1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
8 //===----------------------------------------------------------------------===//
12 #include "AMDGPUSubtarget.h"
13 #include "SIInstrInfo.h"
14 #include "SIMachineFunctionInfo.h"
15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
16 #include "llvm/ADT/DepthFirstIterator.h"
17 #include "llvm/CodeGen/LiveIntervals.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include "llvm/Target/TargetMachine.h"
25 #define DEBUG_TYPE "si-fold-operands"
30 struct FoldCandidate
{
33 MachineOperand
*OpToFold
;
38 unsigned char UseOpNo
;
39 MachineOperand::MachineOperandType Kind
;
42 FoldCandidate(MachineInstr
*MI
, unsigned OpNo
, MachineOperand
*FoldOp
,
43 bool Commuted_
= false,
45 UseMI(MI
), OpToFold(nullptr), ShrinkOpcode(ShrinkOp
), UseOpNo(OpNo
),
46 Kind(FoldOp
->getType()),
48 if (FoldOp
->isImm()) {
49 ImmToFold
= FoldOp
->getImm();
50 } else if (FoldOp
->isFI()) {
51 FrameIndexToFold
= FoldOp
->getIndex();
53 assert(FoldOp
->isReg() || FoldOp
->isGlobal());
59 return Kind
== MachineOperand::MO_FrameIndex
;
63 return Kind
== MachineOperand::MO_Immediate
;
67 return Kind
== MachineOperand::MO_Register
;
70 bool isGlobal() const { return Kind
== MachineOperand::MO_GlobalAddress
; }
72 bool isCommuted() const {
76 bool needsShrink() const {
77 return ShrinkOpcode
!= -1;
80 int getShrinkOpcode() const {
85 class SIFoldOperands
: public MachineFunctionPass
{
88 MachineRegisterInfo
*MRI
;
89 const SIInstrInfo
*TII
;
90 const SIRegisterInfo
*TRI
;
91 const GCNSubtarget
*ST
;
92 const SIMachineFunctionInfo
*MFI
;
94 void foldOperand(MachineOperand
&OpToFold
,
97 SmallVectorImpl
<FoldCandidate
> &FoldList
,
98 SmallVectorImpl
<MachineInstr
*> &CopiesToReplace
) const;
100 void foldInstOperand(MachineInstr
&MI
, MachineOperand
&OpToFold
) const;
102 const MachineOperand
*isClamp(const MachineInstr
&MI
) const;
103 bool tryFoldClamp(MachineInstr
&MI
);
105 std::pair
<const MachineOperand
*, int> isOMod(const MachineInstr
&MI
) const;
106 bool tryFoldOMod(MachineInstr
&MI
);
109 SIFoldOperands() : MachineFunctionPass(ID
) {
110 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
113 bool runOnMachineFunction(MachineFunction
&MF
) override
;
115 StringRef
getPassName() const override
{ return "SI Fold Operands"; }
117 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
118 AU
.setPreservesCFG();
119 MachineFunctionPass::getAnalysisUsage(AU
);
123 } // End anonymous namespace.
125 INITIALIZE_PASS(SIFoldOperands
, DEBUG_TYPE
,
126 "SI Fold Operands", false, false)
128 char SIFoldOperands::ID
= 0;
130 char &llvm::SIFoldOperandsID
= SIFoldOperands::ID
;
132 // Wrapper around isInlineConstant that understands special cases when
133 // instruction types are replaced during operand folding.
134 static bool isInlineConstantIfFolded(const SIInstrInfo
*TII
,
135 const MachineInstr
&UseMI
,
137 const MachineOperand
&OpToFold
) {
138 if (TII
->isInlineConstant(UseMI
, OpNo
, OpToFold
))
141 unsigned Opc
= UseMI
.getOpcode();
143 case AMDGPU::V_MAC_F32_e64
:
144 case AMDGPU::V_MAC_F16_e64
:
145 case AMDGPU::V_FMAC_F32_e64
:
146 case AMDGPU::V_FMAC_F16_e64
: {
147 // Special case for mac. Since this is replaced with mad when folded into
148 // src2, we need to check the legality for the final instruction.
149 int Src2Idx
= AMDGPU::getNamedOperandIdx(Opc
, AMDGPU::OpName::src2
);
150 if (static_cast<int>(OpNo
) == Src2Idx
) {
151 bool IsFMA
= Opc
== AMDGPU::V_FMAC_F32_e64
||
152 Opc
== AMDGPU::V_FMAC_F16_e64
;
153 bool IsF32
= Opc
== AMDGPU::V_MAC_F32_e64
||
154 Opc
== AMDGPU::V_FMAC_F32_e64
;
156 unsigned Opc
= IsFMA
?
157 (IsF32
? AMDGPU::V_FMA_F32
: AMDGPU::V_FMA_F16_gfx9
) :
158 (IsF32
? AMDGPU::V_MAD_F32
: AMDGPU::V_MAD_F16
);
159 const MCInstrDesc
&MadDesc
= TII
->get(Opc
);
160 return TII
->isInlineConstant(OpToFold
, MadDesc
.OpInfo
[OpNo
].OperandType
);
169 // TODO: Add heuristic that the frame index might not fit in the addressing mode
170 // immediate offset to avoid materializing in loops.
171 static bool frameIndexMayFold(const SIInstrInfo
*TII
,
172 const MachineInstr
&UseMI
,
174 const MachineOperand
&OpToFold
) {
175 return OpToFold
.isFI() &&
176 (TII
->isMUBUF(UseMI
) || TII
->isFLATScratch(UseMI
)) &&
177 OpNo
== AMDGPU::getNamedOperandIdx(UseMI
.getOpcode(), AMDGPU::OpName::vaddr
);
180 FunctionPass
*llvm::createSIFoldOperandsPass() {
181 return new SIFoldOperands();
184 static bool updateOperand(FoldCandidate
&Fold
,
185 const SIInstrInfo
&TII
,
186 const TargetRegisterInfo
&TRI
,
187 const GCNSubtarget
&ST
) {
188 MachineInstr
*MI
= Fold
.UseMI
;
189 MachineOperand
&Old
= MI
->getOperand(Fold
.UseOpNo
);
193 if (MI
->getDesc().TSFlags
& SIInstrFlags::IsPacked
&&
194 !(MI
->getDesc().TSFlags
& SIInstrFlags::IsMAI
) &&
195 AMDGPU::isInlinableLiteralV216(static_cast<uint16_t>(Fold
.ImmToFold
),
196 ST
.hasInv2PiInlineImm())) {
197 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is
199 unsigned Opcode
= MI
->getOpcode();
200 int OpNo
= MI
->getOperandNo(&Old
);
202 if (OpNo
== AMDGPU::getNamedOperandIdx(Opcode
, AMDGPU::OpName::src0
))
203 ModIdx
= AMDGPU::OpName::src0_modifiers
;
204 else if (OpNo
== AMDGPU::getNamedOperandIdx(Opcode
, AMDGPU::OpName::src1
))
205 ModIdx
= AMDGPU::OpName::src1_modifiers
;
206 else if (OpNo
== AMDGPU::getNamedOperandIdx(Opcode
, AMDGPU::OpName::src2
))
207 ModIdx
= AMDGPU::OpName::src2_modifiers
;
208 assert(ModIdx
!= -1);
209 ModIdx
= AMDGPU::getNamedOperandIdx(Opcode
, ModIdx
);
210 MachineOperand
&Mod
= MI
->getOperand(ModIdx
);
211 unsigned Val
= Mod
.getImm();
212 if ((Val
& SISrcMods::OP_SEL_0
) || !(Val
& SISrcMods::OP_SEL_1
))
214 // Only apply the following transformation if that operand requries
215 // a packed immediate.
