[MIPS GlobalISel] Select MSA vector generic and builtin add
[llvm-complete.git] / lib / CodeGen / RegAllocPBQP.cpp
blob3c4a46b12f992e9add6e2350e6a33cdae0efe251
1 //===- RegAllocPBQP.cpp ---- PBQP Register Allocator ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
10 // register allocator for LLVM. This allocator works by constructing a PBQP
11 // problem representing the register allocation problem under consideration,
12 // solving this using a PBQP solver, and mapping the solution back to a
13 // register assignment. If any variables are selected for spilling then spill
14 // code is inserted and the process repeated.
16 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
17 // for register allocation. For more information on PBQP for register
18 // allocation, see the following papers:
20 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
21 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference
22 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
25 // architectures. In Proceedings of the Joint Conference on Languages,
26 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
27 // NY, USA, 139-148.
29 //===----------------------------------------------------------------------===//
31 #include "llvm/CodeGen/RegAllocPBQP.h"
32 #include "RegisterCoalescer.h"
33 #include "Spiller.h"
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/ADT/BitVector.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/DenseSet.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/StringRef.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/CodeGen/CalcSpillWeights.h"
44 #include "llvm/CodeGen/LiveInterval.h"
45 #include "llvm/CodeGen/LiveIntervals.h"
46 #include "llvm/CodeGen/LiveRangeEdit.h"
47 #include "llvm/CodeGen/LiveStacks.h"
48 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
49 #include "llvm/CodeGen/MachineDominators.h"
50 #include "llvm/CodeGen/MachineFunction.h"
51 #include "llvm/CodeGen/MachineFunctionPass.h"
52 #include "llvm/CodeGen/MachineInstr.h"
53 #include "llvm/CodeGen/MachineLoopInfo.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/PBQP/Graph.h"
56 #include "llvm/CodeGen/PBQP/Math.h"
57 #include "llvm/CodeGen/PBQP/Solution.h"
58 #include "llvm/CodeGen/PBQPRAConstraint.h"
59 #include "llvm/CodeGen/RegAllocRegistry.h"
60 #include "llvm/CodeGen/SlotIndexes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/VirtRegMap.h"
64 #include "llvm/Config/llvm-config.h"
65 #include "llvm/IR/Function.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/MC/MCRegisterInfo.h"
68 #include "llvm/Pass.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/FileSystem.h"
73 #include "llvm/Support/Printable.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <limits>
79 #include <map>
80 #include <memory>
81 #include <queue>
82 #include <set>
83 #include <sstream>
84 #include <string>
85 #include <system_error>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
90 using namespace llvm;
92 #define DEBUG_TYPE "regalloc"
94 static RegisterRegAlloc
95 RegisterPBQPRepAlloc("pbqp", "PBQP register allocator",
96 createDefaultPBQPRegisterAllocator);
98 static cl::opt<bool>
99 PBQPCoalescing("pbqp-coalescing",
100 cl::desc("Attempt coalescing during PBQP register allocation."),
101 cl::init(false), cl::Hidden);
103 #ifndef NDEBUG
104 static cl::opt<bool>
105 PBQPDumpGraphs("pbqp-dump-graphs",
106 cl::desc("Dump graphs for each function/round in the compilation unit."),
107 cl::init(false), cl::Hidden);
108 #endif
110 namespace {
113 /// PBQP based allocators solve the register allocation problem by mapping
114 /// register allocation problems to Partitioned Boolean Quadratic
115 /// Programming problems.
116 class RegAllocPBQP : public MachineFunctionPass {
117 public:
118 static char ID;
120 /// Construct a PBQP register allocator.
121 RegAllocPBQP(char *cPassID = nullptr)
122 : MachineFunctionPass(ID), customPassID(cPassID) {
123 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
124 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
125 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
126 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
129 /// Return the pass name.
130 StringRef getPassName() const override { return "PBQP Register Allocator"; }
132 /// PBQP analysis usage.
