[MIPS GlobalISel] Select MSA vector generic and builtin add
[llvm-complete.git] / lib / Target / AArch64 / AArch64InstrInfo.cpp
blob5c35e5bcdd30e76daadbcedd7fab72eacd36d8cb
1 //===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "AArch64InstrInfo.h"
14 #include "AArch64MachineFunctionInfo.h"
15 #include "AArch64Subtarget.h"
16 #include "MCTargetDesc/AArch64AddressingModes.h"
17 #include "Utils/AArch64BaseInfo.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/MachineModuleInfo.h"
30 #include "llvm/CodeGen/StackMaps.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/CodeGen/TargetSubtargetInfo.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCInst.h"
37 #include "llvm/MC/MCInstrDesc.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CodeGen.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Target/TargetMachine.h"
45 #include "llvm/Target/TargetOptions.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <iterator>
49 #include <utility>
51 using namespace llvm;
53 #define GET_INSTRINFO_CTOR_DTOR
54 #include "AArch64GenInstrInfo.inc"
56 static cl::opt<unsigned> TBZDisplacementBits(
57 "aarch64-tbz-offset-bits", cl::Hidden, cl::init(14),
58 cl::desc("Restrict range of TB[N]Z instructions (DEBUG)"));
60 static cl::opt<unsigned> CBZDisplacementBits(
61 "aarch64-cbz-offset-bits", cl::Hidden, cl::init(19),
62 cl::desc("Restrict range of CB[N]Z instructions (DEBUG)"));
64 static cl::opt<unsigned>
65 BCCDisplacementBits("aarch64-bcc-offset-bits", cl::Hidden, cl::init(19),
66 cl::desc("Restrict range of Bcc instructions (DEBUG)"));
68 AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI)
69 : AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP,
70 AArch64::CATCHRET),
71 RI(STI.getTargetTriple()), Subtarget(STI) {}
73 /// GetInstSize - Return the number of bytes of code the specified
74 /// instruction may be. This returns the maximum number of bytes.
75 unsigned AArch64InstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
76 const MachineBasicBlock &MBB = *MI.getParent();
77 const MachineFunction *MF = MBB.getParent();
78 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
81 auto Op = MI.getOpcode();
82 if (Op == AArch64::INLINEASM || Op == AArch64::INLINEASM_BR)
83 return getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
86 // Meta-instructions emit no code.
87 if (MI.isMetaInstruction())
88 return 0;
90 // FIXME: We currently only handle pseudoinstructions that don't get expanded
91 // before the assembly printer.
92 unsigned NumBytes = 0;
93 const MCInstrDesc &Desc = MI.getDesc();
94 switch (Desc.getOpcode()) {
95 default:
96 // Anything not explicitly designated otherwise is a normal 4-byte insn.
97 NumBytes = 4;
98 break;
99 case TargetOpcode::STACKMAP:
100 // The upper bound for a stackmap intrinsic is the full length of its shadow
101 NumBytes = StackMapOpers(&MI).getNumPatchBytes();
102 assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
103 break;
104 case TargetOpcode::PATCHPOINT:
105 // The size of the patchpoint intrinsic is the number of bytes requested
106 NumBytes = PatchPointOpers(&MI).getNumPatchBytes();
107 assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
108 break;
109 case AArch64::TLSDESC_CALLSEQ:
110 // This gets lowered to an instruction sequence which takes 16 bytes
111 NumBytes = 16;
112 break;
113 case AArch64::JumpTableDest32:
114 case AArch64::JumpTableDest16:
115 case AArch64::JumpTableDest8:
116 NumBytes = 12;
117 break;
118 case AArch64::SPACE:
119 NumBytes = MI.getOperand(1).getImm();
120 break;
123 return NumBytes;
126 static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target,
127 SmallVectorImpl<MachineOperand> &Cond) {
128 // Block ends with fall-through condbranch.
129 switch (LastInst->getOpcode()) {
130 default:
131 llvm_unreachable("Unknown branch instruction?");
132 case AArch64::Bcc:
133 Target = LastInst->getOperand(1).getMBB();
134 Cond.push_back(LastInst->getOperand(0));
135 break;
136 case AArch64::CBZW:
137 case AArch64::CBZX:
138 case AArch64::CBNZW:
139 case AArch64::CBNZX:
140 Target = LastInst->getOperand(1).getMBB();
141 Cond.push_back(MachineOperand::CreateImm(-1));
142 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
143 Cond.push_back(LastInst->getOperand(0));
144 break;
145 case AArch64::TBZW:
146 case AArch64::TBZX:
147 case AArch64::TBNZW:
148 case AArch64::TBNZX:
149 Target = LastInst->getOperand(2).getMBB();
150 Cond.push_back(MachineOperand::CreateImm(-1));
151 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
152 Cond.push_back(LastInst->getOperand(0));
153 Cond.push_back(LastInst->getOperand(1));
157 static unsigned getBranchDisplacementBits(unsigned Opc) {
158 switch (Opc) {
159 default:
160 llvm_unreachable("unexpected opcode!");
161 case AArch64::B:
162 return 64;
163 case AArch64::TBNZW:
164 case AArch64::TBZW:
165 case AArch64::TBNZX:
166 case AArch64::TBZX:
167 return TBZDisplacementBits;
168 case AArch64::CBNZW:
169 case AArch64::CBZW:
170 case AArch64::CBNZX:
171 case AArch64::CBZX:
172 return CBZDisplacementBits;
173 case AArch64::Bcc:
174 return BCCDisplacementBits;
178 bool AArch64InstrInfo::isBranchOffsetInRange(unsigned BranchOp,
179 int64_t BrOffset) const {
180 unsigned Bits = getBranchDisplacementBits(BranchOp);
181 assert(Bits >= 3 && "max branch displacement must be enough to jump"
182 "over conditional branch expansion");
183 return isIntN(Bits, BrOffset / 4);
186 MachineBasicBlock *
187 AArch64InstrInfo::getBranchDestBlock(const MachineInstr &MI) const {
188 switch (MI.getOpcode()) {
189 default:
190 llvm_unreachable("unexpected opcode!");
191 case AArch64::B:
192 return MI.getOperand(0).getMBB();
193 case AArch64::TBZW:
194 case AArch64::TBNZW:
195 case AArch64::TBZX:
196 case AArch64::TBNZX:
197 return MI.getOperand(2).getMBB();
198 case AArch64::CBZW:
199 case AArch64::CBNZW:
200 case AArch64::CBZX:
201 case AArch64::CBNZX:
202 case AArch64::Bcc:
203 return MI.getOperand(1).getMBB();
207 // Branch analysis.
208 bool AArch64InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
209 MachineBasicBlock *&TBB,
210 MachineBasicBlock *&FBB,
211 SmallVectorImpl<MachineOperand> &Cond,
212 bool AllowModify) const {
213 // If the block has no terminators, it just falls into the block after it.
214 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
215 if (I == MBB.end())
216 return false;
218 if (!isUnpredicatedTerminator(*I))
219 return false;
221 // Get the last instruction in the block.
222 MachineInstr *LastInst = &*I;
224 // If there is only one terminator instruction, process it.
225 unsigned LastOpc = LastInst->getOpcode();
226 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
227 if (isUncondBranchOpcode(LastOpc)) {
228 TBB = LastInst->getOperand(0).getMBB();
229 return false;
231 if (isCondBranchOpcode(LastOpc)) {
232 // Block ends with fall-through condbranch.
233 parseCondBranch(LastInst, TBB, Cond);
234 return false;
236 return true; // Can't handle indirect branch.
239 // Get the instruction before it if it is a terminator.
240 MachineInstr *SecondLastInst = &*I;
241 unsigned SecondLastOpc = SecondLastInst->getOpcode();
243 // If AllowModify is true and the block ends with two or more unconditional
244 // branches, delete all but the first unconditional branch.
245 if (AllowModify && isUncondBranchOpcode(LastOpc)) {
246 while (isUncondBranchOpcode(SecondLastOpc)) {
247 LastInst->eraseFromParent();
248 LastInst = SecondLastInst;
249 LastOpc = LastInst->getOpcode();
250 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
251 // Return now the only terminator is an unconditional branch.
252 TBB = LastInst->getOperand(0).getMBB();
253 return false;
254 } else {
255 SecondLastInst = &*I;
256 SecondLastOpc = SecondLastInst->getOpcode();
261 // If there are three terminators, we don't know what sort of block this is.
262 if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I))
263 return true;
265 // If the block ends with a B and a Bcc, handle it.
266 if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
267 parseCondBranch(SecondLastInst, TBB, Cond);
268 FBB = LastInst->getOperand(0).getMBB();
269 return false;
272 // If the block ends with two unconditional branches, handle it. The second
273 // one is not executed, so remove it.
274 if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
275 TBB = SecondLastInst->getOperand(0).getMBB();
276 I = LastInst;
277 if (AllowModify)
278 I->eraseFromParent();
279 return false;
282 // ...likewise if it ends with an indirect branch followed by an unconditional
283 // branch.
284 if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
285 I = LastInst;
286 if (AllowModify)
287 I->eraseFromParent();
288 return true;
291 // Otherwise, can't handle this.
292 return true;
295 bool AArch64InstrInfo::reverseBranchCondition(
296 SmallVectorImpl<MachineOperand> &Cond) const {
297 if (Cond[0].getImm() != -1) {
298 // Regular Bcc
299 AArch64CC::CondCode CC = (AArch64CC::CondCode)(int)Cond[0].getImm();
300 Cond[0].setImm(AArch64CC::getInvertedCondCode(CC));
301 } else {
302 // Folded compare-and-branch
303 switch (Cond[1].getImm()) {
304 default:
305 llvm_unreachable("Unknown conditional branch!");
306 case AArch64::CBZW:
307 Cond[1].setImm(AArch64::CBNZW);
308 break;
309 case AArch64::CBNZW:
310 Cond[1].setImm(AArch64::CBZW);
311 break;
312 case AArch64::CBZX:
313 Cond[1].setImm(AArch64::CBNZX);
314 break;
315 case AArch64::CBNZX:
316 Cond[1].setImm(AArch64::CBZX);
317 break;
318 case AArch64::TBZW:
319 Cond[1].setImm(AArch64::TBNZW);
320 break;
321 case AArch64::TBNZW:
322 Cond[1].setImm(AArch64::TBZW);
323 break;
324 case AArch64::TBZX:
325 Cond[1].setImm(AArch64::TBNZX);
326 break;
327 case AArch64::TBNZX:
328 Cond[1].setImm(AArch64::TBZX);
329 break;
333 return false;
336 unsigned AArch64InstrInfo::removeBranch(MachineBasicBlock &MBB,
337 int *BytesRemoved) const {
338 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
339 if (I == MBB.end())
340 return 0;
342 if (!isUncondBranchOpcode(I->getOpcode()) &&
343 !isCondBranchOpcode(I->getOpcode()))
344 return 0;
346 // Remove the branch.
347 I->eraseFromParent();
349 I = MBB.end();
351 if (I == MBB.begin()) {
352 if (BytesRemoved)
353 *BytesRemoved = 4;
354 return 1;
356 --I;
357 if (!isCondBranchOpcode(I->getOpcode())) {
358 if (BytesRemoved)
359 *BytesRemoved = 4;
360 return 1;
363 // Remove the branch.
364 I->eraseFromParent();
365 if (BytesRemoved)
366 *BytesRemoved = 8;
368 return 2;
371 void AArch64InstrInfo::instantiateCondBranch(
372 MachineBasicBlock &MBB, const DebugLoc &DL, MachineBasicBlock *TBB,
373 ArrayRef<MachineOperand> Cond) const {
374 if (Cond[0].getImm() != -1) {
375 // Regular Bcc
376 BuildMI(&MBB, DL, get(AArch64::Bcc)).addImm(Cond[0].getImm()).addMBB(TBB);
377 } else {
378 // Folded compare-and-branch
379 // Note that we use addOperand instead of addReg to keep the flags.
380 const MachineInstrBuilder MIB =
381 BuildMI(&MBB, DL, get(Cond[1].getImm())).add(Cond[2]);
382 if (Cond.size() > 3)
383 MIB.addImm(Cond[3].getImm());
384 MIB.addMBB(TBB);
388 unsigned AArch64InstrInfo::insertBranch(
389 MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
390 ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const {
391 // Shouldn't be a fall through.
392 assert(TBB && "insertBranch must not be told to insert a fallthrough");
394 if (!FBB) {
395 if (Cond.empty()) // Unconditional branch?
396 BuildMI(&MBB, DL, get(AArch64::B)).addMBB(TBB);
397 else
398 instantiateCondBranch(MBB, DL, TBB, Cond);
400 if (BytesAdded)
401 *BytesAdded = 4;
403 return 1;
406 // Two-way conditional branch.
407 instantiateCondBranch(MBB, DL, TBB, Cond);
408 BuildMI(&MBB, DL, get(AArch64::B)).addMBB(FBB);
410 if (BytesAdded)
411 *BytesAdded = 8;
413 return 2;
416 // Find the original register that VReg is copied from.
417 static unsigned removeCopies(const MachineRegisterInfo &MRI, unsigned VReg) {
418 while (Register::isVirtualRegister(VReg)) {
419 const MachineInstr *DefMI = MRI.getVRegDef(VReg);
420 if (!DefMI->isFullCopy())
421 return VReg;
422 VReg = DefMI->getOperand(1).getReg();
424 return VReg;
427 // Determine if VReg is defined by an instruction that can be folded into a
428 // csel instruction. If so, return the folded opcode, and the replacement
429 // register.
430 static unsigned canFoldIntoCSel(const MachineRegisterInfo &MRI, unsigned VReg,
431 unsigned *NewVReg = nullptr) {
432 VReg = removeCopies(MRI, VReg);
433 if (!Register::isVirtualRegister(VReg))
434 return 0;
436 bool Is64Bit = AArch64::GPR64allRegClass.hasSubClassEq(MRI.getRegClass(VReg));
437 const MachineInstr *DefMI = MRI.getVRegDef(VReg);
438 unsigned Opc = 0;
439 unsigned SrcOpNum = 0;
440 switch (DefMI->getOpcode()) {
441 case AArch64::ADDSXri:
442 case AArch64::ADDSWri:
443 // if NZCV is used, do not fold.
444 if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
445 return 0;
446 // fall-through to ADDXri and ADDWri.
447 LLVM_FALLTHROUGH;
448 case AArch64::ADDXri:
449 case AArch64::ADDWri:
450 // add x, 1 -> csinc.
451 if (!DefMI->getOperand(2).isImm() || DefMI->getOperand(2).getImm() != 1 ||
452 DefMI->getOperand(3).getImm() != 0)
453 return 0;
454 SrcOpNum = 1;
455 Opc = Is64Bit ? AArch64::CSINCXr : AArch64::CSINCWr;
456 break;
458 case AArch64::ORNXrr:
459 case AArch64::ORNWrr: {
460 // not x -> csinv, represented as orn dst, xzr, src.
461 unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
462 if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
463 return 0;
464 SrcOpNum = 2;
465 Opc = Is64Bit ? AArch64::CSINVXr : AArch64::CSINVWr;
466 break;
469 case AArch64::SUBSXrr:
470 case AArch64::SUBSWrr:
471 // if NZCV is used, do not fold.
472 if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
473 return 0;
474 // fall-through to SUBXrr and SUBWrr.
475 LLVM_FALLTHROUGH;
476 case AArch64::SUBXrr:
477 case AArch64::SUBWrr: {
478 // neg x -> csneg, represented as sub dst, xzr, src.
479 unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
480 if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
481 return 0;
482 SrcOpNum = 2;
483 Opc = Is64Bit ? AArch64::CSNEGXr : AArch64::CSNEGWr;
484 break;
486 default:
487 return 0;
489 assert(Opc && SrcOpNum && "Missing parameters");
491 if (NewVReg)
492 *NewVReg = DefMI->getOperand(SrcOpNum).getReg();
493 return Opc;
496 bool AArch64InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
497 ArrayRef<MachineOperand> Cond,
498 unsigned TrueReg, unsigned FalseReg,
499 int &CondCycles, int &TrueCycles,
500 int &FalseCycles) const {
501 // Check register classes.
502 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
503 const TargetRegisterClass *RC =
504 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
505 if (!RC)
506 return false;
508 // Expanding cbz/tbz requires an extra cycle of latency on the condition.
509 unsigned ExtraCondLat = Cond.size() != 1;
511 // GPRs are handled by csel.
512 // FIXME: Fold in x+1, -x, and ~x when applicable.
513 if (AArch64::GPR64allRegClass.hasSubClassEq(RC) ||
514 AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
515 // Single-cycle csel, csinc, csinv, and csneg.
516 CondCycles = 1 + ExtraCondLat;
517 TrueCycles = FalseCycles = 1;
518 if (canFoldIntoCSel(MRI, TrueReg))
519 TrueCycles = 0;
520 else if (canFoldIntoCSel(MRI, FalseReg))
521 FalseCycles = 0;
522 return true;
525 // Scalar floating point is handled by fcsel.
526 // FIXME: Form fabs, fmin, and fmax when applicable.
527 if (AArch64::FPR64RegClass.hasSubClassEq(RC) ||
528 AArch64::FPR32RegClass.hasSubClassEq(RC)) {
529 CondCycles = 5 + ExtraCondLat;
530 TrueCycles = FalseCycles = 2;
531 return true;
534 // Can't do vectors.
535 return false;
538 void AArch64InstrInfo::insertSelect(MachineBasicBlock &MBB,
539 MachineBasicBlock::iterator I,
540 const DebugLoc &DL, unsigned DstReg,
541 ArrayRef<MachineOperand> Cond,
542 unsigned TrueReg, unsigned FalseReg) const {
543 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
545 // Parse the condition code, see parseCondBranch() above.
546 AArch64CC::CondCode CC;
547 switch (Cond.size()) {
548 default:
549 llvm_unreachable("Unknown condition opcode in Cond");
550 case 1: // b.cc
551 CC = AArch64CC::CondCode(Cond[0].getImm());
552 break;
553 case 3: { // cbz/cbnz
554 // We must insert a compare against 0.
555 bool Is64Bit;
556 switch (Cond[1].getImm()) {
557 default:
558 llvm_unreachable("Unknown branch opcode in Cond");
559 case AArch64::CBZW:
560 Is64Bit = false;
561 CC = AArch64CC::EQ;
562 break;
563 case AArch64::CBZX:
564 Is64Bit = true;
565 CC = AArch64CC::EQ;
566 break;
567 case AArch64::CBNZW:
568 Is64Bit = false;
569 CC = AArch64CC::NE;
570 break;
571 case AArch64::CBNZX:
572 Is64Bit = true;
573 CC = AArch64CC::NE;
574 break;
576 Register SrcReg = Cond[2].getReg();
577 if (Is64Bit) {
578 // cmp reg, #0 is actually subs xzr, reg, #0.
579 MRI.constrainRegClass(SrcReg, &AArch64::GPR64spRegClass);
580 BuildMI(MBB, I, DL, get(AArch64::SUBSXri), AArch64::XZR)
581 .addReg(SrcReg)
582 .addImm(0)
583 .addImm(0);
584 } else {
585 MRI.constrainRegClass(SrcReg, &AArch64::GPR32spRegClass);
586 BuildMI(MBB, I, DL, get(AArch64::SUBSWri), AArch64::WZR)
587 .addReg(SrcReg)
588 .addImm(0)
589 .addImm(0);
591 break;
593 case 4: { // tbz/tbnz
594 // We must insert a tst instruction.
595 switch (Cond[1].getImm()) {
596 default:
597 llvm_unreachable("Unknown branch opcode in Cond");
598 case AArch64::TBZW:
599 case AArch64::TBZX:
600 CC = AArch64CC::EQ;
601 break;
602 case AArch64::TBNZW:
603 case AArch64::TBNZX:
604 CC = AArch64CC::NE;
605 break;
607 // cmp reg, #foo is actually ands xzr, reg, #1<<foo.
608 if (Cond[1].getImm() == AArch64::TBZW || Cond[1].getImm() == AArch64::TBNZW)
609 BuildMI(MBB, I, DL, get(AArch64::ANDSWri), AArch64::WZR)
610 .addReg(Cond[2].getReg())
611 .addImm(
612 AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 32));
613 else
614 BuildMI(MBB, I, DL, get(AArch64::ANDSXri), AArch64::XZR)
615 .addReg(Cond[2].getReg())
616 .addImm(
617 AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 64));
618 break;
622 unsigned Opc = 0;
623 const TargetRegisterClass *RC = nullptr;
624 bool TryFold = false;
625 if (MRI.constrainRegClass(DstReg, &AArch64::GPR64RegClass)) {
626 RC = &AArch64::GPR64RegClass;
627 Opc = AArch64::CSELXr;
628 TryFold = true;
629 } else if (MRI.constrainRegClass(DstReg, &AArch64::GPR32RegClass)) {
630 RC = &AArch64::GPR32RegClass;
631 Opc = AArch64::CSELWr;
632 TryFold = true;
633 } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR64RegClass)) {
634 RC = &AArch64::FPR64RegClass;
635 Opc = AArch64::FCSELDrrr;
636 } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR32RegClass)) {
637 RC = &AArch64::FPR32RegClass;
638 Opc = AArch64::FCSELSrrr;
640 assert(RC && "Unsupported regclass");
642 // Try folding simple instructions into the csel.
643 if (TryFold) {
644 unsigned NewVReg = 0;
645 unsigned FoldedOpc = canFoldIntoCSel(MRI, TrueReg, &NewVReg);
646 if (FoldedOpc) {
647 // The folded opcodes csinc, csinc and csneg apply the operation to
648 // FalseReg, so we need to invert the condition.
649 CC = AArch64CC::getInvertedCondCode(CC);
650 TrueReg = FalseReg;
651 } else
652 FoldedOpc = canFoldIntoCSel(MRI, FalseReg, &NewVReg);
654 // Fold the operation. Leave any dead instructions for DCE to clean up.
655 if (FoldedOpc) {
656 FalseReg = NewVReg;
657 Opc = FoldedOpc;
658 // The extends the live range of NewVReg.
659 MRI.clearKillFlags(NewVReg);
663 // Pull all virtual register into the appropriate class.
664 MRI.constrainRegClass(TrueReg, RC);
665 MRI.constrainRegClass(FalseReg, RC);
667 // Insert the csel.
668 BuildMI(MBB, I, DL, get(Opc), DstReg)
669 .addReg(TrueReg)
670 .addReg(FalseReg)
671 .addImm(CC);
674 /// Returns true if a MOVi32imm or MOVi64imm can be expanded to an ORRxx.
675 static bool canBeExpandedToORR(const MachineInstr &MI, unsigned BitSize) {
676 uint64_t Imm = MI.getOperand(1).getImm();
677 uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
678 uint64_t Encoding;
679 return AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding);
682 // FIXME: this implementation should be micro-architecture dependent, so a
683 // micro-architecture target hook should be introduced here in future.
684 bool AArch64InstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const {
685 if (!Subtarget.hasCustomCheapAsMoveHandling())
686 return MI.isAsCheapAsAMove();
688 const unsigned Opcode = MI.getOpcode();
690 // Firstly, check cases gated by features.
692 if (Subtarget.hasZeroCycleZeroingFP()) {
693 if (Opcode == AArch64::FMOVH0 ||
694 Opcode == AArch64::FMOVS0 ||
695 Opcode == AArch64::FMOVD0)
696 return true;
699 if (Subtarget.hasZeroCycleZeroingGP()) {
700 if (Opcode == TargetOpcode::COPY &&
701 (MI.getOperand(1).getReg() == AArch64::WZR ||
702 MI.getOperand(1).getReg() == AArch64::XZR))
703 return true;
706 // Secondly, check cases specific to sub-targets.
708 if (Subtarget.hasExynosCheapAsMoveHandling()) {
709 if (isExynosCheapAsMove(MI))
710 return true;
712 return MI.isAsCheapAsAMove();
715 // Finally, check generic cases.
717 switch (Opcode) {
718 default:
719 return false;
721 // add/sub on register without shift
722 case AArch64::ADDWri:
723 case AArch64::ADDXri:
724 case AArch64::SUBWri:
725 case AArch64::SUBXri:
726 return (MI.getOperand(3).getImm() == 0);
728 // logical ops on immediate
729 case AArch64::ANDWri:
730 case AArch64::ANDXri:
731 case AArch64::EORWri:
732 case AArch64::EORXri:
733 case AArch64::ORRWri:
734 case AArch64::ORRXri:
735 return true;
737 // logical ops on register without shift
738 case AArch64::ANDWrr:
739 case AArch64::ANDXrr:
740 case AArch64::BICWrr:
741 case AArch64::BICXrr:
742 case AArch64::EONWrr:
743 case AArch64::EONXrr:
744 case AArch64::EORWrr:
745 case AArch64::EORXrr:
746 case AArch64::ORNWrr:
747 case AArch64::ORNXrr:
748 case AArch64::ORRWrr:
749 case AArch64::ORRXrr:
750 return true;
752 // If MOVi32imm or MOVi64imm can be expanded into ORRWri or
753 // ORRXri, it is as cheap as MOV
754 case AArch64::MOVi32imm:
755 return canBeExpandedToORR(MI, 32);
756 case AArch64::MOVi64imm:
757 return canBeExpandedToORR(MI, 64);
760 llvm_unreachable("Unknown opcode to check as cheap as a move!");
763 bool AArch64InstrInfo::isFalkorShiftExtFast(const MachineInstr &MI) {
764 switch (MI.getOpcode()) {
765 default:
766 return false;
768 case AArch64::ADDWrs:
769 case AArch64::ADDXrs:
770 case AArch64::ADDSWrs:
771 case AArch64::ADDSXrs: {
772 unsigned Imm = MI.getOperand(3).getImm();
773 unsigned ShiftVal = AArch64_AM::getShiftValue(Imm);
774 if (ShiftVal == 0)
775 return true;
776 return AArch64_AM::getShiftType(Imm) == AArch64_AM::LSL && ShiftVal <= 5;
779 case AArch64::ADDWrx:
780 case AArch64::ADDXrx:
781 case AArch64::ADDXrx64:
782 case AArch64::ADDSWrx:
783 case AArch64::ADDSXrx:
784 case AArch64::ADDSXrx64: {
785 unsigned Imm = MI.getOperand(3).getImm();
786 switch (AArch64_AM::getArithExtendType(Imm)) {
787 default:
788 return false;
789 case AArch64_AM::UXTB:
790 case AArch64_AM::UXTH:
791 case AArch64_AM::UXTW:
792 case AArch64_AM::UXTX:
793 return AArch64_AM::getArithShiftValue(Imm) <= 4;
797 case AArch64::SUBWrs:
798 case AArch64::SUBSWrs: {
799 unsigned Imm = MI.getOperand(3).getImm();
800 unsigned ShiftVal = AArch64_AM::getShiftValue(Imm);
801 return ShiftVal == 0 ||
802 (AArch64_AM::getShiftType(Imm) == AArch64_AM::ASR && ShiftVal == 31);
805 case AArch64::SUBXrs:
806 case AArch64::SUBSXrs: {
807 unsigned Imm = MI.getOperand(3).getImm();
808 unsigned ShiftVal = AArch64_AM::getShiftValue(Imm);
809 return ShiftVal == 0 ||
810 (AArch64_AM::getShiftType(Imm) == AArch64_AM::ASR && ShiftVal == 63);
813 case AArch64::SUBWrx:
814 case AArch64::SUBXrx:
815 case AArch64::SUBXrx64:
816 case AArch64::SUBSWrx:
817 case AArch64::SUBSXrx:
818 case AArch64::SUBSXrx64: {
819 unsigned Imm = MI.getOperand(3).getImm();
820 switch (AArch64_AM::getArithExtendType(Imm)) {
821 default:
822 return false;
823 case AArch64_AM::UXTB:
824 case AArch64_AM::UXTH:
825 case AArch64_AM::UXTW:
826 case AArch64_AM::UXTX:
827 return AArch64_AM::getArithShiftValue(Imm) == 0;
831 case AArch64::LDRBBroW:
832 case AArch64::LDRBBroX:
833 case AArch64::LDRBroW:
834 case AArch64::LDRBroX:
835 case AArch64::LDRDroW:
836 case AArch64::LDRDroX:
837 case AArch64::LDRHHroW:
838 case AArch64::LDRHHroX:
839 case AArch64::LDRHroW:
840 case AArch64::LDRHroX:
841 case AArch64::LDRQroW:
842 case AArch64::LDRQroX:
843 case AArch64::LDRSBWroW:
844 case AArch64::LDRSBWroX:
845 case AArch64::LDRSBXroW:
846 case AArch64::LDRSBXroX:
847 case AArch64::LDRSHWroW:
848 case AArch64::LDRSHWroX:
849 case AArch64::LDRSHXroW:
850 case AArch64::LDRSHXroX:
851 case AArch64::LDRSWroW:
852 case AArch64::LDRSWroX:
853 case AArch64::LDRSroW:
854 case AArch64::LDRSroX:
855 case AArch64::LDRWroW:
856 case AArch64::LDRWroX:
857 case AArch64::LDRXroW:
858 case AArch64::LDRXroX:
859 case AArch64::PRFMroW:
860 case AArch64::PRFMroX:
861 case AArch64::STRBBroW:
862 case AArch64::STRBBroX:
863 case AArch64::STRBroW:
864 case AArch64::STRBroX:
865 case AArch64::STRDroW:
866 case AArch64::STRDroX:
867 case AArch64::STRHHroW:
868 case AArch64::STRHHroX:
869 case AArch64::STRHroW:
870 case AArch64::STRHroX:
871 case AArch64::STRQroW:
872 case AArch64::STRQroX:
873 case AArch64::STRSroW:
874 case AArch64::STRSroX:
875 case AArch64::STRWroW:
876 case AArch64::STRWroX:
877 case AArch64::STRXroW:
878 case AArch64::STRXroX: {
879 unsigned IsSigned = MI.getOperand(3).getImm();
880 return !IsSigned;
885 bool AArch64InstrInfo::isSEHInstruction(const MachineInstr &MI) {
886 unsigned Opc = MI.getOpcode();
887 switch (Opc) {
888 default:
889 return false;
890 case AArch64::SEH_StackAlloc:
891 case AArch64::SEH_SaveFPLR:
892 case AArch64::SEH_SaveFPLR_X:
893 case AArch64::SEH_SaveReg:
894 case AArch64::SEH_SaveReg_X:
895 case AArch64::SEH_SaveRegP:
896 case AArch64::SEH_SaveRegP_X:
897 case AArch64::SEH_SaveFReg:
898 case AArch64::SEH_SaveFReg_X:
899 case AArch64::SEH_SaveFRegP:
900 case AArch64::SEH_SaveFRegP_X:
901 case AArch64::SEH_SetFP:
902 case AArch64::SEH_AddFP:
903 case AArch64::SEH_Nop:
904 case AArch64::SEH_PrologEnd:
905 case AArch64::SEH_EpilogStart:
906 case AArch64::SEH_EpilogEnd:
907 return true;
911 bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
912 unsigned &SrcReg, unsigned &DstReg,
913 unsigned &SubIdx) const {
914 switch (MI.getOpcode()) {
915 default:
916 return false;
917 case AArch64::SBFMXri: // aka sxtw
918 case AArch64::UBFMXri: // aka uxtw
919 // Check for the 32 -> 64 bit extension case, these instructions can do
920 // much more.