216 switch (TII
.get(Opcode
).OpInfo
[OpNo
].OperandType
) {
217 case AMDGPU::OPERAND_REG_IMM_V2FP16
:
218 case AMDGPU::OPERAND_REG_IMM_V2INT16
:
219 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16
:
220 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16
:
221 // If upper part is all zero we do not need op_sel_hi.
222 if (!isUInt
<16>(Fold
.ImmToFold
)) {
223 if (!(Fold
.ImmToFold
& 0xffff)) {
224 Mod
.setImm(Mod
.getImm() | SISrcMods::OP_SEL_0
);
225 Mod
.setImm(Mod
.getImm() & ~SISrcMods::OP_SEL_1
);
226 Old
.ChangeToImmediate((Fold
.ImmToFold
>> 16) & 0xffff);
229 Mod
.setImm(Mod
.getImm() & ~SISrcMods::OP_SEL_1
);
230 Old
.ChangeToImmediate(Fold
.ImmToFold
& 0xffff);
240 if ((Fold
.isImm() || Fold
.isFI() || Fold
.isGlobal()) && Fold
.needsShrink()) {
241 MachineBasicBlock
*MBB
= MI
->getParent();
242 auto Liveness
= MBB
->computeRegisterLiveness(&TRI
, AMDGPU::VCC
, MI
);
243 if (Liveness
!= MachineBasicBlock::LQR_Dead
)
246 MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
247 int Op32
= Fold
.getShrinkOpcode();
248 MachineOperand
&Dst0
= MI
->getOperand(0);
249 MachineOperand
&Dst1
= MI
->getOperand(1);
250 assert(Dst0
.isDef() && Dst1
.isDef());
252 bool HaveNonDbgCarryUse
= !MRI
.use_nodbg_empty(Dst1
.getReg());
254 const TargetRegisterClass
*Dst0RC
= MRI
.getRegClass(Dst0
.getReg());
255 Register NewReg0
= MRI
.createVirtualRegister(Dst0RC
);
257 MachineInstr
*Inst32
= TII
.buildShrunkInst(*MI
, Op32
);
259 if (HaveNonDbgCarryUse
) {
260 BuildMI(*MBB
, MI
, MI
->getDebugLoc(), TII
.get(AMDGPU::COPY
), Dst1
.getReg())
261 .addReg(AMDGPU::VCC
, RegState::Kill
);
264 // Keep the old instruction around to avoid breaking iterators, but
265 // replace it with a dummy instruction to remove uses.
267 // FIXME: We should not invert how this pass looks at operands to avoid
268 // this. Should track set of foldable movs instead of looking for uses
269 // when looking at a use.
270 Dst0
.setReg(NewReg0
);
271 for (unsigned I
= MI
->getNumOperands() - 1; I
> 0; --I
)
272 MI
->RemoveOperand(I
);
273 MI
->setDesc(TII
.get(AMDGPU::IMPLICIT_DEF
));
275 if (Fold
.isCommuted())
276 TII
.commuteInstruction(*Inst32
, false);
280 assert(!Fold
.needsShrink() && "not handled");
283 Old
.ChangeToImmediate(Fold
.ImmToFold
);
287 if (Fold
.isGlobal()) {
288 Old
.ChangeToGA(Fold
.OpToFold
->getGlobal(), Fold
.OpToFold
->getOffset(),
289 Fold
.OpToFold
->getTargetFlags());
294 Old
.ChangeToFrameIndex(Fold
.FrameIndexToFold
);
298 MachineOperand
*New
= Fold
.OpToFold
;
299 Old
.substVirtReg(New
->getReg(), New
->getSubReg(), TRI
);
300 Old
.setIsUndef(New
->isUndef());
304 static bool isUseMIInFoldList(ArrayRef
<FoldCandidate
> FoldList
,
305 const MachineInstr
*MI
) {
306 for (auto Candidate
: FoldList
) {
307 if (Candidate
.UseMI
== MI
)
313 static bool tryAddToFoldList(SmallVectorImpl
<FoldCandidate
> &FoldList
,
314 MachineInstr
*MI
, unsigned OpNo
,
315 MachineOperand
*OpToFold
,
316 const SIInstrInfo
*TII
) {
317 if (!TII
->isOperandLegal(*MI
, OpNo
, OpToFold
)) {
318 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
319 unsigned Opc
= MI
->getOpcode();
320 if ((Opc
== AMDGPU::V_MAC_F32_e64
|| Opc
== AMDGPU::V_MAC_F16_e64
||
321 Opc
== AMDGPU::V_FMAC_F32_e64
|| Opc
== AMDGPU::V_FMAC_F16_e64
) &&
322 (int)OpNo
== AMDGPU::getNamedOperandIdx(Opc
, AMDGPU::OpName::src2
)) {
323 bool IsFMA
= Opc
== AMDGPU::V_FMAC_F32_e64
||
324 Opc
== AMDGPU::V_FMAC_F16_e64
;
325 bool IsF32
= Opc
== AMDGPU::V_MAC_F32_e64
||
326 Opc
== AMDGPU::V_FMAC_F32_e64
;
327 unsigned NewOpc
= IsFMA
?
328 (IsF32
? AMDGPU::V_FMA_F32
: AMDGPU::V_FMA_F16_gfx9
) :
329 (IsF32
? AMDGPU::V_MAD_F32
: AMDGPU::V_MAD_F16
);
331 // Check if changing this to a v_mad_{f16, f32} instruction will allow us
332 // to fold the operand.
333 MI
->setDesc(TII
->get(NewOpc
));
334 bool FoldAsMAD
= tryAddToFoldList(FoldList
, MI
, OpNo
, OpToFold
, TII
);
336 MI
->untieRegOperand(OpNo
);
339 MI
->setDesc(TII
->get(Opc
));
342 // Special case for s_setreg_b32
343 if (Opc
== AMDGPU::S_SETREG_B32
&& OpToFold
->isImm()) {
344 MI
->setDesc(TII
->get(AMDGPU::S_SETREG_IMM32_B32
));
345 FoldList
.push_back(FoldCandidate(MI
, OpNo
, OpToFold
));
349 // If we are already folding into another operand of MI, then
350 // we can't commute the instruction, otherwise we risk making the
351 // other fold illegal.
352 if (isUseMIInFoldList(FoldList
, MI
))
355 unsigned CommuteOpNo
= OpNo
;
357 // Operand is not legal, so try to commute the instruction to
358 // see if this makes it possible to fold.
359 unsigned CommuteIdx0
= TargetInstrInfo::CommuteAnyOperandIndex
;
360 unsigned CommuteIdx1
= TargetInstrInfo::CommuteAnyOperandIndex
;
361 bool CanCommute
= TII
->findCommutedOpIndices(*MI
, CommuteIdx0
, CommuteIdx1
);
364 if (CommuteIdx0
== OpNo
)
365 CommuteOpNo
= CommuteIdx1
;
366 else if (CommuteIdx1
== OpNo
)
367 CommuteOpNo
= CommuteIdx0
;
371 // One of operands might be an Imm operand, and OpNo may refer to it after
372 // the call of commuteInstruction() below. Such situations are avoided
373 // here explicitly as OpNo must be a register operand to be a candidate
374 // for memory folding.