133 void getAnalysisUsage(AnalysisUsage &au) const override;
135 /// Perform register allocation
136 bool runOnMachineFunction(MachineFunction &MF) override;
138 MachineFunctionProperties getRequiredProperties() const override {
139 return MachineFunctionProperties().set(
140 MachineFunctionProperties::Property::NoPHIs);
143 private:
144 using LI2NodeMap = std::map<const LiveInterval *, unsigned>;
145 using Node2LIMap = std::vector<const LiveInterval *>;
146 using AllowedSet = std::vector<unsigned>;
147 using AllowedSetMap = std::vector<AllowedSet>;
148 using RegPair = std::pair<unsigned, unsigned>;
149 using CoalesceMap = std::map<RegPair, PBQP::PBQPNum>;
150 using RegSet = std::set<unsigned>;
152 char *customPassID;
154 RegSet VRegsToAlloc, EmptyIntervalVRegs;
156 /// Inst which is a def of an original reg and whose defs are already all
157 /// dead after remat is saved in DeadRemats. The deletion of such inst is
158 /// postponed till all the allocations are done, so its remat expr is
159 /// always available for the remat of all the siblings of the original reg.
160 SmallPtrSet<MachineInstr *, 32> DeadRemats;
162 /// Finds the initial set of vreg intervals to allocate.
163 void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS);
165 /// Constructs an initial graph.
166 void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller);
168 /// Spill the given VReg.
169 void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals,
170 MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
171 Spiller &VRegSpiller);
173 /// Given a solved PBQP problem maps this solution back to a register
174 /// assignment.
175 bool mapPBQPToRegAlloc(const PBQPRAGraph &G,
176 const PBQP::Solution &Solution,
177 VirtRegMap &VRM,
178 Spiller &VRegSpiller);
180 /// Postprocessing before final spilling. Sets basic block "live in"
181 /// variables.
182 void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS,
183 VirtRegMap &VRM) const;
185 void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS);
188 char RegAllocPBQP::ID = 0;
190 /// Set spill costs for each node in the PBQP reg-alloc graph.
191 class SpillCosts : public PBQPRAConstraint {
192 public:
193 void apply(PBQPRAGraph &G) override {
194 LiveIntervals &LIS = G.getMetadata().LIS;
196 // A minimum spill costs, so that register constraints can can be set
197 // without normalization in the [0.0:MinSpillCost( interval.
198 const PBQP::PBQPNum MinSpillCost = 10.0;
200 for (auto NId : G.nodeIds()) {
201 PBQP::PBQPNum SpillCost =
202 LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight;
203 if (SpillCost == 0.0)
204 SpillCost = std::numeric_limits<PBQP::PBQPNum>::min();
205 else
206 SpillCost += MinSpillCost;
207 PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId));
208 NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost;
209 G.setNodeCosts(NId, std::move(NodeCosts));
214 /// Add interference edges between overlapping vregs.
215 class Interference : public PBQPRAConstraint {
216 private:
217 using AllowedRegVecPtr = const PBQP::RegAlloc::AllowedRegVector *;
218 using IKey = std::pair<AllowedRegVecPtr, AllowedRegVecPtr>;
219 using IMatrixCache = DenseMap<IKey, PBQPRAGraph::MatrixPtr>;
220 using DisjointAllowedRegsCache = DenseSet<IKey>;
221 using IEdgeKey = std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId>;
222 using IEdgeCache = DenseSet<IEdgeKey>;
224 bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
225 PBQPRAGraph::NodeId MId,
226 const DisjointAllowedRegsCache &D) const {
227 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
228 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
230 if (NRegs == MRegs)
231 return false;
233 if (NRegs < MRegs)
234 return D.count(IKey(NRegs, MRegs)) > 0;
236 return D.count(IKey(MRegs, NRegs)) > 0;
239 void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
240 PBQPRAGraph::NodeId MId,
241 DisjointAllowedRegsCache &D) {
242 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
243 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
245 assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself");
247 if (NRegs < MRegs)
248 D.insert(IKey(NRegs, MRegs));
249 else
250 D.insert(IKey(MRegs, NRegs));
253 // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required
254 // for the fast interference graph construction algorithm. The last is there
255 // to save us from looking up node ids via the VRegToNode map in the graph
256 // metadata.
