[MIPS GlobalISel] Select MSA vector generic and builtin add
[llvm-complete.git] / lib / CodeGen / MachineSink.cpp
blob27a2e7023f222ffa0704baf2940e8cec2d476560
1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseBitVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePostDominators.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/TargetInstrInfo.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/BranchProbability.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstdint>
50 #include <map>
51 #include <utility>
52 #include <vector>
54 using namespace llvm;
56 #define DEBUG_TYPE "machine-sink"
58 static cl::opt<bool>
59 SplitEdges("machine-sink-split",
60 cl::desc("Split critical edges during machine sinking"),
61 cl::init(true), cl::Hidden);
63 static cl::opt<bool>
64 UseBlockFreqInfo("machine-sink-bfi",
65 cl::desc("Use block frequency info to find successors to sink"),
66 cl::init(true), cl::Hidden);
68 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
69 "machine-sink-split-probability-threshold",
70 cl::desc(
71 "Percentage threshold for splitting single-instruction critical edge. "
72 "If the branch threshold is higher than this threshold, we allow "
73 "speculative execution of up to 1 instruction to avoid branching to "
74 "splitted critical edge"),
75 cl::init(40), cl::Hidden);
77 STATISTIC(NumSunk, "Number of machine instructions sunk");
78 STATISTIC(NumSplit, "Number of critical edges split");
79 STATISTIC(NumCoalesces, "Number of copies coalesced");
80 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
82 namespace {
84 class MachineSinking : public MachineFunctionPass {
85 const TargetInstrInfo *TII;
86 const TargetRegisterInfo *TRI;
87 MachineRegisterInfo *MRI; // Machine register information
88 MachineDominatorTree *DT; // Machine dominator tree
89 MachinePostDominatorTree *PDT; // Machine post dominator tree
90 MachineLoopInfo *LI;
91 const MachineBlockFrequencyInfo *MBFI;
92 const MachineBranchProbabilityInfo *MBPI;
93 AliasAnalysis *AA;
95 // Remember which edges have been considered for breaking.
96 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
97 CEBCandidates;
98 // Remember which edges we are about to split.
99 // This is different from CEBCandidates since those edges
100 // will be split.
101 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
103 SparseBitVector<> RegsToClearKillFlags;
105 using AllSuccsCache =
106 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
108 public:
109 static char ID; // Pass identification
111 MachineSinking() : MachineFunctionPass(ID) {
112 initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
115 bool runOnMachineFunction(MachineFunction &MF) override;
117 void getAnalysisUsage(AnalysisUsage &AU) const override {
118 MachineFunctionPass::getAnalysisUsage(AU);
119 AU.addRequired<AAResultsWrapperPass>();
120 AU.addRequired<MachineDominatorTree>();
121 AU.addRequired<MachinePostDominatorTree>();
122 AU.addRequired<MachineLoopInfo>();
123 AU.addRequired<MachineBranchProbabilityInfo>();
124 AU.addPreserved<MachineLoopInfo>();
125 if (UseBlockFreqInfo)
126 AU.addRequired<MachineBlockFrequencyInfo>();
129 void releaseMemory() override {
130 CEBCandidates.clear();
133 private:
134 bool ProcessBlock(MachineBasicBlock &MBB);
135 bool isWorthBreakingCriticalEdge(MachineInstr &MI,
136 MachineBasicBlock *From,
137 MachineBasicBlock *To);
139 /// Postpone the splitting of the given critical
140 /// edge (\p From, \p To).
142 /// We do not split the edges on the fly. Indeed, this invalidates
143 /// the dominance information and thus triggers a lot of updates
144 /// of that information underneath.
145 /// Instead, we postpone all the splits after each iteration of
146 /// the main loop. That way, the information is at least valid
147 /// for the lifetime of an iteration.
149 /// \return True if the edge is marked as toSplit, false otherwise.
150 /// False can be returned if, for instance, this is not profitable.
