[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / Analysis / GlobalsModRef.cpp
blobefdf9706ba3c389b8691cac04e98b76dc88eb92e
1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This simple pass provides alias and mod/ref information for global values
10 // that do not have their address taken, and keeps track of whether functions
11 // read or write memory (are "pure"). For this simple (but very common) case,
12 // we can provide pretty accurate and useful information.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/GlobalsModRef.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InstIterator.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/CommandLine.h"
30 using namespace llvm;
32 #define DEBUG_TYPE "globalsmodref-aa"
34 STATISTIC(NumNonAddrTakenGlobalVars,
35 "Number of global vars without address taken");
36 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
37 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
38 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
39 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
41 // An option to enable unsafe alias results from the GlobalsModRef analysis.
42 // When enabled, GlobalsModRef will provide no-alias results which in extremely
43 // rare cases may not be conservatively correct. In particular, in the face of
44 // transforms which cause assymetry between how effective GetUnderlyingObject
45 // is for two pointers, it may produce incorrect results.
47 // These unsafe results have been returned by GMR for many years without
48 // causing significant issues in the wild and so we provide a mechanism to
49 // re-enable them for users of LLVM that have a particular performance
50 // sensitivity and no known issues. The option also makes it easy to evaluate
51 // the performance impact of these results.
52 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
53 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
55 /// The mod/ref information collected for a particular function.
56 ///
57 /// We collect information about mod/ref behavior of a function here, both in
58 /// general and as pertains to specific globals. We only have this detailed
59 /// information when we know *something* useful about the behavior. If we
60 /// saturate to fully general mod/ref, we remove the info for the function.
61 class GlobalsAAResult::FunctionInfo {
62 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
64 /// Build a wrapper struct that has 8-byte alignment. All heap allocations
65 /// should provide this much alignment at least, but this makes it clear we
66 /// specifically rely on this amount of alignment.
67 struct alignas(8) AlignedMap {
68 AlignedMap() {}
69 AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {}
70 GlobalInfoMapType Map;
73 /// Pointer traits for our aligned map.
74 struct AlignedMapPointerTraits {
75 static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
76 static inline AlignedMap *getFromVoidPointer(void *P) {
77 return (AlignedMap *)P;
79 enum { NumLowBitsAvailable = 3 };
80 static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable),
81 "AlignedMap insufficiently aligned to have enough low bits.");
84 /// The bit that flags that this function may read any global. This is
85 /// chosen to mix together with ModRefInfo bits.
86 /// FIXME: This assumes ModRefInfo lattice will remain 4 bits!
87 /// It overlaps with ModRefInfo::Must bit!
88 /// FunctionInfo.getModRefInfo() masks out everything except ModRef so
89 /// this remains correct, but the Must info is lost.
90 enum { MayReadAnyGlobal = 4 };
92 /// Checks to document the invariants of the bit packing here.
93 static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::MustModRef)) ==
95 "ModRef and the MayReadAnyGlobal flag bits overlap.");
96 static_assert(((MayReadAnyGlobal |
97 static_cast<int>(ModRefInfo::MustModRef)) >>
98 AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
99 "Insufficient low bits to store our flag and ModRef info.");
101 public:
102 FunctionInfo() : Info() {}
103 ~FunctionInfo() {
104 delete Info.getPointer();
106 // Spell out the copy ond move constructors and assignment operators to get
107 // deep copy semantics and correct move semantics in the face of the
108 // pointer-int pair.
109 FunctionInfo(const FunctionInfo &Arg)
110 : Info(nullptr, Arg.Info.getInt()) {
111 if (const auto *ArgPtr = Arg.Info.getPointer())
112 Info.setPointer(new AlignedMap(*ArgPtr));
114 FunctionInfo(FunctionInfo &&Arg)
115 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
116 Arg.Info.setPointerAndInt(nullptr, 0);
118 FunctionInfo &operator=(const FunctionInfo &RHS) {
119 delete Info.getPointer();
120 Info.setPointerAndInt(nullptr, RHS.Info.getInt());
121 if (const auto *RHSPtr = RHS.Info.getPointer())
122 Info.setPointer(new AlignedMap(*RHSPtr));
123 return *this;
125 FunctionInfo &operator=(FunctionInfo &&RHS) {
126 delete Info.getPointer();
127 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
128 RHS.Info.setPointerAndInt(nullptr, 0);
129 return *this;
132 /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return
133 /// the corresponding ModRefInfo. It must align in functionality with
134 /// clearMust().
