[MIPS GlobalISel] Select MSA vector generic and builtin add
[llvm-complete.git] / lib / Analysis / LoopInfo.cpp
blobdbab5db7dbc2db4cc1765def263f5ccbf81bd5fa
1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the LoopInfo class that is used to identify natural loops
10 // and determine the loop depth of various nodes of the CFG. Note that the
11 // loops identified may actually be several natural loops that share the same
12 // header node... not just a single natural loop.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/IVDescriptors.h"
21 #include "llvm/Analysis/LoopInfoImpl.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DebugLoc.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/IRPrintingPasses.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/PassManager.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 using namespace llvm;
43 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
44 template class llvm::LoopBase<BasicBlock, Loop>;
45 template class llvm::LoopInfoBase<BasicBlock, Loop>;
47 // Always verify loopinfo if expensive checking is enabled.
48 #ifdef EXPENSIVE_CHECKS
49 bool llvm::VerifyLoopInfo = true;
50 #else
51 bool llvm::VerifyLoopInfo = false;
52 #endif
53 static cl::opt<bool, true>
54 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
55 cl::Hidden, cl::desc("Verify loop info (time consuming)"));
57 //===----------------------------------------------------------------------===//
58 // Loop implementation
61 bool Loop::isLoopInvariant(const Value *V) const {
62 if (const Instruction *I = dyn_cast<Instruction>(V))
63 return !contains(I);
64 return true; // All non-instructions are loop invariant
67 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
68 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
71 bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt,
72 MemorySSAUpdater *MSSAU) const {
73 if (Instruction *I = dyn_cast<Instruction>(V))
74 return makeLoopInvariant(I, Changed, InsertPt, MSSAU);
75 return true; // All non-instructions are loop-invariant.
78 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
79 Instruction *InsertPt,
80 MemorySSAUpdater *MSSAU) const {
81 // Test if the value is already loop-invariant.
82 if (isLoopInvariant(I))
83 return true;
84 if (!isSafeToSpeculativelyExecute(I))
85 return false;
86 if (I->mayReadFromMemory())
87 return false;
88 // EH block instructions are immobile.
89 if (I->isEHPad())
90 return false;
91 // Determine the insertion point, unless one was given.
92 if (!InsertPt) {
93 BasicBlock *Preheader = getLoopPreheader();
94 // Without a preheader, hoisting is not feasible.
95 if (!Preheader)
96 return false;
97 InsertPt = Preheader->getTerminator();
99 // Don't hoist instructions with loop-variant operands.
100 for (Value *Operand : I->operands())
101 if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU))
102 return false;
104 // Hoist.
105 I->moveBefore(InsertPt);
106 if (MSSAU)
107 if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I))
108 MSSAU->moveToPlace(MUD, InsertPt->getParent(), MemorySSA::End);
110 // There is possibility of hoisting this instruction above some arbitrary
111 // condition. Any metadata defined on it can be control dependent on this
112 // condition. Conservatively strip it here so that we don't give any wrong
113 // information to the optimizer.
114 I->dropUnknownNonDebugMetadata();
116 Changed = true;
117 return true;
120 bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming,
121 BasicBlock *&Backedge) const {
122 BasicBlock *H = getHeader();
124 Incoming = nullptr;
125 Backedge = nullptr;
126 pred_iterator PI = pred_begin(H);
127 assert(PI != pred_end(H) && "Loop must have at least one backedge!");
128 Backedge = *PI++;
129 if (PI == pred_end(H))
130 return false; // dead loop
131 Incoming = *PI++;
132 if (PI != pred_end(H))
133 return false; // multiple backedges?
135 if (contains(Incoming)) {
136 if (contains(Backedge))
137 return false;
138 std::swap(Incoming, Backedge);
139 } else if (!contains(Backedge))
140 return false;
142 assert(Incoming && Backedge && "expected non-null incoming and backedges");
143 return true;
146 PHINode *Loop::getCanonicalInductionVariable() const {
147 BasicBlock *H = getHeader();
149 BasicBlock *Incoming = nullptr, *Backedge = nullptr;
150 if (!getIncomingAndBackEdge(Incoming, Backedge))
151 return nullptr;
153 // Loop over all of the PHI nodes, looking for a canonical indvar.
