[MIPS GlobalISel] Select MSA vector generic and builtin add
[llvm-complete.git] / lib / Target / AArch64 / AArch64CollectLOH.cpp
blob35e6fef24363c77c84c78e57523e091edfb54a2f
1 //===---------- AArch64CollectLOH.cpp - AArch64 collect LOH pass --*- C++ -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass that collect the Linker Optimization Hint (LOH).
10 // This pass should be run at the very end of the compilation flow, just before
11 // assembly printer.
12 // To be useful for the linker, the LOH must be printed into the assembly file.
14 // A LOH describes a sequence of instructions that may be optimized by the
15 // linker.
16 // This same sequence cannot be optimized by the compiler because some of
17 // the information will be known at link time.
18 // For instance, consider the following sequence:
19 // L1: adrp xA, sym@PAGE
20 // L2: add xB, xA, sym@PAGEOFF
21 // L3: ldr xC, [xB, #imm]
22 // This sequence can be turned into:
23 // A literal load if sym@PAGE + sym@PAGEOFF + #imm - address(L3) is < 1MB:
24 // L3: ldr xC, sym+#imm
25 // It may also be turned into either the following more efficient
26 // code sequences:
27 // - If sym@PAGEOFF + #imm fits the encoding space of L3.
28 // L1: adrp xA, sym@PAGE
29 // L3: ldr xC, [xB, sym@PAGEOFF + #imm]
30 // - If sym@PAGE + sym@PAGEOFF - address(L1) < 1MB:
31 // L1: adr xA, sym
32 // L3: ldr xC, [xB, #imm]
34 // To be valid a LOH must meet all the requirements needed by all the related
35 // possible linker transformations.
36 // For instance, using the running example, the constraints to emit
37 // ".loh AdrpAddLdr" are:
38 // - L1, L2, and L3 instructions are of the expected type, i.e.,
39 // respectively ADRP, ADD (immediate), and LD.
40 // - The result of L1 is used only by L2.
41 // - The register argument (xA) used in the ADD instruction is defined
42 // only by L1.
43 // - The result of L2 is used only by L3.
44 // - The base address (xB) in L3 is defined only L2.
45 // - The ADRP in L1 and the ADD in L2 must reference the same symbol using
46 // @PAGE/@PAGEOFF with no additional constants
48 // Currently supported LOHs are:
49 // * So called non-ADRP-related:
50 // - .loh AdrpAddLdr L1, L2, L3:
51 // L1: adrp xA, sym@PAGE
52 // L2: add xB, xA, sym@PAGEOFF
53 // L3: ldr xC, [xB, #imm]
54 // - .loh AdrpLdrGotLdr L1, L2, L3:
55 // L1: adrp xA, sym@GOTPAGE
56 // L2: ldr xB, [xA, sym@GOTPAGEOFF]
57 // L3: ldr xC, [xB, #imm]
58 // - .loh AdrpLdr L1, L3:
59 // L1: adrp xA, sym@PAGE
60 // L3: ldr xC, [xA, sym@PAGEOFF]
61 // - .loh AdrpAddStr L1, L2, L3:
62 // L1: adrp xA, sym@PAGE
63 // L2: add xB, xA, sym@PAGEOFF
64 // L3: str xC, [xB, #imm]
65 // - .loh AdrpLdrGotStr L1, L2, L3:
66 // L1: adrp xA, sym@GOTPAGE
67 // L2: ldr xB, [xA, sym@GOTPAGEOFF]
68 // L3: str xC, [xB, #imm]
69 // - .loh AdrpAdd L1, L2:
70 // L1: adrp xA, sym@PAGE
71 // L2: add xB, xA, sym@PAGEOFF
72 // For all these LOHs, L1, L2, L3 form a simple chain:
73 // L1 result is used only by L2 and L2 result by L3.
74 // L3 LOH-related argument is defined only by L2 and L2 LOH-related argument
75 // by L1.
76 // All these LOHs aim at using more efficient load/store patterns by folding
77 // some instructions used to compute the address directly into the load/store.
