[MIPS GlobalISel] Select MSA vector generic and builtin add
[llvm-complete.git] / lib / Target / Hexagon / HexagonBranchRelaxation.cpp
blob08f7408068798ae42336f8451421138c74247f96
1 //===--- HexagonBranchRelaxation.cpp - Identify and relax long jumps ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #define DEBUG_TYPE "hexagon-brelax"
11 #include "Hexagon.h"
12 #include "HexagonInstrInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/CodeGen/MachineBasicBlock.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineFunctionPass.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineOperand.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <cassert>
28 #include <cstdint>
29 #include <cstdlib>
30 #include <iterator>
32 using namespace llvm;
34 // Since we have no exact knowledge of code layout, allow some safety buffer
35 // for jump target. This is measured in bytes.
36 static cl::opt<uint32_t> BranchRelaxSafetyBuffer("branch-relax-safety-buffer",
37 cl::init(200), cl::Hidden, cl::ZeroOrMore, cl::desc("safety buffer size"));
39 namespace llvm {
41 FunctionPass *createHexagonBranchRelaxation();
42 void initializeHexagonBranchRelaxationPass(PassRegistry&);
44 } // end namespace llvm
46 namespace {
48 struct HexagonBranchRelaxation : public MachineFunctionPass {
49 public:
50 static char ID;
52 HexagonBranchRelaxation() : MachineFunctionPass(ID) {
53 initializeHexagonBranchRelaxationPass(*PassRegistry::getPassRegistry());
56 bool runOnMachineFunction(MachineFunction &MF) override;
58 StringRef getPassName() const override {
59 return "Hexagon Branch Relaxation";
62 void getAnalysisUsage(AnalysisUsage &AU) const override {
63 AU.setPreservesCFG();
64 MachineFunctionPass::getAnalysisUsage(AU);
67 private:
68 const HexagonInstrInfo *HII;
69 const HexagonRegisterInfo *HRI;
71 bool relaxBranches(MachineFunction &MF);
72 void computeOffset(MachineFunction &MF,
73 DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset);
74 bool reGenerateBranch(MachineFunction &MF,
75 DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset);
76 bool isJumpOutOfRange(MachineInstr &MI,
77 DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset);
80 char HexagonBranchRelaxation::ID = 0;
82 } // end anonymous namespace
84 INITIALIZE_PASS(HexagonBranchRelaxation, "hexagon-brelax",
85 "Hexagon Branch Relaxation", false, false)
87 FunctionPass *llvm::createHexagonBranchRelaxation() {
88 return new HexagonBranchRelaxation();
91 bool HexagonBranchRelaxation::runOnMachineFunction(MachineFunction &MF) {
92 LLVM_DEBUG(dbgs() << "****** Hexagon Branch Relaxation ******\n");
94 auto &HST = MF.getSubtarget<HexagonSubtarget>();
95 HII = HST.getInstrInfo();
96 HRI = HST.getRegisterInfo();
98 bool Changed = false;
99 Changed = relaxBranches(MF);
100 return Changed;
103 void HexagonBranchRelaxation::computeOffset(MachineFunction &MF,
104 DenseMap<MachineBasicBlock*, unsigned> &OffsetMap) {
105 // offset of the current instruction from the start.
106 unsigned InstOffset = 0;
107 for (auto &B : MF) {
108 if (B.getAlignment() != Align::None()) {
109 // Although we don't know the exact layout of the final code, we need
110 // to account for alignment padding somehow. This heuristic pads each
111 // aligned basic block according to the alignment value.
112 InstOffset = alignTo(InstOffset, B.getAlignment());
114 OffsetMap[&B] = InstOffset;
115 for (auto &MI : B.instrs()) {
116 InstOffset += HII->getSize(MI);
117 // Assume that all extendable branches will be extended.
118 if (MI.isBranch() && HII->isExtendable(MI))
119 InstOffset += HEXAGON_INSTR_SIZE;
124 /// relaxBranches - For Hexagon, if the jump target/loop label is too far from
125 /// the jump/loop instruction then, we need to make sure that we have constant
126 /// extenders set for jumps and loops.
