[MIPS GlobalISel] Select MSA vector generic and builtin add
[llvm-complete.git] / lib / Target / AArch64 / AArch64StackTagging.cpp
blobe6dbe01d3807a7b1e0caa40f31c9dc066e3a76aa
1 //===- AArch64StackTagging.cpp - Stack tagging in IR --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //===----------------------------------------------------------------------===//
11 #include "AArch64.h"
12 #include "AArch64InstrInfo.h"
13 #include "AArch64Subtarget.h"
14 #include "AArch64TargetMachine.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DepthFirstIterator.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/CodeGen/LiveRegUnits.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/TargetPassConfig.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Transforms/Utils/Local.h"
51 #include <cassert>
52 #include <iterator>
53 #include <utility>
55 using namespace llvm;
57 #define DEBUG_TYPE "stack-tagging"
59 static cl::opt<bool> ClMergeInit(
60 "stack-tagging-merge-init", cl::Hidden, cl::init(true), cl::ZeroOrMore,
61 cl::desc("merge stack variable initializers with tagging when possible"));
63 static cl::opt<unsigned> ClScanLimit("stack-tagging-merge-init-scan-limit",
64 cl::init(40), cl::Hidden);
66 static const Align kTagGranuleSize = Align(16);
68 namespace {
70 class InitializerBuilder {
71 uint64_t Size;
72 const DataLayout *DL;
73 Value *BasePtr;
74 Function *SetTagFn;
75 Function *SetTagZeroFn;
76 Function *StgpFn;
78 // List of initializers sorted by start offset.
79 struct Range {
80 uint64_t Start, End;
81 Instruction *Inst;
83 SmallVector<Range, 4> Ranges;
84 // 8-aligned offset => 8-byte initializer
85 // Missing keys are zero initialized.
86 std::map<uint64_t, Value *> Out;
88 public:
89 InitializerBuilder(uint64_t Size, const DataLayout *DL, Value *BasePtr,
90 Function *SetTagFn, Function *SetTagZeroFn,
91 Function *StgpFn)
92 : Size(Size), DL(DL), BasePtr(BasePtr), SetTagFn(SetTagFn),
93 SetTagZeroFn(SetTagZeroFn), StgpFn(StgpFn) {}
95 bool addRange(uint64_t Start, uint64_t End, Instruction *Inst) {
96 auto I = std::lower_bound(
97 Ranges.begin(), Ranges.end(), Start,
98 [](const Range &LHS, uint64_t RHS) { return LHS.End <= RHS; });
99 if (I != Ranges.end() && End > I->Start) {
100 // Overlap - bail.
101 return false;
103 Ranges.insert(I, {Start, End, Inst});
104 return true;
107 bool addStore(uint64_t Offset, StoreInst *SI, const DataLayout *DL) {
108 int64_t StoreSize = DL->getTypeStoreSize(SI->getOperand(0)->getType());
109 if (!addRange(Offset, Offset + StoreSize, SI))
110 return false;
111 IRBuilder<> IRB(SI);
112 applyStore(IRB, Offset, Offset + StoreSize, SI->getOperand(0));
113 return true;
116 bool addMemSet(uint64_t Offset, MemSetInst *MSI) {
117 uint64_t StoreSize = cast<ConstantInt>(MSI->getLength())->getZExtValue();
118 if (!addRange(Offset, Offset + StoreSize, MSI))
119 return false;
120 IRBuilder<> IRB(MSI);
121 applyMemSet(IRB, Offset, Offset + StoreSize,
122 cast<ConstantInt>(MSI->getValue()));
123 return true;
126 void applyMemSet(IRBuilder<> &IRB, int64_t Start, int64_t End,
127 ConstantInt *V) {
128 // Out[] does not distinguish between zero and undef, and we already know
129 // that this memset does not overlap with any other initializer. Nothing to
130 // do for memset(0).
131 if (V->isZero())
132 return;
133 for (int64_t Offset = Start - Start % 8; Offset < End; Offset += 8) {
134 uint64_t Cst = 0x0101010101010101UL;
135 int LowBits = Offset < Start ? (Start - Offset) * 8 : 0;
136 if (LowBits)
137 Cst = (Cst >> LowBits) << LowBits;
138 int HighBits = End - Offset < 8 ? (8 - (End - Offset)) * 8 : 0;
139 if (HighBits)
140 Cst = (Cst << HighBits) >> HighBits;
141 ConstantInt *C =
142 ConstantInt::get(IRB.getInt64Ty(), Cst * V->getZExtValue());
144 Value *&CurrentV = Out[Offset];
145 if (!CurrentV) {
146 CurrentV = C;
147 } else {
148 CurrentV = IRB.CreateOr(CurrentV, C);
153 // Take a 64-bit slice of the value starting at the given offset (in bytes).