79 // * So called ADRP-related:
80 // - .loh AdrpAdrp L2, L1:
81 // L2: ADRP xA, sym1@PAGE
82 // L1: ADRP xA, sym2@PAGE
83 // L2 dominates L1 and xA is not redifined between L2 and L1
84 // This LOH aims at getting rid of redundant ADRP instructions.
86 // The overall design for emitting the LOHs is:
87 // 1. AArch64CollectLOH (this pass) records the LOHs in the AArch64FunctionInfo.
88 // 2. AArch64AsmPrinter reads the LOHs from AArch64FunctionInfo and it:
89 // 1. Associates them a label.
90 // 2. Emits them in a MCStreamer (EmitLOHDirective).
91 // - The MCMachOStreamer records them into the MCAssembler.
92 // - The MCAsmStreamer prints them.
93 // - Other MCStreamers ignore them.
94 // 3. Closes the MCStreamer:
95 // - The MachObjectWriter gets them from the MCAssembler and writes
96 // them in the object file.
97 // - Other ObjectWriters ignore them.
98 //===----------------------------------------------------------------------===//
100 #include "AArch64.h"
101 #include "AArch64InstrInfo.h"
102 #include "AArch64MachineFunctionInfo.h"
103 #include "llvm/ADT/BitVector.h"
104 #include "llvm/ADT/DenseMap.h"
105 #include "llvm/ADT/MapVector.h"
106 #include "llvm/ADT/SmallSet.h"
107 #include "llvm/ADT/SmallVector.h"
108 #include "llvm/ADT/Statistic.h"
109 #include "llvm/CodeGen/MachineBasicBlock.h"
110 #include "llvm/CodeGen/MachineFunctionPass.h"
111 #include "llvm/CodeGen/MachineInstr.h"
112 #include "llvm/CodeGen/TargetRegisterInfo.h"
113 #include "llvm/Support/Debug.h"
114 #include "llvm/Support/ErrorHandling.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include "llvm/Target/TargetMachine.h"
117 using namespace llvm;
119 #define DEBUG_TYPE "aarch64-collect-loh"
121 STATISTIC(NumADRPSimpleCandidate,
122 "Number of simplifiable ADRP dominate by another");
123 STATISTIC(NumADDToSTR, "Number of simplifiable STR reachable by ADD");
124 STATISTIC(NumLDRToSTR, "Number of simplifiable STR reachable by LDR");
125 STATISTIC(NumADDToLDR, "Number of simplifiable LDR reachable by ADD");
126 STATISTIC(NumLDRToLDR, "Number of simplifiable LDR reachable by LDR");
127 STATISTIC(NumADRPToLDR, "Number of simplifiable LDR reachable by ADRP");
128 STATISTIC(NumADRSimpleCandidate, "Number of simplifiable ADRP + ADD");
130 #define AARCH64_COLLECT_LOH_NAME "AArch64 Collect Linker Optimization Hint (LOH)"
132 namespace {
134 struct AArch64CollectLOH : public MachineFunctionPass {
135 static char ID;
136 AArch64CollectLOH() : MachineFunctionPass(ID) {}
138 bool runOnMachineFunction(MachineFunction &MF) override;
140 MachineFunctionProperties getRequiredProperties() const override {
141 return MachineFunctionProperties().set(
142 MachineFunctionProperties::Property::NoVRegs);
145 StringRef getPassName() const override { return AARCH64_COLLECT_LOH_NAME; }
147 void getAnalysisUsage(AnalysisUsage &AU) const override {
148 MachineFunctionPass::getAnalysisUsage(AU);
149 AU.setPreservesAll();
153 char AArch64CollectLOH::ID = 0;
155 } // end anonymous namespace.
157 INITIALIZE_PASS(AArch64CollectLOH, "aarch64-collect-loh",
158 AARCH64_COLLECT_LOH_NAME, false, false)
160 static bool canAddBePartOfLOH(const MachineInstr &MI) {
161 // Check immediate to see if the immediate is an address.
