[MIPS GlobalISel] Select MSA vector generic and builtin add
[llvm-complete.git] / lib / Analysis / LazyCallGraph.cpp
blobef31c1e0ba8ce885c8e85317721c479774259630
1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/LazyCallGraph.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/ScopeExit.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/Config/llvm-config.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/GraphWriter.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstddef>
33 #include <iterator>
34 #include <string>
35 #include <tuple>
36 #include <utility>
38 using namespace llvm;
40 #define DEBUG_TYPE "lcg"
42 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
43 Edge::Kind EK) {
44 EdgeIndexMap.insert({&TargetN, Edges.size()});
45 Edges.emplace_back(TargetN, EK);
48 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
49 Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
52 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
53 auto IndexMapI = EdgeIndexMap.find(&TargetN);
54 if (IndexMapI == EdgeIndexMap.end())
55 return false;
57 Edges[IndexMapI->second] = Edge();
58 EdgeIndexMap.erase(IndexMapI);
59 return true;
62 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
63 DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
64 LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
65 if (!EdgeIndexMap.insert({&N, Edges.size()}).second)
66 return;
68 LLVM_DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n");
69 Edges.emplace_back(LazyCallGraph::Edge(N, EK));
72 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
73 assert(!Edges && "Must not have already populated the edges for this node!");
75 LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName()
76 << "' to the graph.\n");
78 Edges = EdgeSequence();
80 SmallVector<Constant *, 16> Worklist;
81 SmallPtrSet<Function *, 4> Callees;
82 SmallPtrSet<Constant *, 16> Visited;
84 // Find all the potential call graph edges in this function. We track both
85 // actual call edges and indirect references to functions. The direct calls
86 // are trivially added, but to accumulate the latter we walk the instructions
87 // and add every operand which is a constant to the worklist to process
88 // afterward.
90 // Note that we consider *any* function with a definition to be a viable
91 // edge. Even if the function's definition is subject to replacement by
92 // some other module (say, a weak definition) there may still be
93 // optimizations which essentially speculate based on the definition and
94 // a way to check that the specific definition is in fact the one being
95 // used. For example, this could be done by moving the weak definition to
96 // a strong (internal) definition and making the weak definition be an
97 // alias. Then a test of the address of the weak function against the new
98 // strong definition's address would be an effective way to determine the
99 // safety of optimizing a direct call edge.
100 for (BasicBlock &BB : *F)
101 for (Instruction &I : BB) {
102 if (auto CS = CallSite(&I))
103 if (Function *Callee = CS.getCalledFunction())
104 if (!Callee->isDeclaration())
105 if (Callees.insert(Callee).second) {
106 Visited.insert(Callee);
107 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
108 LazyCallGraph::Edge::Call);
111 for (Value *Op : I.operand_values())
112 if (Constant *C = dyn_cast<Constant>(Op))
113 if (Visited.insert(C).second)
114 Worklist.push_back(C);
117 // We've collected all the constant (and thus potentially function or
118 // function containing) operands to all of the instructions in the function.
119 // Process them (recursively) collecting every function found.
120 visitReferences(Worklist, Visited, [&](Function &F) {
121 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
122 LazyCallGraph::Edge::Ref);
125 // Add implicit reference edges to any defined libcall functions (if we
126 // haven't found an explicit edge).
127 for (auto *F : G->LibFunctions)
128 if (!Visited.count(F))
129 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
130 LazyCallGraph::Edge::Ref);
132 return *Edges;
135 void LazyCallGraph::Node::replaceFunction(Function &NewF) {
136 assert(F != &NewF && "Must not replace a function with itself!");
137 F = &NewF;
140 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
141 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
142 dbgs() << *this << '\n';
144 #endif
146 static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
147 LibFunc LF;
149 // Either this is a normal library function or a "vectorizable" function.
150 return TLI.getLibFunc(F, LF) || TLI.isFunctionVectorizable(F.getName());
153 LazyCallGraph::LazyCallGraph(
154 Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
155 LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
156 << "\n");
157 for (Function &F : M) {
158 if (F.isDeclaration())
159 continue;
160 // If this function is a known lib function to LLVM then we want to
161 // synthesize reference edges to it to model the fact that LLVM can turn
162 // arbitrary code into a library function call.
163 if (isKnownLibFunction(F, GetTLI(F)))
164 LibFunctions.insert(&F);
166 if (F.hasLocalLinkage())
167 continue;
169 // External linkage defined functions have edges to them from other
170 // modules.
171 LLVM_DEBUG(dbgs() << " Adding '" << F.getName()
172 << "' to entry set of the graph.\n");
173 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
176 // Externally visible aliases of internal functions are also viable entry
177 // edges to the module.
178 for (auto &A : M.aliases()) {
179 if (A.hasLocalLinkage())
180 continue;
181 if (Function* F = dyn_cast<Function>(A.getAliasee())) {
182 LLVM_DEBUG(dbgs() << " Adding '" << F->getName()
183 << "' with alias '" << A.getName()
184 << "' to entry set of the graph.\n");
185 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref);
189 // Now add entry nodes for functions reachable via initializers to globals.
190 SmallVector<Constant *, 16> Worklist;
191 SmallPtrSet<Constant *, 16> Visited;
192 for (GlobalVariable &GV : M.globals())
193 if (GV.hasInitializer())
194 if (Visited.insert(GV.getInitializer()).second)
195 Worklist.push_back(GV.getInitializer());
197 LLVM_DEBUG(
198 dbgs() << " Adding functions referenced by global initializers to the "
199 "entry set.\n");
200 visitReferences(Worklist, Visited, [&](Function &F) {
201 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
202 LazyCallGraph::Edge::Ref);
206 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
207 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
208 EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
209 SCCMap(std::move(G.SCCMap)),
210 LibFunctions(std::move(G.LibFunctions)) {
211 updateGraphPtrs();
214 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
215 BPA = std::move(G.BPA);
216 NodeMap = std::move(G.NodeMap);
217 EntryEdges = std::move(G.EntryEdges);
218 SCCBPA = std::move(G.SCCBPA);
219 SCCMap = std::move(G.SCCMap);
220 LibFunctions = std::move(G.LibFunctions);
221 updateGraphPtrs();
222 return *this;
225 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
226 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
227 dbgs() << *this << '\n';
229 #endif
231 #ifndef NDEBUG
232 void LazyCallGraph::SCC::verify() {
233 assert(OuterRefSCC && "Can't have a null RefSCC!");
234 assert(!Nodes.empty() && "Can't have an empty SCC!");
236 for (Node *N : Nodes) {
237 assert(N && "Can't have a null node!");
238 assert(OuterRefSCC->G->lookupSCC(*N) == this &&
239 "Node does not map to this SCC!");
240 assert(N->DFSNumber == -1 &&
241 "Must set DFS numbers to -1 when adding a node to an SCC!");
242 assert(N->LowLink == -1 &&
243 "Must set low link to -1 when adding a node to an SCC!");
244 for (Edge &E : **N)
245 assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
248 #endif
250 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
251 if (this == &C)
252 return false;
254 for (Node &N : *this)
255 for (Edge &E : N->calls())
256 if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
257 return true;
259 // No edges found.
260 return false;
263 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
264 if (this == &TargetC)
265 return false;
267 LazyCallGraph &G = *OuterRefSCC->G;
269 // Start with this SCC.
270 SmallPtrSet<const SCC *, 16> Visited = {this};
271 SmallVector<const SCC *, 16> Worklist = {this};
273 // Walk down the graph until we run out of edges or find a path to TargetC.
