1 //=- AArch64SchedCyclone.td - Cyclone Scheduling Definitions -*- tablegen -*-=//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the machine model for AArch64 Cyclone to support
10 // instruction scheduling and other instruction cost heuristics.
12 //===----------------------------------------------------------------------===//
14 def CycloneModel : SchedMachineModel {
15 let IssueWidth = 6; // 6 micro-ops are dispatched per cycle.
16 let MicroOpBufferSize = 192; // Based on the reorder buffer.
17 let LoadLatency = 4; // Optimistic load latency.
18 let MispredictPenalty = 16; // 14-19 cycles are typical.
19 let CompleteModel = 1;
21 list<Predicate> UnsupportedFeatures = SVEUnsupported.F;
24 //===----------------------------------------------------------------------===//
25 // Define each kind of processor resource and number available on Cyclone.
28 def CyUnitI : ProcResource<4> {
32 // 2 branch units: I[0..1]
33 def CyUnitB : ProcResource<2> {
38 // 1 indirect-branch unit: I[0]
39 def CyUnitBR : ProcResource<1> {
43 // 2 shifter pipes: I[2..3]
44 // When an instruction consumes a CyUnitIS, it also consumes a CyUnitI
45 def CyUnitIS : ProcResource<2> {
51 def CyUnitIM : ProcResource<1> {
57 def CyUnitID : ProcResource<1> {
62 // 1 integer division unit. This is driven by the ID pipe, but only
63 // consumes the pipe for one cycle at issue and another cycle at writeback.
64 def CyUnitIntDiv : ProcResource<1>;
67 def CyUnitLS : ProcResource<2> {
72 def CyUnitV : ProcResource<3> {
75 // 2 fp/vector arithmetic and multiply pipes: V[0-1]
76 def CyUnitVM : ProcResource<2> {
80 // 1 fp/vector division/sqrt pipe: V[2]
81 def CyUnitVD : ProcResource<1> {
85 // 1 fp compare pipe: V[0]
86 def CyUnitVC : ProcResource<1> {
91 // 2 fp division/square-root units. These are driven by the VD pipe,
92 // but only consume the pipe for one cycle at issue and a cycle at writeback.
93 def CyUnitFloatDiv : ProcResource<2>;
95 //===----------------------------------------------------------------------===//
96 // Define scheduler read/write resources and latency on Cyclone.
97 // This mirrors sections 7.7-7.9 of the Tuning Guide v1.0.1.
99 let SchedModel = CycloneModel in {
105 // A single nop micro-op (uX).
106 def WriteX : SchedWriteRes<[]> { let Latency = 0; }
108 // Move zero is a register rename (to machine register zero).
109 // The move is replaced by a single nop micro-op.
112 def WriteZPred : SchedPredicate<[{TII->isGPRZero(*MI)}]>;
113 def WriteImmZ : SchedWriteVariant<[
114 SchedVar<WriteZPred, [WriteX]>,
115 SchedVar<NoSchedPred, [WriteImm]>]>;
116 def : InstRW<[WriteImmZ], (instrs MOVZWi,MOVZXi,ANDWri,ANDXri)>;
118 // Move GPR is a register rename and single nop micro-op.
121 def WriteIMovPred : SchedPredicate<[{TII->isGPRCopy(*MI)}]>;
122 def WriteVMovPred : SchedPredicate<[{TII->isFPRCopy(*MI)}]>;
123 def WriteMov : SchedWriteVariant<[
124 SchedVar<WriteIMovPred, [WriteX]>,
125 SchedVar<WriteVMovPred, [WriteX]>,
126 SchedVar<NoSchedPred, [WriteI]>]>;
127 def : InstRW<[WriteMov], (instrs COPY,ORRXrr,ADDXrr)>;
129 // Move non-zero immediate is an integer ALU op.
131 def : WriteRes<WriteImm, [CyUnitI]>;
134 // 7.8.2-7.8.5. Arithmetic and Logical, Comparison, Conditional,
135 // Shifts and Bitfield Operations
139 // ADD(S)ri,SUB(S)ri,AND(S)ri,EORri,ORRri
140 // ADD(S)rr,SUB(S)rr,AND(S)rr,BIC(S)rr,EONrr,EORrr,ORNrr,ORRrr
142 // Aliases: CMN, CMP, TST
144 // Conditional operations.
145 // CCMNi,CCMPi,CCMNr,CCMPr,
146 // CSEL,CSINC,CSINV,CSNEG
148 // Bit counting and reversal operations.