151 bool PostponeSplitCriticalEdge(MachineInstr &MI,
152 MachineBasicBlock *From,
153 MachineBasicBlock *To,
154 bool BreakPHIEdge);
155 bool SinkInstruction(MachineInstr &MI, bool &SawStore,
157 AllSuccsCache &AllSuccessors);
158 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
159 MachineBasicBlock *DefMBB,
160 bool &BreakPHIEdge, bool &LocalUse) const;
161 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
162 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
163 bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
164 MachineBasicBlock *MBB,
165 MachineBasicBlock *SuccToSinkTo,
166 AllSuccsCache &AllSuccessors);
168 bool PerformTrivialForwardCoalescing(MachineInstr &MI,
169 MachineBasicBlock *MBB);
171 SmallVector<MachineBasicBlock *, 4> &
172 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
173 AllSuccsCache &AllSuccessors) const;
176 } // end anonymous namespace
178 char MachineSinking::ID = 0;
180 char &llvm::MachineSinkingID = MachineSinking::ID;
182 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
183 "Machine code sinking", false, false)
184 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
185 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
186 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
187 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
188 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
189 "Machine code sinking", false, false)
191 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
192 MachineBasicBlock *MBB) {
193 if (!MI.isCopy())
194 return false;
196 Register SrcReg = MI.getOperand(1).getReg();
197 Register DstReg = MI.getOperand(0).getReg();
198 if (!Register::isVirtualRegister(SrcReg) ||
199 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
200 return false;
202 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
203 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
204 if (SRC != DRC)
205 return false;
207 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
208 if (DefMI->isCopyLike())
209 return false;
210 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
211 LLVM_DEBUG(dbgs() << "*** to: " << MI);
212 MRI->replaceRegWith(DstReg, SrcReg);
213 MI.eraseFromParent();
215 // Conservatively, clear any kill flags, since it's possible that they are no
216 // longer correct.
217 MRI->clearKillFlags(SrcReg);
219 ++NumCoalesces;
220 return true;
223 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
224 /// occur in blocks dominated by the specified block. If any use is in the
225 /// definition block, then return false since it is never legal to move def
226 /// after uses.
227 bool
228 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
229 MachineBasicBlock *MBB,
230 MachineBasicBlock *DefMBB,
231 bool &BreakPHIEdge,
232 bool &LocalUse) const {
233 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
235 // Ignore debug uses because debug info doesn't affect the code.
236 if (MRI->use_nodbg_empty(Reg))
237 return true;
239 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
240 // into and they are all PHI nodes. In this case, machine-sink must break
241 // the critical edge first. e.g.
243 // %bb.1: derived from LLVM BB %bb4.preheader
244 // Predecessors according to CFG: %bb.0
245 // ...
246 // %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags
247 // ...
248 // JE_4 <%bb.37>, implicit %eflags
249 // Successors according to CFG: %bb.37 %bb.2
251 // %bb.2: derived from LLVM BB %bb.nph
252 // Predecessors according to CFG: %bb.0 %bb.1
253 // %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1
254 BreakPHIEdge = true;
255 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
256 MachineInstr *UseInst = MO.getParent();
257 unsigned OpNo = &MO - &UseInst->getOperand(0);
258 MachineBasicBlock *UseBlock = UseInst->getParent();
259 if (!(UseBlock == MBB && UseInst->isPHI() &&
260 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
261 BreakPHIEdge = false;
262 break;
265 if (BreakPHIEdge)
266 return true;
268 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
269 // Determine the block of the use.
270 MachineInstr *UseInst = MO.getParent();
271 unsigned OpNo = &MO - &UseInst->getOperand(0);
272 MachineBasicBlock *UseBlock = UseInst->getParent();
273 if (UseInst->isPHI()) {
274 // PHI nodes use the operand in the predecessor block, not the block with
275 // the PHI.
276 UseBlock = UseInst->getOperand(OpNo+1).getMBB();
277 } else if (UseBlock == DefMBB) {
278 LocalUse = true;
279 return false;
282 // Check that it dominates.
283 if (!DT->dominates(MBB, UseBlock))
284 return false;
287 return true;
290 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
291 if (skipFunction(MF.getFunction()))
292 return false;
294 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
296 TII = MF.getSubtarget().getInstrInfo();
297 TRI = MF.getSubtarget().getRegisterInfo();
298 MRI = &MF.getRegInfo();
299 DT = &getAnalysis<MachineDominatorTree>();
300 PDT = &getAnalysis<MachinePostDominatorTree>();
301 LI = &getAnalysis<MachineLoopInfo>();
302 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
303 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
304 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
306 bool EverMadeChange = false;
308 while (true) {
309 bool MadeChange = false;
311 // Process all basic blocks.
312 CEBCandidates.clear();
313 ToSplit.clear();
314 for (auto &MBB: MF)
315 MadeChange |= ProcessBlock(MBB);
317 // If we have anything we marked as toSplit, split it now.
318 for (auto &Pair : ToSplit) {
319 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
320 if (NewSucc != nullptr) {
321 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
322 << printMBBReference(*Pair.first) << " -- "
323 << printMBBReference(*NewSucc) << " -- "
324 << printMBBReference(*Pair.second) << '\n');
325 MadeChange = true;
326 ++NumSplit;
327 } else
328 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
330 // If this iteration over the code changed anything, keep iterating.