154 // Offset can be negative. Pad with zeroes on both sides when necessary.
155 Value *sliceValue(IRBuilder<> &IRB, Value *V, int64_t Offset) {
156 if (Offset > 0) {
157 V = IRB.CreateLShr(V, Offset * 8);
158 V = IRB.CreateZExtOrTrunc(V, IRB.getInt64Ty());
159 } else if (Offset < 0) {
160 V = IRB.CreateZExtOrTrunc(V, IRB.getInt64Ty());
161 V = IRB.CreateShl(V, -Offset * 8);
162 } else {
163 V = IRB.CreateZExtOrTrunc(V, IRB.getInt64Ty());
165 return V;
168 void applyStore(IRBuilder<> &IRB, int64_t Start, int64_t End,
169 Value *StoredValue) {
170 StoredValue = flatten(IRB, StoredValue);
171 for (int64_t Offset = Start - Start % 8; Offset < End; Offset += 8) {
172 Value *V = sliceValue(IRB, StoredValue, Offset - Start);
173 Value *&CurrentV = Out[Offset];
174 if (!CurrentV) {
175 CurrentV = V;
176 } else {
177 CurrentV = IRB.CreateOr(CurrentV, V);
182 void generate(IRBuilder<> &IRB) {
183 LLVM_DEBUG(dbgs() << "Combined initializer\n");
184 // No initializers => the entire allocation is undef.
185 if (Ranges.empty()) {
186 emitUndef(IRB, 0, Size);
187 return;
190 // Look through 8-byte initializer list 16 bytes at a time;
191 // If one of the two 8-byte halfs is non-zero non-undef, emit STGP.
192 // Otherwise, emit zeroes up to next available item.
193 uint64_t LastOffset = 0;
194 for (uint64_t Offset = 0; Offset < Size; Offset += 16) {
195 auto I1 = Out.find(Offset);
196 auto I2 = Out.find(Offset + 8);
197 if (I1 == Out.end() && I2 == Out.end())
198 continue;
200 if (Offset > LastOffset)
201 emitZeroes(IRB, LastOffset, Offset - LastOffset);
203 Value *Store1 = I1 == Out.end() ? Constant::getNullValue(IRB.getInt64Ty())
204 : I1->second;
205 Value *Store2 = I2 == Out.end() ? Constant::getNullValue(IRB.getInt64Ty())
206 : I2->second;
207 emitPair(IRB, Offset, Store1, Store2);
208 LastOffset = Offset + 16;
211 // memset(0) does not update Out[], therefore the tail can be either undef
212 // or zero.
213 if (LastOffset < Size)
214 emitZeroes(IRB, LastOffset, Size - LastOffset);
216 for (const auto &R : Ranges) {
217 R.Inst->eraseFromParent();
221 void emitZeroes(IRBuilder<> &IRB, uint64_t Offset, uint64_t Size) {
222 LLVM_DEBUG(dbgs() << " [" << Offset << ", " << Offset + Size
223 << ") zero\n");
224 Value *Ptr = BasePtr;
225 if (Offset)
226 Ptr = IRB.CreateConstGEP1_32(Ptr, Offset);
227 IRB.CreateCall(SetTagZeroFn,
228 {Ptr, ConstantInt::get(IRB.getInt64Ty(), Size)});
231 void emitUndef(IRBuilder<> &IRB, uint64_t Offset, uint64_t Size) {
232 LLVM_DEBUG(dbgs() << " [" << Offset << ", " << Offset + Size
233 << ") undef\n");
234 Value *Ptr = BasePtr;
235 if (Offset)
236 Ptr = IRB.CreateConstGEP1_32(Ptr, Offset);
237 IRB.CreateCall(SetTagFn, {Ptr, ConstantInt::get(IRB.getInt64Ty(), Size)});
240 void emitPair(IRBuilder<> &IRB, uint64_t Offset, Value *A, Value *B) {
241 LLVM_DEBUG(dbgs() << " [" << Offset << ", " << Offset + 16 << "):\n");
242 LLVM_DEBUG(dbgs() << " " << *A << "\n " << *B << "\n");
243 Value *Ptr = BasePtr;
244 if (Offset)
245 Ptr = IRB.CreateConstGEP1_32(Ptr, Offset);
246 IRB.CreateCall(StgpFn, {Ptr, A, B});
249 Value *flatten(IRBuilder<> &IRB, Value *V) {
250 if (V->getType()->isIntegerTy())
251 return V;
252 // vector of pointers -> vector of ints
253 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) {
254 LLVMContext &Ctx = IRB.getContext();