274 do {
275 const SCC &C = *Worklist.pop_back_val();
276 for (Node &N : C)
277 for (Edge &E : N->calls()) {
278 SCC *CalleeC = G.lookupSCC(E.getNode());
279 if (!CalleeC)
280 continue;
282 // If the callee's SCC is the TargetC, we're done.
283 if (CalleeC == &TargetC)
284 return true;
286 // If this is the first time we've reached this SCC, put it on the
287 // worklist to recurse through.
288 if (Visited.insert(CalleeC).second)
289 Worklist.push_back(CalleeC);
291 } while (!Worklist.empty());
293 // No paths found.
294 return false;
297 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
299 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
300 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
301 dbgs() << *this << '\n';
303 #endif
305 #ifndef NDEBUG
306 void LazyCallGraph::RefSCC::verify() {
307 assert(G && "Can't have a null graph!");
308 assert(!SCCs.empty() && "Can't have an empty SCC!");
310 // Verify basic properties of the SCCs.
311 SmallPtrSet<SCC *, 4> SCCSet;
312 for (SCC *C : SCCs) {
313 assert(C && "Can't have a null SCC!");
314 C->verify();
315 assert(&C->getOuterRefSCC() == this &&
316 "SCC doesn't think it is inside this RefSCC!");
317 bool Inserted = SCCSet.insert(C).second;
318 assert(Inserted && "Found a duplicate SCC!");
319 auto IndexIt = SCCIndices.find(C);
320 assert(IndexIt != SCCIndices.end() &&
321 "Found an SCC that doesn't have an index!");
324 // Check that our indices map correctly.
325 for (auto &SCCIndexPair : SCCIndices) {
326 SCC *C = SCCIndexPair.first;
327 int i = SCCIndexPair.second;
328 assert(C && "Can't have a null SCC in the indices!");
329 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
330 assert(SCCs[i] == C && "Index doesn't point to SCC!");
333 // Check that the SCCs are in fact in post-order.
334 for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
335 SCC &SourceSCC = *SCCs[i];
336 for (Node &N : SourceSCC)
337 for (Edge &E : *N) {
338 if (!E.isCall())
339 continue;
340 SCC &TargetSCC = *G->lookupSCC(E.getNode());
341 if (&TargetSCC.getOuterRefSCC() == this) {
342 assert(SCCIndices.find(&TargetSCC)->second <= i &&
343 "Edge between SCCs violates post-order relationship.");
344 continue;
349 #endif
351 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
352 if (&RC == this)
353 return false;
355 // Search all edges to see if this is a parent.
356 for (SCC &C : *this)
357 for (Node &N : C)
358 for (Edge &E : *N)
359 if (G->lookupRefSCC(E.getNode()) == &RC)
360 return true;
362 return false;
365 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
366 if (&RC == this)
367 return false;
369 // For each descendant of this RefSCC, see if one of its children is the
370 // argument. If not, add that descendant to the worklist and continue
371 // searching.
372 SmallVector<const RefSCC *, 4> Worklist;
373 SmallPtrSet<const RefSCC *, 4> Visited;
374 Worklist.push_back(this);
375 Visited.insert(this);
376 do {
377 const RefSCC &DescendantRC = *Worklist.pop_back_val();
378 for (SCC &C : DescendantRC)
379 for (Node &N : C)
380 for (Edge &E : *N) {
381 auto *ChildRC = G->lookupRefSCC(E.getNode());
382 if (ChildRC == &RC)
383 return true;
384 if (!ChildRC || !Visited.insert(ChildRC).second)
385 continue;
386 Worklist.push_back(ChildRC);
388 } while (!Worklist.empty());
390 return false;
393 /// Generic helper that updates a postorder sequence of SCCs for a potentially
394 /// cycle-introducing edge insertion.
396 /// A postorder sequence of SCCs of a directed graph has one fundamental
397 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
398 /// all edges in the SCC DAG point to prior SCCs in the sequence.
400 /// This routine both updates a postorder sequence and uses that sequence to
401 /// compute the set of SCCs connected into a cycle. It should only be called to
402 /// insert a "downward" edge which will require changing the sequence to
403 /// restore it to a postorder.
405 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
406 /// sequence, all of the SCCs which may be impacted are in the closed range of
407 /// those two within the postorder sequence. The algorithm used here to restore
408 /// the state is as follows:
410 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
411 /// source SCC consisting of just the source SCC. Then scan toward the
412 /// target SCC in postorder and for each SCC, if it has an edge to an SCC
413 /// in the set, add it to the set. Otherwise, the source SCC is not
414 /// a successor, move it in the postorder sequence to immediately before
415 /// the source SCC, shifting the source SCC and all SCCs in the set one
416 /// position toward the target SCC. Stop scanning after processing the
417 /// target SCC.
418 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
419 /// and thus the new edge will flow toward the start, we are done.
420 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
421 /// SCC between the source and the target, and add them to the set of
422 /// connected SCCs, then recurse through them. Once a complete set of the
423 /// SCCs the target connects to is known, hoist the remaining SCCs between
424 /// the source and the target to be above the target. Note that there is no
425 /// need to process the source SCC, it is already known to connect.
426 /// 4) At this point, all of the SCCs in the closed range between the source
427 /// SCC and the target SCC in the postorder sequence are connected,
428 /// including the target SCC and the source SCC. Inserting the edge from
429 /// the source SCC to the target SCC will form a cycle out of precisely
430 /// these SCCs. Thus we can merge all of the SCCs in this closed range into
431 /// a single SCC.
433 /// This process has various important properties:
434 /// - Only mutates the SCCs when adding the edge actually changes the SCC
435 /// structure.
436 /// - Never mutates SCCs which are unaffected by the change.
437 /// - Updates the postorder sequence to correctly satisfy the postorder
438 /// constraint after the edge is inserted.
439 /// - Only reorders SCCs in the closed postorder sequence from the source to
440 /// the target, so easy to bound how much has changed even in the ordering.
441 /// - Big-O is the number of edges in the closed postorder range of SCCs from
442 /// source to target.
444 /// This helper routine, in addition to updating the postorder sequence itself
445 /// will also update a map from SCCs to indices within that sequence.
447 /// The sequence and the map must operate on pointers to the SCC type.
449 /// Two callbacks must be provided. The first computes the subset of SCCs in
450 /// the postorder closed range from the source to the target which connect to
451 /// the source SCC via some (transitive) set of edges. The second computes the
452 /// subset of the same range which the target SCC connects to via some
453 /// (transitive) set of edges. Both callbacks should populate the set argument
454 /// provided.
455 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
456 typename ComputeSourceConnectedSetCallableT,
457 typename ComputeTargetConnectedSetCallableT>
458 static iterator_range<typename PostorderSequenceT::iterator>
459 updatePostorderSequenceForEdgeInsertion(
460 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
461 SCCIndexMapT &SCCIndices,
462 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
463 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
464 int SourceIdx = SCCIndices[&SourceSCC];
465 int TargetIdx = SCCIndices[&TargetSCC];
466 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
468 SmallPtrSet<SCCT *, 4> ConnectedSet;
470 // Compute the SCCs which (transitively) reach the source.
471 ComputeSourceConnectedSet(ConnectedSet);
473 // Partition the SCCs in this part of the port-order sequence so only SCCs
474 // connecting to the source remain between it and the target. This is
475 // a benign partition as it preserves postorder.
476 auto SourceI = std::stable_partition(
477 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
478 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
479 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
480 SCCIndices.find(SCCs[i])->second = i;
482 // If the target doesn't connect to the source, then we've corrected the
483 // post-order and there are no cycles formed.