921 if (MI.getOperand(2).getImm() != 0 || MI.getOperand(3).getImm() != 31)
922 return false;
923 // This is a signed or unsigned 32 -> 64 bit extension.
924 SrcReg = MI.getOperand(1).getReg();
925 DstReg = MI.getOperand(0).getReg();
926 SubIdx = AArch64::sub_32;
927 return true;
931 bool AArch64InstrInfo::areMemAccessesTriviallyDisjoint(
932 const MachineInstr &MIa, const MachineInstr &MIb) const {
933 const TargetRegisterInfo *TRI = &getRegisterInfo();
934 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
935 int64_t OffsetA = 0, OffsetB = 0;
936 unsigned WidthA = 0, WidthB = 0;
938 assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
939 assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
941 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
942 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
943 return false;
945 // Retrieve the base, offset from the base and width. Width
946 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4, 8). If
947 // base are identical, and the offset of a lower memory access +
948 // the width doesn't overlap the offset of a higher memory access,
949 // then the memory accesses are different.
950 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
951 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
952 if (BaseOpA->isIdenticalTo(*BaseOpB)) {
953 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
954 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
955 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
956 if (LowOffset + LowWidth <= HighOffset)
957 return true;
960 return false;
963 bool AArch64InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
964 const MachineBasicBlock *MBB,
965 const MachineFunction &MF) const {
966 if (TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF))
967 return true;
968 switch (MI.getOpcode()) {
969 case AArch64::HINT:
970 // CSDB hints are scheduling barriers.
971 if (MI.getOperand(0).getImm() == 0x14)
972 return true;
973 break;
974 case AArch64::DSB:
975 case AArch64::ISB:
976 // DSB and ISB also are scheduling barriers.
977 return true;
978 default:;
980 return isSEHInstruction(MI);
983 /// analyzeCompare - For a comparison instruction, return the source registers
984 /// in SrcReg and SrcReg2, and the value it compares against in CmpValue.
985 /// Return true if the comparison instruction can be analyzed.
986 bool AArch64InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
987 unsigned &SrcReg2, int &CmpMask,
988 int &CmpValue) const {
989 // The first operand can be a frame index where we'd normally expect a
990 // register.
991 assert(MI.getNumOperands() >= 2 && "All AArch64 cmps should have 2 operands");
992 if (!MI.getOperand(1).isReg())
993 return false;
995 switch (MI.getOpcode()) {
996 default:
997 break;
998 case AArch64::SUBSWrr:
999 case AArch64::SUBSWrs:
1000 case AArch64::SUBSWrx:
1001 case AArch64::SUBSXrr:
1002 case AArch64::SUBSXrs:
1003 case AArch64::SUBSXrx:
1004 case AArch64::ADDSWrr:
1005 case AArch64::ADDSWrs:
1006 case AArch64::ADDSWrx:
1007 case AArch64::ADDSXrr:
1008 case AArch64::ADDSXrs:
1009 case AArch64::ADDSXrx:
1010 // Replace SUBSWrr with SUBWrr if NZCV is not used.
1011 SrcReg = MI.getOperand(1).getReg();
1012 SrcReg2 = MI.getOperand(2).getReg();
1013 CmpMask = ~0;
1014 CmpValue = 0;
1015 return true;
1016 case AArch64::SUBSWri:
1017 case AArch64::ADDSWri:
1018 case AArch64::SUBSXri:
1019 case AArch64::ADDSXri:
1020 SrcReg = MI.getOperand(1).getReg();
1021 SrcReg2 = 0;
1022 CmpMask = ~0;
1023 // FIXME: In order to convert CmpValue to 0 or 1
1024 CmpValue = MI.getOperand(2).getImm() != 0;
1025 return true;
1026 case AArch64::ANDSWri:
1027 case AArch64::ANDSXri:
1028 // ANDS does not use the same encoding scheme as the others xxxS
1029 // instructions.
1030 SrcReg = MI.getOperand(1).getReg();
1031 SrcReg2 = 0;
1032 CmpMask = ~0;
1033 // FIXME:The return val type of decodeLogicalImmediate is uint64_t,
1034 // while the type of CmpValue is int. When converting uint64_t to int,
1035 // the high 32 bits of uint64_t will be lost.
1036 // In fact it causes a bug in spec2006-483.xalancbmk
1037 // CmpValue is only used to compare with zero in OptimizeCompareInstr
1038 CmpValue = AArch64_AM::decodeLogicalImmediate(
1039 MI.getOperand(2).getImm(),
1040 MI.getOpcode() == AArch64::ANDSWri ? 32 : 64) != 0;
1041 return true;
1044 return false;
1047 static bool UpdateOperandRegClass(MachineInstr &Instr) {
1048 MachineBasicBlock *MBB = Instr.getParent();
1049 assert(MBB && "Can't get MachineBasicBlock here");
1050 MachineFunction *MF = MBB->getParent();
1051 assert(MF && "Can't get MachineFunction here");
1052 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1053 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1054 MachineRegisterInfo *MRI = &MF->getRegInfo();
1056 for (unsigned OpIdx = 0, EndIdx = Instr.getNumOperands(); OpIdx < EndIdx;
1057 ++OpIdx) {
1058 MachineOperand &MO = Instr.getOperand(OpIdx);
1059 const TargetRegisterClass *OpRegCstraints =
1060 Instr.getRegClassConstraint(OpIdx, TII, TRI);
1062 // If there's no constraint, there's nothing to do.
1063 if (!OpRegCstraints)
1064 continue;
1065 // If the operand is a frame index, there's nothing to do here.
1066 // A frame index operand will resolve correctly during PEI.
1067 if (MO.isFI())
1068 continue;
1070 assert(MO.isReg() &&
1071 "Operand has register constraints without being a register!");
1073 Register Reg = MO.getReg();
1074 if (Register::isPhysicalRegister(Reg)) {
1075 if (!OpRegCstraints->contains(Reg))
1076 return false;
1077 } else if (!OpRegCstraints->hasSubClassEq(MRI->getRegClass(Reg)) &&
1078 !MRI->constrainRegClass(Reg, OpRegCstraints))
1079 return false;
1082 return true;
1085 /// Return the opcode that does not set flags when possible - otherwise
1086 /// return the original opcode. The caller is responsible to do the actual
1087 /// substitution and legality checking.
1088 static unsigned convertToNonFlagSettingOpc(const MachineInstr &MI) {
1089 // Don't convert all compare instructions, because for some the zero register
1090 // encoding becomes the sp register.
1091 bool MIDefinesZeroReg = false;
1092 if (MI.definesRegister(AArch64::WZR) || MI.definesRegister(AArch64::XZR))
1093 MIDefinesZeroReg = true;
1095 switch (MI.getOpcode()) {
1096 default:
1097 return MI.getOpcode();
1098 case AArch64::ADDSWrr:
1099 return AArch64::ADDWrr;
1100 case AArch64::ADDSWri:
1101 return MIDefinesZeroReg ? AArch64::ADDSWri : AArch64::ADDWri;
1102 case AArch64::ADDSWrs:
1103 return MIDefinesZeroReg ? AArch64::ADDSWrs : AArch64::ADDWrs;
1104 case AArch64::ADDSWrx:
1105 return AArch64::ADDWrx;
1106 case AArch64::ADDSXrr:
1107 return AArch64::ADDXrr;
1108 case AArch64::ADDSXri:
1109 return MIDefinesZeroReg ? AArch64::ADDSXri : AArch64::ADDXri;
1110 case AArch64::ADDSXrs:
1111 return MIDefinesZeroReg ? AArch64::ADDSXrs : AArch64::ADDXrs;
1112 case AArch64::ADDSXrx:
1113 return AArch64::ADDXrx;
1114 case AArch64::SUBSWrr:
1115 return AArch64::SUBWrr;
1116 case AArch64::SUBSWri:
1117 return MIDefinesZeroReg ? AArch64::SUBSWri : AArch64::SUBWri;
1118 case AArch64::SUBSWrs:
1119 return MIDefinesZeroReg ? AArch64::SUBSWrs : AArch64::SUBWrs;
1120 case AArch64::SUBSWrx:
1121 return AArch64::SUBWrx;
1122 case AArch64::SUBSXrr:
1123 return AArch64::SUBXrr;
1124 case AArch64::SUBSXri:
1125 return MIDefinesZeroReg ? AArch64::SUBSXri : AArch64::SUBXri;
1126 case AArch64::SUBSXrs:
1127 return MIDefinesZeroReg ? AArch64::SUBSXrs : AArch64::SUBXrs;
1128 case AArch64::SUBSXrx:
1129 return AArch64::SUBXrx;
1133 enum AccessKind { AK_Write = 0x01, AK_Read = 0x10, AK_All = 0x11 };
1135 /// True when condition flags are accessed (either by writing or reading)
1136 /// on the instruction trace starting at From and ending at To.
1138 /// Note: If From and To are from different blocks it's assumed CC are accessed
1139 /// on the path.
1140 static bool areCFlagsAccessedBetweenInstrs(
1141 MachineBasicBlock::iterator From, MachineBasicBlock::iterator To,
1142 const TargetRegisterInfo *TRI, const AccessKind AccessToCheck = AK_All) {
1143 // Early exit if To is at the beginning of the BB.
1144 if (To == To->getParent()->begin())
1145 return true;
1147 // Check whether the instructions are in the same basic block
1148 // If not, assume the condition flags might get modified somewhere.
1149 if (To->getParent() != From->getParent())
1150 return true;
1152 // From must be above To.
1153 assert(std::find_if(++To.getReverse(), To->getParent()->rend(),
1154 [From](MachineInstr &MI) {
1155 return MI.getIterator() == From;
1156 }) != To->getParent()->rend());
1158 // We iterate backward starting \p To until we hit \p From.
1159 for (--To; To != From; --To) {
1160 const MachineInstr &Instr = *To;
1162 if (((AccessToCheck & AK_Write) &&
1163 Instr.modifiesRegister(AArch64::NZCV, TRI)) ||
1164 ((AccessToCheck & AK_Read) && Instr.readsRegister(AArch64::NZCV, TRI)))
1165 return true;
1167 return false;
1170 /// Try to optimize a compare instruction. A compare instruction is an
1171 /// instruction which produces AArch64::NZCV. It can be truly compare
1172 /// instruction
1173 /// when there are no uses of its destination register.
1175 /// The following steps are tried in order:
1176 /// 1. Convert CmpInstr into an unconditional version.
1177 /// 2. Remove CmpInstr if above there is an instruction producing a needed
1178 /// condition code or an instruction which can be converted into such an
1179 /// instruction.
1180 /// Only comparison with zero is supported.
1181 bool AArch64InstrInfo::optimizeCompareInstr(
1182 MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
1183 int CmpValue, const MachineRegisterInfo *MRI) const {
1184 assert(CmpInstr.getParent());
1185 assert(MRI);
1187 // Replace SUBSWrr with SUBWrr if NZCV is not used.
1188 int DeadNZCVIdx = CmpInstr.findRegisterDefOperandIdx(AArch64::NZCV, true);
1189 if (DeadNZCVIdx != -1) {
1190 if (CmpInstr.definesRegister(AArch64::WZR) ||
1191 CmpInstr.definesRegister(AArch64::XZR)) {
1192 CmpInstr.eraseFromParent();
1193 return true;
1195 unsigned Opc = CmpInstr.getOpcode();
1196 unsigned NewOpc = convertToNonFlagSettingOpc(CmpInstr);
1197 if (NewOpc == Opc)
1198 return false;
1199 const MCInstrDesc &MCID = get(NewOpc);
1200 CmpInstr.setDesc(MCID);
1201 CmpInstr.RemoveOperand(DeadNZCVIdx);
1202 bool succeeded = UpdateOperandRegClass(CmpInstr);
1203 (void)succeeded;
1204 assert(succeeded && "Some operands reg class are incompatible!");
1205 return true;
1208 // Continue only if we have a "ri" where immediate is zero.
1209 // FIXME:CmpValue has already been converted to 0 or 1 in analyzeCompare
1210 // function.
1211 assert((CmpValue == 0 || CmpValue == 1) && "CmpValue must be 0 or 1!");
1212 if (CmpValue != 0 || SrcReg2 != 0)
1213 return false;
1215 // CmpInstr is a Compare instruction if destination register is not used.
1216 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
1217 return false;
1219 return substituteCmpToZero(CmpInstr, SrcReg, MRI);
1222 /// Get opcode of S version of Instr.
1223 /// If Instr is S version its opcode is returned.
1224 /// AArch64::INSTRUCTION_LIST_END is returned if Instr does not have S version
1225 /// or we are not interested in it.
1226 static unsigned sForm(MachineInstr &Instr) {
1227 switch (Instr.getOpcode()) {
1228 default:
1229 return AArch64::INSTRUCTION_LIST_END;
1231 case AArch64::ADDSWrr:
1232 case AArch64::ADDSWri:
1233 case AArch64::ADDSXrr:
1234 case AArch64::ADDSXri:
1235 case AArch64::SUBSWrr:
1236 case AArch64::SUBSWri:
1237 case AArch64::SUBSXrr:
1238 case AArch64::SUBSXri:
1239 return Instr.getOpcode();
1241 case AArch64::ADDWrr:
1242 return AArch64::ADDSWrr;
1243 case AArch64::ADDWri:
1244 return AArch64::ADDSWri;
1245 case AArch64::ADDXrr:
1246 return AArch64::ADDSXrr;
1247 case AArch64::ADDXri:
1248 return AArch64::ADDSXri;
1249 case AArch64::ADCWr:
1250 return AArch64::ADCSWr;
1251 case AArch64::ADCXr:
1252 return AArch64::ADCSXr;
1253 case AArch64::SUBWrr:
1254 return AArch64::SUBSWrr;
1255 case AArch64::SUBWri:
1256 return AArch64::SUBSWri;
1257 case AArch64::SUBXrr:
1258 return AArch64::SUBSXrr;
1259 case AArch64::SUBXri:
1260 return AArch64::SUBSXri;
1261 case AArch64::SBCWr:
1262 return AArch64::SBCSWr;
1263 case AArch64::SBCXr:
1264 return AArch64::SBCSXr;
1265 case AArch64::ANDWri:
1266 return AArch64::ANDSWri;
1267 case AArch64::ANDXri:
1268 return AArch64::ANDSXri;
1272 /// Check if AArch64::NZCV should be alive in successors of MBB.
1273 static bool areCFlagsAliveInSuccessors(MachineBasicBlock *MBB) {
1274 for (auto *BB : MBB->successors())
1275 if (BB->isLiveIn(AArch64::NZCV))
1276 return true;
1277 return false;
1280 namespace {
1282 struct UsedNZCV {
1283 bool N = false;
1284 bool Z = false;
1285 bool C = false;
1286 bool V = false;
1288 UsedNZCV() = default;
1290 UsedNZCV &operator|=(const UsedNZCV &UsedFlags) {
1291 this->N |= UsedFlags.N;
1292 this->Z |= UsedFlags.Z;
1293 this->C |= UsedFlags.C;
1294 this->V |= UsedFlags.V;
1295 return *this;
1299 } // end anonymous namespace
1301 /// Find a condition code used by the instruction.
1302 /// Returns AArch64CC::Invalid if either the instruction does not use condition
1303 /// codes or we don't optimize CmpInstr in the presence of such instructions.
1304 static AArch64CC::CondCode findCondCodeUsedByInstr(const MachineInstr &Instr) {
1305 switch (Instr.getOpcode()) {
1306 default:
1307 return AArch64CC::Invalid;
1309 case AArch64::Bcc: {
1310 int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV);
1311 assert(Idx >= 2);
1312 return static_cast<AArch64CC::CondCode>(Instr.getOperand(Idx - 2).getImm());
1315 case AArch64::CSINVWr:
1316 case AArch64::CSINVXr:
1317 case AArch64::CSINCWr:
1318 case AArch64::CSINCXr:
1319 case AArch64::CSELWr:
1320 case AArch64::CSELXr:
1321 case AArch64::CSNEGWr:
1322 case AArch64::CSNEGXr:
1323 case AArch64::FCSELSrrr:
1324 case AArch64::FCSELDrrr: {
1325 int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV);
1326 assert(Idx >= 1);
1327 return static_cast<AArch64CC::CondCode>(Instr.getOperand(Idx - 1).getImm());
1332 static UsedNZCV getUsedNZCV(AArch64CC::CondCode CC) {
1333 assert(CC != AArch64CC::Invalid);
1334 UsedNZCV UsedFlags;
1335 switch (CC) {
1336 default:
1337 break;
1339 case AArch64CC::EQ: // Z set
1340 case AArch64CC::NE: // Z clear
1341 UsedFlags.Z = true;
1342 break;
1344 case AArch64CC::HI: // Z clear and C set
1345 case AArch64CC::LS: // Z set or C clear
1346 UsedFlags.Z = true;
1347 LLVM_FALLTHROUGH;
1348 case AArch64CC::HS: // C set
1349 case AArch64CC::LO: // C clear
1350 UsedFlags.C = true;
1351 break;
1353 case AArch64CC::MI: // N set
1354 case AArch64CC::PL: // N clear
1355 UsedFlags.N = true;
1356 break;
1358 case AArch64CC::VS: // V set
1359 case AArch64CC::VC: // V clear
1360 UsedFlags.V = true;
1361 break;
1363 case AArch64CC::GT: // Z clear, N and V the same
1364 case AArch64CC::LE: // Z set, N and V differ
1365 UsedFlags.Z = true;
1366 LLVM_FALLTHROUGH;
1367 case AArch64CC::GE: // N and V the same
1368 case AArch64CC::LT: // N and V differ
1369 UsedFlags.N = true;
1370 UsedFlags.V = true;
1371 break;
1373 return UsedFlags;
1376 static bool isADDSRegImm(unsigned Opcode) {
1377 return Opcode == AArch64::ADDSWri || Opcode == AArch64::ADDSXri;
1380 static bool isSUBSRegImm(unsigned Opcode) {
1381 return Opcode == AArch64::SUBSWri || Opcode == AArch64::SUBSXri;
1384 /// Check if CmpInstr can be substituted by MI.
1386 /// CmpInstr can be substituted:
1387 /// - CmpInstr is either 'ADDS %vreg, 0' or 'SUBS %vreg, 0'
1388 /// - and, MI and CmpInstr are from the same MachineBB
1389 /// - and, condition flags are not alive in successors of the CmpInstr parent
1390 /// - and, if MI opcode is the S form there must be no defs of flags between
1391 /// MI and CmpInstr
1392 /// or if MI opcode is not the S form there must be neither defs of flags
1393 /// nor uses of flags between MI and CmpInstr.
1394 /// - and C/V flags are not used after CmpInstr
1395 static bool canInstrSubstituteCmpInstr(MachineInstr *MI, MachineInstr *CmpInstr,
1396 const TargetRegisterInfo *TRI) {
1397 assert(MI);
1398 assert(sForm(*MI) != AArch64::INSTRUCTION_LIST_END);
1399 assert(CmpInstr);
1401 const unsigned CmpOpcode = CmpInstr->getOpcode();
1402 if (!isADDSRegImm(CmpOpcode) && !isSUBSRegImm(CmpOpcode))
1403 return false;
1405 if (MI->getParent() != CmpInstr->getParent())
1406 return false;
1408 if (areCFlagsAliveInSuccessors(CmpInstr->getParent()))
1409 return false;
1411 AccessKind AccessToCheck = AK_Write;
1412 if (sForm(*MI) != MI->getOpcode())
1413 AccessToCheck = AK_All;
1414 if (areCFlagsAccessedBetweenInstrs(MI, CmpInstr, TRI, AccessToCheck))
1415 return false;
1417 UsedNZCV NZCVUsedAfterCmp;
1418 for (auto I = std::next(CmpInstr->getIterator()),
1419 E = CmpInstr->getParent()->instr_end();
1420 I != E; ++I) {
1421 const MachineInstr &Instr = *I;
1422 if (Instr.readsRegister(AArch64::NZCV, TRI)) {
1423 AArch64CC::CondCode CC = findCondCodeUsedByInstr(Instr);
1424 if (CC == AArch64CC::Invalid) // Unsupported conditional instruction
1425 return false;
1426 NZCVUsedAfterCmp |= getUsedNZCV(CC);
1429 if (Instr.modifiesRegister(AArch64::NZCV, TRI))
1430 break;
1433 return !NZCVUsedAfterCmp.C && !NZCVUsedAfterCmp.V;
1436 /// Substitute an instruction comparing to zero with another instruction
1437 /// which produces needed condition flags.
1439 /// Return true on success.
1440 bool AArch64InstrInfo::substituteCmpToZero(
1441 MachineInstr &CmpInstr, unsigned SrcReg,
1442 const MachineRegisterInfo *MRI) const {
1443 assert(MRI);
1444 // Get the unique definition of SrcReg.
1445 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1446 if (!MI)
1447 return false;
1449 const TargetRegisterInfo *TRI = &getRegisterInfo();
1451 unsigned NewOpc = sForm(*MI);
1452 if (NewOpc == AArch64::INSTRUCTION_LIST_END)
1453 return false;
1455 if (!canInstrSubstituteCmpInstr(MI, &CmpInstr, TRI))
1456 return false;
1458 // Update the instruction to set NZCV.
1459 MI->setDesc(get(NewOpc));
1460 CmpInstr.eraseFromParent();
1461 bool succeeded = UpdateOperandRegClass(*MI);
1462 (void)succeeded;
1463 assert(succeeded && "Some operands reg class are incompatible!");
1464 MI->addRegisterDefined(AArch64::NZCV, TRI);
1465 return true;
1468 bool AArch64InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1469 if (MI.getOpcode() != TargetOpcode::LOAD_STACK_GUARD &&
1470 MI.getOpcode() != AArch64::CATCHRET)
1471 return false;
1473 MachineBasicBlock &MBB = *MI.getParent();
1474 auto &Subtarget = MBB.getParent()->getSubtarget<AArch64Subtarget>();
1475 auto TRI = Subtarget.getRegisterInfo();
1476 DebugLoc DL = MI.getDebugLoc();
1478 if (MI.getOpcode() == AArch64::CATCHRET) {
1479 // Skip to the first instruction before the epilog.
1480 const TargetInstrInfo *TII =
1481 MBB.getParent()->getSubtarget().getInstrInfo();
1482 MachineBasicBlock *TargetMBB = MI.getOperand(0).getMBB();
1483 auto MBBI = MachineBasicBlock::iterator(MI);
1484 MachineBasicBlock::iterator FirstEpilogSEH = std::prev(MBBI);
1485 while (FirstEpilogSEH->getFlag(MachineInstr::FrameDestroy) &&
1486 FirstEpilogSEH != MBB.begin())
1487 FirstEpilogSEH = std::prev(FirstEpilogSEH);
1488 if (FirstEpilogSEH != MBB.begin())
1489 FirstEpilogSEH = std::next(FirstEpilogSEH);
1490 BuildMI(MBB, FirstEpilogSEH, DL, TII->get(AArch64::ADRP))
1491 .addReg(AArch64::X0, RegState::Define)
1492 .addMBB(TargetMBB);
1493 BuildMI(MBB, FirstEpilogSEH, DL, TII->get(AArch64::ADDXri))
1494 .addReg(AArch64::X0, RegState::Define)
1495 .addReg(AArch64::X0)
1496 .addMBB(TargetMBB)
1497 .addImm(0);
1498 return true;
1501 Register Reg = MI.getOperand(0).getReg();
1502 const GlobalValue *GV =
1503 cast<GlobalValue>((*MI.memoperands_begin())->getValue());
1504 const TargetMachine &TM = MBB.getParent()->getTarget();
1505 unsigned OpFlags = Subtarget.ClassifyGlobalReference(GV, TM);
1506 const unsigned char MO_NC = AArch64II::MO_NC;
1508 if ((OpFlags & AArch64II::MO_GOT) != 0) {
1509 BuildMI(MBB, MI, DL, get(AArch64::LOADgot), Reg)
1510 .addGlobalAddress(GV, 0, OpFlags);
1511 if (Subtarget.isTargetILP32()) {
1512 unsigned Reg32 = TRI->getSubReg(Reg, AArch64::sub_32);
1513 BuildMI(MBB, MI, DL, get(AArch64::LDRWui))
1514 .addDef(Reg32, RegState::Dead)
1515 .addUse(Reg, RegState::Kill)
1516 .addImm(0)
1517 .addMemOperand(*MI.memoperands_begin())
1518 .addDef(Reg, RegState::Implicit);
1519 } else {
1520 BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
1521 .addReg(Reg, RegState::Kill)
1522 .addImm(0)
1523 .addMemOperand(*MI.memoperands_begin());
1525 } else if (TM.getCodeModel() == CodeModel::Large) {
1526 assert(!Subtarget.isTargetILP32() && "how can large exist in ILP32?");
1527 BuildMI(MBB, MI, DL, get(AArch64::MOVZXi), Reg)
1528 .addGlobalAddress(GV, 0, AArch64II::MO_G0 | MO_NC)
1529 .addImm(0);
1530 BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
1531 .addReg(Reg, RegState::Kill)
1532 .addGlobalAddress(GV, 0, AArch64II::MO_G1 | MO_NC)
1533 .addImm(16);
1534 BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
1535 .addReg(Reg, RegState::Kill)
1536 .addGlobalAddress(GV, 0, AArch64II::MO_G2 | MO_NC)
1537 .addImm(32);
1538 BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
1539 .addReg(Reg, RegState::Kill)
1540 .addGlobalAddress(GV, 0, AArch64II::MO_G3)
1541 .addImm(48);
1542 BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
1543 .addReg(Reg, RegState::Kill)
1544 .addImm(0)
1545 .addMemOperand(*MI.memoperands_begin());
1546 } else if (TM.getCodeModel() == CodeModel::Tiny) {
1547 BuildMI(MBB, MI, DL, get(AArch64::ADR), Reg)
1548 .addGlobalAddress(GV, 0, OpFlags);
1549 } else {
1550 BuildMI(MBB, MI, DL, get(AArch64::ADRP), Reg)
1551 .addGlobalAddress(GV, 0, OpFlags | AArch64II::MO_PAGE);
1552 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | MO_NC;
1553 if (Subtarget.isTargetILP32()) {
1554 unsigned Reg32 = TRI->getSubReg(Reg, AArch64::sub_32);
1555 BuildMI(MBB, MI, DL, get(AArch64::LDRWui))
1556 .addDef(Reg32, RegState::Dead)
1557 .addUse(Reg, RegState::Kill)
1558 .addGlobalAddress(GV, 0, LoFlags)
1559 .addMemOperand(*MI.memoperands_begin())
1560 .addDef(Reg, RegState::Implicit);
1561 } else {
1562 BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
1563 .addReg(Reg, RegState::Kill)
1564 .addGlobalAddress(GV, 0, LoFlags)
1565 .addMemOperand(*MI.memoperands_begin());
1569 MBB.erase(MI);
1571 return true;
1574 // Return true if this instruction simply sets its single destination register
1575 // to zero. This is equivalent to a register rename of the zero-register.