149 // CLS,CLZ,RBIT,REV,REV16,REV32
150 def : WriteRes<WriteI, [CyUnitI]>;
152 // ADD with shifted register operand is a single micro-op that
153 // consumes a shift pipeline for two cycles.
154 // ADD(S)rs,SUB(S)rs,AND(S)rs,BIC(S)rs,EONrs,EORrs,ORNrs,ORRrs
155 // EXAMPLE: ADDrs Xn, Xm LSL #imm
156 def : WriteRes<WriteISReg, [CyUnitIS]> {
158 let ResourceCycles = [2];
161 // ADD with extended register operand is the same as shifted reg operand.
163 // EXAMPLE: ADDXre Xn, Xm, UXTB #1
164 def : WriteRes<WriteIEReg, [CyUnitIS]> {
166 let ResourceCycles = [2];
169 // Variable shift and bitfield operations.
170 // ASRV,LSLV,LSRV,RORV,BFM,SBFM,UBFM
171 def : WriteRes<WriteIS, [CyUnitIS]>;
173 // EXTR Shifts a pair of registers and requires two micro-ops.
174 // The second micro-op is delayed, as modeled by ReadExtrHi.
176 def : WriteRes<WriteExtr, [CyUnitIS, CyUnitIS]> {
181 // EXTR's first register read is delayed by one cycle, effectively
182 // shortening its writer's latency.
184 def : ReadAdvance<ReadExtrHi, 1>;
190 // MUL/MNEG are aliases for MADD/MSUB.
191 // MADDW,MSUBW,SMADDL,SMSUBL,UMADDL,UMSUBL
192 def : WriteRes<WriteIM32, [CyUnitIM]> {
195 // MADDX,MSUBX,SMULH,UMULH
196 def : WriteRes<WriteIM64, [CyUnitIM]> {
204 // 32-bit divide takes 7-13 cycles. 10 cycles covers a 20-bit quotient.
205 // The ID pipe is consumed for 2 cycles: issue and writeback.
207 def : WriteRes<WriteID32, [CyUnitID, CyUnitIntDiv]> {
209 let ResourceCycles = [2, 10];
211 // 64-bit divide takes 7-21 cycles. 13 cycles covers a 32-bit quotient.
212 // The ID pipe is consumed for 2 cycles: issue and writeback.
214 def : WriteRes<WriteID64, [CyUnitID, CyUnitIntDiv]> {
216 let ResourceCycles = [2, 13];
220 // 7.8.8,7.8.10. Load/Store, single element
223 // Integer loads take 4 cycles and use one LS unit for one cycle.
224 def : WriteRes<WriteLD, [CyUnitLS]> {
228 // Store-load forwarding is 4 cycles.
230 // Note: The store-exclusive sequence incorporates this
231 // latency. However, general heuristics should not model the
232 // dependence between a store and subsequent may-alias load because
233 // hardware speculation works.
234 def : WriteRes<WriteST, [CyUnitLS]> {
238 // Load from base address plus an optionally scaled register offset.
239 // Rt latency is latency WriteIS + WriteLD.
240 // EXAMPLE: LDR Xn, Xm [, lsl 3]
241 def CyWriteLDIdx : SchedWriteVariant<[
242 SchedVar<ScaledIdxPred, [WriteIS, WriteLD]>, // Load from scaled register.
243 SchedVar<NoSchedPred, [WriteLD]>]>; // Load from register offset.
244 def : SchedAlias<WriteLDIdx, CyWriteLDIdx>; // Map AArch64->Cyclone type.
246 // EXAMPLE: STR Xn, Xm [, lsl 3]
247 def CyWriteSTIdx : SchedWriteVariant<[
248 SchedVar<ScaledIdxPred, [WriteIS, WriteST]>, // Store to scaled register.
249 SchedVar<NoSchedPred, [WriteST]>]>; // Store to register offset.
250 def : SchedAlias<WriteSTIdx, CyWriteSTIdx>; // Map AArch64->Cyclone type.
252 // Read the (unshifted) base register Xn in the second micro-op one cycle later.
253 // EXAMPLE: LDR Xn, Xm [, lsl 3]
254 def ReadBaseRS : SchedReadAdvance<1>;
255 def CyReadAdrBase : SchedReadVariant<[
256 SchedVar<ScaledIdxPred, [ReadBaseRS]>, // Read base reg after shifting offset.
257 SchedVar<NoSchedPred, [ReadDefault]>]>; // Read base reg with no shift.
258 def : SchedAlias<ReadAdrBase, CyReadAdrBase>; // Map AArch64->Cyclone type.
