[MIPS GlobalISel] Select MSA vector generic and builtin add
[llvm-complete.git] / lib / Target / BPF / BPFISelLowering.cpp
blob56e0288f26c9fd96465e423af7c60f8ad7af14c2
1 //===-- BPFISelLowering.cpp - BPF DAG Lowering Implementation ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that BPF uses to lower LLVM code into a
10 // selection DAG.
12 //===----------------------------------------------------------------------===//
14 #include "BPFISelLowering.h"
15 #include "BPF.h"
16 #include "BPFSubtarget.h"
17 #include "BPFTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SelectionDAGISel.h"
24 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/DiagnosticInfo.h"
27 #include "llvm/IR/DiagnosticPrinter.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 using namespace llvm;
33 #define DEBUG_TYPE "bpf-lower"
35 static cl::opt<bool> BPFExpandMemcpyInOrder("bpf-expand-memcpy-in-order",
36 cl::Hidden, cl::init(false),
37 cl::desc("Expand memcpy into load/store pairs in order"));
39 static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg) {
40 MachineFunction &MF = DAG.getMachineFunction();
41 DAG.getContext()->diagnose(
42 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
45 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg,
46 SDValue Val) {
47 MachineFunction &MF = DAG.getMachineFunction();
48 std::string Str;
49 raw_string_ostream OS(Str);
50 OS << Msg;
51 Val->print(OS);
52 OS.flush();
53 DAG.getContext()->diagnose(
54 DiagnosticInfoUnsupported(MF.getFunction(), Str, DL.getDebugLoc()));
57 BPFTargetLowering::BPFTargetLowering(const TargetMachine &TM,
58 const BPFSubtarget &STI)
59 : TargetLowering(TM) {
61 // Set up the register classes.
62 addRegisterClass(MVT::i64, &BPF::GPRRegClass);
63 if (STI.getHasAlu32())
64 addRegisterClass(MVT::i32, &BPF::GPR32RegClass);
66 // Compute derived properties from the register classes
67 computeRegisterProperties(STI.getRegisterInfo());
69 setStackPointerRegisterToSaveRestore(BPF::R11);
71 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
72 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
73 setOperationAction(ISD::BRIND, MVT::Other, Expand);
74 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
76 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
78 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
79 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
80 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
82 for (auto VT : { MVT::i32, MVT::i64 }) {
83 if (VT == MVT::i32 && !STI.getHasAlu32())
84 continue;
86 setOperationAction(ISD::SDIVREM, VT, Expand);
87 setOperationAction(ISD::UDIVREM, VT, Expand);
88 setOperationAction(ISD::SREM, VT, Expand);
89 setOperationAction(ISD::UREM, VT, Expand);
90 setOperationAction(ISD::MULHU, VT, Expand);
91 setOperationAction(ISD::MULHS, VT, Expand);
92 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
93 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
94 setOperationAction(ISD::ROTR, VT, Expand);
95 setOperationAction(ISD::ROTL, VT, Expand);
96 setOperationAction(ISD::SHL_PARTS, VT, Expand);
97 setOperationAction(ISD::SRL_PARTS, VT, Expand);
98 setOperationAction(ISD::SRA_PARTS, VT, Expand);
99 setOperationAction(ISD::CTPOP, VT, Expand);
101 setOperationAction(ISD::SETCC, VT, Expand);
102 setOperationAction(ISD::SELECT, VT, Expand);
103 setOperationAction(ISD::SELECT_CC, VT, Custom);
106 if (STI.getHasAlu32()) {
107 setOperationAction(ISD::BSWAP, MVT::i32, Promote);
108 setOperationAction(ISD::BR_CC, MVT::i32,
109 STI.getHasJmp32() ? Custom : Promote);
112 setOperationAction(ISD::CTTZ, MVT::i64, Custom);
113 setOperationAction(ISD::CTLZ, MVT::i64, Custom);
114 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
115 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
117 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
118 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
119 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
120 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
122 // Extended load operations for i1 types must be promoted
123 for (MVT VT : MVT::integer_valuetypes()) {
124 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
125 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
126 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
128 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
129 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
130 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
133 setBooleanContents(ZeroOrOneBooleanContent);
135 // Function alignments
136 setMinFunctionAlignment(Align(8));
137 setPrefFunctionAlignment(Align(8));
139 if (BPFExpandMemcpyInOrder) {
140 // LLVM generic code will try to expand memcpy into load/store pairs at this
141 // stage which is before quite a few IR optimization passes, therefore the
142 // loads and stores could potentially be moved apart from each other which
143 // will cause trouble to memcpy pattern matcher inside kernel eBPF JIT
144 // compilers.