257 using IntervalInfo =
258 std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>;
260 static SlotIndex getStartPoint(const IntervalInfo &I) {
261 return std::get<0>(I)->segments[std::get<1>(I)].start;
264 static SlotIndex getEndPoint(const IntervalInfo &I) {
265 return std::get<0>(I)->segments[std::get<1>(I)].end;
268 static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) {
269 return std::get<2>(I);
272 static bool lowestStartPoint(const IntervalInfo &I1,
273 const IntervalInfo &I2) {
274 // Condition reversed because priority queue has the *highest* element at
275 // the front, rather than the lowest.
276 return getStartPoint(I1) > getStartPoint(I2);
279 static bool lowestEndPoint(const IntervalInfo &I1,
280 const IntervalInfo &I2) {
281 SlotIndex E1 = getEndPoint(I1);
282 SlotIndex E2 = getEndPoint(I2);
284 if (E1 < E2)
285 return true;
287 if (E1 > E2)
288 return false;
290 // If two intervals end at the same point, we need a way to break the tie or
291 // the set will assume they're actually equal and refuse to insert a
292 // "duplicate". Just compare the vregs - fast and guaranteed unique.
293 return std::get<0>(I1)->reg < std::get<0>(I2)->reg;
296 static bool isAtLastSegment(const IntervalInfo &I) {
297 return std::get<1>(I) == std::get<0>(I)->size() - 1;
300 static IntervalInfo nextSegment(const IntervalInfo &I) {
301 return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I));
304 public:
305 void apply(PBQPRAGraph &G) override {
306 // The following is loosely based on the linear scan algorithm introduced in
307 // "Linear Scan Register Allocation" by Poletto and Sarkar. This version
308 // isn't linear, because the size of the active set isn't bound by the
309 // number of registers, but rather the size of the largest clique in the
310 // graph. Still, we expect this to be better than N^2.
311 LiveIntervals &LIS = G.getMetadata().LIS;
313 // Interferenc matrices are incredibly regular - they're only a function of
314 // the allowed sets, so we cache them to avoid the overhead of constructing
315 // and uniquing them.
316 IMatrixCache C;
318 // Finding an edge is expensive in the worst case (O(max_clique(G))). So
319 // cache locally edges we have already seen.
320 IEdgeCache EC;
322 // Cache known disjoint allowed registers pairs
323 DisjointAllowedRegsCache D;
325 using IntervalSet = std::set<IntervalInfo, decltype(&lowestEndPoint)>;
326 using IntervalQueue =
327 std::priority_queue<IntervalInfo, std::vector<IntervalInfo>,
328 decltype(&lowestStartPoint)>;
329 IntervalSet Active(lowestEndPoint);
330 IntervalQueue Inactive(lowestStartPoint);
332 // Start by building the inactive set.
333 for (auto NId : G.nodeIds()) {
334 unsigned VReg = G.getNodeMetadata(NId).getVReg();
335 LiveInterval &LI = LIS.getInterval(VReg);
336 assert(!LI.empty() && "PBQP graph contains node for empty interval");
337 Inactive.push(std::make_tuple(&LI, 0, NId));
340 while (!Inactive.empty()) {
341 // Tentatively grab the "next" interval - this choice may be overriden
342 // below.
343 IntervalInfo Cur = Inactive.top();
345 // Retire any active intervals that end before Cur starts.