128 /// There are six iterations in this phase. It's self explanatory below.
129 bool HexagonBranchRelaxation::relaxBranches(MachineFunction &MF) {
130 // Compute the offset of each basic block
131 // offset of the current instruction from the start.
132 // map for each instruction to the beginning of the function
133 DenseMap<MachineBasicBlock*, unsigned> BlockToInstOffset;
134 computeOffset(MF, BlockToInstOffset);
136 return reGenerateBranch(MF, BlockToInstOffset);
139 /// Check if a given instruction is:
140 /// - a jump to a distant target
141 /// - that exceeds its immediate range
142 /// If both conditions are true, it requires constant extension.
143 bool HexagonBranchRelaxation::isJumpOutOfRange(MachineInstr &MI,
144 DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset) {
145 MachineBasicBlock &B = *MI.getParent();
146 auto FirstTerm = B.getFirstInstrTerminator();
147 if (FirstTerm == B.instr_end())
148 return false;
150 if (HII->isExtended(MI))
151 return false;
153 unsigned InstOffset = BlockToInstOffset[&B];
154 unsigned Distance = 0;
156 // To save time, estimate exact position of a branch instruction
157 // as one at the end of the MBB.
158 // Number of instructions times typical instruction size.
159 InstOffset += HII->nonDbgBBSize(&B) * HEXAGON_INSTR_SIZE;
161 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
162 SmallVector<MachineOperand, 4> Cond;
164 // Try to analyze this branch.
165 if (HII->analyzeBranch(B, TBB, FBB, Cond, false)) {
166 // Could not analyze it. See if this is something we can recognize.
167 // If it is a NVJ, it should always have its target in
168 // a fixed location.
169 if (HII->isNewValueJump(*FirstTerm))
170 TBB = FirstTerm->getOperand(HII->getCExtOpNum(*FirstTerm)).getMBB();
172 if (TBB && &MI == &*FirstTerm) {
173 Distance = std::abs((long long)InstOffset - BlockToInstOffset[TBB])
174 + BranchRelaxSafetyBuffer;
175 return !HII->isJumpWithinBranchRange(*FirstTerm, Distance);
177 if (FBB) {
178 // Look for second terminator.
179 auto SecondTerm = std::next(FirstTerm);
180 assert(SecondTerm != B.instr_end() &&
181 (SecondTerm->isBranch() || SecondTerm->isCall()) &&
182 "Bad second terminator");
183 if (&MI != &*SecondTerm)
184 return false;
185 // Analyze the second branch in the BB.
186 Distance = std::abs((long long)InstOffset - BlockToInstOffset[FBB])
187 + BranchRelaxSafetyBuffer;
188 return !HII->isJumpWithinBranchRange(*SecondTerm, Distance);
190 return false;
193 bool HexagonBranchRelaxation::reGenerateBranch(MachineFunction &MF,
194 DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset) {
195 bool Changed = false;
197 for (auto &B : MF) {
198 for (auto &MI : B) {
199 if (!MI.isBranch() || !isJumpOutOfRange(MI, BlockToInstOffset))
200 continue;
201 LLVM_DEBUG(dbgs() << "Long distance jump. isExtendable("
202 << HII->isExtendable(MI) << ") isConstExtended("
203 << HII->isConstExtended(MI) << ") " << MI);
205 // Since we have not merged HW loops relaxation into
206 // this code (yet), soften our approach for the moment.
207 if (!HII->isExtendable(MI) && !HII->isExtended(MI)) {
208 LLVM_DEBUG(dbgs() << "\tUnderimplemented relax branch instruction.\n");
209 } else {
210 // Find which operand is expandable.
211 int ExtOpNum = HII->getCExtOpNum(MI);
212 MachineOperand &MO = MI.getOperand(ExtOpNum);
213 // This need to be something we understand. So far we assume all
214 // branches have only MBB address as expandable field.
215 // If it changes, this will need to be expanded.
216 assert(MO.isMBB() && "Branch with unknown expandable field type");
217 // Mark given operand as extended.
218 MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
219 Changed = true;
223 return Changed;