146 // When -bpf-expand-memcpy-in-order specified, we want to defer the expand
147 // of memcpy to later stage in IR optimization pipeline so those load/store
148 // pairs won't be touched and could be kept in order. Hence, we set
149 // MaxStoresPerMem* to zero to disable the generic getMemcpyLoadsAndStores
150 // code path, and ask LLVM to use target expander EmitTargetCodeForMemcpy.
151 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 0;
152 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 0;
153 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 0;
154 } else {
155 // inline memcpy() for kernel to see explicit copy
156 unsigned CommonMaxStores =
157 STI.getSelectionDAGInfo()->getCommonMaxStoresPerMemFunc();
159 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = CommonMaxStores;
160 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = CommonMaxStores;
161 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = CommonMaxStores;
164 // CPU/Feature control
165 HasAlu32 = STI.getHasAlu32();
166 HasJmp32 = STI.getHasJmp32();
167 HasJmpExt = STI.getHasJmpExt();
170 bool BPFTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
171 return false;
174 std::pair<unsigned, const TargetRegisterClass *>
175 BPFTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
176 StringRef Constraint,
177 MVT VT) const {
178 if (Constraint.size() == 1)
179 // GCC Constraint Letters
180 switch (Constraint[0]) {
181 case 'r': // GENERAL_REGS
182 return std::make_pair(0U, &BPF::GPRRegClass);
183 default:
184 break;
187 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
190 SDValue BPFTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
191 switch (Op.getOpcode()) {
192 case ISD::BR_CC:
193 return LowerBR_CC(Op, DAG);
194 case ISD::GlobalAddress:
195 return LowerGlobalAddress(Op, DAG);
196 case ISD::SELECT_CC:
197 return LowerSELECT_CC(Op, DAG);
198 default:
199 llvm_unreachable("unimplemented operand");
203 // Calling Convention Implementation
204 #include "BPFGenCallingConv.inc"
206 SDValue BPFTargetLowering::LowerFormalArguments(
207 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
208 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
209 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
210 switch (CallConv) {
211 default:
212 report_fatal_error("Unsupported calling convention");
213 case CallingConv::C:
214 case CallingConv::Fast:
215 break;
218 MachineFunction &MF = DAG.getMachineFunction();
219 MachineRegisterInfo &RegInfo = MF.getRegInfo();
221 // Assign locations to all of the incoming arguments.
222 SmallVector<CCValAssign, 16> ArgLocs;
223 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
224 CCInfo.AnalyzeFormalArguments(Ins, getHasAlu32() ? CC_BPF32 : CC_BPF64);
226 for (auto &VA : ArgLocs) {
227 if (VA.isRegLoc()) {
228 // Arguments passed in registers
229 EVT RegVT = VA.getLocVT();
230 MVT::SimpleValueType SimpleTy = RegVT.getSimpleVT().SimpleTy;
231 switch (SimpleTy) {
232 default: {
233 errs() << "LowerFormalArguments Unhandled argument type: "
234 << RegVT.getEVTString() << '\n';
235 llvm_unreachable(0);
237 case MVT::i32:
238 case MVT::i64:
239 Register VReg = RegInfo.createVirtualRegister(
240 SimpleTy == MVT::i64 ? &BPF::GPRRegClass : &BPF::GPR32RegClass);
241 RegInfo.addLiveIn(VA.getLocReg(), VReg);
242 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
244 // If this is an value that has been promoted to wider types, insert an
245 // assert[sz]ext to capture this, then truncate to the right size.
