[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / Transforms / InstCombine / InstCombineCompares.cpp
blob5bafab49032d8fd76ebe1df7c7d8f8eab518596f
1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
28 using namespace llvm;
29 using namespace PatternMatch;
31 #define DEBUG_TYPE "instcombine"
33 // How many times is a select replaced by one of its operands?
34 STATISTIC(NumSel, "Number of select opts");
37 /// Compute Result = In1+In2, returning true if the result overflowed for this
38 /// type.
39 static bool addWithOverflow(APInt &Result, const APInt &In1,
40 const APInt &In2, bool IsSigned = false) {
41 bool Overflow;
42 if (IsSigned)
43 Result = In1.sadd_ov(In2, Overflow);
44 else
45 Result = In1.uadd_ov(In2, Overflow);
47 return Overflow;
50 /// Compute Result = In1-In2, returning true if the result overflowed for this
51 /// type.
52 static bool subWithOverflow(APInt &Result, const APInt &In1,
53 const APInt &In2, bool IsSigned = false) {
54 bool Overflow;
55 if (IsSigned)
56 Result = In1.ssub_ov(In2, Overflow);
57 else
58 Result = In1.usub_ov(In2, Overflow);
60 return Overflow;
63 /// Given an icmp instruction, return true if any use of this comparison is a
64 /// branch on sign bit comparison.
65 static bool hasBranchUse(ICmpInst &I) {
66 for (auto *U : I.users())
67 if (isa<BranchInst>(U))
68 return true;
69 return false;
72 /// Given an exploded icmp instruction, return true if the comparison only
73 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
74 /// result of the comparison is true when the input value is signed.
75 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
76 bool &TrueIfSigned) {
77 switch (Pred) {
78 case ICmpInst::ICMP_SLT: // True if LHS s< 0
79 TrueIfSigned = true;
80 return RHS.isNullValue();
81 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
82 TrueIfSigned = true;
83 return RHS.isAllOnesValue();
84 case ICmpInst::ICMP_SGT: // True if LHS s> -1
85 TrueIfSigned = false;
86 return RHS.isAllOnesValue();
87 case ICmpInst::ICMP_UGT:
88 // True if LHS u> RHS and RHS == high-bit-mask - 1
89 TrueIfSigned = true;
90 return RHS.isMaxSignedValue();
91 case ICmpInst::ICMP_UGE:
92 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
93 TrueIfSigned = true;
94 return RHS.isSignMask();
95 default:
96 return false;
100 /// Returns true if the exploded icmp can be expressed as a signed comparison
101 /// to zero and updates the predicate accordingly.
102 /// The signedness of the comparison is preserved.
103 /// TODO: Refactor with decomposeBitTestICmp()?
104 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
105 if (!ICmpInst::isSigned(Pred))
106 return false;
108 if (C.isNullValue())
109 return ICmpInst::isRelational(Pred);
111 if (C.isOneValue()) {
112 if (Pred == ICmpInst::ICMP_SLT) {
113 Pred = ICmpInst::ICMP_SLE;
114 return true;
116 } else if (C.isAllOnesValue()) {
117 if (Pred == ICmpInst::ICMP_SGT) {
118 Pred = ICmpInst::ICMP_SGE;
119 return true;
123 return false;
126 /// Given a signed integer type and a set of known zero and one bits, compute
127 /// the maximum and minimum values that could have the specified known zero and
128 /// known one bits, returning them in Min/Max.
129 /// TODO: Move to method on KnownBits struct?
130 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
131 APInt &Min, APInt &Max) {
132 assert(Known.getBitWidth() == Min.getBitWidth() &&
133 Known.getBitWidth() == Max.getBitWidth() &&
134 "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
135 APInt UnknownBits = ~(Known.Zero|Known.One);
137 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
138 // bit if it is unknown.
139 Min = Known.One;
140 Max = Known.One|UnknownBits;
142 if (UnknownBits.isNegative()) { // Sign bit is unknown
143 Min.setSignBit();
144 Max.clearSignBit();
148 /// Given an unsigned integer type and a set of known zero and one bits, compute
149 /// the maximum and minimum values that could have the specified known zero and
150 /// known one bits, returning them in Min/Max.
151 /// TODO: Move to method on KnownBits struct?
152 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
153 APInt &Min, APInt &Max) {
154 assert(Known.getBitWidth() == Min.getBitWidth() &&
155 Known.getBitWidth() == Max.getBitWidth() &&
156 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
157 APInt UnknownBits = ~(Known.Zero|Known.One);
159 // The minimum value is when the unknown bits are all zeros.
160 Min = Known.One;
161 // The maximum value is when the unknown bits are all ones.
162 Max = Known.One|UnknownBits;
165 /// This is called when we see this pattern:
166 /// cmp pred (load (gep GV, ...)), cmpcst
167 /// where GV is a global variable with a constant initializer. Try to simplify
168 /// this into some simple computation that does not need the load. For example
169 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
171 /// If AndCst is non-null, then the loaded value is masked with that constant
172 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
173 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
174 GlobalVariable *GV,
175 CmpInst &ICI,
176 ConstantInt *AndCst) {
177 Constant *Init = GV->getInitializer();
178 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
179 return nullptr;
181 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
182 // Don't blow up on huge arrays.
183 if (ArrayElementCount > MaxArraySizeForCombine)
184 return nullptr;
186 // There are many forms of this optimization we can handle, for now, just do
187 // the simple index into a single-dimensional array.
189 // Require: GEP GV, 0, i {{, constant indices}}
190 if (GEP->getNumOperands() < 3 ||
191 !isa<ConstantInt>(GEP->getOperand(1)) ||
192 !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
193 isa<Constant>(GEP->getOperand(2)))
194 return nullptr;
196 // Check that indices after the variable are constants and in-range for the
197 // type they index. Collect the indices. This is typically for arrays of
198 // structs.
199 SmallVector<unsigned, 4> LaterIndices;
201 Type *EltTy = Init->getType()->getArrayElementType();
202 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
203 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
204 if (!Idx) return nullptr; // Variable index.
206 uint64_t IdxVal = Idx->getZExtValue();
207 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
209 if (StructType *STy = dyn_cast<StructType>(EltTy))
210 EltTy = STy->getElementType(IdxVal);
211 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
212 if (IdxVal >= ATy->getNumElements()) return nullptr;
213 EltTy = ATy->getElementType();
214 } else {
215 return nullptr; // Unknown type.
218 LaterIndices.push_back(IdxVal);
221 enum { Overdefined = -3, Undefined = -2 };
223 // Variables for our state machines.
225 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
226 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
227 // and 87 is the second (and last) index. FirstTrueElement is -2 when
228 // undefined, otherwise set to the first true element. SecondTrueElement is
229 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
230 int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
232 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
233 // form "i != 47 & i != 87". Same state transitions as for true elements.
234 int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
236 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
237 /// define a state machine that triggers for ranges of values that the index
238 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
239 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
240 /// index in the range (inclusive). We use -2 for undefined here because we
241 /// use relative comparisons and don't want 0-1 to match -1.
242 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
244 // MagicBitvector - This is a magic bitvector where we set a bit if the
245 // comparison is true for element 'i'. If there are 64 elements or less in
246 // the array, this will fully represent all the comparison results.
247 uint64_t MagicBitvector = 0;
249 // Scan the array and see if one of our patterns matches.
250 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
251 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
252 Constant *Elt = Init->getAggregateElement(i);
253 if (!Elt) return nullptr;
255 // If this is indexing an array of structures, get the structure element.
256 if (!LaterIndices.empty())
257 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
259 // If the element is masked, handle it.
260 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
262 // Find out if the comparison would be true or false for the i'th element.
263 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
264 CompareRHS, DL, &TLI);
265 // If the result is undef for this element, ignore it.
266 if (isa<UndefValue>(C)) {
267 // Extend range state machines to cover this element in case there is an
268 // undef in the middle of the range.
269 if (TrueRangeEnd == (int)i-1)
270 TrueRangeEnd = i;
271 if (FalseRangeEnd == (int)i-1)
272 FalseRangeEnd = i;
273 continue;
276 // If we can't compute the result for any of the elements, we have to give
277 // up evaluating the entire conditional.
278 if (!isa<ConstantInt>(C)) return nullptr;
280 // Otherwise, we know if the comparison is true or false for this element,
281 // update our state machines.
282 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
284 // State machine for single/double/range index comparison.
285 if (IsTrueForElt) {
286 // Update the TrueElement state machine.
287 if (FirstTrueElement == Undefined)
288 FirstTrueElement = TrueRangeEnd = i; // First true element.
289 else {
290 // Update double-compare state machine.
291 if (SecondTrueElement == Undefined)
292 SecondTrueElement = i;
293 else
294 SecondTrueElement = Overdefined;
296 // Update range state machine.
297 if (TrueRangeEnd == (int)i-1)
298 TrueRangeEnd = i;
299 else
300 TrueRangeEnd = Overdefined;
302 } else {
303 // Update the FalseElement state machine.
304 if (FirstFalseElement == Undefined)
305 FirstFalseElement = FalseRangeEnd = i; // First false element.
306 else {
307 // Update double-compare state machine.
308 if (SecondFalseElement == Undefined)
309 SecondFalseElement = i;
310 else
311 SecondFalseElement = Overdefined;
313 // Update range state machine.
314 if (FalseRangeEnd == (int)i-1)
315 FalseRangeEnd = i;
316 else
317 FalseRangeEnd = Overdefined;
321 // If this element is in range, update our magic bitvector.
322 if (i < 64 && IsTrueForElt)
323 MagicBitvector |= 1ULL << i;
325 // If all of our states become overdefined, bail out early. Since the
326 // predicate is expensive, only check it every 8 elements. This is only
327 // really useful for really huge arrays.
328 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
329 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
330 FalseRangeEnd == Overdefined)
331 return nullptr;
334 // Now that we've scanned the entire array, emit our new comparison(s). We
335 // order the state machines in complexity of the generated code.
336 Value *Idx = GEP->getOperand(2);
338 // If the index is larger than the pointer size of the target, truncate the
339 // index down like the GEP would do implicitly. We don't have to do this for
340 // an inbounds GEP because the index can't be out of range.
341 if (!GEP->isInBounds()) {
342 Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
343 unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
344 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
345 Idx = Builder.CreateTrunc(Idx, IntPtrTy);
348 // If the comparison is only true for one or two elements, emit direct
349 // comparisons.
350 if (SecondTrueElement != Overdefined) {
351 // None true -> false.
352 if (FirstTrueElement == Undefined)
353 return replaceInstUsesWith(ICI, Builder.getFalse());
355 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
357 // True for one element -> 'i == 47'.
358 if (SecondTrueElement == Undefined)
359 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
361 // True for two elements -> 'i == 47 | i == 72'.
362 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
363 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
364 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
365 return BinaryOperator::CreateOr(C1, C2);
368 // If the comparison is only false for one or two elements, emit direct
369 // comparisons.
370 if (SecondFalseElement != Overdefined) {
371 // None false -> true.
372 if (FirstFalseElement == Undefined)
373 return replaceInstUsesWith(ICI, Builder.getTrue());
375 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
377 // False for one element -> 'i != 47'.
378 if (SecondFalseElement == Undefined)
379 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
381 // False for two elements -> 'i != 47 & i != 72'.
382 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
383 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
384 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
385 return BinaryOperator::CreateAnd(C1, C2);
388 // If the comparison can be replaced with a range comparison for the elements
389 // where it is true, emit the range check.
390 if (TrueRangeEnd != Overdefined) {
391 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
393 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
394 if (FirstTrueElement) {
395 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
396 Idx = Builder.CreateAdd(Idx, Offs);
399 Value *End = ConstantInt::get(Idx->getType(),
400 TrueRangeEnd-FirstTrueElement+1);
401 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
404 // False range check.
405 if (FalseRangeEnd != Overdefined) {
406 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
407 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
408 if (FirstFalseElement) {
409 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
410 Idx = Builder.CreateAdd(Idx, Offs);
413 Value *End = ConstantInt::get(Idx->getType(),
414 FalseRangeEnd-FirstFalseElement);
415 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
418 // If a magic bitvector captures the entire comparison state
419 // of this load, replace it with computation that does:
420 // ((magic_cst >> i) & 1) != 0
422 Type *Ty = nullptr;
424 // Look for an appropriate type:
425 // - The type of Idx if the magic fits
426 // - The smallest fitting legal type
427 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
428 Ty = Idx->getType();
429 else
430 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
432 if (Ty) {
433 Value *V = Builder.CreateIntCast(Idx, Ty, false);
434 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
435 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
436 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
440 return nullptr;
443 /// Return a value that can be used to compare the *offset* implied by a GEP to
444 /// zero. For example, if we have &A[i], we want to return 'i' for
445 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
446 /// are involved. The above expression would also be legal to codegen as
447 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
448 /// This latter form is less amenable to optimization though, and we are allowed
449 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
451 /// If we can't emit an optimized form for this expression, this returns null.
453 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
454 const DataLayout &DL) {
455 gep_type_iterator GTI = gep_type_begin(GEP);
457 // Check to see if this gep only has a single variable index. If so, and if
458 // any constant indices are a multiple of its scale, then we can compute this
459 // in terms of the scale of the variable index. For example, if the GEP
460 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
461 // because the expression will cross zero at the same point.
462 unsigned i, e = GEP->getNumOperands();
463 int64_t Offset = 0;
464 for (i = 1; i != e; ++i, ++GTI) {
465 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
466 // Compute the aggregate offset of constant indices.
467 if (CI->isZero()) continue;
469 // Handle a struct index, which adds its field offset to the pointer.
470 if (StructType *STy = GTI.getStructTypeOrNull()) {
471 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
472 } else {
473 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
474 Offset += Size*CI->getSExtValue();
476 } else {
477 // Found our variable index.
478 break;
482 // If there are no variable indices, we must have a constant offset, just
483 // evaluate it the general way.
484 if (i == e) return nullptr;
486 Value *VariableIdx = GEP->getOperand(i);
487 // Determine the scale factor of the variable element. For example, this is
488 // 4 if the variable index is into an array of i32.
489 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
491 // Verify that there are no other variable indices. If so, emit the hard way.
492 for (++i, ++GTI; i != e; ++i, ++GTI) {
493 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
494 if (!CI) return nullptr;
496 // Compute the aggregate offset of constant indices.
497 if (CI->isZero()) continue;
499 // Handle a struct index, which adds its field offset to the pointer.
500 if (StructType *STy = GTI.getStructTypeOrNull()) {
501 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
502 } else {
503 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
504 Offset += Size*CI->getSExtValue();
508 // Okay, we know we have a single variable index, which must be a
509 // pointer/array/vector index. If there is no offset, life is simple, return
510 // the index.
511 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
512 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
513 if (Offset == 0) {
514 // Cast to intptrty in case a truncation occurs. If an extension is needed,
515 // we don't need to bother extending: the extension won't affect where the
516 // computation crosses zero.
517 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
518 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
520 return VariableIdx;
523 // Otherwise, there is an index. The computation we will do will be modulo
524 // the pointer size.
525 Offset = SignExtend64(Offset, IntPtrWidth);
526 VariableScale = SignExtend64(VariableScale, IntPtrWidth);
528 // To do this transformation, any constant index must be a multiple of the
529 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
530 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
531 // multiple of the variable scale.
532 int64_t NewOffs = Offset / (int64_t)VariableScale;
533 if (Offset != NewOffs*(int64_t)VariableScale)
534 return nullptr;
536 // Okay, we can do this evaluation. Start by converting the index to intptr.
537 if (VariableIdx->getType() != IntPtrTy)
538 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
539 true /*Signed*/);
540 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
541 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
544 /// Returns true if we can rewrite Start as a GEP with pointer Base
545 /// and some integer offset. The nodes that need to be re-written
546 /// for this transformation will be added to Explored.
547 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
548 const DataLayout &DL,
549 SetVector<Value *> &Explored) {
550 SmallVector<Value *, 16> WorkList(1, Start);
551 Explored.insert(Base);
553 // The following traversal gives us an order which can be used
554 // when doing the final transformation. Since in the final
555 // transformation we create the PHI replacement instructions first,
556 // we don't have to get them in any particular order.
558 // However, for other instructions we will have to traverse the
559 // operands of an instruction first, which means that we have to
560 // do a post-order traversal.
561 while (!WorkList.empty()) {
562 SetVector<PHINode *> PHIs;
564 while (!WorkList.empty()) {
565 if (Explored.size() >= 100)
566 return false;
568 Value *V = WorkList.back();
570 if (Explored.count(V) != 0) {
571 WorkList.pop_back();
572 continue;
575 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
576 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
577 // We've found some value that we can't explore which is different from
578 // the base. Therefore we can't do this transformation.
579 return false;
581 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
582 auto *CI = dyn_cast<CastInst>(V);
583 if (!CI->isNoopCast(DL))
584 return false;
586 if (Explored.count(CI->getOperand(0)) == 0)
587 WorkList.push_back(CI->getOperand(0));
590 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
591 // We're limiting the GEP to having one index. This will preserve
592 // the original pointer type. We could handle more cases in the
593 // future.
594 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
595 GEP->getType() != Start->getType())
596 return false;
598 if (Explored.count(GEP->getOperand(0)) == 0)
599 WorkList.push_back(GEP->getOperand(0));
602 if (WorkList.back() == V) {
603 WorkList.pop_back();
604 // We've finished visiting this node, mark it as such.
605 Explored.insert(V);
608 if (auto *PN = dyn_cast<PHINode>(V)) {
609 // We cannot transform PHIs on unsplittable basic blocks.
610 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
611 return false;
612 Explored.insert(PN);
613 PHIs.insert(PN);
617 // Explore the PHI nodes further.
618 for (auto *PN : PHIs)
619 for (Value *Op : PN->incoming_values())
620 if (Explored.count(Op) == 0)
621 WorkList.push_back(Op);
624 // Make sure that we can do this. Since we can't insert GEPs in a basic
625 // block before a PHI node, we can't easily do this transformation if
626 // we have PHI node users of transformed instructions.
627 for (Value *Val : Explored) {
628 for (Value *Use : Val->uses()) {
630 auto *PHI = dyn_cast<PHINode>(Use);
631 auto *Inst = dyn_cast<Instruction>(Val);
633 if (Inst == Base || Inst == PHI || !Inst || !PHI ||
634 Explored.count(PHI) == 0)
635 continue;
637 if (PHI->getParent() == Inst->getParent())
638 return false;
641 return true;
644 // Sets the appropriate insert point on Builder where we can add
645 // a replacement Instruction for V (if that is possible).
646 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
647 bool Before = true) {
648 if (auto *PHI = dyn_cast<PHINode>(V)) {
649 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
650 return;
652 if (auto *I = dyn_cast<Instruction>(V)) {
653 if (!Before)
654 I = &*std::next(I->getIterator());
655 Builder.SetInsertPoint(I);
656 return;
658 if (auto *A = dyn_cast<Argument>(V)) {
659 // Set the insertion point in the entry block.
660 BasicBlock &Entry = A->getParent()->getEntryBlock();
661 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
662 return;
664 // Otherwise, this is a constant and we don't need to set a new
665 // insertion point.
666 assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
669 /// Returns a re-written value of Start as an indexed GEP using Base as a
670 /// pointer.
671 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
672 const DataLayout &DL,
673 SetVector<Value *> &Explored) {
674 // Perform all the substitutions. This is a bit tricky because we can
675 // have cycles in our use-def chains.
676 // 1. Create the PHI nodes without any incoming values.
677 // 2. Create all the other values.
678 // 3. Add the edges for the PHI nodes.
679 // 4. Emit GEPs to get the original pointers.
680 // 5. Remove the original instructions.
681 Type *IndexType = IntegerType::get(
682 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
684 DenseMap<Value *, Value *> NewInsts;
685 NewInsts[Base] = ConstantInt::getNullValue(IndexType);
687 // Create the new PHI nodes, without adding any incoming values.
688 for (Value *Val : Explored) {
689 if (Val == Base)
690 continue;
691 // Create empty phi nodes. This avoids cyclic dependencies when creating
692 // the remaining instructions.
693 if (auto *PHI = dyn_cast<PHINode>(Val))
694 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
695 PHI->getName() + ".idx", PHI);
697 IRBuilder<> Builder(Base->getContext());
699 // Create all the other instructions.
700 for (Value *Val : Explored) {
702 if (NewInsts.find(Val) != NewInsts.end())
703 continue;
705 if (auto *CI = dyn_cast<CastInst>(Val)) {
706 // Don't get rid of the intermediate variable here; the store can grow
707 // the map which will invalidate the reference to the input value.
708 Value *V = NewInsts[CI->getOperand(0)];
709 NewInsts[CI] = V;
710 continue;
712 if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
713 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
714 : GEP->getOperand(1);
715 setInsertionPoint(Builder, GEP);
716 // Indices might need to be sign extended. GEPs will magically do
717 // this, but we need to do it ourselves here.
718 if (Index->getType()->getScalarSizeInBits() !=
719 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
720 Index = Builder.CreateSExtOrTrunc(
721 Index, NewInsts[GEP->getOperand(0)]->getType(),
722 GEP->getOperand(0)->getName() + ".sext");
725 auto *Op = NewInsts[GEP->getOperand(0)];
726 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
727 NewInsts[GEP] = Index;
728 else
729 NewInsts[GEP] = Builder.CreateNSWAdd(
730 Op, Index, GEP->getOperand(0)->getName() + ".add");
731 continue;
733 if (isa<PHINode>(Val))
734 continue;
736 llvm_unreachable("Unexpected instruction type");
739 // Add the incoming values to the PHI nodes.
740 for (Value *Val : Explored) {
741 if (Val == Base)
742 continue;
743 // All the instructions have been created, we can now add edges to the
744 // phi nodes.
745 if (auto *PHI = dyn_cast<PHINode>(Val)) {
746 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
747 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
748 Value *NewIncoming = PHI->getIncomingValue(I);
750 if (NewInsts.find(NewIncoming) != NewInsts.end())
751 NewIncoming = NewInsts[NewIncoming];
753 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
758 for (Value *Val : Explored) {
759 if (Val == Base)
760 continue;
762 // Depending on the type, for external users we have to emit
763 // a GEP or a GEP + ptrtoint.
764 setInsertionPoint(Builder, Val, false);
766 // If required, create an inttoptr instruction for Base.
767 Value *NewBase = Base;
768 if (!Base->getType()->isPointerTy())
769 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
770 Start->getName() + "to.ptr");
772 Value *GEP = Builder.CreateInBoundsGEP(
773 Start->getType()->getPointerElementType(), NewBase,
774 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
776 if (!Val->getType()->isPointerTy()) {
777 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
778 Val->getName() + ".conv");
779 GEP = Cast;
781 Val->replaceAllUsesWith(GEP);
784 return NewInsts[Start];
787 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
788 /// the input Value as a constant indexed GEP. Returns a pair containing
789 /// the GEPs Pointer and Index.