255 Type *EltTy = VecTy->getElementType();
256 if (EltTy->isPointerTy()) {
257 uint32_t EltSize = DL->getTypeSizeInBits(EltTy);
258 Type *NewTy = VectorType::get(IntegerType::get(Ctx, EltSize),
259 VecTy->getNumElements());
260 V = IRB.CreatePointerCast(V, NewTy);
263 return IRB.CreateBitOrPointerCast(
264 V, IRB.getIntNTy(DL->getTypeStoreSize(V->getType()) * 8));
268 class AArch64StackTagging : public FunctionPass {
269 struct AllocaInfo {
270 AllocaInst *AI;
271 SmallVector<IntrinsicInst *, 2> LifetimeStart;
272 SmallVector<IntrinsicInst *, 2> LifetimeEnd;
273 SmallVector<DbgVariableIntrinsic *, 2> DbgVariableIntrinsics;
274 int Tag; // -1 for non-tagged allocations
277 bool MergeInit;
279 public:
280 static char ID; // Pass ID, replacement for typeid
282 AArch64StackTagging(bool MergeInit = true)
283 : FunctionPass(ID),
284 MergeInit(ClMergeInit.getNumOccurrences() > 0 ? ClMergeInit
285 : MergeInit) {
286 initializeAArch64StackTaggingPass(*PassRegistry::getPassRegistry());
289 bool isInterestingAlloca(const AllocaInst &AI);
290 void alignAndPadAlloca(AllocaInfo &Info);
292 void tagAlloca(AllocaInst *AI, Instruction *InsertBefore, Value *Ptr,
293 uint64_t Size);
294 void untagAlloca(AllocaInst *AI, Instruction *InsertBefore, uint64_t Size);
296 Instruction *collectInitializers(Instruction *StartInst, Value *StartPtr,
297 uint64_t Size, InitializerBuilder &IB);
299 Instruction *
300 insertBaseTaggedPointer(const MapVector<AllocaInst *, AllocaInfo> &Allocas,
301 const DominatorTree *DT);
302 bool runOnFunction(Function &F) override;
304 StringRef getPassName() const override { return "AArch64 Stack Tagging"; }
306 private:
307 Function *F;
308 Function *SetTagFunc;
309 const DataLayout *DL;
310 AAResults *AA;
312 void getAnalysisUsage(AnalysisUsage &AU) const override {
313 AU.setPreservesCFG();
314 if (MergeInit)
315 AU.addRequired<AAResultsWrapperPass>();
319 } // end anonymous namespace
321 char AArch64StackTagging::ID = 0;
323 INITIALIZE_PASS_BEGIN(AArch64StackTagging, DEBUG_TYPE, "AArch64 Stack Tagging",
324 false, false)
325 INITIALIZE_PASS_END(AArch64StackTagging, DEBUG_TYPE, "AArch64 Stack Tagging",
326 false, false)
328 FunctionPass *llvm::createAArch64StackTaggingPass(bool MergeInit) {
329 return new AArch64StackTagging(MergeInit);
332 Instruction *AArch64StackTagging::collectInitializers(Instruction *StartInst,
333 Value *StartPtr,
334 uint64_t Size,
335 InitializerBuilder &IB) {
336 MemoryLocation AllocaLoc{StartPtr, Size};
337 Instruction *LastInst = StartInst;
338 BasicBlock::iterator BI(StartInst);
340 unsigned Count = 0;
341 for (; Count < ClScanLimit && !BI->isTerminator(); ++BI) {
342 if (!isa<DbgInfoIntrinsic>(*BI))
343 ++Count;
345 if (isNoModRef(AA->getModRefInfo(&*BI, AllocaLoc)))
346 continue;
348 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
349 // If the instruction is readnone, ignore it, otherwise bail out. We
350 // don't even allow readonly here because we don't want something like:
351 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
352 if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
353 break;
354 continue;
357 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
358 if (!NextStore->isSimple())
359 break;
361 // Check to see if this store is to a constant offset from the start ptr.