1576 bool AArch64InstrInfo::isGPRZero(const MachineInstr &MI) {
1577 switch (MI.getOpcode()) {
1578 default:
1579 break;
1580 case AArch64::MOVZWi:
1581 case AArch64::MOVZXi: // movz Rd, #0 (LSL #0)
1582 if (MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) {
1583 assert(MI.getDesc().getNumOperands() == 3 &&
1584 MI.getOperand(2).getImm() == 0 && "invalid MOVZi operands");
1585 return true;
1587 break;
1588 case AArch64::ANDWri: // and Rd, Rzr, #imm
1589 return MI.getOperand(1).getReg() == AArch64::WZR;
1590 case AArch64::ANDXri:
1591 return MI.getOperand(1).getReg() == AArch64::XZR;
1592 case TargetOpcode::COPY:
1593 return MI.getOperand(1).getReg() == AArch64::WZR;
1595 return false;
1598 // Return true if this instruction simply renames a general register without
1599 // modifying bits.
1600 bool AArch64InstrInfo::isGPRCopy(const MachineInstr &MI) {
1601 switch (MI.getOpcode()) {
1602 default:
1603 break;
1604 case TargetOpcode::COPY: {
1605 // GPR32 copies will by lowered to ORRXrs
1606 Register DstReg = MI.getOperand(0).getReg();
1607 return (AArch64::GPR32RegClass.contains(DstReg) ||
1608 AArch64::GPR64RegClass.contains(DstReg));
1610 case AArch64::ORRXrs: // orr Xd, Xzr, Xm (LSL #0)
1611 if (MI.getOperand(1).getReg() == AArch64::XZR) {
1612 assert(MI.getDesc().getNumOperands() == 4 &&
1613 MI.getOperand(3).getImm() == 0 && "invalid ORRrs operands");
1614 return true;
1616 break;
1617 case AArch64::ADDXri: // add Xd, Xn, #0 (LSL #0)
1618 if (MI.getOperand(2).getImm() == 0) {
1619 assert(MI.getDesc().getNumOperands() == 4 &&
1620 MI.getOperand(3).getImm() == 0 && "invalid ADDXri operands");
1621 return true;
1623 break;
1625 return false;
1628 // Return true if this instruction simply renames a general register without
1629 // modifying bits.
1630 bool AArch64InstrInfo::isFPRCopy(const MachineInstr &MI) {
1631 switch (MI.getOpcode()) {
1632 default:
1633 break;
1634 case TargetOpcode::COPY: {
1635 // FPR64 copies will by lowered to ORR.16b
1636 Register DstReg = MI.getOperand(0).getReg();
1637 return (AArch64::FPR64RegClass.contains(DstReg) ||
1638 AArch64::FPR128RegClass.contains(DstReg));
1640 case AArch64::ORRv16i8:
1641 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) {
1642 assert(MI.getDesc().getNumOperands() == 3 && MI.getOperand(0).isReg() &&
1643 "invalid ORRv16i8 operands");
1644 return true;
1646 break;
1648 return false;
1651 unsigned AArch64InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1652 int &FrameIndex) const {
1653 switch (MI.getOpcode()) {
1654 default:
1655 break;
1656 case AArch64::LDRWui:
1657 case AArch64::LDRXui:
1658 case AArch64::LDRBui:
1659 case AArch64::LDRHui:
1660 case AArch64::LDRSui:
1661 case AArch64::LDRDui:
1662 case AArch64::LDRQui:
1663 if (MI.getOperand(0).getSubReg() == 0 && MI.getOperand(1).isFI() &&
1664 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) {
1665 FrameIndex = MI.getOperand(1).getIndex();
1666 return MI.getOperand(0).getReg();
1668 break;
1671 return 0;
1674 unsigned AArch64InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1675 int &FrameIndex) const {
1676 switch (MI.getOpcode()) {
1677 default:
1678 break;
1679 case AArch64::STRWui:
1680 case AArch64::STRXui:
1681 case AArch64::STRBui:
1682 case AArch64::STRHui:
1683 case AArch64::STRSui:
1684 case AArch64::STRDui:
1685 case AArch64::STRQui:
1686 if (MI.getOperand(0).getSubReg() == 0 && MI.getOperand(1).isFI() &&
1687 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) {
1688 FrameIndex = MI.getOperand(1).getIndex();
1689 return MI.getOperand(0).getReg();
1691 break;
1693 return 0;
1696 /// Check all MachineMemOperands for a hint to suppress pairing.
1697 bool AArch64InstrInfo::isLdStPairSuppressed(const MachineInstr &MI) {
1698 return llvm::any_of(MI.memoperands(), [](MachineMemOperand *MMO) {
1699 return MMO->getFlags() & MOSuppressPair;
1703 /// Set a flag on the first MachineMemOperand to suppress pairing.
1704 void AArch64InstrInfo::suppressLdStPair(MachineInstr &MI) {
1705 if (MI.memoperands_empty())
1706 return;
1707 (*MI.memoperands_begin())->setFlags(MOSuppressPair);
1710 /// Check all MachineMemOperands for a hint that the load/store is strided.
1711 bool AArch64InstrInfo::isStridedAccess(const MachineInstr &MI) {
1712 return llvm::any_of(MI.memoperands(), [](MachineMemOperand *MMO) {
1713 return MMO->getFlags() & MOStridedAccess;
1717 bool AArch64InstrInfo::isUnscaledLdSt(unsigned Opc) {
1718 switch (Opc) {
1719 default:
1720 return false;
1721 case AArch64::STURSi:
1722 case AArch64::STURDi:
1723 case AArch64::STURQi:
1724 case AArch64::STURBBi:
1725 case AArch64::STURHHi:
1726 case AArch64::STURWi:
1727 case AArch64::STURXi:
1728 case AArch64::LDURSi:
1729 case AArch64::LDURDi:
1730 case AArch64::LDURQi:
1731 case AArch64::LDURWi:
1732 case AArch64::LDURXi:
1733 case AArch64::LDURSWi:
1734 case AArch64::LDURHHi:
1735 case AArch64::LDURBBi:
1736 case AArch64::LDURSBWi:
1737 case AArch64::LDURSHWi:
1738 return true;
1742 Optional<unsigned> AArch64InstrInfo::getUnscaledLdSt(unsigned Opc) {
1743 switch (Opc) {
1744 default: return {};
1745 case AArch64::PRFMui: return AArch64::PRFUMi;
1746 case AArch64::LDRXui: return AArch64::LDURXi;
1747 case AArch64::LDRWui: return AArch64::LDURWi;
1748 case AArch64::LDRBui: return AArch64::LDURBi;
1749 case AArch64::LDRHui: return AArch64::LDURHi;
1750 case AArch64::LDRSui: return AArch64::LDURSi;
1751 case AArch64::LDRDui: return AArch64::LDURDi;
1752 case AArch64::LDRQui: return AArch64::LDURQi;
1753 case AArch64::LDRBBui: return AArch64::LDURBBi;
1754 case AArch64::LDRHHui: return AArch64::LDURHHi;
1755 case AArch64::LDRSBXui: return AArch64::LDURSBXi;
1756 case AArch64::LDRSBWui: return AArch64::LDURSBWi;
1757 case AArch64::LDRSHXui: return AArch64::LDURSHXi;
1758 case AArch64::LDRSHWui: return AArch64::LDURSHWi;
1759 case AArch64::LDRSWui: return AArch64::LDURSWi;
1760 case AArch64::STRXui: return AArch64::STURXi;
1761 case AArch64::STRWui: return AArch64::STURWi;
1762 case AArch64::STRBui: return AArch64::STURBi;
1763 case AArch64::STRHui: return AArch64::STURHi;
1764 case AArch64::STRSui: return AArch64::STURSi;
1765 case AArch64::STRDui: return AArch64::STURDi;
1766 case AArch64::STRQui: return AArch64::STURQi;
1767 case AArch64::STRBBui: return AArch64::STURBBi;
1768 case AArch64::STRHHui: return AArch64::STURHHi;
1772 unsigned AArch64InstrInfo::getLoadStoreImmIdx(unsigned Opc) {
1773 switch (Opc) {
1774 default:
1775 return 2;
1776 case AArch64::LDPXi:
1777 case AArch64::LDPDi:
1778 case AArch64::STPXi:
1779 case AArch64::STPDi:
1780 case AArch64::LDNPXi:
1781 case AArch64::LDNPDi:
1782 case AArch64::STNPXi:
1783 case AArch64::STNPDi:
1784 case AArch64::LDPQi:
1785 case AArch64::STPQi:
1786 case AArch64::LDNPQi:
1787 case AArch64::STNPQi:
1788 case AArch64::LDPWi:
1789 case AArch64::LDPSi:
1790 case AArch64::STPWi:
1791 case AArch64::STPSi:
1792 case AArch64::LDNPWi:
1793 case AArch64::LDNPSi:
1794 case AArch64::STNPWi:
1795 case AArch64::STNPSi:
1796 case AArch64::LDG:
1797 case AArch64::STGPi:
1798 return 3;
1799 case AArch64::ADDG:
1800 case AArch64::STGOffset:
1801 return 2;
1805 bool AArch64InstrInfo::isPairableLdStInst(const MachineInstr &MI) {
1806 switch (MI.getOpcode()) {
1807 default:
1808 return false;
1809 // Scaled instructions.
1810 case AArch64::STRSui:
1811 case AArch64::STRDui:
1812 case AArch64::STRQui:
1813 case AArch64::STRXui:
1814 case AArch64::STRWui:
1815 case AArch64::LDRSui:
1816 case AArch64::LDRDui:
1817 case AArch64::LDRQui:
1818 case AArch64::LDRXui:
1819 case AArch64::LDRWui:
1820 case AArch64::LDRSWui:
1821 // Unscaled instructions.
1822 case AArch64::STURSi:
1823 case AArch64::STURDi:
1824 case AArch64::STURQi:
1825 case AArch64::STURWi:
1826 case AArch64::STURXi:
1827 case AArch64::LDURSi:
1828 case AArch64::LDURDi:
1829 case AArch64::LDURQi:
1830 case AArch64::LDURWi:
1831 case AArch64::LDURXi:
1832 case AArch64::LDURSWi:
1833 return true;
1837 unsigned AArch64InstrInfo::convertToFlagSettingOpc(unsigned Opc,
1838 bool &Is64Bit) {
1839 switch (Opc) {
1840 default:
1841 llvm_unreachable("Opcode has no flag setting equivalent!");
1842 // 32-bit cases:
1843 case AArch64::ADDWri:
1844 Is64Bit = false;
1845 return AArch64::ADDSWri;
1846 case AArch64::ADDWrr:
1847 Is64Bit = false;
1848 return AArch64::ADDSWrr;
1849 case AArch64::ADDWrs:
1850 Is64Bit = false;
1851 return AArch64::ADDSWrs;
1852 case AArch64::ADDWrx:
1853 Is64Bit = false;
1854 return AArch64::ADDSWrx;
1855 case AArch64::ANDWri:
1856 Is64Bit = false;
1857 return AArch64::ANDSWri;
1858 case AArch64::ANDWrr:
1859 Is64Bit = false;
1860 return AArch64::ANDSWrr;
1861 case AArch64::ANDWrs:
1862 Is64Bit = false;
1863 return AArch64::ANDSWrs;
1864 case AArch64::BICWrr:
1865 Is64Bit = false;
1866 return AArch64::BICSWrr;
1867 case AArch64::BICWrs:
1868 Is64Bit = false;
1869 return AArch64::BICSWrs;
1870 case AArch64::SUBWri:
1871 Is64Bit = false;
1872 return AArch64::SUBSWri;
1873 case AArch64::SUBWrr:
1874 Is64Bit = false;
1875 return AArch64::SUBSWrr;
1876 case AArch64::SUBWrs:
1877 Is64Bit = false;
1878 return AArch64::SUBSWrs;
1879 case AArch64::SUBWrx:
1880 Is64Bit = false;
1881 return AArch64::SUBSWrx;
1882 // 64-bit cases:
1883 case AArch64::ADDXri:
1884 Is64Bit = true;
1885 return AArch64::ADDSXri;
1886 case AArch64::ADDXrr:
1887 Is64Bit = true;
1888 return AArch64::ADDSXrr;
1889 case AArch64::ADDXrs:
1890 Is64Bit = true;
1891 return AArch64::ADDSXrs;
1892 case AArch64::ADDXrx:
1893 Is64Bit = true;
1894 return AArch64::ADDSXrx;
1895 case AArch64::ANDXri:
1896 Is64Bit = true;
1897 return AArch64::ANDSXri;
1898 case AArch64::ANDXrr:
1899 Is64Bit = true;
1900 return AArch64::ANDSXrr;
1901 case AArch64::ANDXrs:
1902 Is64Bit = true;
1903 return AArch64::ANDSXrs;
1904 case AArch64::BICXrr:
1905 Is64Bit = true;
1906 return AArch64::BICSXrr;
1907 case AArch64::BICXrs:
1908 Is64Bit = true;
1909 return AArch64::BICSXrs;
1910 case AArch64::SUBXri:
1911 Is64Bit = true;
1912 return AArch64::SUBSXri;
1913 case AArch64::SUBXrr:
1914 Is64Bit = true;
1915 return AArch64::SUBSXrr;
1916 case AArch64::SUBXrs:
1917 Is64Bit = true;
1918 return AArch64::SUBSXrs;
1919 case AArch64::SUBXrx:
1920 Is64Bit = true;
1921 return AArch64::SUBSXrx;
1925 // Is this a candidate for ld/st merging or pairing? For example, we don't
1926 // touch volatiles or load/stores that have a hint to avoid pair formation.
1927 bool AArch64InstrInfo::isCandidateToMergeOrPair(const MachineInstr &MI) const {
1928 // If this is a volatile load/store, don't mess with it.
1929 if (MI.hasOrderedMemoryRef())
1930 return false;
1932 // Make sure this is a reg/fi+imm (as opposed to an address reloc).
1933 assert((MI.getOperand(1).isReg() || MI.getOperand(1).isFI()) &&
1934 "Expected a reg or frame index operand.");
1935 if (!MI.getOperand(2).isImm())
1936 return false;
1938 // Can't merge/pair if the instruction modifies the base register.
1939 // e.g., ldr x0, [x0]
1940 // This case will never occur with an FI base.
1941 if (MI.getOperand(1).isReg()) {
1942 Register BaseReg = MI.getOperand(1).getReg();
1943 const TargetRegisterInfo *TRI = &getRegisterInfo();
1944 if (MI.modifiesRegister(BaseReg, TRI))
1945 return false;
1948 // Check if this load/store has a hint to avoid pair formation.
1949 // MachineMemOperands hints are set by the AArch64StorePairSuppress pass.
1950 if (isLdStPairSuppressed(MI))
1951 return false;
1953 // Do not pair any callee-save store/reload instructions in the
1954 // prologue/epilogue if the CFI information encoded the operations as separate
1955 // instructions, as that will cause the size of the actual prologue to mismatch
1956 // with the prologue size recorded in the Windows CFI.
1957 const MCAsmInfo *MAI = MI.getMF()->getTarget().getMCAsmInfo();
1958 bool NeedsWinCFI = MAI->usesWindowsCFI() &&
1959 MI.getMF()->getFunction().needsUnwindTableEntry();
1960 if (NeedsWinCFI && (MI.getFlag(MachineInstr::FrameSetup) ||
1961 MI.getFlag(MachineInstr::FrameDestroy)))
1962 return false;
1964 // On some CPUs quad load/store pairs are slower than two single load/stores.
1965 if (Subtarget.isPaired128Slow()) {
1966 switch (MI.getOpcode()) {
1967 default:
1968 break;
1969 case AArch64::LDURQi:
1970 case AArch64::STURQi:
1971 case AArch64::LDRQui:
1972 case AArch64::STRQui:
1973 return false;
1977 return true;
1980 bool AArch64InstrInfo::getMemOperandWithOffset(const MachineInstr &LdSt,
1981 const MachineOperand *&BaseOp,
1982 int64_t &Offset,
1983 const TargetRegisterInfo *TRI) const {
1984 unsigned Width;
1985 return getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI);
1988 bool AArch64InstrInfo::getMemOperandWithOffsetWidth(
1989 const MachineInstr &LdSt, const MachineOperand *&BaseOp, int64_t &Offset,
1990 unsigned &Width, const TargetRegisterInfo *TRI) const {
1991 assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
1992 // Handle only loads/stores with base register followed by immediate offset.
1993 if (LdSt.getNumExplicitOperands() == 3) {
1994 // Non-paired instruction (e.g., ldr x1, [x0, #8]).
1995 if ((!LdSt.getOperand(1).isReg() && !LdSt.getOperand(1).isFI()) ||
1996 !LdSt.getOperand(2).isImm())
1997 return false;
1998 } else if (LdSt.getNumExplicitOperands() == 4) {
1999 // Paired instruction (e.g., ldp x1, x2, [x0, #8]).
2000 if (!LdSt.getOperand(1).isReg() ||
2001 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()) ||
2002 !LdSt.getOperand(3).isImm())
2003 return false;
2004 } else
2005 return false;
2007 // Get the scaling factor for the instruction and set the width for the
2008 // instruction.
2009 unsigned Scale = 0;
2010 int64_t Dummy1, Dummy2;
2012 // If this returns false, then it's an instruction we don't want to handle.
2013 if (!getMemOpInfo(LdSt.getOpcode(), Scale, Width, Dummy1, Dummy2))
2014 return false;
2016 // Compute the offset. Offset is calculated as the immediate operand
2017 // multiplied by the scaling factor. Unscaled instructions have scaling factor
2018 // set to 1.
2019 if (LdSt.getNumExplicitOperands() == 3) {
2020 BaseOp = &LdSt.getOperand(1);
2021 Offset = LdSt.getOperand(2).getImm() * Scale;
2022 } else {
2023 assert(LdSt.getNumExplicitOperands() == 4 && "invalid number of operands");
2024 BaseOp = &LdSt.getOperand(2);
2025 Offset = LdSt.getOperand(3).getImm() * Scale;
2028 assert((BaseOp->isReg() || BaseOp->isFI()) &&
2029 "getMemOperandWithOffset only supports base "
2030 "operands of type register or frame index.");
2032 return true;
2035 MachineOperand &
2036 AArch64InstrInfo::getMemOpBaseRegImmOfsOffsetOperand(MachineInstr &LdSt) const {
2037 assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
2038 MachineOperand &OfsOp = LdSt.getOperand(LdSt.getNumExplicitOperands() - 1);
2039 assert(OfsOp.isImm() && "Offset operand wasn't immediate.");
2040 return OfsOp;
2043 bool AArch64InstrInfo::getMemOpInfo(unsigned Opcode, unsigned &Scale,
2044 unsigned &Width, int64_t &MinOffset,
2045 int64_t &MaxOffset) {
2046 switch (Opcode) {
2047 // Not a memory operation or something we want to handle.
2048 default:
2049 Scale = Width = 0;
2050 MinOffset = MaxOffset = 0;
2051 return false;
2052 case AArch64::STRWpost:
2053 case AArch64::LDRWpost:
2054 Width = 32;
2055 Scale = 4;
2056 MinOffset = -256;
2057 MaxOffset = 255;
2058 break;
2059 case AArch64::LDURQi:
2060 case AArch64::STURQi:
2061 Width = 16;
2062 Scale = 1;
2063 MinOffset = -256;
2064 MaxOffset = 255;
2065 break;
2066 case AArch64::PRFUMi:
2067 case AArch64::LDURXi:
2068 case AArch64::LDURDi:
2069 case AArch64::STURXi:
2070 case AArch64::STURDi:
2071 Width = 8;
2072 Scale = 1;
2073 MinOffset = -256;
2074 MaxOffset = 255;
2075 break;
2076 case AArch64::LDURWi:
2077 case AArch64::LDURSi:
2078 case AArch64::LDURSWi:
2079 case AArch64::STURWi:
2080 case AArch64::STURSi:
2081 Width = 4;
2082 Scale = 1;
2083 MinOffset = -256;
2084 MaxOffset = 255;
2085 break;
2086 case AArch64::LDURHi:
2087 case AArch64::LDURHHi:
2088 case AArch64::LDURSHXi:
2089 case AArch64::LDURSHWi:
2090 case AArch64::STURHi:
2091 case AArch64::STURHHi:
2092 Width = 2;
2093 Scale = 1;
2094 MinOffset = -256;
2095 MaxOffset = 255;
2096 break;
2097 case AArch64::LDURBi:
2098 case AArch64::LDURBBi:
2099 case AArch64::LDURSBXi:
2100 case AArch64::LDURSBWi:
2101 case AArch64::STURBi:
2102 case AArch64::STURBBi:
2103 Width = 1;
2104 Scale = 1;
2105 MinOffset = -256;
2106 MaxOffset = 255;
2107 break;
2108 case AArch64::LDPQi:
2109 case AArch64::LDNPQi:
2110 case AArch64::STPQi:
2111 case AArch64::STNPQi:
2112 Scale = 16;
2113 Width = 32;
2114 MinOffset = -64;
2115 MaxOffset = 63;
2116 break;
2117 case AArch64::LDRQui:
2118 case AArch64::STRQui:
2119 Scale = Width = 16;
2120 MinOffset = 0;
2121 MaxOffset = 4095;
2122 break;
2123 case AArch64::LDPXi:
2124 case AArch64::LDPDi:
2125 case AArch64::LDNPXi:
2126 case AArch64::LDNPDi:
2127 case AArch64::STPXi:
2128 case AArch64::STPDi:
2129 case AArch64::STNPXi:
2130 case AArch64::STNPDi:
2131 Scale = 8;
2132 Width = 16;
2133 MinOffset = -64;
2134 MaxOffset = 63;
2135 break;
2136 case AArch64::PRFMui:
2137 case AArch64::LDRXui:
2138 case AArch64::LDRDui:
2139 case AArch64::STRXui:
2140 case AArch64::STRDui:
2141 Scale = Width = 8;
2142 MinOffset = 0;
2143 MaxOffset = 4095;
2144 break;
2145 case AArch64::LDPWi:
2146 case AArch64::LDPSi:
2147 case AArch64::LDNPWi:
2148 case AArch64::LDNPSi:
2149 case AArch64::STPWi:
2150 case AArch64::STPSi:
2151 case AArch64::STNPWi:
2152 case AArch64::STNPSi:
2153 Scale = 4;
2154 Width = 8;
2155 MinOffset = -64;
2156 MaxOffset = 63;
2157 break;
2158 case AArch64::LDRWui:
2159 case AArch64::LDRSui:
2160 case AArch64::LDRSWui:
2161 case AArch64::STRWui:
2162 case AArch64::STRSui:
2163 Scale = Width = 4;
2164 MinOffset = 0;
2165 MaxOffset = 4095;
2166 break;
2167 case AArch64::LDRHui:
2168 case AArch64::LDRHHui:
2169 case AArch64::LDRSHWui:
2170 case AArch64::LDRSHXui:
2171 case AArch64::STRHui:
2172 case AArch64::STRHHui:
2173 Scale = Width = 2;
2174 MinOffset = 0;
2175 MaxOffset = 4095;
2176 break;
2177 case AArch64::LDRBui:
2178 case AArch64::LDRBBui:
2179 case AArch64::LDRSBWui:
2180 case AArch64::LDRSBXui:
2181 case AArch64::STRBui:
2182 case AArch64::STRBBui:
2183 Scale = Width = 1;
2184 MinOffset = 0;
2185 MaxOffset = 4095;
2186 break;
2187 case AArch64::ADDG:
2188 case AArch64::TAGPstack:
2189 Scale = 16;
2190 Width = 0;
2191 MinOffset = 0;
2192 MaxOffset = 63;
2193 break;
2194 case AArch64::LDG:
2195 case AArch64::STGOffset:
2196 case AArch64::STZGOffset:
2197 Scale = Width = 16;
2198 MinOffset = -256;
2199 MaxOffset = 255;
2200 break;
2201 case AArch64::LDR_PXI:
2202 case AArch64::STR_PXI:
2203 Scale = Width = 2;
2204 MinOffset = -256;
2205 MaxOffset = 255;
2206 break;
2207 case AArch64::LDR_ZXI:
2208 case AArch64::STR_ZXI:
2209 Scale = Width = 16;
2210 MinOffset = -256;
2211 MaxOffset = 255;
2212 break;
2213 case AArch64::ST2GOffset:
2214 case AArch64::STZ2GOffset:
2215 Scale = 16;
2216 Width = 32;
2217 MinOffset = -256;
2218 MaxOffset = 255;
2219 break;
2220 case AArch64::STGPi:
2221 Scale = Width = 16;
2222 MinOffset = -64;
2223 MaxOffset = 63;
2224 break;
2227 return true;
2230 static unsigned getOffsetStride(unsigned Opc) {
2231 switch (Opc) {
2232 default:
2233 return 0;
2234 case AArch64::LDURQi:
2235 case AArch64::STURQi:
2236 return 16;
2237 case AArch64::LDURXi:
2238 case AArch64::LDURDi:
2239 case AArch64::STURXi:
2240 case AArch64::STURDi:
2241 return 8;
2242 case AArch64::LDURWi:
2243 case AArch64::LDURSi:
2244 case AArch64::LDURSWi:
2245 case AArch64::STURWi:
2246 case AArch64::STURSi:
2247 return 4;
2251 // Scale the unscaled offsets. Returns false if the unscaled offset can't be
2252 // scaled.
2253 static bool scaleOffset(unsigned Opc, int64_t &Offset) {
2254 unsigned OffsetStride = getOffsetStride(Opc);
2255 if (OffsetStride == 0)
2256 return false;
2257 // If the byte-offset isn't a multiple of the stride, we can't scale this
2258 // offset.
2259 if (Offset % OffsetStride != 0)
2260 return false;
2262 // Convert the byte-offset used by unscaled into an "element" offset used
2263 // by the scaled pair load/store instructions.
2264 Offset /= OffsetStride;
2265 return true;
2268 // Unscale the scaled offsets. Returns false if the scaled offset can't be
2269 // unscaled.
2270 static bool unscaleOffset(unsigned Opc, int64_t &Offset) {
2271 unsigned OffsetStride = getOffsetStride(Opc);
2272 if (OffsetStride == 0)
2273 return false;
2275 // Convert the "element" offset used by scaled pair load/store instructions
2276 // into the byte-offset used by unscaled.
2277 Offset *= OffsetStride;
2278 return true;
2281 static bool canPairLdStOpc(unsigned FirstOpc, unsigned SecondOpc) {
2282 if (FirstOpc == SecondOpc)
2283 return true;
2284 // We can also pair sign-ext and zero-ext instructions.
2285 switch (FirstOpc) {
2286 default:
2287 return false;
2288 case AArch64::LDRWui:
2289 case AArch64::LDURWi:
2290 return SecondOpc == AArch64::LDRSWui || SecondOpc == AArch64::LDURSWi;
2291 case AArch64::LDRSWui:
2292 case AArch64::LDURSWi:
2293 return SecondOpc == AArch64::LDRWui || SecondOpc == AArch64::LDURWi;
2295 // These instructions can't be paired based on their opcodes.
2296 return false;
2299 static bool shouldClusterFI(const MachineFrameInfo &MFI, int FI1,
2300 int64_t Offset1, unsigned Opcode1, int FI2,
2301 int64_t Offset2, unsigned Opcode2) {
2302 // Accesses through fixed stack object frame indices may access a different
2303 // fixed stack slot. Check that the object offsets + offsets match.
2304 if (MFI.isFixedObjectIndex(FI1) && MFI.isFixedObjectIndex(FI2)) {
2305 int64_t ObjectOffset1 = MFI.getObjectOffset(FI1);
2306 int64_t ObjectOffset2 = MFI.getObjectOffset(FI2);
2307 assert(ObjectOffset1 <= ObjectOffset2 && "Object offsets are not ordered.");
2308 // Get the byte-offset from the object offset.