135 ModRefInfo globalClearMayReadAnyGlobal(int I) const {
136 return ModRefInfo((I & static_cast<int>(ModRefInfo::ModRef)) |
137 static_cast<int>(ModRefInfo::NoModRef));
140 /// Returns the \c ModRefInfo info for this function.
141 ModRefInfo getModRefInfo() const {
142 return globalClearMayReadAnyGlobal(Info.getInt());
145 /// Adds new \c ModRefInfo for this function to its state.
146 void addModRefInfo(ModRefInfo NewMRI) {
147 Info.setInt(Info.getInt() | static_cast<int>(setMust(NewMRI)));
150 /// Returns whether this function may read any global variable, and we don't
151 /// know which global.
152 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
154 /// Sets this function as potentially reading from any global.
155 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
157 /// Returns the \c ModRefInfo info for this function w.r.t. a particular
158 /// global, which may be more precise than the general information above.
159 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
160 ModRefInfo GlobalMRI =
161 mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef;
162 if (AlignedMap *P = Info.getPointer()) {
163 auto I = P->Map.find(&GV);
164 if (I != P->Map.end())
165 GlobalMRI = unionModRef(GlobalMRI, I->second);
167 return GlobalMRI;
170 /// Add mod/ref info from another function into ours, saturating towards
171 /// ModRef.
172 void addFunctionInfo(const FunctionInfo &FI) {
173 addModRefInfo(FI.getModRefInfo());
175 if (FI.mayReadAnyGlobal())
176 setMayReadAnyGlobal();
178 if (AlignedMap *P = FI.Info.getPointer())
179 for (const auto &G : P->Map)
180 addModRefInfoForGlobal(*G.first, G.second);
183 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
184 AlignedMap *P = Info.getPointer();
185 if (!P) {
186 P = new AlignedMap();
187 Info.setPointer(P);
189 auto &GlobalMRI = P->Map[&GV];
190 GlobalMRI = unionModRef(GlobalMRI, NewMRI);
193 /// Clear a global's ModRef info. Should be used when a global is being
194 /// deleted.
195 void eraseModRefInfoForGlobal(const GlobalValue &GV) {
196 if (AlignedMap *P = Info.getPointer())
197 P->Map.erase(&GV);
200 private:
201 /// All of the information is encoded into a single pointer, with a three bit
202 /// integer in the low three bits. The high bit provides a flag for when this
203 /// function may read any global. The low two bits are the ModRefInfo. And
204 /// the pointer, when non-null, points to a map from GlobalValue to
205 /// ModRefInfo specific to that GlobalValue.
206 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
209 void GlobalsAAResult::DeletionCallbackHandle::deleted() {
210 Value *V = getValPtr();
211 if (auto *F = dyn_cast<Function>(V))
212 GAR->FunctionInfos.erase(F);
214 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
215 if (GAR->NonAddressTakenGlobals.erase(GV)) {
216 // This global might be an indirect global. If so, remove it and
217 // remove any AllocRelatedValues for it.
218 if (GAR->IndirectGlobals.erase(GV)) {
219 // Remove any entries in AllocsForIndirectGlobals for this global.
220 for (auto I = GAR->AllocsForIndirectGlobals.begin(),
221 E = GAR->AllocsForIndirectGlobals.end();
222 I != E; ++I)
223 if (I->second == GV)
224 GAR->AllocsForIndirectGlobals.erase(I);
227 // Scan the function info we have collected and remove this global
228 // from all of them.
229 for (auto &FIPair : GAR->FunctionInfos)
230 FIPair.second.eraseModRefInfoForGlobal(*GV);
234 // If this is an allocation related to an indirect global, remove it.
235 GAR->AllocsForIndirectGlobals.erase(V);
237 // And clear out the handle.
238 setValPtr(nullptr);
239 GAR->Handles.erase(I);
240 // This object is now destroyed!
243 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) {
244 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
246 if (FunctionInfo *FI = getFunctionInfo(F)) {
247 if (!isModOrRefSet(FI->getModRefInfo()))
248 Min = FMRB_DoesNotAccessMemory;
249 else if (!isModSet(FI->getModRefInfo()))
250 Min = FMRB_OnlyReadsMemory;
253 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
256 FunctionModRefBehavior
257 GlobalsAAResult::getModRefBehavior(const CallBase *Call) {
258 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
260 if (!Call->hasOperandBundles())
261 if (const Function *F = Call->getCalledFunction())
262 if (FunctionInfo *FI = getFunctionInfo(F)) {
263 if (!isModOrRefSet(FI->getModRefInfo()))
264 Min = FMRB_DoesNotAccessMemory;
265 else if (!isModSet(FI->getModRefInfo()))
266 Min = FMRB_OnlyReadsMemory;
269 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min);
272 /// Returns the function info for the function, or null if we don't have
273 /// anything useful to say about it.