261 // 7.8.9,7.8.11. Load/Store, paired
264 // Address pre/post increment is a simple ALU op with one cycle latency.
265 def : WriteRes<WriteAdr, [CyUnitI]>;
267 // LDP high register write is fused with the load, but a nop micro-op remains.
268 def : WriteRes<WriteLDHi, []> {
272 // STP is a vector op and store, except for QQ, which is just two stores.
273 def : SchedAlias<WriteSTP, WriteVSTShuffle>;
274 def : InstRW<[WriteST, WriteST], (instrs STPQi)>;
280 // Branches take a single micro-op.
281 // The misprediction penalty is defined as a SchedMachineModel property.
282 def : WriteRes<WriteBr, [CyUnitB]> {let Latency = 0;}
283 def : WriteRes<WriteBrReg, [CyUnitBR]> {let Latency = 0;}
286 // 7.8.14. Never-issued Instructions, Barrier and Hint Operations
289 // NOP,SEV,SEVL,WFE,WFI,YIELD
290 def : WriteRes<WriteHint, []> {let Latency = 0;}
292 def : InstRW<[WriteI], (instrs ISB)>;
294 def : WriteRes<WriteBarrier, [CyUnitLS]>;
296 // System instructions get an invalid latency because the latency of
297 // other operations across them is meaningless.
298 def : WriteRes<WriteSys, []> {let Latency = -1;}
300 //===----------------------------------------------------------------------===//
301 // 7.9 Vector Unit Instructions
303 // Simple vector operations take 2 cycles.
304 def : WriteRes<WriteV, [CyUnitV]> {let Latency = 2;}
306 // Define some longer latency vector op types for Cyclone.
307 def CyWriteV3 : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
308 def CyWriteV4 : SchedWriteRes<[CyUnitV]> {let Latency = 4;}
309 def CyWriteV5 : SchedWriteRes<[CyUnitV]> {let Latency = 5;}
310 def CyWriteV6 : SchedWriteRes<[CyUnitV]> {let Latency = 6;}
312 // Simple floating-point operations take 2 cycles.
313 def : WriteRes<WriteF, [CyUnitV]> {let Latency = 2;}
316 // 7.9.1 Vector Moves
319 // TODO: Add Cyclone-specific zero-cycle zeros. LLVM currently
320 // generates expensive int-float conversion instead:
322 // FMOVv2f64ns Vd.2d, #0.0
325 def : WriteRes<WriteFImm, [CyUnitV]> {let Latency = 2;}
327 // MOVI,MVNI are WriteV
328 // FMOVv2f32ns,FMOVv2f64ns,FMOVv4f32ns are WriteV
330 // Move FPR is a register rename and single nop micro-op.
332 // COPY is handled above in the WriteMov Variant.
333 def WriteVMov : SchedWriteVariant<[
334 SchedVar<WriteVMovPred, [WriteX]>,
335 SchedVar<NoSchedPred, [WriteV]>]>;
336 def : InstRW<[WriteVMov], (instrs ORRv16i8)>;
338 // FMOVSr,FMOVDr are WriteF.
340 // MOV V,V is a WriteV.
342 // CPY D,V[x] is a WriteV
344 // INS V[x],V[y] is a WriteV.
346 // FMOVWSr,FMOVXDr,FMOVXDHighr
347 def : WriteRes<WriteFCopy, [CyUnitLS]> {
352 def : InstRW<[WriteLD], (instrs FMOVSWr,FMOVDXr,FMOVDXHighr)>;
355 def CyWriteCopyToFPR : WriteSequence<[WriteVLD, WriteV]>;
356 def : InstRW<[CyWriteCopyToFPR], (instregex "INSv")>;
359 def CyWriteCopyToGPR : WriteSequence<[WriteLD, WriteI]>;
360 def : InstRW<[CyWriteCopyToGPR], (instregex "SMOVv","UMOVv")>;
363 def : InstRW<[CyWriteCopyToFPR], (instregex "DUPv")>;
365 // DUP V,V[x] is a WriteV.