484 if (!ConnectedSet.count(&TargetSCC)) {
485 assert(SourceI > (SCCs.begin() + SourceIdx) &&
486 "Must have moved the source to fix the post-order.");
487 assert(*std::prev(SourceI) == &TargetSCC &&
488 "Last SCC to move should have bene the target.");
490 // Return an empty range at the target SCC indicating there is nothing to
491 // merge.
492 return make_range(std::prev(SourceI), std::prev(SourceI));
495 assert(SCCs[TargetIdx] == &TargetSCC &&
496 "Should not have moved target if connected!");
497 SourceIdx = SourceI - SCCs.begin();
498 assert(SCCs[SourceIdx] == &SourceSCC &&
499 "Bad updated index computation for the source SCC!");
502 // See whether there are any remaining intervening SCCs between the source
503 // and target. If so we need to make sure they all are reachable form the
504 // target.
505 if (SourceIdx + 1 < TargetIdx) {
506 ConnectedSet.clear();
507 ComputeTargetConnectedSet(ConnectedSet);
509 // Partition SCCs so that only SCCs reached from the target remain between
510 // the source and the target. This preserves postorder.
511 auto TargetI = std::stable_partition(
512 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
513 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
514 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
515 SCCIndices.find(SCCs[i])->second = i;
516 TargetIdx = std::prev(TargetI) - SCCs.begin();
517 assert(SCCs[TargetIdx] == &TargetSCC &&
518 "Should always end with the target!");
521 // At this point, we know that connecting source to target forms a cycle
522 // because target connects back to source, and we know that all of the SCCs
523 // between the source and target in the postorder sequence participate in that
524 // cycle.
525 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
528 bool
529 LazyCallGraph::RefSCC::switchInternalEdgeToCall(
530 Node &SourceN, Node &TargetN,
531 function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
532 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
533 SmallVector<SCC *, 1> DeletedSCCs;
535 #ifndef NDEBUG
536 // In a debug build, verify the RefSCC is valid to start with and when this
537 // routine finishes.
538 verify();
539 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
540 #endif
542 SCC &SourceSCC = *G->lookupSCC(SourceN);
543 SCC &TargetSCC = *G->lookupSCC(TargetN);
545 // If the two nodes are already part of the same SCC, we're also done as
546 // we've just added more connectivity.
547 if (&SourceSCC == &TargetSCC) {
548 SourceN->setEdgeKind(TargetN, Edge::Call);
549 return false; // No new cycle.
552 // At this point we leverage the postorder list of SCCs to detect when the
553 // insertion of an edge changes the SCC structure in any way.
555 // First and foremost, we can eliminate the need for any changes when the
556 // edge is toward the beginning of the postorder sequence because all edges
557 // flow in that direction already. Thus adding a new one cannot form a cycle.
558 int SourceIdx = SCCIndices[&SourceSCC];
559 int TargetIdx = SCCIndices[&TargetSCC];
560 if (TargetIdx < SourceIdx) {
561 SourceN->setEdgeKind(TargetN, Edge::Call);
562 return false; // No new cycle.
565 // Compute the SCCs which (transitively) reach the source.
566 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
567 #ifndef NDEBUG
568 // Check that the RefSCC is still valid before computing this as the
569 // results will be nonsensical of we've broken its invariants.
570 verify();
571 #endif
572 ConnectedSet.insert(&SourceSCC);
573 auto IsConnected = [&](SCC &C) {
574 for (Node &N : C)
575 for (Edge &E : N->calls())
576 if (ConnectedSet.count(G->lookupSCC(E.getNode())))
577 return true;
579 return false;
582 for (SCC *C :
583 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
584 if (IsConnected(*C))
585 ConnectedSet.insert(C);
588 // Use a normal worklist to find which SCCs the target connects to. We still
589 // bound the search based on the range in the postorder list we care about,
590 // but because this is forward connectivity we just "recurse" through the
591 // edges.
592 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
593 #ifndef NDEBUG
594 // Check that the RefSCC is still valid before computing this as the
595 // results will be nonsensical of we've broken its invariants.
596 verify();
597 #endif
598 ConnectedSet.insert(&TargetSCC);
599 SmallVector<SCC *, 4> Worklist;
600 Worklist.push_back(&TargetSCC);
601 do {
602 SCC &C = *Worklist.pop_back_val();
603 for (Node &N : C)
604 for (Edge &E : *N) {
605 if (!E.isCall())
606 continue;
607 SCC &EdgeC = *G->lookupSCC(E.getNode());
608 if (&EdgeC.getOuterRefSCC() != this)
609 // Not in this RefSCC...
610 continue;
611 if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
612 // Not in the postorder sequence between source and target.
613 continue;
615 if (ConnectedSet.insert(&EdgeC).second)
616 Worklist.push_back(&EdgeC);
618 } while (!Worklist.empty());
621 // Use a generic helper to update the postorder sequence of SCCs and return
622 // a range of any SCCs connected into a cycle by inserting this edge. This
623 // routine will also take care of updating the indices into the postorder
624 // sequence.
625 auto MergeRange = updatePostorderSequenceForEdgeInsertion(
626 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
627 ComputeTargetConnectedSet);
629 // Run the user's callback on the merged SCCs before we actually merge them.
630 if (MergeCB)
631 MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end()));
633 // If the merge range is empty, then adding the edge didn't actually form any
634 // new cycles. We're done.
635 if (MergeRange.empty()) {
636 // Now that the SCC structure is finalized, flip the kind to call.
637 SourceN->setEdgeKind(TargetN, Edge::Call);
638 return false; // No new cycle.
641 #ifndef NDEBUG
642 // Before merging, check that the RefSCC remains valid after all the
643 // postorder updates.
644 verify();
645 #endif
647 // Otherwise we need to merge all of the SCCs in the cycle into a single
648 // result SCC.
650 // NB: We merge into the target because all of these functions were already
651 // reachable from the target, meaning any SCC-wide properties deduced about it
652 // other than the set of functions within it will not have changed.
653 for (SCC *C : MergeRange) {
654 assert(C != &TargetSCC &&
655 "We merge *into* the target and shouldn't process it here!");
656 SCCIndices.erase(C);
657 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
658 for (Node *N : C->Nodes)
659 G->SCCMap[N] = &TargetSCC;
660 C->clear();
661 DeletedSCCs.push_back(C);
664 // Erase the merged SCCs from the list and update the indices of the
665 // remaining SCCs.
666 int IndexOffset = MergeRange.end() - MergeRange.begin();
667 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
668 for (SCC *C : make_range(EraseEnd, SCCs.end()))
669 SCCIndices[C] -= IndexOffset;
671 // Now that the SCC structure is finalized, flip the kind to call.
672 SourceN->setEdgeKind(TargetN, Edge::Call);
674 // And we're done, but we did form a new cycle.
675 return true;
678 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
679 Node &TargetN) {
680 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
682 #ifndef NDEBUG
683 // In a debug build, verify the RefSCC is valid to start with and when this
684 // routine finishes.
685 verify();
686 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
687 #endif
689 assert(G->lookupRefSCC(SourceN) == this &&
690 "Source must be in this RefSCC.");
691 assert(G->lookupRefSCC(TargetN) == this &&
692 "Target must be in this RefSCC.");
693 assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
694 "Source and Target must be in separate SCCs for this to be trivial!");
696 // Set the edge kind.
697 SourceN->setEdgeKind(TargetN, Edge::Ref);
700 iterator_range<LazyCallGraph::RefSCC::iterator>
701 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
702 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
704 #ifndef NDEBUG
705 // In a debug build, verify the RefSCC is valid to start with and when this
706 // routine finishes.