346 IntervalSet::iterator RetireItr = Active.begin();
347 while (RetireItr != Active.end() &&
348 (getEndPoint(*RetireItr) <= getStartPoint(Cur))) {
349 // If this interval has subsequent segments, add the next one to the
350 // inactive list.
351 if (!isAtLastSegment(*RetireItr))
352 Inactive.push(nextSegment(*RetireItr));
354 ++RetireItr;
356 Active.erase(Active.begin(), RetireItr);
358 // One of the newly retired segments may actually start before the
359 // Cur segment, so re-grab the front of the inactive list.
360 Cur = Inactive.top();
361 Inactive.pop();
363 // At this point we know that Cur overlaps all active intervals. Add the
364 // interference edges.
365 PBQP::GraphBase::NodeId NId = getNodeId(Cur);
366 for (const auto &A : Active) {
367 PBQP::GraphBase::NodeId MId = getNodeId(A);
369 // Do not add an edge when the nodes' allowed registers do not
370 // intersect: there is obviously no interference.
371 if (haveDisjointAllowedRegs(G, NId, MId, D))
372 continue;
374 // Check that we haven't already added this edge
375 IEdgeKey EK(std::min(NId, MId), std::max(NId, MId));
376 if (EC.count(EK))
377 continue;
379 // This is a new edge - add it to the graph.
380 if (!createInterferenceEdge(G, NId, MId, C))
381 setDisjointAllowedRegs(G, NId, MId, D);
382 else
383 EC.insert(EK);
386 // Finally, add Cur to the Active set.
387 Active.insert(Cur);
391 private:
392 // Create an Interference edge and add it to the graph, unless it is
393 // a null matrix, meaning the nodes' allowed registers do not have any
394 // interference. This case occurs frequently between integer and floating
395 // point registers for example.
396 // return true iff both nodes interferes.
397 bool createInterferenceEdge(PBQPRAGraph &G,
398 PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId,
399 IMatrixCache &C) {
400 const TargetRegisterInfo &TRI =
401 *G.getMetadata().MF.getSubtarget().getRegisterInfo();
402 const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs();
403 const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs();
405 // Try looking the edge costs up in the IMatrixCache first.
406 IKey K(&NRegs, &MRegs);
407 IMatrixCache::iterator I = C.find(K);
408 if (I != C.end()) {
409 G.addEdgeBypassingCostAllocator(NId, MId, I->second);
410 return true;
413 PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0);
414 bool NodesInterfere = false;
415 for (unsigned I = 0; I != NRegs.size(); ++I) {
416 unsigned PRegN = NRegs[I];
417 for (unsigned J = 0; J != MRegs.size(); ++J) {
418 unsigned PRegM = MRegs[J];
419 if (TRI.regsOverlap(PRegN, PRegM)) {
420 M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
421 NodesInterfere = true;
426 if (!NodesInterfere)
427 return false;
429 PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M));
430 C[K] = G.getEdgeCostsPtr(EId);
432 return true;
436 class Coalescing : public PBQPRAConstraint {
437 public:
438 void apply(PBQPRAGraph &G) override {
439 MachineFunction &MF = G.getMetadata().MF;
440 MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI;
441 CoalescerPair CP(*MF.getSubtarget().getRegisterInfo());
443 // Scan the machine function and add a coalescing cost whenever CoalescerPair
444 // gives the Ok.
445 for (const auto &MBB : MF) {
446 for (const auto &MI : MBB) {
447 // Skip not-coalescable or already coalesced copies.