162 switch (MI.getOperand(2).getType()) {
163 default:
164 return false;
165 case MachineOperand::MO_GlobalAddress:
166 case MachineOperand::MO_JumpTableIndex:
167 case MachineOperand::MO_ConstantPoolIndex:
168 case MachineOperand::MO_BlockAddress:
169 return true;
173 /// Answer the following question: Can Def be one of the definition
174 /// involved in a part of a LOH?
175 static bool canDefBePartOfLOH(const MachineInstr &MI) {
176 // Accept ADRP, ADDLow and LOADGot.
177 switch (MI.getOpcode()) {
178 default:
179 return false;
180 case AArch64::ADRP:
181 return true;
182 case AArch64::ADDXri:
183 return canAddBePartOfLOH(MI);
184 case AArch64::LDRXui:
185 case AArch64::LDRWui:
186 // Check immediate to see if the immediate is an address.
187 switch (MI.getOperand(2).getType()) {
188 default:
189 return false;
190 case MachineOperand::MO_GlobalAddress:
191 return MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT;
196 /// Check whether the given instruction can the end of a LOH chain involving a
197 /// store.
198 static bool isCandidateStore(const MachineInstr &MI, const MachineOperand &MO) {
199 switch (MI.getOpcode()) {
200 default:
201 return false;
202 case AArch64::STRBBui:
203 case AArch64::STRHHui:
204 case AArch64::STRBui:
205 case AArch64::STRHui:
206 case AArch64::STRWui:
207 case AArch64::STRXui:
208 case AArch64::STRSui:
209 case AArch64::STRDui:
210 case AArch64::STRQui:
211 // We can only optimize the index operand.
212 // In case we have str xA, [xA, #imm], this is two different uses
213 // of xA and we cannot fold, otherwise the xA stored may be wrong,
214 // even if #imm == 0.
215 return MI.getOperandNo(&MO) == 1 &&
216 MI.getOperand(0).getReg() != MI.getOperand(1).getReg();
220 /// Check whether the given instruction can be the end of a LOH chain
221 /// involving a load.
222 static bool isCandidateLoad(const MachineInstr &MI) {
223 switch (MI.getOpcode()) {
224 default:
225 return false;
226 case AArch64::LDRSBWui:
227 case AArch64::LDRSBXui:
228 case AArch64::LDRSHWui:
229 case AArch64::LDRSHXui:
230 case AArch64::LDRSWui:
231 case AArch64::LDRBui:
232 case AArch64::LDRHui:
233 case AArch64::LDRWui:
234 case AArch64::LDRXui:
235 case AArch64::LDRSui:
236 case AArch64::LDRDui:
237 case AArch64::LDRQui:
238 return !(MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT);
242 /// Check whether the given instruction can load a litteral.
243 static bool supportLoadFromLiteral(const MachineInstr &MI) {
244 switch (MI.getOpcode()) {
245 default:
246 return false;
247 case AArch64::LDRSWui:
248 case AArch64::LDRWui:
249 case AArch64::LDRXui:
250 case AArch64::LDRSui:
251 case AArch64::LDRDui:
252 case AArch64::LDRQui:
253 return true;
257 /// Number of GPR registers traked by mapRegToGPRIndex()
258 static const unsigned N_GPR_REGS = 31;
259 /// Map register number to index from 0-30.
260 static int mapRegToGPRIndex(MCPhysReg Reg) {
261 static_assert(AArch64::X28 - AArch64::X0 + 3 == N_GPR_REGS, "Number of GPRs");
262 static_assert(AArch64::W30 - AArch64::W0 + 1 == N_GPR_REGS, "Number of GPRs");
263 if (AArch64::X0 <= Reg && Reg <= AArch64::X28)
264 return Reg - AArch64::X0;
265 if (AArch64::W0 <= Reg && Reg <= AArch64::W30)
266 return Reg - AArch64::W0;
267 // TableGen gives "FP" and "LR" an index not adjacent to X28 so we have to
268 // handle them as special cases.
269 if (Reg == AArch64::FP)
270 return 29;
271 if (Reg == AArch64::LR)
272 return 30;
273 return -1;
276 /// State tracked per register.
277 /// The main algorithm walks backwards over a basic block maintaining this
278 /// datastructure for each tracked general purpose register.