375 if (CanCommute
&& (!MI
->getOperand(CommuteIdx0
).isReg() ||
376 !MI
->getOperand(CommuteIdx1
).isReg()))
380 !TII
->commuteInstruction(*MI
, false, CommuteIdx0
, CommuteIdx1
))
383 if (!TII
->isOperandLegal(*MI
, CommuteOpNo
, OpToFold
)) {
384 if ((Opc
== AMDGPU::V_ADD_I32_e64
||
385 Opc
== AMDGPU::V_SUB_I32_e64
||
386 Opc
== AMDGPU::V_SUBREV_I32_e64
) && // FIXME
387 (OpToFold
->isImm() || OpToFold
->isFI() || OpToFold
->isGlobal())) {
388 MachineRegisterInfo
&MRI
= MI
->getParent()->getParent()->getRegInfo();
390 // Verify the other operand is a VGPR, otherwise we would violate the
391 // constant bus restriction.
392 unsigned OtherIdx
= CommuteOpNo
== CommuteIdx0
? CommuteIdx1
: CommuteIdx0
;
393 MachineOperand
&OtherOp
= MI
->getOperand(OtherIdx
);
394 if (!OtherOp
.isReg() ||
395 !TII
->getRegisterInfo().isVGPR(MRI
, OtherOp
.getReg()))
398 assert(MI
->getOperand(1).isDef());
400 // Make sure to get the 32-bit version of the commuted opcode.
401 unsigned MaybeCommutedOpc
= MI
->getOpcode();
402 int Op32
= AMDGPU::getVOPe32(MaybeCommutedOpc
);
404 FoldList
.push_back(FoldCandidate(MI
, CommuteOpNo
, OpToFold
, true,
409 TII
->commuteInstruction(*MI
, false, CommuteIdx0
, CommuteIdx1
);
413 FoldList
.push_back(FoldCandidate(MI
, CommuteOpNo
, OpToFold
, true));
417 FoldList
.push_back(FoldCandidate(MI
, OpNo
, OpToFold
));
421 // If the use operand doesn't care about the value, this may be an operand only
422 // used for register indexing, in which case it is unsafe to fold.
423 static bool isUseSafeToFold(const SIInstrInfo
*TII
,
424 const MachineInstr
&MI
,
425 const MachineOperand
&UseMO
) {
426 return !UseMO
.isUndef() && !TII
->isSDWA(MI
);
427 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
430 static bool tryToFoldACImm(const SIInstrInfo
*TII
,
431 const MachineOperand
&OpToFold
,
434 SmallVectorImpl
<FoldCandidate
> &FoldList
) {
435 const MCInstrDesc
&Desc
= UseMI
->getDesc();
436 const MCOperandInfo
*OpInfo
= Desc
.OpInfo
;
437 if (!OpInfo
|| UseOpIdx
>= Desc
.getNumOperands())
440 uint8_t OpTy
= OpInfo
[UseOpIdx
].OperandType
;
441 if (OpTy
< AMDGPU::OPERAND_REG_INLINE_AC_FIRST
||
442 OpTy
> AMDGPU::OPERAND_REG_INLINE_AC_LAST
)
445 if (OpToFold
.isImm() && TII
->isInlineConstant(OpToFold
, OpTy
) &&
446 TII
->isOperandLegal(*UseMI
, UseOpIdx
, &OpToFold
)) {
447 UseMI
->getOperand(UseOpIdx
).ChangeToImmediate(OpToFold
.getImm());
451 if (!OpToFold
.isReg())
454 Register UseReg
= OpToFold
.getReg();
455 if (!Register::isVirtualRegister(UseReg
))
458 if (llvm::find_if(FoldList
, [UseMI
](const FoldCandidate
&FC
) {
459 return FC
.UseMI
== UseMI
; }) != FoldList
.end())
462 MachineRegisterInfo
&MRI
= UseMI
->getParent()->getParent()->getRegInfo();
463 const MachineInstr
*Def
= MRI
.getUniqueVRegDef(UseReg
);
464 if (!Def
|| !Def
->isRegSequence())
469 for (unsigned I
= 1, E
= Def
->getNumExplicitOperands(); I
< E
; I
+= 2) {
470 const MachineOperand
&Sub
= Def
->getOperand(I
);
471 if (!Sub
.isReg() || Sub
.getSubReg())
473 MachineInstr
*SubDef
= MRI
.getUniqueVRegDef(Sub
.getReg());
474 while (SubDef
&& !SubDef
->isMoveImmediate() &&
475 !SubDef
->getOperand(1).isImm() && TII
->isFoldableCopy(*SubDef
))
476 SubDef
= MRI
.getUniqueVRegDef(SubDef
->getOperand(1).getReg());
477 if (!SubDef
|| !SubDef
->isMoveImmediate() || !SubDef
->getOperand(1).isImm())
479 Op
= &SubDef
->getOperand(1);
480 auto SubImm
= Op
->getImm();
482 if (!TII
->isInlineConstant(SubDef
->getOperand(1), OpTy
))
489 return false; // Can only fold splat constants
492 if (!TII
->isOperandLegal(*UseMI
, UseOpIdx
, Op
))
495 FoldList
.push_back(FoldCandidate(UseMI
, UseOpIdx
, Op
));
499 void SIFoldOperands::foldOperand(
500 MachineOperand
&OpToFold
,
503 SmallVectorImpl
<FoldCandidate
> &FoldList
,
504 SmallVectorImpl
<MachineInstr
*> &CopiesToReplace
) const {
505 const MachineOperand
&UseOp
= UseMI
->getOperand(UseOpIdx
);
507 if (!isUseSafeToFold(TII
, *UseMI
, UseOp
))
510 // FIXME: Fold operands with subregs.
511 if (UseOp
.isReg() && OpToFold
.isReg()) {
512 if (UseOp
.isImplicit() || UseOp
.getSubReg() != AMDGPU::NoSubRegister
)
515 // Don't fold subregister extracts into tied operands, only if it is a full
516 // copy since a subregister use tied to a full register def doesn't really
517 // make sense. e.g. don't fold:
520 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %1<tied0>
523 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %0:sub1<tied0>
524 if (UseOp
.isTied() && OpToFold
.getSubReg() != AMDGPU::NoSubRegister
)
528 // Special case for REG_SEQUENCE: We can't fold literals into
529 // REG_SEQUENCE instructions, so we have to fold them into the
530 // uses of REG_SEQUENCE.
531 if (UseMI
->isRegSequence()) {
532 Register RegSeqDstReg
= UseMI
->getOperand(0).getReg();
533 unsigned RegSeqDstSubReg
= UseMI
->getOperand(UseOpIdx
+ 1).getImm();
535 MachineRegisterInfo::use_iterator Next
;
536 for (MachineRegisterInfo::use_iterator
537 RSUse
= MRI
->use_begin(RegSeqDstReg
), RSE
= MRI
->use_end();
538 RSUse
!= RSE
; RSUse
= Next
) {
539 Next
= std::next(RSUse
);
541 MachineInstr
*RSUseMI
= RSUse
->getParent();
543 if (tryToFoldACImm(TII
, UseMI
->getOperand(0), RSUseMI
,
544 RSUse
.getOperandNo(), FoldList
))
547 if (RSUse
->getSubReg() != RegSeqDstSubReg
)
550 foldOperand(OpToFold
, RSUseMI
, RSUse
.getOperandNo(), FoldList
,
557 if (tryToFoldACImm(TII
, OpToFold
, UseMI
, UseOpIdx
, FoldList
))
560 if (frameIndexMayFold(TII
, *UseMI
, UseOpIdx
, OpToFold
)) {
561 // Sanity check that this is a stack access.