368 // 7.9.2 Integer Arithmetic, Logical, and Comparisons
371 // BIC,ORR V,#imm are WriteV
373 def : InstRW<[CyWriteV3], (instregex "ABSv")>;
375 // MVN,NEG,NOT are WriteV
377 def : InstRW<[CyWriteV3], (instregex "SQABSv","SQNEGv")>;
380 def CyWriteVADDLP : SchedWriteRes<[CyUnitV]> {let Latency = 2;}
381 def : InstRW<[CyWriteVADDLP], (instregex "SADDLPv","UADDLPv")>;
383 def : InstRW<[CyWriteV3],
384 (instregex "ADDVv","SMAXVv","UMAXVv","SMINVv","UMINVv")>;
386 def : InstRW<[CyWriteV3], (instregex "SADDLV","UADDLV")>;
388 // ADD,SUB are WriteV
391 def CyWriteVABD : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
393 // Add/Diff and accumulate uses the vector multiply unit.
394 def CyWriteVAccum : SchedWriteRes<[CyUnitVM]> {let Latency = 3;}
395 def CyReadVAccum : SchedReadAdvance<1,
396 [CyWriteVAccum, CyWriteVADDLP, CyWriteVABD]>;
398 def : InstRW<[CyWriteVAccum, CyReadVAccum],
399 (instregex "SADALP","UADALP")>;
401 def : InstRW<[CyWriteVAccum, CyReadVAccum],
402 (instregex "SABAv","UABAv","SABALv","UABALv")>;
404 def : InstRW<[CyWriteV3], (instregex "SQADDv","SQSUBv","UQADDv","UQSUBv")>;
406 def : InstRW<[CyWriteV3], (instregex "SUQADDv","USQADDv")>;
408 def : InstRW<[CyWriteV4], (instregex "ADDHNv","RADDHNv", "RSUBHNv", "SUBHNv")>;
411 // AND,BIC,CMTST,EOR,ORN,ORR
413 // SHADD,SHSUB,SRHADD,UHADD,UHSUB,URHADD
414 // SADDL,SSUBL,UADDL,USUBL
415 // SADDW,SSUBW,UADDW,USUBW
417 def : InstRW<[CyWriteV3], (instregex "CMEQv","CMGEv","CMGTv",
421 def : InstRW<[CyWriteV3], (instregex "SMAXv","SMINv","UMAXv","UMINv",
422 "SMAXPv","SMINPv","UMAXPv","UMINPv")>;
424 def : InstRW<[CyWriteVABD], (instregex "SABDv","UABDv",
428 // 7.9.3 Floating Point Arithmetic and Comparisons
431 // FABS,FNEG are WriteF
433 def : InstRW<[CyWriteV4], (instrs FADDPv2i32p)>;
434 def : InstRW<[CyWriteV5], (instrs FADDPv2i64p)>;
436 def : InstRW<[CyWriteV3], (instregex "FMAXPv2i","FMAXNMPv2i",
437 "FMINPv2i","FMINNMPv2i")>;
439 def : InstRW<[CyWriteV4], (instregex "FMAXVv","FMAXNMVv","FMINVv","FMINNMVv")>;
441 def : InstRW<[CyWriteV4], (instrs FADDSrr,FADDv2f32,FADDv4f32,
442 FSUBSrr,FSUBv2f32,FSUBv4f32,
443 FADDPv2f32,FADDPv4f32,
444 FABD32,FABDv2f32,FABDv4f32)>;
445 def : InstRW<[CyWriteV5], (instrs FADDDrr,FADDv2f64,
450 def : InstRW<[CyWriteV3], (instregex "FCMEQ","FCMGT","FCMLE","FCMLT")>;
452 def : InstRW<[CyWriteV3], (instregex "FACGE","FACGT",
453 "FMAXS","FMAXD","FMAXv",
454 "FMINS","FMIND","FMINv",
455 "FMAXNMS","FMAXNMD","FMAXNMv",
456 "FMINNMS","FMINNMD","FMINNMv",
457 "FMAXPv2f","FMAXPv4f",
458 "FMINPv2f","FMINPv4f",
459 "FMAXNMPv2f","FMAXNMPv4f",
460 "FMINNMPv2f","FMINNMPv4f")>;
462 // FCMP,FCMPE,FCCMP,FCCMPE
463 def : WriteRes<WriteFCmp, [CyUnitVC]> {let Latency = 4;}
465 // FCSEL is a WriteF.
468 // 7.9.4 Shifts and Bitfield Operations
473 def CyWriteVSHR : SchedWriteRes<[CyUnitV]> {let Latency = 2;}
474 def : InstRW<[CyWriteVSHR], (instregex "SSHRv","USHRv")>;
476 def CyWriteVSRSHR : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
477 def : InstRW<[CyWriteVSRSHR], (instregex "SRSHRv","URSHRv")>;
479 // Shift and accumulate uses the vector multiply unit.