2309 if (!unscaleOffset(Opcode1, Offset1) || !unscaleOffset(Opcode2, Offset2))
2310 return false;
2311 ObjectOffset1 += Offset1;
2312 ObjectOffset2 += Offset2;
2313 // Get the "element" index in the object.
2314 if (!scaleOffset(Opcode1, ObjectOffset1) ||
2315 !scaleOffset(Opcode2, ObjectOffset2))
2316 return false;
2317 return ObjectOffset1 + 1 == ObjectOffset2;
2320 return FI1 == FI2;
2323 /// Detect opportunities for ldp/stp formation.
2325 /// Only called for LdSt for which getMemOperandWithOffset returns true.
2326 bool AArch64InstrInfo::shouldClusterMemOps(const MachineOperand &BaseOp1,
2327 const MachineOperand &BaseOp2,
2328 unsigned NumLoads) const {
2329 const MachineInstr &FirstLdSt = *BaseOp1.getParent();
2330 const MachineInstr &SecondLdSt = *BaseOp2.getParent();
2331 if (BaseOp1.getType() != BaseOp2.getType())
2332 return false;
2334 assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
2335 "Only base registers and frame indices are supported.");
2337 // Check for both base regs and base FI.
2338 if (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg())
2339 return false;
2341 // Only cluster up to a single pair.
2342 if (NumLoads > 1)
2343 return false;
2345 if (!isPairableLdStInst(FirstLdSt) || !isPairableLdStInst(SecondLdSt))
2346 return false;
2348 // Can we pair these instructions based on their opcodes?
2349 unsigned FirstOpc = FirstLdSt.getOpcode();
2350 unsigned SecondOpc = SecondLdSt.getOpcode();
2351 if (!canPairLdStOpc(FirstOpc, SecondOpc))
2352 return false;
2354 // Can't merge volatiles or load/stores that have a hint to avoid pair
2355 // formation, for example.
2356 if (!isCandidateToMergeOrPair(FirstLdSt) ||
2357 !isCandidateToMergeOrPair(SecondLdSt))
2358 return false;
2360 // isCandidateToMergeOrPair guarantees that operand 2 is an immediate.
2361 int64_t Offset1 = FirstLdSt.getOperand(2).getImm();
2362 if (isUnscaledLdSt(FirstOpc) && !scaleOffset(FirstOpc, Offset1))
2363 return false;
2365 int64_t Offset2 = SecondLdSt.getOperand(2).getImm();
2366 if (isUnscaledLdSt(SecondOpc) && !scaleOffset(SecondOpc, Offset2))
2367 return false;
2369 // Pairwise instructions have a 7-bit signed offset field.
2370 if (Offset1 > 63 || Offset1 < -64)
2371 return false;
2373 // The caller should already have ordered First/SecondLdSt by offset.
2374 // Note: except for non-equal frame index bases
2375 if (BaseOp1.isFI()) {
2376 assert((!BaseOp1.isIdenticalTo(BaseOp2) || Offset1 >= Offset2) &&
2377 "Caller should have ordered offsets.");
2379 const MachineFrameInfo &MFI =
2380 FirstLdSt.getParent()->getParent()->getFrameInfo();
2381 return shouldClusterFI(MFI, BaseOp1.getIndex(), Offset1, FirstOpc,
2382 BaseOp2.getIndex(), Offset2, SecondOpc);
2385 assert((!BaseOp1.isIdenticalTo(BaseOp2) || Offset1 <= Offset2) &&
2386 "Caller should have ordered offsets.");
2388 return Offset1 + 1 == Offset2;
2391 static const MachineInstrBuilder &AddSubReg(const MachineInstrBuilder &MIB,
2392 unsigned Reg, unsigned SubIdx,
2393 unsigned State,
2394 const TargetRegisterInfo *TRI) {
2395 if (!SubIdx)
2396 return MIB.addReg(Reg, State);
2398 if (Register::isPhysicalRegister(Reg))
2399 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
2400 return MIB.addReg(Reg, State, SubIdx);
2403 static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg,
2404 unsigned NumRegs) {
2405 // We really want the positive remainder mod 32 here, that happens to be
2406 // easily obtainable with a mask.
2407 return ((DestReg - SrcReg) & 0x1f) < NumRegs;
2410 void AArch64InstrInfo::copyPhysRegTuple(MachineBasicBlock &MBB,
2411 MachineBasicBlock::iterator I,
2412 const DebugLoc &DL, unsigned DestReg,
2413 unsigned SrcReg, bool KillSrc,
2414 unsigned Opcode,
2415 ArrayRef<unsigned> Indices) const {
2416 assert(Subtarget.hasNEON() && "Unexpected register copy without NEON");
2417 const TargetRegisterInfo *TRI = &getRegisterInfo();
2418 uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
2419 uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
2420 unsigned NumRegs = Indices.size();
2422 int SubReg = 0, End = NumRegs, Incr = 1;
2423 if (forwardCopyWillClobberTuple(DestEncoding, SrcEncoding, NumRegs)) {
2424 SubReg = NumRegs - 1;
2425 End = -1;
2426 Incr = -1;
2429 for (; SubReg != End; SubReg += Incr) {
2430 const MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opcode));
2431 AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI);
2432 AddSubReg(MIB, SrcReg, Indices[SubReg], 0, TRI);
2433 AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI);
2437 void AArch64InstrInfo::copyGPRRegTuple(MachineBasicBlock &MBB,
2438 MachineBasicBlock::iterator I,
2439 DebugLoc DL, unsigned DestReg,
2440 unsigned SrcReg, bool KillSrc,
2441 unsigned Opcode, unsigned ZeroReg,
2442 llvm::ArrayRef<unsigned> Indices) const {
2443 const TargetRegisterInfo *TRI = &getRegisterInfo();
2444 unsigned NumRegs = Indices.size();
2446 #ifndef NDEBUG
2447 uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
2448 uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
2449 assert(DestEncoding % NumRegs == 0 && SrcEncoding % NumRegs == 0 &&
2450 "GPR reg sequences should not be able to overlap");
2451 #endif
2453 for (unsigned SubReg = 0; SubReg != NumRegs; ++SubReg) {
2454 const MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opcode));
2455 AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI);
2456 MIB.addReg(ZeroReg);
2457 AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI);
2458 MIB.addImm(0);
2462 void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
2463 MachineBasicBlock::iterator I,
2464 const DebugLoc &DL, unsigned DestReg,
2465 unsigned SrcReg, bool KillSrc) const {
2466 if (AArch64::GPR32spRegClass.contains(DestReg) &&
2467 (AArch64::GPR32spRegClass.contains(SrcReg) || SrcReg == AArch64::WZR)) {
2468 const TargetRegisterInfo *TRI = &getRegisterInfo();
2470 if (DestReg == AArch64::WSP || SrcReg == AArch64::WSP) {
2471 // If either operand is WSP, expand to ADD #0.
2472 if (Subtarget.hasZeroCycleRegMove()) {
2473 // Cyclone recognizes "ADD Xd, Xn, #0" as a zero-cycle register move.
2474 unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32,
2475 &AArch64::GPR64spRegClass);
2476 unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32,
2477 &AArch64::GPR64spRegClass);
2478 // This instruction is reading and writing X registers. This may upset
2479 // the register scavenger and machine verifier, so we need to indicate
2480 // that we are reading an undefined value from SrcRegX, but a proper
2481 // value from SrcReg.
2482 BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestRegX)
2483 .addReg(SrcRegX, RegState::Undef)
2484 .addImm(0)
2485 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
2486 .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
2487 } else {
2488 BuildMI(MBB, I, DL, get(AArch64::ADDWri), DestReg)
2489 .addReg(SrcReg, getKillRegState(KillSrc))
2490 .addImm(0)
2491 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
2493 } else if (SrcReg == AArch64::WZR && Subtarget.hasZeroCycleZeroingGP()) {
2494 BuildMI(MBB, I, DL, get(AArch64::MOVZWi), DestReg)
2495 .addImm(0)
2496 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
2497 } else {
2498 if (Subtarget.hasZeroCycleRegMove()) {
2499 // Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move.
2500 unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32,
2501 &AArch64::GPR64spRegClass);
2502 unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32,
2503 &AArch64::GPR64spRegClass);
2504 // This instruction is reading and writing X registers. This may upset
2505 // the register scavenger and machine verifier, so we need to indicate
2506 // that we are reading an undefined value from SrcRegX, but a proper
2507 // value from SrcReg.
2508 BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestRegX)
2509 .addReg(AArch64::XZR)
2510 .addReg(SrcRegX, RegState::Undef)
2511 .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
2512 } else {
2513 // Otherwise, expand to ORR WZR.
2514 BuildMI(MBB, I, DL, get(AArch64::ORRWrr), DestReg)
2515 .addReg(AArch64::WZR)
2516 .addReg(SrcReg, getKillRegState(KillSrc));
2519 return;
2522 // Copy a Predicate register by ORRing with itself.
2523 if (AArch64::PPRRegClass.contains(DestReg) &&
2524 AArch64::PPRRegClass.contains(SrcReg)) {
2525 assert(Subtarget.hasSVE() && "Unexpected SVE register.");
2526 BuildMI(MBB, I, DL, get(AArch64::ORR_PPzPP), DestReg)
2527 .addReg(SrcReg) // Pg
2528 .addReg(SrcReg)
2529 .addReg(SrcReg, getKillRegState(KillSrc));
2530 return;
2533 // Copy a Z register by ORRing with itself.
2534 if (AArch64::ZPRRegClass.contains(DestReg) &&
2535 AArch64::ZPRRegClass.contains(SrcReg)) {
2536 assert(Subtarget.hasSVE() && "Unexpected SVE register.");
2537 BuildMI(MBB, I, DL, get(AArch64::ORR_ZZZ), DestReg)
2538 .addReg(SrcReg)
2539 .addReg(SrcReg, getKillRegState(KillSrc));
2540 return;
2543 if (AArch64::GPR64spRegClass.contains(DestReg) &&
2544 (AArch64::GPR64spRegClass.contains(SrcReg) || SrcReg == AArch64::XZR)) {
2545 if (DestReg == AArch64::SP || SrcReg == AArch64::SP) {
2546 // If either operand is SP, expand to ADD #0.
2547 BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestReg)
2548 .addReg(SrcReg, getKillRegState(KillSrc))
2549 .addImm(0)
2550 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
2551 } else if (SrcReg == AArch64::XZR && Subtarget.hasZeroCycleZeroingGP()) {
2552 BuildMI(MBB, I, DL, get(AArch64::MOVZXi), DestReg)
2553 .addImm(0)
2554 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
2555 } else {
2556 // Otherwise, expand to ORR XZR.
2557 BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestReg)
2558 .addReg(AArch64::XZR)
2559 .addReg(SrcReg, getKillRegState(KillSrc));
2561 return;
2564 // Copy a DDDD register quad by copying the individual sub-registers.
2565 if (AArch64::DDDDRegClass.contains(DestReg) &&
2566 AArch64::DDDDRegClass.contains(SrcReg)) {
2567 static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1,
2568 AArch64::dsub2, AArch64::dsub3};
2569 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
2570 Indices);
2571 return;
2574 // Copy a DDD register triple by copying the individual sub-registers.
2575 if (AArch64::DDDRegClass.contains(DestReg) &&
2576 AArch64::DDDRegClass.contains(SrcReg)) {
2577 static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1,
2578 AArch64::dsub2};
2579 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
2580 Indices);
2581 return;
2584 // Copy a DD register pair by copying the individual sub-registers.
2585 if (AArch64::DDRegClass.contains(DestReg) &&
2586 AArch64::DDRegClass.contains(SrcReg)) {
2587 static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1};
2588 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
2589 Indices);
2590 return;
2593 // Copy a QQQQ register quad by copying the individual sub-registers.
2594 if (AArch64::QQQQRegClass.contains(DestReg) &&
2595 AArch64::QQQQRegClass.contains(SrcReg)) {
2596 static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1,
2597 AArch64::qsub2, AArch64::qsub3};
2598 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
2599 Indices);
2600 return;
2603 // Copy a QQQ register triple by copying the individual sub-registers.
2604 if (AArch64::QQQRegClass.contains(DestReg) &&
2605 AArch64::QQQRegClass.contains(SrcReg)) {
2606 static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1,
2607 AArch64::qsub2};
2608 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
2609 Indices);
2610 return;
2613 // Copy a QQ register pair by copying the individual sub-registers.
2614 if (AArch64::QQRegClass.contains(DestReg) &&
2615 AArch64::QQRegClass.contains(SrcReg)) {
2616 static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1};
2617 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
2618 Indices);
2619 return;
2622 if (AArch64::XSeqPairsClassRegClass.contains(DestReg) &&
2623 AArch64::XSeqPairsClassRegClass.contains(SrcReg)) {
2624 static const unsigned Indices[] = {AArch64::sube64, AArch64::subo64};
2625 copyGPRRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRXrs,
2626 AArch64::XZR, Indices);
2627 return;
2630 if (AArch64::WSeqPairsClassRegClass.contains(DestReg) &&
2631 AArch64::WSeqPairsClassRegClass.contains(SrcReg)) {
2632 static const unsigned Indices[] = {AArch64::sube32, AArch64::subo32};
2633 copyGPRRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRWrs,
2634 AArch64::WZR, Indices);
2635 return;
2638 if (AArch64::FPR128RegClass.contains(DestReg) &&
2639 AArch64::FPR128RegClass.contains(SrcReg)) {
2640 if (Subtarget.hasNEON()) {
2641 BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
2642 .addReg(SrcReg)
2643 .addReg(SrcReg, getKillRegState(KillSrc));
2644 } else {
2645 BuildMI(MBB, I, DL, get(AArch64::STRQpre))
2646 .addReg(AArch64::SP, RegState::Define)
2647 .addReg(SrcReg, getKillRegState(KillSrc))
2648 .addReg(AArch64::SP)
2649 .addImm(-16);
2650 BuildMI(MBB, I, DL, get(AArch64::LDRQpre))
2651 .addReg(AArch64::SP, RegState::Define)
2652 .addReg(DestReg, RegState::Define)
2653 .addReg(AArch64::SP)
2654 .addImm(16);
2656 return;
2659 if (AArch64::FPR64RegClass.contains(DestReg) &&
2660 AArch64::FPR64RegClass.contains(SrcReg)) {
2661 if (Subtarget.hasNEON()) {
2662 DestReg = RI.getMatchingSuperReg(DestReg, AArch64::dsub,
2663 &AArch64::FPR128RegClass);
2664 SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::dsub,
2665 &AArch64::FPR128RegClass);
2666 BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
2667 .addReg(SrcReg)
2668 .addReg(SrcReg, getKillRegState(KillSrc));
2669 } else {
2670 BuildMI(MBB, I, DL, get(AArch64::FMOVDr), DestReg)
2671 .addReg(SrcReg, getKillRegState(KillSrc));
2673 return;
2676 if (AArch64::FPR32RegClass.contains(DestReg) &&
2677 AArch64::FPR32RegClass.contains(SrcReg)) {
2678 if (Subtarget.hasNEON()) {
2679 DestReg = RI.getMatchingSuperReg(DestReg, AArch64::ssub,
2680 &AArch64::FPR128RegClass);
2681 SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::ssub,
2682 &AArch64::FPR128RegClass);
2683 BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
2684 .addReg(SrcReg)
2685 .addReg(SrcReg, getKillRegState(KillSrc));
2686 } else {
2687 BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
2688 .addReg(SrcReg, getKillRegState(KillSrc));
2690 return;
2693 if (AArch64::FPR16RegClass.contains(DestReg) &&
2694 AArch64::FPR16RegClass.contains(SrcReg)) {
2695 if (Subtarget.hasNEON()) {
2696 DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
2697 &AArch64::FPR128RegClass);
2698 SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
2699 &AArch64::FPR128RegClass);
2700 BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
2701 .addReg(SrcReg)
2702 .addReg(SrcReg, getKillRegState(KillSrc));
2703 } else {
2704 DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
2705 &AArch64::FPR32RegClass);
2706 SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
2707 &AArch64::FPR32RegClass);
2708 BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
2709 .addReg(SrcReg, getKillRegState(KillSrc));
2711 return;
2714 if (AArch64::FPR8RegClass.contains(DestReg) &&
2715 AArch64::FPR8RegClass.contains(SrcReg)) {
2716 if (Subtarget.hasNEON()) {
2717 DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
2718 &AArch64::FPR128RegClass);
2719 SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
2720 &AArch64::FPR128RegClass);
2721 BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
2722 .addReg(SrcReg)
2723 .addReg(SrcReg, getKillRegState(KillSrc));
2724 } else {
2725 DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
2726 &AArch64::FPR32RegClass);
2727 SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
2728 &AArch64::FPR32RegClass);
2729 BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
2730 .addReg(SrcReg, getKillRegState(KillSrc));
2732 return;
2735 // Copies between GPR64 and FPR64.
2736 if (AArch64::FPR64RegClass.contains(DestReg) &&
2737 AArch64::GPR64RegClass.contains(SrcReg)) {
2738 BuildMI(MBB, I, DL, get(AArch64::FMOVXDr), DestReg)
2739 .addReg(SrcReg, getKillRegState(KillSrc));
2740 return;
2742 if (AArch64::GPR64RegClass.contains(DestReg) &&
2743 AArch64::FPR64RegClass.contains(SrcReg)) {
2744 BuildMI(MBB, I, DL, get(AArch64::FMOVDXr), DestReg)
2745 .addReg(SrcReg, getKillRegState(KillSrc));
2746 return;
2748 // Copies between GPR32 and FPR32.
2749 if (AArch64::FPR32RegClass.contains(DestReg) &&
2750 AArch64::GPR32RegClass.contains(SrcReg)) {
2751 BuildMI(MBB, I, DL, get(AArch64::FMOVWSr), DestReg)
2752 .addReg(SrcReg, getKillRegState(KillSrc));
2753 return;
2755 if (AArch64::GPR32RegClass.contains(DestReg) &&
2756 AArch64::FPR32RegClass.contains(SrcReg)) {
2757 BuildMI(MBB, I, DL, get(AArch64::FMOVSWr), DestReg)
2758 .addReg(SrcReg, getKillRegState(KillSrc));
2759 return;
2762 if (DestReg == AArch64::NZCV) {
2763 assert(AArch64::GPR64RegClass.contains(SrcReg) && "Invalid NZCV copy");
2764 BuildMI(MBB, I, DL, get(AArch64::MSR))
2765 .addImm(AArch64SysReg::NZCV)
2766 .addReg(SrcReg, getKillRegState(KillSrc))
2767 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define);
2768 return;
2771 if (SrcReg == AArch64::NZCV) {
2772 assert(AArch64::GPR64RegClass.contains(DestReg) && "Invalid NZCV copy");
2773 BuildMI(MBB, I, DL, get(AArch64::MRS), DestReg)
2774 .addImm(AArch64SysReg::NZCV)
2775 .addReg(AArch64::NZCV, RegState::Implicit | getKillRegState(KillSrc));
2776 return;
2779 llvm_unreachable("unimplemented reg-to-reg copy");
2782 static void storeRegPairToStackSlot(const TargetRegisterInfo &TRI,
2783 MachineBasicBlock &MBB,
2784 MachineBasicBlock::iterator InsertBefore,
2785 const MCInstrDesc &MCID,
2786 unsigned SrcReg, bool IsKill,
2787 unsigned SubIdx0, unsigned SubIdx1, int FI,
2788 MachineMemOperand *MMO) {
2789 unsigned SrcReg0 = SrcReg;
2790 unsigned SrcReg1 = SrcReg;
2791 if (Register::isPhysicalRegister(SrcReg)) {
2792 SrcReg0 = TRI.getSubReg(SrcReg, SubIdx0);
2793 SubIdx0 = 0;
2794 SrcReg1 = TRI.getSubReg(SrcReg, SubIdx1);
2795 SubIdx1 = 0;
2797 BuildMI(MBB, InsertBefore, DebugLoc(), MCID)
2798 .addReg(SrcReg0, getKillRegState(IsKill), SubIdx0)
2799 .addReg(SrcReg1, getKillRegState(IsKill), SubIdx1)
2800 .addFrameIndex(FI)
2801 .addImm(0)
2802 .addMemOperand(MMO);
2805 void AArch64InstrInfo::storeRegToStackSlot(
2806 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
2807 bool isKill, int FI, const TargetRegisterClass *RC,
2808 const TargetRegisterInfo *TRI) const {
2809 MachineFunction &MF = *MBB.getParent();
2810 MachineFrameInfo &MFI = MF.getFrameInfo();
2811 unsigned Align = MFI.getObjectAlignment(FI);
2813 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
2814 MachineMemOperand *MMO = MF.getMachineMemOperand(
2815 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(FI), Align);
2816 unsigned Opc = 0;
2817 bool Offset = true;
2818 switch (TRI->getSpillSize(*RC)) {
2819 case 1:
2820 if (AArch64::FPR8RegClass.hasSubClassEq(RC))
2821 Opc = AArch64::STRBui;
2822 break;
2823 case 2:
2824 if (AArch64::FPR16RegClass.hasSubClassEq(RC))
2825 Opc = AArch64::STRHui;
2826 break;
2827 case 4:
2828 if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
2829 Opc = AArch64::STRWui;
2830 if (Register::isVirtualRegister(SrcReg))
2831 MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
2832 else
2833 assert(SrcReg != AArch64::WSP);
2834 } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
2835 Opc = AArch64::STRSui;
2836 break;
2837 case 8:
2838 if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
2839 Opc = AArch64::STRXui;
2840 if (Register::isVirtualRegister(SrcReg))
2841 MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
2842 else
2843 assert(SrcReg != AArch64::SP);
2844 } else if (AArch64::FPR64RegClass.hasSubClassEq(RC)) {
2845 Opc = AArch64::STRDui;
2846 } else if (AArch64::WSeqPairsClassRegClass.hasSubClassEq(RC)) {
2847 storeRegPairToStackSlot(getRegisterInfo(), MBB, MBBI,
2848 get(AArch64::STPWi), SrcReg, isKill,
2849 AArch64::sube32, AArch64::subo32, FI, MMO);
2850 return;
2852 break;
2853 case 16:
2854 if (AArch64::FPR128RegClass.hasSubClassEq(RC))
2855 Opc = AArch64::STRQui;
2856 else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
2857 assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
2858 Opc = AArch64::ST1Twov1d;
2859 Offset = false;
2860 } else if (AArch64::XSeqPairsClassRegClass.hasSubClassEq(RC)) {
2861 storeRegPairToStackSlot(getRegisterInfo(), MBB, MBBI,
2862 get(AArch64::STPXi), SrcReg, isKill,
2863 AArch64::sube64, AArch64::subo64, FI, MMO);
2864 return;
2866 break;
2867 case 24:
2868 if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
2869 assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
2870 Opc = AArch64::ST1Threev1d;
2871 Offset = false;
2873 break;
2874 case 32:
2875 if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
2876 assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
2877 Opc = AArch64::ST1Fourv1d;
2878 Offset = false;
2879 } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
2880 assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
2881 Opc = AArch64::ST1Twov2d;
2882 Offset = false;
2884 break;
2885 case 48:
2886 if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
2887 assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
2888 Opc = AArch64::ST1Threev2d;
2889 Offset = false;
2891 break;
2892 case 64:
2893 if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
2894 assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
2895 Opc = AArch64::ST1Fourv2d;
2896 Offset = false;
2898 break;
2900 assert(Opc && "Unknown register class");
2902 const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DebugLoc(), get(Opc))
2903 .addReg(SrcReg, getKillRegState(isKill))
2904 .addFrameIndex(FI);
2906 if (Offset)
2907 MI.addImm(0);
2908 MI.addMemOperand(MMO);
2911 static void loadRegPairFromStackSlot(const TargetRegisterInfo &TRI,
2912 MachineBasicBlock &MBB,
2913 MachineBasicBlock::iterator InsertBefore,
2914 const MCInstrDesc &MCID,
2915 unsigned DestReg, unsigned SubIdx0,
2916 unsigned SubIdx1, int FI,
2917 MachineMemOperand *MMO) {
2918 unsigned DestReg0 = DestReg;
2919 unsigned DestReg1 = DestReg;
2920 bool IsUndef = true;
2921 if (Register::isPhysicalRegister(DestReg)) {
2922 DestReg0 = TRI.getSubReg(DestReg, SubIdx0);
2923 SubIdx0 = 0;
2924 DestReg1 = TRI.getSubReg(DestReg, SubIdx1);
2925 SubIdx1 = 0;
2926 IsUndef = false;
2928 BuildMI(MBB, InsertBefore, DebugLoc(), MCID)
2929 .addReg(DestReg0, RegState::Define | getUndefRegState(IsUndef), SubIdx0)
2930 .addReg(DestReg1, RegState::Define | getUndefRegState(IsUndef), SubIdx1)
2931 .addFrameIndex(FI)
2932 .addImm(0)
2933 .addMemOperand(MMO);
2936 void AArch64InstrInfo::loadRegFromStackSlot(
2937 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
2938 int FI, const TargetRegisterClass *RC,
2939 const TargetRegisterInfo *TRI) const {
2940 MachineFunction &MF = *MBB.getParent();
2941 MachineFrameInfo &MFI = MF.getFrameInfo();
2942 unsigned Align = MFI.getObjectAlignment(FI);
2943 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
2944 MachineMemOperand *MMO = MF.getMachineMemOperand(
2945 PtrInfo, MachineMemOperand::MOLoad, MFI.getObjectSize(FI), Align);
2947 unsigned Opc = 0;
2948 bool Offset = true;
2949 switch (TRI->getSpillSize(*RC)) {
2950 case 1:
2951 if (AArch64::FPR8RegClass.hasSubClassEq(RC))
2952 Opc = AArch64::LDRBui;
2953 break;
2954 case 2:
2955 if (AArch64::FPR16RegClass.hasSubClassEq(RC))
2956 Opc = AArch64::LDRHui;
2957 break;
2958 case 4:
2959 if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
2960 Opc = AArch64::LDRWui;
2961 if (Register::isVirtualRegister(DestReg))
2962 MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR32RegClass);
2963 else
2964 assert(DestReg != AArch64::WSP);
2965 } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
2966 Opc = AArch64::LDRSui;
2967 break;
2968 case 8:
2969 if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
2970 Opc = AArch64::LDRXui;
2971 if (Register::isVirtualRegister(DestReg))
2972 MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR64RegClass);
2973 else
2974 assert(DestReg != AArch64::SP);
2975 } else if (AArch64::FPR64RegClass.hasSubClassEq(RC)) {
2976 Opc = AArch64::LDRDui;
2977 } else if (AArch64::WSeqPairsClassRegClass.hasSubClassEq(RC)) {
2978 loadRegPairFromStackSlot(getRegisterInfo(), MBB, MBBI,
2979 get(AArch64::LDPWi), DestReg, AArch64::sube32,
2980 AArch64::subo32, FI, MMO);
2981 return;
2983 break;
2984 case 16:
2985 if (AArch64::FPR128RegClass.hasSubClassEq(RC))
2986 Opc = AArch64::LDRQui;
2987 else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
2988 assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
2989 Opc = AArch64::LD1Twov1d;
2990 Offset = false;
2991 } else if (AArch64::XSeqPairsClassRegClass.hasSubClassEq(RC)) {
2992 loadRegPairFromStackSlot(getRegisterInfo(), MBB, MBBI,
2993 get(AArch64::LDPXi), DestReg, AArch64::sube64,
2994 AArch64::subo64, FI, MMO);
2995 return;
2997 break;
2998 case 24:
2999 if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
3000 assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
3001 Opc = AArch64::LD1Threev1d;
3002 Offset = false;
3004 break;
3005 case 32:
3006 if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
3007 assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
3008 Opc = AArch64::LD1Fourv1d;
3009 Offset = false;
3010 } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
3011 assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
3012 Opc = AArch64::LD1Twov2d;
3013 Offset = false;
3015 break;
3016 case 48:
3017 if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
3018 assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
3019 Opc = AArch64::LD1Threev2d;
3020 Offset = false;
3022 break;
3023 case 64:
3024 if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
3025 assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
3026 Opc = AArch64::LD1Fourv2d;
3027 Offset = false;
3029 break;
3031 assert(Opc && "Unknown register class");
3033 const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DebugLoc(), get(Opc))
3034 .addReg(DestReg, getDefRegState(true))
3035 .addFrameIndex(FI);
3036 if (Offset)
3037 MI.addImm(0);
3038 MI.addMemOperand(MMO);
3041 // Helper function to emit a frame offset adjustment from a given
3042 // pointer (SrcReg), stored into DestReg. This function is explicit
3043 // in that it requires the opcode.