154 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
155 PHINode *PN = cast<PHINode>(I);
156 if (ConstantInt *CI =
157 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
158 if (CI->isZero())
159 if (Instruction *Inc =
160 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
161 if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
162 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
163 if (CI->isOne())
164 return PN;
166 return nullptr;
169 /// Get the latch condition instruction.
170 static ICmpInst *getLatchCmpInst(const Loop &L) {
171 if (BasicBlock *Latch = L.getLoopLatch())
172 if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()))
173 if (BI->isConditional())
174 return dyn_cast<ICmpInst>(BI->getCondition());
176 return nullptr;
179 /// Return the final value of the loop induction variable if found.
180 static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar,
181 const Instruction &StepInst) {
182 ICmpInst *LatchCmpInst = getLatchCmpInst(L);
183 if (!LatchCmpInst)
184 return nullptr;
186 Value *Op0 = LatchCmpInst->getOperand(0);
187 Value *Op1 = LatchCmpInst->getOperand(1);
188 if (Op0 == &IndVar || Op0 == &StepInst)
189 return Op1;
191 if (Op1 == &IndVar || Op1 == &StepInst)
192 return Op0;
194 return nullptr;
197 Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L,
198 PHINode &IndVar,
199 ScalarEvolution &SE) {
200 InductionDescriptor IndDesc;
201 if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc))
202 return None;
204 Value *InitialIVValue = IndDesc.getStartValue();
205 Instruction *StepInst = IndDesc.getInductionBinOp();
206 if (!InitialIVValue || !StepInst)
207 return None;
209 const SCEV *Step = IndDesc.getStep();
210 Value *StepInstOp1 = StepInst->getOperand(1);
211 Value *StepInstOp0 = StepInst->getOperand(0);
212 Value *StepValue = nullptr;
213 if (SE.getSCEV(StepInstOp1) == Step)
214 StepValue = StepInstOp1;
215 else if (SE.getSCEV(StepInstOp0) == Step)
216 StepValue = StepInstOp0;
218 Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst);
219 if (!FinalIVValue)
220 return None;
222 return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue,
223 SE);
226 using Direction = Loop::LoopBounds::Direction;
228 ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const {
229 BasicBlock *Latch = L.getLoopLatch();
230 assert(Latch && "Expecting valid latch");
232 BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator());
233 assert(BI && BI->isConditional() && "Expecting conditional latch branch");
235 ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition());
236 assert(LatchCmpInst &&
237 "Expecting the latch compare instruction to be a CmpInst");
239 // Need to inverse the predicate when first successor is not the loop
240 // header
241 ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader())
242 ? LatchCmpInst->getPredicate()
243 : LatchCmpInst->getInversePredicate();
245 if (LatchCmpInst->getOperand(0) == &getFinalIVValue())
246 Pred = ICmpInst::getSwappedPredicate(Pred);
248 // Need to flip strictness of the predicate when the latch compare instruction
249 // is not using StepInst
250 if (LatchCmpInst->getOperand(0) == &getStepInst() ||
251 LatchCmpInst->getOperand(1) == &getStepInst())
252 return Pred;
254 // Cannot flip strictness of NE and EQ
255 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
256 return ICmpInst::getFlippedStrictnessPredicate(Pred);
258 Direction D = getDirection();
259 if (D == Direction::Increasing)
260 return ICmpInst::ICMP_SLT;
262 if (D == Direction::Decreasing)
263 return ICmpInst::ICMP_SGT;
265 // If cannot determine the direction, then unable to find the canonical
266 // predicate
267 return ICmpInst::BAD_ICMP_PREDICATE;
270 Direction Loop::LoopBounds::getDirection() const {
271 if (const SCEVAddRecExpr *StepAddRecExpr =
272 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst())))
273 if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) {
274 if (SE.isKnownPositive(StepRecur))
275 return Direction::Increasing;
276 if (SE.isKnownNegative(StepRecur))
277 return Direction::Decreasing;
280 return Direction::Unknown;
283 Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const {
284 if (PHINode *IndVar = getInductionVariable(SE))
285 return LoopBounds::getBounds(*this, *IndVar, SE);