274 GlobalsAAResult::FunctionInfo *
275 GlobalsAAResult::getFunctionInfo(const Function *F) {
276 auto I = FunctionInfos.find(F);
277 if (I != FunctionInfos.end())
278 return &I->second;
279 return nullptr;
282 /// AnalyzeGlobals - Scan through the users of all of the internal
283 /// GlobalValue's in the program. If none of them have their "address taken"
284 /// (really, their address passed to something nontrivial), record this fact,
285 /// and record the functions that they are used directly in.
286 void GlobalsAAResult::AnalyzeGlobals(Module &M) {
287 SmallPtrSet<Function *, 32> TrackedFunctions;
288 for (Function &F : M)
289 if (F.hasLocalLinkage())
290 if (!AnalyzeUsesOfPointer(&F)) {
291 // Remember that we are tracking this global.
292 NonAddressTakenGlobals.insert(&F);
293 TrackedFunctions.insert(&F);
294 Handles.emplace_front(*this, &F);
295 Handles.front().I = Handles.begin();
296 ++NumNonAddrTakenFunctions;
299 SmallPtrSet<Function *, 16> Readers, Writers;
300 for (GlobalVariable &GV : M.globals())
301 if (GV.hasLocalLinkage()) {
302 if (!AnalyzeUsesOfPointer(&GV, &Readers,
303 GV.isConstant() ? nullptr : &Writers)) {
304 // Remember that we are tracking this global, and the mod/ref fns
305 NonAddressTakenGlobals.insert(&GV);
306 Handles.emplace_front(*this, &GV);
307 Handles.front().I = Handles.begin();
309 for (Function *Reader : Readers) {
310 if (TrackedFunctions.insert(Reader).second) {
311 Handles.emplace_front(*this, Reader);
312 Handles.front().I = Handles.begin();
314 FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref);
317 if (!GV.isConstant()) // No need to keep track of writers to constants
318 for (Function *Writer : Writers) {
319 if (TrackedFunctions.insert(Writer).second) {
320 Handles.emplace_front(*this, Writer);
321 Handles.front().I = Handles.begin();
323 FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod);
325 ++NumNonAddrTakenGlobalVars;
327 // If this global holds a pointer type, see if it is an indirect global.
328 if (GV.getValueType()->isPointerTy() &&
329 AnalyzeIndirectGlobalMemory(&GV))
330 ++NumIndirectGlobalVars;
332 Readers.clear();
333 Writers.clear();
337 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
338 /// If this is used by anything complex (i.e., the address escapes), return
339 /// true. Also, while we are at it, keep track of those functions that read and
340 /// write to the value.
342 /// If OkayStoreDest is non-null, stores into this global are allowed.
343 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
344 SmallPtrSetImpl<Function *> *Readers,
345 SmallPtrSetImpl<Function *> *Writers,
346 GlobalValue *OkayStoreDest) {
347 if (!V->getType()->isPointerTy())
348 return true;
350 for (Use &U : V->uses()) {
351 User *I = U.getUser();
352 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
353 if (Readers)
354 Readers->insert(LI->getParent()->getParent());
355 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
356 if (V == SI->getOperand(1)) {
357 if (Writers)
358 Writers->insert(SI->getParent()->getParent());
359 } else if (SI->getOperand(1) != OkayStoreDest) {
360 return true; // Storing the pointer
362 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
363 if (AnalyzeUsesOfPointer(I, Readers, Writers))
364 return true;
365 } else if (Operator::getOpcode(I) == Instruction::BitCast) {
366 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
367 return true;
368 } else if (auto *Call = dyn_cast<CallBase>(I)) {
369 // Make sure that this is just the function being called, not that it is
370 // passing into the function.
371 if (Call->isDataOperand(&U)) {
372 // Detect calls to free.
373 if (Call->isArgOperand(&U) &&
374 isFreeCall(I, &GetTLI(*Call->getFunction()))) {
375 if (Writers)
376 Writers->insert(Call->getParent()->getParent());
377 } else {
378 return true; // Argument of an unknown call.
381 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
382 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
383 return true; // Allow comparison against null.
384 } else if (Constant *C = dyn_cast<Constant>(I)) {
385 // Ignore constants which don't have any live uses.
386 if (isa<GlobalValue>(C) || C->isConstantUsed())
387 return true;
388 } else {
389 return true;
393 return false;
396 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
397 /// which holds a pointer type. See if the global always points to non-aliased
398 /// heap memory: that is, all initializers of the globals are allocations, and
399 /// those allocations have no use other than initialization of the global.