790 static std::pair<Value *, Value *>
791 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
792 Type *IndexType = IntegerType::get(V->getContext(),
793 DL.getIndexTypeSizeInBits(V->getType()));
795 Constant *Index = ConstantInt::getNullValue(IndexType);
796 while (true) {
797 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
798 // We accept only inbouds GEPs here to exclude the possibility of
799 // overflow.
800 if (!GEP->isInBounds())
801 break;
802 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
803 GEP->getType() == V->getType()) {
804 V = GEP->getOperand(0);
805 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
806 Index = ConstantExpr::getAdd(
807 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
808 continue;
810 break;
812 if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
813 if (!CI->isNoopCast(DL))
814 break;
815 V = CI->getOperand(0);
816 continue;
818 if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
819 if (!CI->isNoopCast(DL))
820 break;
821 V = CI->getOperand(0);
822 continue;
824 break;
826 return {V, Index};
829 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
830 /// We can look through PHIs, GEPs and casts in order to determine a common base
831 /// between GEPLHS and RHS.
832 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
833 ICmpInst::Predicate Cond,
834 const DataLayout &DL) {
835 // FIXME: Support vector of pointers.
836 if (GEPLHS->getType()->isVectorTy())
837 return nullptr;
839 if (!GEPLHS->hasAllConstantIndices())
840 return nullptr;
842 // Make sure the pointers have the same type.
843 if (GEPLHS->getType() != RHS->getType())
844 return nullptr;
846 Value *PtrBase, *Index;
847 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
849 // The set of nodes that will take part in this transformation.
850 SetVector<Value *> Nodes;
852 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
853 return nullptr;
855 // We know we can re-write this as
856 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
857 // Since we've only looked through inbouds GEPs we know that we
858 // can't have overflow on either side. We can therefore re-write
859 // this as:
860 // OFFSET1 cmp OFFSET2
861 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
863 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
864 // GEP having PtrBase as the pointer base, and has returned in NewRHS the
865 // offset. Since Index is the offset of LHS to the base pointer, we will now
866 // compare the offsets instead of comparing the pointers.
867 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
870 /// Fold comparisons between a GEP instruction and something else. At this point
871 /// we know that the GEP is on the LHS of the comparison.
872 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
873 ICmpInst::Predicate Cond,
874 Instruction &I) {
875 // Don't transform signed compares of GEPs into index compares. Even if the
876 // GEP is inbounds, the final add of the base pointer can have signed overflow
877 // and would change the result of the icmp.
878 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
879 // the maximum signed value for the pointer type.
880 if (ICmpInst::isSigned(Cond))
881 return nullptr;
883 // Look through bitcasts and addrspacecasts. We do not however want to remove
884 // 0 GEPs.
885 if (!isa<GetElementPtrInst>(RHS))
886 RHS = RHS->stripPointerCasts();
888 Value *PtrBase = GEPLHS->getOperand(0);
889 // FIXME: Support vector pointer GEPs.
890 if (PtrBase == RHS && GEPLHS->isInBounds() &&
891 !GEPLHS->getType()->isVectorTy()) {
892 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
893 // This transformation (ignoring the base and scales) is valid because we
894 // know pointers can't overflow since the gep is inbounds. See if we can
895 // output an optimized form.
896 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
898 // If not, synthesize the offset the hard way.
899 if (!Offset)
900 Offset = EmitGEPOffset(GEPLHS);
901 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
902 Constant::getNullValue(Offset->getType()));
905 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
906 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
907 !NullPointerIsDefined(I.getFunction(),
908 RHS->getType()->getPointerAddressSpace())) {
909 // For most address spaces, an allocation can't be placed at null, but null
910 // itself is treated as a 0 size allocation in the in bounds rules. Thus,
911 // the only valid inbounds address derived from null, is null itself.
912 // Thus, we have four cases to consider:
913 // 1) Base == nullptr, Offset == 0 -> inbounds, null
914 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
915 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
916 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
918 // (Note if we're indexing a type of size 0, that simply collapses into one
919 // of the buckets above.)
921 // In general, we're allowed to make values less poison (i.e. remove
922 // sources of full UB), so in this case, we just select between the two
923 // non-poison cases (1 and 4 above).
925 // For vectors, we apply the same reasoning on a per-lane basis.
926 auto *Base = GEPLHS->getPointerOperand();
927 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
928 int NumElts = GEPLHS->getType()->getVectorNumElements();
929 Base = Builder.CreateVectorSplat(NumElts, Base);
931 return new ICmpInst(Cond, Base,
932 ConstantExpr::getPointerBitCastOrAddrSpaceCast(
933 cast<Constant>(RHS), Base->getType()));
934 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
935 // If the base pointers are different, but the indices are the same, just
936 // compare the base pointer.
937 if (PtrBase != GEPRHS->getOperand(0)) {
938 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
939 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
940 GEPRHS->getOperand(0)->getType();
941 if (IndicesTheSame)
942 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
943 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
944 IndicesTheSame = false;
945 break;
948 // If all indices are the same, just compare the base pointers.
949 Type *BaseType = GEPLHS->getOperand(0)->getType();
950 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
951 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
953 // If we're comparing GEPs with two base pointers that only differ in type
954 // and both GEPs have only constant indices or just one use, then fold
955 // the compare with the adjusted indices.
956 // FIXME: Support vector of pointers.
957 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
958 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
959 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
960 PtrBase->stripPointerCasts() ==
961 GEPRHS->getOperand(0)->stripPointerCasts() &&
962 !GEPLHS->getType()->isVectorTy()) {
963 Value *LOffset = EmitGEPOffset(GEPLHS);
964 Value *ROffset = EmitGEPOffset(GEPRHS);
966 // If we looked through an addrspacecast between different sized address
967 // spaces, the LHS and RHS pointers are different sized
968 // integers. Truncate to the smaller one.
969 Type *LHSIndexTy = LOffset->getType();
970 Type *RHSIndexTy = ROffset->getType();
971 if (LHSIndexTy != RHSIndexTy) {
972 if (LHSIndexTy->getPrimitiveSizeInBits() <
973 RHSIndexTy->getPrimitiveSizeInBits()) {
974 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
975 } else
976 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
979 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
980 LOffset, ROffset);
981 return replaceInstUsesWith(I, Cmp);
984 // Otherwise, the base pointers are different and the indices are
985 // different. Try convert this to an indexed compare by looking through
986 // PHIs/casts.
987 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
990 // If one of the GEPs has all zero indices, recurse.
991 // FIXME: Handle vector of pointers.
992 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
993 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
994 ICmpInst::getSwappedPredicate(Cond), I);
996 // If the other GEP has all zero indices, recurse.
997 // FIXME: Handle vector of pointers.
998 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
999 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
1001 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
1002 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
1003 // If the GEPs only differ by one index, compare it.
1004 unsigned NumDifferences = 0; // Keep track of # differences.
1005 unsigned DiffOperand = 0; // The operand that differs.
1006 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
1007 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
1008 Type *LHSType = GEPLHS->getOperand(i)->getType();
1009 Type *RHSType = GEPRHS->getOperand(i)->getType();
1010 // FIXME: Better support for vector of pointers.
1011 if (LHSType->getPrimitiveSizeInBits() !=
1012 RHSType->getPrimitiveSizeInBits() ||
1013 (GEPLHS->getType()->isVectorTy() &&
1014 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
1015 // Irreconcilable differences.
1016 NumDifferences = 2;
1017 break;
1020 if (NumDifferences++) break;
1021 DiffOperand = i;
1024 if (NumDifferences == 0) // SAME GEP?
1025 return replaceInstUsesWith(I, // No comparison is needed here.
1026 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
1028 else if (NumDifferences == 1 && GEPsInBounds) {
1029 Value *LHSV = GEPLHS->getOperand(DiffOperand);
1030 Value *RHSV = GEPRHS->getOperand(DiffOperand);
1031 // Make sure we do a signed comparison here.
1032 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
1036 // Only lower this if the icmp is the only user of the GEP or if we expect
1037 // the result to fold to a constant!
1038 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
1039 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
1040 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
1041 Value *L = EmitGEPOffset(GEPLHS);
1042 Value *R = EmitGEPOffset(GEPRHS);
1043 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1047 // Try convert this to an indexed compare by looking through PHIs/casts as a
1048 // last resort.
1049 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1052 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
1053 const AllocaInst *Alloca,
1054 const Value *Other) {
1055 assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1057 // It would be tempting to fold away comparisons between allocas and any
1058 // pointer not based on that alloca (e.g. an argument). However, even
1059 // though such pointers cannot alias, they can still compare equal.
1061 // But LLVM doesn't specify where allocas get their memory, so if the alloca
1062 // doesn't escape we can argue that it's impossible to guess its value, and we
1063 // can therefore act as if any such guesses are wrong.
1065 // The code below checks that the alloca doesn't escape, and that it's only
1066 // used in a comparison once (the current instruction). The
1067 // single-comparison-use condition ensures that we're trivially folding all
1068 // comparisons against the alloca consistently, and avoids the risk of
1069 // erroneously folding a comparison of the pointer with itself.
1071 unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1073 SmallVector<const Use *, 32> Worklist;
1074 for (const Use &U : Alloca->uses()) {
1075 if (Worklist.size() >= MaxIter)
1076 return nullptr;
1077 Worklist.push_back(&U);
1080 unsigned NumCmps = 0;
1081 while (!Worklist.empty()) {
1082 assert(Worklist.size() <= MaxIter);
1083 const Use *U = Worklist.pop_back_val();
1084 const Value *V = U->getUser();
1085 --MaxIter;
1087 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1088 isa<SelectInst>(V)) {
1089 // Track the uses.
1090 } else if (isa<LoadInst>(V)) {
1091 // Loading from the pointer doesn't escape it.
1092 continue;
1093 } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1094 // Storing *to* the pointer is fine, but storing the pointer escapes it.
1095 if (SI->getValueOperand() == U->get())
1096 return nullptr;
1097 continue;
1098 } else if (isa<ICmpInst>(V)) {
1099 if (NumCmps++)
1100 return nullptr; // Found more than one cmp.
1101 continue;
1102 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1103 switch (Intrin->getIntrinsicID()) {
1104 // These intrinsics don't escape or compare the pointer. Memset is safe
1105 // because we don't allow ptrtoint. Memcpy and memmove are safe because
1106 // we don't allow stores, so src cannot point to V.
1107 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1108 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1109 continue;
1110 default:
1111 return nullptr;
1113 } else {
1114 return nullptr;
1116 for (const Use &U : V->uses()) {
1117 if (Worklist.size() >= MaxIter)
1118 return nullptr;
1119 Worklist.push_back(&U);
1123 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1124 return replaceInstUsesWith(
1125 ICI,
1126 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1129 /// Fold "icmp pred (X+C), X".
1130 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C,
1131 ICmpInst::Predicate Pred) {
1132 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1133 // so the values can never be equal. Similarly for all other "or equals"
1134 // operators.
1135 assert(!!C && "C should not be zero!");
1137 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
1138 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
1139 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
1140 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1141 Constant *R = ConstantInt::get(X->getType(),
1142 APInt::getMaxValue(C.getBitWidth()) - C);
1143 return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1146 // (X+1) >u X --> X <u (0-1) --> X != 255
1147 // (X+2) >u X --> X <u (0-2) --> X <u 254
1148 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
1149 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1150 return new ICmpInst(ICmpInst::ICMP_ULT, X,
1151 ConstantInt::get(X->getType(), -C));
1153 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1155 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
1156 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
1157 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
1158 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
1159 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
1160 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
1161 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1162 return new ICmpInst(ICmpInst::ICMP_SGT, X,
1163 ConstantInt::get(X->getType(), SMax - C));
1165 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
1166 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
1167 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1168 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1169 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
1170 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
1172 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1173 return new ICmpInst(ICmpInst::ICMP_SLT, X,
1174 ConstantInt::get(X->getType(), SMax - (C - 1)));
1177 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1178 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1179 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1180 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
1181 const APInt &AP1,
1182 const APInt &AP2) {
1183 assert(I.isEquality() && "Cannot fold icmp gt/lt");
1185 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1186 if (I.getPredicate() == I.ICMP_NE)
1187 Pred = CmpInst::getInversePredicate(Pred);
1188 return new ICmpInst(Pred, LHS, RHS);
1191 // Don't bother doing any work for cases which InstSimplify handles.
1192 if (AP2.isNullValue())
1193 return nullptr;
1195 bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1196 if (IsAShr) {
1197 if (AP2.isAllOnesValue())
1198 return nullptr;
1199 if (AP2.isNegative() != AP1.isNegative())
1200 return nullptr;
1201 if (AP2.sgt(AP1))
1202 return nullptr;
1205 if (!AP1)
1206 // 'A' must be large enough to shift out the highest set bit.
1207 return getICmp(I.ICMP_UGT, A,
1208 ConstantInt::get(A->getType(), AP2.logBase2()));
1210 if (AP1 == AP2)
1211 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1213 int Shift;
1214 if (IsAShr && AP1.isNegative())
1215 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1216 else
1217 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1219 if (Shift > 0) {
1220 if (IsAShr && AP1 == AP2.ashr(Shift)) {
1221 // There are multiple solutions if we are comparing against -1 and the LHS
1222 // of the ashr is not a power of two.
1223 if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1224 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1225 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1226 } else if (AP1 == AP2.lshr(Shift)) {
1227 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1231 // Shifting const2 will never be equal to const1.
1232 // FIXME: This should always be handled by InstSimplify?
1233 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1234 return replaceInstUsesWith(I, TorF);
1237 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1238 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1239 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
1240 const APInt &AP1,
1241 const APInt &AP2) {
1242 assert(I.isEquality() && "Cannot fold icmp gt/lt");
1244 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1245 if (I.getPredicate() == I.ICMP_NE)
1246 Pred = CmpInst::getInversePredicate(Pred);
1247 return new ICmpInst(Pred, LHS, RHS);
1250 // Don't bother doing any work for cases which InstSimplify handles.
1251 if (AP2.isNullValue())
1252 return nullptr;
1254 unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1256 if (!AP1 && AP2TrailingZeros != 0)
1257 return getICmp(
1258 I.ICMP_UGE, A,
1259 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1261 if (AP1 == AP2)
1262 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1264 // Get the distance between the lowest bits that are set.
1265 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1267 if (Shift > 0 && AP2.shl(Shift) == AP1)
1268 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1270 // Shifting const2 will never be equal to const1.
1271 // FIXME: This should always be handled by InstSimplify?
1272 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1273 return replaceInstUsesWith(I, TorF);
1276 /// The caller has matched a pattern of the form:
1277 /// I = icmp ugt (add (add A, B), CI2), CI1
1278 /// If this is of the form:
1279 /// sum = a + b
1280 /// if (sum+128 >u 255)
1281 /// Then replace it with llvm.sadd.with.overflow.i8.
1283 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1284 ConstantInt *CI2, ConstantInt *CI1,
1285 InstCombiner &IC) {
1286 // The transformation we're trying to do here is to transform this into an
1287 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1288 // with a narrower add, and discard the add-with-constant that is part of the
1289 // range check (if we can't eliminate it, this isn't profitable).
1291 // In order to eliminate the add-with-constant, the compare can be its only
1292 // use.
1293 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1294 if (!AddWithCst->hasOneUse())
1295 return nullptr;
1297 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1298 if (!CI2->getValue().isPowerOf2())
1299 return nullptr;
1300 unsigned NewWidth = CI2->getValue().countTrailingZeros();
1301 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1302 return nullptr;
1304 // The width of the new add formed is 1 more than the bias.
1305 ++NewWidth;
1307 // Check to see that CI1 is an all-ones value with NewWidth bits.
1308 if (CI1->getBitWidth() == NewWidth ||
1309 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1310 return nullptr;
1312 // This is only really a signed overflow check if the inputs have been
1313 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1314 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1315 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1316 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1317 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1318 return nullptr;
1320 // In order to replace the original add with a narrower
1321 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1322 // and truncates that discard the high bits of the add. Verify that this is
1323 // the case.
1324 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1325 for (User *U : OrigAdd->users()) {
1326 if (U == AddWithCst)
1327 continue;
1329 // Only accept truncates for now. We would really like a nice recursive
1330 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1331 // chain to see which bits of a value are actually demanded. If the
1332 // original add had another add which was then immediately truncated, we
1333 // could still do the transformation.
1334 TruncInst *TI = dyn_cast<TruncInst>(U);
1335 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1336 return nullptr;
1339 // If the pattern matches, truncate the inputs to the narrower type and
1340 // use the sadd_with_overflow intrinsic to efficiently compute both the
1341 // result and the overflow bit.
1342 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1343 Function *F = Intrinsic::getDeclaration(
1344 I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1346 InstCombiner::BuilderTy &Builder = IC.Builder;
1348 // Put the new code above the original add, in case there are any uses of the
1349 // add between the add and the compare.
1350 Builder.SetInsertPoint(OrigAdd);
1352 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1353 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1354 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1355 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1356 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1358 // The inner add was the result of the narrow add, zero extended to the
1359 // wider type. Replace it with the result computed by the intrinsic.
1360 IC.replaceInstUsesWith(*OrigAdd, ZExt);
1362 // The original icmp gets replaced with the overflow value.
1363 return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1366 /// If we have:
1367 /// icmp eq/ne (urem/srem %x, %y), 0
1368 /// iff %y is a power-of-two, we can replace this with a bit test:
1369 /// icmp eq/ne (and %x, (add %y, -1)), 0
1370 Instruction *InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1371 // This fold is only valid for equality predicates.
1372 if (!I.isEquality())
1373 return nullptr;
1374 ICmpInst::Predicate Pred;
1375 Value *X, *Y, *Zero;
1376 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1377 m_CombineAnd(m_Zero(), m_Value(Zero)))))
1378 return nullptr;
1379 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1380 return nullptr;
1381 // This may increase instruction count, we don't enforce that Y is a constant.
1382 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1383 Value *Masked = Builder.CreateAnd(X, Mask);
1384 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1387 // Handle icmp pred X, 0
1388 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) {
1389 CmpInst::Predicate Pred = Cmp.getPredicate();
1390 if (!match(Cmp.getOperand(1), m_Zero()))
1391 return nullptr;
1393 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1394 if (Pred == ICmpInst::ICMP_SGT) {
1395 Value *A, *B;
1396 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1397 if (SPR.Flavor == SPF_SMIN) {
1398 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1399 return new ICmpInst(Pred, B, Cmp.getOperand(1));
1400 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1401 return new ICmpInst(Pred, A, Cmp.getOperand(1));
1405 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1406 return New;
1408 // Given:
1409 // icmp eq/ne (urem %x, %y), 0
1410 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1411 // icmp eq/ne %x, 0
1412 Value *X, *Y;
1413 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1414 ICmpInst::isEquality(Pred)) {
1415 KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1416 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1417 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1418 return new ICmpInst(Pred, X, Cmp.getOperand(1));
1421 return nullptr;
1424 /// Fold icmp Pred X, C.
1425 /// TODO: This code structure does not make sense. The saturating add fold
1426 /// should be moved to some other helper and extended as noted below (it is also
1427 /// possible that code has been made unnecessary - do we canonicalize IR to
1428 /// overflow/saturating intrinsics or not?).
1429 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
1430 // Match the following pattern, which is a common idiom when writing
1431 // overflow-safe integer arithmetic functions. The source performs an addition
1432 // in wider type and explicitly checks for overflow using comparisons against
1433 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1435 // TODO: This could probably be generalized to handle other overflow-safe
1436 // operations if we worked out the formulas to compute the appropriate magic
1437 // constants.
1439 // sum = a + b
1440 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
1441 CmpInst::Predicate Pred = Cmp.getPredicate();
1442 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1443 Value *A, *B;
1444 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1445 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1446 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1447 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1448 return Res;
1450 return nullptr;
1453 /// Canonicalize icmp instructions based on dominating conditions.
1454 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1455 // This is a cheap/incomplete check for dominance - just match a single
1456 // predecessor with a conditional branch.
1457 BasicBlock *CmpBB = Cmp.getParent();
1458 BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1459 if (!DomBB)
1460 return nullptr;
1462 Value *DomCond;
1463 BasicBlock *TrueBB, *FalseBB;
1464 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1465 return nullptr;
1467 assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1468 "Predecessor block does not point to successor?");
1470 // The branch should get simplified. Don't bother simplifying this condition.
1471 if (TrueBB == FalseBB)
1472 return nullptr;
1474 // Try to simplify this compare to T/F based on the dominating condition.
1475 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1476 if (Imp)
1477 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1479 CmpInst::Predicate Pred = Cmp.getPredicate();
1480 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1481 ICmpInst::Predicate DomPred;
1482 const APInt *C, *DomC;
1483 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1484 match(Y, m_APInt(C))) {
1485 // We have 2 compares of a variable with constants. Calculate the constant
1486 // ranges of those compares to see if we can transform the 2nd compare:
1487 // DomBB:
1488 // DomCond = icmp DomPred X, DomC
1489 // br DomCond, CmpBB, FalseBB
1490 // CmpBB:
1491 // Cmp = icmp Pred X, C
1492 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1493 ConstantRange DominatingCR =
1494 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1495 : ConstantRange::makeExactICmpRegion(
1496 CmpInst::getInversePredicate(DomPred), *DomC);
1497 ConstantRange Intersection = DominatingCR.intersectWith(CR);
1498 ConstantRange Difference = DominatingCR.difference(CR);
1499 if (Intersection.isEmptySet())
1500 return replaceInstUsesWith(Cmp, Builder.getFalse());
1501 if (Difference.isEmptySet())
1502 return replaceInstUsesWith(Cmp, Builder.getTrue());
1504 // Canonicalizing a sign bit comparison that gets used in a branch,
1505 // pessimizes codegen by generating branch on zero instruction instead
1506 // of a test and branch. So we avoid canonicalizing in such situations
1507 // because test and branch instruction has better branch displacement
1508 // than compare and branch instruction.
1509 bool UnusedBit;
1510 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1511 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1512 return nullptr;
1514 if (const APInt *EqC = Intersection.getSingleElement())
1515 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1516 if (const APInt *NeC = Difference.getSingleElement())
1517 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1520 return nullptr;
1523 /// Fold icmp (trunc X, Y), C.
1524 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
1525 TruncInst *Trunc,
1526 const APInt &C) {
1527 ICmpInst::Predicate Pred = Cmp.getPredicate();
1528 Value *X = Trunc->getOperand(0);
1529 if (C.isOneValue() && C.getBitWidth() > 1) {
1530 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1531 Value *V = nullptr;
1532 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1533 return new ICmpInst(ICmpInst::ICMP_SLT, V,
1534 ConstantInt::get(V->getType(), 1));
1537 if (Cmp.isEquality() && Trunc->hasOneUse()) {
1538 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1539 // of the high bits truncated out of x are known.