480 def CyWriteVShiftAcc : SchedWriteRes<[CyUnitVM]> {let Latency = 3;}
481 def CyReadVShiftAcc : SchedReadAdvance<1,
482 [CyWriteVShiftAcc, CyWriteVSHR, CyWriteVSRSHR]>;
483 def : InstRW<[CyWriteVShiftAcc, CyReadVShiftAcc],
484 (instregex "SRSRAv","SSRAv","URSRAv","USRAv")>;
486 // SSHL,USHL are WriteV.
488 def : InstRW<[CyWriteV3], (instregex "SRSHLv","URSHLv")>;
490 // SQSHL,SQSHLU,UQSHL are WriteV.
492 def : InstRW<[CyWriteV3], (instregex "SQRSHLv","UQRSHLv")>;
499 // CLS,CLZ,CNT,RBIT,REV16,REV32,REV64,XTN
502 def : InstRW<[CyWriteV4],
503 (instregex "RSHRNv","SHRNv",
504 "SQRSHRNv","SQRSHRUNv","SQSHRNv","SQSHRUNv",
505 "UQRSHRNv","UQSHRNv","SQXTNv","SQXTUNv","UQXTNv")>;
508 // 7.9.5 Multiplication
511 def CyWriteVMul : SchedWriteRes<[CyUnitVM]> { let Latency = 4;}
512 def : InstRW<[CyWriteVMul], (instregex "MULv","SMULLv","UMULLv",
513 "SQDMULLv","SQDMULHv","SQRDMULHv")>;
515 // FMUL,FMULX,FNMUL default to WriteFMul.
516 def : WriteRes<WriteFMul, [CyUnitVM]> { let Latency = 4;}
518 def CyWriteV64Mul : SchedWriteRes<[CyUnitVM]> { let Latency = 5;}
519 def : InstRW<[CyWriteV64Mul], (instrs FMULDrr,FMULv2f64,FMULv2i64_indexed,
520 FNMULDrr,FMULX64,FMULXv2f64,FMULXv2i64_indexed)>;
522 def CyReadVMulAcc : SchedReadAdvance<1, [CyWriteVMul, CyWriteV64Mul]>;
523 def : InstRW<[CyWriteVMul, CyReadVMulAcc],
524 (instregex "MLA","MLS","SMLAL","SMLSL","UMLAL","UMLSL",
525 "SQDMLAL","SQDMLSL")>;
527 def CyWriteSMul : SchedWriteRes<[CyUnitVM]> { let Latency = 8;}
528 def CyWriteDMul : SchedWriteRes<[CyUnitVM]> { let Latency = 10;}
529 def CyReadSMul : SchedReadAdvance<4, [CyWriteSMul]>;
530 def CyReadDMul : SchedReadAdvance<5, [CyWriteDMul]>;
532 def : InstRW<[CyWriteSMul, CyReadSMul],
533 (instrs FMADDSrrr,FMSUBSrrr,FNMADDSrrr,FNMSUBSrrr,
535 FMLAv1i32_indexed,FMLAv1i64_indexed,FMLAv2i32_indexed)>;
536 def : InstRW<[CyWriteDMul, CyReadDMul],
537 (instrs FMADDDrrr,FMSUBDrrr,FNMADDDrrr,FNMSUBDrrr,
538 FMLAv2f64,FMLAv2i64_indexed,
539 FMLSv2f64,FMLSv2i64_indexed)>;
541 def CyWritePMUL : SchedWriteRes<[CyUnitVD]> { let Latency = 3; }
542 def : InstRW<[CyWritePMUL], (instregex "PMULv", "PMULLv")>;
545 // 7.9.6 Divide and Square Root
549 // TODO: Add 64-bit variant with 19 cycle latency.
550 // TODO: Specialize FSQRT for longer latency.
551 def : WriteRes<WriteFDiv, [CyUnitVD, CyUnitFloatDiv]> {
553 let ResourceCycles = [2, 17];
556 def : InstRW<[CyWriteV4], (instregex "FRECPEv","FRECPXv","URECPEv","URSQRTEv")>;
558 def WriteFRSQRTE : SchedWriteRes<[CyUnitVM]> { let Latency = 4; }
559 def : InstRW<[WriteFRSQRTE], (instregex "FRSQRTEv")>;
561 def WriteFRECPS : SchedWriteRes<[CyUnitVM]> { let Latency = 8; }
562 def WriteFRSQRTS : SchedWriteRes<[CyUnitVM]> { let Latency = 10; }
563 def : InstRW<[WriteFRECPS], (instregex "FRECPSv")>;
564 def : InstRW<[WriteFRSQRTS], (instregex "FRSQRTSv")>;
567 // 7.9.7 Integer-FP Conversions
570 // FCVT lengthen f16/s32
571 def : InstRW<[WriteV], (instrs FCVTSHr,FCVTDHr,FCVTDSr)>;
575 // FRINT(AIMNPXZ) V,V
576 def : WriteRes<WriteFCvt, [CyUnitV]> {let Latency = 4;}
578 // SCVT/UCVT S/D, Rd = VLD5+V4: 9 cycles.