562 // FIXME: Should probably use stack pseudos before frame lowering.
563 MachineOperand
*SOff
= TII
->getNamedOperand(*UseMI
, AMDGPU::OpName::soffset
);
564 if (!SOff
->isReg() || (SOff
->getReg() != MFI
->getScratchWaveOffsetReg() &&
565 SOff
->getReg() != MFI
->getStackPtrOffsetReg()))
568 if (TII
->getNamedOperand(*UseMI
, AMDGPU::OpName::srsrc
)->getReg() !=
569 MFI
->getScratchRSrcReg())
572 // A frame index will resolve to a positive constant, so it should always be
573 // safe to fold the addressing mode, even pre-GFX9.
574 UseMI
->getOperand(UseOpIdx
).ChangeToFrameIndex(OpToFold
.getIndex());
575 SOff
->setReg(MFI
->getStackPtrOffsetReg());
579 bool FoldingImmLike
=
580 OpToFold
.isImm() || OpToFold
.isFI() || OpToFold
.isGlobal();
582 if (FoldingImmLike
&& UseMI
->isCopy()) {
583 Register DestReg
= UseMI
->getOperand(0).getReg();
584 const TargetRegisterClass
*DestRC
= Register::isVirtualRegister(DestReg
)
585 ? MRI
->getRegClass(DestReg
)
586 : TRI
->getPhysRegClass(DestReg
);
588 Register SrcReg
= UseMI
->getOperand(1).getReg();
589 if (Register::isVirtualRegister(DestReg
) &&
590 Register::isVirtualRegister(SrcReg
)) {
591 const TargetRegisterClass
* SrcRC
= MRI
->getRegClass(SrcReg
);
592 if (TRI
->isSGPRClass(SrcRC
) && TRI
->hasVectorRegisters(DestRC
)) {
593 MachineRegisterInfo::use_iterator NextUse
;
594 SmallVector
<FoldCandidate
, 4> CopyUses
;
595 for (MachineRegisterInfo::use_iterator
596 Use
= MRI
->use_begin(DestReg
), E
= MRI
->use_end();
597 Use
!= E
; Use
= NextUse
) {
598 NextUse
= std::next(Use
);
599 FoldCandidate FC
= FoldCandidate(Use
->getParent(),
600 Use
.getOperandNo(), &UseMI
->getOperand(1));
601 CopyUses
.push_back(FC
);
603 for (auto & F
: CopyUses
) {
604 foldOperand(*F
.OpToFold
, F
.UseMI
, F
.UseOpNo
,
605 FoldList
, CopiesToReplace
);
610 if (DestRC
== &AMDGPU::AGPR_32RegClass
&&
611 TII
->isInlineConstant(OpToFold
, AMDGPU::OPERAND_REG_INLINE_C_INT32
)) {
612 UseMI
->setDesc(TII
->get(AMDGPU::V_ACCVGPR_WRITE_B32
));
613 UseMI
->getOperand(1).ChangeToImmediate(OpToFold
.getImm());
614 CopiesToReplace
.push_back(UseMI
);
618 // In order to fold immediates into copies, we need to change the
621 unsigned MovOp
= TII
->getMovOpcode(DestRC
);
622 if (MovOp
== AMDGPU::COPY
)
625 UseMI
->setDesc(TII
->get(MovOp
));
626 MachineInstr::mop_iterator ImpOpI
= UseMI
->implicit_operands().begin();
627 MachineInstr::mop_iterator ImpOpE
= UseMI
->implicit_operands().end();
628 while (ImpOpI
!= ImpOpE
) {
629 MachineInstr::mop_iterator Tmp
= ImpOpI
;
631 UseMI
->RemoveOperand(UseMI
->getOperandNo(Tmp
));
633 CopiesToReplace
.push_back(UseMI
);
635 if (UseMI
->isCopy() && OpToFold
.isReg() &&
636 Register::isVirtualRegister(UseMI
->getOperand(0).getReg()) &&
637 TRI
->isVectorRegister(*MRI
, UseMI
->getOperand(0).getReg()) &&
638 TRI
->isVectorRegister(*MRI
, UseMI
->getOperand(1).getReg()) &&
639 !UseMI
->getOperand(1).getSubReg()) {
640 unsigned Size
= TII
->getOpSize(*UseMI
, 1);
641 UseMI
->getOperand(1).setReg(OpToFold
.getReg());
642 UseMI
->getOperand(1).setSubReg(OpToFold
.getSubReg());
643 UseMI
->getOperand(1).setIsKill(false);
644 CopiesToReplace
.push_back(UseMI
);
645 OpToFold
.setIsKill(false);
648 if (TRI
->isAGPR(*MRI
, UseMI
->getOperand(0).getReg()) &&
649 TRI
->isVGPR(*MRI
, UseMI
->getOperand(1).getReg()))
650 UseMI
->setDesc(TII
->get(AMDGPU::V_ACCVGPR_WRITE_B32
));
651 else if (TRI
->isVGPR(*MRI
, UseMI
->getOperand(0).getReg()) &&
652 TRI
->isAGPR(*MRI
, UseMI
->getOperand(1).getReg()))
653 UseMI
->setDesc(TII
->get(AMDGPU::V_ACCVGPR_READ_B32
));
657 unsigned UseOpc
= UseMI
->getOpcode();
658 if (UseOpc
== AMDGPU::V_READFIRSTLANE_B32
||
659 (UseOpc
== AMDGPU::V_READLANE_B32
&&
661 AMDGPU::getNamedOperandIdx(UseOpc
, AMDGPU::OpName::src0
))) {
662 // %vgpr = V_MOV_B32 imm
663 // %sgpr = V_READFIRSTLANE_B32 %vgpr
665 // %sgpr = S_MOV_B32 imm
666 if (FoldingImmLike
) {
667 if (execMayBeModifiedBeforeUse(*MRI
,
668 UseMI
->getOperand(UseOpIdx
).getReg(),
669 *OpToFold
.getParent(),
673 UseMI
->setDesc(TII
->get(AMDGPU::S_MOV_B32
));
675 // FIXME: ChangeToImmediate should clear subreg
676 UseMI
->getOperand(1).setSubReg(0);
677 if (OpToFold
.isImm())
678 UseMI
->getOperand(1).ChangeToImmediate(OpToFold
.getImm());
680 UseMI
->getOperand(1).ChangeToFrameIndex(OpToFold
.getIndex());
681 UseMI
->RemoveOperand(2); // Remove exec read (or src1 for readlane)
685 if (OpToFold
.isReg() && TRI
->isSGPRReg(*MRI
, OpToFold
.getReg())) {
686 if (execMayBeModifiedBeforeUse(*MRI
,
687 UseMI
->getOperand(UseOpIdx
).getReg(),
688 *OpToFold
.getParent(),
692 // %vgpr = COPY %sgpr0
693 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr
695 // %sgpr1 = COPY %sgpr0
696 UseMI
->setDesc(TII
->get(AMDGPU::COPY
));
697 UseMI
->getOperand(1).setReg(OpToFold
.getReg());
698 UseMI
->getOperand(1).setSubReg(OpToFold
.getSubReg());
699 UseMI
->getOperand(1).setIsKill(false);
700 UseMI
->RemoveOperand(2); // Remove exec read (or src1 for readlane)
705 const MCInstrDesc
&UseDesc
= UseMI
->getDesc();
707 // Don't fold into target independent nodes. Target independent opcodes
708 // don't have defined register classes.