1540 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1541 SrcBits = X->getType()->getScalarSizeInBits();
1542 KnownBits Known = computeKnownBits(X, 0, &Cmp);
1544 // If all the high bits are known, we can do this xform.
1545 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1546 // Pull in the high bits from known-ones set.
1547 APInt NewRHS = C.zext(SrcBits);
1548 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1549 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1553 return nullptr;
1556 /// Fold icmp (xor X, Y), C.
1557 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
1558 BinaryOperator *Xor,
1559 const APInt &C) {
1560 Value *X = Xor->getOperand(0);
1561 Value *Y = Xor->getOperand(1);
1562 const APInt *XorC;
1563 if (!match(Y, m_APInt(XorC)))
1564 return nullptr;
1566 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1567 // fold the xor.
1568 ICmpInst::Predicate Pred = Cmp.getPredicate();
1569 bool TrueIfSigned = false;
1570 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1572 // If the sign bit of the XorCst is not set, there is no change to
1573 // the operation, just stop using the Xor.
1574 if (!XorC->isNegative()) {
1575 Cmp.setOperand(0, X);
1576 Worklist.Add(Xor);
1577 return &Cmp;
1580 // Emit the opposite comparison.
1581 if (TrueIfSigned)
1582 return new ICmpInst(ICmpInst::ICMP_SGT, X,
1583 ConstantInt::getAllOnesValue(X->getType()));
1584 else
1585 return new ICmpInst(ICmpInst::ICMP_SLT, X,
1586 ConstantInt::getNullValue(X->getType()));
1589 if (Xor->hasOneUse()) {
1590 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1591 if (!Cmp.isEquality() && XorC->isSignMask()) {
1592 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1593 : Cmp.getSignedPredicate();
1594 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1597 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1598 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1599 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1600 : Cmp.getSignedPredicate();
1601 Pred = Cmp.getSwappedPredicate(Pred);
1602 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1606 // Mask constant magic can eliminate an 'xor' with unsigned compares.
1607 if (Pred == ICmpInst::ICMP_UGT) {
1608 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1609 if (*XorC == ~C && (C + 1).isPowerOf2())
1610 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1611 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1612 if (*XorC == C && (C + 1).isPowerOf2())
1613 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1615 if (Pred == ICmpInst::ICMP_ULT) {
1616 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1617 if (*XorC == -C && C.isPowerOf2())
1618 return new ICmpInst(ICmpInst::ICMP_UGT, X,
1619 ConstantInt::get(X->getType(), ~C));
1620 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1621 if (*XorC == C && (-C).isPowerOf2())
1622 return new ICmpInst(ICmpInst::ICMP_UGT, X,
1623 ConstantInt::get(X->getType(), ~C));
1625 return nullptr;
1628 /// Fold icmp (and (sh X, Y), C2), C1.
1629 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
1630 const APInt &C1, const APInt &C2) {
1631 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1632 if (!Shift || !Shift->isShift())
1633 return nullptr;
1635 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1636 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1637 // code produced by the clang front-end, for bitfield access.
1638 // This seemingly simple opportunity to fold away a shift turns out to be
1639 // rather complicated. See PR17827 for details.
1640 unsigned ShiftOpcode = Shift->getOpcode();
1641 bool IsShl = ShiftOpcode == Instruction::Shl;
1642 const APInt *C3;
1643 if (match(Shift->getOperand(1), m_APInt(C3))) {
1644 bool CanFold = false;
1645 if (ShiftOpcode == Instruction::Shl) {
1646 // For a left shift, we can fold if the comparison is not signed. We can
1647 // also fold a signed comparison if the mask value and comparison value
1648 // are not negative. These constraints may not be obvious, but we can
1649 // prove that they are correct using an SMT solver.
1650 if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative()))
1651 CanFold = true;
1652 } else {
1653 bool IsAshr = ShiftOpcode == Instruction::AShr;
1654 // For a logical right shift, we can fold if the comparison is not signed.
1655 // We can also fold a signed comparison if the shifted mask value and the
1656 // shifted comparison value are not negative. These constraints may not be
1657 // obvious, but we can prove that they are correct using an SMT solver.
1658 // For an arithmetic shift right we can do the same, if we ensure
1659 // the And doesn't use any bits being shifted in. Normally these would
1660 // be turned into lshr by SimplifyDemandedBits, but not if there is an
1661 // additional user.
1662 if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) {
1663 if (!Cmp.isSigned() ||
1664 (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative()))
1665 CanFold = true;
1669 if (CanFold) {
1670 APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3);
1671 APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3);
1672 // Check to see if we are shifting out any of the bits being compared.
1673 if (SameAsC1 != C1) {
1674 // If we shifted bits out, the fold is not going to work out. As a
1675 // special case, check to see if this means that the result is always
1676 // true or false now.
1677 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1678 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1679 if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1680 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1681 } else {
1682 Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst));
1683 APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3);
1684 And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst));
1685 And->setOperand(0, Shift->getOperand(0));
1686 Worklist.Add(Shift); // Shift is dead.
1687 return &Cmp;
1692 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
1693 // preferable because it allows the C2 << Y expression to be hoisted out of a
1694 // loop if Y is invariant and X is not.
1695 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1696 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1697 // Compute C2 << Y.
1698 Value *NewShift =
1699 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1700 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1702 // Compute X & (C2 << Y).
1703 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1704 Cmp.setOperand(0, NewAnd);
1705 return &Cmp;
1708 return nullptr;
1711 /// Fold icmp (and X, C2), C1.
1712 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
1713 BinaryOperator *And,
1714 const APInt &C1) {
1715 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1717 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1718 // TODO: We canonicalize to the longer form for scalars because we have
1719 // better analysis/folds for icmp, and codegen may be better with icmp.
1720 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1721 match(And->getOperand(1), m_One()))
1722 return new TruncInst(And->getOperand(0), Cmp.getType());
1724 const APInt *C2;
1725 Value *X;
1726 if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1727 return nullptr;
1729 // Don't perform the following transforms if the AND has multiple uses
1730 if (!And->hasOneUse())
1731 return nullptr;
1733 if (Cmp.isEquality() && C1.isNullValue()) {
1734 // Restrict this fold to single-use 'and' (PR10267).
1735 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1736 if (C2->isSignMask()) {
1737 Constant *Zero = Constant::getNullValue(X->getType());
1738 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1739 return new ICmpInst(NewPred, X, Zero);
1742 // Restrict this fold only for single-use 'and' (PR10267).
1743 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two.
1744 if ((~(*C2) + 1).isPowerOf2()) {
1745 Constant *NegBOC =
1746 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1747 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1748 return new ICmpInst(NewPred, X, NegBOC);
1752 // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1753 // the input width without changing the value produced, eliminate the cast:
1755 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1757 // We can do this transformation if the constants do not have their sign bits
1758 // set or if it is an equality comparison. Extending a relational comparison
1759 // when we're checking the sign bit would not work.
1760 Value *W;
1761 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1762 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1763 // TODO: Is this a good transform for vectors? Wider types may reduce
1764 // throughput. Should this transform be limited (even for scalars) by using
1765 // shouldChangeType()?
1766 if (!Cmp.getType()->isVectorTy()) {
1767 Type *WideType = W->getType();
1768 unsigned WideScalarBits = WideType->getScalarSizeInBits();
1769 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1770 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1771 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1772 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1776 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1777 return I;
1779 // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1780 // (icmp pred (and A, (or (shl 1, B), 1), 0))
1782 // iff pred isn't signed
1783 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1784 match(And->getOperand(1), m_One())) {
1785 Constant *One = cast<Constant>(And->getOperand(1));
1786 Value *Or = And->getOperand(0);
1787 Value *A, *B, *LShr;
1788 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1789 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1790 unsigned UsesRemoved = 0;
1791 if (And->hasOneUse())
1792 ++UsesRemoved;
1793 if (Or->hasOneUse())
1794 ++UsesRemoved;
1795 if (LShr->hasOneUse())
1796 ++UsesRemoved;
1798 // Compute A & ((1 << B) | 1)
1799 Value *NewOr = nullptr;
1800 if (auto *C = dyn_cast<Constant>(B)) {
1801 if (UsesRemoved >= 1)
1802 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1803 } else {
1804 if (UsesRemoved >= 3)
1805 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1806 /*HasNUW=*/true),
1807 One, Or->getName());
1809 if (NewOr) {
1810 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1811 Cmp.setOperand(0, NewAnd);
1812 return &Cmp;
1817 return nullptr;
1820 /// Fold icmp (and X, Y), C.
1821 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
1822 BinaryOperator *And,
1823 const APInt &C) {
1824 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1825 return I;
1827 // TODO: These all require that Y is constant too, so refactor with the above.
1829 // Try to optimize things like "A[i] & 42 == 0" to index computations.
1830 Value *X = And->getOperand(0);
1831 Value *Y = And->getOperand(1);
1832 if (auto *LI = dyn_cast<LoadInst>(X))
1833 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1834 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1835 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1836 !LI->isVolatile() && isa<ConstantInt>(Y)) {
1837 ConstantInt *C2 = cast<ConstantInt>(Y);
1838 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1839 return Res;
1842 if (!Cmp.isEquality())
1843 return nullptr;
1845 // X & -C == -C -> X > u ~C
1846 // X & -C != -C -> X <= u ~C
1847 // iff C is a power of 2
1848 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1849 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1850 : CmpInst::ICMP_ULE;
1851 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1854 // (X & C2) == 0 -> (trunc X) >= 0
1855 // (X & C2) != 0 -> (trunc X) < 0
1856 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1857 const APInt *C2;
1858 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1859 int32_t ExactLogBase2 = C2->exactLogBase2();
1860 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1861 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1862 if (And->getType()->isVectorTy())
1863 NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
1864 Value *Trunc = Builder.CreateTrunc(X, NTy);
1865 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1866 : CmpInst::ICMP_SLT;
1867 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1871 return nullptr;
1874 /// Fold icmp (or X, Y), C.
1875 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
1876 const APInt &C) {
1877 ICmpInst::Predicate Pred = Cmp.getPredicate();
1878 if (C.isOneValue()) {
1879 // icmp slt signum(V) 1 --> icmp slt V, 1
1880 Value *V = nullptr;
1881 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1882 return new ICmpInst(ICmpInst::ICMP_SLT, V,
1883 ConstantInt::get(V->getType(), 1));
1886 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1887 if (Cmp.isEquality() && Cmp.getOperand(1) == OrOp1) {
1888 // X | C == C --> X <=u C
1889 // X | C != C --> X >u C
1890 // iff C+1 is a power of 2 (C is a bitmask of the low bits)
1891 if ((C + 1).isPowerOf2()) {
1892 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1893 return new ICmpInst(Pred, OrOp0, OrOp1);
1895 // More general: are all bits outside of a mask constant set or not set?
1896 // X | C == C --> (X & ~C) == 0
1897 // X | C != C --> (X & ~C) != 0
1898 if (Or->hasOneUse()) {
1899 Value *A = Builder.CreateAnd(OrOp0, ~C);
1900 return new ICmpInst(Pred, A, ConstantInt::getNullValue(OrOp0->getType()));
1904 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1905 return nullptr;
1907 Value *P, *Q;
1908 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1909 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1910 // -> and (icmp eq P, null), (icmp eq Q, null).
1911 Value *CmpP =
1912 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1913 Value *CmpQ =
1914 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1915 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1916 return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1919 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1920 // a shorter form that has more potential to be folded even further.
1921 Value *X1, *X2, *X3, *X4;
1922 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1923 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1924 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1925 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1926 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1927 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1928 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1929 return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1932 return nullptr;
1935 /// Fold icmp (mul X, Y), C.
1936 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
1937 BinaryOperator *Mul,
1938 const APInt &C) {
1939 const APInt *MulC;
1940 if (!match(Mul->getOperand(1), m_APInt(MulC)))
1941 return nullptr;
1943 // If this is a test of the sign bit and the multiply is sign-preserving with
1944 // a constant operand, use the multiply LHS operand instead.
1945 ICmpInst::Predicate Pred = Cmp.getPredicate();
1946 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1947 if (MulC->isNegative())
1948 Pred = ICmpInst::getSwappedPredicate(Pred);
1949 return new ICmpInst(Pred, Mul->getOperand(0),
1950 Constant::getNullValue(Mul->getType()));
1953 return nullptr;
1956 /// Fold icmp (shl 1, Y), C.
1957 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1958 const APInt &C) {
1959 Value *Y;
1960 if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1961 return nullptr;
1963 Type *ShiftType = Shl->getType();
1964 unsigned TypeBits = C.getBitWidth();
1965 bool CIsPowerOf2 = C.isPowerOf2();
1966 ICmpInst::Predicate Pred = Cmp.getPredicate();
1967 if (Cmp.isUnsigned()) {
1968 // (1 << Y) pred C -> Y pred Log2(C)
1969 if (!CIsPowerOf2) {
1970 // (1 << Y) < 30 -> Y <= 4
1971 // (1 << Y) <= 30 -> Y <= 4
1972 // (1 << Y) >= 30 -> Y > 4
1973 // (1 << Y) > 30 -> Y > 4
1974 if (Pred == ICmpInst::ICMP_ULT)
1975 Pred = ICmpInst::ICMP_ULE;
1976 else if (Pred == ICmpInst::ICMP_UGE)
1977 Pred = ICmpInst::ICMP_UGT;
1980 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1981 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31
1982 unsigned CLog2 = C.logBase2();
1983 if (CLog2 == TypeBits - 1) {
1984 if (Pred == ICmpInst::ICMP_UGE)
1985 Pred = ICmpInst::ICMP_EQ;
1986 else if (Pred == ICmpInst::ICMP_ULT)
1987 Pred = ICmpInst::ICMP_NE;
1989 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
1990 } else if (Cmp.isSigned()) {
1991 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
1992 if (C.isAllOnesValue()) {
1993 // (1 << Y) <= -1 -> Y == 31
1994 if (Pred == ICmpInst::ICMP_SLE)
1995 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1997 // (1 << Y) > -1 -> Y != 31
1998 if (Pred == ICmpInst::ICMP_SGT)
1999 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2000 } else if (!C) {
2001 // (1 << Y) < 0 -> Y == 31
2002 // (1 << Y) <= 0 -> Y == 31
2003 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2004 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2006 // (1 << Y) >= 0 -> Y != 31
2007 // (1 << Y) > 0 -> Y != 31
2008 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2009 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2011 } else if (Cmp.isEquality() && CIsPowerOf2) {
2012 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2015 return nullptr;
2018 /// Fold icmp (shl X, Y), C.
2019 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
2020 BinaryOperator *Shl,
2021 const APInt &C) {
2022 const APInt *ShiftVal;
2023 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2024 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2026 const APInt *ShiftAmt;
2027 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2028 return foldICmpShlOne(Cmp, Shl, C);
2030 // Check that the shift amount is in range. If not, don't perform undefined
2031 // shifts. When the shift is visited, it will be simplified.
2032 unsigned TypeBits = C.getBitWidth();
2033 if (ShiftAmt->uge(TypeBits))
2034 return nullptr;
2036 ICmpInst::Predicate Pred = Cmp.getPredicate();
2037 Value *X = Shl->getOperand(0);
2038 Type *ShType = Shl->getType();
2040 // NSW guarantees that we are only shifting out sign bits from the high bits,
2041 // so we can ASHR the compare constant without needing a mask and eliminate
2042 // the shift.
2043 if (Shl->hasNoSignedWrap()) {
2044 if (Pred == ICmpInst::ICMP_SGT) {
2045 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2046 APInt ShiftedC = C.ashr(*ShiftAmt);
2047 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2049 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2050 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2051 APInt ShiftedC = C.ashr(*ShiftAmt);
2052 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2054 if (Pred == ICmpInst::ICMP_SLT) {
2055 // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2056 // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2057 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2058 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2059 assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2060 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2061 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2063 // If this is a signed comparison to 0 and the shift is sign preserving,
2064 // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2065 // do that if we're sure to not continue on in this function.
2066 if (isSignTest(Pred, C))
2067 return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2070 // NUW guarantees that we are only shifting out zero bits from the high bits,
2071 // so we can LSHR the compare constant without needing a mask and eliminate
2072 // the shift.
2073 if (Shl->hasNoUnsignedWrap()) {
2074 if (Pred == ICmpInst::ICMP_UGT) {
2075 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2076 APInt ShiftedC = C.lshr(*ShiftAmt);
2077 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2079 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2080 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2081 APInt ShiftedC = C.lshr(*ShiftAmt);
2082 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2084 if (Pred == ICmpInst::ICMP_ULT) {
2085 // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2086 // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2087 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2088 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2089 assert(C.ugt(0) && "ult 0 should have been eliminated");
2090 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2091 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2095 if (Cmp.isEquality() && Shl->hasOneUse()) {
2096 // Strength-reduce the shift into an 'and'.
2097 Constant *Mask = ConstantInt::get(
2098 ShType,
2099 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2100 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2101 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2102 return new ICmpInst(Pred, And, LShrC);
2105 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2106 bool TrueIfSigned = false;
2107 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2108 // (X << 31) <s 0 --> (X & 1) != 0
2109 Constant *Mask = ConstantInt::get(
2110 ShType,
2111 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2112 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2113 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2114 And, Constant::getNullValue(ShType));
2117 // Simplify 'shl' inequality test into 'and' equality test.
2118 if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2119 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2120 if ((C + 1).isPowerOf2() &&
2121 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2122 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2123 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2124 : ICmpInst::ICMP_NE,
2125 And, Constant::getNullValue(ShType));
2127 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2128 if (C.isPowerOf2() &&
2129 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2130 Value *And =
2131 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2132 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2133 : ICmpInst::ICMP_NE,
2134 And, Constant::getNullValue(ShType));
2138 // Transform (icmp pred iM (shl iM %v, N), C)
2139 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2140 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2141 // This enables us to get rid of the shift in favor of a trunc that may be
2142 // free on the target. It has the additional benefit of comparing to a
2143 // smaller constant that may be more target-friendly.
2144 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2145 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2146 DL.isLegalInteger(TypeBits - Amt)) {
2147 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2148 if (ShType->isVectorTy())
2149 TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements());
2150 Constant *NewC =
2151 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2152 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2155 return nullptr;
2158 /// Fold icmp ({al}shr X, Y), C.
2159 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
2160 BinaryOperator *Shr,
2161 const APInt &C) {
2162 // An exact shr only shifts out zero bits, so:
2163 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2164 Value *X = Shr->getOperand(0);
2165 CmpInst::Predicate Pred = Cmp.getPredicate();
2166 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2167 C.isNullValue())
2168 return new ICmpInst(Pred, X, Cmp.getOperand(1));
2170 const APInt *ShiftVal;
2171 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2172 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2174 const APInt *ShiftAmt;
2175 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2176 return nullptr;
2178 // Check that the shift amount is in range. If not, don't perform undefined
2179 // shifts. When the shift is visited it will be simplified.
2180 unsigned TypeBits = C.getBitWidth();
2181 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2182 if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2183 return nullptr;
2185 bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2186 bool IsExact = Shr->isExact();
2187 Type *ShrTy = Shr->getType();
2188 // TODO: If we could guarantee that InstSimplify would handle all of the
2189 // constant-value-based preconditions in the folds below, then we could assert
2190 // those conditions rather than checking them. This is difficult because of
2191 // undef/poison (PR34838).
2192 if (IsAShr) {
2193 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2194 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2195 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2196 APInt ShiftedC = C.shl(ShAmtVal);
2197 if (ShiftedC.ashr(ShAmtVal) == C)
2198 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2200 if (Pred == CmpInst::ICMP_SGT) {
2201 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2202 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2203 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2204 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2205 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2207 } else {
2208 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2209 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2210 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2211 APInt ShiftedC = C.shl(ShAmtVal);
2212 if (ShiftedC.lshr(ShAmtVal) == C)
2213 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2215 if (Pred == CmpInst::ICMP_UGT) {
2216 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2217 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2218 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2219 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2223 if (!Cmp.isEquality())
2224 return nullptr;
2226 // Handle equality comparisons of shift-by-constant.
2228 // If the comparison constant changes with the shift, the comparison cannot
2229 // succeed (bits of the comparison constant cannot match the shifted value).
2230 // This should be known by InstSimplify and already be folded to true/false.
2231 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2232 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2233 "Expected icmp+shr simplify did not occur.");
2235 // If the bits shifted out are known zero, compare the unshifted value:
2236 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
2237 if (Shr->isExact())
2238 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2240 if (Shr->hasOneUse()) {
2241 // Canonicalize the shift into an 'and':
2242 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2243 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2244 Constant *Mask = ConstantInt::get(ShrTy, Val);
2245 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2246 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2249 return nullptr;
2252 Instruction *InstCombiner::foldICmpSRemConstant(ICmpInst &Cmp,
2253 BinaryOperator *SRem,
2254 const APInt &C) {
2255 // Match an 'is positive' or 'is negative' comparison of remainder by a
2256 // constant power-of-2 value:
2257 // (X % pow2C) sgt/slt 0
2258 const ICmpInst::Predicate Pred = Cmp.getPredicate();
2259 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2260 return nullptr;
2262 // TODO: The one-use check is standard because we do not typically want to
2263 // create longer instruction sequences, but this might be a special-case
2264 // because srem is not good for analysis or codegen.
2265 if (!SRem->hasOneUse())
2266 return nullptr;
2268 const APInt *DivisorC;
2269 if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2270 return nullptr;
2272 // Mask off the sign bit and the modulo bits (low-bits).
2273 Type *Ty = SRem->getType();
2274 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2275 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2276 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2278 // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2279 // bit is set. Example:
2280 // (i8 X % 32) s> 0 --> (X & 159) s> 0
2281 if (Pred == ICmpInst::ICMP_SGT)
2282 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2284 // For 'is negative?' check that the sign-bit is set and at least 1 masked
2285 // bit is set. Example:
2286 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2287 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2290 /// Fold icmp (udiv X, Y), C.
2291 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
2292 BinaryOperator *UDiv,
2293 const APInt &C) {
2294 const APInt *C2;
2295 if (!match(UDiv->getOperand(0), m_APInt(C2)))
2296 return nullptr;
2298 assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2300 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2301 Value *Y = UDiv->getOperand(1);
2302 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2303 assert(!C.isMaxValue() &&
2304 "icmp ugt X, UINT_MAX should have been simplified already.");
2305 return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2306 ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2309 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2310 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2311 assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2312 return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2313 ConstantInt::get(Y->getType(), C2->udiv(C)));
2316 return nullptr;
2319 /// Fold icmp ({su}div X, Y), C.