331 if (!MadeChange) break;
332 EverMadeChange = true;
335 // Now clear any kill flags for recorded registers.
336 for (auto I : RegsToClearKillFlags)
337 MRI->clearKillFlags(I);
338 RegsToClearKillFlags.clear();
340 return EverMadeChange;
343 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
344 // Can't sink anything out of a block that has less than two successors.
345 if (MBB.succ_size() <= 1 || MBB.empty()) return false;
347 // Don't bother sinking code out of unreachable blocks. In addition to being
348 // unprofitable, it can also lead to infinite looping, because in an
349 // unreachable loop there may be nowhere to stop.
350 if (!DT->isReachableFromEntry(&MBB)) return false;
352 bool MadeChange = false;
354 // Cache all successors, sorted by frequency info and loop depth.
355 AllSuccsCache AllSuccessors;
357 // Walk the basic block bottom-up. Remember if we saw a store.
358 MachineBasicBlock::iterator I = MBB.end();
359 --I;
360 bool ProcessedBegin, SawStore = false;
361 do {
362 MachineInstr &MI = *I; // The instruction to sink.
364 // Predecrement I (if it's not begin) so that it isn't invalidated by
365 // sinking.
366 ProcessedBegin = I == MBB.begin();
367 if (!ProcessedBegin)
368 --I;
370 if (MI.isDebugInstr())
371 continue;
373 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
374 if (Joined) {
375 MadeChange = true;
376 continue;
379 if (SinkInstruction(MI, SawStore, AllSuccessors)) {
380 ++NumSunk;
381 MadeChange = true;
384 // If we just processed the first instruction in the block, we're done.
385 } while (!ProcessedBegin);
387 return MadeChange;
390 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
391 MachineBasicBlock *From,
392 MachineBasicBlock *To) {
393 // FIXME: Need much better heuristics.
395 // If the pass has already considered breaking this edge (during this pass
396 // through the function), then let's go ahead and break it. This means
397 // sinking multiple "cheap" instructions into the same block.
398 if (!CEBCandidates.insert(std::make_pair(From, To)).second)
399 return true;
401 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
402 return true;
404 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
405 BranchProbability(SplitEdgeProbabilityThreshold, 100))
406 return true;
408 // MI is cheap, we probably don't want to break the critical edge for it.
409 // However, if this would allow some definitions of its source operands
410 // to be sunk then it's probably worth it.
411 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
412 const MachineOperand &MO = MI.getOperand(i);
413 if (!MO.isReg() || !MO.isUse())
414 continue;
415 Register Reg = MO.getReg();
416 if (Reg == 0)
417 continue;
419 // We don't move live definitions of physical registers,
420 // so sinking their uses won't enable any opportunities.
421 if (Register::isPhysicalRegister(Reg))
422 continue;
424 // If this instruction is the only user of a virtual register,
425 // check if breaking the edge will enable sinking
426 // both this instruction and the defining instruction.
427 if (MRI->hasOneNonDBGUse(Reg)) {
428 // If the definition resides in same MBB,
429 // claim it's likely we can sink these together.
430 // If definition resides elsewhere, we aren't
431 // blocking it from being sunk so don't break the edge.
432 MachineInstr *DefMI = MRI->getVRegDef(Reg);
433 if (DefMI->getParent() == MI.getParent())
434 return true;
438 return false;
441 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
442 MachineBasicBlock *FromBB,
443 MachineBasicBlock *ToBB,
444 bool BreakPHIEdge) {
445 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
446 return false;
448 // Avoid breaking back edge. From == To means backedge for single BB loop.
449 if (!SplitEdges || FromBB == ToBB)
450 return false;
452 // Check for backedges of more "complex" loops.
453 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
454 LI->isLoopHeader(ToBB))
455 return false;
457 // It's not always legal to break critical edges and sink the computation
458 // to the edge.
460 // %bb.1:
461 // v1024
462 // Beq %bb.3
463 // <fallthrough>
464 // %bb.2:
465 // ... no uses of v1024
466 // <fallthrough>
467 // %bb.3:
468 // ...
469 // = v1024
471 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
473 // %bb.1:
474 // ...
475 // Bne %bb.2
476 // %bb.4:
477 // v1024 =
478 // B %bb.3
479 // %bb.2:
480 // ... no uses of v1024
481 // <fallthrough>
482 // %bb.3:
483 // ...
484 // = v1024
486 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
487 // flow. We need to ensure the new basic block where the computation is
488 // sunk to dominates all the uses.