709 if (UseDesc
.isVariadic() ||
710 UseOp
.isImplicit() ||
711 UseDesc
.OpInfo
[UseOpIdx
].RegClass
== -1)
715 if (!FoldingImmLike
) {
716 tryAddToFoldList(FoldList
, UseMI
, UseOpIdx
, &OpToFold
, TII
);
718 // FIXME: We could try to change the instruction from 64-bit to 32-bit
719 // to enable more folding opportunites. The shrink operands pass
720 // already does this.
725 const MCInstrDesc
&FoldDesc
= OpToFold
.getParent()->getDesc();
726 const TargetRegisterClass
*FoldRC
=
727 TRI
->getRegClass(FoldDesc
.OpInfo
[0].RegClass
);
729 // Split 64-bit constants into 32-bits for folding.
730 if (UseOp
.getSubReg() && AMDGPU::getRegBitWidth(FoldRC
->getID()) == 64) {
731 Register UseReg
= UseOp
.getReg();
732 const TargetRegisterClass
*UseRC
= MRI
->getRegClass(UseReg
);
734 if (AMDGPU::getRegBitWidth(UseRC
->getID()) != 64)
737 APInt
Imm(64, OpToFold
.getImm());
738 if (UseOp
.getSubReg() == AMDGPU::sub0
) {
739 Imm
= Imm
.getLoBits(32);
741 assert(UseOp
.getSubReg() == AMDGPU::sub1
);
742 Imm
= Imm
.getHiBits(32);
745 MachineOperand ImmOp
= MachineOperand::CreateImm(Imm
.getSExtValue());
746 tryAddToFoldList(FoldList
, UseMI
, UseOpIdx
, &ImmOp
, TII
);
752 tryAddToFoldList(FoldList
, UseMI
, UseOpIdx
, &OpToFold
, TII
);
755 static bool evalBinaryInstruction(unsigned Opcode
, int32_t &Result
,
756 uint32_t LHS
, uint32_t RHS
) {
758 case AMDGPU::V_AND_B32_e64
:
759 case AMDGPU::V_AND_B32_e32
:
760 case AMDGPU::S_AND_B32
:
763 case AMDGPU::V_OR_B32_e64
:
764 case AMDGPU::V_OR_B32_e32
:
765 case AMDGPU::S_OR_B32
:
768 case AMDGPU::V_XOR_B32_e64
:
769 case AMDGPU::V_XOR_B32_e32
:
770 case AMDGPU::S_XOR_B32
:
773 case AMDGPU::V_LSHL_B32_e64
:
774 case AMDGPU::V_LSHL_B32_e32
:
775 case AMDGPU::S_LSHL_B32
:
776 // The instruction ignores the high bits for out of bounds shifts.
777 Result
= LHS
<< (RHS
& 31);
779 case AMDGPU::V_LSHLREV_B32_e64
:
780 case AMDGPU::V_LSHLREV_B32_e32
:
781 Result
= RHS
<< (LHS
& 31);
783 case AMDGPU::V_LSHR_B32_e64
:
784 case AMDGPU::V_LSHR_B32_e32
:
785 case AMDGPU::S_LSHR_B32
:
786 Result
= LHS
>> (RHS
& 31);
788 case AMDGPU::V_LSHRREV_B32_e64
:
789 case AMDGPU::V_LSHRREV_B32_e32
:
790 Result
= RHS
>> (LHS
& 31);
792 case AMDGPU::V_ASHR_I32_e64
:
793 case AMDGPU::V_ASHR_I32_e32
:
794 case AMDGPU::S_ASHR_I32
:
795 Result
= static_cast<int32_t>(LHS
) >> (RHS
& 31);
797 case AMDGPU::V_ASHRREV_I32_e64
:
798 case AMDGPU::V_ASHRREV_I32_e32
:
799 Result
= static_cast<int32_t>(RHS
) >> (LHS
& 31);
806 static unsigned getMovOpc(bool IsScalar
) {
807 return IsScalar
? AMDGPU::S_MOV_B32
: AMDGPU::V_MOV_B32_e32
;
810 /// Remove any leftover implicit operands from mutating the instruction. e.g.
811 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
813 static void stripExtraCopyOperands(MachineInstr
&MI
) {
814 const MCInstrDesc
&Desc
= MI
.getDesc();
815 unsigned NumOps
= Desc
.getNumOperands() +
816 Desc
.getNumImplicitUses() +
817 Desc
.getNumImplicitDefs();
819 for (unsigned I
= MI
.getNumOperands() - 1; I
>= NumOps
; --I
)
823 static void mutateCopyOp(MachineInstr
&MI
, const MCInstrDesc
&NewDesc
) {
825 stripExtraCopyOperands(MI
);
828 static MachineOperand
*getImmOrMaterializedImm(MachineRegisterInfo
&MRI
,
829 MachineOperand
&Op
) {
831 // If this has a subregister, it obviously is a register source.
832 if (Op
.getSubReg() != AMDGPU::NoSubRegister
||
833 !Register::isVirtualRegister(Op
.getReg()))
836 MachineInstr
*Def
= MRI
.getVRegDef(Op
.getReg());
837 if (Def
&& Def
->isMoveImmediate()) {
838 MachineOperand
&ImmSrc
= Def
->getOperand(1);
847 // Try to simplify operations with a constant that may appear after instruction
849 // TODO: See if a frame index with a fixed offset can fold.