2320 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
2321 BinaryOperator *Div,
2322 const APInt &C) {
2323 // Fold: icmp pred ([us]div X, C2), C -> range test
2324 // Fold this div into the comparison, producing a range check.
2325 // Determine, based on the divide type, what the range is being
2326 // checked. If there is an overflow on the low or high side, remember
2327 // it, otherwise compute the range [low, hi) bounding the new value.
2328 // See: InsertRangeTest above for the kinds of replacements possible.
2329 const APInt *C2;
2330 if (!match(Div->getOperand(1), m_APInt(C2)))
2331 return nullptr;
2333 // FIXME: If the operand types don't match the type of the divide
2334 // then don't attempt this transform. The code below doesn't have the
2335 // logic to deal with a signed divide and an unsigned compare (and
2336 // vice versa). This is because (x /s C2) <s C produces different
2337 // results than (x /s C2) <u C or (x /u C2) <s C or even
2338 // (x /u C2) <u C. Simply casting the operands and result won't
2339 // work. :( The if statement below tests that condition and bails
2340 // if it finds it.
2341 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2342 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2343 return nullptr;
2345 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2346 // INT_MIN will also fail if the divisor is 1. Although folds of all these
2347 // division-by-constant cases should be present, we can not assert that they
2348 // have happened before we reach this icmp instruction.
2349 if (C2->isNullValue() || C2->isOneValue() ||
2350 (DivIsSigned && C2->isAllOnesValue()))
2351 return nullptr;
2353 // Compute Prod = C * C2. We are essentially solving an equation of
2354 // form X / C2 = C. We solve for X by multiplying C2 and C.
2355 // By solving for X, we can turn this into a range check instead of computing
2356 // a divide.
2357 APInt Prod = C * *C2;
2359 // Determine if the product overflows by seeing if the product is not equal to
2360 // the divide. Make sure we do the same kind of divide as in the LHS
2361 // instruction that we're folding.
2362 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2364 ICmpInst::Predicate Pred = Cmp.getPredicate();
2366 // If the division is known to be exact, then there is no remainder from the
2367 // divide, so the covered range size is unit, otherwise it is the divisor.
2368 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2370 // Figure out the interval that is being checked. For example, a comparison
2371 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2372 // Compute this interval based on the constants involved and the signedness of
2373 // the compare/divide. This computes a half-open interval, keeping track of
2374 // whether either value in the interval overflows. After analysis each
2375 // overflow variable is set to 0 if it's corresponding bound variable is valid
2376 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2377 int LoOverflow = 0, HiOverflow = 0;
2378 APInt LoBound, HiBound;
2380 if (!DivIsSigned) { // udiv
2381 // e.g. X/5 op 3 --> [15, 20)
2382 LoBound = Prod;
2383 HiOverflow = LoOverflow = ProdOV;
2384 if (!HiOverflow) {
2385 // If this is not an exact divide, then many values in the range collapse
2386 // to the same result value.
2387 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2389 } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2390 if (C.isNullValue()) { // (X / pos) op 0
2391 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
2392 LoBound = -(RangeSize - 1);
2393 HiBound = RangeSize;
2394 } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2395 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
2396 HiOverflow = LoOverflow = ProdOV;
2397 if (!HiOverflow)
2398 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2399 } else { // (X / pos) op neg
2400 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
2401 HiBound = Prod + 1;
2402 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2403 if (!LoOverflow) {
2404 APInt DivNeg = -RangeSize;
2405 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2408 } else if (C2->isNegative()) { // Divisor is < 0.
2409 if (Div->isExact())
2410 RangeSize.negate();
2411 if (C.isNullValue()) { // (X / neg) op 0
2412 // e.g. X/-5 op 0 --> [-4, 5)
2413 LoBound = RangeSize + 1;
2414 HiBound = -RangeSize;
2415 if (HiBound == *C2) { // -INTMIN = INTMIN
2416 HiOverflow = 1; // [INTMIN+1, overflow)
2417 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN
2419 } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2420 // e.g. X/-5 op 3 --> [-19, -14)
2421 HiBound = Prod + 1;
2422 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2423 if (!LoOverflow)
2424 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2425 } else { // (X / neg) op neg
2426 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
2427 LoOverflow = HiOverflow = ProdOV;
2428 if (!HiOverflow)
2429 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2432 // Dividing by a negative swaps the condition. LT <-> GT
2433 Pred = ICmpInst::getSwappedPredicate(Pred);
2436 Value *X = Div->getOperand(0);
2437 switch (Pred) {
2438 default: llvm_unreachable("Unhandled icmp opcode!");
2439 case ICmpInst::ICMP_EQ:
2440 if (LoOverflow && HiOverflow)
2441 return replaceInstUsesWith(Cmp, Builder.getFalse());
2442 if (HiOverflow)
2443 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2444 ICmpInst::ICMP_UGE, X,
2445 ConstantInt::get(Div->getType(), LoBound));
2446 if (LoOverflow)
2447 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2448 ICmpInst::ICMP_ULT, X,
2449 ConstantInt::get(Div->getType(), HiBound));
2450 return replaceInstUsesWith(
2451 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2452 case ICmpInst::ICMP_NE:
2453 if (LoOverflow && HiOverflow)
2454 return replaceInstUsesWith(Cmp, Builder.getTrue());
2455 if (HiOverflow)
2456 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2457 ICmpInst::ICMP_ULT, X,
2458 ConstantInt::get(Div->getType(), LoBound));
2459 if (LoOverflow)
2460 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2461 ICmpInst::ICMP_UGE, X,
2462 ConstantInt::get(Div->getType(), HiBound));
2463 return replaceInstUsesWith(Cmp,
2464 insertRangeTest(X, LoBound, HiBound,
2465 DivIsSigned, false));
2466 case ICmpInst::ICMP_ULT:
2467 case ICmpInst::ICMP_SLT:
2468 if (LoOverflow == +1) // Low bound is greater than input range.
2469 return replaceInstUsesWith(Cmp, Builder.getTrue());
2470 if (LoOverflow == -1) // Low bound is less than input range.
2471 return replaceInstUsesWith(Cmp, Builder.getFalse());
2472 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2473 case ICmpInst::ICMP_UGT:
2474 case ICmpInst::ICMP_SGT:
2475 if (HiOverflow == +1) // High bound greater than input range.
2476 return replaceInstUsesWith(Cmp, Builder.getFalse());
2477 if (HiOverflow == -1) // High bound less than input range.
2478 return replaceInstUsesWith(Cmp, Builder.getTrue());
2479 if (Pred == ICmpInst::ICMP_UGT)
2480 return new ICmpInst(ICmpInst::ICMP_UGE, X,
2481 ConstantInt::get(Div->getType(), HiBound));
2482 return new ICmpInst(ICmpInst::ICMP_SGE, X,
2483 ConstantInt::get(Div->getType(), HiBound));
2486 return nullptr;
2489 /// Fold icmp (sub X, Y), C.
2490 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
2491 BinaryOperator *Sub,
2492 const APInt &C) {
2493 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2494 ICmpInst::Predicate Pred = Cmp.getPredicate();
2495 const APInt *C2;
2496 APInt SubResult;
2498 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2499 if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2500 return new ICmpInst(Cmp.getPredicate(), Y,
2501 ConstantInt::get(Y->getType(), 0));
2503 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2504 if (match(X, m_APInt(C2)) &&
2505 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2506 (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2507 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2508 return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2509 ConstantInt::get(Y->getType(), SubResult));
2511 // The following transforms are only worth it if the only user of the subtract
2512 // is the icmp.
2513 if (!Sub->hasOneUse())
2514 return nullptr;
2516 if (Sub->hasNoSignedWrap()) {
2517 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2518 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2519 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2521 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2522 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2523 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2525 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2526 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2527 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2529 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2530 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2531 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2534 if (!match(X, m_APInt(C2)))
2535 return nullptr;
2537 // C2 - Y <u C -> (Y | (C - 1)) == C2
2538 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2539 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2540 (*C2 & (C - 1)) == (C - 1))
2541 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2543 // C2 - Y >u C -> (Y | C) != C2
2544 // iff C2 & C == C and C + 1 is a power of 2
2545 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2546 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2548 return nullptr;
2551 /// Fold icmp (add X, Y), C.
2552 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
2553 BinaryOperator *Add,
2554 const APInt &C) {
2555 Value *Y = Add->getOperand(1);
2556 const APInt *C2;
2557 if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2558 return nullptr;
2560 // Fold icmp pred (add X, C2), C.
2561 Value *X = Add->getOperand(0);
2562 Type *Ty = Add->getType();
2563 CmpInst::Predicate Pred = Cmp.getPredicate();
2565 if (!Add->hasOneUse())
2566 return nullptr;
2568 // If the add does not wrap, we can always adjust the compare by subtracting
2569 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2570 // are canonicalized to SGT/SLT/UGT/ULT.
2571 if ((Add->hasNoSignedWrap() &&
2572 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2573 (Add->hasNoUnsignedWrap() &&
2574 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2575 bool Overflow;
2576 APInt NewC =
2577 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2578 // If there is overflow, the result must be true or false.
2579 // TODO: Can we assert there is no overflow because InstSimplify always
2580 // handles those cases?
2581 if (!Overflow)
2582 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2583 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2586 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2587 const APInt &Upper = CR.getUpper();
2588 const APInt &Lower = CR.getLower();
2589 if (Cmp.isSigned()) {
2590 if (Lower.isSignMask())
2591 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2592 if (Upper.isSignMask())
2593 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2594 } else {
2595 if (Lower.isMinValue())
2596 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2597 if (Upper.isMinValue())
2598 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2601 // X+C <u C2 -> (X & -C2) == C
2602 // iff C & (C2-1) == 0
2603 // C2 is a power of 2
2604 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2605 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2606 ConstantExpr::getNeg(cast<Constant>(Y)));
2608 // X+C >u C2 -> (X & ~C2) != C
2609 // iff C & C2 == 0
2610 // C2+1 is a power of 2
2611 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2612 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2613 ConstantExpr::getNeg(cast<Constant>(Y)));
2615 return nullptr;
2618 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2619 Value *&RHS, ConstantInt *&Less,
2620 ConstantInt *&Equal,
2621 ConstantInt *&Greater) {
2622 // TODO: Generalize this to work with other comparison idioms or ensure
2623 // they get canonicalized into this form.
2625 // select i1 (a == b),
2626 // i32 Equal,
2627 // i32 (select i1 (a < b), i32 Less, i32 Greater)
2628 // where Equal, Less and Greater are placeholders for any three constants.
2629 ICmpInst::Predicate PredA;
2630 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2631 !ICmpInst::isEquality(PredA))
2632 return false;
2633 Value *EqualVal = SI->getTrueValue();
2634 Value *UnequalVal = SI->getFalseValue();
2635 // We still can get non-canonical predicate here, so canonicalize.
2636 if (PredA == ICmpInst::ICMP_NE)
2637 std::swap(EqualVal, UnequalVal);
2638 if (!match(EqualVal, m_ConstantInt(Equal)))
2639 return false;
2640 ICmpInst::Predicate PredB;
2641 Value *LHS2, *RHS2;
2642 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2643 m_ConstantInt(Less), m_ConstantInt(Greater))))
2644 return false;
2645 // We can get predicate mismatch here, so canonicalize if possible:
2646 // First, ensure that 'LHS' match.
2647 if (LHS2 != LHS) {
2648 // x sgt y <--> y slt x
2649 std::swap(LHS2, RHS2);
2650 PredB = ICmpInst::getSwappedPredicate(PredB);
2652 if (LHS2 != LHS)
2653 return false;
2654 // We also need to canonicalize 'RHS'.
2655 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2656 // x sgt C-1 <--> x sge C <--> not(x slt C)
2657 auto FlippedStrictness =
2658 getFlippedStrictnessPredicateAndConstant(PredB, cast<Constant>(RHS2));
2659 if (!FlippedStrictness)
2660 return false;
2661 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
2662 RHS2 = FlippedStrictness->second;
2663 // And kind-of perform the result swap.
2664 std::swap(Less, Greater);
2665 PredB = ICmpInst::ICMP_SLT;
2667 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2670 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp,
2671 SelectInst *Select,
2672 ConstantInt *C) {
2674 assert(C && "Cmp RHS should be a constant int!");
2675 // If we're testing a constant value against the result of a three way
2676 // comparison, the result can be expressed directly in terms of the
2677 // original values being compared. Note: We could possibly be more
2678 // aggressive here and remove the hasOneUse test. The original select is
2679 // really likely to simplify or sink when we remove a test of the result.
2680 Value *OrigLHS, *OrigRHS;
2681 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2682 if (Cmp.hasOneUse() &&
2683 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2684 C3GreaterThan)) {
2685 assert(C1LessThan && C2Equal && C3GreaterThan);
2687 bool TrueWhenLessThan =
2688 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2689 ->isAllOnesValue();
2690 bool TrueWhenEqual =
2691 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2692 ->isAllOnesValue();
2693 bool TrueWhenGreaterThan =
2694 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2695 ->isAllOnesValue();
2697 // This generates the new instruction that will replace the original Cmp
2698 // Instruction. Instead of enumerating the various combinations when
2699 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2700 // false, we rely on chaining of ORs and future passes of InstCombine to
2701 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2703 // When none of the three constants satisfy the predicate for the RHS (C),
2704 // the entire original Cmp can be simplified to a false.
2705 Value *Cond = Builder.getFalse();
2706 if (TrueWhenLessThan)
2707 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2708 OrigLHS, OrigRHS));
2709 if (TrueWhenEqual)
2710 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2711 OrigLHS, OrigRHS));
2712 if (TrueWhenGreaterThan)
2713 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2714 OrigLHS, OrigRHS));
2716 return replaceInstUsesWith(Cmp, Cond);
2718 return nullptr;
2721 static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2722 InstCombiner::BuilderTy &Builder) {
2723 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2724 if (!Bitcast)
2725 return nullptr;
2727 ICmpInst::Predicate Pred = Cmp.getPredicate();
2728 Value *Op1 = Cmp.getOperand(1);
2729 Value *BCSrcOp = Bitcast->getOperand(0);
2731 // Make sure the bitcast doesn't change the number of vector elements.
2732 if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2733 Bitcast->getDestTy()->getScalarSizeInBits()) {
2734 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2735 Value *X;
2736 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2737 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0
2738 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0
2739 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2740 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2741 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2742 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2743 match(Op1, m_Zero()))
2744 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2746 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2747 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2748 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2750 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2751 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2752 return new ICmpInst(Pred, X,
2753 ConstantInt::getAllOnesValue(X->getType()));
2756 // Zero-equality checks are preserved through unsigned floating-point casts:
2757 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2758 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2759 if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2760 if (Cmp.isEquality() && match(Op1, m_Zero()))
2761 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2764 // Test to see if the operands of the icmp are casted versions of other
2765 // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2766 if (Bitcast->getType()->isPointerTy() &&
2767 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2768 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2769 // so eliminate it as well.
2770 if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2771 Op1 = BC2->getOperand(0);
2773 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2774 return new ICmpInst(Pred, BCSrcOp, Op1);
2777 // Folding: icmp <pred> iN X, C
2778 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2779 // and C is a splat of a K-bit pattern
2780 // and SC is a constant vector = <C', C', C', ..., C'>
2781 // Into:
2782 // %E = extractelement <M x iK> %vec, i32 C'
2783 // icmp <pred> iK %E, trunc(C)
2784 const APInt *C;
2785 if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2786 !Bitcast->getType()->isIntegerTy() ||
2787 !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2788 return nullptr;
2790 Value *Vec;
2791 Constant *Mask;
2792 if (match(BCSrcOp,
2793 m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) {
2794 // Check whether every element of Mask is the same constant
2795 if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) {
2796 auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2797 auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2798 if (C->isSplat(EltTy->getBitWidth())) {
2799 // Fold the icmp based on the value of C
2800 // If C is M copies of an iK sized bit pattern,
2801 // then:
2802 // => %E = extractelement <N x iK> %vec, i32 Elem
2803 // icmp <pred> iK %SplatVal, <pattern>
2804 Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2805 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2806 return new ICmpInst(Pred, Extract, NewC);
2810 return nullptr;
2813 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2814 /// where X is some kind of instruction.
2815 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
2816 const APInt *C;
2817 if (!match(Cmp.getOperand(1), m_APInt(C)))
2818 return nullptr;
2820 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2821 switch (BO->getOpcode()) {
2822 case Instruction::Xor:
2823 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2824 return I;
2825 break;
2826 case Instruction::And:
2827 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2828 return I;
2829 break;
2830 case Instruction::Or:
2831 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2832 return I;
2833 break;
2834 case Instruction::Mul:
2835 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2836 return I;
2837 break;
2838 case Instruction::Shl:
2839 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2840 return I;
2841 break;
2842 case Instruction::LShr:
2843 case Instruction::AShr:
2844 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2845 return I;
2846 break;
2847 case Instruction::SRem:
2848 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
2849 return I;
2850 break;
2851 case Instruction::UDiv:
2852 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2853 return I;
2854 LLVM_FALLTHROUGH;
2855 case Instruction::SDiv:
2856 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2857 return I;
2858 break;
2859 case Instruction::Sub:
2860 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2861 return I;
2862 break;
2863 case Instruction::Add:
2864 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2865 return I;
2866 break;
2867 default:
2868 break;
2870 // TODO: These folds could be refactored to be part of the above calls.
2871 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2872 return I;
2875 // Match against CmpInst LHS being instructions other than binary operators.
2877 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2878 // For now, we only support constant integers while folding the
2879 // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2880 // similar to the cases handled by binary ops above.
2881 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2882 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2883 return I;
2886 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2887 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2888 return I;
2891 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2892 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2893 return I;
2895 return nullptr;
2898 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2899 /// icmp eq/ne BO, C.
2900 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
2901 BinaryOperator *BO,
2902 const APInt &C) {
2903 // TODO: Some of these folds could work with arbitrary constants, but this
2904 // function is limited to scalar and vector splat constants.
2905 if (!Cmp.isEquality())
2906 return nullptr;
2908 ICmpInst::Predicate Pred = Cmp.getPredicate();
2909 bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2910 Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2911 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2913 switch (BO->getOpcode()) {
2914 case Instruction::SRem:
2915 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2916 if (C.isNullValue() && BO->hasOneUse()) {
2917 const APInt *BOC;
2918 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2919 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
2920 return new ICmpInst(Pred, NewRem,
2921 Constant::getNullValue(BO->getType()));
2924 break;
2925 case Instruction::Add: {
2926 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2927 const APInt *BOC;
2928 if (match(BOp1, m_APInt(BOC))) {
2929 if (BO->hasOneUse()) {
2930 Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1));
2931 return new ICmpInst(Pred, BOp0, SubC);
2933 } else if (C.isNullValue()) {
2934 // Replace ((add A, B) != 0) with (A != -B) if A or B is
2935 // efficiently invertible, or if the add has just this one use.
2936 if (Value *NegVal = dyn_castNegVal(BOp1))
2937 return new ICmpInst(Pred, BOp0, NegVal);
2938 if (Value *NegVal = dyn_castNegVal(BOp0))
2939 return new ICmpInst(Pred, NegVal, BOp1);
2940 if (BO->hasOneUse()) {
2941 Value *Neg = Builder.CreateNeg(BOp1);
2942 Neg->takeName(BO);
2943 return new ICmpInst(Pred, BOp0, Neg);
2946 break;
2948 case Instruction::Xor:
2949 if (BO->hasOneUse()) {
2950 if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2951 // For the xor case, we can xor two constants together, eliminating
2952 // the explicit xor.
2953 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
2954 } else if (C.isNullValue()) {
2955 // Replace ((xor A, B) != 0) with (A != B)
2956 return new ICmpInst(Pred, BOp0, BOp1);
2959 break;
2960 case Instruction::Sub:
2961 if (BO->hasOneUse()) {
2962 const APInt *BOC;
2963 if (match(BOp0, m_APInt(BOC))) {
2964 // Replace ((sub BOC, B) != C) with (B != BOC-C).
2965 Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS);
2966 return new ICmpInst(Pred, BOp1, SubC);
2967 } else if (C.isNullValue()) {
2968 // Replace ((sub A, B) != 0) with (A != B).
2969 return new ICmpInst(Pred, BOp0, BOp1);
2972 break;
2973 case Instruction::Or: {
2974 const APInt *BOC;
2975 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
2976 // Comparing if all bits outside of a constant mask are set?
2977 // Replace (X | C) == -1 with (X & ~C) == ~C.
2978 // This removes the -1 constant.
2979 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
2980 Value *And = Builder.CreateAnd(BOp0, NotBOC);
2981 return new ICmpInst(Pred, And, NotBOC);
2983 break;
2985 case Instruction::And: {
2986 const APInt *BOC;
2987 if (match(BOp1, m_APInt(BOC))) {
2988 // If we have ((X & C) == C), turn it into ((X & C) != 0).
2989 if (C == *BOC && C.isPowerOf2())
2990 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
2991 BO, Constant::getNullValue(RHS->getType()));
2993 break;
2995 case Instruction::Mul:
2996 if (C.isNullValue() && BO->hasNoSignedWrap()) {
2997 const APInt *BOC;
2998 if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) {
2999 // The trivial case (mul X, 0) is handled by InstSimplify.
3000 // General case : (mul X, C) != 0 iff X != 0
3001 // (mul X, C) == 0 iff X == 0
3002 return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
3005 break;
3006 case Instruction::UDiv:
3007 if (C.isNullValue()) {
3008 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3009 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3010 return new ICmpInst(NewPred, BOp1, BOp0);
3012 break;
3013 default:
3014 break;
3016 return nullptr;
3019 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3020 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp,
3021 IntrinsicInst *II,
3022 const APInt &C) {
3023 Type *Ty = II->getType();
3024 unsigned BitWidth = C.getBitWidth();
3025 switch (II->getIntrinsicID()) {
3026 case Intrinsic::bswap:
3027 Worklist.Add(II);
3028 Cmp.setOperand(0, II->getArgOperand(0));
3029 Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap()));
3030 return &Cmp;
3032 case Intrinsic::ctlz:
3033 case Intrinsic::cttz: {
3034 // ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
3035 if (C == BitWidth) {
3036 Worklist.Add(II);
3037 Cmp.setOperand(0, II->getArgOperand(0));
3038 Cmp.setOperand(1, ConstantInt::getNullValue(Ty));
3039 return &Cmp;
3042 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3043 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3044 // Limit to one use to ensure we don't increase instruction count.