579 def CyWriteCvtToFPR : WriteSequence<[WriteVLD, CyWriteV4]>;
580 def : InstRW<[CyWriteCopyToFPR], (instregex "FCVT[AMNPZ][SU][SU][WX][SD]r")>;
582 // FCVT Rd, S/D = V6+LD4: 10 cycles
583 def CyWriteCvtToGPR : WriteSequence<[CyWriteV6, WriteLD]>;
584 def : InstRW<[CyWriteCvtToGPR], (instregex "[SU]CVTF[SU][WX][SD]r")>;
589 // 7.9.8-7.9.10 Cryptography, Data Transposition, Table Lookup
592 def CyWriteCrypto2 : SchedWriteRes<[CyUnitVD]> {let Latency = 2;}
593 def : InstRW<[CyWriteCrypto2], (instrs AESIMCrr, AESMCrr, SHA1Hrr,
594 AESDrr, AESErr, SHA1SU1rr, SHA256SU0rr,
597 def CyWriteCrypto3 : SchedWriteRes<[CyUnitVD]> {let Latency = 3;}
598 def : InstRW<[CyWriteCrypto3], (instrs SHA256SU1rrr)>;
600 def CyWriteCrypto6 : SchedWriteRes<[CyUnitVD]> {let Latency = 6;}
601 def : InstRW<[CyWriteCrypto6], (instrs SHA1Crrr, SHA1Mrrr, SHA1Prrr,
602 SHA256Hrrr,SHA256H2rrr)>;
604 // TRN,UZP,ZUP are WriteV.
606 // TBL,TBX are WriteV.
609 // 7.9.11-7.9.14 Load/Store, single element and paired
612 // Loading into the vector unit takes 5 cycles vs 4 for integer loads.
613 def : WriteRes<WriteVLD, [CyUnitLS]> {
617 // Store-load forwarding is 4 cycles.
618 def : WriteRes<WriteVST, [CyUnitLS]> {
622 // WriteVLDPair/VSTPair sequences are expanded by the target description.
625 // 7.9.15 Load, element operations
628 // Only the first WriteVLD and WriteAdr for writeback matches def operands.
629 // Subsequent WriteVLDs consume resources. Since all loaded values have the
630 // same latency, this is acceptable.
632 // Vd is read 5 cycles after issuing the vector load.
633 def : ReadAdvance<ReadVLD, 5>;
635 def : InstRW<[WriteVLD],
636 (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
637 def : InstRW<[WriteVLD, WriteAdr],
638 (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
640 // Register writes from the load's high half are fused micro-ops.