362 Optional<int64_t> Offset =
363 isPointerOffset(StartPtr, NextStore->getPointerOperand(), *DL);
364 if (!Offset)
365 break;
367 if (!IB.addStore(*Offset, NextStore, DL))
368 break;
369 LastInst = NextStore;
370 } else {
371 MemSetInst *MSI = cast<MemSetInst>(BI);
373 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
374 break;
376 if (!isa<ConstantInt>(MSI->getValue()))
377 break;
379 // Check to see if this store is to a constant offset from the start ptr.
380 Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), *DL);
381 if (!Offset)
382 break;
384 if (!IB.addMemSet(*Offset, MSI))
385 break;
386 LastInst = MSI;
389 return LastInst;
392 bool AArch64StackTagging::isInterestingAlloca(const AllocaInst &AI) {
393 // FIXME: support dynamic allocas
394 bool IsInteresting =
395 AI.getAllocatedType()->isSized() && AI.isStaticAlloca() &&
396 // alloca() may be called with 0 size, ignore it.
397 AI.getAllocationSizeInBits(*DL).getValue() > 0 &&
398 // inalloca allocas are not treated as static, and we don't want
399 // dynamic alloca instrumentation for them as well.
400 !AI.isUsedWithInAlloca() &&
401 // swifterror allocas are register promoted by ISel
402 !AI.isSwiftError();
403 return IsInteresting;
406 void AArch64StackTagging::tagAlloca(AllocaInst *AI, Instruction *InsertBefore,
407 Value *Ptr, uint64_t Size) {
408 auto SetTagZeroFunc =
409 Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_settag_zero);
410 auto StgpFunc =
411 Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_stgp);
413 InitializerBuilder IB(Size, DL, Ptr, SetTagFunc, SetTagZeroFunc, StgpFunc);
414 bool LittleEndian =
415 Triple(AI->getModule()->getTargetTriple()).isLittleEndian();
416 // Current implementation of initializer merging assumes little endianness.
417 if (MergeInit && !F->hasOptNone() && LittleEndian) {
418 LLVM_DEBUG(dbgs() << "collecting initializers for " << *AI
419 << ", size = " << Size << "\n");
420 InsertBefore = collectInitializers(InsertBefore, Ptr, Size, IB);
423 IRBuilder<> IRB(InsertBefore);
424 IB.generate(IRB);
427 void AArch64StackTagging::untagAlloca(AllocaInst *AI, Instruction *InsertBefore,
428 uint64_t Size) {
429 IRBuilder<> IRB(InsertBefore);
430 IRB.CreateCall(SetTagFunc, {IRB.CreatePointerCast(AI, IRB.getInt8PtrTy()),
431 ConstantInt::get(IRB.getInt64Ty(), Size)});
434 Instruction *AArch64StackTagging::insertBaseTaggedPointer(
435 const MapVector<AllocaInst *, AllocaInfo> &Allocas,
436 const DominatorTree *DT) {
437 BasicBlock *PrologueBB = nullptr;
438 // Try sinking IRG as deep as possible to avoid hurting shrink wrap.
439 for (auto &I : Allocas) {
440 const AllocaInfo &Info = I.second;
441 AllocaInst *AI = Info.AI;
442 if (Info.Tag < 0)
443 continue;
444 if (!PrologueBB) {
445 PrologueBB = AI->getParent();
446 continue;
448 PrologueBB = DT->findNearestCommonDominator(PrologueBB, AI->getParent());
450 assert(PrologueBB);
452 IRBuilder<> IRB(&PrologueBB->front());
453 Function *IRG_SP =
454 Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_irg_sp);
455 Instruction *Base =
456 IRB.CreateCall(IRG_SP, {Constant::getNullValue(IRB.getInt64Ty())});
457 Base->setName("basetag");
458 return Base;
461 void AArch64StackTagging::alignAndPadAlloca(AllocaInfo &Info) {
462 const Align NewAlignment =
463 max(MaybeAlign(Info.AI->getAlignment()), kTagGranuleSize);
464 Info.AI->setAlignment(NewAlignment);
466 uint64_t Size = Info.AI->getAllocationSizeInBits(*DL).getValue() / 8;
467 uint64_t AlignedSize = alignTo(Size, kTagGranuleSize);
468 if (Size == AlignedSize)
469 return;
471 // Add padding to the alloca.