448 if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg())
449 continue;
451 unsigned DstReg = CP.getDstReg();
452 unsigned SrcReg = CP.getSrcReg();
454 const float Scale = 1.0f / MBFI.getEntryFreq();
455 PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale;
457 if (CP.isPhys()) {
458 if (!MF.getRegInfo().isAllocatable(DstReg))
459 continue;
461 PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg);
463 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed =
464 G.getNodeMetadata(NId).getAllowedRegs();
466 unsigned PRegOpt = 0;
467 while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg)
468 ++PRegOpt;
470 if (PRegOpt < Allowed.size()) {
471 PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId));
472 NewCosts[PRegOpt + 1] -= CBenefit;
473 G.setNodeCosts(NId, std::move(NewCosts));
475 } else {
476 PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg);
477 PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg);
478 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 =
479 &G.getNodeMetadata(N1Id).getAllowedRegs();
480 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 =
481 &G.getNodeMetadata(N2Id).getAllowedRegs();
483 PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id);
484 if (EId == G.invalidEdgeId()) {
485 PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1,
486 Allowed2->size() + 1, 0);
487 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
488 G.addEdge(N1Id, N2Id, std::move(Costs));
489 } else {
490 if (G.getEdgeNode1Id(EId) == N2Id) {
491 std::swap(N1Id, N2Id);
492 std::swap(Allowed1, Allowed2);
494 PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId));
495 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
496 G.updateEdgeCosts(EId, std::move(Costs));
503 private:
504 void addVirtRegCoalesce(
505 PBQPRAGraph::RawMatrix &CostMat,
506 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1,
507 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2,
508 PBQP::PBQPNum Benefit) {
509 assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch.");
510 assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch.");
511 for (unsigned I = 0; I != Allowed1.size(); ++I) {
512 unsigned PReg1 = Allowed1[I];
513 for (unsigned J = 0; J != Allowed2.size(); ++J) {
514 unsigned PReg2 = Allowed2[J];
515 if (PReg1 == PReg2)
516 CostMat[I + 1][J + 1] -= Benefit;
522 } // end anonymous namespace
524 // Out-of-line destructor/anchor for PBQPRAConstraint.
525 PBQPRAConstraint::~PBQPRAConstraint() = default;
527 void PBQPRAConstraint::anchor() {}
529 void PBQPRAConstraintList::anchor() {}
531 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
532 au.setPreservesCFG();
533 au.addRequired<AAResultsWrapperPass>();
534 au.addPreserved<AAResultsWrapperPass>();
535 au.addRequired<SlotIndexes>();
536 au.addPreserved<SlotIndexes>();
537 au.addRequired<LiveIntervals>();
538 au.addPreserved<LiveIntervals>();
539 //au.addRequiredID(SplitCriticalEdgesID);
540 if (customPassID)
541 au.addRequiredID(*customPassID);
542 au.addRequired<LiveStacks>();
543 au.addPreserved<LiveStacks>();
544 au.addRequired<MachineBlockFrequencyInfo>();
545 au.addPreserved<MachineBlockFrequencyInfo>();
546 au.addRequired<MachineLoopInfo>();
547 au.addPreserved<MachineLoopInfo>();
548 au.addRequired<MachineDominatorTree>();
549 au.addPreserved<MachineDominatorTree>();
550 au.addRequired<VirtRegMap>();
551 au.addPreserved<VirtRegMap>();
552 MachineFunctionPass::getAnalysisUsage(au);
555 void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF,
556 LiveIntervals &LIS) {
557 const MachineRegisterInfo &MRI = MF.getRegInfo();
559 // Iterate over all live ranges.
560 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
561 unsigned Reg = Register::index2VirtReg(I);
562 if (MRI.reg_nodbg_empty(Reg))
563 continue;
564 VRegsToAlloc.insert(Reg);
568 static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI,
569 const MachineFunction &MF) {
570 const MCPhysReg *CSR = MF.getRegInfo().getCalleeSavedRegs();
571 for (unsigned i = 0; CSR[i] != 0; ++i)
572 if (TRI.regsOverlap(reg, CSR[i]))
573 return true;
574 return false;
577 void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM,
578 Spiller &VRegSpiller) {
579 MachineFunction &MF = G.getMetadata().MF;
581 LiveIntervals &LIS = G.getMetadata().LIS;
582 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
583 const TargetRegisterInfo &TRI =
584 *G.getMetadata().MF.getSubtarget().getRegisterInfo();
586 std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end());
588 std::map<unsigned, std::vector<unsigned>> VRegAllowedMap;
590 while (!Worklist.empty()) {
591 unsigned VReg = Worklist.back();
592 Worklist.pop_back();
594 LiveInterval &VRegLI = LIS.getInterval(VReg);
596 // If this is an empty interval move it to the EmptyIntervalVRegs set then
597 // continue.
