >
1170 InvokeWithoutArgs(FunctionImpl function_impl
) {
1171 return MakePolymorphicAction(
1172 internal::InvokeWithoutArgsAction
<FunctionImpl
>(function_impl
));
1175 // Creates an action that invokes the given method on the given object
1176 // with no argument.
1177 template <class Class
, typename MethodPtr
>
1178 PolymorphicAction
<internal::InvokeMethodWithoutArgsAction
<Class
, MethodPtr
> >
1179 InvokeWithoutArgs(Class
* obj_ptr
, MethodPtr method_ptr
) {
1180 return MakePolymorphicAction(
1181 internal::InvokeMethodWithoutArgsAction
<Class
, MethodPtr
>(
1182 obj_ptr
, method_ptr
));
1185 // Creates an action that performs an_action and throws away its
1186 // result. In other words, it changes the return type of an_action to
1187 // void. an_action MUST NOT return void, or the code won't compile.
1188 template <typename A
>
1189 inline internal::IgnoreResultAction
<A
> IgnoreResult(const A
& an_action
) {
1190 return internal::IgnoreResultAction
<A
>(an_action
);
1193 // Creates a reference wrapper for the given L-value. If necessary,
1194 // you can explicitly specify the type of the reference. For example,
1195 // suppose 'derived' is an object of type Derived, ByRef(derived)
1196 // would wrap a Derived&. If you want to wrap a const Base& instead,
1197 // where Base is a base class of Derived, just write:
1199 // ByRef<const Base>(derived)
1200 template <typename T
>
1201 inline internal::ReferenceWrapper
<T
> ByRef(T
& l_value
) { // NOLINT
1202 return internal::ReferenceWrapper
<T
>(l_value
);
1205 } // namespace testing
1207 #endif // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_