246 if (VA.getLocInfo() == CCValAssign::SExt)
247 ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
248 DAG.getValueType(VA.getValVT()));
249 else if (VA.getLocInfo() == CCValAssign::ZExt)
250 ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
251 DAG.getValueType(VA.getValVT()));
253 if (VA.getLocInfo() != CCValAssign::Full)
254 ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
256 InVals.push_back(ArgValue);
258 break;
260 } else {
261 fail(DL, DAG, "defined with too many args");
262 InVals.push_back(DAG.getConstant(0, DL, VA.getLocVT()));
266 if (IsVarArg || MF.getFunction().hasStructRetAttr()) {
267 fail(DL, DAG, "functions with VarArgs or StructRet are not supported");
270 return Chain;
273 const unsigned BPFTargetLowering::MaxArgs = 5;
275 SDValue BPFTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
276 SmallVectorImpl<SDValue> &InVals) const {
277 SelectionDAG &DAG = CLI.DAG;
278 auto &Outs = CLI.Outs;
279 auto &OutVals = CLI.OutVals;
280 auto &Ins = CLI.Ins;
281 SDValue Chain = CLI.Chain;
282 SDValue Callee = CLI.Callee;
283 bool &IsTailCall = CLI.IsTailCall;
284 CallingConv::ID CallConv = CLI.CallConv;
285 bool IsVarArg = CLI.IsVarArg;
286 MachineFunction &MF = DAG.getMachineFunction();
288 // BPF target does not support tail call optimization.
289 IsTailCall = false;
291 switch (CallConv) {
292 default:
293 report_fatal_error("Unsupported calling convention");
294 case CallingConv::Fast:
295 case CallingConv::C:
296 break;
299 // Analyze operands of the call, assigning locations to each operand.
300 SmallVector<CCValAssign, 16> ArgLocs;
301 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
303 CCInfo.AnalyzeCallOperands(Outs, getHasAlu32() ? CC_BPF32 : CC_BPF64);
305 unsigned NumBytes = CCInfo.getNextStackOffset();
307 if (Outs.size() > MaxArgs)
308 fail(CLI.DL, DAG, "too many args to ", Callee);
310 for (auto &Arg : Outs) {
311 ISD::ArgFlagsTy Flags = Arg.Flags;
312 if (!Flags.isByVal())
313 continue;
315 fail(CLI.DL, DAG, "pass by value not supported ", Callee);
318 auto PtrVT = getPointerTy(MF.getDataLayout());
319 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
321 SmallVector<std::pair<unsigned, SDValue>, MaxArgs> RegsToPass;
323 // Walk arg assignments
324 for (unsigned i = 0,
325 e = std::min(static_cast<unsigned>(ArgLocs.size()), MaxArgs);
326 i != e; ++i) {
327 CCValAssign &VA = ArgLocs[i];
328 SDValue Arg = OutVals[i];
330 // Promote the value if needed.
331 switch (VA.getLocInfo()) {
332 default:
333 llvm_unreachable("Unknown loc info");
334 case CCValAssign::Full:
335 break;
336 case CCValAssign::SExt:
337 Arg = DAG.getNode(ISD::SIGN_EXTEND, CLI.DL, VA.getLocVT(), Arg);
338 break;
339 case CCValAssign::ZExt:
340 Arg = DAG.getNode(ISD::ZERO_EXTEND, CLI.DL, VA.getLocVT(), Arg);
341 break;
342 case CCValAssign::AExt:
343 Arg = DAG.getNode(ISD::ANY_EXTEND, CLI.DL, VA.getLocVT(), Arg);
344 break;
347 // Push arguments into RegsToPass vector
348 if (VA.isRegLoc())
349 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
350 else
351 llvm_unreachable("call arg pass bug");
354 SDValue InFlag;
356 // Build a sequence of copy-to-reg nodes chained together with token chain and
357 // flag operands which copy the outgoing args into registers. The InFlag in
358 // necessary since all emitted instructions must be stuck together.