287 return None;
290 PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const {
291 if (!isLoopSimplifyForm())
292 return nullptr;
294 BasicBlock *Header = getHeader();
295 assert(Header && "Expected a valid loop header");
296 ICmpInst *CmpInst = getLatchCmpInst(*this);
297 if (!CmpInst)
298 return nullptr;
300 Instruction *LatchCmpOp0 = dyn_cast<Instruction>(CmpInst->getOperand(0));
301 Instruction *LatchCmpOp1 = dyn_cast<Instruction>(CmpInst->getOperand(1));
303 for (PHINode &IndVar : Header->phis()) {
304 InductionDescriptor IndDesc;
305 if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc))
306 continue;
308 Instruction *StepInst = IndDesc.getInductionBinOp();
310 // case 1:
311 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
312 // StepInst = IndVar + step
313 // cmp = StepInst < FinalValue
314 if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1)
315 return &IndVar;
317 // case 2:
318 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
319 // StepInst = IndVar + step
320 // cmp = IndVar < FinalValue
321 if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1)
322 return &IndVar;
325 return nullptr;
328 bool Loop::getInductionDescriptor(ScalarEvolution &SE,
329 InductionDescriptor &IndDesc) const {
330 if (PHINode *IndVar = getInductionVariable(SE))
331 return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc);
333 return false;
336 bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar,
337 ScalarEvolution &SE) const {
338 // Located in the loop header
339 BasicBlock *Header = getHeader();
340 if (AuxIndVar.getParent() != Header)
341 return false;
343 // No uses outside of the loop
344 for (User *U : AuxIndVar.users())
345 if (const Instruction *I = dyn_cast<Instruction>(U))
346 if (!contains(I))
347 return false;
349 InductionDescriptor IndDesc;
350 if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc))
351 return false;
353 // The step instruction opcode should be add or sub.
354 if (IndDesc.getInductionOpcode() != Instruction::Add &&
355 IndDesc.getInductionOpcode() != Instruction::Sub)
356 return false;
358 // Incremented by a loop invariant step for each loop iteration
359 return SE.isLoopInvariant(IndDesc.getStep(), this);
362 BranchInst *Loop::getLoopGuardBranch() const {
363 if (!isLoopSimplifyForm())
364 return nullptr;
366 BasicBlock *Preheader = getLoopPreheader();
367 BasicBlock *Latch = getLoopLatch();
368 assert(Preheader && Latch &&
369 "Expecting a loop with valid preheader and latch");
371 // Loop should be in rotate form.
372 if (!isLoopExiting(Latch))
373 return nullptr;
375 // Disallow loops with more than one unique exit block, as we do not verify
376 // that GuardOtherSucc post dominates all exit blocks.
377 BasicBlock *ExitFromLatch = getUniqueExitBlock();
378 if (!ExitFromLatch)
379 return nullptr;
381 BasicBlock *ExitFromLatchSucc = ExitFromLatch->getUniqueSuccessor();
382 if (!ExitFromLatchSucc)
383 return nullptr;
385 BasicBlock *GuardBB = Preheader->getUniquePredecessor();
386 if (!GuardBB)
387 return nullptr;
389 assert(GuardBB->getTerminator() && "Expecting valid guard terminator");
391 BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator());
392 if (!GuardBI || GuardBI->isUnconditional())
393 return nullptr;
395 BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader)
396 ? GuardBI->getSuccessor(1)
397 : GuardBI->getSuccessor(0);
398 return (GuardOtherSucc == ExitFromLatchSucc) ? GuardBI : nullptr;
401 bool Loop::isCanonical(ScalarEvolution &SE) const {
402 InductionDescriptor IndDesc;
403 if (!getInductionDescriptor(SE, IndDesc))
404 return false;
406 ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue());
407 if (!Init || !Init->isZero())
408 return false;
410 if (IndDesc.getInductionOpcode() != Instruction::Add)
411 return false;
413 ConstantInt *Step = IndDesc.getConstIntStepValue();
414 if (!Step || !Step->isOne())
415 return false;
417 return true;
420 // Check that 'BB' doesn't have any uses outside of the 'L'
421 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
422 DominatorTree &DT) {
423 for (const Instruction &I : BB) {
424 // Tokens can't be used in PHI nodes and live-out tokens prevent loop
425 // optimizations, so for the purposes of considered LCSSA form, we
426 // can ignore them.