400 /// Further, all loads out of GV must directly use the memory, not store the
401 /// pointer somewhere. If this is true, we consider the memory pointed to by
402 /// GV to be owned by GV and can disambiguate other pointers from it.
403 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
404 // Keep track of values related to the allocation of the memory, f.e. the
405 // value produced by the malloc call and any casts.
406 std::vector<Value *> AllocRelatedValues;
408 // If the initializer is a valid pointer, bail.
409 if (Constant *C = GV->getInitializer())
410 if (!C->isNullValue())
411 return false;
413 // Walk the user list of the global. If we find anything other than a direct
414 // load or store, bail out.
415 for (User *U : GV->users()) {
416 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
417 // The pointer loaded from the global can only be used in simple ways:
418 // we allow addressing of it and loading storing to it. We do *not* allow
419 // storing the loaded pointer somewhere else or passing to a function.
420 if (AnalyzeUsesOfPointer(LI))
421 return false; // Loaded pointer escapes.
422 // TODO: Could try some IP mod/ref of the loaded pointer.
423 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
424 // Storing the global itself.
425 if (SI->getOperand(0) == GV)
426 return false;
428 // If storing the null pointer, ignore it.
429 if (isa<ConstantPointerNull>(SI->getOperand(0)))
430 continue;
432 // Check the value being stored.
433 Value *Ptr = GetUnderlyingObject(SI->getOperand(0),
434 GV->getParent()->getDataLayout());
436 if (!isAllocLikeFn(Ptr, &GetTLI(*SI->getFunction())))
437 return false; // Too hard to analyze.
439 // Analyze all uses of the allocation. If any of them are used in a
440 // non-simple way (e.g. stored to another global) bail out.
441 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
442 GV))
443 return false; // Loaded pointer escapes.
445 // Remember that this allocation is related to the indirect global.
446 AllocRelatedValues.push_back(Ptr);
447 } else {
448 // Something complex, bail out.
449 return false;
453 // Okay, this is an indirect global. Remember all of the allocations for
454 // this global in AllocsForIndirectGlobals.
455 while (!AllocRelatedValues.empty()) {
456 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
457 Handles.emplace_front(*this, AllocRelatedValues.back());
458 Handles.front().I = Handles.begin();
459 AllocRelatedValues.pop_back();
461 IndirectGlobals.insert(GV);
462 Handles.emplace_front(*this, GV);
463 Handles.front().I = Handles.begin();
464 return true;
467 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {
468 // We do a bottom-up SCC traversal of the call graph. In other words, we
469 // visit all callees before callers (leaf-first).
470 unsigned SCCID = 0;
471 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
472 const std::vector<CallGraphNode *> &SCC = *I;
473 assert(!SCC.empty() && "SCC with no functions?");
475 for (auto *CGN : SCC)
476 if (Function *F = CGN->getFunction())
477 FunctionToSCCMap[F] = SCCID;
478 ++SCCID;
482 /// AnalyzeCallGraph - At this point, we know the functions where globals are
483 /// immediately stored to and read from. Propagate this information up the call
484 /// graph to all callers and compute the mod/ref info for all memory for each
485 /// function.
486 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
487 // We do a bottom-up SCC traversal of the call graph. In other words, we
488 // visit all callees before callers (leaf-first).
489 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
490 const std::vector<CallGraphNode *> &SCC = *I;
491 assert(!SCC.empty() && "SCC with no functions?");
493 Function *F = SCC[0]->getFunction();
495 if (!F || !F->isDefinitionExact()) {
496 // Calls externally or not exact - can't say anything useful. Remove any
497 // existing function records (may have been created when scanning
498 // globals).
499 for (auto *Node : SCC)
500 FunctionInfos.erase(Node->getFunction());
501 continue;
504 FunctionInfo &FI = FunctionInfos[F];
505 Handles.emplace_front(*this, F);
506 Handles.front().I = Handles.begin();
507 bool KnowNothing = false;
509 // Collect the mod/ref properties due to called functions. We only compute
510 // one mod-ref set.
511 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
512 if (!F) {
513 KnowNothing = true;
514 break;
517 if (F->isDeclaration() || F->hasOptNone()) {
518 // Try to get mod/ref behaviour from function attributes.
519 if (F->doesNotAccessMemory()) {
520 // Can't do better than that!