850 static bool tryConstantFoldOp(MachineRegisterInfo
&MRI
,
851 const SIInstrInfo
*TII
,
853 MachineOperand
*ImmOp
) {
854 unsigned Opc
= MI
->getOpcode();
855 if (Opc
== AMDGPU::V_NOT_B32_e64
|| Opc
== AMDGPU::V_NOT_B32_e32
||
856 Opc
== AMDGPU::S_NOT_B32
) {
857 MI
->getOperand(1).ChangeToImmediate(~ImmOp
->getImm());
858 mutateCopyOp(*MI
, TII
->get(getMovOpc(Opc
== AMDGPU::S_NOT_B32
)));
862 int Src1Idx
= AMDGPU::getNamedOperandIdx(Opc
, AMDGPU::OpName::src1
);
866 int Src0Idx
= AMDGPU::getNamedOperandIdx(Opc
, AMDGPU::OpName::src0
);
867 MachineOperand
*Src0
= getImmOrMaterializedImm(MRI
, MI
->getOperand(Src0Idx
));
868 MachineOperand
*Src1
= getImmOrMaterializedImm(MRI
, MI
->getOperand(Src1Idx
));
870 if (!Src0
->isImm() && !Src1
->isImm())
873 if (MI
->getOpcode() == AMDGPU::V_LSHL_OR_B32
) {
874 if (Src0
->isImm() && Src0
->getImm() == 0) {
875 // v_lshl_or_b32 0, X, Y -> copy Y
876 // v_lshl_or_b32 0, X, K -> v_mov_b32 K
877 bool UseCopy
= TII
->getNamedOperand(*MI
, AMDGPU::OpName::src2
)->isReg();
878 MI
->RemoveOperand(Src1Idx
);
879 MI
->RemoveOperand(Src0Idx
);
881 MI
->setDesc(TII
->get(UseCopy
? AMDGPU::COPY
: AMDGPU::V_MOV_B32_e32
));
886 // and k0, k1 -> v_mov_b32 (k0 & k1)
887 // or k0, k1 -> v_mov_b32 (k0 | k1)
888 // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
889 if (Src0
->isImm() && Src1
->isImm()) {
891 if (!evalBinaryInstruction(Opc
, NewImm
, Src0
->getImm(), Src1
->getImm()))
894 const SIRegisterInfo
&TRI
= TII
->getRegisterInfo();
895 bool IsSGPR
= TRI
.isSGPRReg(MRI
, MI
->getOperand(0).getReg());
897 // Be careful to change the right operand, src0 may belong to a different
899 MI
->getOperand(Src0Idx
).ChangeToImmediate(NewImm
);
900 MI
->RemoveOperand(Src1Idx
);
901 mutateCopyOp(*MI
, TII
->get(getMovOpc(IsSGPR
)));
905 if (!MI
->isCommutable())
908 if (Src0
->isImm() && !Src1
->isImm()) {
909 std::swap(Src0
, Src1
);
910 std::swap(Src0Idx
, Src1Idx
);
913 int32_t Src1Val
= static_cast<int32_t>(Src1
->getImm());
914 if (Opc
== AMDGPU::V_OR_B32_e64
||
915 Opc
== AMDGPU::V_OR_B32_e32
||
916 Opc
== AMDGPU::S_OR_B32
) {
918 // y = or x, 0 => y = copy x
919 MI
->RemoveOperand(Src1Idx
);
920 mutateCopyOp(*MI
, TII
->get(AMDGPU::COPY
));
921 } else if (Src1Val
== -1) {
922 // y = or x, -1 => y = v_mov_b32 -1
923 MI
->RemoveOperand(Src1Idx
);
924 mutateCopyOp(*MI
, TII
->get(getMovOpc(Opc
== AMDGPU::S_OR_B32
)));
931 if (MI
->getOpcode() == AMDGPU::V_AND_B32_e64
||
932 MI
->getOpcode() == AMDGPU::V_AND_B32_e32
||
933 MI
->getOpcode() == AMDGPU::S_AND_B32
) {
935 // y = and x, 0 => y = v_mov_b32 0
936 MI
->RemoveOperand(Src0Idx
);
937 mutateCopyOp(*MI
, TII
->get(getMovOpc(Opc
== AMDGPU::S_AND_B32
)));
938 } else if (Src1Val
== -1) {
939 // y = and x, -1 => y = copy x
940 MI
->RemoveOperand(Src1Idx
);
941 mutateCopyOp(*MI
, TII
->get(AMDGPU::COPY
));
942 stripExtraCopyOperands(*MI
);
949 if (MI
->getOpcode() == AMDGPU::V_XOR_B32_e64
||
950 MI
->getOpcode() == AMDGPU::V_XOR_B32_e32
||
951 MI
->getOpcode() == AMDGPU::S_XOR_B32
) {
953 // y = xor x, 0 => y = copy x
954 MI
->RemoveOperand(Src1Idx
);
955 mutateCopyOp(*MI
, TII
->get(AMDGPU::COPY
));
963 // Try to fold an instruction into a simpler one
964 static bool tryFoldInst(const SIInstrInfo
*TII
,
966 unsigned Opc
= MI
->getOpcode();
968 if (Opc
== AMDGPU::V_CNDMASK_B32_e32
||
969 Opc
== AMDGPU::V_CNDMASK_B32_e64
||
970 Opc
== AMDGPU::V_CNDMASK_B64_PSEUDO
) {
971 const MachineOperand
*Src0
= TII
->getNamedOperand(*MI
, AMDGPU::OpName::src0
);
972 const MachineOperand
*Src1
= TII
->getNamedOperand(*MI
, AMDGPU::OpName::src1
);
973 int Src1ModIdx
= AMDGPU::getNamedOperandIdx(Opc
, AMDGPU::OpName::src1_modifiers
);
974 int Src0ModIdx
= AMDGPU::getNamedOperandIdx(Opc
, AMDGPU::OpName::src0_modifiers
);
975 if (Src1
->isIdenticalTo(*Src0
) &&
976 (Src1ModIdx
== -1 || !MI
->getOperand(Src1ModIdx
).getImm()) &&
977 (Src0ModIdx
== -1 || !MI
->getOperand(Src0ModIdx
).getImm())) {
978 LLVM_DEBUG(dbgs() << "Folded " << *MI
<< " into ");
980 TII
->get(Src0
->isReg() ? (unsigned)AMDGPU::COPY
: getMovOpc(false));
981 int Src2Idx
= AMDGPU::getNamedOperandIdx(Opc
, AMDGPU::OpName::src2
);
983 MI
->RemoveOperand(Src2Idx
);
984 MI
->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc
, AMDGPU::OpName::src1
));
985 if (Src1ModIdx
!= -1)
986 MI
->RemoveOperand(Src1ModIdx
);
987 if (Src0ModIdx
!= -1)
988 MI
->RemoveOperand(Src0ModIdx
);
989 mutateCopyOp(*MI
, NewDesc
);
990 LLVM_DEBUG(dbgs() << *MI
<< '\n');
998 void SIFoldOperands::foldInstOperand(MachineInstr
&MI
,
999 MachineOperand
&OpToFold
) const {
1000 // We need mutate the operands of new mov instructions to add implicit
1001 // uses of EXEC, but adding them invalidates the use_iterator, so defer
1003 SmallVector
<MachineInstr
*, 4> CopiesToReplace
;
1004 SmallVector
<FoldCandidate
, 4> FoldList
;
1005 MachineOperand
&Dst
= MI
.getOperand(0);
1007 bool FoldingImm
= OpToFold
.isImm() || OpToFold
.isFI() || OpToFold
.isGlobal();
1009 unsigned NumLiteralUses
= 0;
1010 MachineOperand
*NonInlineUse
= nullptr;
1011 int NonInlineUseOpNo
= -1;
1013 MachineRegisterInfo::use_iterator NextUse
;
1014 for (MachineRegisterInfo::use_iterator
1015 Use
= MRI
->use_begin(Dst
.getReg()), E
= MRI
->use_end();
1016 Use
!= E
; Use
= NextUse
) {
1017 NextUse
= std::next(Use
);
1018 MachineInstr
*UseMI
= Use
->getParent();
1019 unsigned OpNo
= Use
.getOperandNo();
1021 // Folding the immediate may reveal operations that can be constant
1022 // folded or replaced with a copy. This can happen for example after
1023 // frame indices are lowered to constants or from splitting 64-bit
1026 // We may also encounter cases where one or both operands are
1027 // immediates materialized into a register, which would ordinarily not
1028 // be folded due to multiple uses or operand constraints.
1030 if (OpToFold
.isImm() && tryConstantFoldOp(*MRI
, TII
, UseMI
, &OpToFold
)) {
1031 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI
<< '\n');
1033 // Some constant folding cases change the same immediate's use to a new
1034 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user
1035 // again. The same constant folded instruction could also have a second
1037 NextUse
= MRI
->use_begin(Dst
.getReg());
1042 // Try to fold any inline immediate uses, and then only fold other
1043 // constants if they have one use.