3044 static void emitFrameOffsetAdj(MachineBasicBlock &MBB,
3045 MachineBasicBlock::iterator MBBI,
3046 const DebugLoc &DL, unsigned DestReg,
3047 unsigned SrcReg, int64_t Offset, unsigned Opc,
3048 const TargetInstrInfo *TII,
3049 MachineInstr::MIFlag Flag, bool NeedsWinCFI,
3050 bool *HasWinCFI) {
3051 int Sign = 1;
3052 unsigned MaxEncoding, ShiftSize;
3053 switch (Opc) {
3054 case AArch64::ADDXri:
3055 case AArch64::ADDSXri:
3056 case AArch64::SUBXri:
3057 case AArch64::SUBSXri:
3058 MaxEncoding = 0xfff;
3059 ShiftSize = 12;
3060 break;
3061 case AArch64::ADDVL_XXI:
3062 case AArch64::ADDPL_XXI:
3063 MaxEncoding = 31;
3064 ShiftSize = 0;
3065 if (Offset < 0) {
3066 MaxEncoding = 32;
3067 Sign = -1;
3068 Offset = -Offset;
3070 break;
3071 default:
3072 llvm_unreachable("Unsupported opcode");
3075 // FIXME: If the offset won't fit in 24-bits, compute the offset into a
3076 // scratch register. If DestReg is a virtual register, use it as the
3077 // scratch register; otherwise, create a new virtual register (to be
3078 // replaced by the scavenger at the end of PEI). That case can be optimized
3079 // slightly if DestReg is SP which is always 16-byte aligned, so the scratch
3080 // register can be loaded with offset%8 and the add/sub can use an extending
3081 // instruction with LSL#3.
3082 // Currently the function handles any offsets but generates a poor sequence
3083 // of code.
3084 // assert(Offset < (1 << 24) && "unimplemented reg plus immediate");
3086 const unsigned MaxEncodableValue = MaxEncoding << ShiftSize;
3087 do {
3088 unsigned ThisVal = std::min<unsigned>(Offset, MaxEncodableValue);
3089 unsigned LocalShiftSize = 0;
3090 if (ThisVal > MaxEncoding) {
3091 ThisVal = ThisVal >> ShiftSize;
3092 LocalShiftSize = ShiftSize;
3094 assert((ThisVal >> ShiftSize) <= MaxEncoding &&
3095 "Encoding cannot handle value that big");
3096 auto MBI = BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
3097 .addReg(SrcReg)
3098 .addImm(Sign * (int)ThisVal);
3099 if (ShiftSize)
3100 MBI = MBI.addImm(
3101 AArch64_AM::getShifterImm(AArch64_AM::LSL, LocalShiftSize));
3102 MBI = MBI.setMIFlag(Flag);
3104 if (NeedsWinCFI) {
3105 assert(Sign == 1 && "SEH directives should always have a positive sign");
3106 int Imm = (int)(ThisVal << LocalShiftSize);
3107 if ((DestReg == AArch64::FP && SrcReg == AArch64::SP) ||
3108 (SrcReg == AArch64::FP && DestReg == AArch64::SP)) {
3109 if (HasWinCFI)
3110 *HasWinCFI = true;
3111 if (Imm == 0)
3112 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_SetFP)).setMIFlag(Flag);
3113 else
3114 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_AddFP))
3115 .addImm(Imm)
3116 .setMIFlag(Flag);
3117 assert((Offset - Imm) == 0 && "Expected remaining offset to be zero to "
3118 "emit a single SEH directive");
3119 } else if (DestReg == AArch64::SP) {
3120 if (HasWinCFI)
3121 *HasWinCFI = true;
3122 assert(SrcReg == AArch64::SP && "Unexpected SrcReg for SEH_StackAlloc");
3123 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
3124 .addImm(Imm)
3125 .setMIFlag(Flag);
3127 if (HasWinCFI)
3128 *HasWinCFI = true;
3131 SrcReg = DestReg;
3132 Offset -= ThisVal << LocalShiftSize;
3133 } while (Offset);
3136 void llvm::emitFrameOffset(MachineBasicBlock &MBB,
3137 MachineBasicBlock::iterator MBBI, const DebugLoc &DL,
3138 unsigned DestReg, unsigned SrcReg,
3139 StackOffset Offset, const TargetInstrInfo *TII,
3140 MachineInstr::MIFlag Flag, bool SetNZCV,
3141 bool NeedsWinCFI, bool *HasWinCFI) {
3142 int64_t Bytes, NumPredicateVectors, NumDataVectors;
3143 Offset.getForFrameOffset(Bytes, NumPredicateVectors, NumDataVectors);
3145 // First emit non-scalable frame offsets, or a simple 'mov'.
3146 if (Bytes || (!Offset && SrcReg != DestReg)) {
3147 assert((DestReg != AArch64::SP || Bytes % 16 == 0) &&
3148 "SP increment/decrement not 16-byte aligned");
3149 unsigned Opc = SetNZCV ? AArch64::ADDSXri : AArch64::ADDXri;
3150 if (Bytes < 0) {
3151 Bytes = -Bytes;
3152 Opc = SetNZCV ? AArch64::SUBSXri : AArch64::SUBXri;
3154 emitFrameOffsetAdj(MBB, MBBI, DL, DestReg, SrcReg, Bytes, Opc, TII, Flag,
3155 NeedsWinCFI, HasWinCFI);
3156 SrcReg = DestReg;
3159 assert(!(SetNZCV && (NumPredicateVectors || NumDataVectors)) &&
3160 "SetNZCV not supported with SVE vectors");
3161 assert(!(NeedsWinCFI && (NumPredicateVectors || NumDataVectors)) &&
3162 "WinCFI not supported with SVE vectors");
3164 if (NumDataVectors) {
3165 emitFrameOffsetAdj(MBB, MBBI, DL, DestReg, SrcReg, NumDataVectors,
3166 AArch64::ADDVL_XXI, TII, Flag, NeedsWinCFI, nullptr);
3167 SrcReg = DestReg;
3170 if (NumPredicateVectors) {
3171 assert(DestReg != AArch64::SP && "Unaligned access to SP");
3172 emitFrameOffsetAdj(MBB, MBBI, DL, DestReg, SrcReg, NumPredicateVectors,
3173 AArch64::ADDPL_XXI, TII, Flag, NeedsWinCFI, nullptr);
3177 MachineInstr *AArch64InstrInfo::foldMemoryOperandImpl(
3178 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
3179 MachineBasicBlock::iterator InsertPt, int FrameIndex,
3180 LiveIntervals *LIS, VirtRegMap *VRM) const {
3181 // This is a bit of a hack. Consider this instruction:
3183 // %0 = COPY %sp; GPR64all:%0
3185 // We explicitly chose GPR64all for the virtual register so such a copy might
3186 // be eliminated by RegisterCoalescer. However, that may not be possible, and
3187 // %0 may even spill. We can't spill %sp, and since it is in the GPR64all
3188 // register class, TargetInstrInfo::foldMemoryOperand() is going to try.
3190 // To prevent that, we are going to constrain the %0 register class here.
3192 // <rdar://problem/11522048>
3194 if (MI.isFullCopy()) {
3195 Register DstReg = MI.getOperand(0).getReg();
3196 Register SrcReg = MI.getOperand(1).getReg();
3197 if (SrcReg == AArch64::SP && Register::isVirtualRegister(DstReg)) {
3198 MF.getRegInfo().constrainRegClass(DstReg, &AArch64::GPR64RegClass);
3199 return nullptr;
3201 if (DstReg == AArch64::SP && Register::isVirtualRegister(SrcReg)) {
3202 MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
3203 return nullptr;
3207 // Handle the case where a copy is being spilled or filled but the source
3208 // and destination register class don't match. For example:
3210 // %0 = COPY %xzr; GPR64common:%0
3212 // In this case we can still safely fold away the COPY and generate the
3213 // following spill code:
3215 // STRXui %xzr, %stack.0
3217 // This also eliminates spilled cross register class COPYs (e.g. between x and
3218 // d regs) of the same size. For example:
3220 // %0 = COPY %1; GPR64:%0, FPR64:%1
3222 // will be filled as
3224 // LDRDui %0, fi<#0>
3226 // instead of
3228 // LDRXui %Temp, fi<#0>
3229 // %0 = FMOV %Temp
3231 if (MI.isCopy() && Ops.size() == 1 &&
3232 // Make sure we're only folding the explicit COPY defs/uses.
3233 (Ops[0] == 0 || Ops[0] == 1)) {
3234 bool IsSpill = Ops[0] == 0;
3235 bool IsFill = !IsSpill;
3236 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
3237 const MachineRegisterInfo &MRI = MF.getRegInfo();
3238 MachineBasicBlock &MBB = *MI.getParent();
3239 const MachineOperand &DstMO = MI.getOperand(0);
3240 const MachineOperand &SrcMO = MI.getOperand(1);
3241 Register DstReg = DstMO.getReg();
3242 Register SrcReg = SrcMO.getReg();
3243 // This is slightly expensive to compute for physical regs since
3244 // getMinimalPhysRegClass is slow.
3245 auto getRegClass = [&](unsigned Reg) {
3246 return Register::isVirtualRegister(Reg) ? MRI.getRegClass(Reg)
3247 : TRI.getMinimalPhysRegClass(Reg);
3250 if (DstMO.getSubReg() == 0 && SrcMO.getSubReg() == 0) {
3251 assert(TRI.getRegSizeInBits(*getRegClass(DstReg)) ==
3252 TRI.getRegSizeInBits(*getRegClass(SrcReg)) &&
3253 "Mismatched register size in non subreg COPY");
3254 if (IsSpill)
3255 storeRegToStackSlot(MBB, InsertPt, SrcReg, SrcMO.isKill(), FrameIndex,
3256 getRegClass(SrcReg), &TRI);
3257 else
3258 loadRegFromStackSlot(MBB, InsertPt, DstReg, FrameIndex,
3259 getRegClass(DstReg), &TRI);
3260 return &*--InsertPt;
3263 // Handle cases like spilling def of:
3265 // %0:sub_32<def,read-undef> = COPY %wzr; GPR64common:%0
3267 // where the physical register source can be widened and stored to the full
3268 // virtual reg destination stack slot, in this case producing:
3270 // STRXui %xzr, %stack.0
3272 if (IsSpill && DstMO.isUndef() && Register::isPhysicalRegister(SrcReg)) {
3273 assert(SrcMO.getSubReg() == 0 &&
3274 "Unexpected subreg on physical register");
3275 const TargetRegisterClass *SpillRC;
3276 unsigned SpillSubreg;
3277 switch (DstMO.getSubReg()) {
3278 default:
3279 SpillRC = nullptr;
3280 break;
3281 case AArch64::sub_32:
3282 case AArch64::ssub:
3283 if (AArch64::GPR32RegClass.contains(SrcReg)) {
3284 SpillRC = &AArch64::GPR64RegClass;
3285 SpillSubreg = AArch64::sub_32;
3286 } else if (AArch64::FPR32RegClass.contains(SrcReg)) {
3287 SpillRC = &AArch64::FPR64RegClass;
3288 SpillSubreg = AArch64::ssub;
3289 } else
3290 SpillRC = nullptr;
3291 break;
3292 case AArch64::dsub:
3293 if (AArch64::FPR64RegClass.contains(SrcReg)) {
3294 SpillRC = &AArch64::FPR128RegClass;
3295 SpillSubreg = AArch64::dsub;
3296 } else
3297 SpillRC = nullptr;
3298 break;
3301 if (SpillRC)
3302 if (unsigned WidenedSrcReg =
3303 TRI.getMatchingSuperReg(SrcReg, SpillSubreg, SpillRC)) {
3304 storeRegToStackSlot(MBB, InsertPt, WidenedSrcReg, SrcMO.isKill(),
3305 FrameIndex, SpillRC, &TRI);
3306 return &*--InsertPt;
3310 // Handle cases like filling use of:
3312 // %0:sub_32<def,read-undef> = COPY %1; GPR64:%0, GPR32:%1
3314 // where we can load the full virtual reg source stack slot, into the subreg
3315 // destination, in this case producing:
3317 // LDRWui %0:sub_32<def,read-undef>, %stack.0
3319 if (IsFill && SrcMO.getSubReg() == 0 && DstMO.isUndef()) {
3320 const TargetRegisterClass *FillRC;
3321 switch (DstMO.getSubReg()) {
3322 default:
3323 FillRC = nullptr;
3324 break;
3325 case AArch64::sub_32:
3326 FillRC = &AArch64::GPR32RegClass;
3327 break;
3328 case AArch64::ssub:
3329 FillRC = &AArch64::FPR32RegClass;
3330 break;
3331 case AArch64::dsub:
3332 FillRC = &AArch64::FPR64RegClass;
3333 break;
3336 if (FillRC) {
3337 assert(TRI.getRegSizeInBits(*getRegClass(SrcReg)) ==
3338 TRI.getRegSizeInBits(*FillRC) &&
3339 "Mismatched regclass size on folded subreg COPY");
3340 loadRegFromStackSlot(MBB, InsertPt, DstReg, FrameIndex, FillRC, &TRI);
3341 MachineInstr &LoadMI = *--InsertPt;
3342 MachineOperand &LoadDst = LoadMI.getOperand(0);
3343 assert(LoadDst.getSubReg() == 0 && "unexpected subreg on fill load");
3344 LoadDst.setSubReg(DstMO.getSubReg());
3345 LoadDst.setIsUndef();
3346 return &LoadMI;
3351 // Cannot fold.
3352 return nullptr;
3355 static bool isSVEScaledImmInstruction(unsigned Opcode) {
3356 switch (Opcode) {
3357 case AArch64::LDR_ZXI:
3358 case AArch64::STR_ZXI:
3359 case AArch64::LDR_PXI:
3360 case AArch64::STR_PXI:
3361 return true;
3362 default:
3363 return false;
3367 int llvm::isAArch64FrameOffsetLegal(const MachineInstr &MI,
3368 StackOffset &SOffset,
3369 bool *OutUseUnscaledOp,
3370 unsigned *OutUnscaledOp,
3371 int64_t *EmittableOffset) {
3372 // Set output values in case of early exit.
3373 if (EmittableOffset)
3374 *EmittableOffset = 0;
3375 if (OutUseUnscaledOp)
3376 *OutUseUnscaledOp = false;
3377 if (OutUnscaledOp)
3378 *OutUnscaledOp = 0;
3380 // Exit early for structured vector spills/fills as they can't take an
3381 // immediate offset.
3382 switch (MI.getOpcode()) {
3383 default:
3384 break;
3385 case AArch64::LD1Twov2d:
3386 case AArch64::LD1Threev2d:
3387 case AArch64::LD1Fourv2d:
3388 case AArch64::LD1Twov1d:
3389 case AArch64::LD1Threev1d:
3390 case AArch64::LD1Fourv1d:
3391 case AArch64::ST1Twov2d:
3392 case AArch64::ST1Threev2d:
3393 case AArch64::ST1Fourv2d:
3394 case AArch64::ST1Twov1d:
3395 case AArch64::ST1Threev1d:
3396 case AArch64::ST1Fourv1d:
3397 case AArch64::IRG:
3398 case AArch64::IRGstack:
3399 return AArch64FrameOffsetCannotUpdate;
3402 // Get the min/max offset and the scale.
3403 unsigned Scale, Width;
3404 int64_t MinOff, MaxOff;
3405 if (!AArch64InstrInfo::getMemOpInfo(MI.getOpcode(), Scale, Width, MinOff,
3406 MaxOff))
3407 llvm_unreachable("unhandled opcode in isAArch64FrameOffsetLegal");
3409 // Construct the complete offset.
3410 bool IsMulVL = isSVEScaledImmInstruction(MI.getOpcode());
3411 int64_t Offset =
3412 IsMulVL ? (SOffset.getScalableBytes()) : (SOffset.getBytes());
3414 const MachineOperand &ImmOpnd =
3415 MI.getOperand(AArch64InstrInfo::getLoadStoreImmIdx(MI.getOpcode()));
3416 Offset += ImmOpnd.getImm() * Scale;
3418 // If the offset doesn't match the scale, we rewrite the instruction to
3419 // use the unscaled instruction instead. Likewise, if we have a negative
3420 // offset and there is an unscaled op to use.
3421 Optional<unsigned> UnscaledOp =
3422 AArch64InstrInfo::getUnscaledLdSt(MI.getOpcode());
3423 bool useUnscaledOp = UnscaledOp && (Offset % Scale || Offset < 0);
3424 if (useUnscaledOp &&
3425 !AArch64InstrInfo::getMemOpInfo(*UnscaledOp, Scale, Width, MinOff, MaxOff))
3426 llvm_unreachable("unhandled opcode in isAArch64FrameOffsetLegal");
3428 int64_t Remainder = Offset % Scale;
3429 assert(!(Remainder && useUnscaledOp) &&
3430 "Cannot have remainder when using unscaled op");
3432 assert(MinOff < MaxOff && "Unexpected Min/Max offsets");
3433 int64_t NewOffset = Offset / Scale;
3434 if (MinOff <= NewOffset && NewOffset <= MaxOff)
3435 Offset = Remainder;
3436 else {
3437 NewOffset = NewOffset < 0 ? MinOff : MaxOff;
3438 Offset = Offset - NewOffset * Scale + Remainder;
3441 if (EmittableOffset)
3442 *EmittableOffset = NewOffset;
3443 if (OutUseUnscaledOp)
3444 *OutUseUnscaledOp = useUnscaledOp;
3445 if (OutUnscaledOp && UnscaledOp)
3446 *OutUnscaledOp = *UnscaledOp;
3448 if (IsMulVL)
3449 SOffset = StackOffset(Offset, MVT::nxv1i8) +
3450 StackOffset(SOffset.getBytes(), MVT::i8);
3451 else
3452 SOffset = StackOffset(Offset, MVT::i8) +
3453 StackOffset(SOffset.getScalableBytes(), MVT::nxv1i8);
3454 return AArch64FrameOffsetCanUpdate |
3455 (SOffset ? 0 : AArch64FrameOffsetIsLegal);
3458 bool llvm::rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
3459 unsigned FrameReg, StackOffset &Offset,
3460 const AArch64InstrInfo *TII) {
3461 unsigned Opcode = MI.getOpcode();
3462 unsigned ImmIdx = FrameRegIdx + 1;
3464 if (Opcode == AArch64::ADDSXri || Opcode == AArch64::ADDXri) {
3465 Offset += StackOffset(MI.getOperand(ImmIdx).getImm(), MVT::i8);
3466 emitFrameOffset(*MI.getParent(), MI, MI.getDebugLoc(),
3467 MI.getOperand(0).getReg(), FrameReg, Offset, TII,
3468 MachineInstr::NoFlags, (Opcode == AArch64::ADDSXri));
3469 MI.eraseFromParent();
3470 Offset = StackOffset();
3471 return true;
3474 int64_t NewOffset;
3475 unsigned UnscaledOp;
3476 bool UseUnscaledOp;
3477 int Status = isAArch64FrameOffsetLegal(MI, Offset, &UseUnscaledOp,
3478 &UnscaledOp, &NewOffset);
3479 if (Status & AArch64FrameOffsetCanUpdate) {
3480 if (Status & AArch64FrameOffsetIsLegal)
3481 // Replace the FrameIndex with FrameReg.
3482 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
3483 if (UseUnscaledOp)
3484 MI.setDesc(TII->get(UnscaledOp));
3486 MI.getOperand(ImmIdx).ChangeToImmediate(NewOffset);
3487 return !Offset;
3490 return false;
3493 void AArch64InstrInfo::getNoop(MCInst &NopInst) const {
3494 NopInst.setOpcode(AArch64::HINT);
3495 NopInst.addOperand(MCOperand::createImm(0));
3498 // AArch64 supports MachineCombiner.
3499 bool AArch64InstrInfo::useMachineCombiner() const { return true; }
3501 // True when Opc sets flag
3502 static bool isCombineInstrSettingFlag(unsigned Opc) {
3503 switch (Opc) {
3504 case AArch64::ADDSWrr:
3505 case AArch64::ADDSWri:
3506 case AArch64::ADDSXrr:
3507 case AArch64::ADDSXri:
3508 case AArch64::SUBSWrr:
3509 case AArch64::SUBSXrr:
3510 // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
3511 case AArch64::SUBSWri:
3512 case AArch64::SUBSXri:
3513 return true;
3514 default:
3515 break;
3517 return false;
3520 // 32b Opcodes that can be combined with a MUL
3521 static bool isCombineInstrCandidate32(unsigned Opc) {
3522 switch (Opc) {
3523 case AArch64::ADDWrr:
3524 case AArch64::ADDWri:
3525 case AArch64::SUBWrr:
3526 case AArch64::ADDSWrr:
3527 case AArch64::ADDSWri:
3528 case AArch64::SUBSWrr:
3529 // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
3530 case AArch64::SUBWri:
3531 case AArch64::SUBSWri:
3532 return true;
3533 default:
3534 break;
3536 return false;
3539 // 64b Opcodes that can be combined with a MUL
3540 static bool isCombineInstrCandidate64(unsigned Opc) {
3541 switch (Opc) {
3542 case AArch64::ADDXrr:
3543 case AArch64::ADDXri:
3544 case AArch64::SUBXrr:
3545 case AArch64::ADDSXrr:
3546 case AArch64::ADDSXri:
3547 case AArch64::SUBSXrr:
3548 // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
3549 case AArch64::SUBXri:
3550 case AArch64::SUBSXri:
3551 return true;
3552 default:
3553 break;
3555 return false;
3558 // FP Opcodes that can be combined with a FMUL
3559 static bool isCombineInstrCandidateFP(const MachineInstr &Inst) {
3560 switch (Inst.getOpcode()) {
3561 default:
3562 break;
3563 case AArch64::FADDHrr:
3564 case AArch64::FADDSrr:
3565 case AArch64::FADDDrr:
3566 case AArch64::FADDv4f16:
3567 case AArch64::FADDv8f16:
3568 case AArch64::FADDv2f32:
3569 case AArch64::FADDv2f64:
3570 case AArch64::FADDv4f32:
3571 case AArch64::FSUBHrr:
3572 case AArch64::FSUBSrr:
3573 case AArch64::FSUBDrr:
3574 case AArch64::FSUBv4f16:
3575 case AArch64::FSUBv8f16:
3576 case AArch64::FSUBv2f32:
3577 case AArch64::FSUBv2f64:
3578 case AArch64::FSUBv4f32:
3579 TargetOptions Options = Inst.getParent()->getParent()->getTarget().Options;
3580 return (Options.UnsafeFPMath ||
3581 Options.AllowFPOpFusion == FPOpFusion::Fast);
3583 return false;
3586 // Opcodes that can be combined with a MUL
3587 static bool isCombineInstrCandidate(unsigned Opc) {
3588 return (isCombineInstrCandidate32(Opc) || isCombineInstrCandidate64(Opc));
3592 // Utility routine that checks if \param MO is defined by an
3593 // \param CombineOpc instruction in the basic block \param MBB
3594 static bool canCombine(MachineBasicBlock &MBB, MachineOperand &MO,
3595 unsigned CombineOpc, unsigned ZeroReg = 0,
3596 bool CheckZeroReg = false) {
3597 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3598 MachineInstr *MI = nullptr;
3600 if (MO.isReg() && Register::isVirtualRegister(MO.getReg()))
3601 MI = MRI.getUniqueVRegDef(MO.getReg());
3602 // And it needs to be in the trace (otherwise, it won't have a depth).
3603 if (!MI || MI->getParent() != &MBB || (unsigned)MI->getOpcode() != CombineOpc)
3604 return false;
3605 // Must only used by the user we combine with.
3606 if (!MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
3607 return false;
3609 if (CheckZeroReg) {
3610 assert(MI->getNumOperands() >= 4 && MI->getOperand(0).isReg() &&
3611 MI->getOperand(1).isReg() && MI->getOperand(2).isReg() &&
3612 MI->getOperand(3).isReg() && "MAdd/MSub must have a least 4 regs");
3613 // The third input reg must be zero.
3614 if (MI->getOperand(3).getReg() != ZeroReg)
3615 return false;
3618 return true;
3622 // Is \param MO defined by an integer multiply and can be combined?
3623 static bool canCombineWithMUL(MachineBasicBlock &MBB, MachineOperand &MO,
3624 unsigned MulOpc, unsigned ZeroReg) {
3625 return canCombine(MBB, MO, MulOpc, ZeroReg, true);
3629 // Is \param MO defined by a floating-point multiply and can be combined?
3630 static bool canCombineWithFMUL(MachineBasicBlock &MBB, MachineOperand &MO,
3631 unsigned MulOpc) {
3632 return canCombine(MBB, MO, MulOpc);
3635 // TODO: There are many more machine instruction opcodes to match:
3636 // 1. Other data types (integer, vectors)
3637 // 2. Other math / logic operations (xor, or)
3638 // 3. Other forms of the same operation (intrinsics and other variants)
3639 bool AArch64InstrInfo::isAssociativeAndCommutative(
3640 const MachineInstr &Inst) const {
3641 switch (Inst.getOpcode()) {
3642 case AArch64::FADDDrr:
3643 case AArch64::FADDSrr:
3644 case AArch64::FADDv2f32:
3645 case AArch64::FADDv2f64:
3646 case AArch64::FADDv4f32:
3647 case AArch64::FMULDrr:
3648 case AArch64::FMULSrr:
3649 case AArch64::FMULX32:
3650 case AArch64::FMULX64:
3651 case AArch64::FMULXv2f32:
3652 case AArch64::FMULXv2f64:
3653 case AArch64::FMULXv4f32:
3654 case AArch64::FMULv2f32:
3655 case AArch64::FMULv2f64:
3656 case AArch64::FMULv4f32:
3657 return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath;
3658 default:
3659 return false;
3663 /// Find instructions that can be turned into madd.
3664 static bool getMaddPatterns(MachineInstr &Root,
3665 SmallVectorImpl<MachineCombinerPattern> &Patterns) {
3666 unsigned Opc = Root.getOpcode();
3667 MachineBasicBlock &MBB = *Root.getParent();
3668 bool Found = false;
3670 if (!isCombineInstrCandidate(Opc))
3671 return false;
3672 if (isCombineInstrSettingFlag(Opc)) {
3673 int Cmp_NZCV = Root.findRegisterDefOperandIdx(AArch64::NZCV, true);
3674 // When NZCV is live bail out.
3675 if (Cmp_NZCV == -1)
3676 return false;
3677 unsigned NewOpc = convertToNonFlagSettingOpc(Root);
3678 // When opcode can't change bail out.
3679 // CHECKME: do we miss any cases for opcode conversion?
3680 if (NewOpc == Opc)
3681 return false;
3682 Opc = NewOpc;
3685 auto setFound = [&](int Opcode, int Operand, unsigned ZeroReg,
3686 MachineCombinerPattern Pattern) {
3687 if (canCombineWithMUL(MBB, Root.getOperand(Operand), Opcode, ZeroReg)) {
3688 Patterns.push_back(Pattern);
3689 Found = true;
3693 typedef MachineCombinerPattern MCP;
3695 switch (Opc) {
3696 default:
3697 break;
3698 case AArch64::ADDWrr:
3699 assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
3700 "ADDWrr does not have register operands");
3701 setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULADDW_OP1);
3702 setFound(AArch64::MADDWrrr, 2, AArch64::WZR, MCP::MULADDW_OP2);
3703 break;
3704 case AArch64::ADDXrr:
3705 setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULADDX_OP1);
3706 setFound(AArch64::MADDXrrr, 2, AArch64::XZR, MCP::MULADDX_OP2);
3707 break;
3708 case AArch64::SUBWrr:
3709 setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULSUBW_OP1);
3710 setFound(AArch64::MADDWrrr, 2, AArch64::WZR, MCP::MULSUBW_OP2);
3711 break;
3712 case AArch64::SUBXrr:
3713 setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULSUBX_OP1);
3714 setFound(AArch64::MADDXrrr, 2, AArch64::XZR, MCP::MULSUBX_OP2);
3715 break;
3716 case AArch64::ADDWri:
3717 setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULADDWI_OP1);
3718 break;
3719 case AArch64::ADDXri:
3720 setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULADDXI_OP1);
3721 break;
3722 case AArch64::SUBWri:
3723 setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULSUBWI_OP1);
3724 break;
3725 case AArch64::SUBXri:
3726 setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULSUBXI_OP1);
3727 break;
3729 return Found;
3731 /// Floating-Point Support
3733 /// Find instructions that can be turned into madd.