521 } else if (F->onlyReadsMemory()) {
522 FI.addModRefInfo(ModRefInfo::Ref);
523 if (!F->isIntrinsic() && !F->onlyAccessesArgMemory())
524 // This function might call back into the module and read a global -
525 // consider every global as possibly being read by this function.
526 FI.setMayReadAnyGlobal();
527 } else {
528 FI.addModRefInfo(ModRefInfo::ModRef);
529 // Can't say anything useful unless it's an intrinsic - they don't
530 // read or write global variables of the kind considered here.
531 KnowNothing = !F->isIntrinsic();
533 continue;
536 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
537 CI != E && !KnowNothing; ++CI)
538 if (Function *Callee = CI->second->getFunction()) {
539 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
540 // Propagate function effect up.
541 FI.addFunctionInfo(*CalleeFI);
542 } else {
543 // Can't say anything about it. However, if it is inside our SCC,
544 // then nothing needs to be done.
545 CallGraphNode *CalleeNode = CG[Callee];
546 if (!is_contained(SCC, CalleeNode))
547 KnowNothing = true;
549 } else {
550 KnowNothing = true;
554 // If we can't say anything useful about this SCC, remove all SCC functions
555 // from the FunctionInfos map.
556 if (KnowNothing) {
557 for (auto *Node : SCC)
558 FunctionInfos.erase(Node->getFunction());
559 continue;
562 // Scan the function bodies for explicit loads or stores.
563 for (auto *Node : SCC) {
564 if (isModAndRefSet(FI.getModRefInfo()))
565 break; // The mod/ref lattice saturates here.
567 // Don't prove any properties based on the implementation of an optnone
568 // function. Function attributes were already used as a best approximation
569 // above.
570 if (Node->getFunction()->hasOptNone())
571 continue;
573 for (Instruction &I : instructions(Node->getFunction())) {
574 if (isModAndRefSet(FI.getModRefInfo()))
575 break; // The mod/ref lattice saturates here.
577 // We handle calls specially because the graph-relevant aspects are
578 // handled above.
579 if (auto *Call = dyn_cast<CallBase>(&I)) {
580 auto &TLI = GetTLI(*Node->getFunction());
581 if (isAllocationFn(Call, &TLI) || isFreeCall(Call, &TLI)) {
582 // FIXME: It is completely unclear why this is necessary and not
583 // handled by the above graph code.
584 FI.addModRefInfo(ModRefInfo::ModRef);
585 } else if (Function *Callee = Call->getCalledFunction()) {
586 // The callgraph doesn't include intrinsic calls.
587 if (Callee->isIntrinsic()) {
588 if (isa<DbgInfoIntrinsic>(Call))
589 // Don't let dbg intrinsics affect alias info.
590 continue;
592 FunctionModRefBehavior Behaviour =
593 AAResultBase::getModRefBehavior(Callee);
594 FI.addModRefInfo(createModRefInfo(Behaviour));
597 continue;
600 // All non-call instructions we use the primary predicates for whether
601 // they read or write memory.
602 if (I.mayReadFromMemory())
603 FI.addModRefInfo(ModRefInfo::Ref);
604 if (I.mayWriteToMemory())
605 FI.addModRefInfo(ModRefInfo::Mod);
609 if (!isModSet(FI.getModRefInfo()))
610 ++NumReadMemFunctions;
611 if (!isModOrRefSet(FI.getModRefInfo()))
612 ++NumNoMemFunctions;
614 // Finally, now that we know the full effect on this SCC, clone the
615 // information to each function in the SCC.
616 // FI is a reference into FunctionInfos, so copy it now so that it doesn't
617 // get invalidated if DenseMap decides to re-hash.
618 FunctionInfo CachedFI = FI;
619 for (unsigned i = 1, e = SCC.size(); i != e; ++i)
620 FunctionInfos[SCC[i]->getFunction()] = CachedFI;
624 // GV is a non-escaping global. V is a pointer address that has been loaded from.
625 // If we can prove that V must escape, we can conclude that a load from V cannot
626 // alias GV.
627 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
628 const Value *V,
629 int &Depth,
630 const DataLayout &DL) {
631 SmallPtrSet<const Value *, 8> Visited;
632 SmallVector<const Value *, 8> Inputs;
633 Visited.insert(V);
634 Inputs.push_back(V);
635 do {
636 const Value *Input = Inputs.pop_back_val();
638 if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
639 isa<InvokeInst>(Input))
640 // Arguments to functions or returns from functions are inherently
641 // escaping, so we can immediately classify those as not aliasing any
642 // non-addr-taken globals.
644 // (Transitive) loads from a global are also safe - if this aliased
645 // another global, its address would escape, so no alias.