489 // It's only legal to break critical edge and sink the computation to the
490 // new block if all the predecessors of "To", except for "From", are
491 // not dominated by "From". Given SSA property, this means these
492 // predecessors are dominated by "To".
494 // There is no need to do this check if all the uses are PHI nodes. PHI
495 // sources are only defined on the specific predecessor edges.
496 if (!BreakPHIEdge) {
497 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
498 E = ToBB->pred_end(); PI != E; ++PI) {
499 if (*PI == FromBB)
500 continue;
501 if (!DT->dominates(ToBB, *PI))
502 return false;
506 ToSplit.insert(std::make_pair(FromBB, ToBB));
508 return true;
511 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
512 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
513 MachineBasicBlock *MBB,
514 MachineBasicBlock *SuccToSinkTo,
515 AllSuccsCache &AllSuccessors) {
516 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
518 if (MBB == SuccToSinkTo)
519 return false;
521 // It is profitable if SuccToSinkTo does not post dominate current block.
522 if (!PDT->dominates(SuccToSinkTo, MBB))
523 return true;
525 // It is profitable to sink an instruction from a deeper loop to a shallower
526 // loop, even if the latter post-dominates the former (PR21115).
527 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
528 return true;
530 // Check if only use in post dominated block is PHI instruction.
531 bool NonPHIUse = false;
532 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
533 MachineBasicBlock *UseBlock = UseInst.getParent();
534 if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
535 NonPHIUse = true;
537 if (!NonPHIUse)
538 return true;
540 // If SuccToSinkTo post dominates then also it may be profitable if MI
541 // can further profitably sinked into another block in next round.
542 bool BreakPHIEdge = false;
543 // FIXME - If finding successor is compile time expensive then cache results.
544 if (MachineBasicBlock *MBB2 =
545 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
546 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
548 // If SuccToSinkTo is final destination and it is a post dominator of current
549 // block then it is not profitable to sink MI into SuccToSinkTo block.
550 return false;
553 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
554 /// computing it if it was not already cached.
555 SmallVector<MachineBasicBlock *, 4> &
556 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
557 AllSuccsCache &AllSuccessors) const {
558 // Do we have the sorted successors in cache ?
559 auto Succs = AllSuccessors.find(MBB);
560 if (Succs != AllSuccessors.end())
561 return Succs->second;
563 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
564 MBB->succ_end());
566 // Handle cases where sinking can happen but where the sink point isn't a
567 // successor. For example:
569 // x = computation
570 // if () {} else {}
571 // use x
573 const std::vector<MachineDomTreeNode *> &Children =
574 DT->getNode(MBB)->getChildren();
575 for (const auto &DTChild : Children)
576 // DomTree children of MBB that have MBB as immediate dominator are added.
577 if (DTChild->getIDom()->getBlock() == MI.getParent() &&
578 // Skip MBBs already added to the AllSuccs vector above.
579 !MBB->isSuccessor(DTChild->getBlock()))
580 AllSuccs.push_back(DTChild->getBlock());
582 // Sort Successors according to their loop depth or block frequency info.
583 llvm::stable_sort(
584 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
585 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
586 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
587 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
588 return HasBlockFreq ? LHSFreq < RHSFreq
589 : LI->getLoopDepth(L) < LI->getLoopDepth(R);
592 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
594 return it.first->second;
597 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
598 MachineBasicBlock *
599 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
600 bool &BreakPHIEdge,
601 AllSuccsCache &AllSuccessors) {
602 assert (MBB && "Invalid MachineBasicBlock!");
604 // Loop over all the operands of the specified instruction. If there is
605 // anything we can't handle, bail out.
607 // SuccToSinkTo - This is the successor to sink this instruction to, once we
608 // decide.
609 MachineBasicBlock *SuccToSinkTo = nullptr;
610 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
611 const MachineOperand &MO = MI.getOperand(i);
612 if (!MO.isReg()) continue; // Ignore non-register operands.
614 Register Reg = MO.getReg();
615 if (Reg == 0) continue;
617 if (Register::isPhysicalRegister(Reg)) {
618 if (MO.isUse()) {
619 // If the physreg has no defs anywhere, it's just an ambient register
620 // and we can freely move its uses. Alternatively, if it's allocatable,
621 // it could get allocated to something with a def during allocation.
622 if (!MRI->isConstantPhysReg(Reg))
623 return nullptr;
624 } else if (!MO.isDead()) {
625 // A def that isn't dead. We can't move it.
626 return nullptr;
628 } else {
629 // Virtual register uses are always safe to sink.
630 if (MO.isUse()) continue;
632 // If it's not safe to move defs of the register class, then abort.