707 verify();
708 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
709 #endif
711 assert(G->lookupRefSCC(SourceN) == this &&
712 "Source must be in this RefSCC.");
713 assert(G->lookupRefSCC(TargetN) == this &&
714 "Target must be in this RefSCC.");
716 SCC &TargetSCC = *G->lookupSCC(TargetN);
717 assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
718 "the same SCC to require the "
719 "full CG update.");
721 // Set the edge kind.
722 SourceN->setEdgeKind(TargetN, Edge::Ref);
724 // Otherwise we are removing a call edge from a single SCC. This may break
725 // the cycle. In order to compute the new set of SCCs, we need to do a small
726 // DFS over the nodes within the SCC to form any sub-cycles that remain as
727 // distinct SCCs and compute a postorder over the resulting SCCs.
729 // However, we specially handle the target node. The target node is known to
730 // reach all other nodes in the original SCC by definition. This means that
731 // we want the old SCC to be replaced with an SCC containing that node as it
732 // will be the root of whatever SCC DAG results from the DFS. Assumptions
733 // about an SCC such as the set of functions called will continue to hold,
734 // etc.
736 SCC &OldSCC = TargetSCC;
737 SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
738 SmallVector<Node *, 16> PendingSCCStack;
739 SmallVector<SCC *, 4> NewSCCs;
741 // Prepare the nodes for a fresh DFS.
742 SmallVector<Node *, 16> Worklist;
743 Worklist.swap(OldSCC.Nodes);
744 for (Node *N : Worklist) {
745 N->DFSNumber = N->LowLink = 0;
746 G->SCCMap.erase(N);
749 // Force the target node to be in the old SCC. This also enables us to take
750 // a very significant short-cut in the standard Tarjan walk to re-form SCCs
751 // below: whenever we build an edge that reaches the target node, we know
752 // that the target node eventually connects back to all other nodes in our
753 // walk. As a consequence, we can detect and handle participants in that
754 // cycle without walking all the edges that form this connection, and instead
755 // by relying on the fundamental guarantee coming into this operation (all
756 // nodes are reachable from the target due to previously forming an SCC).
757 TargetN.DFSNumber = TargetN.LowLink = -1;
758 OldSCC.Nodes.push_back(&TargetN);
759 G->SCCMap[&TargetN] = &OldSCC;
761 // Scan down the stack and DFS across the call edges.
762 for (Node *RootN : Worklist) {
763 assert(DFSStack.empty() &&
764 "Cannot begin a new root with a non-empty DFS stack!");
765 assert(PendingSCCStack.empty() &&
766 "Cannot begin a new root with pending nodes for an SCC!");
768 // Skip any nodes we've already reached in the DFS.
769 if (RootN->DFSNumber != 0) {
770 assert(RootN->DFSNumber == -1 &&
771 "Shouldn't have any mid-DFS root nodes!");
772 continue;
775 RootN->DFSNumber = RootN->LowLink = 1;
776 int NextDFSNumber = 2;
778 DFSStack.push_back({RootN, (*RootN)->call_begin()});
779 do {
780 Node *N;
781 EdgeSequence::call_iterator I;
782 std::tie(N, I) = DFSStack.pop_back_val();
783 auto E = (*N)->call_end();
784 while (I != E) {
785 Node &ChildN = I->getNode();
786 if (ChildN.DFSNumber == 0) {
787 // We haven't yet visited this child, so descend, pushing the current
788 // node onto the stack.
789 DFSStack.push_back({N, I});
791 assert(!G->SCCMap.count(&ChildN) &&
792 "Found a node with 0 DFS number but already in an SCC!");
793 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
794 N = &ChildN;
795 I = (*N)->call_begin();
796 E = (*N)->call_end();
797 continue;
800 // Check for the child already being part of some component.
801 if (ChildN.DFSNumber == -1) {
802 if (G->lookupSCC(ChildN) == &OldSCC) {
803 // If the child is part of the old SCC, we know that it can reach
804 // every other node, so we have formed a cycle. Pull the entire DFS
805 // and pending stacks into it. See the comment above about setting
806 // up the old SCC for why we do this.
807 int OldSize = OldSCC.size();
808 OldSCC.Nodes.push_back(N);
809 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
810 PendingSCCStack.clear();
811 while (!DFSStack.empty())
812 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
813 for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
814 N.DFSNumber = N.LowLink = -1;
815 G->SCCMap[&N] = &OldSCC;
817 N = nullptr;
818 break;
821 // If the child has already been added to some child component, it
822 // couldn't impact the low-link of this parent because it isn't
823 // connected, and thus its low-link isn't relevant so skip it.
824 ++I;
825 continue;
828 // Track the lowest linked child as the lowest link for this node.
829 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
830 if (ChildN.LowLink < N->LowLink)
831 N->LowLink = ChildN.LowLink;
833 // Move to the next edge.
834 ++I;
836 if (!N)
837 // Cleared the DFS early, start another round.
838 break;
840 // We've finished processing N and its descendants, put it on our pending
841 // SCC stack to eventually get merged into an SCC of nodes.
842 PendingSCCStack.push_back(N);
844 // If this node is linked to some lower entry, continue walking up the
845 // stack.
846 if (N->LowLink != N->DFSNumber)
847 continue;
849 // Otherwise, we've completed an SCC. Append it to our post order list of
850 // SCCs.
851 int RootDFSNumber = N->DFSNumber;
852 // Find the range of the node stack by walking down until we pass the
853 // root DFS number.
854 auto SCCNodes = make_range(
855 PendingSCCStack.rbegin(),
856 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
857 return N->DFSNumber < RootDFSNumber;
858 }));
860 // Form a new SCC out of these nodes and then clear them off our pending
861 // stack.
862 NewSCCs.push_back(G->createSCC(*this, SCCNodes));
863 for (Node &N : *NewSCCs.back()) {
864 N.DFSNumber = N.LowLink = -1;
865 G->SCCMap[&N] = NewSCCs.back();
867 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
868 } while (!DFSStack.empty());
871 // Insert the remaining SCCs before the old one. The old SCC can reach all
872 // other SCCs we form because it contains the target node of the removed edge
873 // of the old SCC. This means that we will have edges into all of the new
874 // SCCs, which means the old one must come last for postorder.
875 int OldIdx = SCCIndices[&OldSCC];
876 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
878 // Update the mapping from SCC* to index to use the new SCC*s, and remove the
879 // old SCC from the mapping.
880 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
881 SCCIndices[SCCs[Idx]] = Idx;
883 return make_range(SCCs.begin() + OldIdx,
884 SCCs.begin() + OldIdx + NewSCCs.size());
887 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
888 Node &TargetN) {
889 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
891 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
892 assert(G->lookupRefSCC(TargetN) != this &&
893 "Target must not be in this RefSCC.");
894 #ifdef EXPENSIVE_CHECKS
895 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
896 "Target must be a descendant of the Source.");
897 #endif
899 // Edges between RefSCCs are the same regardless of call or ref, so we can
900 // just flip the edge here.
901 SourceN->setEdgeKind(TargetN, Edge::Call);
903 #ifndef NDEBUG
904 // Check that the RefSCC is still valid.
905 verify();
906 #endif
909 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
910 Node &TargetN) {
911 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
913 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
914 assert(G->lookupRefSCC(TargetN) != this &&
915 "Target must not be in this RefSCC.");
916 #ifdef EXPENSIVE_CHECKS
917 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
918 "Target must be a descendant of the Source.");
919 #endif
921 // Edges between RefSCCs are the same regardless of call or ref, so we can
922 // just flip the edge here.
923 SourceN->setEdgeKind(TargetN, Edge::Ref);
925 #ifndef NDEBUG
926 // Check that the RefSCC is still valid.