279 struct LOHInfo {
280 MCLOHType Type : 8; ///< "Best" type of LOH possible.
281 bool IsCandidate : 1; ///< Possible LOH candidate.
282 bool OneUser : 1; ///< Found exactly one user (yet).
283 bool MultiUsers : 1; ///< Found multiple users.
284 const MachineInstr *MI0; ///< First instruction involved in the LOH.
285 const MachineInstr *MI1; ///< Second instruction involved in the LOH
286 /// (if any).
287 const MachineInstr *LastADRP; ///< Last ADRP in same register.
290 /// Update state \p Info given \p MI uses the tracked register.
291 static void handleUse(const MachineInstr &MI, const MachineOperand &MO,
292 LOHInfo &Info) {
293 // We have multiple uses if we already found one before.
294 if (Info.MultiUsers || Info.OneUser) {
295 Info.IsCandidate = false;
296 Info.MultiUsers = true;
297 return;
299 Info.OneUser = true;
301 // Start new LOHInfo if applicable.
302 if (isCandidateLoad(MI)) {
303 Info.Type = MCLOH_AdrpLdr;
304 Info.IsCandidate = true;
305 Info.MI0 = &MI;
306 // Note that even this is AdrpLdr now, we can switch to a Ldr variant
307 // later.
308 } else if (isCandidateStore(MI, MO)) {
309 Info.Type = MCLOH_AdrpAddStr;
310 Info.IsCandidate = true;
311 Info.MI0 = &MI;
312 Info.MI1 = nullptr;
313 } else if (MI.getOpcode() == AArch64::ADDXri) {
314 Info.Type = MCLOH_AdrpAdd;
315 Info.IsCandidate = true;
316 Info.MI0 = &MI;
317 } else if ((MI.getOpcode() == AArch64::LDRXui ||
318 MI.getOpcode() == AArch64::LDRWui) &&
319 MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT) {
320 Info.Type = MCLOH_AdrpLdrGot;
321 Info.IsCandidate = true;
322 Info.MI0 = &MI;
326 /// Update state \p Info given the tracked register is clobbered.
327 static void handleClobber(LOHInfo &Info) {
328 Info.IsCandidate = false;
329 Info.OneUser = false;
330 Info.MultiUsers = false;
331 Info.LastADRP = nullptr;
334 /// Update state \p Info given that \p MI is possibly the middle instruction
335 /// of an LOH involving 3 instructions.
336 static bool handleMiddleInst(const MachineInstr &MI, LOHInfo &DefInfo,
337 LOHInfo &OpInfo) {
338 if (!DefInfo.IsCandidate || (&DefInfo != &OpInfo && OpInfo.OneUser))
339 return false;
340 // Copy LOHInfo for dest register to LOHInfo for source register.
341 if (&DefInfo != &OpInfo) {
342 OpInfo = DefInfo;
343 // Invalidate \p DefInfo because we track it in \p OpInfo now.
344 handleClobber(DefInfo);
345 } else
346 DefInfo.LastADRP = nullptr;
348 // Advance state machine.
349 assert(OpInfo.IsCandidate && "Expect valid state");
350 if (MI.getOpcode() == AArch64::ADDXri && canAddBePartOfLOH(MI)) {
351 if (OpInfo.Type == MCLOH_AdrpLdr) {
352 OpInfo.Type = MCLOH_AdrpAddLdr;
353 OpInfo.IsCandidate = true;
354 OpInfo.MI1 = &MI;
355 return true;
356 } else if (OpInfo.Type == MCLOH_AdrpAddStr && OpInfo.MI1 == nullptr) {
357 OpInfo.Type = MCLOH_AdrpAddStr;
358 OpInfo.IsCandidate = true;
359 OpInfo.MI1 = &MI;
360 return true;
362 } else {
363 assert((MI.getOpcode() == AArch64::LDRXui ||
364 MI.getOpcode() == AArch64::LDRWui) &&
365 "Expect LDRXui or LDRWui");
366 assert((MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT) &&
367 "Expected GOT relocation");
368 if (OpInfo.Type == MCLOH_AdrpAddStr && OpInfo.MI1 == nullptr) {
369 OpInfo.Type = MCLOH_AdrpLdrGotStr;
370 OpInfo.IsCandidate = true;
371 OpInfo.MI1 = &MI;
372 return true;
373 } else if (OpInfo.Type == MCLOH_AdrpLdr) {
374 OpInfo.Type = MCLOH_AdrpLdrGotLdr;
375 OpInfo.IsCandidate = true;
376 OpInfo.MI1 = &MI;
377 return true;
380 return false;
383 /// Update state when seeing and ADRP instruction.