472 Type *AllocatedType =
473 Info.AI->isArrayAllocation()
474 ? ArrayType::get(
475 Info.AI->getAllocatedType(),
476 cast<ConstantInt>(Info.AI->getArraySize())->getZExtValue())
477 : Info.AI->getAllocatedType();
478 Type *PaddingType =
479 ArrayType::get(Type::getInt8Ty(F->getContext()), AlignedSize - Size);
480 Type *TypeWithPadding = StructType::get(AllocatedType, PaddingType);
481 auto *NewAI = new AllocaInst(
482 TypeWithPadding, Info.AI->getType()->getAddressSpace(), nullptr, "", Info.AI);
483 NewAI->takeName(Info.AI);
484 NewAI->setAlignment(MaybeAlign(Info.AI->getAlignment()));
485 NewAI->setUsedWithInAlloca(Info.AI->isUsedWithInAlloca());
486 NewAI->setSwiftError(Info.AI->isSwiftError());
487 NewAI->copyMetadata(*Info.AI);
489 auto *NewPtr = new BitCastInst(NewAI, Info.AI->getType(), "", Info.AI);
490 Info.AI->replaceAllUsesWith(NewPtr);
491 Info.AI->eraseFromParent();
492 Info.AI = NewAI;
495 // Helper function to check for post-dominance.
496 static bool postDominates(const PostDominatorTree *PDT, const IntrinsicInst *A,
497 const IntrinsicInst *B) {
498 const BasicBlock *ABB = A->getParent();
499 const BasicBlock *BBB = B->getParent();
501 if (ABB != BBB)
502 return PDT->dominates(ABB, BBB);
504 for (const Instruction &I : *ABB) {
505 if (&I == B)
506 return true;
507 if (&I == A)
508 return false;
510 llvm_unreachable("Corrupt instruction list");
513 // FIXME: check for MTE extension
514 bool AArch64StackTagging::runOnFunction(Function &Fn) {
515 if (!Fn.hasFnAttribute(Attribute::SanitizeMemTag))
516 return false;
518 F = &Fn;
519 DL = &Fn.getParent()->getDataLayout();
520 if (MergeInit)
521 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
523 MapVector<AllocaInst *, AllocaInfo> Allocas; // need stable iteration order
524 SmallVector<Instruction *, 8> RetVec;
525 DenseMap<Value *, AllocaInst *> AllocaForValue;
526 SmallVector<Instruction *, 4> UnrecognizedLifetimes;
528 for (auto &BB : *F) {
529 for (BasicBlock::iterator IT = BB.begin(); IT != BB.end(); ++IT) {
530 Instruction *I = &*IT;
531 if (auto *AI = dyn_cast<AllocaInst>(I)) {
532 Allocas[AI].AI = AI;
533 continue;
536 if (auto *DVI = dyn_cast<DbgVariableIntrinsic>(I)) {
537 if (auto *AI =
538 dyn_cast_or_null<AllocaInst>(DVI->getVariableLocation())) {
539 Allocas[AI].DbgVariableIntrinsics.push_back(DVI);
541 continue;
544 auto *II = dyn_cast<IntrinsicInst>(I);
545 if (II && (II->getIntrinsicID() == Intrinsic::lifetime_start ||
546 II->getIntrinsicID() == Intrinsic::lifetime_end)) {
547 AllocaInst *AI =
548 llvm::findAllocaForValue(II->getArgOperand(1), AllocaForValue);
549 if (!AI) {
550 UnrecognizedLifetimes.push_back(I);
551 continue;
553 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
554 Allocas[AI].LifetimeStart.push_back(II);
555 else
556 Allocas[AI].LifetimeEnd.push_back(II);
559 if (isa<ReturnInst>(I) || isa<ResumeInst>(I) || isa<CleanupReturnInst>(I))
560 RetVec.push_back(I);
564 if (Allocas.empty())
565 return false;
567 int NextTag = 0;
568 int NumInterestingAllocas = 0;
569 for (auto &I : Allocas) {
570 AllocaInfo &Info = I.second;
571 assert(Info.AI);
573 if (!isInterestingAlloca(*Info.AI)) {
574 Info.Tag = -1;
575 continue;
578 alignAndPadAlloca(Info);
579 NumInterestingAllocas++;
580 Info.Tag = NextTag;
581 NextTag = (NextTag + 1) % 16;
584 if (NumInterestingAllocas == 0)
585 return true;
587 std::unique_ptr<DominatorTree> DeleteDT;
588 DominatorTree *DT = nullptr;
589 if (auto *P = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
590 DT = &P->getDomTree();
592 if (DT == nullptr && (NumInterestingAllocas > 1 ||
593 !F->hasFnAttribute(Attribute::OptimizeNone))) {
594 DeleteDT = std::make_unique<DominatorTree>(*F);
595 DT = DeleteDT.get();
598 std::unique_ptr<PostDominatorTree> DeletePDT;
599 PostDominatorTree *PDT = nullptr;
600 if (auto *P = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>())
601 PDT = &P->getPostDomTree();
603 if (PDT == nullptr && !F->hasFnAttribute(Attribute::OptimizeNone)) {
604 DeletePDT = std::make_unique<PostDominatorTree>(*F);
605 PDT = DeletePDT.get();
608 SetTagFunc =
609 Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_settag);
611 Instruction *Base = insertBaseTaggedPointer(Allocas, DT);
613 for (auto &I : Allocas) {
614 const AllocaInfo &Info = I.second;
615 AllocaInst *AI = Info.AI;
616 if (Info.Tag < 0)
617 continue;
619 // Replace alloca with tagp(alloca).