427 if (I.getType()->isTokenTy())
428 continue;
430 for (const Use &U : I.uses()) {
431 const Instruction *UI = cast<Instruction>(U.getUser());
432 const BasicBlock *UserBB = UI->getParent();
433 if (const PHINode *P = dyn_cast<PHINode>(UI))
434 UserBB = P->getIncomingBlock(U);
436 // Check the current block, as a fast-path, before checking whether
437 // the use is anywhere in the loop. Most values are used in the same
438 // block they are defined in. Also, blocks not reachable from the
439 // entry are special; uses in them don't need to go through PHIs.
440 if (UserBB != &BB && !L.contains(UserBB) &&
441 DT.isReachableFromEntry(UserBB))
442 return false;
445 return true;
448 bool Loop::isLCSSAForm(DominatorTree &DT) const {
449 // For each block we check that it doesn't have any uses outside of this loop.
450 return all_of(this->blocks(), [&](const BasicBlock *BB) {
451 return isBlockInLCSSAForm(*this, *BB, DT);
455 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const {
456 // For each block we check that it doesn't have any uses outside of its
457 // innermost loop. This process will transitively guarantee that the current
458 // loop and all of the nested loops are in LCSSA form.
459 return all_of(this->blocks(), [&](const BasicBlock *BB) {
460 return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
464 bool Loop::isLoopSimplifyForm() const {
465 // Normal-form loops have a preheader, a single backedge, and all of their
466 // exits have all their predecessors inside the loop.
467 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
470 // Routines that reform the loop CFG and split edges often fail on indirectbr.
471 bool Loop::isSafeToClone() const {
472 // Return false if any loop blocks contain indirectbrs, or there are any calls
473 // to noduplicate functions.
474 // FIXME: it should be ok to clone CallBrInst's if we correctly update the
475 // operand list to reflect the newly cloned labels.
476 for (BasicBlock *BB : this->blocks()) {
477 if (isa<IndirectBrInst>(BB->getTerminator()) ||
478 isa<CallBrInst>(BB->getTerminator()))
479 return false;
481 for (Instruction &I : *BB)
482 if (auto CS = CallSite(&I))
483 if (CS.cannotDuplicate())
484 return false;
486 return true;
489 MDNode *Loop::getLoopID() const {
490 MDNode *LoopID = nullptr;
492 // Go through the latch blocks and check the terminator for the metadata.
493 SmallVector<BasicBlock *, 4> LatchesBlocks;
494 getLoopLatches(LatchesBlocks);
495 for (BasicBlock *BB : LatchesBlocks) {
496 Instruction *TI = BB->getTerminator();
497 MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);
499 if (!MD)
500 return nullptr;
502 if (!LoopID)
503 LoopID = MD;
504 else if (MD != LoopID)
505 return nullptr;
507 if (!LoopID || LoopID->getNumOperands() == 0 ||
508 LoopID->getOperand(0) != LoopID)
509 return nullptr;
510 return LoopID;
513 void Loop::setLoopID(MDNode *LoopID) const {
514 assert((!LoopID || LoopID->getNumOperands() > 0) &&
515 "Loop ID needs at least one operand");
516 assert((!LoopID || LoopID->getOperand(0) == LoopID) &&
517 "Loop ID should refer to itself");
519 SmallVector<BasicBlock *, 4> LoopLatches;
520 getLoopLatches(LoopLatches);
521 for (BasicBlock *BB : LoopLatches)
522 BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
525 void Loop::setLoopAlreadyUnrolled() {
526 LLVMContext &Context = getHeader()->getContext();
528 MDNode *DisableUnrollMD =
529 MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable"));
530 MDNode *LoopID = getLoopID();
531 MDNode *NewLoopID = makePostTransformationMetadata(
532 Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD});
533 setLoopID(NewLoopID);
536 bool Loop::isAnnotatedParallel() const {
537 MDNode *DesiredLoopIdMetadata = getLoopID();
539 if (!DesiredLoopIdMetadata)
540 return false;
542 MDNode *ParallelAccesses =
543 findOptionMDForLoop(this, "llvm.loop.parallel_accesses");