384 static void handleADRP(const MachineInstr &MI, AArch64FunctionInfo &AFI,
385 LOHInfo &Info) {
386 if (Info.LastADRP != nullptr) {
387 LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAdrp:\n"
388 << '\t' << MI << '\t' << *Info.LastADRP);
389 AFI.addLOHDirective(MCLOH_AdrpAdrp, {&MI, Info.LastADRP});
390 ++NumADRPSimpleCandidate;
393 // Produce LOH directive if possible.
394 if (Info.IsCandidate) {
395 switch (Info.Type) {
396 case MCLOH_AdrpAdd:
397 LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAdd:\n"
398 << '\t' << MI << '\t' << *Info.MI0);
399 AFI.addLOHDirective(MCLOH_AdrpAdd, {&MI, Info.MI0});
400 ++NumADRSimpleCandidate;
401 break;
402 case MCLOH_AdrpLdr:
403 if (supportLoadFromLiteral(*Info.MI0)) {
404 LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdr:\n"
405 << '\t' << MI << '\t' << *Info.MI0);
406 AFI.addLOHDirective(MCLOH_AdrpLdr, {&MI, Info.MI0});
407 ++NumADRPToLDR;
409 break;
410 case MCLOH_AdrpAddLdr:
411 LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAddLdr:\n"
412 << '\t' << MI << '\t' << *Info.MI1 << '\t'
413 << *Info.MI0);
414 AFI.addLOHDirective(MCLOH_AdrpAddLdr, {&MI, Info.MI1, Info.MI0});
415 ++NumADDToLDR;
416 break;
417 case MCLOH_AdrpAddStr:
418 if (Info.MI1 != nullptr) {
419 LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAddStr:\n"
420 << '\t' << MI << '\t' << *Info.MI1 << '\t'
421 << *Info.MI0);
422 AFI.addLOHDirective(MCLOH_AdrpAddStr, {&MI, Info.MI1, Info.MI0});
423 ++NumADDToSTR;
425 break;
426 case MCLOH_AdrpLdrGotLdr:
427 LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGotLdr:\n"
428 << '\t' << MI << '\t' << *Info.MI1 << '\t'
429 << *Info.MI0);
430 AFI.addLOHDirective(MCLOH_AdrpLdrGotLdr, {&MI, Info.MI1, Info.MI0});
431 ++NumLDRToLDR;
432 break;
433 case MCLOH_AdrpLdrGotStr:
434 LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGotStr:\n"
435 << '\t' << MI << '\t' << *Info.MI1 << '\t'
436 << *Info.MI0);
437 AFI.addLOHDirective(MCLOH_AdrpLdrGotStr, {&MI, Info.MI1, Info.MI0});
438 ++NumLDRToSTR;
439 break;
440 case MCLOH_AdrpLdrGot:
441 LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGot:\n"
442 << '\t' << MI << '\t' << *Info.MI0);
443 AFI.addLOHDirective(MCLOH_AdrpLdrGot, {&MI, Info.MI0});
444 break;
445 case MCLOH_AdrpAdrp:
446 llvm_unreachable("MCLOH_AdrpAdrp not used in state machine");
450 handleClobber(Info);
451 Info.LastADRP = &MI;
454 static void handleRegMaskClobber(const uint32_t *RegMask, MCPhysReg Reg,
455 LOHInfo *LOHInfos) {
456 if (!MachineOperand::clobbersPhysReg(RegMask, Reg))
457 return;
458 int Idx = mapRegToGPRIndex(Reg);
459 if (Idx >= 0)
460 handleClobber(LOHInfos[Idx]);
463 static void handleNormalInst(const MachineInstr &MI, LOHInfo *LOHInfos) {
464 // Handle defs and regmasks.