359 for (auto &Reg : RegsToPass) {
360 Chain = DAG.getCopyToReg(Chain, CLI.DL, Reg.first, Reg.second, InFlag);
361 InFlag = Chain.getValue(1);
364 // If the callee is a GlobalAddress node (quite common, every direct call is)
365 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
366 // Likewise ExternalSymbol -> TargetExternalSymbol.
367 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
368 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), CLI.DL, PtrVT,
369 G->getOffset(), 0);
370 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
371 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0);
372 fail(CLI.DL, DAG, Twine("A call to built-in function '"
373 + StringRef(E->getSymbol())
374 + "' is not supported."));
377 // Returns a chain & a flag for retval copy to use.
378 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
379 SmallVector<SDValue, 8> Ops;
380 Ops.push_back(Chain);
381 Ops.push_back(Callee);
383 // Add argument registers to the end of the list so that they are
384 // known live into the call.
385 for (auto &Reg : RegsToPass)
386 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
388 if (InFlag.getNode())
389 Ops.push_back(InFlag);
391 Chain = DAG.getNode(BPFISD::CALL, CLI.DL, NodeTys, Ops);
392 InFlag = Chain.getValue(1);
394 // Create the CALLSEQ_END node.
395 Chain = DAG.getCALLSEQ_END(
396 Chain, DAG.getConstant(NumBytes, CLI.DL, PtrVT, true),
397 DAG.getConstant(0, CLI.DL, PtrVT, true), InFlag, CLI.DL);
398 InFlag = Chain.getValue(1);
400 // Handle result values, copying them out of physregs into vregs that we
401 // return.
402 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, CLI.DL, DAG,
403 InVals);
406 SDValue
407 BPFTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
408 bool IsVarArg,
409 const SmallVectorImpl<ISD::OutputArg> &Outs,
410 const SmallVectorImpl<SDValue> &OutVals,
411 const SDLoc &DL, SelectionDAG &DAG) const {
412 unsigned Opc = BPFISD::RET_FLAG;
414 // CCValAssign - represent the assignment of the return value to a location
415 SmallVector<CCValAssign, 16> RVLocs;
416 MachineFunction &MF = DAG.getMachineFunction();
418 // CCState - Info about the registers and stack slot.
419 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
421 if (MF.getFunction().getReturnType()->isAggregateType()) {
422 fail(DL, DAG, "only integer returns supported");
423 return DAG.getNode(Opc, DL, MVT::Other, Chain);
426 // Analize return values.
427 CCInfo.AnalyzeReturn(Outs, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
429 SDValue Flag;
430 SmallVector<SDValue, 4> RetOps(1, Chain);
432 // Copy the result values into the output registers.
433 for (unsigned i = 0; i != RVLocs.size(); ++i) {
434 CCValAssign &VA = RVLocs[i];
435 assert(VA.isRegLoc() && "Can only return in registers!");
437 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag);
439 // Guarantee that all emitted copies are stuck together,
440 // avoiding something bad.
441 Flag = Chain.getValue(1);
442 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
445 RetOps[0] = Chain; // Update chain.
447 // Add the flag if we have it.
448 if (Flag.getNode())
449 RetOps.push_back(Flag);
451 return DAG.getNode(Opc, DL, MVT::Other, RetOps);
454 SDValue BPFTargetLowering::LowerCallResult(
455 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
456 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
457 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
459 MachineFunction &MF = DAG.getMachineFunction();
460 // Assign locations to each value returned by this call.
461 SmallVector<CCValAssign, 16> RVLocs;
462 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
464 if (Ins.size() >= 2) {
465 fail(DL, DAG, "only small returns supported");
466 for (unsigned i = 0, e = Ins.size(); i != e; ++i)
467 InVals.push_back(DAG.getConstant(0, DL, Ins[i].VT));
468 return DAG.getCopyFromReg(Chain, DL, 1, Ins[0].VT, InFlag).getValue(1);
471 CCInfo.AnalyzeCallResult(Ins, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
473 // Copy all of the result registers out of their specified physreg.