544 SmallPtrSet<MDNode *, 4>
545 ParallelAccessGroups; // For scalable 'contains' check.
546 if (ParallelAccesses) {
547 for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) {
548 MDNode *AccGroup = cast<MDNode>(MD.get());
549 assert(isValidAsAccessGroup(AccGroup) &&
550 "List item must be an access group");
551 ParallelAccessGroups.insert(AccGroup);
555 // The loop branch contains the parallel loop metadata. In order to ensure
556 // that any parallel-loop-unaware optimization pass hasn't added loop-carried
557 // dependencies (thus converted the loop back to a sequential loop), check
558 // that all the memory instructions in the loop belong to an access group that
559 // is parallel to this loop.
560 for (BasicBlock *BB : this->blocks()) {
561 for (Instruction &I : *BB) {
562 if (!I.mayReadOrWriteMemory())
563 continue;
565 if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) {
566 auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool {
567 if (AG->getNumOperands() == 0) {
568 assert(isValidAsAccessGroup(AG) && "Item must be an access group");
569 return ParallelAccessGroups.count(AG);
572 for (const MDOperand &AccessListItem : AG->operands()) {
573 MDNode *AccGroup = cast<MDNode>(AccessListItem.get());
574 assert(isValidAsAccessGroup(AccGroup) &&
575 "List item must be an access group");
576 if (ParallelAccessGroups.count(AccGroup))
577 return true;
579 return false;
582 if (ContainsAccessGroup(AccessGroup))
583 continue;
586 // The memory instruction can refer to the loop identifier metadata
587 // directly or indirectly through another list metadata (in case of
588 // nested parallel loops). The loop identifier metadata refers to
589 // itself so we can check both cases with the same routine.
590 MDNode *LoopIdMD =
591 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
593 if (!LoopIdMD)
594 return false;
596 bool LoopIdMDFound = false;
597 for (const MDOperand &MDOp : LoopIdMD->operands()) {
598 if (MDOp == DesiredLoopIdMetadata) {
599 LoopIdMDFound = true;
600 break;
604 if (!LoopIdMDFound)
605 return false;
608 return true;
611 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }
613 Loop::LocRange Loop::getLocRange() const {
614 // If we have a debug location in the loop ID, then use it.
615 if (MDNode *LoopID = getLoopID()) {
616 DebugLoc Start;
617 // We use the first DebugLoc in the header as the start location of the loop
618 // and if there is a second DebugLoc in the header we use it as end location
619 // of the loop.
620 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
621 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
622 if (!Start)
623 Start = DebugLoc(L);
624 else
625 return LocRange(Start, DebugLoc(L));
629 if (Start)
630 return LocRange(Start);
633 // Try the pre-header first.
634 if (BasicBlock *PHeadBB = getLoopPreheader())
635 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
636 return LocRange(DL);
638 // If we have no pre-header or there are no instructions with debug
639 // info in it, try the header.
640 if (BasicBlock *HeadBB = getHeader())
641 return LocRange(HeadBB->getTerminator()->getDebugLoc());
643 return LocRange();
646 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
647 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }
649 LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
650 print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
652 #endif
654 //===----------------------------------------------------------------------===//
655 // UnloopUpdater implementation
658 namespace {
659 /// Find the new parent loop for all blocks within the "unloop" whose last
660 /// backedges has just been removed.
661 class UnloopUpdater {
662 Loop &Unloop;
663 LoopInfo *LI;
665 LoopBlocksDFS DFS;
667 // Map unloop's immediate subloops to their nearest reachable parents. Nested
668 // loops within these subloops will not change parents. However, an immediate
669 // subloop's new parent will be the nearest loop reachable from either its own
670 // exits *or* any of its nested loop's exits.
671 DenseMap<Loop *, Loop *> SubloopParents;
673 // Flag the presence of an irreducible backedge whose destination is a block
674 // directly contained by the original unloop.
675 bool FoundIB;
677 public:
678 UnloopUpdater(Loop *UL, LoopInfo *LInfo)
679 : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
681 void updateBlockParents();
683 void removeBlocksFromAncestors();
685 void updateSubloopParents();
687 protected:
688 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
690 } // end anonymous namespace
692 /// Update the parent loop for all blocks that are directly contained within the
693 /// original "unloop".