465 for (const MachineOperand &MO : MI.operands()) {
466 if (MO.isRegMask()) {
467 const uint32_t *RegMask = MO.getRegMask();
468 for (MCPhysReg Reg : AArch64::GPR32RegClass)
469 handleRegMaskClobber(RegMask, Reg, LOHInfos);
470 for (MCPhysReg Reg : AArch64::GPR64RegClass)
471 handleRegMaskClobber(RegMask, Reg, LOHInfos);
472 continue;
474 if (!MO.isReg() || !MO.isDef())
475 continue;
476 int Idx = mapRegToGPRIndex(MO.getReg());
477 if (Idx < 0)
478 continue;
479 handleClobber(LOHInfos[Idx]);
481 // Handle uses.
483 SmallSet<int, 4> UsesSeen;
484 for (const MachineOperand &MO : MI.uses()) {
485 if (!MO.isReg() || !MO.readsReg())
486 continue;
487 int Idx = mapRegToGPRIndex(MO.getReg());
488 if (Idx < 0)
489 continue;
491 // Multiple uses of the same register within a single instruction don't
492 // count as MultiUser or block optimization. This is especially important on
493 // arm64_32, where any memory operation is likely to be an explicit use of
494 // xN and an implicit use of wN (the base address register).
495 if (!UsesSeen.count(Idx)) {
496 handleUse(MI, MO, LOHInfos[Idx]);
497 UsesSeen.insert(Idx);
502 bool AArch64CollectLOH::runOnMachineFunction(MachineFunction &MF) {
503 if (skipFunction(MF.getFunction()))
504 return false;
506 LLVM_DEBUG(dbgs() << "********** AArch64 Collect LOH **********\n"
507 << "Looking in function " << MF.getName() << '\n');
509 LOHInfo LOHInfos[N_GPR_REGS];
510 AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
511 for (const MachineBasicBlock &MBB : MF) {
512 // Reset register tracking state.
513 memset(LOHInfos, 0, sizeof(LOHInfos));
514 // Live-out registers are used.
515 for (const MachineBasicBlock *Succ : MBB.successors()) {
516 for (const auto &LI : Succ->liveins()) {
517 int RegIdx = mapRegToGPRIndex(LI.PhysReg);
518 if (RegIdx >= 0)
519 LOHInfos[RegIdx].OneUser = true;
523 // Walk the basic block backwards and update the per register state machine
524 // in the process.
525 for (const MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) {
526 unsigned Opcode = MI.getOpcode();
527 switch (Opcode) {
528 case AArch64::ADDXri:
529 case AArch64::LDRXui:
530 case AArch64::LDRWui:
531 if (canDefBePartOfLOH(MI)) {
532 const MachineOperand &Def = MI.getOperand(0);
533 const MachineOperand &Op = MI.getOperand(1);
534 assert(Def.isReg() && Def.isDef() && "Expected reg def");
535 assert(Op.isReg() && Op.isUse() && "Expected reg use");
536 int DefIdx = mapRegToGPRIndex(Def.getReg());
537 int OpIdx = mapRegToGPRIndex(Op.getReg());
538 if (DefIdx >= 0 && OpIdx >= 0 &&
539 handleMiddleInst(MI, LOHInfos[DefIdx], LOHInfos[OpIdx]))
540 continue;
542 break;
543 case AArch64::ADRP:
544 const MachineOperand &Op0 = MI.getOperand(0);
545 int Idx = mapRegToGPRIndex(Op0.getReg());
546 if (Idx >= 0) {
547 handleADRP(MI, AFI, LOHInfos[Idx]);
548 continue;
550 break;
552 handleNormalInst(MI, LOHInfos);
556 // Return "no change": The pass only collects information.
557 return false;
560 FunctionPass *llvm::createAArch64CollectLOHPass() {
561 return new AArch64CollectLOH();