927 verify();
928 #endif
931 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
932 Node &TargetN) {
933 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
934 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
936 SourceN->insertEdgeInternal(TargetN, Edge::Ref);
938 #ifndef NDEBUG
939 // Check that the RefSCC is still valid.
940 verify();
941 #endif
944 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
945 Edge::Kind EK) {
946 // First insert it into the caller.
947 SourceN->insertEdgeInternal(TargetN, EK);
949 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
951 assert(G->lookupRefSCC(TargetN) != this &&
952 "Target must not be in this RefSCC.");
953 #ifdef EXPENSIVE_CHECKS
954 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
955 "Target must be a descendant of the Source.");
956 #endif
958 #ifndef NDEBUG
959 // Check that the RefSCC is still valid.
960 verify();
961 #endif
964 SmallVector<LazyCallGraph::RefSCC *, 1>
965 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
966 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
967 RefSCC &SourceC = *G->lookupRefSCC(SourceN);
968 assert(&SourceC != this && "Source must not be in this RefSCC.");
969 #ifdef EXPENSIVE_CHECKS
970 assert(SourceC.isDescendantOf(*this) &&
971 "Source must be a descendant of the Target.");
972 #endif
974 SmallVector<RefSCC *, 1> DeletedRefSCCs;
976 #ifndef NDEBUG
977 // In a debug build, verify the RefSCC is valid to start with and when this
978 // routine finishes.
979 verify();
980 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
981 #endif
983 int SourceIdx = G->RefSCCIndices[&SourceC];
984 int TargetIdx = G->RefSCCIndices[this];
985 assert(SourceIdx < TargetIdx &&
986 "Postorder list doesn't see edge as incoming!");
988 // Compute the RefSCCs which (transitively) reach the source. We do this by
989 // working backwards from the source using the parent set in each RefSCC,
990 // skipping any RefSCCs that don't fall in the postorder range. This has the
991 // advantage of walking the sparser parent edge (in high fan-out graphs) but
992 // more importantly this removes examining all forward edges in all RefSCCs
993 // within the postorder range which aren't in fact connected. Only connected
994 // RefSCCs (and their edges) are visited here.
995 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
996 Set.insert(&SourceC);
997 auto IsConnected = [&](RefSCC &RC) {
998 for (SCC &C : RC)
999 for (Node &N : C)
1000 for (Edge &E : *N)
1001 if (Set.count(G->lookupRefSCC(E.getNode())))
1002 return true;
1004 return false;
1007 for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
1008 G->PostOrderRefSCCs.begin() + TargetIdx + 1))
1009 if (IsConnected(*C))
1010 Set.insert(C);
1013 // Use a normal worklist to find which SCCs the target connects to. We still
1014 // bound the search based on the range in the postorder list we care about,
1015 // but because this is forward connectivity we just "recurse" through the
1016 // edges.
1017 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1018 Set.insert(this);
1019 SmallVector<RefSCC *, 4> Worklist;
1020 Worklist.push_back(this);
1021 do {
1022 RefSCC &RC = *Worklist.pop_back_val();
1023 for (SCC &C : RC)
1024 for (Node &N : C)
1025 for (Edge &E : *N) {
1026 RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
1027 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
1028 // Not in the postorder sequence between source and target.
1029 continue;
1031 if (Set.insert(&EdgeRC).second)
1032 Worklist.push_back(&EdgeRC);
1034 } while (!Worklist.empty());
1037 // Use a generic helper to update the postorder sequence of RefSCCs and return
1038 // a range of any RefSCCs connected into a cycle by inserting this edge. This
1039 // routine will also take care of updating the indices into the postorder
1040 // sequence.
1041 iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
1042 updatePostorderSequenceForEdgeInsertion(
1043 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
1044 ComputeSourceConnectedSet, ComputeTargetConnectedSet);
1046 // Build a set so we can do fast tests for whether a RefSCC will end up as
1047 // part of the merged RefSCC.
1048 SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
1050 // This RefSCC will always be part of that set, so just insert it here.
1051 MergeSet.insert(this);
1053 // Now that we have identified all of the SCCs which need to be merged into
1054 // a connected set with the inserted edge, merge all of them into this SCC.
1055 SmallVector<SCC *, 16> MergedSCCs;
1056 int SCCIndex = 0;
1057 for (RefSCC *RC : MergeRange) {
1058 assert(RC != this && "We're merging into the target RefSCC, so it "
1059 "shouldn't be in the range.");
1061 // Walk the inner SCCs to update their up-pointer and walk all the edges to
1062 // update any parent sets.
1063 // FIXME: We should try to find a way to avoid this (rather expensive) edge
1064 // walk by updating the parent sets in some other manner.
1065 for (SCC &InnerC : *RC) {
1066 InnerC.OuterRefSCC = this;
1067 SCCIndices[&InnerC] = SCCIndex++;
1068 for (Node &N : InnerC)
1069 G->SCCMap[&N] = &InnerC;
1072 // Now merge in the SCCs. We can actually move here so try to reuse storage
1073 // the first time through.
1074 if (MergedSCCs.empty())
1075 MergedSCCs = std::move(RC->SCCs);
1076 else
1077 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
1078 RC->SCCs.clear();
1079 DeletedRefSCCs.push_back(RC);
1082 // Append our original SCCs to the merged list and move it into place.
1083 for (SCC &InnerC : *this)
1084 SCCIndices[&InnerC] = SCCIndex++;
1085 MergedSCCs.append(SCCs.begin(), SCCs.end());
1086 SCCs = std::move(MergedSCCs);
1088 // Remove the merged away RefSCCs from the post order sequence.
1089 for (RefSCC *RC : MergeRange)
1090 G->RefSCCIndices.erase(RC);
1091 int IndexOffset = MergeRange.end() - MergeRange.begin();
1092 auto EraseEnd =
1093 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
1094 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
1095 G->RefSCCIndices[RC] -= IndexOffset;
1097 // At this point we have a merged RefSCC with a post-order SCCs list, just
1098 // connect the nodes to form the new edge.
1099 SourceN->insertEdgeInternal(TargetN, Edge::Ref);
1101 // We return the list of SCCs which were merged so that callers can
1102 // invalidate any data they have associated with those SCCs. Note that these
1103 // SCCs are no longer in an interesting state (they are totally empty) but
1104 // the pointers will remain stable for the life of the graph itself.
1105 return DeletedRefSCCs;
1108 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
1109 assert(G->lookupRefSCC(SourceN) == this &&
1110 "The source must be a member of this RefSCC.");
1111 assert(G->lookupRefSCC(TargetN) != this &&
1112 "The target must not be a member of this RefSCC");
1114 #ifndef NDEBUG
1115 // In a debug build, verify the RefSCC is valid to start with and when this
1116 // routine finishes.
1117 verify();
1118 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1119 #endif
1121 // First remove it from the node.
1122 bool Removed = SourceN->removeEdgeInternal(TargetN);
1123 (void)Removed;
1124 assert(Removed && "Target not in the edge set for this caller?");
1127 SmallVector<LazyCallGraph::RefSCC *, 1>
1128 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
1129 ArrayRef<Node *> TargetNs) {
1130 // We return a list of the resulting *new* RefSCCs in post-order.
1131 SmallVector<RefSCC *, 1> Result;
1133 #ifndef NDEBUG
1134 // In a debug build, verify the RefSCC is valid to start with and that either
1135 // we return an empty list of result RefSCCs and this RefSCC remains valid,
1136 // or we return new RefSCCs and this RefSCC is dead.
1137 verify();
1138 auto VerifyOnExit = make_scope_exit([&]() {
1139 // If we didn't replace our RefSCC with new ones, check that this one
1140 // remains valid.