694 void UnloopUpdater::updateBlockParents() {
695 if (Unloop.getNumBlocks()) {
696 // Perform a post order CFG traversal of all blocks within this loop,
697 // propagating the nearest loop from successors to predecessors.
698 LoopBlocksTraversal Traversal(DFS, LI);
699 for (BasicBlock *POI : Traversal) {
701 Loop *L = LI->getLoopFor(POI);
702 Loop *NL = getNearestLoop(POI, L);
704 if (NL != L) {
705 // For reducible loops, NL is now an ancestor of Unloop.
706 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
707 "uninitialized successor");
708 LI->changeLoopFor(POI, NL);
709 } else {
710 // Or the current block is part of a subloop, in which case its parent
711 // is unchanged.
712 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
716 // Each irreducible loop within the unloop induces a round of iteration using
717 // the DFS result cached by Traversal.
718 bool Changed = FoundIB;
719 for (unsigned NIters = 0; Changed; ++NIters) {
720 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
722 // Iterate over the postorder list of blocks, propagating the nearest loop
723 // from successors to predecessors as before.
724 Changed = false;
725 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
726 POE = DFS.endPostorder();
727 POI != POE; ++POI) {
729 Loop *L = LI->getLoopFor(*POI);
730 Loop *NL = getNearestLoop(*POI, L);
731 if (NL != L) {
732 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
733 "uninitialized successor");
734 LI->changeLoopFor(*POI, NL);
735 Changed = true;
741 /// Remove unloop's blocks from all ancestors below their new parents.
742 void UnloopUpdater::removeBlocksFromAncestors() {
743 // Remove all unloop's blocks (including those in nested subloops) from
744 // ancestors below the new parent loop.
745 for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end();
746 BI != BE; ++BI) {
747 Loop *OuterParent = LI->getLoopFor(*BI);
748 if (Unloop.contains(OuterParent)) {
749 while (OuterParent->getParentLoop() != &Unloop)
750 OuterParent = OuterParent->getParentLoop();
751 OuterParent = SubloopParents[OuterParent];
753 // Remove blocks from former Ancestors except Unloop itself which will be
754 // deleted.
755 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
756 OldParent = OldParent->getParentLoop()) {
757 assert(OldParent && "new loop is not an ancestor of the original");
758 OldParent->removeBlockFromLoop(*BI);
763 /// Update the parent loop for all subloops directly nested within unloop.
764 void UnloopUpdater::updateSubloopParents() {
765 while (!Unloop.empty()) {
766 Loop *Subloop = *std::prev(Unloop.end());
767 Unloop.removeChildLoop(std::prev(Unloop.end()));
769 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
770 if (Loop *Parent = SubloopParents[Subloop])
771 Parent->addChildLoop(Subloop);
772 else
773 LI->addTopLevelLoop(Subloop);
777 /// Return the nearest parent loop among this block's successors. If a successor
778 /// is a subloop header, consider its parent to be the nearest parent of the
779 /// subloop's exits.
781 /// For subloop blocks, simply update SubloopParents and return NULL.
782 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
784 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
785 // is considered uninitialized.
786 Loop *NearLoop = BBLoop;
788 Loop *Subloop = nullptr;
789 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
790 Subloop = NearLoop;
791 // Find the subloop ancestor that is directly contained within Unloop.
792 while (Subloop->getParentLoop() != &Unloop) {
793 Subloop = Subloop->getParentLoop();
794 assert(Subloop && "subloop is not an ancestor of the original loop");
796 // Get the current nearest parent of the Subloop exits, initially Unloop.
797 NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
800 succ_iterator I = succ_begin(BB), E = succ_end(BB);
801 if (I == E) {
802 assert(!Subloop && "subloop blocks must have a successor");
803 NearLoop = nullptr; // unloop blocks may now exit the function.
805 for (; I != E; ++I) {
806 if (*I == BB)
807 continue; // self loops are uninteresting
809 Loop *L = LI->getLoopFor(*I);
810 if (L == &Unloop) {
811 // This successor has not been processed. This path must lead to an
812 // irreducible backedge.
813 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
814 FoundIB = true;
816 if (L != &Unloop && Unloop.contains(L)) {
817 // Successor is in a subloop.