633 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
634 return nullptr;
636 // Virtual register defs can only be sunk if all their uses are in blocks
637 // dominated by one of the successors.
638 if (SuccToSinkTo) {
639 // If a previous operand picked a block to sink to, then this operand
640 // must be sinkable to the same block.
641 bool LocalUse = false;
642 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
643 BreakPHIEdge, LocalUse))
644 return nullptr;
646 continue;
649 // Otherwise, we should look at all the successors and decide which one
650 // we should sink to. If we have reliable block frequency information
651 // (frequency != 0) available, give successors with smaller frequencies
652 // higher priority, otherwise prioritize smaller loop depths.
653 for (MachineBasicBlock *SuccBlock :
654 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
655 bool LocalUse = false;
656 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
657 BreakPHIEdge, LocalUse)) {
658 SuccToSinkTo = SuccBlock;
659 break;
661 if (LocalUse)
662 // Def is used locally, it's never safe to move this def.
663 return nullptr;
666 // If we couldn't find a block to sink to, ignore this instruction.
667 if (!SuccToSinkTo)
668 return nullptr;
669 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
670 return nullptr;
674 // It is not possible to sink an instruction into its own block. This can
675 // happen with loops.
676 if (MBB == SuccToSinkTo)
677 return nullptr;
679 // It's not safe to sink instructions to EH landing pad. Control flow into
680 // landing pad is implicitly defined.
681 if (SuccToSinkTo && SuccToSinkTo->isEHPad())
682 return nullptr;
684 return SuccToSinkTo;
687 /// Return true if MI is likely to be usable as a memory operation by the
688 /// implicit null check optimization.
690 /// This is a "best effort" heuristic, and should not be relied upon for
691 /// correctness. This returning true does not guarantee that the implicit null
692 /// check optimization is legal over MI, and this returning false does not
693 /// guarantee MI cannot possibly be used to do a null check.
694 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
695 const TargetInstrInfo *TII,
696 const TargetRegisterInfo *TRI) {
697 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
699 auto *MBB = MI.getParent();
700 if (MBB->pred_size() != 1)
701 return false;
703 auto *PredMBB = *MBB->pred_begin();
704 auto *PredBB = PredMBB->getBasicBlock();
706 // Frontends that don't use implicit null checks have no reason to emit
707 // branches with make.implicit metadata, and this function should always
708 // return false for them.
709 if (!PredBB ||
710 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
711 return false;
713 const MachineOperand *BaseOp;
714 int64_t Offset;
715 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
716 return false;
718 if (!BaseOp->isReg())
719 return false;
721 if (!(MI.mayLoad() && !MI.isPredicable()))
722 return false;
724 MachineBranchPredicate MBP;
725 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
726 return false;
728 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
729 (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
730 MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
731 MBP.LHS.getReg() == BaseOp->getReg();
734 /// Sink an instruction and its associated debug instructions. If the debug
735 /// instructions to be sunk are already known, they can be provided in DbgVals.
736 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
737 MachineBasicBlock::iterator InsertPos,
738 SmallVectorImpl<MachineInstr *> *DbgVals = nullptr) {
739 // If debug values are provided use those, otherwise call collectDebugValues.
740 SmallVector<MachineInstr *, 2> DbgValuesToSink;
741 if (DbgVals)
742 DbgValuesToSink.insert(DbgValuesToSink.begin(),
743 DbgVals->begin(), DbgVals->end());
744 else
745 MI.collectDebugValues(DbgValuesToSink);
747 // If we cannot find a location to use (merge with), then we erase the debug
748 // location to prevent debug-info driven tools from potentially reporting
749 // wrong location information.
750 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
751 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
752 InsertPos->getDebugLoc()));
753 else
754 MI.setDebugLoc(DebugLoc());
756 // Move the instruction.
757 MachineBasicBlock *ParentBlock = MI.getParent();
758 SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
759 ++MachineBasicBlock::iterator(MI));
761 // Move previously adjacent debug value instructions to the insert position.
762 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
763 DBE = DbgValuesToSink.end();
764 DBI != DBE; ++DBI) {
765 MachineInstr *DbgMI = *DBI;
766 SuccToSinkTo.splice(InsertPos, ParentBlock, DbgMI,
767 ++MachineBasicBlock::iterator(DbgMI));
771 /// SinkInstruction - Determine whether it is safe to sink the specified machine
772 /// instruction out of its current block into a successor.
773 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
774 AllSuccsCache &AllSuccessors) {
775 // Don't sink instructions that the target prefers not to sink.
776 if (!TII->shouldSink(MI))
777 return false;
779 // Check if it's safe to move the instruction.