1141 if (G)
1142 verify();
1144 #endif
1146 // First remove the actual edges.
1147 for (Node *TargetN : TargetNs) {
1148 assert(!(*SourceN)[*TargetN].isCall() &&
1149 "Cannot remove a call edge, it must first be made a ref edge");
1151 bool Removed = SourceN->removeEdgeInternal(*TargetN);
1152 (void)Removed;
1153 assert(Removed && "Target not in the edge set for this caller?");
1156 // Direct self references don't impact the ref graph at all.
1157 if (llvm::all_of(TargetNs,
1158 [&](Node *TargetN) { return &SourceN == TargetN; }))
1159 return Result;
1161 // If all targets are in the same SCC as the source, because no call edges
1162 // were removed there is no RefSCC structure change.
1163 SCC &SourceC = *G->lookupSCC(SourceN);
1164 if (llvm::all_of(TargetNs, [&](Node *TargetN) {
1165 return G->lookupSCC(*TargetN) == &SourceC;
1167 return Result;
1169 // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1170 // for each inner SCC. We store these inside the low-link field of the nodes
1171 // rather than associated with SCCs because this saves a round-trip through
1172 // the node->SCC map and in the common case, SCCs are small. We will verify
1173 // that we always give the same number to every node in the SCC such that
1174 // these are equivalent.
1175 int PostOrderNumber = 0;
1177 // Reset all the other nodes to prepare for a DFS over them, and add them to
1178 // our worklist.
1179 SmallVector<Node *, 8> Worklist;
1180 for (SCC *C : SCCs) {
1181 for (Node &N : *C)
1182 N.DFSNumber = N.LowLink = 0;
1184 Worklist.append(C->Nodes.begin(), C->Nodes.end());
1187 // Track the number of nodes in this RefSCC so that we can quickly recognize
1188 // an important special case of the edge removal not breaking the cycle of
1189 // this RefSCC.
1190 const int NumRefSCCNodes = Worklist.size();
1192 SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
1193 SmallVector<Node *, 4> PendingRefSCCStack;
1194 do {
1195 assert(DFSStack.empty() &&
1196 "Cannot begin a new root with a non-empty DFS stack!");
1197 assert(PendingRefSCCStack.empty() &&
1198 "Cannot begin a new root with pending nodes for an SCC!");
1200 Node *RootN = Worklist.pop_back_val();
1201 // Skip any nodes we've already reached in the DFS.
1202 if (RootN->DFSNumber != 0) {
1203 assert(RootN->DFSNumber == -1 &&
1204 "Shouldn't have any mid-DFS root nodes!");
1205 continue;
1208 RootN->DFSNumber = RootN->LowLink = 1;
1209 int NextDFSNumber = 2;
1211 DFSStack.push_back({RootN, (*RootN)->begin()});
1212 do {
1213 Node *N;
1214 EdgeSequence::iterator I;
1215 std::tie(N, I) = DFSStack.pop_back_val();
1216 auto E = (*N)->end();
1218 assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1219 "before processing a node.");
1221 while (I != E) {
1222 Node &ChildN = I->getNode();
1223 if (ChildN.DFSNumber == 0) {
1224 // Mark that we should start at this child when next this node is the
1225 // top of the stack. We don't start at the next child to ensure this
1226 // child's lowlink is reflected.
1227 DFSStack.push_back({N, I});
1229 // Continue, resetting to the child node.
1230 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1231 N = &ChildN;
1232 I = ChildN->begin();
1233 E = ChildN->end();
1234 continue;
1236 if (ChildN.DFSNumber == -1) {
1237 // If this child isn't currently in this RefSCC, no need to process
1238 // it.
1239 ++I;
1240 continue;
1243 // Track the lowest link of the children, if any are still in the stack.
1244 // Any child not on the stack will have a LowLink of -1.
1245 assert(ChildN.LowLink != 0 &&
1246 "Low-link must not be zero with a non-zero DFS number.");
1247 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1248 N->LowLink = ChildN.LowLink;
1249 ++I;
1252 // We've finished processing N and its descendants, put it on our pending
1253 // stack to eventually get merged into a RefSCC.
1254 PendingRefSCCStack.push_back(N);
1256 // If this node is linked to some lower entry, continue walking up the
1257 // stack.
1258 if (N->LowLink != N->DFSNumber) {
1259 assert(!DFSStack.empty() &&
1260 "We never found a viable root for a RefSCC to pop off!");
1261 continue;
1264 // Otherwise, form a new RefSCC from the top of the pending node stack.
1265 int RefSCCNumber = PostOrderNumber++;
1266 int RootDFSNumber = N->DFSNumber;
1268 // Find the range of the node stack by walking down until we pass the
1269 // root DFS number. Update the DFS numbers and low link numbers in the
1270 // process to avoid re-walking this list where possible.
1271 auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
1272 if (N->DFSNumber < RootDFSNumber)
1273 // We've found the bottom.
1274 return true;
1276 // Update this node and keep scanning.
1277 N->DFSNumber = -1;
1278 // Save the post-order number in the lowlink field so that we can use
1279 // it to map SCCs into new RefSCCs after we finish the DFS.
1280 N->LowLink = RefSCCNumber;
1281 return false;
1283 auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());
1285 // If we find a cycle containing all nodes originally in this RefSCC then
1286 // the removal hasn't changed the structure at all. This is an important
1287 // special case and we can directly exit the entire routine more
1288 // efficiently as soon as we discover it.
1289 if (llvm::size(RefSCCNodes) == NumRefSCCNodes) {
1290 // Clear out the low link field as we won't need it.
1291 for (Node *N : RefSCCNodes)
1292 N->LowLink = -1;
1293 // Return the empty result immediately.
1294 return Result;
1297 // We've already marked the nodes internally with the RefSCC number so
1298 // just clear them off the stack and continue.
1299 PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
1300 } while (!DFSStack.empty());
1302 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1303 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1304 } while (!Worklist.empty());
1306 assert(PostOrderNumber > 1 &&
1307 "Should never finish the DFS when the existing RefSCC remains valid!");
1309 // Otherwise we create a collection of new RefSCC nodes and build
1310 // a radix-sort style map from postorder number to these new RefSCCs. We then
1311 // append SCCs to each of these RefSCCs in the order they occurred in the
1312 // original SCCs container.
1313 for (int i = 0; i < PostOrderNumber; ++i)
1314 Result.push_back(G->createRefSCC(*G));
1316 // Insert the resulting postorder sequence into the global graph postorder
1317 // sequence before the current RefSCC in that sequence, and then remove the
1318 // current one.
1320 // FIXME: It'd be nice to change the APIs so that we returned an iterator
1321 // range over the global postorder sequence and generally use that sequence
1322 // rather than building a separate result vector here.
1323 int Idx = G->getRefSCCIndex(*this);
1324 G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
1325 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
1326 Result.end());
1327 for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1328 G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
1330 for (SCC *C : SCCs) {
1331 // We store the SCC number in the node's low-link field above.
1332 int SCCNumber = C->begin()->LowLink;
1333 // Clear out all of the SCC's node's low-link fields now that we're done
1334 // using them as side-storage.
1335 for (Node &N : *C) {
1336 assert(N.LowLink == SCCNumber &&
1337 "Cannot have different numbers for nodes in the same SCC!");
1338 N.LowLink = -1;
1341 RefSCC &RC = *Result[SCCNumber];
1342 int SCCIndex = RC.SCCs.size();
1343 RC.SCCs.push_back(C);
1344 RC.SCCIndices[C] = SCCIndex;
1345 C->OuterRefSCC = &RC;
1348 // Now that we've moved things into the new RefSCCs, clear out our current
1349 // one.