641 def : InstRW<[WriteVLD],
642 (instregex "LD1Twov(8b|4h|2s|1d)$")>;
643 def : InstRW<[WriteVLD, WriteAdr],
644 (instregex "LD1Twov(8b|4h|2s|1d)_POST")>;
645 def : InstRW<[WriteVLD, WriteVLD],
646 (instregex "LD1Twov(16b|8h|4s|2d)$")>;
647 def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
648 (instregex "LD1Twov(16b|8h|4s|2d)_POST")>;
650 def : InstRW<[WriteVLD, WriteVLD],
651 (instregex "LD1Threev(8b|4h|2s|1d)$")>;
652 def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
653 (instregex "LD1Threev(8b|4h|2s|1d)_POST")>;
654 def : InstRW<[WriteVLD, WriteVLD, WriteVLD],
655 (instregex "LD1Threev(16b|8h|4s|2d)$")>;
656 def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD],
657 (instregex "LD1Threev(16b|8h|4s|2d)_POST")>;
659 def : InstRW<[WriteVLD, WriteVLD],
660 (instregex "LD1Fourv(8b|4h|2s|1d)$")>;
661 def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
662 (instregex "LD1Fourv(8b|4h|2s|1d)_POST")>;
663 def : InstRW<[WriteVLD, WriteVLD, WriteVLD, WriteVLD],
664 (instregex "LD1Fourv(16b|8h|4s|2d)$")>;
665 def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD, WriteVLD],
666 (instregex "LD1Fourv(16b|8h|4s|2d)_POST")>;
668 def : InstRW<[WriteVLDShuffle, ReadVLD],
669 (instregex "LD1i(8|16|32)$")>;
670 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr],
671 (instregex "LD1i(8|16|32)_POST")>;
673 def : InstRW<[WriteVLDShuffle, ReadVLD], (instrs LD1i64)>;
674 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr],(instrs LD1i64_POST)>;
676 def : InstRW<[WriteVLDShuffle],
677 (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
678 def : InstRW<[WriteVLDShuffle, WriteAdr],
679 (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
681 def : InstRW<[WriteVLDShuffle, WriteV],
682 (instregex "LD2Twov(8b|4h|2s)$")>;
683 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV],
684 (instregex "LD2Twov(8b|4h|2s)_POST$")>;
685 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle],
686 (instregex "LD2Twov(16b|8h|4s|2d)$")>;
687 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle],
688 (instregex "LD2Twov(16b|8h|4s|2d)_POST")>;
690 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV],
691 (instregex "LD2i(8|16|32)$")>;
692 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV],
693 (instregex "LD2i(8|16|32)_POST")>;
694 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV],
695 (instregex "LD2i64$")>;
696 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV],
697 (instregex "LD2i64_POST")>;
699 def : InstRW<[WriteVLDShuffle, WriteV],
700 (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
701 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV],
702 (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
704 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV],
705 (instregex "LD3Threev(8b|4h|2s)$")>;
706 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV],
707 (instregex "LD3Threev(8b|4h|2s)_POST")>;
708 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteVLDShuffle],
709 (instregex "LD3Threev(16b|8h|4s|2d)$")>;
710 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteVLDShuffle],
711 (instregex "LD3Threev(16b|8h|4s|2d)_POST")>;
713 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV, WriteV],
714 (instregex "LD3i(8|16|32)$")>;
715 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV, WriteV],
716 (instregex "LD3i(8|16|32)_POST")>;
718 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteV],
719 (instregex "LD3i64$")>;
720 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteV],
721 (instregex "LD3i64_POST")>;
723 def : InstRW<[WriteVLDShuffle, WriteV, WriteV],
724 (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)$")>;
725 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV, WriteV],
726 (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)_POST")>;
728 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV],
729 (instrs LD3Rv1d,LD3Rv2d)>;
730 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV],
731 (instrs LD3Rv1d_POST,LD3Rv2d_POST)>;
733 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV, WriteV],
734 (instregex "LD4Fourv(8b|4h|2s)$")>;
735 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV, WriteV],
736 (instregex "LD4Fourv(8b|4h|2s)_POST")>;
737 def : InstRW<[WriteVLDPairShuffle, WriteVLDPairShuffle,
738 WriteVLDPairShuffle, WriteVLDPairShuffle],
739 (instregex "LD4Fourv(16b|8h|4s|2d)$")>;
740 def : InstRW<[WriteVLDPairShuffle, WriteAdr, WriteVLDPairShuffle,
741 WriteVLDPairShuffle, WriteVLDPairShuffle],
742 (instregex "LD4Fourv(16b|8h|4s|2d)_POST")>;
744 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV, WriteV, WriteV],
745 (instregex "LD4i(8|16|32)$")>;
746 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV, WriteV, WriteV],
747 (instregex "LD4i(8|16|32)_POST")>;
750 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteV, WriteV],
752 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteV],
753 (instrs LD4i64_POST)>;
755 def : InstRW<[WriteVLDShuffle, WriteV, WriteV, WriteV],
756 (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)$")>;
757 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV, WriteV, WriteV],
758 (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)_POST")>;
760 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV, WriteV],
761 (instrs LD4Rv1d,LD4Rv2d)>;
762 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV, WriteV],
763 (instrs LD4Rv1d_POST,LD4Rv2d_POST)>;
766 // 7.9.16 Store, element operations
769 // Only the WriteAdr for writeback matches a def operands.
770 // Subsequent WriteVLDs only consume resources.