598 if (VRegLI.empty()) {
599 EmptyIntervalVRegs.insert(VRegLI.reg);
600 VRegsToAlloc.erase(VRegLI.reg);
601 continue;
604 const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
606 // Record any overlaps with regmask operands.
607 BitVector RegMaskOverlaps;
608 LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps);
610 // Compute an initial allowed set for the current vreg.
611 std::vector<unsigned> VRegAllowed;
612 ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF);
613 for (unsigned I = 0; I != RawPRegOrder.size(); ++I) {
614 unsigned PReg = RawPRegOrder[I];
615 if (MRI.isReserved(PReg))
616 continue;
618 // vregLI crosses a regmask operand that clobbers preg.
619 if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg))
620 continue;
622 // vregLI overlaps fixed regunit interference.
623 bool Interference = false;
624 for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) {
625 if (VRegLI.overlaps(LIS.getRegUnit(*Units))) {
626 Interference = true;
627 break;
630 if (Interference)
631 continue;
633 // preg is usable for this virtual register.
634 VRegAllowed.push_back(PReg);
637 // Check for vregs that have no allowed registers. These should be
638 // pre-spilled and the new vregs added to the worklist.
639 if (VRegAllowed.empty()) {
640 SmallVector<unsigned, 8> NewVRegs;
641 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
642 Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end());
643 continue;
644 } else
645 VRegAllowedMap[VReg] = std::move(VRegAllowed);
648 for (auto &KV : VRegAllowedMap) {
649 auto VReg = KV.first;
651 // Move empty intervals to the EmptyIntervalVReg set.
652 if (LIS.getInterval(VReg).empty()) {
653 EmptyIntervalVRegs.insert(VReg);
654 VRegsToAlloc.erase(VReg);
655 continue;
658 auto &VRegAllowed = KV.second;
660 PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0);
662 // Tweak cost of callee saved registers, as using then force spilling and
663 // restoring them. This would only happen in the prologue / epilogue though.
664 for (unsigned i = 0; i != VRegAllowed.size(); ++i)
665 if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF))
666 NodeCosts[1 + i] += 1.0;
668 PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts));
669 G.getNodeMetadata(NId).setVReg(VReg);
670 G.getNodeMetadata(NId).setAllowedRegs(
671 G.getMetadata().getAllowedRegs(std::move(VRegAllowed)));
672 G.getMetadata().setNodeIdForVReg(VReg, NId);
676 void RegAllocPBQP::spillVReg(unsigned VReg,
677 SmallVectorImpl<unsigned> &NewIntervals,
678 MachineFunction &MF, LiveIntervals &LIS,
679 VirtRegMap &VRM, Spiller &VRegSpiller) {
680 VRegsToAlloc.erase(VReg);
681 LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM,
682 nullptr, &DeadRemats);
683 VRegSpiller.spill(LRE);
685 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
686 (void)TRI;
687 LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> SPILLED (Cost: "
688 << LRE.getParent().weight << ", New vregs: ");
690 // Copy any newly inserted live intervals into the list of regs to
691 // allocate.