1045 // The legality of the inline immediate must be checked based on the use
1046 // operand, not the defining instruction, because 32-bit instructions
1047 // with 32-bit inline immediate sources may be used to materialize
1048 // constants used in 16-bit operands.
1050 // e.g. it is unsafe to fold:
1051 // s_mov_b32 s0, 1.0 // materializes 0x3f800000
1052 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00
1054 // Folding immediates with more than one use will increase program size.
1055 // FIXME: This will also reduce register usage, which may be better
1056 // in some cases. A better heuristic is needed.
1057 if (isInlineConstantIfFolded(TII
, *UseMI
, OpNo
, OpToFold
)) {
1058 foldOperand(OpToFold
, UseMI
, OpNo
, FoldList
, CopiesToReplace
);
1059 } else if (frameIndexMayFold(TII
, *UseMI
, OpNo
, OpToFold
)) {
1060 foldOperand(OpToFold
, UseMI
, OpNo
, FoldList
,
1063 if (++NumLiteralUses
== 1) {
1064 NonInlineUse
= &*Use
;
1065 NonInlineUseOpNo
= OpNo
;
1070 if (NumLiteralUses
== 1) {
1071 MachineInstr
*UseMI
= NonInlineUse
->getParent();
1072 foldOperand(OpToFold
, UseMI
, NonInlineUseOpNo
, FoldList
, CopiesToReplace
);
1075 // Folding register.
1076 SmallVector
<MachineRegisterInfo::use_iterator
, 4> UsesToProcess
;
1077 for (MachineRegisterInfo::use_iterator
1078 Use
= MRI
->use_begin(Dst
.getReg()), E
= MRI
->use_end();
1080 UsesToProcess
.push_back(Use
);
1082 for (auto U
: UsesToProcess
) {
1083 MachineInstr
*UseMI
= U
->getParent();
1085 foldOperand(OpToFold
, UseMI
, U
.getOperandNo(),
1086 FoldList
, CopiesToReplace
);
1090 MachineFunction
*MF
= MI
.getParent()->getParent();
1091 // Make sure we add EXEC uses to any new v_mov instructions created.
1092 for (MachineInstr
*Copy
: CopiesToReplace
)
1093 Copy
->addImplicitDefUseOperands(*MF
);
1095 for (FoldCandidate
&Fold
: FoldList
) {
1096 if (Fold
.isReg() && Register::isVirtualRegister(Fold
.OpToFold
->getReg())) {
1097 Register Reg
= Fold
.OpToFold
->getReg();
1098 MachineInstr
*DefMI
= Fold
.OpToFold
->getParent();
1099 if (DefMI
->readsRegister(AMDGPU::EXEC
, TRI
) &&
1100 execMayBeModifiedBeforeUse(*MRI
, Reg
, *DefMI
, *Fold
.UseMI
))
1103 if (updateOperand(Fold
, *TII
, *TRI
, *ST
)) {
1104 // Clear kill flags.
1106 assert(Fold
.OpToFold
&& Fold
.OpToFold
->isReg());
1107 // FIXME: Probably shouldn't bother trying to fold if not an
1108 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
1110 MRI
->clearKillFlags(Fold
.OpToFold
->getReg());
1112 LLVM_DEBUG(dbgs() << "Folded source from " << MI
<< " into OpNo "
1113 << static_cast<int>(Fold
.UseOpNo
) << " of "
1114 << *Fold
.UseMI
<< '\n');
1115 tryFoldInst(TII
, Fold
.UseMI
);
1116 } else if (Fold
.isCommuted()) {
1117 // Restoring instruction's original operand order if fold has failed.
1118 TII
->commuteInstruction(*Fold
.UseMI
, false);
1123 // Clamp patterns are canonically selected to v_max_* instructions, so only
1125 const MachineOperand
*SIFoldOperands::isClamp(const MachineInstr
&MI
) const {
1126 unsigned Op
= MI
.getOpcode();
1128 case AMDGPU::V_MAX_F32_e64
:
1129 case AMDGPU::V_MAX_F16_e64
:
1130 case AMDGPU::V_MAX_F64
:
1131 case AMDGPU::V_PK_MAX_F16
: {
1132 if (!TII
->getNamedOperand(MI
, AMDGPU::OpName::clamp
)->getImm())
1135 // Make sure sources are identical.
1136 const MachineOperand
*Src0
= TII
->getNamedOperand(MI
, AMDGPU::OpName::src0
);
1137 const MachineOperand
*Src1
= TII
->getNamedOperand(MI
, AMDGPU::OpName::src1
);
1138 if (!Src0
->isReg() || !Src1
->isReg() ||
1139 Src0
->getReg() != Src1
->getReg() ||
1140 Src0
->getSubReg() != Src1
->getSubReg() ||
1141 Src0
->getSubReg() != AMDGPU::NoSubRegister
)
1144 // Can't fold up if we have modifiers.
1145 if (TII
->hasModifiersSet(MI
, AMDGPU::OpName::omod
))
1149 = TII
->getNamedOperand(MI
, AMDGPU::OpName::src0_modifiers
)->getImm();
1151 = TII
->getNamedOperand(MI
, AMDGPU::OpName::src1_modifiers
)->getImm();
1153 // Having a 0 op_sel_hi would require swizzling the output in the source
1154 // instruction, which we can't do.
1155 unsigned UnsetMods
= (Op
== AMDGPU::V_PK_MAX_F16
) ? SISrcMods::OP_SEL_1
1157 if (Src0Mods
!= UnsetMods
&& Src1Mods
!= UnsetMods
)
1166 // We obviously have multiple uses in a clamp since the register is used twice
1167 // in the same instruction.
1168 static bool hasOneNonDBGUseInst(const MachineRegisterInfo
&MRI
, unsigned Reg
) {
1170 for (auto I
= MRI
.use_instr_nodbg_begin(Reg
), E
= MRI
.use_instr_nodbg_end();
1179 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
1180 bool SIFoldOperands::tryFoldClamp(MachineInstr
&MI
) {
1181 const MachineOperand
*ClampSrc
= isClamp(MI
);
1182 if (!ClampSrc
|| !hasOneNonDBGUseInst(*MRI
, ClampSrc
->getReg()))
1185 MachineInstr
*Def
= MRI
->getVRegDef(ClampSrc
->getReg());
1187 // The type of clamp must be compatible.
1188 if (TII
->getClampMask(*Def
) != TII
->getClampMask(MI
))
1191 MachineOperand
*DefClamp
= TII
->getNamedOperand(*Def
, AMDGPU::OpName::clamp
);
1195 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp
<< " into " << *Def
1198 // Clamp is applied after omod, so it is OK if omod is set.
1199 DefClamp
->setImm(1);
1200 MRI
->replaceRegWith(MI
.getOperand(0).getReg(), Def
->getOperand(0).getReg());
1201 MI
.eraseFromParent();
1205 static int getOModValue(unsigned Opc
, int64_t Val
) {
1207 case AMDGPU::V_MUL_F32_e64
: {
1208 switch (static_cast<uint32_t>(Val
)) {
1209 case 0x3f000000: // 0.5
1210 return SIOutMods::DIV2
;
1211 case 0x40000000: // 2.0
1212 return SIOutMods::MUL2
;
1213 case 0x40800000: // 4.0
1214 return SIOutMods::MUL4
;
1216 return SIOutMods::NONE
;
1219 case AMDGPU::V_MUL_F16_e64
: {
1220 switch (static_cast<uint16_t>(Val
)) {
1222 return SIOutMods::DIV2
;
1224 return SIOutMods::MUL2
;
1226 return SIOutMods::MUL4
;
1228 return SIOutMods::NONE
;
1232 llvm_unreachable("invalid mul opcode");
1236 // FIXME: Does this really not support denormals with f16?