3045 unsigned Num = C.getLimitedValue(BitWidth);
3046 if (Num != BitWidth && II->hasOneUse()) {
3047 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3048 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3049 : APInt::getHighBitsSet(BitWidth, Num + 1);
3050 APInt Mask2 = IsTrailing
3051 ? APInt::getOneBitSet(BitWidth, Num)
3052 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3053 Cmp.setOperand(0, Builder.CreateAnd(II->getArgOperand(0), Mask1));
3054 Cmp.setOperand(1, ConstantInt::get(Ty, Mask2));
3055 Worklist.Add(II);
3056 return &Cmp;
3058 break;
3061 case Intrinsic::ctpop: {
3062 // popcount(A) == 0 -> A == 0 and likewise for !=
3063 // popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
3064 bool IsZero = C.isNullValue();
3065 if (IsZero || C == BitWidth) {
3066 Worklist.Add(II);
3067 Cmp.setOperand(0, II->getArgOperand(0));
3068 auto *NewOp =
3069 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty);
3070 Cmp.setOperand(1, NewOp);
3071 return &Cmp;
3073 break;
3075 default:
3076 break;
3079 return nullptr;
3082 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3083 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3084 IntrinsicInst *II,
3085 const APInt &C) {
3086 if (Cmp.isEquality())
3087 return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3089 Type *Ty = II->getType();
3090 unsigned BitWidth = C.getBitWidth();
3091 switch (II->getIntrinsicID()) {
3092 case Intrinsic::ctlz: {
3093 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3094 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3095 unsigned Num = C.getLimitedValue();
3096 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3097 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3098 II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3101 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3102 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3103 C.uge(1) && C.ule(BitWidth)) {
3104 unsigned Num = C.getLimitedValue();
3105 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3106 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3107 II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3109 break;
3111 case Intrinsic::cttz: {
3112 // Limit to one use to ensure we don't increase instruction count.
3113 if (!II->hasOneUse())
3114 return nullptr;
3116 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3117 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3118 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3119 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3120 Builder.CreateAnd(II->getArgOperand(0), Mask),
3121 ConstantInt::getNullValue(Ty));
3124 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3125 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3126 C.uge(1) && C.ule(BitWidth)) {
3127 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3128 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3129 Builder.CreateAnd(II->getArgOperand(0), Mask),
3130 ConstantInt::getNullValue(Ty));
3132 break;
3134 default:
3135 break;
3138 return nullptr;
3141 /// Handle icmp with constant (but not simple integer constant) RHS.
3142 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3143 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3144 Constant *RHSC = dyn_cast<Constant>(Op1);
3145 Instruction *LHSI = dyn_cast<Instruction>(Op0);
3146 if (!RHSC || !LHSI)
3147 return nullptr;
3149 switch (LHSI->getOpcode()) {
3150 case Instruction::GetElementPtr:
3151 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3152 if (RHSC->isNullValue() &&
3153 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3154 return new ICmpInst(
3155 I.getPredicate(), LHSI->getOperand(0),
3156 Constant::getNullValue(LHSI->getOperand(0)->getType()));
3157 break;
3158 case Instruction::PHI:
3159 // Only fold icmp into the PHI if the phi and icmp are in the same
3160 // block. If in the same block, we're encouraging jump threading. If
3161 // not, we are just pessimizing the code by making an i1 phi.
3162 if (LHSI->getParent() == I.getParent())
3163 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3164 return NV;
3165 break;
3166 case Instruction::Select: {
3167 // If either operand of the select is a constant, we can fold the
3168 // comparison into the select arms, which will cause one to be
3169 // constant folded and the select turned into a bitwise or.
3170 Value *Op1 = nullptr, *Op2 = nullptr;
3171 ConstantInt *CI = nullptr;
3172 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3173 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3174 CI = dyn_cast<ConstantInt>(Op1);
3176 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3177 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3178 CI = dyn_cast<ConstantInt>(Op2);
3181 // We only want to perform this transformation if it will not lead to
3182 // additional code. This is true if either both sides of the select
3183 // fold to a constant (in which case the icmp is replaced with a select
3184 // which will usually simplify) or this is the only user of the
3185 // select (in which case we are trading a select+icmp for a simpler
3186 // select+icmp) or all uses of the select can be replaced based on
3187 // dominance information ("Global cases").
3188 bool Transform = false;
3189 if (Op1 && Op2)
3190 Transform = true;
3191 else if (Op1 || Op2) {
3192 // Local case
3193 if (LHSI->hasOneUse())
3194 Transform = true;
3195 // Global cases
3196 else if (CI && !CI->isZero())
3197 // When Op1 is constant try replacing select with second operand.
3198 // Otherwise Op2 is constant and try replacing select with first
3199 // operand.
3200 Transform =
3201 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3203 if (Transform) {
3204 if (!Op1)
3205 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3206 I.getName());
3207 if (!Op2)
3208 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3209 I.getName());
3210 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3212 break;
3214 case Instruction::IntToPtr:
3215 // icmp pred inttoptr(X), null -> icmp pred X, 0
3216 if (RHSC->isNullValue() &&
3217 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3218 return new ICmpInst(
3219 I.getPredicate(), LHSI->getOperand(0),
3220 Constant::getNullValue(LHSI->getOperand(0)->getType()));
3221 break;
3223 case Instruction::Load:
3224 // Try to optimize things like "A[i] > 4" to index computations.
3225 if (GetElementPtrInst *GEP =
3226 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3227 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3228 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3229 !cast<LoadInst>(LHSI)->isVolatile())
3230 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3231 return Res;
3233 break;
3236 return nullptr;
3239 /// Some comparisons can be simplified.
3240 /// In this case, we are looking for comparisons that look like
3241 /// a check for a lossy truncation.
3242 /// Folds:
3243 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask
3244 /// Where Mask is some pattern that produces all-ones in low bits:
3245 /// (-1 >> y)
3246 /// ((-1 << y) >> y) <- non-canonical, has extra uses
3247 /// ~(-1 << y)
3248 /// ((1 << y) + (-1)) <- non-canonical, has extra uses
3249 /// The Mask can be a constant, too.
3250 /// For some predicates, the operands are commutative.
3251 /// For others, x can only be on a specific side.
3252 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3253 InstCombiner::BuilderTy &Builder) {
3254 ICmpInst::Predicate SrcPred;
3255 Value *X, *M, *Y;
3256 auto m_VariableMask = m_CombineOr(
3257 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3258 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3259 m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3260 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3261 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3262 if (!match(&I, m_c_ICmp(SrcPred,
3263 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3264 m_Deferred(X))))
3265 return nullptr;
3267 ICmpInst::Predicate DstPred;
3268 switch (SrcPred) {
3269 case ICmpInst::Predicate::ICMP_EQ:
3270 // x & (-1 >> y) == x -> x u<= (-1 >> y)
3271 DstPred = ICmpInst::Predicate::ICMP_ULE;
3272 break;
3273 case ICmpInst::Predicate::ICMP_NE:
3274 // x & (-1 >> y) != x -> x u> (-1 >> y)
3275 DstPred = ICmpInst::Predicate::ICMP_UGT;
3276 break;
3277 case ICmpInst::Predicate::ICMP_UGT:
3278 // x u> x & (-1 >> y) -> x u> (-1 >> y)
3279 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant");
3280 DstPred = ICmpInst::Predicate::ICMP_UGT;
3281 break;
3282 case ICmpInst::Predicate::ICMP_UGE:
3283 // x & (-1 >> y) u>= x -> x u<= (-1 >> y)
3284 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant");
3285 DstPred = ICmpInst::Predicate::ICMP_ULE;
3286 break;
3287 case ICmpInst::Predicate::ICMP_ULT:
3288 // x & (-1 >> y) u< x -> x u> (-1 >> y)
3289 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant");
3290 DstPred = ICmpInst::Predicate::ICMP_UGT;
3291 break;
3292 case ICmpInst::Predicate::ICMP_ULE:
3293 // x u<= x & (-1 >> y) -> x u<= (-1 >> y)
3294 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant");
3295 DstPred = ICmpInst::Predicate::ICMP_ULE;
3296 break;
3297 case ICmpInst::Predicate::ICMP_SGT:
3298 // x s> x & (-1 >> y) -> x s> (-1 >> y)
3299 if (X != I.getOperand(0)) // X must be on LHS of comparison!
3300 return nullptr; // Ignore the other case.
3301 if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3302 return nullptr;
3303 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3304 return nullptr;
3305 DstPred = ICmpInst::Predicate::ICMP_SGT;
3306 break;
3307 case ICmpInst::Predicate::ICMP_SGE:
3308 // x & (-1 >> y) s>= x -> x s<= (-1 >> y)
3309 if (X != I.getOperand(1)) // X must be on RHS of comparison!
3310 return nullptr; // Ignore the other case.
3311 if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3312 return nullptr;
3313 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3314 return nullptr;
3315 DstPred = ICmpInst::Predicate::ICMP_SLE;
3316 break;
3317 case ICmpInst::Predicate::ICMP_SLT:
3318 // x & (-1 >> y) s< x -> x s> (-1 >> y)
3319 if (X != I.getOperand(1)) // X must be on RHS of comparison!
3320 return nullptr; // Ignore the other case.
3321 if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3322 return nullptr;
3323 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3324 return nullptr;
3325 DstPred = ICmpInst::Predicate::ICMP_SGT;
3326 break;
3327 case ICmpInst::Predicate::ICMP_SLE:
3328 // x s<= x & (-1 >> y) -> x s<= (-1 >> y)
3329 if (X != I.getOperand(0)) // X must be on LHS of comparison!
3330 return nullptr; // Ignore the other case.
3331 if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3332 return nullptr;
3333 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3334 return nullptr;
3335 DstPred = ICmpInst::Predicate::ICMP_SLE;
3336 break;
3337 default:
3338 llvm_unreachable("All possible folds are handled.");
3341 return Builder.CreateICmp(DstPred, X, M);
3344 /// Some comparisons can be simplified.
3345 /// In this case, we are looking for comparisons that look like
3346 /// a check for a lossy signed truncation.
3347 /// Folds: (MaskedBits is a constant.)
3348 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3349 /// Into:
3350 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3351 /// Where KeptBits = bitwidth(%x) - MaskedBits
3352 static Value *
3353 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3354 InstCombiner::BuilderTy &Builder) {
3355 ICmpInst::Predicate SrcPred;
3356 Value *X;
3357 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3358 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3359 if (!match(&I, m_c_ICmp(SrcPred,
3360 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3361 m_APInt(C1))),
3362 m_Deferred(X))))
3363 return nullptr;
3365 // Potential handling of non-splats: for each element:
3366 // * if both are undef, replace with constant 0.
3367 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3368 // * if both are not undef, and are different, bailout.
3369 // * else, only one is undef, then pick the non-undef one.
3371 // The shift amount must be equal.
3372 if (*C0 != *C1)
3373 return nullptr;
3374 const APInt &MaskedBits = *C0;
3375 assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3377 ICmpInst::Predicate DstPred;
3378 switch (SrcPred) {
3379 case ICmpInst::Predicate::ICMP_EQ:
3380 // ((%x << MaskedBits) a>> MaskedBits) == %x
3381 // =>
3382 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3383 DstPred = ICmpInst::Predicate::ICMP_ULT;
3384 break;
3385 case ICmpInst::Predicate::ICMP_NE:
3386 // ((%x << MaskedBits) a>> MaskedBits) != %x
3387 // =>
3388 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3389 DstPred = ICmpInst::Predicate::ICMP_UGE;
3390 break;
3391 // FIXME: are more folds possible?
3392 default:
3393 return nullptr;
3396 auto *XType = X->getType();
3397 const unsigned XBitWidth = XType->getScalarSizeInBits();
3398 const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3399 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3401 // KeptBits = bitwidth(%x) - MaskedBits
3402 const APInt KeptBits = BitWidth - MaskedBits;
3403 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3404 // ICmpCst = (1 << KeptBits)
3405 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3406 assert(ICmpCst.isPowerOf2());
3407 // AddCst = (1 << (KeptBits-1))
3408 const APInt AddCst = ICmpCst.lshr(1);
3409 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3411 // T0 = add %x, AddCst
3412 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3413 // T1 = T0 DstPred ICmpCst
3414 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3416 return T1;
3419 // Given pattern:
3420 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3421 // we should move shifts to the same hand of 'and', i.e. rewrite as
3422 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
3423 // We are only interested in opposite logical shifts here.
3424 // One of the shifts can be truncated.
3425 // If we can, we want to end up creating 'lshr' shift.
3426 static Value *
3427 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3428 InstCombiner::BuilderTy &Builder) {
3429 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3430 !I.getOperand(0)->hasOneUse())
3431 return nullptr;
3433 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3435 // Look for an 'and' of two logical shifts, one of which may be truncated.
3436 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3437 Instruction *XShift, *MaybeTruncation, *YShift;
3438 if (!match(
3439 I.getOperand(0),
3440 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3441 m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3442 m_AnyLogicalShift, m_Instruction(YShift))),
3443 m_Instruction(MaybeTruncation)))))
3444 return nullptr;
3446 // We potentially looked past 'trunc', but only when matching YShift,
3447 // therefore YShift must have the widest type.
3448 Instruction *WidestShift = YShift;
3449 // Therefore XShift must have the shallowest type.
3450 // Or they both have identical types if there was no truncation.
3451 Instruction *NarrowestShift = XShift;
3453 Type *WidestTy = WidestShift->getType();
3454 assert(NarrowestShift->getType() == I.getOperand(0)->getType() &&
3455 "We did not look past any shifts while matching XShift though.");
3456 bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3458 // If YShift is a 'lshr', swap the shifts around.
3459 if (match(YShift, m_LShr(m_Value(), m_Value())))
3460 std::swap(XShift, YShift);
3462 // The shifts must be in opposite directions.
3463 auto XShiftOpcode = XShift->getOpcode();
3464 if (XShiftOpcode == YShift->getOpcode())
3465 return nullptr; // Do not care about same-direction shifts here.
3467 Value *X, *XShAmt, *Y, *YShAmt;
3468 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3469 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3471 // If one of the values being shifted is a constant, then we will end with
3472 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3473 // however, we will need to ensure that we won't increase instruction count.
3474 if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3475 // At least one of the hands of the 'and' should be one-use shift.
3476 if (!match(I.getOperand(0),
3477 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3478 return nullptr;
3479 if (HadTrunc) {
3480 // Due to the 'trunc', we will need to widen X. For that either the old
3481 // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3482 if (!MaybeTruncation->hasOneUse() &&
3483 !NarrowestShift->getOperand(1)->hasOneUse())
3484 return nullptr;
3488 // We have two shift amounts from two different shifts. The types of those
3489 // shift amounts may not match. If that's the case let's bailout now.
3490 if (XShAmt->getType() != YShAmt->getType())
3491 return nullptr;
3493 // Can we fold (XShAmt+YShAmt) ?
3494 auto *NewShAmt = dyn_cast_or_null<Constant>(
3495 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3496 /*isNUW=*/false, SQ.getWithInstruction(&I)));
3497 if (!NewShAmt)
3498 return nullptr;
3499 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3500 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3502 // Is the new shift amount smaller than the bit width?
3503 // FIXME: could also rely on ConstantRange.
3504 if (!match(NewShAmt,
3505 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3506 APInt(WidestBitWidth, WidestBitWidth))))
3507 return nullptr;
3509 // An extra legality check is needed if we had trunc-of-lshr.
3510 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3511 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3512 WidestShift]() {
3513 // It isn't obvious whether it's worth it to analyze non-constants here.
3514 // Also, let's basically give up on non-splat cases, pessimizing vectors.
3515 // If *any* of these preconditions matches we can perform the fold.
3516 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3517 ? NewShAmt->getSplatValue()
3518 : NewShAmt;
3519 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3520 if (NewShAmtSplat &&
3521 (NewShAmtSplat->isNullValue() ||
3522 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3523 return true;
3524 // We consider *min* leading zeros so a single outlier
3525 // blocks the transform as opposed to allowing it.
3526 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3527 KnownBits Known = computeKnownBits(C, SQ.DL);
3528 unsigned MinLeadZero = Known.countMinLeadingZeros();
3529 // If the value being shifted has at most lowest bit set we can fold.
3530 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3531 if (MaxActiveBits <= 1)
3532 return true;
3533 // Precondition: NewShAmt u<= countLeadingZeros(C)
3534 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3535 return true;
3537 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3538 KnownBits Known = computeKnownBits(C, SQ.DL);
3539 unsigned MinLeadZero = Known.countMinLeadingZeros();
3540 // If the value being shifted has at most lowest bit set we can fold.
3541 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3542 if (MaxActiveBits <= 1)
3543 return true;
3544 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3545 if (NewShAmtSplat) {
3546 APInt AdjNewShAmt =
3547 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3548 if (AdjNewShAmt.ule(MinLeadZero))
3549 return true;
3552 return false; // Can't tell if it's ok.
3554 if (!CanFold())
3555 return nullptr;
3558 // All good, we can do this fold.
3559 X = Builder.CreateZExt(X, WidestTy);
3560 Y = Builder.CreateZExt(Y, WidestTy);
3561 // The shift is the same that was for X.
3562 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3563 ? Builder.CreateLShr(X, NewShAmt)
3564 : Builder.CreateShl(X, NewShAmt);
3565 Value *T1 = Builder.CreateAnd(T0, Y);
3566 return Builder.CreateICmp(I.getPredicate(), T1,
3567 Constant::getNullValue(WidestTy));
3570 /// Fold
3571 /// (-1 u/ x) u< y
3572 /// ((x * y) u/ x) != y
3573 /// to
3574 /// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3575 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3576 /// will mean that we are looking for the opposite answer.
3577 Value *InstCombiner::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3578 ICmpInst::Predicate Pred;
3579 Value *X, *Y;
3580 Instruction *Mul;
3581 bool NeedNegation;
3582 // Look for: (-1 u/ x) u</u>= y
3583 if (!I.isEquality() &&
3584 match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3585 m_Value(Y)))) {
3586 Mul = nullptr;
3587 // Canonicalize as-if y was on RHS.
3588 if (I.getOperand(1) != Y)
3589 Pred = I.getSwappedPredicate();
3591 // Are we checking that overflow does not happen, or does happen?
3592 switch (Pred) {
3593 case ICmpInst::Predicate::ICMP_ULT:
3594 NeedNegation = false;
3595 break; // OK
3596 case ICmpInst::Predicate::ICMP_UGE:
3597 NeedNegation = true;
3598 break; // OK
3599 default:
3600 return nullptr; // Wrong predicate.
3602 } else // Look for: ((x * y) u/ x) !=/== y
3603 if (I.isEquality() &&
3604 match(&I, m_c_ICmp(Pred, m_Value(Y),
3605 m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3606 m_Value(X)),
3607 m_Instruction(Mul)),
3608 m_Deferred(X)))))) {
3609 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3610 } else
3611 return nullptr;
3613 BuilderTy::InsertPointGuard Guard(Builder);
3614 // If the pattern included (x * y), we'll want to insert new instructions
3615 // right before that original multiplication so that we can replace it.
3616 bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3617 if (MulHadOtherUses)
3618 Builder.SetInsertPoint(Mul);
3620 Function *F = Intrinsic::getDeclaration(
3621 I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3622 CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3624 // If the multiplication was used elsewhere, to ensure that we don't leave
3625 // "duplicate" instructions, replace uses of that original multiplication
3626 // with the multiplication result from the with.overflow intrinsic.
3627 if (MulHadOtherUses)
3628 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3630 Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3631 if (NeedNegation) // This technically increases instruction count.
3632 Res = Builder.CreateNot(Res, "umul.not.ov");
3634 return Res;
3637 /// Try to fold icmp (binop), X or icmp X, (binop).
3638 /// TODO: A large part of this logic is duplicated in InstSimplify's
3639 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3640 /// duplication.
3641 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) {
3642 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3644 // Special logic for binary operators.
3645 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3646 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3647 if (!BO0 && !BO1)
3648 return nullptr;
3650 const CmpInst::Predicate Pred = I.getPredicate();
3651 Value *X;
3653 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3654 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3655 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3656 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3657 return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3658 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3659 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3660 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3661 return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3663 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3664 if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3665 NoOp0WrapProblem =
3666 ICmpInst::isEquality(Pred) ||
3667 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3668 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3669 if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3670 NoOp1WrapProblem =
3671 ICmpInst::isEquality(Pred) ||
3672 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3673 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3675 // Analyze the case when either Op0 or Op1 is an add instruction.
3676 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3677 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3678 if (BO0 && BO0->getOpcode() == Instruction::Add) {
3679 A = BO0->getOperand(0);
3680 B = BO0->getOperand(1);
3682 if (BO1 && BO1->getOpcode() == Instruction::Add) {
3683 C = BO1->getOperand(0);
3684 D = BO1->getOperand(1);
3687 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3688 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3689 if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3690 return new ICmpInst(Pred, A == Op1 ? B : A,
3691 Constant::getNullValue(Op1->getType()));
3693 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3694 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3695 if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3696 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3697 C == Op0 ? D : C);
3699 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3700 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3701 NoOp1WrapProblem) {
3702 // Determine Y and Z in the form icmp (X+Y), (X+Z).
3703 Value *Y, *Z;
3704 if (A == C) {
3705 // C + B == C + D -> B == D
3706 Y = B;
3707 Z = D;
3708 } else if (A == D) {
3709 // D + B == C + D -> B == C
3710 Y = B;
3711 Z = C;
3712 } else if (B == C) {
3713 // A + C == C + D -> A == D
3714 Y = A;
3715 Z = D;
3716 } else {
3717 assert(B == D);
3718 // A + D == C + D -> A == C
3719 Y = A;
3720 Z = C;
3722 return new ICmpInst(Pred, Y, Z);
3725 // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3726 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3727 match(B, m_AllOnes()))
3728 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3730 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3731 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3732 match(B, m_AllOnes()))
3733 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3735 // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3736 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3737 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3739 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3740 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3741 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3743 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3744 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3745 match(D, m_AllOnes()))
3746 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3748 // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3749 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3750 match(D, m_AllOnes()))
3751 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3753 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3754 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3755 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3757 // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3758 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3759 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3761 // TODO: The subtraction-related identities shown below also hold, but
3762 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3763 // wouldn't happen even if they were implemented.
3765 // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3766 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3767 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3768 // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3770 // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3771 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3772 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3774 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3775 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3776 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3778 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3779 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3780 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3782 // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3783 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3784 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3786 // if C1 has greater magnitude than C2:
3787 // icmp (A + C1), (C + C2) -> icmp (A + C3), C
3788 // s.t. C3 = C1 - C2
3790 // if C2 has greater magnitude than C1:
3791 // icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3792 // s.t. C3 = C2 - C1
3793 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3794 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3795 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3796 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3797 const APInt &AP1 = C1->getValue();
3798 const APInt &AP2 = C2->getValue();
3799 if (AP1.isNegative() == AP2.isNegative()) {
3800 APInt AP1Abs = C1->getValue().abs();
3801 APInt AP2Abs = C2->getValue().abs();
3802 if (AP1Abs.uge(AP2Abs)) {
3803 ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3804 Value *NewAdd = Builder.CreateNSWAdd(A, C3);
3805 return new ICmpInst(Pred, NewAdd, C);
3806 } else {
3807 ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3808 Value *NewAdd = Builder.CreateNSWAdd(C, C3);
3809 return new ICmpInst(Pred, A, NewAdd);
3814 // Analyze the case when either Op0 or Op1 is a sub instruction.