1350 G = nullptr;
1351 SCCs.clear();
1352 SCCIndices.clear();
1354 #ifndef NDEBUG
1355 // Verify the new RefSCCs we've built.
1356 for (RefSCC *RC : Result)
1357 RC->verify();
1358 #endif
1360 // Return the new list of SCCs.
1361 return Result;
1364 void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN,
1365 Node &TargetN) {
1366 // The only trivial case that requires any graph updates is when we add new
1367 // ref edge and may connect different RefSCCs along that path. This is only
1368 // because of the parents set. Every other part of the graph remains constant
1369 // after this edge insertion.
1370 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
1371 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1372 if (&TargetRC == this)
1373 return;
1375 #ifdef EXPENSIVE_CHECKS
1376 assert(TargetRC.isDescendantOf(*this) &&
1377 "Target must be a descendant of the Source.");
1378 #endif
1381 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
1382 Node &TargetN) {
1383 #ifndef NDEBUG
1384 // Check that the RefSCC is still valid when we finish.
1385 auto ExitVerifier = make_scope_exit([this] { verify(); });
1387 #ifdef EXPENSIVE_CHECKS
1388 // Check that we aren't breaking some invariants of the SCC graph. Note that
1389 // this is quadratic in the number of edges in the call graph!
1390 SCC &SourceC = *G->lookupSCC(SourceN);
1391 SCC &TargetC = *G->lookupSCC(TargetN);
1392 if (&SourceC != &TargetC)
1393 assert(SourceC.isAncestorOf(TargetC) &&
1394 "Call edge is not trivial in the SCC graph!");
1395 #endif // EXPENSIVE_CHECKS
1396 #endif // NDEBUG
1398 // First insert it into the source or find the existing edge.
1399 auto InsertResult =
1400 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1401 if (!InsertResult.second) {
1402 // Already an edge, just update it.
1403 Edge &E = SourceN->Edges[InsertResult.first->second];
1404 if (E.isCall())
1405 return; // Nothing to do!
1406 E.setKind(Edge::Call);
1407 } else {
1408 // Create the new edge.
1409 SourceN->Edges.emplace_back(TargetN, Edge::Call);
1412 // Now that we have the edge, handle the graph fallout.
1413 handleTrivialEdgeInsertion(SourceN, TargetN);
1416 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
1417 #ifndef NDEBUG
1418 // Check that the RefSCC is still valid when we finish.
1419 auto ExitVerifier = make_scope_exit([this] { verify(); });
1421 #ifdef EXPENSIVE_CHECKS
1422 // Check that we aren't breaking some invariants of the RefSCC graph.
1423 RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
1424 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1425 if (&SourceRC != &TargetRC)
1426 assert(SourceRC.isAncestorOf(TargetRC) &&
1427 "Ref edge is not trivial in the RefSCC graph!");
1428 #endif // EXPENSIVE_CHECKS
1429 #endif // NDEBUG
1431 // First insert it into the source or find the existing edge.
1432 auto InsertResult =
1433 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1434 if (!InsertResult.second)
1435 // Already an edge, we're done.
1436 return;
1438 // Create the new edge.
1439 SourceN->Edges.emplace_back(TargetN, Edge::Ref);
1441 // Now that we have the edge, handle the graph fallout.
1442 handleTrivialEdgeInsertion(SourceN, TargetN);
1445 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
1446 Function &OldF = N.getFunction();
1448 #ifndef NDEBUG
1449 // Check that the RefSCC is still valid when we finish.
1450 auto ExitVerifier = make_scope_exit([this] { verify(); });
1452 assert(G->lookupRefSCC(N) == this &&
1453 "Cannot replace the function of a node outside this RefSCC.");
1455 assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
1456 "Must not have already walked the new function!'");
1458 // It is important that this replacement not introduce graph changes so we
1459 // insist that the caller has already removed every use of the original
1460 // function and that all uses of the new function correspond to existing
1461 // edges in the graph. The common and expected way to use this is when
1462 // replacing the function itself in the IR without changing the call graph
1463 // shape and just updating the analysis based on that.
1464 assert(&OldF != &NewF && "Cannot replace a function with itself!");
1465 assert(OldF.use_empty() &&
1466 "Must have moved all uses from the old function to the new!");
1467 #endif
1469 N.replaceFunction(NewF);
1471 // Update various call graph maps.
1472 G->NodeMap.erase(&OldF);
1473 G->NodeMap[&NewF] = &N;
1476 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
1477 assert(SCCMap.empty() &&
1478 "This method cannot be called after SCCs have been formed!");
1480 return SourceN->insertEdgeInternal(TargetN, EK);
1483 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
1484 assert(SCCMap.empty() &&
1485 "This method cannot be called after SCCs have been formed!");
1487 bool Removed = SourceN->removeEdgeInternal(TargetN);
1488 (void)Removed;
1489 assert(Removed && "Target not in the edge set for this caller?");
1492 void LazyCallGraph::removeDeadFunction(Function &F) {
1493 // FIXME: This is unnecessarily restrictive. We should be able to remove
1494 // functions which recursively call themselves.
1495 assert(F.use_empty() &&
1496 "This routine should only be called on trivially dead functions!");
1498 // We shouldn't remove library functions as they are never really dead while
1499 // the call graph is in use -- every function definition refers to them.
1500 assert(!isLibFunction(F) &&
1501 "Must not remove lib functions from the call graph!");
1503 auto NI = NodeMap.find(&F);
1504 if (NI == NodeMap.end())
1505 // Not in the graph at all!
1506 return;
1508 Node &N = *NI->second;
1509 NodeMap.erase(NI);
1511 // Remove this from the entry edges if present.
1512 EntryEdges.removeEdgeInternal(N);
1514 if (SCCMap.empty()) {
1515 // No SCCs have been formed, so removing this is fine and there is nothing
1516 // else necessary at this point but clearing out the node.
1517 N.clear();
1518 return;
1521 // Cannot remove a function which has yet to be visited in the DFS walk, so
1522 // if we have a node at all then we must have an SCC and RefSCC.
1523 auto CI = SCCMap.find(&N);
1524 assert(CI != SCCMap.end() &&
1525 "Tried to remove a node without an SCC after DFS walk started!");
1526 SCC &C = *CI->second;
1527 SCCMap.erase(CI);
1528 RefSCC &RC = C.getOuterRefSCC();
1530 // This node must be the only member of its SCC as it has no callers, and
1531 // that SCC must be the only member of a RefSCC as it has no references.
1532 // Validate these properties first.
1533 assert(C.size() == 1 && "Dead functions must be in a singular SCC");
1534 assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");
1536 auto RCIndexI = RefSCCIndices.find(&RC);
1537 int RCIndex = RCIndexI->second;
1538 PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex);
1539 RefSCCIndices.erase(RCIndexI);
1540 for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i)
1541 RefSCCIndices[PostOrderRefSCCs[i]] = i;
1543 // Finally clear out all the data structures from the node down through the
1544 // components.
1545 N.clear();
1546 N.G = nullptr;
1547 N.F = nullptr;
1548 C.clear();
1549 RC.clear();
1550 RC.G = nullptr;
1552 // Nothing to delete as all the objects are allocated in stable bump pointer
1553 // allocators.
1556 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1557 return *new (MappedN = BPA.Allocate()) Node(*this, F);
1560 void LazyCallGraph::updateGraphPtrs() {
1561 // Walk the node map to update their graph pointers. While this iterates in
1562 // an unstable order, the order has no effect so it remains correct.