780 if (!MI.isSafeToMove(AA, SawStore))
781 return false;
783 // Convergent operations may not be made control-dependent on additional
784 // values.
785 if (MI.isConvergent())
786 return false;
788 // Don't break implicit null checks. This is a performance heuristic, and not
789 // required for correctness.
790 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
791 return false;
793 // FIXME: This should include support for sinking instructions within the
794 // block they are currently in to shorten the live ranges. We often get
795 // instructions sunk into the top of a large block, but it would be better to
796 // also sink them down before their first use in the block. This xform has to
797 // be careful not to *increase* register pressure though, e.g. sinking
798 // "x = y + z" down if it kills y and z would increase the live ranges of y
799 // and z and only shrink the live range of x.
801 bool BreakPHIEdge = false;
802 MachineBasicBlock *ParentBlock = MI.getParent();
803 MachineBasicBlock *SuccToSinkTo =
804 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
806 // If there are no outputs, it must have side-effects.
807 if (!SuccToSinkTo)
808 return false;
810 // If the instruction to move defines a dead physical register which is live
811 // when leaving the basic block, don't move it because it could turn into a
812 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
813 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
814 const MachineOperand &MO = MI.getOperand(I);
815 if (!MO.isReg()) continue;
816 Register Reg = MO.getReg();
817 if (Reg == 0 || !Register::isPhysicalRegister(Reg))
818 continue;
819 if (SuccToSinkTo->isLiveIn(Reg))
820 return false;
823 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
825 // If the block has multiple predecessors, this is a critical edge.
826 // Decide if we can sink along it or need to break the edge.
827 if (SuccToSinkTo->pred_size() > 1) {
828 // We cannot sink a load across a critical edge - there may be stores in
829 // other code paths.
830 bool TryBreak = false;
831 bool store = true;
832 if (!MI.isSafeToMove(AA, store)) {
833 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
834 TryBreak = true;
837 // We don't want to sink across a critical edge if we don't dominate the
838 // successor. We could be introducing calculations to new code paths.
839 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
840 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
841 TryBreak = true;
844 // Don't sink instructions into a loop.
845 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
846 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
847 TryBreak = true;
850 // Otherwise we are OK with sinking along a critical edge.
851 if (!TryBreak)
852 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
853 else {
854 // Mark this edge as to be split.
855 // If the edge can actually be split, the next iteration of the main loop
856 // will sink MI in the newly created block.
857 bool Status =
858 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
859 if (!Status)
860 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
861 "break critical edge\n");
862 // The instruction will not be sunk this time.
863 return false;
867 if (BreakPHIEdge) {
868 // BreakPHIEdge is true if all the uses are in the successor MBB being
869 // sunken into and they are all PHI nodes. In this case, machine-sink must
870 // break the critical edge first.
871 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
872 SuccToSinkTo, BreakPHIEdge);
873 if (!Status)
874 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
875 "break critical edge\n");
876 // The instruction will not be sunk this time.
877 return false;
880 // Determine where to insert into. Skip phi nodes.
881 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
882 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
883 ++InsertPos;
885 performSink(MI, *SuccToSinkTo, InsertPos);
887 // Conservatively, clear any kill flags, since it's possible that they are no
888 // longer correct.
889 // Note that we have to clear the kill flags for any register this instruction
890 // uses as we may sink over another instruction which currently kills the
891 // used registers.
892 for (MachineOperand &MO : MI.operands()) {
893 if (MO.isReg() && MO.isUse())
894 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
897 return true;
900 //===----------------------------------------------------------------------===//
901 // This pass is not intended to be a replacement or a complete alternative
902 // for the pre-ra machine sink pass. It is only designed to sink COPY
903 // instructions which should be handled after RA.
905 // This pass sinks COPY instructions into a successor block, if the COPY is not
906 // used in the current block and the COPY is live-in to a single successor
907 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the
908 // copy on paths where their results aren't needed. This also exposes
909 // additional opportunites for dead copy elimination and shrink wrapping.
911 // These copies were either not handled by or are inserted after the MachineSink
912 // pass. As an example of the former case, the MachineSink pass cannot sink
913 // COPY instructions with allocatable source registers; for AArch64 these type
914 // of copy instructions are frequently used to move function parameters (PhyReg)
915 // into virtual registers in the entry block.
917 // For the machine IR below, this pass will sink %w19 in the entry into its
918 // successor (%bb.1) because %w19 is only live-in in %bb.1.