3815 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3816 A = nullptr;
3817 B = nullptr;
3818 C = nullptr;
3819 D = nullptr;
3820 if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3821 A = BO0->getOperand(0);
3822 B = BO0->getOperand(1);
3824 if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3825 C = BO1->getOperand(0);
3826 D = BO1->getOperand(1);
3829 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
3830 if (A == Op1 && NoOp0WrapProblem)
3831 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3832 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
3833 if (C == Op0 && NoOp1WrapProblem)
3834 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3836 // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3837 // (A - B) u>/u<= A --> B u>/u<= A
3838 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3839 return new ICmpInst(Pred, B, A);
3840 // C u</u>= (C - D) --> C u</u>= D
3841 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3842 return new ICmpInst(Pred, C, D);
3844 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
3845 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
3846 return new ICmpInst(Pred, A, C);
3848 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
3849 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
3850 return new ICmpInst(Pred, D, B);
3852 // icmp (0-X) < cst --> x > -cst
3853 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3854 Value *X;
3855 if (match(BO0, m_Neg(m_Value(X))))
3856 if (Constant *RHSC = dyn_cast<Constant>(Op1))
3857 if (RHSC->isNotMinSignedValue())
3858 return new ICmpInst(I.getSwappedPredicate(), X,
3859 ConstantExpr::getNeg(RHSC));
3862 BinaryOperator *SRem = nullptr;
3863 // icmp (srem X, Y), Y
3864 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
3865 SRem = BO0;
3866 // icmp Y, (srem X, Y)
3867 else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3868 Op0 == BO1->getOperand(1))
3869 SRem = BO1;
3870 if (SRem) {
3871 // We don't check hasOneUse to avoid increasing register pressure because
3872 // the value we use is the same value this instruction was already using.
3873 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3874 default:
3875 break;
3876 case ICmpInst::ICMP_EQ:
3877 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3878 case ICmpInst::ICMP_NE:
3879 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3880 case ICmpInst::ICMP_SGT:
3881 case ICmpInst::ICMP_SGE:
3882 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3883 Constant::getAllOnesValue(SRem->getType()));
3884 case ICmpInst::ICMP_SLT:
3885 case ICmpInst::ICMP_SLE:
3886 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3887 Constant::getNullValue(SRem->getType()));
3891 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
3892 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
3893 switch (BO0->getOpcode()) {
3894 default:
3895 break;
3896 case Instruction::Add:
3897 case Instruction::Sub:
3898 case Instruction::Xor: {
3899 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3900 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3902 const APInt *C;
3903 if (match(BO0->getOperand(1), m_APInt(C))) {
3904 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
3905 if (C->isSignMask()) {
3906 ICmpInst::Predicate NewPred =
3907 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3908 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3911 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
3912 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
3913 ICmpInst::Predicate NewPred =
3914 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3915 NewPred = I.getSwappedPredicate(NewPred);
3916 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3919 break;
3921 case Instruction::Mul: {
3922 if (!I.isEquality())
3923 break;
3925 const APInt *C;
3926 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
3927 !C->isOneValue()) {
3928 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
3929 // Mask = -1 >> count-trailing-zeros(C).
3930 if (unsigned TZs = C->countTrailingZeros()) {
3931 Constant *Mask = ConstantInt::get(
3932 BO0->getType(),
3933 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
3934 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
3935 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
3936 return new ICmpInst(Pred, And1, And2);
3938 // If there are no trailing zeros in the multiplier, just eliminate
3939 // the multiplies (no masking is needed):
3940 // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
3941 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3943 break;
3945 case Instruction::UDiv:
3946 case Instruction::LShr:
3947 if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
3948 break;
3949 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3951 case Instruction::SDiv:
3952 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
3953 break;
3954 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3956 case Instruction::AShr:
3957 if (!BO0->isExact() || !BO1->isExact())
3958 break;
3959 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3961 case Instruction::Shl: {
3962 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3963 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3964 if (!NUW && !NSW)
3965 break;
3966 if (!NSW && I.isSigned())
3967 break;
3968 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3973 if (BO0) {
3974 // Transform A & (L - 1) `ult` L --> L != 0
3975 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
3976 auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
3978 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
3979 auto *Zero = Constant::getNullValue(BO0->getType());
3980 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
3984 if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
3985 return replaceInstUsesWith(I, V);
3987 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
3988 return replaceInstUsesWith(I, V);
3990 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
3991 return replaceInstUsesWith(I, V);
3993 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
3994 return replaceInstUsesWith(I, V);
3996 return nullptr;
3999 /// Fold icmp Pred min|max(X, Y), X.
4000 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4001 ICmpInst::Predicate Pred = Cmp.getPredicate();
4002 Value *Op0 = Cmp.getOperand(0);
4003 Value *X = Cmp.getOperand(1);
4005 // Canonicalize minimum or maximum operand to LHS of the icmp.
4006 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4007 match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4008 match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4009 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4010 std::swap(Op0, X);
4011 Pred = Cmp.getSwappedPredicate();
4014 Value *Y;
4015 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4016 // smin(X, Y) == X --> X s<= Y
4017 // smin(X, Y) s>= X --> X s<= Y
4018 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4019 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4021 // smin(X, Y) != X --> X s> Y
4022 // smin(X, Y) s< X --> X s> Y
4023 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4024 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4026 // These cases should be handled in InstSimplify:
4027 // smin(X, Y) s<= X --> true
4028 // smin(X, Y) s> X --> false
4029 return nullptr;
4032 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4033 // smax(X, Y) == X --> X s>= Y
4034 // smax(X, Y) s<= X --> X s>= Y
4035 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4036 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4038 // smax(X, Y) != X --> X s< Y
4039 // smax(X, Y) s> X --> X s< Y
4040 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4041 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4043 // These cases should be handled in InstSimplify:
4044 // smax(X, Y) s>= X --> true
4045 // smax(X, Y) s< X --> false
4046 return nullptr;
4049 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4050 // umin(X, Y) == X --> X u<= Y
4051 // umin(X, Y) u>= X --> X u<= Y
4052 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4053 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4055 // umin(X, Y) != X --> X u> Y
4056 // umin(X, Y) u< X --> X u> Y
4057 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4058 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4060 // These cases should be handled in InstSimplify:
4061 // umin(X, Y) u<= X --> true
4062 // umin(X, Y) u> X --> false
4063 return nullptr;
4066 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4067 // umax(X, Y) == X --> X u>= Y
4068 // umax(X, Y) u<= X --> X u>= Y
4069 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4070 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4072 // umax(X, Y) != X --> X u< Y
4073 // umax(X, Y) u> X --> X u< Y
4074 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4075 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4077 // These cases should be handled in InstSimplify:
4078 // umax(X, Y) u>= X --> true
4079 // umax(X, Y) u< X --> false
4080 return nullptr;
4083 return nullptr;
4086 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
4087 if (!I.isEquality())
4088 return nullptr;
4090 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4091 const CmpInst::Predicate Pred = I.getPredicate();
4092 Value *A, *B, *C, *D;
4093 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4094 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
4095 Value *OtherVal = A == Op1 ? B : A;
4096 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4099 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4100 // A^c1 == C^c2 --> A == C^(c1^c2)
4101 ConstantInt *C1, *C2;
4102 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4103 Op1->hasOneUse()) {
4104 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4105 Value *Xor = Builder.CreateXor(C, NC);
4106 return new ICmpInst(Pred, A, Xor);
4109 // A^B == A^D -> B == D
4110 if (A == C)
4111 return new ICmpInst(Pred, B, D);
4112 if (A == D)
4113 return new ICmpInst(Pred, B, C);
4114 if (B == C)
4115 return new ICmpInst(Pred, A, D);
4116 if (B == D)
4117 return new ICmpInst(Pred, A, C);
4121 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4122 // A == (A^B) -> B == 0
4123 Value *OtherVal = A == Op0 ? B : A;
4124 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4127 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4128 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4129 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4130 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4132 if (A == C) {
4133 X = B;
4134 Y = D;
4135 Z = A;
4136 } else if (A == D) {
4137 X = B;
4138 Y = C;
4139 Z = A;
4140 } else if (B == C) {
4141 X = A;
4142 Y = D;
4143 Z = B;
4144 } else if (B == D) {
4145 X = A;
4146 Y = C;
4147 Z = B;
4150 if (X) { // Build (X^Y) & Z
4151 Op1 = Builder.CreateXor(X, Y);
4152 Op1 = Builder.CreateAnd(Op1, Z);
4153 I.setOperand(0, Op1);
4154 I.setOperand(1, Constant::getNullValue(Op1->getType()));
4155 return &I;
4159 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4160 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4161 ConstantInt *Cst1;
4162 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4163 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4164 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4165 match(Op1, m_ZExt(m_Value(A))))) {
4166 APInt Pow2 = Cst1->getValue() + 1;
4167 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4168 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4169 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4172 // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4173 // For lshr and ashr pairs.
4174 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4175 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4176 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4177 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4178 unsigned TypeBits = Cst1->getBitWidth();
4179 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4180 if (ShAmt < TypeBits && ShAmt != 0) {
4181 ICmpInst::Predicate NewPred =
4182 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4183 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4184 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4185 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4189 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4190 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4191 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4192 unsigned TypeBits = Cst1->getBitWidth();
4193 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4194 if (ShAmt < TypeBits && ShAmt != 0) {
4195 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4196 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4197 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4198 I.getName() + ".mask");
4199 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4203 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4204 // "icmp (and X, mask), cst"
4205 uint64_t ShAmt = 0;
4206 if (Op0->hasOneUse() &&
4207 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4208 match(Op1, m_ConstantInt(Cst1)) &&
4209 // Only do this when A has multiple uses. This is most important to do
4210 // when it exposes other optimizations.
4211 !A->hasOneUse()) {
4212 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4214 if (ShAmt < ASize) {
4215 APInt MaskV =
4216 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4217 MaskV <<= ShAmt;
4219 APInt CmpV = Cst1->getValue().zext(ASize);
4220 CmpV <<= ShAmt;
4222 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4223 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4227 // If both operands are byte-swapped or bit-reversed, just compare the
4228 // original values.
4229 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4230 // and handle more intrinsics.
4231 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4232 (match(Op0, m_BitReverse(m_Value(A))) &&
4233 match(Op1, m_BitReverse(m_Value(B)))))
4234 return new ICmpInst(Pred, A, B);
4236 // Canonicalize checking for a power-of-2-or-zero value:
4237 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4238 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4239 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4240 m_Deferred(A)))) ||
4241 !match(Op1, m_ZeroInt()))
4242 A = nullptr;
4244 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4245 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4246 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4247 A = Op1;
4248 else if (match(Op1,
4249 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4250 A = Op0;
4252 if (A) {
4253 Type *Ty = A->getType();
4254 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4255 return Pred == ICmpInst::ICMP_EQ
4256 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4257 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4260 return nullptr;
4263 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4264 InstCombiner::BuilderTy &Builder) {
4265 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4266 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4267 Value *X;
4268 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4269 return nullptr;
4271 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4272 bool IsSignedCmp = ICmp.isSigned();
4273 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4274 // If the signedness of the two casts doesn't agree (i.e. one is a sext
4275 // and the other is a zext), then we can't handle this.
4276 // TODO: This is too strict. We can handle some predicates (equality?).
4277 if (CastOp0->getOpcode() != CastOp1->getOpcode())
4278 return nullptr;
4280 // Not an extension from the same type?
4281 Value *Y = CastOp1->getOperand(0);
4282 Type *XTy = X->getType(), *YTy = Y->getType();
4283 if (XTy != YTy) {
4284 // One of the casts must have one use because we are creating a new cast.
4285 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4286 return nullptr;
4287 // Extend the narrower operand to the type of the wider operand.
4288 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4289 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4290 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4291 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4292 else
4293 return nullptr;
4296 // (zext X) == (zext Y) --> X == Y
4297 // (sext X) == (sext Y) --> X == Y
4298 if (ICmp.isEquality())
4299 return new ICmpInst(ICmp.getPredicate(), X, Y);
4301 // A signed comparison of sign extended values simplifies into a
4302 // signed comparison.
4303 if (IsSignedCmp && IsSignedExt)
4304 return new ICmpInst(ICmp.getPredicate(), X, Y);
4306 // The other three cases all fold into an unsigned comparison.
4307 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4310 // Below here, we are only folding a compare with constant.
4311 auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4312 if (!C)
4313 return nullptr;
4315 // Compute the constant that would happen if we truncated to SrcTy then
4316 // re-extended to DestTy.
4317 Type *SrcTy = CastOp0->getSrcTy();
4318 Type *DestTy = CastOp0->getDestTy();
4319 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4320 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4322 // If the re-extended constant didn't change...
4323 if (Res2 == C) {
4324 if (ICmp.isEquality())
4325 return new ICmpInst(ICmp.getPredicate(), X, Res1);
4327 // A signed comparison of sign extended values simplifies into a
4328 // signed comparison.
4329 if (IsSignedExt && IsSignedCmp)
4330 return new ICmpInst(ICmp.getPredicate(), X, Res1);
4332 // The other three cases all fold into an unsigned comparison.
4333 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4336 // The re-extended constant changed, partly changed (in the case of a vector),
4337 // or could not be determined to be equal (in the case of a constant
4338 // expression), so the constant cannot be represented in the shorter type.
4339 // All the cases that fold to true or false will have already been handled
4340 // by SimplifyICmpInst, so only deal with the tricky case.
4341 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4342 return nullptr;
4344 // Is source op positive?
4345 // icmp ult (sext X), C --> icmp sgt X, -1
4346 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4347 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4349 // Is source op negative?
4350 // icmp ugt (sext X), C --> icmp slt X, 0
4351 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4352 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4355 /// Handle icmp (cast x), (cast or constant).
4356 Instruction *InstCombiner::foldICmpWithCastOp(ICmpInst &ICmp) {
4357 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4358 if (!CastOp0)
4359 return nullptr;
4360 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4361 return nullptr;
4363 Value *Op0Src = CastOp0->getOperand(0);
4364 Type *SrcTy = CastOp0->getSrcTy();
4365 Type *DestTy = CastOp0->getDestTy();
4367 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4368 // integer type is the same size as the pointer type.
4369 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4370 if (isa<VectorType>(SrcTy)) {
4371 SrcTy = cast<VectorType>(SrcTy)->getElementType();
4372 DestTy = cast<VectorType>(DestTy)->getElementType();
4374 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4376 if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4377 CompatibleSizes(SrcTy, DestTy)) {
4378 Value *NewOp1 = nullptr;
4379 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4380 Value *PtrSrc = PtrToIntOp1->getOperand(0);
4381 if (PtrSrc->getType()->getPointerAddressSpace() ==
4382 Op0Src->getType()->getPointerAddressSpace()) {
4383 NewOp1 = PtrToIntOp1->getOperand(0);
4384 // If the pointer types don't match, insert a bitcast.
4385 if (Op0Src->getType() != NewOp1->getType())
4386 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4388 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4389 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4392 if (NewOp1)
4393 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4396 return foldICmpWithZextOrSext(ICmp, Builder);
4399 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4400 switch (BinaryOp) {
4401 default:
4402 llvm_unreachable("Unsupported binary op");
4403 case Instruction::Add:
4404 case Instruction::Sub:
4405 return match(RHS, m_Zero());
4406 case Instruction::Mul:
4407 return match(RHS, m_One());
4411 OverflowResult InstCombiner::computeOverflow(
4412 Instruction::BinaryOps BinaryOp, bool IsSigned,
4413 Value *LHS, Value *RHS, Instruction *CxtI) const {
4414 switch (BinaryOp) {
4415 default:
4416 llvm_unreachable("Unsupported binary op");
4417 case Instruction::Add:
4418 if (IsSigned)
4419 return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4420 else
4421 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4422 case Instruction::Sub:
4423 if (IsSigned)
4424 return computeOverflowForSignedSub(LHS, RHS, CxtI);
4425 else
4426 return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4427 case Instruction::Mul:
4428 if (IsSigned)
4429 return computeOverflowForSignedMul(LHS, RHS, CxtI);
4430 else
4431 return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4435 bool InstCombiner::OptimizeOverflowCheck(
4436 Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS,
4437 Instruction &OrigI, Value *&Result, Constant *&Overflow) {
4438 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4439 std::swap(LHS, RHS);
4441 // If the overflow check was an add followed by a compare, the insertion point
4442 // may be pointing to the compare. We want to insert the new instructions
4443 // before the add in case there are uses of the add between the add and the
4444 // compare.
4445 Builder.SetInsertPoint(&OrigI);
4447 if (isNeutralValue(BinaryOp, RHS)) {
4448 Result = LHS;
4449 Overflow = Builder.getFalse();
4450 return true;
4453 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4454 case OverflowResult::MayOverflow:
4455 return false;
4456 case OverflowResult::AlwaysOverflowsLow:
4457 case OverflowResult::AlwaysOverflowsHigh:
4458 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4459 Result->takeName(&OrigI);
4460 Overflow = Builder.getTrue();
4461 return true;
4462 case OverflowResult::NeverOverflows:
4463 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4464 Result->takeName(&OrigI);
4465 Overflow = Builder.getFalse();
4466 if (auto *Inst = dyn_cast<Instruction>(Result)) {
4467 if (IsSigned)
4468 Inst->setHasNoSignedWrap();
4469 else
4470 Inst->setHasNoUnsignedWrap();
4472 return true;
4475 llvm_unreachable("Unexpected overflow result");
4478 /// Recognize and process idiom involving test for multiplication
4479 /// overflow.
4481 /// The caller has matched a pattern of the form:
4482 /// I = cmp u (mul(zext A, zext B), V
4483 /// The function checks if this is a test for overflow and if so replaces
4484 /// multiplication with call to 'mul.with.overflow' intrinsic.
4486 /// \param I Compare instruction.
4487 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of
4488 /// the compare instruction. Must be of integer type.
4489 /// \param OtherVal The other argument of compare instruction.
4490 /// \returns Instruction which must replace the compare instruction, NULL if no
4491 /// replacement required.
4492 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4493 Value *OtherVal, InstCombiner &IC) {
4494 // Don't bother doing this transformation for pointers, don't do it for
4495 // vectors.
4496 if (!isa<IntegerType>(MulVal->getType()))
4497 return nullptr;
4499 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4500 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4501 auto *MulInstr = dyn_cast<Instruction>(MulVal);
4502 if (!MulInstr)
4503 return nullptr;
4504 assert(MulInstr->getOpcode() == Instruction::Mul);
4506 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4507 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4508 assert(LHS->getOpcode() == Instruction::ZExt);
4509 assert(RHS->getOpcode() == Instruction::ZExt);
4510 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4512 // Calculate type and width of the result produced by mul.with.overflow.
4513 Type *TyA = A->getType(), *TyB = B->getType();
4514 unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4515 WidthB = TyB->getPrimitiveSizeInBits();
4516 unsigned MulWidth;
4517 Type *MulType;
4518 if (WidthB > WidthA) {
4519 MulWidth = WidthB;
4520 MulType = TyB;
4521 } else {
4522 MulWidth = WidthA;
4523 MulType = TyA;
4526 // In order to replace the original mul with a narrower mul.with.overflow,
4527 // all uses must ignore upper bits of the product. The number of used low
4528 // bits must be not greater than the width of mul.with.overflow.
4529 if (MulVal->hasNUsesOrMore(2))
4530 for (User *U : MulVal->users()) {
4531 if (U == &I)
4532 continue;
4533 if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4534 // Check if truncation ignores bits above MulWidth.
4535 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4536 if (TruncWidth > MulWidth)
4537 return nullptr;
4538 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4539 // Check if AND ignores bits above MulWidth.
4540 if (BO->getOpcode() != Instruction::And)
4541 return nullptr;
4542 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4543 const APInt &CVal = CI->getValue();
4544 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4545 return nullptr;
4546 } else {
4547 // In this case we could have the operand of the binary operation
4548 // being defined in another block, and performing the replacement
4549 // could break the dominance relation.
4550 return nullptr;
4552 } else {
4553 // Other uses prohibit this transformation.
4554 return nullptr;
4558 // Recognize patterns
4559 switch (I.getPredicate()) {
4560 case ICmpInst::ICMP_EQ:
4561 case ICmpInst::ICMP_NE:
4562 // Recognize pattern:
4563 // mulval = mul(zext A, zext B)
4564 // cmp eq/neq mulval, zext trunc mulval
4565 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
4566 if (Zext->hasOneUse()) {
4567 Value *ZextArg = Zext->getOperand(0);
4568 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
4569 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
4570 break; //Recognized
4573 // Recognize pattern:
4574 // mulval = mul(zext A, zext B)
4575 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4576 ConstantInt *CI;
4577 Value *ValToMask;
4578 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4579 if (ValToMask != MulVal)
4580 return nullptr;
4581 const APInt &CVal = CI->getValue() + 1;
4582 if (CVal.isPowerOf2()) {
4583 unsigned MaskWidth = CVal.logBase2();
4584 if (MaskWidth == MulWidth)
4585 break; // Recognized
4588 return nullptr;
4590 case ICmpInst::ICMP_UGT:
4591 // Recognize pattern:
4592 // mulval = mul(zext A, zext B)
4593 // cmp ugt mulval, max
4594 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4595 APInt MaxVal = APInt::getMaxValue(MulWidth);
4596 MaxVal = MaxVal.zext(CI->getBitWidth());
4597 if (MaxVal.eq(CI->getValue()))
4598 break; // Recognized
4600 return nullptr;
4602 case ICmpInst::ICMP_UGE:
4603 // Recognize pattern:
4604 // mulval = mul(zext A, zext B)
4605 // cmp uge mulval, max+1
4606 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4607 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4608 if (MaxVal.eq(CI->getValue()))
4609 break; // Recognized
4611 return nullptr;
4613 case ICmpInst::ICMP_ULE:
4614 // Recognize pattern:
4615 // mulval = mul(zext A, zext B)
4616 // cmp ule mulval, max
4617 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4618 APInt MaxVal = APInt::getMaxValue(MulWidth);
4619 MaxVal = MaxVal.zext(CI->getBitWidth());
4620 if (MaxVal.eq(CI->getValue()))
4621 break; // Recognized
4623 return nullptr;
4625 case ICmpInst::ICMP_ULT:
4626 // Recognize pattern:
4627 // mulval = mul(zext A, zext B)
4628 // cmp ule mulval, max + 1
4629 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4630 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4631 if (MaxVal.eq(CI->getValue()))
4632 break; // Recognized
4634 return nullptr;
4636 default:
4637 return nullptr;
4640 InstCombiner::BuilderTy &Builder = IC.Builder;
4641 Builder.SetInsertPoint(MulInstr);
4643 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4644 Value *MulA = A, *MulB = B;
4645 if (WidthA < MulWidth)
4646 MulA = Builder.CreateZExt(A, MulType);
4647 if (WidthB < MulWidth)
4648 MulB = Builder.CreateZExt(B, MulType);
4649 Function *F = Intrinsic::getDeclaration(
4650 I.getModule(), Intrinsic::umul_with_overflow, MulType);
4651 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4652 IC.Worklist.Add(MulInstr);
4654 // If there are uses of mul result other than the comparison, we know that
4655 // they are truncation or binary AND. Change them to use result of
4656 // mul.with.overflow and adjust properly mask/size.