692 for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end();
693 I != E; ++I) {
694 const LiveInterval &LI = LIS.getInterval(*I);
695 assert(!LI.empty() && "Empty spill range.");
696 LLVM_DEBUG(dbgs() << printReg(LI.reg, &TRI) << " ");
697 VRegsToAlloc.insert(LI.reg);
700 LLVM_DEBUG(dbgs() << ")\n");
703 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G,
704 const PBQP::Solution &Solution,
705 VirtRegMap &VRM,
706 Spiller &VRegSpiller) {
707 MachineFunction &MF = G.getMetadata().MF;
708 LiveIntervals &LIS = G.getMetadata().LIS;
709 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
710 (void)TRI;
712 // Set to true if we have any spills
713 bool AnotherRoundNeeded = false;
715 // Clear the existing allocation.
716 VRM.clearAllVirt();
718 // Iterate over the nodes mapping the PBQP solution to a register
719 // assignment.
720 for (auto NId : G.nodeIds()) {
721 unsigned VReg = G.getNodeMetadata(NId).getVReg();
722 unsigned AllocOption = Solution.getSelection(NId);
724 if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) {
725 unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1];
726 LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> "
727 << TRI.getName(PReg) << "\n");
728 assert(PReg != 0 && "Invalid preg selected.");
729 VRM.assignVirt2Phys(VReg, PReg);
730 } else {
731 // Spill VReg. If this introduces new intervals we'll need another round
732 // of allocation.
733 SmallVector<unsigned, 8> NewVRegs;
734 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
735 AnotherRoundNeeded |= !NewVRegs.empty();
739 return !AnotherRoundNeeded;
742 void RegAllocPBQP::finalizeAlloc(MachineFunction &MF,
743 LiveIntervals &LIS,
744 VirtRegMap &VRM) const {
745 MachineRegisterInfo &MRI = MF.getRegInfo();
747 // First allocate registers for the empty intervals.
748 for (RegSet::const_iterator
749 I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end();
750 I != E; ++I) {
751 LiveInterval &LI = LIS.getInterval(*I);
753 unsigned PReg = MRI.getSimpleHint(LI.reg);
755 if (PReg == 0) {
756 const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg);
757 const ArrayRef<MCPhysReg> RawPRegOrder = RC.getRawAllocationOrder(MF);
758 for (unsigned CandidateReg : RawPRegOrder) {
759 if (!VRM.getRegInfo().isReserved(CandidateReg)) {
760 PReg = CandidateReg;
761 break;
764 assert(PReg &&
765 "No un-reserved physical registers in this register class");
768 VRM.assignVirt2Phys(LI.reg, PReg);
772 void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) {
773 VRegSpiller.postOptimization();
774 /// Remove dead defs because of rematerialization.
775 for (auto DeadInst : DeadRemats) {
776 LIS.RemoveMachineInstrFromMaps(*DeadInst);
777 DeadInst->eraseFromParent();
779 DeadRemats.clear();
782 static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size,
783 unsigned NumInstr) {
784 // All intervals have a spill weight that is mostly proportional to the number
785 // of uses, with uses in loops having a bigger weight.
786 return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1);
789 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
790 LiveIntervals &LIS = getAnalysis<LiveIntervals>();
791 MachineBlockFrequencyInfo &MBFI =
792 getAnalysis<MachineBlockFrequencyInfo>();
794 VirtRegMap &VRM = getAnalysis<VirtRegMap>();
796 calculateSpillWeightsAndHints(LIS, MF, &VRM, getAnalysis<MachineLoopInfo>(),
797 MBFI, normalizePBQPSpillWeight);
799 std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM));
801 MF.getRegInfo().freezeReservedRegs(MF);
803 LLVM_DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n");
805 // Allocator main loop:
807 // * Map current regalloc problem to a PBQP problem
808 // * Solve the PBQP problem
809 // * Map the solution back to a register allocation
810 // * Spill if necessary
812 // This process is continued till no more spills are generated.
814 // Find the vreg intervals in need of allocation.
815 findVRegIntervalsToAlloc(MF, LIS);
817 #ifndef NDEBUG
818 const Function &F = MF.getFunction();
819 std::string FullyQualifiedName =
820 F.getParent()->getModuleIdentifier() + "." + F.getName().str();
821 #endif
823 // If there are non-empty intervals allocate them using pbqp.