919 // %bb.0:
920 // %wzr = SUBSWri %w1, 1
921 // %w19 = COPY %w0
922 // Bcc 11, %bb.2
923 // %bb.1:
924 // Live Ins: %w19
925 // BL @fun
926 // %w0 = ADDWrr %w0, %w19
927 // RET %w0
928 // %bb.2:
929 // %w0 = COPY %wzr
930 // RET %w0
931 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
932 // able to see %bb.0 as a candidate.
933 //===----------------------------------------------------------------------===//
934 namespace {
936 class PostRAMachineSinking : public MachineFunctionPass {
937 public:
938 bool runOnMachineFunction(MachineFunction &MF) override;
940 static char ID;
941 PostRAMachineSinking() : MachineFunctionPass(ID) {}
942 StringRef getPassName() const override { return "PostRA Machine Sink"; }
944 void getAnalysisUsage(AnalysisUsage &AU) const override {
945 AU.setPreservesCFG();
946 MachineFunctionPass::getAnalysisUsage(AU);
949 MachineFunctionProperties getRequiredProperties() const override {
950 return MachineFunctionProperties().set(
951 MachineFunctionProperties::Property::NoVRegs);
954 private:
955 /// Track which register units have been modified and used.
956 LiveRegUnits ModifiedRegUnits, UsedRegUnits;
958 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
959 /// entry in this map for each unit it touches.
960 DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs;
962 /// Sink Copy instructions unused in the same block close to their uses in
963 /// successors.
964 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
965 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
967 } // namespace
969 char PostRAMachineSinking::ID = 0;
970 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
972 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
973 "PostRA Machine Sink", false, false)
975 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
976 const TargetRegisterInfo *TRI) {
977 LiveRegUnits LiveInRegUnits(*TRI);
978 LiveInRegUnits.addLiveIns(MBB);
979 return !LiveInRegUnits.available(Reg);
982 static MachineBasicBlock *
983 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
984 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
985 unsigned Reg, const TargetRegisterInfo *TRI) {
986 // Try to find a single sinkable successor in which Reg is live-in.
987 MachineBasicBlock *BB = nullptr;
988 for (auto *SI : SinkableBBs) {
989 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
990 // If BB is set here, Reg is live-in to at least two sinkable successors,
991 // so quit.
992 if (BB)
993 return nullptr;
994 BB = SI;
997 // Reg is not live-in to any sinkable successors.
998 if (!BB)
999 return nullptr;
1001 // Check if any register aliased with Reg is live-in in other successors.
1002 for (auto *SI : CurBB.successors()) {
1003 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1004 return nullptr;
1006 return BB;
1009 static MachineBasicBlock *
1010 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1011 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1012 ArrayRef<unsigned> DefedRegsInCopy,
1013 const TargetRegisterInfo *TRI) {
1014 MachineBasicBlock *SingleBB = nullptr;
1015 for (auto DefReg : DefedRegsInCopy) {
1016 MachineBasicBlock *BB =
1017 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1018 if (!BB || (SingleBB && SingleBB != BB))
1019 return nullptr;
1020 SingleBB = BB;
1022 return SingleBB;
1025 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1026 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1027 LiveRegUnits &UsedRegUnits,
1028 const TargetRegisterInfo *TRI) {
1029 for (auto U : UsedOpsInCopy) {
1030 MachineOperand &MO = MI->getOperand(U);
1031 Register SrcReg = MO.getReg();
1032 if (!UsedRegUnits.available(SrcReg)) {
1033 MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1034 for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1035 if (UI.killsRegister(SrcReg, TRI)) {
1036 UI.clearRegisterKills(SrcReg, TRI);
1037 MO.setIsKill(true);
1038 break;
1045 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1046 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1047 SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1048 MachineFunction &MF = *SuccBB->getParent();
1049 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1050 for (unsigned DefReg : DefedRegsInCopy)
1051 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1052 SuccBB->removeLiveIn(*S);
1053 for (auto U : UsedOpsInCopy) {
1054 Register Reg = MI->getOperand(U).getReg();
1055 if (!SuccBB->isLiveIn(Reg))
1056 SuccBB->addLiveIn(Reg);
1060 static bool hasRegisterDependency(MachineInstr *MI,
1061 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1062 SmallVectorImpl<unsigned> &DefedRegsInCopy,
1063 LiveRegUnits &ModifiedRegUnits,
1064 LiveRegUnits &UsedRegUnits) {
1065 bool HasRegDependency = false;
1066 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1067 MachineOperand &MO = MI->getOperand(i);
1068 if (!MO.isReg())
1069 continue;
1070 Register Reg = MO.getReg();
1071 if (!Reg)
1072 continue;
1073 if (MO.isDef()) {
1074 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1075 HasRegDependency = true;
1076 break;
1078 DefedRegsInCopy.push_back(Reg);
1080 // FIXME: instead of isUse(), readsReg() would be a better fix here,
1081 // For example, we can ignore modifications in reg with undef. However,
1082 // it's not perfectly clear if skipping the internal read is safe in all
1083 // other targets.