474 for (auto &Val : RVLocs) {
475 Chain = DAG.getCopyFromReg(Chain, DL, Val.getLocReg(),
476 Val.getValVT(), InFlag).getValue(1);
477 InFlag = Chain.getValue(2);
478 InVals.push_back(Chain.getValue(0));
481 return Chain;
484 static void NegateCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
485 switch (CC) {
486 default:
487 break;
488 case ISD::SETULT:
489 case ISD::SETULE:
490 case ISD::SETLT:
491 case ISD::SETLE:
492 CC = ISD::getSetCCSwappedOperands(CC);
493 std::swap(LHS, RHS);
494 break;
498 SDValue BPFTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
499 SDValue Chain = Op.getOperand(0);
500 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
501 SDValue LHS = Op.getOperand(2);
502 SDValue RHS = Op.getOperand(3);
503 SDValue Dest = Op.getOperand(4);
504 SDLoc DL(Op);
506 if (!getHasJmpExt())
507 NegateCC(LHS, RHS, CC);
509 return DAG.getNode(BPFISD::BR_CC, DL, Op.getValueType(), Chain, LHS, RHS,
510 DAG.getConstant(CC, DL, LHS.getValueType()), Dest);
513 SDValue BPFTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
514 SDValue LHS = Op.getOperand(0);
515 SDValue RHS = Op.getOperand(1);
516 SDValue TrueV = Op.getOperand(2);
517 SDValue FalseV = Op.getOperand(3);
518 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
519 SDLoc DL(Op);
521 if (!getHasJmpExt())
522 NegateCC(LHS, RHS, CC);
524 SDValue TargetCC = DAG.getConstant(CC, DL, LHS.getValueType());
525 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
526 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
528 return DAG.getNode(BPFISD::SELECT_CC, DL, VTs, Ops);
531 const char *BPFTargetLowering::getTargetNodeName(unsigned Opcode) const {
532 switch ((BPFISD::NodeType)Opcode) {
533 case BPFISD::FIRST_NUMBER:
534 break;
535 case BPFISD::RET_FLAG:
536 return "BPFISD::RET_FLAG";
537 case BPFISD::CALL:
538 return "BPFISD::CALL";
539 case BPFISD::SELECT_CC:
540 return "BPFISD::SELECT_CC";
541 case BPFISD::BR_CC:
542 return "BPFISD::BR_CC";
543 case BPFISD::Wrapper:
544 return "BPFISD::Wrapper";
545 case BPFISD::MEMCPY:
546 return "BPFISD::MEMCPY";
548 return nullptr;
551 SDValue BPFTargetLowering::LowerGlobalAddress(SDValue Op,
552 SelectionDAG &DAG) const {
553 auto N = cast<GlobalAddressSDNode>(Op);
554 assert(N->getOffset() == 0 && "Invalid offset for global address");
556 SDLoc DL(Op);
557 const GlobalValue *GV = N->getGlobal();
558 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i64);
560 return DAG.getNode(BPFISD::Wrapper, DL, MVT::i64, GA);
563 unsigned
564 BPFTargetLowering::EmitSubregExt(MachineInstr &MI, MachineBasicBlock *BB,
565 unsigned Reg, bool isSigned) const {
566 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
567 const TargetRegisterClass *RC = getRegClassFor(MVT::i64);
568 int RShiftOp = isSigned ? BPF::SRA_ri : BPF::SRL_ri;
569 MachineFunction *F = BB->getParent();
570 DebugLoc DL = MI.getDebugLoc();
572 MachineRegisterInfo &RegInfo = F->getRegInfo();
573 Register PromotedReg0 = RegInfo.createVirtualRegister(RC);
574 Register PromotedReg1 = RegInfo.createVirtualRegister(RC);
575 Register PromotedReg2 = RegInfo.createVirtualRegister(RC);
576 BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg);
577 BuildMI(BB, DL, TII.get(BPF::SLL_ri), PromotedReg1)
578 .addReg(PromotedReg0).addImm(32);
579 BuildMI(BB, DL, TII.get(RShiftOp), PromotedReg2)
580 .addReg(PromotedReg1).addImm(32);
582 return PromotedReg2;
585 MachineBasicBlock *
586 BPFTargetLowering::EmitInstrWithCustomInserterMemcpy(MachineInstr &MI,
587 MachineBasicBlock *BB)
588 const {
589 MachineFunction *MF = MI.getParent()->getParent();
590 MachineRegisterInfo &MRI = MF->getRegInfo();
591 MachineInstrBuilder MIB(*MF, MI);
592 unsigned ScratchReg;
594 // This function does custom insertion during lowering BPFISD::MEMCPY which
595 // only has two register operands from memcpy semantics, the copy source
596 // address and the copy destination address.