824 if (!VRegsToAlloc.empty()) {
825 const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
826 std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot =
827 std::make_unique<PBQPRAConstraintList>();
828 ConstraintsRoot->addConstraint(std::make_unique<SpillCosts>());
829 ConstraintsRoot->addConstraint(std::make_unique<Interference>());
830 if (PBQPCoalescing)
831 ConstraintsRoot->addConstraint(std::make_unique<Coalescing>());
832 ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints());
834 bool PBQPAllocComplete = false;
835 unsigned Round = 0;
837 while (!PBQPAllocComplete) {
838 LLVM_DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n");
840 PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI));
841 initializeGraph(G, VRM, *VRegSpiller);
842 ConstraintsRoot->apply(G);
844 #ifndef NDEBUG
845 if (PBQPDumpGraphs) {
846 std::ostringstream RS;
847 RS << Round;
848 std::string GraphFileName = FullyQualifiedName + "." + RS.str() +
849 ".pbqpgraph";
850 std::error_code EC;
851 raw_fd_ostream OS(GraphFileName, EC, sys::fs::OF_Text);
852 LLVM_DEBUG(dbgs() << "Dumping graph for round " << Round << " to \""
853 << GraphFileName << "\"\n");
854 G.dump(OS);
856 #endif
858 PBQP::Solution Solution = PBQP::RegAlloc::solve(G);
859 PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller);
860 ++Round;
864 // Finalise allocation, allocate empty ranges.
865 finalizeAlloc(MF, LIS, VRM);
866 postOptimization(*VRegSpiller, LIS);
867 VRegsToAlloc.clear();
868 EmptyIntervalVRegs.clear();
870 LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n");
872 return true;
875 /// Create Printable object for node and register info.
876 static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId,
877 const PBQP::RegAlloc::PBQPRAGraph &G) {
878 return Printable([NId, &G](raw_ostream &OS) {
879 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
880 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
881 unsigned VReg = G.getNodeMetadata(NId).getVReg();
882 const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg));
883 OS << NId << " (" << RegClassName << ':' << printReg(VReg, TRI) << ')';
887 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
888 LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const {
889 for (auto NId : nodeIds()) {
890 const Vector &Costs = getNodeCosts(NId);
891 assert(Costs.getLength() != 0 && "Empty vector in graph.");
892 OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n';
894 OS << '\n';
896 for (auto EId : edgeIds()) {
897 NodeId N1Id = getEdgeNode1Id(EId);
898 NodeId N2Id = getEdgeNode2Id(EId);
899 assert(N1Id != N2Id && "PBQP graphs should not have self-edges.");
900 const Matrix &M = getEdgeCosts(EId);
901 assert(M.getRows() != 0 && "No rows in matrix.");
902 assert(M.getCols() != 0 && "No cols in matrix.");
903 OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / ";
904 OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n";
905 OS << M << '\n';
909 LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const {
910 dump(dbgs());
912 #endif
914 void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const {
915 OS << "graph {\n";
916 for (auto NId : nodeIds()) {
917 OS << " node" << NId << " [ label=\""
918 << PrintNodeInfo(NId, *this) << "\\n"
919 << getNodeCosts(NId) << "\" ]\n";
922 OS << " edge [ len=" << nodeIds().size() << " ]\n";
923 for (auto EId : edgeIds()) {
924 OS << " node" << getEdgeNode1Id(EId)
925 << " -- node" << getEdgeNode2Id(EId)
926 << " [ label=\"";
927 const Matrix &EdgeCosts = getEdgeCosts(EId);
928 for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
929 OS << EdgeCosts.getRowAsVector(i) << "\\n";
931 OS << "\" ]\n";
933 OS << "}\n";
936 FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) {
937 return new RegAllocPBQP(customPassID);
940 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
941 return createPBQPRegisterAllocator();