4657 if (MulVal->hasNUsesOrMore(2)) {
4658 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4659 for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) {
4660 User *U = *UI++;
4661 if (U == &I || U == OtherVal)
4662 continue;
4663 if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4664 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4665 IC.replaceInstUsesWith(*TI, Mul);
4666 else
4667 TI->setOperand(0, Mul);
4668 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4669 assert(BO->getOpcode() == Instruction::And);
4670 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4671 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4672 APInt ShortMask = CI->getValue().trunc(MulWidth);
4673 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4674 Instruction *Zext =
4675 cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType()));
4676 IC.Worklist.Add(Zext);
4677 IC.replaceInstUsesWith(*BO, Zext);
4678 } else {
4679 llvm_unreachable("Unexpected Binary operation");
4681 IC.Worklist.Add(cast<Instruction>(U));
4684 if (isa<Instruction>(OtherVal))
4685 IC.Worklist.Add(cast<Instruction>(OtherVal));
4687 // The original icmp gets replaced with the overflow value, maybe inverted
4688 // depending on predicate.
4689 bool Inverse = false;
4690 switch (I.getPredicate()) {
4691 case ICmpInst::ICMP_NE:
4692 break;
4693 case ICmpInst::ICMP_EQ:
4694 Inverse = true;
4695 break;
4696 case ICmpInst::ICMP_UGT:
4697 case ICmpInst::ICMP_UGE:
4698 if (I.getOperand(0) == MulVal)
4699 break;
4700 Inverse = true;
4701 break;
4702 case ICmpInst::ICMP_ULT:
4703 case ICmpInst::ICMP_ULE:
4704 if (I.getOperand(1) == MulVal)
4705 break;
4706 Inverse = true;
4707 break;
4708 default:
4709 llvm_unreachable("Unexpected predicate");
4711 if (Inverse) {
4712 Value *Res = Builder.CreateExtractValue(Call, 1);
4713 return BinaryOperator::CreateNot(Res);
4716 return ExtractValueInst::Create(Call, 1);
4719 /// When performing a comparison against a constant, it is possible that not all
4720 /// the bits in the LHS are demanded. This helper method computes the mask that
4721 /// IS demanded.
4722 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4723 const APInt *RHS;
4724 if (!match(I.getOperand(1), m_APInt(RHS)))
4725 return APInt::getAllOnesValue(BitWidth);
4727 // If this is a normal comparison, it demands all bits. If it is a sign bit
4728 // comparison, it only demands the sign bit.
4729 bool UnusedBit;
4730 if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4731 return APInt::getSignMask(BitWidth);
4733 switch (I.getPredicate()) {
4734 // For a UGT comparison, we don't care about any bits that
4735 // correspond to the trailing ones of the comparand. The value of these
4736 // bits doesn't impact the outcome of the comparison, because any value
4737 // greater than the RHS must differ in a bit higher than these due to carry.
4738 case ICmpInst::ICMP_UGT:
4739 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4741 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4742 // Any value less than the RHS must differ in a higher bit because of carries.
4743 case ICmpInst::ICMP_ULT:
4744 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4746 default:
4747 return APInt::getAllOnesValue(BitWidth);
4751 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4752 /// should be swapped.
4753 /// The decision is based on how many times these two operands are reused
4754 /// as subtract operands and their positions in those instructions.
4755 /// The rationale is that several architectures use the same instruction for
4756 /// both subtract and cmp. Thus, it is better if the order of those operands
4757 /// match.
4758 /// \return true if Op0 and Op1 should be swapped.
4759 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4760 // Filter out pointer values as those cannot appear directly in subtract.
4761 // FIXME: we may want to go through inttoptrs or bitcasts.
4762 if (Op0->getType()->isPointerTy())
4763 return false;
4764 // If a subtract already has the same operands as a compare, swapping would be
4765 // bad. If a subtract has the same operands as a compare but in reverse order,
4766 // then swapping is good.
4767 int GoodToSwap = 0;
4768 for (const User *U : Op0->users()) {
4769 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4770 GoodToSwap++;
4771 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4772 GoodToSwap--;
4774 return GoodToSwap > 0;
4777 /// Check that one use is in the same block as the definition and all
4778 /// other uses are in blocks dominated by a given block.
4780 /// \param DI Definition
4781 /// \param UI Use
4782 /// \param DB Block that must dominate all uses of \p DI outside
4783 /// the parent block
4784 /// \return true when \p UI is the only use of \p DI in the parent block
4785 /// and all other uses of \p DI are in blocks dominated by \p DB.
4787 bool InstCombiner::dominatesAllUses(const Instruction *DI,
4788 const Instruction *UI,
4789 const BasicBlock *DB) const {
4790 assert(DI && UI && "Instruction not defined\n");
4791 // Ignore incomplete definitions.
4792 if (!DI->getParent())
4793 return false;
4794 // DI and UI must be in the same block.
4795 if (DI->getParent() != UI->getParent())
4796 return false;
4797 // Protect from self-referencing blocks.
4798 if (DI->getParent() == DB)
4799 return false;
4800 for (const User *U : DI->users()) {
4801 auto *Usr = cast<Instruction>(U);
4802 if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4803 return false;
4805 return true;
4808 /// Return true when the instruction sequence within a block is select-cmp-br.
4809 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4810 const BasicBlock *BB = SI->getParent();
4811 if (!BB)
4812 return false;
4813 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4814 if (!BI || BI->getNumSuccessors() != 2)
4815 return false;
4816 auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4817 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4818 return false;
4819 return true;
4822 /// True when a select result is replaced by one of its operands
4823 /// in select-icmp sequence. This will eventually result in the elimination
4824 /// of the select.
4826 /// \param SI Select instruction
4827 /// \param Icmp Compare instruction
4828 /// \param SIOpd Operand that replaces the select
4830 /// Notes:
4831 /// - The replacement is global and requires dominator information
4832 /// - The caller is responsible for the actual replacement
4834 /// Example:
4836 /// entry:
4837 /// %4 = select i1 %3, %C* %0, %C* null
4838 /// %5 = icmp eq %C* %4, null
4839 /// br i1 %5, label %9, label %7
4840 /// ...
4841 /// ; <label>:7 ; preds = %entry
4842 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4843 /// ...
4845 /// can be transformed to
4847 /// %5 = icmp eq %C* %0, null
4848 /// %6 = select i1 %3, i1 %5, i1 true
4849 /// br i1 %6, label %9, label %7
4850 /// ...
4851 /// ; <label>:7 ; preds = %entry
4852 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
4854 /// Similar when the first operand of the select is a constant or/and
4855 /// the compare is for not equal rather than equal.
4857 /// NOTE: The function is only called when the select and compare constants
4858 /// are equal, the optimization can work only for EQ predicates. This is not a
4859 /// major restriction since a NE compare should be 'normalized' to an equal
4860 /// compare, which usually happens in the combiner and test case
4861 /// select-cmp-br.ll checks for it.
4862 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
4863 const ICmpInst *Icmp,
4864 const unsigned SIOpd) {
4865 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
4866 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
4867 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
4868 // The check for the single predecessor is not the best that can be
4869 // done. But it protects efficiently against cases like when SI's
4870 // home block has two successors, Succ and Succ1, and Succ1 predecessor
4871 // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4872 // replaced can be reached on either path. So the uniqueness check
4873 // guarantees that the path all uses of SI (outside SI's parent) are on
4874 // is disjoint from all other paths out of SI. But that information
4875 // is more expensive to compute, and the trade-off here is in favor
4876 // of compile-time. It should also be noticed that we check for a single
4877 // predecessor and not only uniqueness. This to handle the situation when
4878 // Succ and Succ1 points to the same basic block.
4879 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
4880 NumSel++;
4881 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
4882 return true;
4885 return false;
4888 /// Try to fold the comparison based on range information we can get by checking
4889 /// whether bits are known to be zero or one in the inputs.
4890 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
4891 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4892 Type *Ty = Op0->getType();
4893 ICmpInst::Predicate Pred = I.getPredicate();
4895 // Get scalar or pointer size.
4896 unsigned BitWidth = Ty->isIntOrIntVectorTy()
4897 ? Ty->getScalarSizeInBits()
4898 : DL.getIndexTypeSizeInBits(Ty->getScalarType());
4900 if (!BitWidth)
4901 return nullptr;
4903 KnownBits Op0Known(BitWidth);
4904 KnownBits Op1Known(BitWidth);
4906 if (SimplifyDemandedBits(&I, 0,
4907 getDemandedBitsLHSMask(I, BitWidth),
4908 Op0Known, 0))
4909 return &I;
4911 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
4912 Op1Known, 0))
4913 return &I;
4915 // Given the known and unknown bits, compute a range that the LHS could be
4916 // in. Compute the Min, Max and RHS values based on the known bits. For the
4917 // EQ and NE we use unsigned values.
4918 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
4919 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
4920 if (I.isSigned()) {
4921 computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4922 computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4923 } else {
4924 computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4925 computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4928 // If Min and Max are known to be the same, then SimplifyDemandedBits figured
4929 // out that the LHS or RHS is a constant. Constant fold this now, so that
4930 // code below can assume that Min != Max.
4931 if (!isa<Constant>(Op0) && Op0Min == Op0Max)
4932 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
4933 if (!isa<Constant>(Op1) && Op1Min == Op1Max)
4934 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
4936 // Based on the range information we know about the LHS, see if we can
4937 // simplify this comparison. For example, (x&4) < 8 is always true.
4938 switch (Pred) {
4939 default:
4940 llvm_unreachable("Unknown icmp opcode!");
4941 case ICmpInst::ICMP_EQ:
4942 case ICmpInst::ICMP_NE: {
4943 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
4944 return Pred == CmpInst::ICMP_EQ
4945 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
4946 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4949 // If all bits are known zero except for one, then we know at most one bit
4950 // is set. If the comparison is against zero, then this is a check to see if
4951 // *that* bit is set.
4952 APInt Op0KnownZeroInverted = ~Op0Known.Zero;
4953 if (Op1Known.isZero()) {
4954 // If the LHS is an AND with the same constant, look through it.
4955 Value *LHS = nullptr;
4956 const APInt *LHSC;
4957 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
4958 *LHSC != Op0KnownZeroInverted)
4959 LHS = Op0;
4961 Value *X;
4962 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
4963 APInt ValToCheck = Op0KnownZeroInverted;
4964 Type *XTy = X->getType();
4965 if (ValToCheck.isPowerOf2()) {
4966 // ((1 << X) & 8) == 0 -> X != 3
4967 // ((1 << X) & 8) != 0 -> X == 3
4968 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4969 auto NewPred = ICmpInst::getInversePredicate(Pred);
4970 return new ICmpInst(NewPred, X, CmpC);
4971 } else if ((++ValToCheck).isPowerOf2()) {
4972 // ((1 << X) & 7) == 0 -> X >= 3
4973 // ((1 << X) & 7) != 0 -> X < 3
4974 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4975 auto NewPred =
4976 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
4977 return new ICmpInst(NewPred, X, CmpC);
4981 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
4982 const APInt *CI;
4983 if (Op0KnownZeroInverted.isOneValue() &&
4984 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
4985 // ((8 >>u X) & 1) == 0 -> X != 3
4986 // ((8 >>u X) & 1) != 0 -> X == 3
4987 unsigned CmpVal = CI->countTrailingZeros();
4988 auto NewPred = ICmpInst::getInversePredicate(Pred);
4989 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
4992 break;
4994 case ICmpInst::ICMP_ULT: {
4995 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
4996 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4997 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
4998 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4999 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5000 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5002 const APInt *CmpC;
5003 if (match(Op1, m_APInt(CmpC))) {
5004 // A <u C -> A == C-1 if min(A)+1 == C
5005 if (*CmpC == Op0Min + 1)
5006 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5007 ConstantInt::get(Op1->getType(), *CmpC - 1));
5008 // X <u C --> X == 0, if the number of zero bits in the bottom of X
5009 // exceeds the log2 of C.
5010 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5011 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5012 Constant::getNullValue(Op1->getType()));
5014 break;
5016 case ICmpInst::ICMP_UGT: {
5017 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5018 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5019 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5020 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5021 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5022 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5024 const APInt *CmpC;
5025 if (match(Op1, m_APInt(CmpC))) {
5026 // A >u C -> A == C+1 if max(a)-1 == C
5027 if (*CmpC == Op0Max - 1)
5028 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5029 ConstantInt::get(Op1->getType(), *CmpC + 1));
5030 // X >u C --> X != 0, if the number of zero bits in the bottom of X
5031 // exceeds the log2 of C.
5032 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5033 return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5034 Constant::getNullValue(Op1->getType()));
5036 break;
5038 case ICmpInst::ICMP_SLT: {
5039 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5040 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5041 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5042 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5043 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5044 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5045 const APInt *CmpC;
5046 if (match(Op1, m_APInt(CmpC))) {
5047 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5048 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5049 ConstantInt::get(Op1->getType(), *CmpC - 1));
5051 break;
5053 case ICmpInst::ICMP_SGT: {
5054 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5055 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5056 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5057 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5058 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5059 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5060 const APInt *CmpC;
5061 if (match(Op1, m_APInt(CmpC))) {
5062 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5063 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5064 ConstantInt::get(Op1->getType(), *CmpC + 1));
5066 break;
5068 case ICmpInst::ICMP_SGE:
5069 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5070 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5071 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5072 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5073 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5074 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5075 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5076 break;
5077 case ICmpInst::ICMP_SLE:
5078 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5079 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5080 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5081 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5082 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5083 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5084 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5085 break;
5086 case ICmpInst::ICMP_UGE:
5087 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5088 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5089 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5090 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5091 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5092 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5093 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5094 break;
5095 case ICmpInst::ICMP_ULE:
5096 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5097 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5098 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5099 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5100 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5101 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5102 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5103 break;
5106 // Turn a signed comparison into an unsigned one if both operands are known to
5107 // have the same sign.
5108 if (I.isSigned() &&
5109 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5110 (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5111 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5113 return nullptr;
5116 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5117 llvm::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5118 Constant *C) {
5119 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5120 "Only for relational integer predicates.");
5122 Type *Type = C->getType();
5123 bool IsSigned = ICmpInst::isSigned(Pred);
5125 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5126 bool WillIncrement =
5127 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5129 // Check if the constant operand can be safely incremented/decremented
5130 // without overflowing/underflowing.
5131 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5132 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5135 // For scalars, SimplifyICmpInst should have already handled
5136 // the edge cases for us, so we just assert on them.
5137 // For vectors, we must handle the edge cases.
5138 if (isa<ConstantInt>(C)) {
5139 // A <= MAX -> TRUE ; A >= MIN -> TRUE
5140 assert(ConstantIsOk(cast<ConstantInt>(C)));
5141 } else if (Type->isVectorTy()) {
5142 // TODO? If the edge cases for vectors were guaranteed to be handled as they
5143 // are for scalar, we could remove the min/max checks. However, to do that,
5144 // we would have to use insertelement/shufflevector to replace edge values.
5145 unsigned NumElts = Type->getVectorNumElements();
5146 for (unsigned i = 0; i != NumElts; ++i) {
5147 Constant *Elt = C->getAggregateElement(i);
5148 if (!Elt)
5149 return llvm::None;
5151 if (isa<UndefValue>(Elt))
5152 continue;
5154 // Bail out if we can't determine if this constant is min/max or if we
5155 // know that this constant is min/max.
5156 auto *CI = dyn_cast<ConstantInt>(Elt);
5157 if (!CI || !ConstantIsOk(CI))
5158 return llvm::None;
5160 } else {
5161 // ConstantExpr?
5162 return llvm::None;
5165 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5167 // Increment or decrement the constant.
5168 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5169 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5171 return std::make_pair(NewPred, NewC);
5174 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5175 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5176 /// allows them to be folded in visitICmpInst.
5177 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5178 ICmpInst::Predicate Pred = I.getPredicate();
5179 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5180 isCanonicalPredicate(Pred))
5181 return nullptr;
5183 Value *Op0 = I.getOperand(0);
5184 Value *Op1 = I.getOperand(1);
5185 auto *Op1C = dyn_cast<Constant>(Op1);
5186 if (!Op1C)
5187 return nullptr;
5189 auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5190 if (!FlippedStrictness)
5191 return nullptr;
5193 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5196 /// Integer compare with boolean values can always be turned into bitwise ops.
5197 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5198 InstCombiner::BuilderTy &Builder) {
5199 Value *A = I.getOperand(0), *B = I.getOperand(1);
5200 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5202 // A boolean compared to true/false can be simplified to Op0/true/false in
5203 // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5204 // Cases not handled by InstSimplify are always 'not' of Op0.
5205 if (match(B, m_Zero())) {
5206 switch (I.getPredicate()) {
5207 case CmpInst::ICMP_EQ: // A == 0 -> !A
5208 case CmpInst::ICMP_ULE: // A <=u 0 -> !A
5209 case CmpInst::ICMP_SGE: // A >=s 0 -> !A
5210 return BinaryOperator::CreateNot(A);
5211 default:
5212 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5214 } else if (match(B, m_One())) {
5215 switch (I.getPredicate()) {
5216 case CmpInst::ICMP_NE: // A != 1 -> !A
5217 case CmpInst::ICMP_ULT: // A <u 1 -> !A
5218 case CmpInst::ICMP_SGT: // A >s -1 -> !A
5219 return BinaryOperator::CreateNot(A);
5220 default:
5221 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5225 switch (I.getPredicate()) {
5226 default:
5227 llvm_unreachable("Invalid icmp instruction!");
5228 case ICmpInst::ICMP_EQ:
5229 // icmp eq i1 A, B -> ~(A ^ B)
5230 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5232 case ICmpInst::ICMP_NE:
5233 // icmp ne i1 A, B -> A ^ B
5234 return BinaryOperator::CreateXor(A, B);
5236 case ICmpInst::ICMP_UGT:
5237 // icmp ugt -> icmp ult
5238 std::swap(A, B);
5239 LLVM_FALLTHROUGH;
5240 case ICmpInst::ICMP_ULT:
5241 // icmp ult i1 A, B -> ~A & B
5242 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5244 case ICmpInst::ICMP_SGT:
5245 // icmp sgt -> icmp slt
5246 std::swap(A, B);
5247 LLVM_FALLTHROUGH;
5248 case ICmpInst::ICMP_SLT:
5249 // icmp slt i1 A, B -> A & ~B
5250 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5252 case ICmpInst::ICMP_UGE:
5253 // icmp uge -> icmp ule
5254 std::swap(A, B);
5255 LLVM_FALLTHROUGH;
5256 case ICmpInst::ICMP_ULE:
5257 // icmp ule i1 A, B -> ~A | B
5258 return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5260 case ICmpInst::ICMP_SGE:
5261 // icmp sge -> icmp sle
5262 std::swap(A, B);
5263 LLVM_FALLTHROUGH;
5264 case ICmpInst::ICMP_SLE:
5265 // icmp sle i1 A, B -> A | ~B
5266 return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5270 // Transform pattern like:
5271 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X
5272 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X
5273 // Into:
5274 // (X l>> Y) != 0
5275 // (X l>> Y) == 0
5276 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5277 InstCombiner::BuilderTy &Builder) {
5278 ICmpInst::Predicate Pred, NewPred;
5279 Value *X, *Y;
5280 if (match(&Cmp,
5281 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5282 // We want X to be the icmp's second operand, so swap predicate if it isn't.
5283 if (Cmp.getOperand(0) == X)
5284 Pred = Cmp.getSwappedPredicate();
5286 switch (Pred) {
5287 case ICmpInst::ICMP_ULE:
5288 NewPred = ICmpInst::ICMP_NE;
5289 break;
5290 case ICmpInst::ICMP_UGT:
5291 NewPred = ICmpInst::ICMP_EQ;
5292 break;
5293 default:
5294 return nullptr;
5296 } else if (match(&Cmp, m_c_ICmp(Pred,
5297 m_OneUse(m_CombineOr(
5298 m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5299 m_Add(m_Shl(m_One(), m_Value(Y)),
5300 m_AllOnes()))),
5301 m_Value(X)))) {
5302 // The variant with 'add' is not canonical, (the variant with 'not' is)
5303 // we only get it because it has extra uses, and can't be canonicalized,
5305 // We want X to be the icmp's second operand, so swap predicate if it isn't.
5306 if (Cmp.getOperand(0) == X)
5307 Pred = Cmp.getSwappedPredicate();
5309 switch (Pred) {
5310 case ICmpInst::ICMP_ULT:
5311 NewPred = ICmpInst::ICMP_NE;
5312 break;
5313 case ICmpInst::ICMP_UGE:
5314 NewPred = ICmpInst::ICMP_EQ;
5315 break;
5316 default:
5317 return nullptr;
5319 } else
5320 return nullptr;
5322 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5323 Constant *Zero = Constant::getNullValue(NewX->getType());
5324 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5327 static Instruction *foldVectorCmp(CmpInst &Cmp,
5328 InstCombiner::BuilderTy &Builder) {
5329 // If both arguments of the cmp are shuffles that use the same mask and
5330 // shuffle within a single vector, move the shuffle after the cmp.
5331 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5332 Value *V1, *V2;
5333 Constant *M;
5334 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))) &&
5335 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) &&
5336 V1->getType() == V2->getType() &&
5337 (LHS->hasOneUse() || RHS->hasOneUse())) {
5338 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5339 CmpInst::Predicate P = Cmp.getPredicate();
5340 Value *NewCmp = isa<ICmpInst>(Cmp) ? Builder.CreateICmp(P, V1, V2)
5341 : Builder.CreateFCmp(P, V1, V2);
5342 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5344 return nullptr;
5347 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5348 bool Changed = false;
5349 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5350 unsigned Op0Cplxity = getComplexity(Op0);
5351 unsigned Op1Cplxity = getComplexity(Op1);
5353 /// Orders the operands of the compare so that they are listed from most
5354 /// complex to least complex. This puts constants before unary operators,
5355 /// before binary operators.