818 if (Subloop)
819 continue; // Branching within subloops. Ignore it.
821 // BB branches from the original into a subloop header.
822 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
824 // Get the current nearest parent of the Subloop's exits.
825 L = SubloopParents[L];
826 // L could be Unloop if the only exit was an irreducible backedge.
828 if (L == &Unloop) {
829 continue;
831 // Handle critical edges from Unloop into a sibling loop.
832 if (L && !L->contains(&Unloop)) {
833 L = L->getParentLoop();
835 // Remember the nearest parent loop among successors or subloop exits.
836 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
837 NearLoop = L;
839 if (Subloop) {
840 SubloopParents[Subloop] = NearLoop;
841 return BBLoop;
843 return NearLoop;
846 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }
848 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
849 FunctionAnalysisManager::Invalidator &) {
850 // Check whether the analysis, all analyses on functions, or the function's
851 // CFG have been preserved.
852 auto PAC = PA.getChecker<LoopAnalysis>();
853 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
854 PAC.preservedSet<CFGAnalyses>());
857 void LoopInfo::erase(Loop *Unloop) {
858 assert(!Unloop->isInvalid() && "Loop has already been erased!");
860 auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });
862 // First handle the special case of no parent loop to simplify the algorithm.
863 if (!Unloop->getParentLoop()) {
864 // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
865 for (Loop::block_iterator I = Unloop->block_begin(),
866 E = Unloop->block_end();
867 I != E; ++I) {
869 // Don't reparent blocks in subloops.
870 if (getLoopFor(*I) != Unloop)
871 continue;
873 // Blocks no longer have a parent but are still referenced by Unloop until
874 // the Unloop object is deleted.
875 changeLoopFor(*I, nullptr);
878 // Remove the loop from the top-level LoopInfo object.
879 for (iterator I = begin();; ++I) {
880 assert(I != end() && "Couldn't find loop");
881 if (*I == Unloop) {
882 removeLoop(I);
883 break;
887 // Move all of the subloops to the top-level.
888 while (!Unloop->empty())
889 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
891 return;
894 // Update the parent loop for all blocks within the loop. Blocks within
895 // subloops will not change parents.
896 UnloopUpdater Updater(Unloop, this);
897 Updater.updateBlockParents();
899 // Remove blocks from former ancestor loops.
900 Updater.removeBlocksFromAncestors();
902 // Add direct subloops as children in their new parent loop.
903 Updater.updateSubloopParents();
905 // Remove unloop from its parent loop.
906 Loop *ParentLoop = Unloop->getParentLoop();
907 for (Loop::iterator I = ParentLoop->begin();; ++I) {
908 assert(I != ParentLoop->end() && "Couldn't find loop");
909 if (*I == Unloop) {
910 ParentLoop->removeChildLoop(I);
911 break;
916 AnalysisKey LoopAnalysis::Key;
918 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
919 // FIXME: Currently we create a LoopInfo from scratch for every function.
920 // This may prove to be too wasteful due to deallocating and re-allocating
921 // memory each time for the underlying map and vector datastructures. At some
922 // point it may prove worthwhile to use a freelist and recycle LoopInfo
923 // objects. I don't want to add that kind of complexity until the scope of
924 // the problem is better understood.
925 LoopInfo LI;
926 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
927 return LI;
930 PreservedAnalyses LoopPrinterPass::run(Function &F,
931 FunctionAnalysisManager &AM) {
932 AM.getResult<LoopAnalysis>(F).print(OS);
933 return PreservedAnalyses::all();
936 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
938 if (forcePrintModuleIR()) {
939 // handling -print-module-scope
940 OS << Banner << " (loop: ";
941 L.getHeader()->printAsOperand(OS, false);
942 OS << ")\n";
944 // printing whole module
945 OS << *L.getHeader()->getModule();
946 return;
949 OS << Banner;
951 auto *PreHeader = L.getLoopPreheader();
952 if (PreHeader) {
953 OS << "\n; Preheader:";
954 PreHeader->print(OS);
955 OS << "\n; Loop:";
958 for (auto *Block : L.blocks())
959 if (Block)
960 Block->print(OS);
961 else
962 OS << "Printing <null> block";
964 SmallVector<BasicBlock *, 8> ExitBlocks;
965 L.getExitBlocks(ExitBlocks);
966 if (!ExitBlocks.empty()) {
967 OS << "\n; Exit blocks";
968 for (auto *Block : ExitBlocks)
969 if (Block)
970 Block->print(OS);
971 else
972 OS << "Printing <null> block";
976 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) {
977 // No loop metadata node, no loop properties.