1084 } else if (MO.isUse()) {
1085 if (!ModifiedRegUnits.available(Reg)) {
1086 HasRegDependency = true;
1087 break;
1089 UsedOpsInCopy.push_back(i);
1092 return HasRegDependency;
1095 static SmallSet<unsigned, 4> getRegUnits(unsigned Reg,
1096 const TargetRegisterInfo *TRI) {
1097 SmallSet<unsigned, 4> RegUnits;
1098 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI)
1099 RegUnits.insert(*RI);
1100 return RegUnits;
1103 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1104 MachineFunction &MF,
1105 const TargetRegisterInfo *TRI,
1106 const TargetInstrInfo *TII) {
1107 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1108 // FIXME: For now, we sink only to a successor which has a single predecessor
1109 // so that we can directly sink COPY instructions to the successor without
1110 // adding any new block or branch instruction.
1111 for (MachineBasicBlock *SI : CurBB.successors())
1112 if (!SI->livein_empty() && SI->pred_size() == 1)
1113 SinkableBBs.insert(SI);
1115 if (SinkableBBs.empty())
1116 return false;
1118 bool Changed = false;
1120 // Track which registers have been modified and used between the end of the
1121 // block and the current instruction.
1122 ModifiedRegUnits.clear();
1123 UsedRegUnits.clear();
1124 SeenDbgInstrs.clear();
1126 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1127 MachineInstr *MI = &*I;
1128 ++I;
1130 // Track the operand index for use in Copy.
1131 SmallVector<unsigned, 2> UsedOpsInCopy;
1132 // Track the register number defed in Copy.
1133 SmallVector<unsigned, 2> DefedRegsInCopy;
1135 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1136 // for DBG_VALUEs later, record them when they're encountered.
1137 if (MI->isDebugValue()) {
1138 auto &MO = MI->getOperand(0);
1139 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
1140 // Bail if we can already tell the sink would be rejected, rather
1141 // than needlessly accumulating lots of DBG_VALUEs.
1142 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1143 ModifiedRegUnits, UsedRegUnits))
1144 continue;
1146 // Record debug use of each reg unit.
1147 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1148 for (unsigned Reg : Units)
1149 SeenDbgInstrs[Reg].push_back(MI);
1151 continue;
1154 if (MI->isDebugInstr())
1155 continue;
1157 // Do not move any instruction across function call.
1158 if (MI->isCall())
1159 return false;
1161 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1162 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1163 TRI);
1164 continue;
1167 // Don't sink the COPY if it would violate a register dependency.
1168 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1169 ModifiedRegUnits, UsedRegUnits)) {
1170 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1171 TRI);
1172 continue;
1174 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1175 "Unexpect SrcReg or DefReg");
1176 MachineBasicBlock *SuccBB =
1177 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1178 // Don't sink if we cannot find a single sinkable successor in which Reg
1179 // is live-in.
1180 if (!SuccBB) {
1181 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1182 TRI);
1183 continue;
1185 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1186 "Unexpected predecessor");
1188 // Collect DBG_VALUEs that must sink with this copy. We've previously
1189 // recorded which reg units that DBG_VALUEs read, if this instruction
1190 // writes any of those units then the corresponding DBG_VALUEs must sink.
1191 SetVector<MachineInstr *> DbgValsToSinkSet;
1192 SmallVector<MachineInstr *, 4> DbgValsToSink;
1193 for (auto &MO : MI->operands()) {
1194 if (!MO.isReg() || !MO.isDef())
1195 continue;
1197 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1198 for (unsigned Reg : Units)
1199 for (auto *MI : SeenDbgInstrs.lookup(Reg))
1200 DbgValsToSinkSet.insert(MI);
1202 DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(),
1203 DbgValsToSinkSet.end());
1205 // Clear the kill flag if SrcReg is killed between MI and the end of the
1206 // block.
1207 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1208 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1209 performSink(*MI, *SuccBB, InsertPos, &DbgValsToSink);
1210 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1212 Changed = true;
1213 ++NumPostRACopySink;
1215 return Changed;
1218 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1219 if (skipFunction(MF.getFunction()))
1220 return false;
1222 bool Changed = false;
1223 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1224 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1226 ModifiedRegUnits.init(*TRI);
1227 UsedRegUnits.init(*TRI);
1228 for (auto &BB : MF)
1229 Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1231 return Changed;