5356 if (Op0Cplxity < Op1Cplxity ||
5357 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5358 I.swapOperands();
5359 std::swap(Op0, Op1);
5360 Changed = true;
5363 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1,
5364 SQ.getWithInstruction(&I)))
5365 return replaceInstUsesWith(I, V);
5367 // Comparing -val or val with non-zero is the same as just comparing val
5368 // ie, abs(val) != 0 -> val != 0
5369 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5370 Value *Cond, *SelectTrue, *SelectFalse;
5371 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5372 m_Value(SelectFalse)))) {
5373 if (Value *V = dyn_castNegVal(SelectTrue)) {
5374 if (V == SelectFalse)
5375 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5377 else if (Value *V = dyn_castNegVal(SelectFalse)) {
5378 if (V == SelectTrue)
5379 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5384 if (Op0->getType()->isIntOrIntVectorTy(1))
5385 if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5386 return Res;
5388 if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
5389 return NewICmp;
5391 if (Instruction *Res = foldICmpWithConstant(I))
5392 return Res;
5394 if (Instruction *Res = foldICmpWithDominatingICmp(I))
5395 return Res;
5397 if (Instruction *Res = foldICmpBinOp(I))
5398 return Res;
5400 if (Instruction *Res = foldICmpUsingKnownBits(I))
5401 return Res;
5403 // Test if the ICmpInst instruction is used exclusively by a select as
5404 // part of a minimum or maximum operation. If so, refrain from doing
5405 // any other folding. This helps out other analyses which understand
5406 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5407 // and CodeGen. And in this case, at least one of the comparison
5408 // operands has at least one user besides the compare (the select),
5409 // which would often largely negate the benefit of folding anyway.
5411 // Do the same for the other patterns recognized by matchSelectPattern.
5412 if (I.hasOneUse())
5413 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5414 Value *A, *B;
5415 SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5416 if (SPR.Flavor != SPF_UNKNOWN)
5417 return nullptr;
5420 // Do this after checking for min/max to prevent infinite looping.
5421 if (Instruction *Res = foldICmpWithZero(I))
5422 return Res;
5424 // FIXME: We only do this after checking for min/max to prevent infinite
5425 // looping caused by a reverse canonicalization of these patterns for min/max.
5426 // FIXME: The organization of folds is a mess. These would naturally go into
5427 // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5428 // down here after the min/max restriction.
5429 ICmpInst::Predicate Pred = I.getPredicate();
5430 const APInt *C;
5431 if (match(Op1, m_APInt(C))) {
5432 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set
5433 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5434 Constant *Zero = Constant::getNullValue(Op0->getType());
5435 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5438 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear
5439 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5440 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5441 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5445 if (Instruction *Res = foldICmpInstWithConstant(I))
5446 return Res;
5448 if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5449 return Res;
5451 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5452 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5453 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5454 return NI;
5455 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5456 if (Instruction *NI = foldGEPICmp(GEP, Op0,
5457 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5458 return NI;
5460 // Try to optimize equality comparisons against alloca-based pointers.
5461 if (Op0->getType()->isPointerTy() && I.isEquality()) {
5462 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5463 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
5464 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5465 return New;
5466 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
5467 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5468 return New;
5471 if (Instruction *Res = foldICmpBitCast(I, Builder))
5472 return Res;
5474 if (Instruction *R = foldICmpWithCastOp(I))
5475 return R;
5477 if (Instruction *Res = foldICmpWithMinMax(I))
5478 return Res;
5481 Value *A, *B;
5482 // Transform (A & ~B) == 0 --> (A & B) != 0
5483 // and (A & ~B) != 0 --> (A & B) == 0
5484 // if A is a power of 2.
5485 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5486 match(Op1, m_Zero()) &&
5487 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5488 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5489 Op1);
5491 // ~X < ~Y --> Y < X
5492 // ~X < C --> X > ~C
5493 if (match(Op0, m_Not(m_Value(A)))) {
5494 if (match(Op1, m_Not(m_Value(B))))
5495 return new ICmpInst(I.getPredicate(), B, A);
5497 const APInt *C;
5498 if (match(Op1, m_APInt(C)))
5499 return new ICmpInst(I.getSwappedPredicate(), A,
5500 ConstantInt::get(Op1->getType(), ~(*C)));
5503 Instruction *AddI = nullptr;
5504 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5505 m_Instruction(AddI))) &&
5506 isa<IntegerType>(A->getType())) {
5507 Value *Result;
5508 Constant *Overflow;
5509 if (OptimizeOverflowCheck(Instruction::Add, /*Signed*/false, A, B,
5510 *AddI, Result, Overflow)) {
5511 replaceInstUsesWith(*AddI, Result);
5512 return replaceInstUsesWith(I, Overflow);
5516 // (zext a) * (zext b) --> llvm.umul.with.overflow.
5517 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5518 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5519 return R;
5521 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5522 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5523 return R;
5527 if (Instruction *Res = foldICmpEquality(I))
5528 return Res;
5530 // The 'cmpxchg' instruction returns an aggregate containing the old value and
5531 // an i1 which indicates whether or not we successfully did the swap.
5533 // Replace comparisons between the old value and the expected value with the
5534 // indicator that 'cmpxchg' returns.
5536 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
5537 // spuriously fail. In those cases, the old value may equal the expected
5538 // value but it is possible for the swap to not occur.
5539 if (I.getPredicate() == ICmpInst::ICMP_EQ)
5540 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5541 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5542 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5543 !ACXI->isWeak())
5544 return ExtractValueInst::Create(ACXI, 1);
5547 Value *X;
5548 const APInt *C;
5549 // icmp X+Cst, X
5550 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5551 return foldICmpAddOpConst(X, *C, I.getPredicate());
5553 // icmp X, X+Cst
5554 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5555 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5558 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5559 return Res;
5561 if (I.getType()->isVectorTy())
5562 if (Instruction *Res = foldVectorCmp(I, Builder))
5563 return Res;
5565 return Changed ? &I : nullptr;
5568 /// Fold fcmp ([us]itofp x, cst) if possible.
5569 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
5570 Constant *RHSC) {
5571 if (!isa<ConstantFP>(RHSC)) return nullptr;
5572 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5574 // Get the width of the mantissa. We don't want to hack on conversions that
5575 // might lose information from the integer, e.g. "i64 -> float"
5576 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5577 if (MantissaWidth == -1) return nullptr; // Unknown.
5579 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5581 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5583 if (I.isEquality()) {
5584 FCmpInst::Predicate P = I.getPredicate();
5585 bool IsExact = false;
5586 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5587 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5589 // If the floating point constant isn't an integer value, we know if we will
5590 // ever compare equal / not equal to it.
5591 if (!IsExact) {
5592 // TODO: Can never be -0.0 and other non-representable values
5593 APFloat RHSRoundInt(RHS);
5594 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5595 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
5596 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5597 return replaceInstUsesWith(I, Builder.getFalse());
5599 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5600 return replaceInstUsesWith(I, Builder.getTrue());
5604 // TODO: If the constant is exactly representable, is it always OK to do
5605 // equality compares as integer?
5608 // Check to see that the input is converted from an integer type that is small
5609 // enough that preserves all bits. TODO: check here for "known" sign bits.
5610 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5611 unsigned InputSize = IntTy->getScalarSizeInBits();
5613 // Following test does NOT adjust InputSize downwards for signed inputs,
5614 // because the most negative value still requires all the mantissa bits
5615 // to distinguish it from one less than that value.
5616 if ((int)InputSize > MantissaWidth) {
5617 // Conversion would lose accuracy. Check if loss can impact comparison.
5618 int Exp = ilogb(RHS);
5619 if (Exp == APFloat::IEK_Inf) {
5620 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5621 if (MaxExponent < (int)InputSize - !LHSUnsigned)
5622 // Conversion could create infinity.
5623 return nullptr;
5624 } else {
5625 // Note that if RHS is zero or NaN, then Exp is negative
5626 // and first condition is trivially false.
5627 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5628 // Conversion could affect comparison.
5629 return nullptr;
5633 // Otherwise, we can potentially simplify the comparison. We know that it
5634 // will always come through as an integer value and we know the constant is
5635 // not a NAN (it would have been previously simplified).
5636 assert(!RHS.isNaN() && "NaN comparison not already folded!");
5638 ICmpInst::Predicate Pred;
5639 switch (I.getPredicate()) {
5640 default: llvm_unreachable("Unexpected predicate!");
5641 case FCmpInst::FCMP_UEQ:
5642 case FCmpInst::FCMP_OEQ:
5643 Pred = ICmpInst::ICMP_EQ;
5644 break;
5645 case FCmpInst::FCMP_UGT:
5646 case FCmpInst::FCMP_OGT:
5647 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5648 break;
5649 case FCmpInst::FCMP_UGE:
5650 case FCmpInst::FCMP_OGE:
5651 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5652 break;
5653 case FCmpInst::FCMP_ULT:
5654 case FCmpInst::FCMP_OLT:
5655 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5656 break;
5657 case FCmpInst::FCMP_ULE:
5658 case FCmpInst::FCMP_OLE:
5659 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5660 break;
5661 case FCmpInst::FCMP_UNE:
5662 case FCmpInst::FCMP_ONE:
5663 Pred = ICmpInst::ICMP_NE;
5664 break;
5665 case FCmpInst::FCMP_ORD:
5666 return replaceInstUsesWith(I, Builder.getTrue());
5667 case FCmpInst::FCMP_UNO:
5668 return replaceInstUsesWith(I, Builder.getFalse());
5671 // Now we know that the APFloat is a normal number, zero or inf.
5673 // See if the FP constant is too large for the integer. For example,
5674 // comparing an i8 to 300.0.
5675 unsigned IntWidth = IntTy->getScalarSizeInBits();
5677 if (!LHSUnsigned) {
5678 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5679 // and large values.
5680 APFloat SMax(RHS.getSemantics());
5681 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5682 APFloat::rmNearestTiesToEven);
5683 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
5684 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5685 Pred == ICmpInst::ICMP_SLE)
5686 return replaceInstUsesWith(I, Builder.getTrue());
5687 return replaceInstUsesWith(I, Builder.getFalse());
5689 } else {
5690 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5691 // +INF and large values.
5692 APFloat UMax(RHS.getSemantics());
5693 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5694 APFloat::rmNearestTiesToEven);
5695 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
5696 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
5697 Pred == ICmpInst::ICMP_ULE)
5698 return replaceInstUsesWith(I, Builder.getTrue());
5699 return replaceInstUsesWith(I, Builder.getFalse());
5703 if (!LHSUnsigned) {
5704 // See if the RHS value is < SignedMin.
5705 APFloat SMin(RHS.getSemantics());
5706 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5707 APFloat::rmNearestTiesToEven);
5708 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5709 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5710 Pred == ICmpInst::ICMP_SGE)
5711 return replaceInstUsesWith(I, Builder.getTrue());
5712 return replaceInstUsesWith(I, Builder.getFalse());
5714 } else {
5715 // See if the RHS value is < UnsignedMin.
5716 APFloat SMin(RHS.getSemantics());
5717 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
5718 APFloat::rmNearestTiesToEven);
5719 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
5720 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5721 Pred == ICmpInst::ICMP_UGE)
5722 return replaceInstUsesWith(I, Builder.getTrue());
5723 return replaceInstUsesWith(I, Builder.getFalse());
5727 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5728 // [0, UMAX], but it may still be fractional. See if it is fractional by
5729 // casting the FP value to the integer value and back, checking for equality.
5730 // Don't do this for zero, because -0.0 is not fractional.
5731 Constant *RHSInt = LHSUnsigned
5732 ? ConstantExpr::getFPToUI(RHSC, IntTy)
5733 : ConstantExpr::getFPToSI(RHSC, IntTy);
5734 if (!RHS.isZero()) {
5735 bool Equal = LHSUnsigned
5736 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5737 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5738 if (!Equal) {
5739 // If we had a comparison against a fractional value, we have to adjust
5740 // the compare predicate and sometimes the value. RHSC is rounded towards
5741 // zero at this point.
5742 switch (Pred) {
5743 default: llvm_unreachable("Unexpected integer comparison!");
5744 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
5745 return replaceInstUsesWith(I, Builder.getTrue());
5746 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
5747 return replaceInstUsesWith(I, Builder.getFalse());
5748 case ICmpInst::ICMP_ULE:
5749 // (float)int <= 4.4 --> int <= 4
5750 // (float)int <= -4.4 --> false
5751 if (RHS.isNegative())
5752 return replaceInstUsesWith(I, Builder.getFalse());
5753 break;
5754 case ICmpInst::ICMP_SLE:
5755 // (float)int <= 4.4 --> int <= 4
5756 // (float)int <= -4.4 --> int < -4
5757 if (RHS.isNegative())
5758 Pred = ICmpInst::ICMP_SLT;
5759 break;
5760 case ICmpInst::ICMP_ULT:
5761 // (float)int < -4.4 --> false
5762 // (float)int < 4.4 --> int <= 4
5763 if (RHS.isNegative())
5764 return replaceInstUsesWith(I, Builder.getFalse());
5765 Pred = ICmpInst::ICMP_ULE;
5766 break;
5767 case ICmpInst::ICMP_SLT:
5768 // (float)int < -4.4 --> int < -4
5769 // (float)int < 4.4 --> int <= 4
5770 if (!RHS.isNegative())
5771 Pred = ICmpInst::ICMP_SLE;
5772 break;
5773 case ICmpInst::ICMP_UGT:
5774 // (float)int > 4.4 --> int > 4
5775 // (float)int > -4.4 --> true
5776 if (RHS.isNegative())
5777 return replaceInstUsesWith(I, Builder.getTrue());
5778 break;
5779 case ICmpInst::ICMP_SGT:
5780 // (float)int > 4.4 --> int > 4
5781 // (float)int > -4.4 --> int >= -4
5782 if (RHS.isNegative())
5783 Pred = ICmpInst::ICMP_SGE;
5784 break;
5785 case ICmpInst::ICMP_UGE:
5786 // (float)int >= -4.4 --> true
5787 // (float)int >= 4.4 --> int > 4
5788 if (RHS.isNegative())
5789 return replaceInstUsesWith(I, Builder.getTrue());
5790 Pred = ICmpInst::ICMP_UGT;
5791 break;
5792 case ICmpInst::ICMP_SGE:
5793 // (float)int >= -4.4 --> int >= -4
5794 // (float)int >= 4.4 --> int > 4
5795 if (!RHS.isNegative())
5796 Pred = ICmpInst::ICMP_SGT;
5797 break;
5802 // Lower this FP comparison into an appropriate integer version of the
5803 // comparison.
5804 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5807 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
5808 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
5809 Constant *RHSC) {
5810 // When C is not 0.0 and infinities are not allowed:
5811 // (C / X) < 0.0 is a sign-bit test of X
5812 // (C / X) < 0.0 --> X < 0.0 (if C is positive)
5813 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
5815 // Proof:
5816 // Multiply (C / X) < 0.0 by X * X / C.
5817 // - X is non zero, if it is the flag 'ninf' is violated.
5818 // - C defines the sign of X * X * C. Thus it also defines whether to swap
5819 // the predicate. C is also non zero by definition.
5821 // Thus X * X / C is non zero and the transformation is valid. [qed]
5823 FCmpInst::Predicate Pred = I.getPredicate();
5825 // Check that predicates are valid.
5826 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
5827 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
5828 return nullptr;
5830 // Check that RHS operand is zero.
5831 if (!match(RHSC, m_AnyZeroFP()))
5832 return nullptr;
5834 // Check fastmath flags ('ninf').
5835 if (!LHSI->hasNoInfs() || !I.hasNoInfs())
5836 return nullptr;
5838 // Check the properties of the dividend. It must not be zero to avoid a
5839 // division by zero (see Proof).
5840 const APFloat *C;
5841 if (!match(LHSI->getOperand(0), m_APFloat(C)))
5842 return nullptr;
5844 if (C->isZero())
5845 return nullptr;
5847 // Get swapped predicate if necessary.
5848 if (C->isNegative())
5849 Pred = I.getSwappedPredicate();
5851 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
5854 /// Optimize fabs(X) compared with zero.
5855 static Instruction *foldFabsWithFcmpZero(FCmpInst &I) {
5856 Value *X;
5857 if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) ||
5858 !match(I.getOperand(1), m_PosZeroFP()))
5859 return nullptr;
5861 auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
5862 I->setPredicate(P);
5863 I->setOperand(0, X);
5864 return I;
5867 switch (I.getPredicate()) {
5868 case FCmpInst::FCMP_UGE:
5869 case FCmpInst::FCMP_OLT:
5870 // fabs(X) >= 0.0 --> true
5871 // fabs(X) < 0.0 --> false
5872 llvm_unreachable("fcmp should have simplified");
5874 case FCmpInst::FCMP_OGT:
5875 // fabs(X) > 0.0 --> X != 0.0
5876 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
5878 case FCmpInst::FCMP_UGT:
5879 // fabs(X) u> 0.0 --> X u!= 0.0
5880 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
5882 case FCmpInst::FCMP_OLE:
5883 // fabs(X) <= 0.0 --> X == 0.0
5884 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
5886 case FCmpInst::FCMP_ULE:
5887 // fabs(X) u<= 0.0 --> X u== 0.0
5888 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
5890 case FCmpInst::FCMP_OGE:
5891 // fabs(X) >= 0.0 --> !isnan(X)
5892 assert(!I.hasNoNaNs() && "fcmp should have simplified");
5893 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
5895 case FCmpInst::FCMP_ULT:
5896 // fabs(X) u< 0.0 --> isnan(X)
5897 assert(!I.hasNoNaNs() && "fcmp should have simplified");
5898 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
5900 case FCmpInst::FCMP_OEQ:
5901 case FCmpInst::FCMP_UEQ:
5902 case FCmpInst::FCMP_ONE:
5903 case FCmpInst::FCMP_UNE:
5904 case FCmpInst::FCMP_ORD:
5905 case FCmpInst::FCMP_UNO:
5906 // Look through the fabs() because it doesn't change anything but the sign.
5907 // fabs(X) == 0.0 --> X == 0.0,
5908 // fabs(X) != 0.0 --> X != 0.0
5909 // isnan(fabs(X)) --> isnan(X)
5910 // !isnan(fabs(X) --> !isnan(X)
5911 return replacePredAndOp0(&I, I.getPredicate(), X);
5913 default:
5914 return nullptr;
5918 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5919 bool Changed = false;
5921 /// Orders the operands of the compare so that they are listed from most
5922 /// complex to least complex. This puts constants before unary operators,
5923 /// before binary operators.
5924 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
5925 I.swapOperands();
5926 Changed = true;
5929 const CmpInst::Predicate Pred = I.getPredicate();
5930 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5931 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
5932 SQ.getWithInstruction(&I)))
5933 return replaceInstUsesWith(I, V);
5935 // Simplify 'fcmp pred X, X'
5936 Type *OpType = Op0->getType();
5937 assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
5938 if (Op0 == Op1) {
5939 switch (Pred) {
5940 default: break;
5941 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5942 case FCmpInst::FCMP_ULT: // True if unordered or less than
5943 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5944 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5945 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5946 I.setPredicate(FCmpInst::FCMP_UNO);
5947 I.setOperand(1, Constant::getNullValue(OpType));
5948 return &I;
5950 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5951 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5952 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5953 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5954 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5955 I.setPredicate(FCmpInst::FCMP_ORD);
5956 I.setOperand(1, Constant::getNullValue(OpType));
5957 return &I;
5961 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
5962 // then canonicalize the operand to 0.0.
5963 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
5964 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) {
5965 I.setOperand(0, ConstantFP::getNullValue(OpType));
5966 return &I;
5968 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) {
5969 I.setOperand(1, ConstantFP::getNullValue(OpType));
5970 return &I;
5974 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
5975 Value *X, *Y;
5976 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
5977 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
5979 // Test if the FCmpInst instruction is used exclusively by a select as
5980 // part of a minimum or maximum operation. If so, refrain from doing
5981 // any other folding. This helps out other analyses which understand
5982 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5983 // and CodeGen. And in this case, at least one of the comparison
5984 // operands has at least one user besides the compare (the select),
5985 // which would often largely negate the benefit of folding anyway.
5986 if (I.hasOneUse())
5987 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5988 Value *A, *B;
5989 SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5990 if (SPR.Flavor != SPF_UNKNOWN)
5991 return nullptr;
5994 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
5995 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
5996 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) {
5997 I.setOperand(1, ConstantFP::getNullValue(OpType));
5998 return &I;
6001 // Handle fcmp with instruction LHS and constant RHS.
6002 Instruction *LHSI;
6003 Constant *RHSC;
6004 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6005 switch (LHSI->getOpcode()) {
6006 case Instruction::PHI:
6007 // Only fold fcmp into the PHI if the phi and fcmp are in the same
6008 // block. If in the same block, we're encouraging jump threading. If
6009 // not, we are just pessimizing the code by making an i1 phi.
6010 if (LHSI->getParent() == I.getParent())
6011 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6012 return NV;
6013 break;
6014 case Instruction::SIToFP:
6015 case Instruction::UIToFP:
6016 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6017 return NV;
6018 break;
6019 case Instruction::FDiv:
6020 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6021 return NV;
6022 break;
6023 case Instruction::Load:
6024 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6025 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6026 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6027 !cast<LoadInst>(LHSI)->isVolatile())
6028 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6029 return Res;
6030 break;
6034 if (Instruction *R = foldFabsWithFcmpZero(I))
6035 return R;
6037 if (match(Op0, m_FNeg(m_Value(X)))) {
6038 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6039 Constant *C;
6040 if (match(Op1, m_Constant(C))) {
6041 Constant *NegC = ConstantExpr::getFNeg(C);
6042 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6046 if (match(Op0, m_FPExt(m_Value(X)))) {
6047 // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6048 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6049 return new FCmpInst(Pred, X, Y, "", &I);
6051 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6052 const APFloat *C;
6053 if (match(Op1, m_APFloat(C))) {
6054 const fltSemantics &FPSem =
6055 X->getType()->getScalarType()->getFltSemantics();
6056 bool Lossy;
6057 APFloat TruncC = *C;
6058 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6060 // Avoid lossy conversions and denormals.
6061 // Zero is a special case that's OK to convert.
6062 APFloat Fabs = TruncC;
6063 Fabs.clearSign();
6064 if (!Lossy &&
6065 ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) !=
6066 APFloat::cmpLessThan) || Fabs.isZero())) {
6067 Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6068 return new FCmpInst(Pred, X, NewC, "", &I);
6073 if (I.getType()->isVectorTy())
6074 if (Instruction *Res = foldVectorCmp(I, Builder))
6075 return Res;
6077 return Changed ? &I : nullptr;