1237 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
1238 // handled, so will anything other than that break?
1239 std::pair
<const MachineOperand
*, int>
1240 SIFoldOperands::isOMod(const MachineInstr
&MI
) const {
1241 unsigned Op
= MI
.getOpcode();
1243 case AMDGPU::V_MUL_F32_e64
:
1244 case AMDGPU::V_MUL_F16_e64
: {
1245 // If output denormals are enabled, omod is ignored.
1246 if ((Op
== AMDGPU::V_MUL_F32_e64
&& ST
->hasFP32Denormals()) ||
1247 (Op
== AMDGPU::V_MUL_F16_e64
&& ST
->hasFP16Denormals()))
1248 return std::make_pair(nullptr, SIOutMods::NONE
);
1250 const MachineOperand
*RegOp
= nullptr;
1251 const MachineOperand
*ImmOp
= nullptr;
1252 const MachineOperand
*Src0
= TII
->getNamedOperand(MI
, AMDGPU::OpName::src0
);
1253 const MachineOperand
*Src1
= TII
->getNamedOperand(MI
, AMDGPU::OpName::src1
);
1254 if (Src0
->isImm()) {
1257 } else if (Src1
->isImm()) {
1261 return std::make_pair(nullptr, SIOutMods::NONE
);
1263 int OMod
= getOModValue(Op
, ImmOp
->getImm());
1264 if (OMod
== SIOutMods::NONE
||
1265 TII
->hasModifiersSet(MI
, AMDGPU::OpName::src0_modifiers
) ||
1266 TII
->hasModifiersSet(MI
, AMDGPU::OpName::src1_modifiers
) ||
1267 TII
->hasModifiersSet(MI
, AMDGPU::OpName::omod
) ||
1268 TII
->hasModifiersSet(MI
, AMDGPU::OpName::clamp
))
1269 return std::make_pair(nullptr, SIOutMods::NONE
);
1271 return std::make_pair(RegOp
, OMod
);
1273 case AMDGPU::V_ADD_F32_e64
:
1274 case AMDGPU::V_ADD_F16_e64
: {
1275 // If output denormals are enabled, omod is ignored.
1276 if ((Op
== AMDGPU::V_ADD_F32_e64
&& ST
->hasFP32Denormals()) ||
1277 (Op
== AMDGPU::V_ADD_F16_e64
&& ST
->hasFP16Denormals()))
1278 return std::make_pair(nullptr, SIOutMods::NONE
);
1280 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
1281 const MachineOperand
*Src0
= TII
->getNamedOperand(MI
, AMDGPU::OpName::src0
);
1282 const MachineOperand
*Src1
= TII
->getNamedOperand(MI
, AMDGPU::OpName::src1
);
1284 if (Src0
->isReg() && Src1
->isReg() && Src0
->getReg() == Src1
->getReg() &&
1285 Src0
->getSubReg() == Src1
->getSubReg() &&
1286 !TII
->hasModifiersSet(MI
, AMDGPU::OpName::src0_modifiers
) &&
1287 !TII
->hasModifiersSet(MI
, AMDGPU::OpName::src1_modifiers
) &&
1288 !TII
->hasModifiersSet(MI
, AMDGPU::OpName::clamp
) &&
1289 !TII
->hasModifiersSet(MI
, AMDGPU::OpName::omod
))
1290 return std::make_pair(Src0
, SIOutMods::MUL2
);
1292 return std::make_pair(nullptr, SIOutMods::NONE
);
1295 return std::make_pair(nullptr, SIOutMods::NONE
);
1299 // FIXME: Does this need to check IEEE bit on function?
1300 bool SIFoldOperands::tryFoldOMod(MachineInstr
&MI
) {
1301 const MachineOperand
*RegOp
;
1303 std::tie(RegOp
, OMod
) = isOMod(MI
);
1304 if (OMod
== SIOutMods::NONE
|| !RegOp
->isReg() ||
1305 RegOp
->getSubReg() != AMDGPU::NoSubRegister
||
1306 !hasOneNonDBGUseInst(*MRI
, RegOp
->getReg()))
1309 MachineInstr
*Def
= MRI
->getVRegDef(RegOp
->getReg());
1310 MachineOperand
*DefOMod
= TII
->getNamedOperand(*Def
, AMDGPU::OpName::omod
);
1311 if (!DefOMod
|| DefOMod
->getImm() != SIOutMods::NONE
)
1314 // Clamp is applied after omod. If the source already has clamp set, don't
1316 if (TII
->hasModifiersSet(*Def
, AMDGPU::OpName::clamp
))
1319 LLVM_DEBUG(dbgs() << "Folding omod " << MI
<< " into " << *Def
<< '\n');
1321 DefOMod
->setImm(OMod
);
1322 MRI
->replaceRegWith(MI
.getOperand(0).getReg(), Def
->getOperand(0).getReg());
1323 MI
.eraseFromParent();
1327 bool SIFoldOperands::runOnMachineFunction(MachineFunction
&MF
) {
1328 if (skipFunction(MF
.getFunction()))
1331 MRI
= &MF
.getRegInfo();
1332 ST
= &MF
.getSubtarget
<GCNSubtarget
>();
1333 TII
= ST
->getInstrInfo();
1334 TRI
= &TII
->getRegisterInfo();
1335 MFI
= MF
.getInfo
<SIMachineFunctionInfo
>();
1337 // omod is ignored by hardware if IEEE bit is enabled. omod also does not
1338 // correctly handle signed zeros.
1340 // FIXME: Also need to check strictfp
1341 bool IsIEEEMode
= MFI
->getMode().IEEE
;
1342 bool HasNSZ
= MFI
->hasNoSignedZerosFPMath();
1344 for (MachineBasicBlock
*MBB
: depth_first(&MF
)) {
1345 MachineBasicBlock::iterator I
, Next
;
1346 for (I
= MBB
->begin(); I
!= MBB
->end(); I
= Next
) {
1347 Next
= std::next(I
);
1348 MachineInstr
&MI
= *I
;
1350 tryFoldInst(TII
, &MI
);
1352 if (!TII
->isFoldableCopy(MI
)) {
1353 // TODO: Omod might be OK if there is NSZ only on the source
1354 // instruction, and not the omod multiply.
1355 if (IsIEEEMode
|| (!HasNSZ
&& !MI
.getFlag(MachineInstr::FmNsz
)) ||
1361 MachineOperand
&OpToFold
= MI
.getOperand(1);
1363 OpToFold
.isImm() || OpToFold
.isFI() || OpToFold
.isGlobal();
1365 // FIXME: We could also be folding things like TargetIndexes.
1366 if (!FoldingImm
&& !OpToFold
.isReg())
1369 if (OpToFold
.isReg() && !Register::isVirtualRegister(OpToFold
.getReg()))
1372 // Prevent folding operands backwards in the function. For example,
1373 // the COPY opcode must not be replaced by 1 in this example:
1375 // %3 = COPY %vgpr0; VGPR_32:%3
1377 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec
1378 MachineOperand
&Dst
= MI
.getOperand(0);
1379 if (Dst
.isReg() && !Register::isVirtualRegister(Dst
.getReg()))
1382 foldInstOperand(MI
, OpToFold
);