646 continue;
648 // Recurse through a limited number of selects, loads and PHIs. This is an
649 // arbitrary depth of 4, lower numbers could be used to fix compile time
650 // issues if needed, but this is generally expected to be only be important
651 // for small depths.
652 if (++Depth > 4)
653 return false;
655 if (auto *LI = dyn_cast<LoadInst>(Input)) {
656 Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL));
657 continue;
659 if (auto *SI = dyn_cast<SelectInst>(Input)) {
660 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
661 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
662 if (Visited.insert(LHS).second)
663 Inputs.push_back(LHS);
664 if (Visited.insert(RHS).second)
665 Inputs.push_back(RHS);
666 continue;
668 if (auto *PN = dyn_cast<PHINode>(Input)) {
669 for (const Value *Op : PN->incoming_values()) {
670 Op = GetUnderlyingObject(Op, DL);
671 if (Visited.insert(Op).second)
672 Inputs.push_back(Op);
674 continue;
677 return false;
678 } while (!Inputs.empty());
680 // All inputs were known to be no-alias.
681 return true;
684 // There are particular cases where we can conclude no-alias between
685 // a non-addr-taken global and some other underlying object. Specifically,
686 // a non-addr-taken global is known to not be escaped from any function. It is
687 // also incorrect for a transformation to introduce an escape of a global in
688 // a way that is observable when it was not there previously. One function
689 // being transformed to introduce an escape which could possibly be observed
690 // (via loading from a global or the return value for example) within another
691 // function is never safe. If the observation is made through non-atomic
692 // operations on different threads, it is a data-race and UB. If the
693 // observation is well defined, by being observed the transformation would have
694 // changed program behavior by introducing the observed escape, making it an
695 // invalid transform.
697 // This property does require that transformations which *temporarily* escape
698 // a global that was not previously escaped, prior to restoring it, cannot rely
699 // on the results of GMR::alias. This seems a reasonable restriction, although
700 // currently there is no way to enforce it. There is also no realistic
701 // optimization pass that would make this mistake. The closest example is
702 // a transformation pass which does reg2mem of SSA values but stores them into
703 // global variables temporarily before restoring the global variable's value.
704 // This could be useful to expose "benign" races for example. However, it seems
705 // reasonable to require that a pass which introduces escapes of global
706 // variables in this way to either not trust AA results while the escape is
707 // active, or to be forced to operate as a module pass that cannot co-exist
708 // with an alias analysis such as GMR.
709 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
710 const Value *V) {
711 // In order to know that the underlying object cannot alias the
712 // non-addr-taken global, we must know that it would have to be an escape.
713 // Thus if the underlying object is a function argument, a load from
714 // a global, or the return of a function, it cannot alias. We can also
715 // recurse through PHI nodes and select nodes provided all of their inputs
716 // resolve to one of these known-escaping roots.
717 SmallPtrSet<const Value *, 8> Visited;
718 SmallVector<const Value *, 8> Inputs;
719 Visited.insert(V);
720 Inputs.push_back(V);
721 int Depth = 0;
722 do {
723 const Value *Input = Inputs.pop_back_val();
725 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
726 // If one input is the very global we're querying against, then we can't
727 // conclude no-alias.
728 if (InputGV == GV)
729 return false;
731 // Distinct GlobalVariables never alias, unless overriden or zero-sized.
732 // FIXME: The condition can be refined, but be conservative for now.
733 auto *GVar = dyn_cast<GlobalVariable>(GV);
734 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
735 if (GVar && InputGVar &&
736 !GVar->isDeclaration() && !InputGVar->isDeclaration() &&
737 !GVar->isInterposable() && !InputGVar->isInterposable()) {
738 Type *GVType = GVar->getInitializer()->getType();
739 Type *InputGVType = InputGVar->getInitializer()->getType();
740 if (GVType->isSized() && InputGVType->isSized() &&
741 (DL.getTypeAllocSize(GVType) > 0) &&
742 (DL.getTypeAllocSize(InputGVType) > 0))
743 continue;
746 // Conservatively return false, even though we could be smarter
747 // (e.g. look through GlobalAliases).
748 return false;
751 if (isa<Argument>(Input) || isa<CallInst>(Input) ||
752 isa<InvokeInst>(Input)) {
753 // Arguments to functions or returns from functions are inherently
754 // escaping, so we can immediately classify those as not aliasing any
755 // non-addr-taken globals.
756 continue;
759 // Recurse through a limited number of selects, loads and PHIs. This is an
760 // arbitrary depth of 4, lower numbers could be used to fix compile time
761 // issues if needed, but this is generally expected to be only be important
762 // for small depths.