3734 static bool getFMAPatterns(MachineInstr &Root,
3735 SmallVectorImpl<MachineCombinerPattern> &Patterns) {
3737 if (!isCombineInstrCandidateFP(Root))
3738 return false;
3740 MachineBasicBlock &MBB = *Root.getParent();
3741 bool Found = false;
3743 auto Match = [&](int Opcode, int Operand,
3744 MachineCombinerPattern Pattern) -> bool {
3745 if (canCombineWithFMUL(MBB, Root.getOperand(Operand), Opcode)) {
3746 Patterns.push_back(Pattern);
3747 return true;
3749 return false;
3752 typedef MachineCombinerPattern MCP;
3754 switch (Root.getOpcode()) {
3755 default:
3756 assert(false && "Unsupported FP instruction in combiner\n");
3757 break;
3758 case AArch64::FADDHrr:
3759 assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
3760 "FADDHrr does not have register operands");
3762 Found = Match(AArch64::FMULHrr, 1, MCP::FMULADDH_OP1);
3763 Found |= Match(AArch64::FMULHrr, 2, MCP::FMULADDH_OP2);
3764 break;
3765 case AArch64::FADDSrr:
3766 assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
3767 "FADDSrr does not have register operands");
3769 Found |= Match(AArch64::FMULSrr, 1, MCP::FMULADDS_OP1) ||
3770 Match(AArch64::FMULv1i32_indexed, 1, MCP::FMLAv1i32_indexed_OP1);
3772 Found |= Match(AArch64::FMULSrr, 2, MCP::FMULADDS_OP2) ||
3773 Match(AArch64::FMULv1i32_indexed, 2, MCP::FMLAv1i32_indexed_OP2);
3774 break;
3775 case AArch64::FADDDrr:
3776 Found |= Match(AArch64::FMULDrr, 1, MCP::FMULADDD_OP1) ||
3777 Match(AArch64::FMULv1i64_indexed, 1, MCP::FMLAv1i64_indexed_OP1);
3779 Found |= Match(AArch64::FMULDrr, 2, MCP::FMULADDD_OP2) ||
3780 Match(AArch64::FMULv1i64_indexed, 2, MCP::FMLAv1i64_indexed_OP2);
3781 break;
3782 case AArch64::FADDv4f16:
3783 Found |= Match(AArch64::FMULv4i16_indexed, 1, MCP::FMLAv4i16_indexed_OP1) ||
3784 Match(AArch64::FMULv4f16, 1, MCP::FMLAv4f16_OP1);
3786 Found |= Match(AArch64::FMULv4i16_indexed, 2, MCP::FMLAv4i16_indexed_OP2) ||
3787 Match(AArch64::FMULv4f16, 2, MCP::FMLAv4f16_OP2);
3788 break;
3789 case AArch64::FADDv8f16:
3790 Found |= Match(AArch64::FMULv8i16_indexed, 1, MCP::FMLAv8i16_indexed_OP1) ||
3791 Match(AArch64::FMULv8f16, 1, MCP::FMLAv8f16_OP1);
3793 Found |= Match(AArch64::FMULv8i16_indexed, 2, MCP::FMLAv8i16_indexed_OP2) ||
3794 Match(AArch64::FMULv8f16, 2, MCP::FMLAv8f16_OP2);
3795 break;
3796 case AArch64::FADDv2f32:
3797 Found |= Match(AArch64::FMULv2i32_indexed, 1, MCP::FMLAv2i32_indexed_OP1) ||
3798 Match(AArch64::FMULv2f32, 1, MCP::FMLAv2f32_OP1);
3800 Found |= Match(AArch64::FMULv2i32_indexed, 2, MCP::FMLAv2i32_indexed_OP2) ||
3801 Match(AArch64::FMULv2f32, 2, MCP::FMLAv2f32_OP2);
3802 break;
3803 case AArch64::FADDv2f64:
3804 Found |= Match(AArch64::FMULv2i64_indexed, 1, MCP::FMLAv2i64_indexed_OP1) ||
3805 Match(AArch64::FMULv2f64, 1, MCP::FMLAv2f64_OP1);
3807 Found |= Match(AArch64::FMULv2i64_indexed, 2, MCP::FMLAv2i64_indexed_OP2) ||
3808 Match(AArch64::FMULv2f64, 2, MCP::FMLAv2f64_OP2);
3809 break;
3810 case AArch64::FADDv4f32:
3811 Found |= Match(AArch64::FMULv4i32_indexed, 1, MCP::FMLAv4i32_indexed_OP1) ||
3812 Match(AArch64::FMULv4f32, 1, MCP::FMLAv4f32_OP1);
3814 Found |= Match(AArch64::FMULv4i32_indexed, 2, MCP::FMLAv4i32_indexed_OP2) ||
3815 Match(AArch64::FMULv4f32, 2, MCP::FMLAv4f32_OP2);
3816 break;
3817 case AArch64::FSUBHrr:
3818 Found = Match(AArch64::FMULHrr, 1, MCP::FMULSUBH_OP1);
3819 Found |= Match(AArch64::FMULHrr, 2, MCP::FMULSUBH_OP2);
3820 Found |= Match(AArch64::FNMULHrr, 1, MCP::FNMULSUBH_OP1);
3821 break;
3822 case AArch64::FSUBSrr:
3823 Found = Match(AArch64::FMULSrr, 1, MCP::FMULSUBS_OP1);
3825 Found |= Match(AArch64::FMULSrr, 2, MCP::FMULSUBS_OP2) ||
3826 Match(AArch64::FMULv1i32_indexed, 2, MCP::FMLSv1i32_indexed_OP2);
3828 Found |= Match(AArch64::FNMULSrr, 1, MCP::FNMULSUBS_OP1);
3829 break;
3830 case AArch64::FSUBDrr:
3831 Found = Match(AArch64::FMULDrr, 1, MCP::FMULSUBD_OP1);
3833 Found |= Match(AArch64::FMULDrr, 2, MCP::FMULSUBD_OP2) ||
3834 Match(AArch64::FMULv1i64_indexed, 2, MCP::FMLSv1i64_indexed_OP2);
3836 Found |= Match(AArch64::FNMULDrr, 1, MCP::FNMULSUBD_OP1);
3837 break;
3838 case AArch64::FSUBv4f16:
3839 Found |= Match(AArch64::FMULv4i16_indexed, 2, MCP::FMLSv4i16_indexed_OP2) ||
3840 Match(AArch64::FMULv4f16, 2, MCP::FMLSv4f16_OP2);
3842 Found |= Match(AArch64::FMULv4i16_indexed, 1, MCP::FMLSv4i16_indexed_OP1) ||
3843 Match(AArch64::FMULv4f16, 1, MCP::FMLSv4f16_OP1);
3844 break;
3845 case AArch64::FSUBv8f16:
3846 Found |= Match(AArch64::FMULv8i16_indexed, 2, MCP::FMLSv8i16_indexed_OP2) ||
3847 Match(AArch64::FMULv8f16, 2, MCP::FMLSv8f16_OP2);
3849 Found |= Match(AArch64::FMULv8i16_indexed, 1, MCP::FMLSv8i16_indexed_OP1) ||
3850 Match(AArch64::FMULv8f16, 1, MCP::FMLSv8f16_OP1);
3851 break;
3852 case AArch64::FSUBv2f32:
3853 Found |= Match(AArch64::FMULv2i32_indexed, 2, MCP::FMLSv2i32_indexed_OP2) ||
3854 Match(AArch64::FMULv2f32, 2, MCP::FMLSv2f32_OP2);
3856 Found |= Match(AArch64::FMULv2i32_indexed, 1, MCP::FMLSv2i32_indexed_OP1) ||
3857 Match(AArch64::FMULv2f32, 1, MCP::FMLSv2f32_OP1);
3858 break;
3859 case AArch64::FSUBv2f64:
3860 Found |= Match(AArch64::FMULv2i64_indexed, 2, MCP::FMLSv2i64_indexed_OP2) ||
3861 Match(AArch64::FMULv2f64, 2, MCP::FMLSv2f64_OP2);
3863 Found |= Match(AArch64::FMULv2i64_indexed, 1, MCP::FMLSv2i64_indexed_OP1) ||
3864 Match(AArch64::FMULv2f64, 1, MCP::FMLSv2f64_OP1);
3865 break;
3866 case AArch64::FSUBv4f32:
3867 Found |= Match(AArch64::FMULv4i32_indexed, 2, MCP::FMLSv4i32_indexed_OP2) ||
3868 Match(AArch64::FMULv4f32, 2, MCP::FMLSv4f32_OP2);
3870 Found |= Match(AArch64::FMULv4i32_indexed, 1, MCP::FMLSv4i32_indexed_OP1) ||
3871 Match(AArch64::FMULv4f32, 1, MCP::FMLSv4f32_OP1);
3872 break;
3874 return Found;
3877 /// Return true when a code sequence can improve throughput. It
3878 /// should be called only for instructions in loops.
3879 /// \param Pattern - combiner pattern
3880 bool AArch64InstrInfo::isThroughputPattern(
3881 MachineCombinerPattern Pattern) const {
3882 switch (Pattern) {
3883 default:
3884 break;
3885 case MachineCombinerPattern::FMULADDH_OP1:
3886 case MachineCombinerPattern::FMULADDH_OP2:
3887 case MachineCombinerPattern::FMULSUBH_OP1:
3888 case MachineCombinerPattern::FMULSUBH_OP2:
3889 case MachineCombinerPattern::FMULADDS_OP1:
3890 case MachineCombinerPattern::FMULADDS_OP2:
3891 case MachineCombinerPattern::FMULSUBS_OP1:
3892 case MachineCombinerPattern::FMULSUBS_OP2:
3893 case MachineCombinerPattern::FMULADDD_OP1:
3894 case MachineCombinerPattern::FMULADDD_OP2:
3895 case MachineCombinerPattern::FMULSUBD_OP1:
3896 case MachineCombinerPattern::FMULSUBD_OP2:
3897 case MachineCombinerPattern::FNMULSUBH_OP1:
3898 case MachineCombinerPattern::FNMULSUBS_OP1:
3899 case MachineCombinerPattern::FNMULSUBD_OP1:
3900 case MachineCombinerPattern::FMLAv4i16_indexed_OP1:
3901 case MachineCombinerPattern::FMLAv4i16_indexed_OP2:
3902 case MachineCombinerPattern::FMLAv8i16_indexed_OP1:
3903 case MachineCombinerPattern::FMLAv8i16_indexed_OP2:
3904 case MachineCombinerPattern::FMLAv1i32_indexed_OP1:
3905 case MachineCombinerPattern::FMLAv1i32_indexed_OP2:
3906 case MachineCombinerPattern::FMLAv1i64_indexed_OP1:
3907 case MachineCombinerPattern::FMLAv1i64_indexed_OP2:
3908 case MachineCombinerPattern::FMLAv4f16_OP2:
3909 case MachineCombinerPattern::FMLAv4f16_OP1:
3910 case MachineCombinerPattern::FMLAv8f16_OP1:
3911 case MachineCombinerPattern::FMLAv8f16_OP2:
3912 case MachineCombinerPattern::FMLAv2f32_OP2:
3913 case MachineCombinerPattern::FMLAv2f32_OP1:
3914 case MachineCombinerPattern::FMLAv2f64_OP1:
3915 case MachineCombinerPattern::FMLAv2f64_OP2:
3916 case MachineCombinerPattern::FMLAv2i32_indexed_OP1:
3917 case MachineCombinerPattern::FMLAv2i32_indexed_OP2:
3918 case MachineCombinerPattern::FMLAv2i64_indexed_OP1:
3919 case MachineCombinerPattern::FMLAv2i64_indexed_OP2:
3920 case MachineCombinerPattern::FMLAv4f32_OP1:
3921 case MachineCombinerPattern::FMLAv4f32_OP2:
3922 case MachineCombinerPattern::FMLAv4i32_indexed_OP1:
3923 case MachineCombinerPattern::FMLAv4i32_indexed_OP2:
3924 case MachineCombinerPattern::FMLSv4i16_indexed_OP1:
3925 case MachineCombinerPattern::FMLSv4i16_indexed_OP2:
3926 case MachineCombinerPattern::FMLSv8i16_indexed_OP1:
3927 case MachineCombinerPattern::FMLSv8i16_indexed_OP2:
3928 case MachineCombinerPattern::FMLSv1i32_indexed_OP2:
3929 case MachineCombinerPattern::FMLSv1i64_indexed_OP2:
3930 case MachineCombinerPattern::FMLSv2i32_indexed_OP2:
3931 case MachineCombinerPattern::FMLSv2i64_indexed_OP2:
3932 case MachineCombinerPattern::FMLSv4f16_OP1:
3933 case MachineCombinerPattern::FMLSv4f16_OP2:
3934 case MachineCombinerPattern::FMLSv8f16_OP1:
3935 case MachineCombinerPattern::FMLSv8f16_OP2:
3936 case MachineCombinerPattern::FMLSv2f32_OP2:
3937 case MachineCombinerPattern::FMLSv2f64_OP2:
3938 case MachineCombinerPattern::FMLSv4i32_indexed_OP2:
3939 case MachineCombinerPattern::FMLSv4f32_OP2:
3940 return true;
3941 } // end switch (Pattern)
3942 return false;
3944 /// Return true when there is potentially a faster code sequence for an
3945 /// instruction chain ending in \p Root. All potential patterns are listed in
3946 /// the \p Pattern vector. Pattern should be sorted in priority order since the
3947 /// pattern evaluator stops checking as soon as it finds a faster sequence.
3949 bool AArch64InstrInfo::getMachineCombinerPatterns(
3950 MachineInstr &Root,
3951 SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
3952 // Integer patterns
3953 if (getMaddPatterns(Root, Patterns))
3954 return true;
3955 // Floating point patterns
3956 if (getFMAPatterns(Root, Patterns))
3957 return true;
3959 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
3962 enum class FMAInstKind { Default, Indexed, Accumulator };
3963 /// genFusedMultiply - Generate fused multiply instructions.
3964 /// This function supports both integer and floating point instructions.
3965 /// A typical example:
3966 /// F|MUL I=A,B,0
3967 /// F|ADD R,I,C
3968 /// ==> F|MADD R,A,B,C
3969 /// \param MF Containing MachineFunction
3970 /// \param MRI Register information
3971 /// \param TII Target information
3972 /// \param Root is the F|ADD instruction
3973 /// \param [out] InsInstrs is a vector of machine instructions and will
3974 /// contain the generated madd instruction
3975 /// \param IdxMulOpd is index of operand in Root that is the result of
3976 /// the F|MUL. In the example above IdxMulOpd is 1.
3977 /// \param MaddOpc the opcode fo the f|madd instruction
3978 /// \param RC Register class of operands
3979 /// \param kind of fma instruction (addressing mode) to be generated
3980 /// \param ReplacedAddend is the result register from the instruction
3981 /// replacing the non-combined operand, if any.
3982 static MachineInstr *
3983 genFusedMultiply(MachineFunction &MF, MachineRegisterInfo &MRI,
3984 const TargetInstrInfo *TII, MachineInstr &Root,
3985 SmallVectorImpl<MachineInstr *> &InsInstrs, unsigned IdxMulOpd,
3986 unsigned MaddOpc, const TargetRegisterClass *RC,
3987 FMAInstKind kind = FMAInstKind::Default,
3988 const Register *ReplacedAddend = nullptr) {
3989 assert(IdxMulOpd == 1 || IdxMulOpd == 2);
3991 unsigned IdxOtherOpd = IdxMulOpd == 1 ? 2 : 1;
3992 MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg());
3993 Register ResultReg = Root.getOperand(0).getReg();
3994 Register SrcReg0 = MUL->getOperand(1).getReg();
3995 bool Src0IsKill = MUL->getOperand(1).isKill();
3996 Register SrcReg1 = MUL->getOperand(2).getReg();
3997 bool Src1IsKill = MUL->getOperand(2).isKill();
3999 unsigned SrcReg2;
4000 bool Src2IsKill;
4001 if (ReplacedAddend) {
4002 // If we just generated a new addend, we must be it's only use.
4003 SrcReg2 = *ReplacedAddend;
4004 Src2IsKill = true;
4005 } else {
4006 SrcReg2 = Root.getOperand(IdxOtherOpd).getReg();
4007 Src2IsKill = Root.getOperand(IdxOtherOpd).isKill();
4010 if (Register::isVirtualRegister(ResultReg))
4011 MRI.constrainRegClass(ResultReg, RC);
4012 if (Register::isVirtualRegister(SrcReg0))
4013 MRI.constrainRegClass(SrcReg0, RC);
4014 if (Register::isVirtualRegister(SrcReg1))
4015 MRI.constrainRegClass(SrcReg1, RC);
4016 if (Register::isVirtualRegister(SrcReg2))
4017 MRI.constrainRegClass(SrcReg2, RC);
4019 MachineInstrBuilder MIB;
4020 if (kind == FMAInstKind::Default)
4021 MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg)
4022 .addReg(SrcReg0, getKillRegState(Src0IsKill))
4023 .addReg(SrcReg1, getKillRegState(Src1IsKill))
4024 .addReg(SrcReg2, getKillRegState(Src2IsKill));
4025 else if (kind == FMAInstKind::Indexed)
4026 MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg)
4027 .addReg(SrcReg2, getKillRegState(Src2IsKill))
4028 .addReg(SrcReg0, getKillRegState(Src0IsKill))
4029 .addReg(SrcReg1, getKillRegState(Src1IsKill))
4030 .addImm(MUL->getOperand(3).getImm());
4031 else if (kind == FMAInstKind::Accumulator)
4032 MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg)
4033 .addReg(SrcReg2, getKillRegState(Src2IsKill))
4034 .addReg(SrcReg0, getKillRegState(Src0IsKill))
4035 .addReg(SrcReg1, getKillRegState(Src1IsKill));
4036 else
4037 assert(false && "Invalid FMA instruction kind \n");
4038 // Insert the MADD (MADD, FMA, FMS, FMLA, FMSL)
4039 InsInstrs.push_back(MIB);
4040 return MUL;
4043 /// genMaddR - Generate madd instruction and combine mul and add using
4044 /// an extra virtual register
4045 /// Example - an ADD intermediate needs to be stored in a register:
4046 /// MUL I=A,B,0
4047 /// ADD R,I,Imm
4048 /// ==> ORR V, ZR, Imm
4049 /// ==> MADD R,A,B,V
4050 /// \param MF Containing MachineFunction
4051 /// \param MRI Register information
4052 /// \param TII Target information
4053 /// \param Root is the ADD instruction
4054 /// \param [out] InsInstrs is a vector of machine instructions and will
4055 /// contain the generated madd instruction
4056 /// \param IdxMulOpd is index of operand in Root that is the result of
4057 /// the MUL. In the example above IdxMulOpd is 1.
4058 /// \param MaddOpc the opcode fo the madd instruction
4059 /// \param VR is a virtual register that holds the value of an ADD operand
4060 /// (V in the example above).
4061 /// \param RC Register class of operands
4062 static MachineInstr *genMaddR(MachineFunction &MF, MachineRegisterInfo &MRI,
4063 const TargetInstrInfo *TII, MachineInstr &Root,
4064 SmallVectorImpl<MachineInstr *> &InsInstrs,
4065 unsigned IdxMulOpd, unsigned MaddOpc, unsigned VR,
4066 const TargetRegisterClass *RC) {
4067 assert(IdxMulOpd == 1 || IdxMulOpd == 2);
4069 MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg());
4070 Register ResultReg = Root.getOperand(0).getReg();
4071 Register SrcReg0 = MUL->getOperand(1).getReg();
4072 bool Src0IsKill = MUL->getOperand(1).isKill();
4073 Register SrcReg1 = MUL->getOperand(2).getReg();
4074 bool Src1IsKill = MUL->getOperand(2).isKill();
4076 if (Register::isVirtualRegister(ResultReg))
4077 MRI.constrainRegClass(ResultReg, RC);
4078 if (Register::isVirtualRegister(SrcReg0))
4079 MRI.constrainRegClass(SrcReg0, RC);
4080 if (Register::isVirtualRegister(SrcReg1))
4081 MRI.constrainRegClass(SrcReg1, RC);
4082 if (Register::isVirtualRegister(VR))
4083 MRI.constrainRegClass(VR, RC);
4085 MachineInstrBuilder MIB =
4086 BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg)
4087 .addReg(SrcReg0, getKillRegState(Src0IsKill))
4088 .addReg(SrcReg1, getKillRegState(Src1IsKill))
4089 .addReg(VR);
4090 // Insert the MADD
4091 InsInstrs.push_back(MIB);
4092 return MUL;
4095 /// When getMachineCombinerPatterns() finds potential patterns,
4096 /// this function generates the instructions that could replace the
4097 /// original code sequence
4098 void AArch64InstrInfo::genAlternativeCodeSequence(
4099 MachineInstr &Root, MachineCombinerPattern Pattern,
4100 SmallVectorImpl<MachineInstr *> &InsInstrs,
4101 SmallVectorImpl<MachineInstr *> &DelInstrs,
4102 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
4103 MachineBasicBlock &MBB = *Root.getParent();
4104 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
4105 MachineFunction &MF = *MBB.getParent();
4106 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
4108 MachineInstr *MUL;
4109 const TargetRegisterClass *RC;
4110 unsigned Opc;
4111 switch (Pattern) {
4112 default:
4113 // Reassociate instructions.