598 // Because we will expand BPFISD::MEMCPY into load/store pairs, we will need
599 // a third scratch register to serve as the destination register of load and
600 // source register of store.
602 // The scratch register here is with the Define | Dead | EarlyClobber flags.
603 // The EarlyClobber flag has the semantic property that the operand it is
604 // attached to is clobbered before the rest of the inputs are read. Hence it
605 // must be unique among the operands to the instruction. The Define flag is
606 // needed to coerce the machine verifier that an Undef value isn't a problem
607 // as we anyway is loading memory into it. The Dead flag is needed as the
608 // value in scratch isn't supposed to be used by any other instruction.
609 ScratchReg = MRI.createVirtualRegister(&BPF::GPRRegClass);
610 MIB.addReg(ScratchReg,
611 RegState::Define | RegState::Dead | RegState::EarlyClobber);
613 return BB;
616 MachineBasicBlock *
617 BPFTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
618 MachineBasicBlock *BB) const {
619 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
620 DebugLoc DL = MI.getDebugLoc();
621 unsigned Opc = MI.getOpcode();
622 bool isSelectRROp = (Opc == BPF::Select ||
623 Opc == BPF::Select_64_32 ||
624 Opc == BPF::Select_32 ||
625 Opc == BPF::Select_32_64);
627 bool isMemcpyOp = Opc == BPF::MEMCPY;
629 #ifndef NDEBUG
630 bool isSelectRIOp = (Opc == BPF::Select_Ri ||
631 Opc == BPF::Select_Ri_64_32 ||
632 Opc == BPF::Select_Ri_32 ||
633 Opc == BPF::Select_Ri_32_64);
636 assert((isSelectRROp || isSelectRIOp || isMemcpyOp) &&
637 "Unexpected instr type to insert");
638 #endif
640 if (isMemcpyOp)
641 return EmitInstrWithCustomInserterMemcpy(MI, BB);
643 bool is32BitCmp = (Opc == BPF::Select_32 ||
644 Opc == BPF::Select_32_64 ||
645 Opc == BPF::Select_Ri_32 ||
646 Opc == BPF::Select_Ri_32_64);
648 // To "insert" a SELECT instruction, we actually have to insert the diamond
649 // control-flow pattern. The incoming instruction knows the destination vreg
650 // to set, the condition code register to branch on, the true/false values to
651 // select between, and a branch opcode to use.
652 const BasicBlock *LLVM_BB = BB->getBasicBlock();
653 MachineFunction::iterator I = ++BB->getIterator();
655 // ThisMBB:
656 // ...
657 // TrueVal = ...
658 // jmp_XX r1, r2 goto Copy1MBB
659 // fallthrough --> Copy0MBB
660 MachineBasicBlock *ThisMBB = BB;
661 MachineFunction *F = BB->getParent();
662 MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
663 MachineBasicBlock *Copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
665 F->insert(I, Copy0MBB);
666 F->insert(I, Copy1MBB);
667 // Update machine-CFG edges by transferring all successors of the current
668 // block to the new block which will contain the Phi node for the select.