1563 for (auto &FunctionNodePair : NodeMap)
1564 FunctionNodePair.second->G = this;
1566 for (auto *RC : PostOrderRefSCCs)
1567 RC->G = this;
1570 template <typename RootsT, typename GetBeginT, typename GetEndT,
1571 typename GetNodeT, typename FormSCCCallbackT>
1572 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1573 GetEndT &&GetEnd, GetNodeT &&GetNode,
1574 FormSCCCallbackT &&FormSCC) {
1575 using EdgeItT = decltype(GetBegin(std::declval<Node &>()));
1577 SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
1578 SmallVector<Node *, 16> PendingSCCStack;
1580 // Scan down the stack and DFS across the call edges.
1581 for (Node *RootN : Roots) {
1582 assert(DFSStack.empty() &&
1583 "Cannot begin a new root with a non-empty DFS stack!");
1584 assert(PendingSCCStack.empty() &&
1585 "Cannot begin a new root with pending nodes for an SCC!");
1587 // Skip any nodes we've already reached in the DFS.
1588 if (RootN->DFSNumber != 0) {
1589 assert(RootN->DFSNumber == -1 &&
1590 "Shouldn't have any mid-DFS root nodes!");
1591 continue;
1594 RootN->DFSNumber = RootN->LowLink = 1;
1595 int NextDFSNumber = 2;
1597 DFSStack.push_back({RootN, GetBegin(*RootN)});
1598 do {
1599 Node *N;
1600 EdgeItT I;
1601 std::tie(N, I) = DFSStack.pop_back_val();
1602 auto E = GetEnd(*N);
1603 while (I != E) {
1604 Node &ChildN = GetNode(I);
1605 if (ChildN.DFSNumber == 0) {
1606 // We haven't yet visited this child, so descend, pushing the current
1607 // node onto the stack.
1608 DFSStack.push_back({N, I});
1610 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1611 N = &ChildN;
1612 I = GetBegin(*N);
1613 E = GetEnd(*N);
1614 continue;
1617 // If the child has already been added to some child component, it
1618 // couldn't impact the low-link of this parent because it isn't
1619 // connected, and thus its low-link isn't relevant so skip it.
1620 if (ChildN.DFSNumber == -1) {
1621 ++I;
1622 continue;
1625 // Track the lowest linked child as the lowest link for this node.
1626 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1627 if (ChildN.LowLink < N->LowLink)
1628 N->LowLink = ChildN.LowLink;
1630 // Move to the next edge.
1631 ++I;
1634 // We've finished processing N and its descendants, put it on our pending
1635 // SCC stack to eventually get merged into an SCC of nodes.
1636 PendingSCCStack.push_back(N);
1638 // If this node is linked to some lower entry, continue walking up the
1639 // stack.
1640 if (N->LowLink != N->DFSNumber)
1641 continue;
1643 // Otherwise, we've completed an SCC. Append it to our post order list of
1644 // SCCs.
1645 int RootDFSNumber = N->DFSNumber;
1646 // Find the range of the node stack by walking down until we pass the
1647 // root DFS number.
1648 auto SCCNodes = make_range(
1649 PendingSCCStack.rbegin(),
1650 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1651 return N->DFSNumber < RootDFSNumber;
1652 }));
1653 // Form a new SCC out of these nodes and then clear them off our pending
1654 // stack.
1655 FormSCC(SCCNodes);
1656 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1657 } while (!DFSStack.empty());
1661 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1663 /// Appends the SCCs to the provided vector and updates the map with their
1664 /// indices. Both the vector and map must be empty when passed into this
1665 /// routine.
1666 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1667 assert(RC.SCCs.empty() && "Already built SCCs!");
1668 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1670 for (Node *N : Nodes) {
1671 assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1672 "We cannot have a low link in an SCC lower than its root on the "
1673 "stack!");
1675 // This node will go into the next RefSCC, clear out its DFS and low link
1676 // as we scan.
1677 N->DFSNumber = N->LowLink = 0;
1680 // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1681 // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1682 // internal storage as we won't need it for the outer graph's DFS any longer.
1683 buildGenericSCCs(
1684 Nodes, [](Node &N) { return N->call_begin(); },
1685 [](Node &N) { return N->call_end(); },
1686 [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
1687 [this, &RC](node_stack_range Nodes) {
1688 RC.SCCs.push_back(createSCC(RC, Nodes));
1689 for (Node &N : *RC.SCCs.back()) {
1690 N.DFSNumber = N.LowLink = -1;
1691 SCCMap[&N] = RC.SCCs.back();
1695 // Wire up the SCC indices.
1696 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
1697 RC.SCCIndices[RC.SCCs[i]] = i;
1700 void LazyCallGraph::buildRefSCCs() {
1701 if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
1702 // RefSCCs are either non-existent or already built!
1703 return;
1705 assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
1707 SmallVector<Node *, 16> Roots;
1708 for (Edge &E : *this)
1709 Roots.push_back(&E.getNode());
1711 // The roots will be popped of a stack, so use reverse to get a less
1712 // surprising order. This doesn't change any of the semantics anywhere.
1713 std::reverse(Roots.begin(), Roots.end());
1715 buildGenericSCCs(
1716 Roots,
1717 [](Node &N) {
1718 // We need to populate each node as we begin to walk its edges.
1719 N.populate();
1720 return N->begin();
1722 [](Node &N) { return N->end(); },
1723 [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
1724 [this](node_stack_range Nodes) {
1725 RefSCC *NewRC = createRefSCC(*this);
1726 buildSCCs(*NewRC, Nodes);
1728 // Push the new node into the postorder list and remember its position
1729 // in the index map.
1730 bool Inserted =
1731 RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
1732 (void)Inserted;
1733 assert(Inserted && "Cannot already have this RefSCC in the index map!");
1734 PostOrderRefSCCs.push_back(NewRC);
1735 #ifndef NDEBUG
1736 NewRC->verify();
1737 #endif
1741 AnalysisKey LazyCallGraphAnalysis::Key;
1743 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1745 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1746 OS << " Edges in function: " << N.getFunction().getName() << "\n";
1747 for (LazyCallGraph::Edge &E : N.populate())
1748 OS << " " << (E.isCall() ? "call" : "ref ") << " -> "
1749 << E.getFunction().getName() << "\n";
1751 OS << "\n";
1754 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1755 OS << " SCC with " << C.size() << " functions:\n";
1757 for (LazyCallGraph::Node &N : C)
1758 OS << " " << N.getFunction().getName() << "\n";
1761 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
1762 OS << " RefSCC with " << C.size() << " call SCCs:\n";
1764 for (LazyCallGraph::SCC &InnerC : C)
1765 printSCC(OS, InnerC);
1767 OS << "\n";
1770 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
1771 ModuleAnalysisManager &AM) {
1772 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1774 OS << "Printing the call graph for module: " << M.getModuleIdentifier()
1775 << "\n\n";
1777 for (Function &F : M)
1778 printNode(OS, G.get(F));
1780 G.buildRefSCCs();
1781 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
1782 printRefSCC(OS, C);
1784 return PreservedAnalyses::all();
1787 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
1788 : OS(OS) {}
1790 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
1791 std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";
1793 for (LazyCallGraph::Edge &E : N.populate()) {
1794 OS << " " << Name << " -> \""
1795 << DOT::EscapeString(E.getFunction().getName()) << "\"";
1796 if (!E.isCall()) // It is a ref edge.
1797 OS << " [style=dashed,label=\"ref\"]";
1798 OS << ";\n";
1801 OS << "\n";
1804 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
1805 ModuleAnalysisManager &AM) {
1806 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1808 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
1810 for (Function &F : M)
1811 printNodeDOT(OS, G.get(F));
1813 OS << "}\n";
1815 return PreservedAnalyses::all();