4114 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
4115 DelInstrs, InstrIdxForVirtReg);
4116 return;
4117 case MachineCombinerPattern::MULADDW_OP1:
4118 case MachineCombinerPattern::MULADDX_OP1:
4119 // MUL I=A,B,0
4120 // ADD R,I,C
4121 // ==> MADD R,A,B,C
4122 // --- Create(MADD);
4123 if (Pattern == MachineCombinerPattern::MULADDW_OP1) {
4124 Opc = AArch64::MADDWrrr;
4125 RC = &AArch64::GPR32RegClass;
4126 } else {
4127 Opc = AArch64::MADDXrrr;
4128 RC = &AArch64::GPR64RegClass;
4130 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
4131 break;
4132 case MachineCombinerPattern::MULADDW_OP2:
4133 case MachineCombinerPattern::MULADDX_OP2:
4134 // MUL I=A,B,0
4135 // ADD R,C,I
4136 // ==> MADD R,A,B,C
4137 // --- Create(MADD);
4138 if (Pattern == MachineCombinerPattern::MULADDW_OP2) {
4139 Opc = AArch64::MADDWrrr;
4140 RC = &AArch64::GPR32RegClass;
4141 } else {
4142 Opc = AArch64::MADDXrrr;
4143 RC = &AArch64::GPR64RegClass;
4145 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
4146 break;
4147 case MachineCombinerPattern::MULADDWI_OP1:
4148 case MachineCombinerPattern::MULADDXI_OP1: {
4149 // MUL I=A,B,0
4150 // ADD R,I,Imm
4151 // ==> ORR V, ZR, Imm
4152 // ==> MADD R,A,B,V
4153 // --- Create(MADD);
4154 const TargetRegisterClass *OrrRC;
4155 unsigned BitSize, OrrOpc, ZeroReg;
4156 if (Pattern == MachineCombinerPattern::MULADDWI_OP1) {
4157 OrrOpc = AArch64::ORRWri;
4158 OrrRC = &AArch64::GPR32spRegClass;
4159 BitSize = 32;
4160 ZeroReg = AArch64::WZR;
4161 Opc = AArch64::MADDWrrr;
4162 RC = &AArch64::GPR32RegClass;
4163 } else {
4164 OrrOpc = AArch64::ORRXri;
4165 OrrRC = &AArch64::GPR64spRegClass;
4166 BitSize = 64;
4167 ZeroReg = AArch64::XZR;
4168 Opc = AArch64::MADDXrrr;
4169 RC = &AArch64::GPR64RegClass;
4171 Register NewVR = MRI.createVirtualRegister(OrrRC);
4172 uint64_t Imm = Root.getOperand(2).getImm();
4174 if (Root.getOperand(3).isImm()) {
4175 unsigned Val = Root.getOperand(3).getImm();
4176 Imm = Imm << Val;
4178 uint64_t UImm = SignExtend64(Imm, BitSize);
4179 uint64_t Encoding;
4180 if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
4181 MachineInstrBuilder MIB1 =
4182 BuildMI(MF, Root.getDebugLoc(), TII->get(OrrOpc), NewVR)
4183 .addReg(ZeroReg)
4184 .addImm(Encoding);
4185 InsInstrs.push_back(MIB1);
4186 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
4187 MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
4189 break;
4191 case MachineCombinerPattern::MULSUBW_OP1:
4192 case MachineCombinerPattern::MULSUBX_OP1: {
4193 // MUL I=A,B,0
4194 // SUB R,I, C
4195 // ==> SUB V, 0, C
4196 // ==> MADD R,A,B,V // = -C + A*B
4197 // --- Create(MADD);
4198 const TargetRegisterClass *SubRC;
4199 unsigned SubOpc, ZeroReg;
4200 if (Pattern == MachineCombinerPattern::MULSUBW_OP1) {
4201 SubOpc = AArch64::SUBWrr;
4202 SubRC = &AArch64::GPR32spRegClass;
4203 ZeroReg = AArch64::WZR;
4204 Opc = AArch64::MADDWrrr;
4205 RC = &AArch64::GPR32RegClass;
4206 } else {
4207 SubOpc = AArch64::SUBXrr;
4208 SubRC = &AArch64::GPR64spRegClass;
4209 ZeroReg = AArch64::XZR;
4210 Opc = AArch64::MADDXrrr;
4211 RC = &AArch64::GPR64RegClass;
4213 Register NewVR = MRI.createVirtualRegister(SubRC);
4214 // SUB NewVR, 0, C
4215 MachineInstrBuilder MIB1 =
4216 BuildMI(MF, Root.getDebugLoc(), TII->get(SubOpc), NewVR)
4217 .addReg(ZeroReg)
4218 .add(Root.getOperand(2));
4219 InsInstrs.push_back(MIB1);
4220 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
4221 MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
4222 break;
4224 case MachineCombinerPattern::MULSUBW_OP2:
4225 case MachineCombinerPattern::MULSUBX_OP2:
4226 // MUL I=A,B,0
4227 // SUB R,C,I
4228 // ==> MSUB R,A,B,C (computes C - A*B)
4229 // --- Create(MSUB);
4230 if (Pattern == MachineCombinerPattern::MULSUBW_OP2) {
4231 Opc = AArch64::MSUBWrrr;
4232 RC = &AArch64::GPR32RegClass;
4233 } else {
4234 Opc = AArch64::MSUBXrrr;
4235 RC = &AArch64::GPR64RegClass;
4237 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
4238 break;
4239 case MachineCombinerPattern::MULSUBWI_OP1:
4240 case MachineCombinerPattern::MULSUBXI_OP1: {
4241 // MUL I=A,B,0
4242 // SUB R,I, Imm
4243 // ==> ORR V, ZR, -Imm
4244 // ==> MADD R,A,B,V // = -Imm + A*B
4245 // --- Create(MADD);
4246 const TargetRegisterClass *OrrRC;
4247 unsigned BitSize, OrrOpc, ZeroReg;
4248 if (Pattern == MachineCombinerPattern::MULSUBWI_OP1) {
4249 OrrOpc = AArch64::ORRWri;
4250 OrrRC = &AArch64::GPR32spRegClass;
4251 BitSize = 32;
4252 ZeroReg = AArch64::WZR;
4253 Opc = AArch64::MADDWrrr;
4254 RC = &AArch64::GPR32RegClass;
4255 } else {
4256 OrrOpc = AArch64::ORRXri;
4257 OrrRC = &AArch64::GPR64spRegClass;
4258 BitSize = 64;
4259 ZeroReg = AArch64::XZR;
4260 Opc = AArch64::MADDXrrr;
4261 RC = &AArch64::GPR64RegClass;
4263 Register NewVR = MRI.createVirtualRegister(OrrRC);
4264 uint64_t Imm = Root.getOperand(2).getImm();
4265 if (Root.getOperand(3).isImm()) {
4266 unsigned Val = Root.getOperand(3).getImm();
4267 Imm = Imm << Val;
4269 uint64_t UImm = SignExtend64(-Imm, BitSize);
4270 uint64_t Encoding;
4271 if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
4272 MachineInstrBuilder MIB1 =
4273 BuildMI(MF, Root.getDebugLoc(), TII->get(OrrOpc), NewVR)
4274 .addReg(ZeroReg)
4275 .addImm(Encoding);
4276 InsInstrs.push_back(MIB1);
4277 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
4278 MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
4280 break;
4282 // Floating Point Support
4283 case MachineCombinerPattern::FMULADDH_OP1:
4284 Opc = AArch64::FMADDHrrr;
4285 RC = &AArch64::FPR16RegClass;
4286 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
4287 break;
4288 case MachineCombinerPattern::FMULADDS_OP1:
4289 Opc = AArch64::FMADDSrrr;
4290 RC = &AArch64::FPR32RegClass;
4291 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
4292 break;
4293 case MachineCombinerPattern::FMULADDD_OP1:
4294 Opc = AArch64::FMADDDrrr;
4295 RC = &AArch64::FPR64RegClass;
4296 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
4297 break;
4299 case MachineCombinerPattern::FMULADDH_OP2:
4300 Opc = AArch64::FMADDHrrr;
4301 RC = &AArch64::FPR16RegClass;
4302 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
4303 break;
4304 case MachineCombinerPattern::FMULADDS_OP2:
4305 Opc = AArch64::FMADDSrrr;
4306 RC = &AArch64::FPR32RegClass;
4307 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
4308 break;
4309 case MachineCombinerPattern::FMULADDD_OP2:
4310 Opc = AArch64::FMADDDrrr;
4311 RC = &AArch64::FPR64RegClass;
4312 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
4313 break;
4315 case MachineCombinerPattern::FMLAv1i32_indexed_OP1:
4316 Opc = AArch64::FMLAv1i32_indexed;
4317 RC = &AArch64::FPR32RegClass;
4318 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4319 FMAInstKind::Indexed);
4320 break;
4321 case MachineCombinerPattern::FMLAv1i32_indexed_OP2:
4322 Opc = AArch64::FMLAv1i32_indexed;
4323 RC = &AArch64::FPR32RegClass;
4324 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4325 FMAInstKind::Indexed);
4326 break;
4328 case MachineCombinerPattern::FMLAv1i64_indexed_OP1:
4329 Opc = AArch64::FMLAv1i64_indexed;
4330 RC = &AArch64::FPR64RegClass;
4331 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4332 FMAInstKind::Indexed);
4333 break;
4334 case MachineCombinerPattern::FMLAv1i64_indexed_OP2:
4335 Opc = AArch64::FMLAv1i64_indexed;
4336 RC = &AArch64::FPR64RegClass;
4337 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4338 FMAInstKind::Indexed);
4339 break;
4341 case MachineCombinerPattern::FMLAv4i16_indexed_OP1:
4342 RC = &AArch64::FPR64RegClass;
4343 Opc = AArch64::FMLAv4i16_indexed;
4344 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4345 FMAInstKind::Indexed);
4346 break;
4347 case MachineCombinerPattern::FMLAv4f16_OP1:
4348 RC = &AArch64::FPR64RegClass;
4349 Opc = AArch64::FMLAv4f16;
4350 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4351 FMAInstKind::Accumulator);
4352 break;
4353 case MachineCombinerPattern::FMLAv4i16_indexed_OP2:
4354 RC = &AArch64::FPR64RegClass;
4355 Opc = AArch64::FMLAv4i16_indexed;
4356 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4357 FMAInstKind::Indexed);
4358 break;
4359 case MachineCombinerPattern::FMLAv4f16_OP2:
4360 RC = &AArch64::FPR64RegClass;
4361 Opc = AArch64::FMLAv4f16;
4362 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4363 FMAInstKind::Accumulator);
4364 break;
4366 case MachineCombinerPattern::FMLAv2i32_indexed_OP1:
4367 case MachineCombinerPattern::FMLAv2f32_OP1:
4368 RC = &AArch64::FPR64RegClass;
4369 if (Pattern == MachineCombinerPattern::FMLAv2i32_indexed_OP1) {
4370 Opc = AArch64::FMLAv2i32_indexed;
4371 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4372 FMAInstKind::Indexed);
4373 } else {
4374 Opc = AArch64::FMLAv2f32;
4375 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4376 FMAInstKind::Accumulator);
4378 break;
4379 case MachineCombinerPattern::FMLAv2i32_indexed_OP2:
4380 case MachineCombinerPattern::FMLAv2f32_OP2:
4381 RC = &AArch64::FPR64RegClass;
4382 if (Pattern == MachineCombinerPattern::FMLAv2i32_indexed_OP2) {
4383 Opc = AArch64::FMLAv2i32_indexed;
4384 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4385 FMAInstKind::Indexed);
4386 } else {
4387 Opc = AArch64::FMLAv2f32;
4388 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4389 FMAInstKind::Accumulator);
4391 break;
4393 case MachineCombinerPattern::FMLAv8i16_indexed_OP1:
4394 RC = &AArch64::FPR128RegClass;
4395 Opc = AArch64::FMLAv8i16_indexed;
4396 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4397 FMAInstKind::Indexed);
4398 break;
4399 case MachineCombinerPattern::FMLAv8f16_OP1:
4400 RC = &AArch64::FPR128RegClass;
4401 Opc = AArch64::FMLAv8f16;
4402 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4403 FMAInstKind::Accumulator);
4404 break;
4405 case MachineCombinerPattern::FMLAv8i16_indexed_OP2:
4406 RC = &AArch64::FPR128RegClass;
4407 Opc = AArch64::FMLAv8i16_indexed;
4408 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4409 FMAInstKind::Indexed);
4410 break;
4411 case MachineCombinerPattern::FMLAv8f16_OP2:
4412 RC = &AArch64::FPR128RegClass;
4413 Opc = AArch64::FMLAv8f16;
4414 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4415 FMAInstKind::Accumulator);
4416 break;
4418 case MachineCombinerPattern::FMLAv2i64_indexed_OP1:
4419 case MachineCombinerPattern::FMLAv2f64_OP1:
4420 RC = &AArch64::FPR128RegClass;
4421 if (Pattern == MachineCombinerPattern::FMLAv2i64_indexed_OP1) {
4422 Opc = AArch64::FMLAv2i64_indexed;
4423 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4424 FMAInstKind::Indexed);
4425 } else {
4426 Opc = AArch64::FMLAv2f64;
4427 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4428 FMAInstKind::Accumulator);
4430 break;
4431 case MachineCombinerPattern::FMLAv2i64_indexed_OP2:
4432 case MachineCombinerPattern::FMLAv2f64_OP2:
4433 RC = &AArch64::FPR128RegClass;
4434 if (Pattern == MachineCombinerPattern::FMLAv2i64_indexed_OP2) {
4435 Opc = AArch64::FMLAv2i64_indexed;
4436 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4437 FMAInstKind::Indexed);
4438 } else {
4439 Opc = AArch64::FMLAv2f64;
4440 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4441 FMAInstKind::Accumulator);
4443 break;
4445 case MachineCombinerPattern::FMLAv4i32_indexed_OP1:
4446 case MachineCombinerPattern::FMLAv4f32_OP1:
4447 RC = &AArch64::FPR128RegClass;
4448 if (Pattern == MachineCombinerPattern::FMLAv4i32_indexed_OP1) {
4449 Opc = AArch64::FMLAv4i32_indexed;
4450 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4451 FMAInstKind::Indexed);
4452 } else {
4453 Opc = AArch64::FMLAv4f32;
4454 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4455 FMAInstKind::Accumulator);
4457 break;
4459 case MachineCombinerPattern::FMLAv4i32_indexed_OP2:
4460 case MachineCombinerPattern::FMLAv4f32_OP2:
4461 RC = &AArch64::FPR128RegClass;
4462 if (Pattern == MachineCombinerPattern::FMLAv4i32_indexed_OP2) {
4463 Opc = AArch64::FMLAv4i32_indexed;
4464 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4465 FMAInstKind::Indexed);
4466 } else {
4467 Opc = AArch64::FMLAv4f32;
4468 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4469 FMAInstKind::Accumulator);
4471 break;
4473 case MachineCombinerPattern::FMULSUBH_OP1:
4474 Opc = AArch64::FNMSUBHrrr;
4475 RC = &AArch64::FPR16RegClass;
4476 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
4477 break;
4478 case MachineCombinerPattern::FMULSUBS_OP1:
4479 Opc = AArch64::FNMSUBSrrr;
4480 RC = &AArch64::FPR32RegClass;
4481 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
4482 break;
4483 case MachineCombinerPattern::FMULSUBD_OP1:
4484 Opc = AArch64::FNMSUBDrrr;
4485 RC = &AArch64::FPR64RegClass;
4486 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
4487 break;
4489 case MachineCombinerPattern::FNMULSUBH_OP1:
4490 Opc = AArch64::FNMADDHrrr;
4491 RC = &AArch64::FPR16RegClass;
4492 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
4493 break;
4494 case MachineCombinerPattern::FNMULSUBS_OP1:
4495 Opc = AArch64::FNMADDSrrr;
4496 RC = &AArch64::FPR32RegClass;
4497 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
4498 break;
4499 case MachineCombinerPattern::FNMULSUBD_OP1:
4500 Opc = AArch64::FNMADDDrrr;
4501 RC = &AArch64::FPR64RegClass;
4502 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
4503 break;
4505 case MachineCombinerPattern::FMULSUBH_OP2:
4506 Opc = AArch64::FMSUBHrrr;
4507 RC = &AArch64::FPR16RegClass;
4508 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
4509 break;
4510 case MachineCombinerPattern::FMULSUBS_OP2:
4511 Opc = AArch64::FMSUBSrrr;
4512 RC = &AArch64::FPR32RegClass;
4513 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
4514 break;
4515 case MachineCombinerPattern::FMULSUBD_OP2:
4516 Opc = AArch64::FMSUBDrrr;
4517 RC = &AArch64::FPR64RegClass;
4518 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
4519 break;
4521 case MachineCombinerPattern::FMLSv1i32_indexed_OP2:
4522 Opc = AArch64::FMLSv1i32_indexed;
4523 RC = &AArch64::FPR32RegClass;
4524 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4525 FMAInstKind::Indexed);
4526 break;
4528 case MachineCombinerPattern::FMLSv1i64_indexed_OP2:
4529 Opc = AArch64::FMLSv1i64_indexed;
4530 RC = &AArch64::FPR64RegClass;
4531 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4532 FMAInstKind::Indexed);
4533 break;
4535 case MachineCombinerPattern::FMLSv4f16_OP1:
4536 case MachineCombinerPattern::FMLSv4i16_indexed_OP1: {
4537 RC = &AArch64::FPR64RegClass;
4538 Register NewVR = MRI.createVirtualRegister(RC);
4539 MachineInstrBuilder MIB1 =
4540 BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv4f16), NewVR)
4541 .add(Root.getOperand(2));
4542 InsInstrs.push_back(MIB1);
4543 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
4544 if (Pattern == MachineCombinerPattern::FMLSv4f16_OP1) {
4545 Opc = AArch64::FMLAv4f16;
4546 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4547 FMAInstKind::Accumulator, &NewVR);
4548 } else {
4549 Opc = AArch64::FMLAv4i16_indexed;
4550 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4551 FMAInstKind::Indexed, &NewVR);
4553 break;
4555 case MachineCombinerPattern::FMLSv4f16_OP2:
4556 RC = &AArch64::FPR64RegClass;
4557 Opc = AArch64::FMLSv4f16;
4558 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4559 FMAInstKind::Accumulator);
4560 break;
4561 case MachineCombinerPattern::FMLSv4i16_indexed_OP2:
4562 RC = &AArch64::FPR64RegClass;
4563 Opc = AArch64::FMLSv4i16_indexed;
4564 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4565 FMAInstKind::Indexed);
4566 break;
4568 case MachineCombinerPattern::FMLSv2f32_OP2:
4569 case MachineCombinerPattern::FMLSv2i32_indexed_OP2:
4570 RC = &AArch64::FPR64RegClass;
4571 if (Pattern == MachineCombinerPattern::FMLSv2i32_indexed_OP2) {
4572 Opc = AArch64::FMLSv2i32_indexed;
4573 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4574 FMAInstKind::Indexed);
4575 } else {
4576 Opc = AArch64::FMLSv2f32;
4577 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4578 FMAInstKind::Accumulator);
4580 break;
4582 case MachineCombinerPattern::FMLSv8f16_OP1:
4583 case MachineCombinerPattern::FMLSv8i16_indexed_OP1: {
4584 RC = &AArch64::FPR128RegClass;
4585 Register NewVR = MRI.createVirtualRegister(RC);
4586 MachineInstrBuilder MIB1 =
4587 BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv8f16), NewVR)
4588 .add(Root.getOperand(2));
4589 InsInstrs.push_back(MIB1);
4590 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
4591 if (Pattern == MachineCombinerPattern::FMLSv8f16_OP1) {
4592 Opc = AArch64::FMLAv8f16;
4593 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4594 FMAInstKind::Accumulator, &NewVR);
4595 } else {
4596 Opc = AArch64::FMLAv8i16_indexed;
4597 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4598 FMAInstKind::Indexed, &NewVR);
4600 break;
4602 case MachineCombinerPattern::FMLSv8f16_OP2:
4603 RC = &AArch64::FPR128RegClass;
4604 Opc = AArch64::FMLSv8f16;
4605 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4606 FMAInstKind::Accumulator);
4607 break;
4608 case MachineCombinerPattern::FMLSv8i16_indexed_OP2:
4609 RC = &AArch64::FPR128RegClass;
4610 Opc = AArch64::FMLSv8i16_indexed;
4611 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4612 FMAInstKind::Indexed);
4613 break;
4615 case MachineCombinerPattern::FMLSv2f64_OP2:
4616 case MachineCombinerPattern::FMLSv2i64_indexed_OP2:
4617 RC = &AArch64::FPR128RegClass;
4618 if (Pattern == MachineCombinerPattern::FMLSv2i64_indexed_OP2) {
4619 Opc = AArch64::FMLSv2i64_indexed;
4620 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4621 FMAInstKind::Indexed);
4622 } else {
4623 Opc = AArch64::FMLSv2f64;
4624 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4625 FMAInstKind::Accumulator);
4627 break;
4629 case MachineCombinerPattern::FMLSv4f32_OP2:
4630 case MachineCombinerPattern::FMLSv4i32_indexed_OP2:
4631 RC = &AArch64::FPR128RegClass;
4632 if (Pattern == MachineCombinerPattern::FMLSv4i32_indexed_OP2) {
4633 Opc = AArch64::FMLSv4i32_indexed;
4634 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4635 FMAInstKind::Indexed);
4636 } else {
4637 Opc = AArch64::FMLSv4f32;
4638 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4639 FMAInstKind::Accumulator);
4641 break;
4642 case MachineCombinerPattern::FMLSv2f32_OP1:
4643 case MachineCombinerPattern::FMLSv2i32_indexed_OP1: {
4644 RC = &AArch64::FPR64RegClass;
4645 Register NewVR = MRI.createVirtualRegister(RC);
4646 MachineInstrBuilder MIB1 =
4647 BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv2f32), NewVR)
4648 .add(Root.getOperand(2));
4649 InsInstrs.push_back(MIB1);
4650 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
4651 if (Pattern == MachineCombinerPattern::FMLSv2i32_indexed_OP1) {
4652 Opc = AArch64::FMLAv2i32_indexed;
4653 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4654 FMAInstKind::Indexed, &NewVR);
4655 } else {
4656 Opc = AArch64::FMLAv2f32;
4657 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4658 FMAInstKind::Accumulator, &NewVR);
4660 break;
4662 case MachineCombinerPattern::FMLSv4f32_OP1:
4663 case MachineCombinerPattern::FMLSv4i32_indexed_OP1: {
4664 RC = &AArch64::FPR128RegClass;
4665 Register NewVR = MRI.createVirtualRegister(RC);
4666 MachineInstrBuilder MIB1 =
4667 BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv4f32), NewVR)
4668 .add(Root.getOperand(2));
4669 InsInstrs.push_back(MIB1);
4670 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
4671 if (Pattern == MachineCombinerPattern::FMLSv4i32_indexed_OP1) {
4672 Opc = AArch64::FMLAv4i32_indexed;
4673 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4674 FMAInstKind::Indexed, &NewVR);
4675 } else {
4676 Opc = AArch64::FMLAv4f32;
4677 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4678 FMAInstKind::Accumulator, &NewVR);
4680 break;
4682 case MachineCombinerPattern::FMLSv2f64_OP1:
4683 case MachineCombinerPattern::FMLSv2i64_indexed_OP1: {
4684 RC = &AArch64::FPR128RegClass;
4685 Register NewVR = MRI.createVirtualRegister(RC);
4686 MachineInstrBuilder MIB1 =
4687 BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv2f64), NewVR)
4688 .add(Root.getOperand(2));
4689 InsInstrs.push_back(MIB1);
4690 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
4691 if (Pattern == MachineCombinerPattern::FMLSv2i64_indexed_OP1) {
4692 Opc = AArch64::FMLAv2i64_indexed;
4693 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4694 FMAInstKind::Indexed, &NewVR);
4695 } else {
4696 Opc = AArch64::FMLAv2f64;
4697 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4698 FMAInstKind::Accumulator, &NewVR);
4700 break;
4702 } // end switch (Pattern)
4703 // Record MUL and ADD/SUB for deletion
4704 DelInstrs.push_back(MUL);
4705 DelInstrs.push_back(&Root);
4708 /// Replace csincr-branch sequence by simple conditional branch
4710 /// Examples:
4711 /// 1. \code
4712 /// csinc w9, wzr, wzr, <condition code>
4713 /// tbnz w9, #0, 0x44
4714 /// \endcode
4715 /// to
4716 /// \code
4717 /// b.<inverted condition code>
4718 /// \endcode
4720 /// 2. \code
4721 /// csinc w9, wzr, wzr, <condition code>
4722 /// tbz w9, #0, 0x44
4723 /// \endcode
4724 /// to
4725 /// \code
4726 /// b.<condition code>
4727 /// \endcode
4729 /// Replace compare and branch sequence by TBZ/TBNZ instruction when the
4730 /// compare's constant operand is power of 2.
4732 /// Examples:
4733 /// \code
4734 /// and w8, w8, #0x400
4735 /// cbnz w8, L1
4736 /// \endcode
4737 /// to
4738 /// \code
4739 /// tbnz w8, #10, L1
4740 /// \endcode
4742 /// \param MI Conditional Branch
4743 /// \return True when the simple conditional branch is generated
4745 bool AArch64InstrInfo::optimizeCondBranch(MachineInstr &MI) const {
4746 bool IsNegativeBranch = false;
4747 bool IsTestAndBranch = false;
4748 unsigned TargetBBInMI = 0;
4749 switch (MI.getOpcode()) {
4750 default:
4751 llvm_unreachable("Unknown branch instruction?");
4752 case AArch64::Bcc:
4753 return false;
4754 case AArch64::CBZW:
4755 case AArch64::CBZX:
4756 TargetBBInMI = 1;
4757 break;
4758 case AArch64::CBNZW:
4759 case AArch64::CBNZX:
4760 TargetBBInMI = 1;
4761 IsNegativeBranch = true;
4762 break;
4763 case AArch64::TBZW:
4764 case AArch64::TBZX:
4765 TargetBBInMI = 2;
4766 IsTestAndBranch = true;
4767 break;
4768 case AArch64::TBNZW:
4769 case AArch64::TBNZX:
4770 TargetBBInMI = 2;
4771 IsNegativeBranch = true;
4772 IsTestAndBranch = true;
4773 break;
4775 // So we increment a zero register and test for bits other
4776 // than bit 0? Conservatively bail out in case the verifier
4777 // missed this case.
4778 if (IsTestAndBranch && MI.getOperand(1).getImm())
4779 return false;
4781 // Find Definition.
4782 assert(MI.getParent() && "Incomplete machine instruciton\n");
4783 MachineBasicBlock *MBB = MI.getParent();
4784 MachineFunction *MF = MBB->getParent();
4785 MachineRegisterInfo *MRI = &MF->getRegInfo();
4786 Register VReg = MI.getOperand(0).getReg();
4787 if (!Register::isVirtualRegister(VReg))
4788 return false;
4790 MachineInstr *DefMI = MRI->getVRegDef(VReg);
4792 // Look through COPY instructions to find definition.
4793 while (DefMI->isCopy()) {
4794 Register CopyVReg = DefMI->getOperand(1).getReg();
4795 if (!MRI->hasOneNonDBGUse(CopyVReg))
4796 return false;
4797 if (!MRI->hasOneDef(CopyVReg))
4798 return false;
4799 DefMI = MRI->getVRegDef(CopyVReg);
4802 switch (DefMI->getOpcode()) {
4803 default:
4804 return false;
4805 // Fold AND into a TBZ/TBNZ if constant operand is power of 2.
4806 case AArch64::ANDWri:
4807 case AArch64::ANDXri: {
4808 if (IsTestAndBranch)
4809 return false;
4810 if (DefMI->getParent() != MBB)
4811 return false;
4812 if (!MRI->hasOneNonDBGUse(VReg))
4813 return false;
4815 bool Is32Bit = (DefMI->getOpcode() == AArch64::ANDWri);
4816 uint64_t Mask = AArch64_AM::decodeLogicalImmediate(
4817 DefMI->getOperand(2).getImm(), Is32Bit ? 32 : 64);
4818 if (!isPowerOf2_64(Mask))
4819 return false;
4821 MachineOperand &MO = DefMI->getOperand(1);
4822 Register NewReg = MO.getReg();
4823 if (!Register::isVirtualRegister(NewReg))
4824 return false;
4826 assert(!MRI->def_empty(NewReg) && "Register must be defined.");
4828 MachineBasicBlock &RefToMBB = *MBB;
4829 MachineBasicBlock *TBB = MI.getOperand(1).getMBB();
4830 DebugLoc DL = MI.getDebugLoc();
4831 unsigned Imm = Log2_64(Mask);
4832 unsigned Opc = (Imm < 32)
4833 ? (IsNegativeBranch ? AArch64::TBNZW : AArch64::TBZW)
4834 : (IsNegativeBranch ? AArch64::TBNZX : AArch64::TBZX);
4835 MachineInstr *NewMI = BuildMI(RefToMBB, MI, DL, get(Opc))
4836 .addReg(NewReg)
4837 .addImm(Imm)
4838 .addMBB(TBB);
4839 // Register lives on to the CBZ now.
4840 MO.setIsKill(false);
4842 // For immediate smaller than 32, we need to use the 32-bit
4843 // variant (W) in all cases. Indeed the 64-bit variant does not
4844 // allow to encode them.
4845 // Therefore, if the input register is 64-bit, we need to take the
4846 // 32-bit sub-part.
4847 if (!Is32Bit && Imm < 32)
4848 NewMI->getOperand(0).setSubReg(AArch64::sub_32);
4849 MI.eraseFromParent();
4850 return true;
4852 // Look for CSINC
4853 case AArch64::CSINCWr:
4854 case AArch64::CSINCXr: {
4855 if (!(DefMI->getOperand(1).getReg() == AArch64::WZR &&
4856 DefMI->getOperand(2).getReg() == AArch64::WZR) &&
4857 !(DefMI->getOperand(1).getReg() == AArch64::XZR &&
4858 DefMI->getOperand(2).getReg() == AArch64::XZR))
4859 return false;
4861 if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) != -1)
4862 return false;
4864 AArch64CC::CondCode CC = (AArch64CC::CondCode)DefMI->getOperand(3).getImm();
4865 // Convert only when the condition code is not modified between
4866 // the CSINC and the branch. The CC may be used by other
4867 // instructions in between.
4868 if (areCFlagsAccessedBetweenInstrs(DefMI, MI, &getRegisterInfo(), AK_Write))
4869 return false;
4870 MachineBasicBlock &RefToMBB = *MBB;
4871 MachineBasicBlock *TBB = MI.getOperand(TargetBBInMI).getMBB();
4872 DebugLoc DL = MI.getDebugLoc();
4873 if (IsNegativeBranch)
4874 CC = AArch64CC::getInvertedCondCode(CC);
4875 BuildMI(RefToMBB, MI, DL, get(AArch64::Bcc)).addImm(CC).addMBB(TBB);
4876 MI.eraseFromParent();
4877 return true;
4882 std::pair<unsigned, unsigned>
4883 AArch64InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
4884 const unsigned Mask = AArch64II::MO_FRAGMENT;
4885 return std::make_pair(TF & Mask, TF & ~Mask);
4888 ArrayRef<std::pair<unsigned, const char *>>
4889 AArch64InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
4890 using namespace AArch64II;
4892 static const std::pair<unsigned, const char *> TargetFlags[] = {
4893 {MO_PAGE, "aarch64-page"}, {MO_PAGEOFF, "aarch64-pageoff"},
4894 {MO_G3, "aarch64-g3"}, {MO_G2, "aarch64-g2"},
4895 {MO_G1, "aarch64-g1"}, {MO_G0, "aarch64-g0"},
4896 {MO_HI12, "aarch64-hi12"}};
4897 return makeArrayRef(TargetFlags);
4900 ArrayRef<std::pair<unsigned, const char *>>
4901 AArch64InstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
4902 using namespace AArch64II;
4904 static const std::pair<unsigned, const char *> TargetFlags[] = {
4905 {MO_COFFSTUB, "aarch64-coffstub"},
4906 {MO_GOT, "aarch64-got"},
4907 {MO_NC, "aarch64-nc"},
4908 {MO_S, "aarch64-s"},
4909 {MO_TLS, "aarch64-tls"},
4910 {MO_DLLIMPORT, "aarch64-dllimport"},
4911 {MO_PREL, "aarch64-prel"},
4912 {MO_TAGGED, "aarch64-tagged"}};
4913 return makeArrayRef(TargetFlags);
4916 ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
4917 AArch64InstrInfo::getSerializableMachineMemOperandTargetFlags() const {
4918 static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] =
4919 {{MOSuppressPair, "aarch64-suppress-pair"},
4920 {MOStridedAccess, "aarch64-strided-access"}};
4921 return makeArrayRef(TargetFlags);
4924 /// Constants defining how certain sequences should be outlined.
4925 /// This encompasses how an outlined function should be called, and what kind of
4926 /// frame should be emitted for that outlined function.
4928 /// \p MachineOutlinerDefault implies that the function should be called with
4929 /// a save and restore of LR to the stack.
4931 /// That is,
4933 /// I1 Save LR OUTLINED_FUNCTION:
4934 /// I2 --> BL OUTLINED_FUNCTION I1
4935 /// I3 Restore LR I2
4936 /// I3
4937 /// RET
4939 /// * Call construction overhead: 3 (save + BL + restore)
4940 /// * Frame construction overhead: 1 (ret)
4941 /// * Requires stack fixups? Yes
4943 /// \p MachineOutlinerTailCall implies that the function is being created from
4944 /// a sequence of instructions ending in a return.
4946 /// That is,
4948 /// I1 OUTLINED_FUNCTION:
4949 /// I2 --> B OUTLINED_FUNCTION I1
4950 /// RET I2
4951 /// RET
4953 /// * Call construction overhead: 1 (B)
4954 /// * Frame construction overhead: 0 (Return included in sequence)
4955 /// * Requires stack fixups? No
4957 /// \p MachineOutlinerNoLRSave implies that the function should be called using
4958 /// a BL instruction, but doesn't require LR to be saved and restored. This
4959 /// happens when LR is known to be dead.
4961 /// That is,
4963 /// I1 OUTLINED_FUNCTION:
4964 /// I2 --> BL OUTLINED_FUNCTION I1
4965 /// I3 I2
4966 /// I3
4967 /// RET
4969 /// * Call construction overhead: 1 (BL)
4970 /// * Frame construction overhead: 1 (RET)
4971 /// * Requires stack fixups? No
4973 /// \p MachineOutlinerThunk implies that the function is being created from
4974 /// a sequence of instructions ending in a call. The outlined function is
4975 /// called with a BL instruction, and the outlined function tail-calls the
4976 /// original call destination.
4978 /// That is,
4980 /// I1 OUTLINED_FUNCTION:
4981 /// I2 --> BL OUTLINED_FUNCTION I1
4982 /// BL f I2
4983 /// B f
4984 /// * Call construction overhead: 1 (BL)
4985 /// * Frame construction overhead: 0
4986 /// * Requires stack fixups? No
4988 /// \p MachineOutlinerRegSave implies that the function should be called with a
4989 /// save and restore of LR to an available register. This allows us to avoid
4990 /// stack fixups. Note that this outlining variant is compatible with the
4991 /// NoLRSave case.
4993 /// That is,
4995 /// I1 Save LR OUTLINED_FUNCTION:
4996 /// I2 --> BL OUTLINED_FUNCTION I1
4997 /// I3 Restore LR I2
4998 /// I3
4999 /// RET
5001 /// * Call construction overhead: 3 (save + BL + restore)
5002 /// * Frame construction overhead: 1 (ret)
5003 /// * Requires stack fixups? No
5004 enum MachineOutlinerClass {
5005 MachineOutlinerDefault, /// Emit a save, restore, call, and return.
5006 MachineOutlinerTailCall, /// Only emit a branch.
5007 MachineOutlinerNoLRSave, /// Emit a call and return.
5008 MachineOutlinerThunk, /// Emit a call and tail-call.
5009 MachineOutlinerRegSave /// Same as default, but save to a register.
5012 enum MachineOutlinerMBBFlags {
5013 LRUnavailableSomewhere = 0x2,
5014 HasCalls = 0x4,
5015 UnsafeRegsDead = 0x8
5018 unsigned
5019 AArch64InstrInfo::findRegisterToSaveLRTo(const outliner::Candidate &C) const {
5020 assert(C.LRUWasSet && "LRU wasn't set?");
5021 MachineFunction *MF = C.getMF();
5022 const AArch64RegisterInfo *ARI = static_cast<const AArch64RegisterInfo *>(
5023 MF->getSubtarget().getRegisterInfo());
5025 // Check if there is an available register across the sequence that we can
5026 // use.