669 Copy1MBB->splice(Copy1MBB->begin(), BB,
670 std::next(MachineBasicBlock::iterator(MI)), BB->end());
671 Copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
672 // Next, add the true and fallthrough blocks as its successors.
673 BB->addSuccessor(Copy0MBB);
674 BB->addSuccessor(Copy1MBB);
676 // Insert Branch if Flag
677 int CC = MI.getOperand(3).getImm();
678 int NewCC;
679 switch (CC) {
680 #define SET_NEWCC(X, Y) \
681 case ISD::X: \
682 if (is32BitCmp && HasJmp32) \
683 NewCC = isSelectRROp ? BPF::Y##_rr_32 : BPF::Y##_ri_32; \
684 else \
685 NewCC = isSelectRROp ? BPF::Y##_rr : BPF::Y##_ri; \
686 break
687 SET_NEWCC(SETGT, JSGT);
688 SET_NEWCC(SETUGT, JUGT);
689 SET_NEWCC(SETGE, JSGE);
690 SET_NEWCC(SETUGE, JUGE);
691 SET_NEWCC(SETEQ, JEQ);
692 SET_NEWCC(SETNE, JNE);
693 SET_NEWCC(SETLT, JSLT);
694 SET_NEWCC(SETULT, JULT);
695 SET_NEWCC(SETLE, JSLE);
696 SET_NEWCC(SETULE, JULE);
697 default:
698 report_fatal_error("unimplemented select CondCode " + Twine(CC));
701 Register LHS = MI.getOperand(1).getReg();
702 bool isSignedCmp = (CC == ISD::SETGT ||
703 CC == ISD::SETGE ||
704 CC == ISD::SETLT ||
705 CC == ISD::SETLE);
707 // eBPF at the moment only has 64-bit comparison. Any 32-bit comparison need
708 // to be promoted, however if the 32-bit comparison operands are destination
709 // registers then they are implicitly zero-extended already, there is no
710 // need of explicit zero-extend sequence for them.
712 // We simply do extension for all situations in this method, but we will
713 // try to remove those unnecessary in BPFMIPeephole pass.
714 if (is32BitCmp && !HasJmp32)
715 LHS = EmitSubregExt(MI, BB, LHS, isSignedCmp);
717 if (isSelectRROp) {
718 Register RHS = MI.getOperand(2).getReg();
720 if (is32BitCmp && !HasJmp32)
721 RHS = EmitSubregExt(MI, BB, RHS, isSignedCmp);
723 BuildMI(BB, DL, TII.get(NewCC)).addReg(LHS).addReg(RHS).addMBB(Copy1MBB);
724 } else {
725 int64_t imm32 = MI.getOperand(2).getImm();
726 // sanity check before we build J*_ri instruction.
727 assert (isInt<32>(imm32));
728 BuildMI(BB, DL, TII.get(NewCC))
729 .addReg(LHS).addImm(imm32).addMBB(Copy1MBB);
732 // Copy0MBB:
733 // %FalseValue = ...
734 // # fallthrough to Copy1MBB
735 BB = Copy0MBB;
737 // Update machine-CFG edges
738 BB->addSuccessor(Copy1MBB);
740 // Copy1MBB:
741 // %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ]
742 // ...
743 BB = Copy1MBB;
744 BuildMI(*BB, BB->begin(), DL, TII.get(BPF::PHI), MI.getOperand(0).getReg())
745 .addReg(MI.getOperand(5).getReg())
746 .addMBB(Copy0MBB)
747 .addReg(MI.getOperand(4).getReg())
748 .addMBB(ThisMBB);
750 MI.eraseFromParent(); // The pseudo instruction is gone now.
751 return BB;
754 EVT BPFTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
755 EVT VT) const {
756 return getHasAlu32() ? MVT::i32 : MVT::i64;
759 MVT BPFTargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
760 EVT VT) const {
761 return (getHasAlu32() && VT == MVT::i32) ? MVT::i32 : MVT::i64;