620 IRBuilder<> IRB(Info.AI->getNextNode());
621 Function *TagP = Intrinsic::getDeclaration(
622 F->getParent(), Intrinsic::aarch64_tagp, {Info.AI->getType()});
623 Instruction *TagPCall =
624 IRB.CreateCall(TagP, {Constant::getNullValue(Info.AI->getType()), Base,
625 ConstantInt::get(IRB.getInt64Ty(), Info.Tag)});
626 if (Info.AI->hasName())
627 TagPCall->setName(Info.AI->getName() + ".tag");
628 Info.AI->replaceAllUsesWith(TagPCall);
629 TagPCall->setOperand(0, Info.AI);
631 if (UnrecognizedLifetimes.empty() && Info.LifetimeStart.size() == 1 &&
632 Info.LifetimeEnd.size() == 1) {
633 IntrinsicInst *Start = Info.LifetimeStart[0];
634 IntrinsicInst *End = Info.LifetimeEnd[0];
635 uint64_t Size =
636 dyn_cast<ConstantInt>(Start->getArgOperand(0))->getZExtValue();
637 Size = alignTo(Size, kTagGranuleSize);
638 tagAlloca(AI, Start->getNextNode(), Start->getArgOperand(1), Size);
639 // We need to ensure that if we tag some object, we certainly untag it
640 // before the function exits.
641 if (PDT != nullptr && postDominates(PDT, End, Start)) {
642 untagAlloca(AI, End, Size);
643 } else {
644 SmallVector<Instruction *, 8> ReachableRetVec;
645 unsigned NumCoveredExits = 0;
646 for (auto &RI : RetVec) {
647 if (!isPotentiallyReachable(Start, RI, nullptr, DT))
648 continue;
649 ReachableRetVec.push_back(RI);
650 if (DT != nullptr && DT->dominates(End, RI))
651 ++NumCoveredExits;
653 // If there's a mix of covered and non-covered exits, just put the untag
654 // on exits, so we avoid the redundancy of untagging twice.
655 if (NumCoveredExits == ReachableRetVec.size()) {
656 untagAlloca(AI, End, Size);
657 } else {
658 for (auto &RI : ReachableRetVec)
659 untagAlloca(AI, RI, Size);
660 // We may have inserted untag outside of the lifetime interval.
661 // Remove the lifetime end call for this alloca.
662 End->eraseFromParent();
665 } else {
666 uint64_t Size = Info.AI->getAllocationSizeInBits(*DL).getValue() / 8;
667 Value *Ptr = IRB.CreatePointerCast(TagPCall, IRB.getInt8PtrTy());
668 tagAlloca(AI, &*IRB.GetInsertPoint(), Ptr, Size);
669 for (auto &RI : RetVec) {
670 untagAlloca(AI, RI, Size);
672 // We may have inserted tag/untag outside of any lifetime interval.
673 // Remove all lifetime intrinsics for this alloca.
674 for (auto &II : Info.LifetimeStart)
675 II->eraseFromParent();
676 for (auto &II : Info.LifetimeEnd)
677 II->eraseFromParent();
680 // Fixup debug intrinsics to point to the new alloca.
681 for (auto DVI : Info.DbgVariableIntrinsics)
682 DVI->setArgOperand(
684 MetadataAsValue::get(F->getContext(), LocalAsMetadata::get(Info.AI)));
687 // If we have instrumented at least one alloca, all unrecognized lifetime
688 // instrinsics have to go.
689 for (auto &I : UnrecognizedLifetimes)
690 I->eraseFromParent();
692 return true;