5027 for (unsigned Reg : AArch64::GPR64RegClass) {
5028 if (!ARI->isReservedReg(*MF, Reg) &&
5029 Reg != AArch64::LR && // LR is not reserved, but don't use it.
5030 Reg != AArch64::X16 && // X16 is not guaranteed to be preserved.
5031 Reg != AArch64::X17 && // Ditto for X17.
5032 C.LRU.available(Reg) && C.UsedInSequence.available(Reg))
5033 return Reg;
5036 // No suitable register. Return 0.
5037 return 0u;
5040 outliner::OutlinedFunction
5041 AArch64InstrInfo::getOutliningCandidateInfo(
5042 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
5043 outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
5044 unsigned SequenceSize =
5045 std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0,
5046 [this](unsigned Sum, const MachineInstr &MI) {
5047 return Sum + getInstSizeInBytes(MI);
5050 // Properties about candidate MBBs that hold for all of them.
5051 unsigned FlagsSetInAll = 0xF;
5053 // Compute liveness information for each candidate, and set FlagsSetInAll.
5054 const TargetRegisterInfo &TRI = getRegisterInfo();
5055 std::for_each(RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(),
5056 [&FlagsSetInAll](outliner::Candidate &C) {
5057 FlagsSetInAll &= C.Flags;
5060 // According to the AArch64 Procedure Call Standard, the following are
5061 // undefined on entry/exit from a function call:
5063 // * Registers x16, x17, (and thus w16, w17)
5064 // * Condition codes (and thus the NZCV register)
5066 // Because if this, we can't outline any sequence of instructions where
5067 // one
5068 // of these registers is live into/across it. Thus, we need to delete
5069 // those
5070 // candidates.
5071 auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
5072 // If the unsafe registers in this block are all dead, then we don't need
5073 // to compute liveness here.
5074 if (C.Flags & UnsafeRegsDead)
5075 return false;
5076 C.initLRU(TRI);
5077 LiveRegUnits LRU = C.LRU;
5078 return (!LRU.available(AArch64::W16) || !LRU.available(AArch64::W17) ||
5079 !LRU.available(AArch64::NZCV));
5082 // Are there any candidates where those registers are live?
5083 if (!(FlagsSetInAll & UnsafeRegsDead)) {
5084 // Erase every candidate that violates the restrictions above. (It could be
5085 // true that we have viable candidates, so it's not worth bailing out in
5086 // the case that, say, 1 out of 20 candidates violate the restructions.)
5087 RepeatedSequenceLocs.erase(std::remove_if(RepeatedSequenceLocs.begin(),
5088 RepeatedSequenceLocs.end(),
5089 CantGuaranteeValueAcrossCall),
5090 RepeatedSequenceLocs.end());
5092 // If the sequence doesn't have enough candidates left, then we're done.
5093 if (RepeatedSequenceLocs.size() < 2)
5094 return outliner::OutlinedFunction();
5097 // At this point, we have only "safe" candidates to outline. Figure out
5098 // frame + call instruction information.
5100 unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode();
5102 // Helper lambda which sets call information for every candidate.
5103 auto SetCandidateCallInfo =
5104 [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
5105 for (outliner::Candidate &C : RepeatedSequenceLocs)
5106 C.setCallInfo(CallID, NumBytesForCall);
5109 unsigned FrameID = MachineOutlinerDefault;
5110 unsigned NumBytesToCreateFrame = 4;
5112 bool HasBTI = any_of(RepeatedSequenceLocs, [](outliner::Candidate &C) {
5113 return C.getMF()->getFunction().hasFnAttribute("branch-target-enforcement");
5116 // Returns true if an instructions is safe to fix up, false otherwise.
5117 auto IsSafeToFixup = [this, &TRI](MachineInstr &MI) {
5118 if (MI.isCall())
5119 return true;
5121 if (!MI.modifiesRegister(AArch64::SP, &TRI) &&
5122 !MI.readsRegister(AArch64::SP, &TRI))
5123 return true;
5125 // Any modification of SP will break our code to save/restore LR.
5126 // FIXME: We could handle some instructions which add a constant
5127 // offset to SP, with a bit more work.
5128 if (MI.modifiesRegister(AArch64::SP, &TRI))
5129 return false;
5131 // At this point, we have a stack instruction that we might need to
5132 // fix up. We'll handle it if it's a load or store.
5133 if (MI.mayLoadOrStore()) {
5134 const MachineOperand *Base; // Filled with the base operand of MI.
5135 int64_t Offset; // Filled with the offset of MI.
5137 // Does it allow us to offset the base operand and is the base the
5138 // register SP?
5139 if (!getMemOperandWithOffset(MI, Base, Offset, &TRI) || !Base->isReg() ||
5140 Base->getReg() != AArch64::SP)
5141 return false;
5143 // Find the minimum/maximum offset for this instruction and check
5144 // if fixing it up would be in range.
5145 int64_t MinOffset,
5146 MaxOffset; // Unscaled offsets for the instruction.
5147 unsigned Scale; // The scale to multiply the offsets by.
5148 unsigned DummyWidth;
5149 getMemOpInfo(MI.getOpcode(), Scale, DummyWidth, MinOffset, MaxOffset);
5151 Offset += 16; // Update the offset to what it would be if we outlined.
5152 if (Offset < MinOffset * Scale || Offset > MaxOffset * Scale)
5153 return false;
5155 // It's in range, so we can outline it.
5156 return true;
5159 // FIXME: Add handling for instructions like "add x0, sp, #8".
5161 // We can't fix it up, so don't outline it.
5162 return false;
5165 // True if it's possible to fix up each stack instruction in this sequence.
5166 // Important for frames/call variants that modify the stack.
5167 bool AllStackInstrsSafe = std::all_of(
5168 FirstCand.front(), std::next(FirstCand.back()), IsSafeToFixup);
5170 // If the last instruction in any candidate is a terminator, then we should
5171 // tail call all of the candidates.
5172 if (RepeatedSequenceLocs[0].back()->isTerminator()) {
5173 FrameID = MachineOutlinerTailCall;
5174 NumBytesToCreateFrame = 0;
5175 SetCandidateCallInfo(MachineOutlinerTailCall, 4);
5178 else if (LastInstrOpcode == AArch64::BL ||
5179 (LastInstrOpcode == AArch64::BLR && !HasBTI)) {
5180 // FIXME: Do we need to check if the code after this uses the value of LR?
5181 FrameID = MachineOutlinerThunk;
5182 NumBytesToCreateFrame = 0;
5183 SetCandidateCallInfo(MachineOutlinerThunk, 4);
5186 else {
5187 // We need to decide how to emit calls + frames. We can always emit the same
5188 // frame if we don't need to save to the stack. If we have to save to the
5189 // stack, then we need a different frame.
5190 unsigned NumBytesNoStackCalls = 0;
5191 std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
5193 for (outliner::Candidate &C : RepeatedSequenceLocs) {
5194 C.initLRU(TRI);
5196 // Is LR available? If so, we don't need a save.
5197 if (C.LRU.available(AArch64::LR)) {
5198 NumBytesNoStackCalls += 4;
5199 C.setCallInfo(MachineOutlinerNoLRSave, 4);
5200 CandidatesWithoutStackFixups.push_back(C);
5203 // Is an unused register available? If so, we won't modify the stack, so
5204 // we can outline with the same frame type as those that don't save LR.
5205 else if (findRegisterToSaveLRTo(C)) {
5206 NumBytesNoStackCalls += 12;
5207 C.setCallInfo(MachineOutlinerRegSave, 12);
5208 CandidatesWithoutStackFixups.push_back(C);
5211 // Is SP used in the sequence at all? If not, we don't have to modify
5212 // the stack, so we are guaranteed to get the same frame.
5213 else if (C.UsedInSequence.available(AArch64::SP)) {
5214 NumBytesNoStackCalls += 12;
5215 C.setCallInfo(MachineOutlinerDefault, 12);
5216 CandidatesWithoutStackFixups.push_back(C);
5219 // If we outline this, we need to modify the stack. Pretend we don't
5220 // outline this by saving all of its bytes.
5221 else {
5222 NumBytesNoStackCalls += SequenceSize;
5226 // If there are no places where we have to save LR, then note that we
5227 // don't have to update the stack. Otherwise, give every candidate the
5228 // default call type, as long as it's safe to do so.
5229 if (!AllStackInstrsSafe ||
5230 NumBytesNoStackCalls <= RepeatedSequenceLocs.size() * 12) {
5231 RepeatedSequenceLocs = CandidatesWithoutStackFixups;
5232 FrameID = MachineOutlinerNoLRSave;
5233 } else {
5234 SetCandidateCallInfo(MachineOutlinerDefault, 12);
5237 // If we dropped all of the candidates, bail out here.
5238 if (RepeatedSequenceLocs.size() < 2) {
5239 RepeatedSequenceLocs.clear();
5240 return outliner::OutlinedFunction();
5244 // Does every candidate's MBB contain a call? If so, then we might have a call
5245 // in the range.
5246 if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
5247 // Check if the range contains a call. These require a save + restore of the
5248 // link register.
5249 bool ModStackToSaveLR = false;
5250 if (std::any_of(FirstCand.front(), FirstCand.back(),
5251 [](const MachineInstr &MI) { return MI.isCall(); }))
5252 ModStackToSaveLR = true;
5254 // Handle the last instruction separately. If this is a tail call, then the
5255 // last instruction is a call. We don't want to save + restore in this case.
5256 // However, it could be possible that the last instruction is a call without
5257 // it being valid to tail call this sequence. We should consider this as
5258 // well.
5259 else if (FrameID != MachineOutlinerThunk &&
5260 FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall())
5261 ModStackToSaveLR = true;
5263 if (ModStackToSaveLR) {
5264 // We can't fix up the stack. Bail out.
5265 if (!AllStackInstrsSafe) {
5266 RepeatedSequenceLocs.clear();
5267 return outliner::OutlinedFunction();
5270 // Save + restore LR.
5271 NumBytesToCreateFrame += 8;
5275 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
5276 NumBytesToCreateFrame, FrameID);
5279 bool AArch64InstrInfo::isFunctionSafeToOutlineFrom(
5280 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
5281 const Function &F = MF.getFunction();
5283 // Can F be deduplicated by the linker? If it can, don't outline from it.
5284 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
5285 return false;
5287 // Don't outline from functions with section markings; the program could
5288 // expect that all the code is in the named section.
5289 // FIXME: Allow outlining from multiple functions with the same section
5290 // marking.
5291 if (F.hasSection())
5292 return false;
5294 // Outlining from functions with redzones is unsafe since the outliner may
5295 // modify the stack. Check if hasRedZone is true or unknown; if yes, don't
5296 // outline from it.
5297 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
5298 if (!AFI || AFI->hasRedZone().getValueOr(true))
5299 return false;
5301 // It's safe to outline from MF.
5302 return true;
5305 bool AArch64InstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
5306 unsigned &Flags) const {
5307 // Check if LR is available through all of the MBB. If it's not, then set
5308 // a flag.
5309 assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
5310 "Suitable Machine Function for outlining must track liveness");
5311 LiveRegUnits LRU(getRegisterInfo());
5313 std::for_each(MBB.rbegin(), MBB.rend(),
5314 [&LRU](MachineInstr &MI) { LRU.accumulate(MI); });
5316 // Check if each of the unsafe registers are available...
5317 bool W16AvailableInBlock = LRU.available(AArch64::W16);
5318 bool W17AvailableInBlock = LRU.available(AArch64::W17);
5319 bool NZCVAvailableInBlock = LRU.available(AArch64::NZCV);
5321 // If all of these are dead (and not live out), we know we don't have to check
5322 // them later.
5323 if (W16AvailableInBlock && W17AvailableInBlock && NZCVAvailableInBlock)
5324 Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;
5326 // Now, add the live outs to the set.
5327 LRU.addLiveOuts(MBB);
5329 // If any of these registers is available in the MBB, but also a live out of
5330 // the block, then we know outlining is unsafe.
5331 if (W16AvailableInBlock && !LRU.available(AArch64::W16))
5332 return false;
5333 if (W17AvailableInBlock && !LRU.available(AArch64::W17))
5334 return false;
5335 if (NZCVAvailableInBlock && !LRU.available(AArch64::NZCV))
5336 return false;
5338 // Check if there's a call inside this MachineBasicBlock. If there is, then
5339 // set a flag.
5340 if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); }))
5341 Flags |= MachineOutlinerMBBFlags::HasCalls;
5343 MachineFunction *MF = MBB.getParent();
5345 // In the event that we outline, we may have to save LR. If there is an
5346 // available register in the MBB, then we'll always save LR there. Check if
5347 // this is true.
5348 bool CanSaveLR = false;
5349 const AArch64RegisterInfo *ARI = static_cast<const AArch64RegisterInfo *>(
5350 MF->getSubtarget().getRegisterInfo());
5352 // Check if there is an available register across the sequence that we can
5353 // use.
5354 for (unsigned Reg : AArch64::GPR64RegClass) {
5355 if (!ARI->isReservedReg(*MF, Reg) && Reg != AArch64::LR &&
5356 Reg != AArch64::X16 && Reg != AArch64::X17 && LRU.available(Reg)) {
5357 CanSaveLR = true;
5358 break;
5362 // Check if we have a register we can save LR to, and if LR was used
5363 // somewhere. If both of those things are true, then we need to evaluate the
5364 // safety of outlining stack instructions later.
5365 if (!CanSaveLR && !LRU.available(AArch64::LR))
5366 Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
5368 return true;
5371 outliner::InstrType
5372 AArch64InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,
5373 unsigned Flags) const {
5374 MachineInstr &MI = *MIT;
5375 MachineBasicBlock *MBB = MI.getParent();
5376 MachineFunction *MF = MBB->getParent();
5377 AArch64FunctionInfo *FuncInfo = MF->getInfo<AArch64FunctionInfo>();
5379 // Don't outline LOHs.
5380 if (FuncInfo->getLOHRelated().count(&MI))
5381 return outliner::InstrType::Illegal;
5383 // Don't allow debug values to impact outlining type.
5384 if (MI.isDebugInstr() || MI.isIndirectDebugValue())
5385 return outliner::InstrType::Invisible;
5387 // At this point, KILL instructions don't really tell us much so we can go
5388 // ahead and skip over them.
5389 if (MI.isKill())
5390 return outliner::InstrType::Invisible;
5392 // Is this a terminator for a basic block?
5393 if (MI.isTerminator()) {
5395 // Is this the end of a function?
5396 if (MI.getParent()->succ_empty())
5397 return outliner::InstrType::Legal;
5399 // It's not, so don't outline it.
5400 return outliner::InstrType::Illegal;
5403 // Make sure none of the operands are un-outlinable.
5404 for (const MachineOperand &MOP : MI.operands()) {
5405 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
5406 MOP.isTargetIndex())
5407 return outliner::InstrType::Illegal;
5409 // If it uses LR or W30 explicitly, then don't touch it.
5410 if (MOP.isReg() && !MOP.isImplicit() &&
5411 (MOP.getReg() == AArch64::LR || MOP.getReg() == AArch64::W30))
5412 return outliner::InstrType::Illegal;
5415 // Special cases for instructions that can always be outlined, but will fail
5416 // the later tests. e.g, ADRPs, which are PC-relative use LR, but can always
5417 // be outlined because they don't require a *specific* value to be in LR.
5418 if (MI.getOpcode() == AArch64::ADRP)
5419 return outliner::InstrType::Legal;
5421 // If MI is a call we might be able to outline it. We don't want to outline
5422 // any calls that rely on the position of items on the stack. When we outline
5423 // something containing a call, we have to emit a save and restore of LR in
5424 // the outlined function. Currently, this always happens by saving LR to the
5425 // stack. Thus, if we outline, say, half the parameters for a function call
5426 // plus the call, then we'll break the callee's expectations for the layout
5427 // of the stack.
5429 // FIXME: Allow calls to functions which construct a stack frame, as long
5430 // as they don't access arguments on the stack.
5431 // FIXME: Figure out some way to analyze functions defined in other modules.
5432 // We should be able to compute the memory usage based on the IR calling
5433 // convention, even if we can't see the definition.
5434 if (MI.isCall()) {
5435 // Get the function associated with the call. Look at each operand and find
5436 // the one that represents the callee and get its name.
5437 const Function *Callee = nullptr;
5438 for (const MachineOperand &MOP : MI.operands()) {
5439 if (MOP.isGlobal()) {
5440 Callee = dyn_cast<Function>(MOP.getGlobal());
5441 break;
5445 // Never outline calls to mcount. There isn't any rule that would require
5446 // this, but the Linux kernel's "ftrace" feature depends on it.
5447 if (Callee && Callee->getName() == "\01_mcount")
5448 return outliner::InstrType::Illegal;
5450 // If we don't know anything about the callee, assume it depends on the
5451 // stack layout of the caller. In that case, it's only legal to outline
5452 // as a tail-call. Whitelist the call instructions we know about so we
5453 // don't get unexpected results with call pseudo-instructions.
5454 auto UnknownCallOutlineType = outliner::InstrType::Illegal;
5455 if (MI.getOpcode() == AArch64::BLR || MI.getOpcode() == AArch64::BL)
5456 UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
5458 if (!Callee)
5459 return UnknownCallOutlineType;
5461 // We have a function we have information about. Check it if it's something
5462 // can safely outline.
5463 MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee);
5465 // We don't know what's going on with the callee at all. Don't touch it.
5466 if (!CalleeMF)
5467 return UnknownCallOutlineType;
5469 // Check if we know anything about the callee saves on the function. If we
5470 // don't, then don't touch it, since that implies that we haven't
5471 // computed anything about its stack frame yet.
5472 MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
5473 if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
5474 MFI.getNumObjects() > 0)
5475 return UnknownCallOutlineType;
5477 // At this point, we can say that CalleeMF ought to not pass anything on the
5478 // stack. Therefore, we can outline it.
5479 return outliner::InstrType::Legal;
5482 // Don't outline positions.
5483 if (MI.isPosition())
5484 return outliner::InstrType::Illegal;
5486 // Don't touch the link register or W30.
5487 if (MI.readsRegister(AArch64::W30, &getRegisterInfo()) ||
5488 MI.modifiesRegister(AArch64::W30, &getRegisterInfo()))
5489 return outliner::InstrType::Illegal;
5491 // Don't outline BTI instructions, because that will prevent the outlining
5492 // site from being indirectly callable.
5493 if (MI.getOpcode() == AArch64::HINT) {
5494 int64_t Imm = MI.getOperand(0).getImm();
5495 if (Imm == 32 || Imm == 34 || Imm == 36 || Imm == 38)
5496 return outliner::InstrType::Illegal;
5499 return outliner::InstrType::Legal;
5502 void AArch64InstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const {
5503 for (MachineInstr &MI : MBB) {
5504 const MachineOperand *Base;
5505 unsigned Width;
5506 int64_t Offset;
5508 // Is this a load or store with an immediate offset with SP as the base?
5509 if (!MI.mayLoadOrStore() ||
5510 !getMemOperandWithOffsetWidth(MI, Base, Offset, Width, &RI) ||
5511 (Base->isReg() && Base->getReg() != AArch64::SP))
5512 continue;
5514 // It is, so we have to fix it up.
5515 unsigned Scale;
5516 int64_t Dummy1, Dummy2;
5518 MachineOperand &StackOffsetOperand = getMemOpBaseRegImmOfsOffsetOperand(MI);
5519 assert(StackOffsetOperand.isImm() && "Stack offset wasn't immediate!");
5520 getMemOpInfo(MI.getOpcode(), Scale, Width, Dummy1, Dummy2);
5521 assert(Scale != 0 && "Unexpected opcode!");
5523 // We've pushed the return address to the stack, so add 16 to the offset.
5524 // This is safe, since we already checked if it would overflow when we
5525 // checked if this instruction was legal to outline.
5526 int64_t NewImm = (Offset + 16) / Scale;
5527 StackOffsetOperand.setImm(NewImm);
5531 void AArch64InstrInfo::buildOutlinedFrame(
5532 MachineBasicBlock &MBB, MachineFunction &MF,
5533 const outliner::OutlinedFunction &OF) const {
5534 // For thunk outlining, rewrite the last instruction from a call to a
5535 // tail-call.
5536 if (OF.FrameConstructionID == MachineOutlinerThunk) {
5537 MachineInstr *Call = &*--MBB.instr_end();
5538 unsigned TailOpcode;
5539 if (Call->getOpcode() == AArch64::BL) {
5540 TailOpcode = AArch64::TCRETURNdi;
5541 } else {
5542 assert(Call->getOpcode() == AArch64::BLR);
5543 TailOpcode = AArch64::TCRETURNriALL;
5545 MachineInstr *TC = BuildMI(MF, DebugLoc(), get(TailOpcode))
5546 .add(Call->getOperand(0))
5547 .addImm(0);
5548 MBB.insert(MBB.end(), TC);
5549 Call->eraseFromParent();
5552 // Is there a call in the outlined range?
5553 auto IsNonTailCall = [](MachineInstr &MI) {
5554 return MI.isCall() && !MI.isReturn();
5556 if (std::any_of(MBB.instr_begin(), MBB.instr_end(), IsNonTailCall)) {
5557 // Fix up the instructions in the range, since we're going to modify the
5558 // stack.
5559 assert(OF.FrameConstructionID != MachineOutlinerDefault &&
5560 "Can only fix up stack references once");
5561 fixupPostOutline(MBB);
5563 // LR has to be a live in so that we can save it.
5564 MBB.addLiveIn(AArch64::LR);
5566 MachineBasicBlock::iterator It = MBB.begin();
5567 MachineBasicBlock::iterator Et = MBB.end();
5569 if (OF.FrameConstructionID == MachineOutlinerTailCall ||
5570 OF.FrameConstructionID == MachineOutlinerThunk)
5571 Et = std::prev(MBB.end());
5573 // Insert a save before the outlined region
5574 MachineInstr *STRXpre = BuildMI(MF, DebugLoc(), get(AArch64::STRXpre))
5575 .addReg(AArch64::SP, RegState::Define)
5576 .addReg(AArch64::LR)
5577 .addReg(AArch64::SP)
5578 .addImm(-16);
5579 It = MBB.insert(It, STRXpre);
5581 const TargetSubtargetInfo &STI = MF.getSubtarget();
5582 const MCRegisterInfo *MRI = STI.getRegisterInfo();
5583 unsigned DwarfReg = MRI->getDwarfRegNum(AArch64::LR, true);
5585 // Add a CFI saying the stack was moved 16 B down.
5586 int64_t StackPosEntry =
5587 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 16));
5588 BuildMI(MBB, It, DebugLoc(), get(AArch64::CFI_INSTRUCTION))
5589 .addCFIIndex(StackPosEntry)
5590 .setMIFlags(MachineInstr::FrameSetup);
5592 // Add a CFI saying that the LR that we want to find is now 16 B higher than
5593 // before.
5594 int64_t LRPosEntry =
5595 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfReg, 16));
5596 BuildMI(MBB, It, DebugLoc(), get(AArch64::CFI_INSTRUCTION))
5597 .addCFIIndex(LRPosEntry)
5598 .setMIFlags(MachineInstr::FrameSetup);
5600 // Insert a restore before the terminator for the function.
5601 MachineInstr *LDRXpost = BuildMI(MF, DebugLoc(), get(AArch64::LDRXpost))
5602 .addReg(AArch64::SP, RegState::Define)
5603 .addReg(AArch64::LR, RegState::Define)
5604 .addReg(AArch64::SP)
5605 .addImm(16);
5606 Et = MBB.insert(Et, LDRXpost);
5609 // If this is a tail call outlined function, then there's already a return.
5610 if (OF.FrameConstructionID == MachineOutlinerTailCall ||
5611 OF.FrameConstructionID == MachineOutlinerThunk)
5612 return;
5614 // It's not a tail call, so we have to insert the return ourselves.
5615 MachineInstr *ret = BuildMI(MF, DebugLoc(), get(AArch64::RET))
5616 .addReg(AArch64::LR, RegState::Undef);
5617 MBB.insert(MBB.end(), ret);
5619 // Did we have to modify the stack by saving the link register?
5620 if (OF.FrameConstructionID != MachineOutlinerDefault)
5621 return;
5623 // We modified the stack.
5624 // Walk over the basic block and fix up all the stack accesses.
5625 fixupPostOutline(MBB);
5628 MachineBasicBlock::iterator AArch64InstrInfo::insertOutlinedCall(
5629 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
5630 MachineFunction &MF, const outliner::Candidate &C) const {
5632 // Are we tail calling?
5633 if (C.CallConstructionID == MachineOutlinerTailCall) {
5634 // If yes, then we can just branch to the label.
5635 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::TCRETURNdi))
5636 .addGlobalAddress(M.getNamedValue(MF.getName()))
5637 .addImm(0));
5638 return It;
5641 // Are we saving the link register?
5642 if (C.CallConstructionID == MachineOutlinerNoLRSave ||
5643 C.CallConstructionID == MachineOutlinerThunk) {
5644 // No, so just insert the call.
5645 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::BL))
5646 .addGlobalAddress(M.getNamedValue(MF.getName())));
5647 return It;
5650 // We want to return the spot where we inserted the call.
5651 MachineBasicBlock::iterator CallPt;
5653 // Instructions for saving and restoring LR around the call instruction we're
5654 // going to insert.
5655 MachineInstr *Save;
5656 MachineInstr *Restore;
5657 // Can we save to a register?
5658 if (C.CallConstructionID == MachineOutlinerRegSave) {
5659 // FIXME: This logic should be sunk into a target-specific interface so that
5660 // we don't have to recompute the register.
5661 unsigned Reg = findRegisterToSaveLRTo(C);
5662 assert(Reg != 0 && "No callee-saved register available?");
5664 // Save and restore LR from that register.
5665 Save = BuildMI(MF, DebugLoc(), get(AArch64::ORRXrs), Reg)
5666 .addReg(AArch64::XZR)
5667 .addReg(AArch64::LR)
5668 .addImm(0);
5669 Restore = BuildMI(MF, DebugLoc(), get(AArch64::ORRXrs), AArch64::LR)
5670 .addReg(AArch64::XZR)
5671 .addReg(Reg)
5672 .addImm(0);
5673 } else {
5674 // We have the default case. Save and restore from SP.
5675 Save = BuildMI(MF, DebugLoc(), get(AArch64::STRXpre))
5676 .addReg(AArch64::SP, RegState::Define)
5677 .addReg(AArch64::LR)
5678 .addReg(AArch64::SP)
5679 .addImm(-16);
5680 Restore = BuildMI(MF, DebugLoc(), get(AArch64::LDRXpost))
5681 .addReg(AArch64::SP, RegState::Define)
5682 .addReg(AArch64::LR, RegState::Define)
5683 .addReg(AArch64::SP)
5684 .addImm(16);
5687 It = MBB.insert(It, Save);
5688 It++;
5690 // Insert the call.
5691 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::BL))
5692 .addGlobalAddress(M.getNamedValue(MF.getName())));
5693 CallPt = It;
5694 It++;
5696 It = MBB.insert(It, Restore);
5697 return CallPt;
5700 bool AArch64InstrInfo::shouldOutlineFromFunctionByDefault(
5701 MachineFunction &MF) const {
5702 return MF.getFunction().hasMinSize();
5705 bool AArch64InstrInfo::isCopyInstrImpl(
5706 const MachineInstr &MI, const MachineOperand *&Source,
5707 const MachineOperand *&Destination) const {
5709 // AArch64::ORRWrs and AArch64::ORRXrs with WZR/XZR reg
5710 // and zero immediate operands used as an alias for mov instruction.
5711 if (MI.getOpcode() == AArch64::ORRWrs &&
5712 MI.getOperand(1).getReg() == AArch64::WZR &&
5713 MI.getOperand(3).getImm() == 0x0) {
5714 Destination = &MI.getOperand(0);
5715 Source = &MI.getOperand(2);
5716 return true;
5719 if (MI.getOpcode() == AArch64::ORRXrs &&
5720 MI.getOperand(1).getReg() == AArch64::XZR &&
5721 MI.getOperand(3).getImm() == 0x0) {
5722 Destination = &MI.getOperand(0);
5723 Source = &MI.getOperand(2);
5724 return true;
5727 return false;
5730 #define GET_INSTRINFO_HELPERS
5731 #include "AArch64GenInstrInfo.inc"