772 def : InstRW<[WriteVST],
773 (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
774 def : InstRW<[WriteAdr, WriteVST],
775 (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
777 def : InstRW<[WriteVSTShuffle],
778 (instregex "ST1Twov(8b|4h|2s|1d)$")>;
779 def : InstRW<[WriteAdr, WriteVSTShuffle],
780 (instregex "ST1Twov(8b|4h|2s|1d)_POST")>;
781 def : InstRW<[WriteVST, WriteVST],
782 (instregex "ST1Twov(16b|8h|4s|2d)$")>;
783 def : InstRW<[WriteAdr, WriteVST, WriteVST],
784 (instregex "ST1Twov(16b|8h|4s|2d)_POST")>;
786 def : InstRW<[WriteVSTShuffle, WriteVST],
787 (instregex "ST1Threev(8b|4h|2s|1d)$")>;
788 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVST],
789 (instregex "ST1Threev(8b|4h|2s|1d)_POST")>;
790 def : InstRW<[WriteVST, WriteVST, WriteVST],
791 (instregex "ST1Threev(16b|8h|4s|2d)$")>;
792 def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST],
793 (instregex "ST1Threev(16b|8h|4s|2d)_POST")>;
795 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
796 (instregex "ST1Fourv(8b|4h|2s|1d)$")>;
797 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
798 (instregex "ST1Fourv(8b|4h|2s|1d)_POST")>;
799 def : InstRW<[WriteVST, WriteVST, WriteVST, WriteVST],
800 (instregex "ST1Fourv(16b|8h|4s|2d)$")>;
801 def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST, WriteVST],
802 (instregex "ST1Fourv(16b|8h|4s|2d)_POST")>;
804 def : InstRW<[WriteVSTShuffle], (instregex "ST1i(8|16|32)$")>;
805 def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST1i(8|16|32)_POST")>;
807 def : InstRW<[WriteVSTShuffle], (instrs ST1i64)>;
808 def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST1i64_POST)>;
810 def : InstRW<[WriteVSTShuffle],
811 (instregex "ST2Twov(8b|4h|2s)$")>;
812 def : InstRW<[WriteAdr, WriteVSTShuffle],
813 (instregex "ST2Twov(8b|4h|2s)_POST")>;
814 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
815 (instregex "ST2Twov(16b|8h|4s|2d)$")>;
816 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
817 (instregex "ST2Twov(16b|8h|4s|2d)_POST")>;
819 def : InstRW<[WriteVSTShuffle], (instregex "ST2i(8|16|32)$")>;
820 def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST2i(8|16|32)_POST")>;
821 def : InstRW<[WriteVSTShuffle], (instrs ST2i64)>;
822 def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST2i64_POST)>;
824 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
825 (instregex "ST3Threev(8b|4h|2s)$")>;
826 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
827 (instregex "ST3Threev(8b|4h|2s)_POST")>;
828 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle],
829 (instregex "ST3Threev(16b|8h|4s|2d)$")>;
830 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle],
831 (instregex "ST3Threev(16b|8h|4s|2d)_POST")>;
833 def : InstRW<[WriteVSTShuffle], (instregex "ST3i(8|16|32)$")>;
834 def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST3i(8|16|32)_POST")>;
836 def :InstRW<[WriteVSTShuffle, WriteVSTShuffle], (instrs ST3i64)>;
837 def :InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], (instrs ST3i64_POST)>;
839 def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle],
840 (instregex "ST4Fourv(8b|4h|2s|1d)$")>;
841 def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle],
842 (instregex "ST4Fourv(8b|4h|2s|1d)_POST")>;
843 def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle,
844 WriteVSTPairShuffle, WriteVSTPairShuffle],
845 (instregex "ST4Fourv(16b|8h|4s|2d)$")>;
846 def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle,
847 WriteVSTPairShuffle, WriteVSTPairShuffle],
848 (instregex "ST4Fourv(16b|8h|4s|2d)_POST")>;
850 def : InstRW<[WriteVSTPairShuffle], (instregex "ST4i(8|16|32)$")>;
851 def : InstRW<[WriteAdr, WriteVSTPairShuffle], (instregex "ST4i(8|16|32)_POST")>;
853 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle], (instrs ST4i64)>;
854 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],(instrs ST4i64_POST)>;
856 // Atomic operations are not supported.
857 def : WriteRes<WriteAtomic, []> { let Unsupported = 1; }
860 // Unused SchedRead types
863 def : ReadAdvance<ReadI, 0>;
864 def : ReadAdvance<ReadISReg, 0>;
865 def : ReadAdvance<ReadIEReg, 0>;
866 def : ReadAdvance<ReadIM, 0>;
867 def : ReadAdvance<ReadIMA, 0>;
868 def : ReadAdvance<ReadID, 0>;
870 } // SchedModel = CycloneModel