978 if (!LoopID)
979 return nullptr;
981 // First operand should refer to the metadata node itself, for legacy reasons.
982 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
983 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
985 // Iterate over the metdata node operands and look for MDString metadata.
986 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
987 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
988 if (!MD || MD->getNumOperands() < 1)
989 continue;
990 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
991 if (!S)
992 continue;
993 // Return the operand node if MDString holds expected metadata.
994 if (Name.equals(S->getString()))
995 return MD;
998 // Loop property not found.
999 return nullptr;
1002 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) {
1003 return findOptionMDForLoopID(TheLoop->getLoopID(), Name);
1006 bool llvm::isValidAsAccessGroup(MDNode *Node) {
1007 return Node->getNumOperands() == 0 && Node->isDistinct();
1010 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context,
1011 MDNode *OrigLoopID,
1012 ArrayRef<StringRef> RemovePrefixes,
1013 ArrayRef<MDNode *> AddAttrs) {
1014 // First remove any existing loop metadata related to this transformation.
1015 SmallVector<Metadata *, 4> MDs;
1017 // Reserve first location for self reference to the LoopID metadata node.
1018 TempMDTuple TempNode = MDNode::getTemporary(Context, None);
1019 MDs.push_back(TempNode.get());
1021 // Remove metadata for the transformation that has been applied or that became
1022 // outdated.
1023 if (OrigLoopID) {
1024 for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) {
1025 bool IsVectorMetadata = false;
1026 Metadata *Op = OrigLoopID->getOperand(i);
1027 if (MDNode *MD = dyn_cast<MDNode>(Op)) {
1028 const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1029 if (S)
1030 IsVectorMetadata =
1031 llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool {
1032 return S->getString().startswith(Prefix);
1035 if (!IsVectorMetadata)
1036 MDs.push_back(Op);
1040 // Add metadata to avoid reapplying a transformation, such as
1041 // llvm.loop.unroll.disable and llvm.loop.isvectorized.
1042 MDs.append(AddAttrs.begin(), AddAttrs.end());
1044 MDNode *NewLoopID = MDNode::getDistinct(Context, MDs);
1045 // Replace the temporary node with a self-reference.
1046 NewLoopID->replaceOperandWith(0, NewLoopID);
1047 return NewLoopID;
1050 //===----------------------------------------------------------------------===//
1051 // LoopInfo implementation
1054 char LoopInfoWrapperPass::ID = 0;
1055 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
1056 true, true)
1057 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1058 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
1059 true, true)
1061 bool LoopInfoWrapperPass::runOnFunction(Function &) {
1062 releaseMemory();
1063 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
1064 return false;
1067 void LoopInfoWrapperPass::verifyAnalysis() const {
1068 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
1069 // function each time verifyAnalysis is called is very expensive. The
1070 // -verify-loop-info option can enable this. In order to perform some
1071 // checking by default, LoopPass has been taught to call verifyLoop manually
1072 // during loop pass sequences.
1073 if (VerifyLoopInfo) {
1074 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1075 LI.verify(DT);
1079 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1080 AU.setPreservesAll();
1081 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1084 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
1085 LI.print(OS);
1088 PreservedAnalyses LoopVerifierPass::run(Function &F,
1089 FunctionAnalysisManager &AM) {
1090 LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1091 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1092 LI.verify(DT);
1093 return PreservedAnalyses::all();
1096 //===----------------------------------------------------------------------===//
1097 // LoopBlocksDFS implementation
1100 /// Traverse the loop blocks and store the DFS result.
1101 /// Useful for clients that just want the final DFS result and don't need to
1102 /// visit blocks during the initial traversal.
1103 void LoopBlocksDFS::perform(LoopInfo *LI) {
1104 LoopBlocksTraversal Traversal(*this, LI);
1105 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
1106 POE = Traversal.end();
1107 POI != POE; ++POI)