763 if (++Depth > 4)
764 return false;
766 if (auto *LI = dyn_cast<LoadInst>(Input)) {
767 // A pointer loaded from a global would have been captured, and we know
768 // that the global is non-escaping, so no alias.
769 const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL);
770 if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
771 // The load does not alias with GV.
772 continue;
773 // Otherwise, a load could come from anywhere, so bail.
774 return false;
776 if (auto *SI = dyn_cast<SelectInst>(Input)) {
777 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
778 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
779 if (Visited.insert(LHS).second)
780 Inputs.push_back(LHS);
781 if (Visited.insert(RHS).second)
782 Inputs.push_back(RHS);
783 continue;
785 if (auto *PN = dyn_cast<PHINode>(Input)) {
786 for (const Value *Op : PN->incoming_values()) {
787 Op = GetUnderlyingObject(Op, DL);
788 if (Visited.insert(Op).second)
789 Inputs.push_back(Op);
791 continue;
794 // FIXME: It would be good to handle other obvious no-alias cases here, but
795 // it isn't clear how to do so reasonably without building a small version
796 // of BasicAA into this code. We could recurse into AAResultBase::alias
797 // here but that seems likely to go poorly as we're inside the
798 // implementation of such a query. Until then, just conservatively return
799 // false.
800 return false;
801 } while (!Inputs.empty());
803 // If all the inputs to V were definitively no-alias, then V is no-alias.
804 return true;
807 /// alias - If one of the pointers is to a global that we are tracking, and the
808 /// other is some random pointer, we know there cannot be an alias, because the
809 /// address of the global isn't taken.
810 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
811 const MemoryLocation &LocB,
812 AAQueryInfo &AAQI) {
813 // Get the base object these pointers point to.
814 const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL);
815 const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL);
817 // If either of the underlying values is a global, they may be non-addr-taken
818 // globals, which we can answer queries about.
819 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
820 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
821 if (GV1 || GV2) {
822 // If the global's address is taken, pretend we don't know it's a pointer to
823 // the global.
824 if (GV1 && !NonAddressTakenGlobals.count(GV1))
825 GV1 = nullptr;
826 if (GV2 && !NonAddressTakenGlobals.count(GV2))
827 GV2 = nullptr;
829 // If the two pointers are derived from two different non-addr-taken
830 // globals we know these can't alias.
831 if (GV1 && GV2 && GV1 != GV2)
832 return NoAlias;
834 // If one is and the other isn't, it isn't strictly safe but we can fake
835 // this result if necessary for performance. This does not appear to be
836 // a common problem in practice.
837 if (EnableUnsafeGlobalsModRefAliasResults)
838 if ((GV1 || GV2) && GV1 != GV2)
839 return NoAlias;
841 // Check for a special case where a non-escaping global can be used to
842 // conclude no-alias.
843 if ((GV1 || GV2) && GV1 != GV2) {
844 const GlobalValue *GV = GV1 ? GV1 : GV2;
845 const Value *UV = GV1 ? UV2 : UV1;
846 if (isNonEscapingGlobalNoAlias(GV, UV))
847 return NoAlias;
850 // Otherwise if they are both derived from the same addr-taken global, we
851 // can't know the two accesses don't overlap.
854 // These pointers may be based on the memory owned by an indirect global. If
855 // so, we may be able to handle this. First check to see if the base pointer
856 // is a direct load from an indirect global.
857 GV1 = GV2 = nullptr;
858 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
859 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
860 if (IndirectGlobals.count(GV))
861 GV1 = GV;
862 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
863 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
864 if (IndirectGlobals.count(GV))
865 GV2 = GV;
867 // These pointers may also be from an allocation for the indirect global. If
868 // so, also handle them.
869 if (!GV1)
870 GV1 = AllocsForIndirectGlobals.lookup(UV1);
871 if (!GV2)
872 GV2 = AllocsForIndirectGlobals.lookup(UV2);
874 // Now that we know whether the two pointers are related to indirect globals,
875 // use this to disambiguate the pointers. If the pointers are based on
876 // different indirect globals they cannot alias.
877 if (GV1 && GV2 && GV1 != GV2)
878 return NoAlias;
880 // If one is based on an indirect global and the other isn't, it isn't
881 // strictly safe but we can fake this result if necessary for performance.
882 // This does not appear to be a common problem in practice.
883 if (EnableUnsafeGlobalsModRefAliasResults)
884 if ((GV1 || GV2) && GV1 != GV2)
885 return NoAlias;
887 return AAResultBase::alias(LocA, LocB, AAQI);
890 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call,
891 const GlobalValue *GV,
892 AAQueryInfo &AAQI) {
893 if (Call->doesNotAccessMemory())
894 return ModRefInfo::NoModRef;
895 ModRefInfo ConservativeResult =
896 Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef;
898 // Iterate through all the arguments to the called function. If any argument
899 // is based on GV, return the conservative result.
900 for (auto &A : Call->args()) {
901 SmallVector<const Value*, 4> Objects;
902 GetUnderlyingObjects(A, Objects, DL);
904 // All objects must be identified.
905 if (!all_of(Objects, isIdentifiedObject) &&
906 // Try ::alias to see if all objects are known not to alias GV.
907 !all_of(Objects, [&](const Value *V) {
908 return this->alias(MemoryLocation(V), MemoryLocation(GV), AAQI) ==
909 NoAlias;
911 return ConservativeResult;
913 if (is_contained(Objects, GV))
914 return ConservativeResult;
917 // We identified all objects in the argument list, and none of them were GV.
918 return ModRefInfo::NoModRef;
921 ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call,
922 const MemoryLocation &Loc,
923 AAQueryInfo &AAQI) {
924 ModRefInfo Known = ModRefInfo::ModRef;
926 // If we are asking for mod/ref info of a direct call with a pointer to a
927 // global we are tracking, return information if we have it.
928 if (const GlobalValue *GV =
929 dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL)))
930 if (GV->hasLocalLinkage())
931 if (const Function *F = Call->getCalledFunction())
932 if (NonAddressTakenGlobals.count(GV))
933 if (const FunctionInfo *FI = getFunctionInfo(F))
934 Known = unionModRef(FI->getModRefInfoForGlobal(*GV),
935 getModRefInfoForArgument(Call, GV, AAQI));
937 if (!isModOrRefSet(Known))
938 return ModRefInfo::NoModRef; // No need to query other mod/ref analyses
939 return intersectModRef(Known, AAResultBase::getModRefInfo(Call, Loc, AAQI));
942 GlobalsAAResult::GlobalsAAResult(
943 const DataLayout &DL,
944 std::function<const TargetLibraryInfo &(Function &F)> GetTLI)
945 : AAResultBase(), DL(DL), GetTLI(std::move(GetTLI)) {}
947 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
948 : AAResultBase(std::move(Arg)), DL(Arg.DL), GetTLI(std::move(Arg.GetTLI)),
949 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
950 IndirectGlobals(std::move(Arg.IndirectGlobals)),
951 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
952 FunctionInfos(std::move(Arg.FunctionInfos)),
953 Handles(std::move(Arg.Handles)) {
954 // Update the parent for each DeletionCallbackHandle.
955 for (auto &H : Handles) {
956 assert(H.GAR == &Arg);
957 H.GAR = this;
961 GlobalsAAResult::~GlobalsAAResult() {}
963 /*static*/ GlobalsAAResult GlobalsAAResult::analyzeModule(
964 Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI,
965 CallGraph &CG) {
966 GlobalsAAResult Result(M.getDataLayout(), GetTLI);
968 // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
969 Result.CollectSCCMembership(CG);
971 // Find non-addr taken globals.
972 Result.AnalyzeGlobals(M);
974 // Propagate on CG.
975 Result.AnalyzeCallGraph(CG, M);
977 return Result;
980 AnalysisKey GlobalsAA::Key;
982 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) {
983 FunctionAnalysisManager &FAM =
984 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
985 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
986 return FAM.getResult<TargetLibraryAnalysis>(F);
988 return GlobalsAAResult::analyzeModule(M, GetTLI,
989 AM.getResult<CallGraphAnalysis>(M));
992 char GlobalsAAWrapperPass::ID = 0;
993 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
994 "Globals Alias Analysis", false, true)
995 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
996 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
997 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
998 "Globals Alias Analysis", false, true)
1000 ModulePass *llvm::createGlobalsAAWrapperPass() {
1001 return new GlobalsAAWrapperPass();
1004 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
1005 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
1008 bool GlobalsAAWrapperPass::runOnModule(Module &M) {
1009 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
1010 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1012 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
1013 M, GetTLI, getAnalysis<CallGraphWrapperPass>().getCallGraph())));
1014 return false;
1017 bool GlobalsAAWrapperPass::doFinalization(Module &M) {
1018 Result.reset();
1019 return false;
1022 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1023 AU.setPreservesAll();
1024 AU.addRequired<CallGraphWrapperPass>();
1025 AU.addRequired<TargetLibraryInfoWrapperPass>();