[MIPS GlobalISel] Select MSA vector generic and builtin add
[llvm-complete.git] / lib / Transforms / InstCombine / InstCombineCalls.cpp
blobc650d242cd50c6cba03ae292cbf9cacc8e6079c8
1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitCall, visitInvoke, and visitCallBr functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/PatternMatch.h"
46 #include "llvm/IR/Statepoint.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/IR/ValueHandle.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/KnownBits.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <cstdint>
66 #include <cstring>
67 #include <utility>
68 #include <vector>
70 using namespace llvm;
71 using namespace PatternMatch;
73 #define DEBUG_TYPE "instcombine"
75 STATISTIC(NumSimplified, "Number of library calls simplified");
77 static cl::opt<unsigned> GuardWideningWindow(
78 "instcombine-guard-widening-window",
79 cl::init(3),
80 cl::desc("How wide an instruction window to bypass looking for "
81 "another guard"));
83 /// Return the specified type promoted as it would be to pass though a va_arg
84 /// area.
85 static Type *getPromotedType(Type *Ty) {
86 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
87 if (ITy->getBitWidth() < 32)
88 return Type::getInt32Ty(Ty->getContext());
90 return Ty;
93 /// Return a constant boolean vector that has true elements in all positions
94 /// where the input constant data vector has an element with the sign bit set.
95 static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) {
96 SmallVector<Constant *, 32> BoolVec;
97 IntegerType *BoolTy = Type::getInt1Ty(V->getContext());
98 for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) {
99 Constant *Elt = V->getElementAsConstant(I);
100 assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) &&
101 "Unexpected constant data vector element type");
102 bool Sign = V->getElementType()->isIntegerTy()
103 ? cast<ConstantInt>(Elt)->isNegative()
104 : cast<ConstantFP>(Elt)->isNegative();
105 BoolVec.push_back(ConstantInt::get(BoolTy, Sign));
107 return ConstantVector::get(BoolVec);
110 Instruction *InstCombiner::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
111 unsigned DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
112 unsigned CopyDstAlign = MI->getDestAlignment();
113 if (CopyDstAlign < DstAlign){
114 MI->setDestAlignment(DstAlign);
115 return MI;
118 unsigned SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
119 unsigned CopySrcAlign = MI->getSourceAlignment();
120 if (CopySrcAlign < SrcAlign) {
121 MI->setSourceAlignment(SrcAlign);
122 return MI;
125 // If we have a store to a location which is known constant, we can conclude
126 // that the store must be storing the constant value (else the memory
127 // wouldn't be constant), and this must be a noop.
128 if (AA->pointsToConstantMemory(MI->getDest())) {
129 // Set the size of the copy to 0, it will be deleted on the next iteration.
130 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
131 return MI;
134 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
135 // load/store.
136 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
137 if (!MemOpLength) return nullptr;
139 // Source and destination pointer types are always "i8*" for intrinsic. See
140 // if the size is something we can handle with a single primitive load/store.
141 // A single load+store correctly handles overlapping memory in the memmove
142 // case.
143 uint64_t Size = MemOpLength->getLimitedValue();
144 assert(Size && "0-sized memory transferring should be removed already.");
146 if (Size > 8 || (Size&(Size-1)))
147 return nullptr; // If not 1/2/4/8 bytes, exit.
149 // If it is an atomic and alignment is less than the size then we will
150 // introduce the unaligned memory access which will be later transformed
151 // into libcall in CodeGen. This is not evident performance gain so disable
152 // it now.
153 if (isa<AtomicMemTransferInst>(MI))
154 if (CopyDstAlign < Size || CopySrcAlign < Size)
155 return nullptr;
157 // Use an integer load+store unless we can find something better.
158 unsigned SrcAddrSp =
159 cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
160 unsigned DstAddrSp =
161 cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
163 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
164 Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
165 Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
167 // If the memcpy has metadata describing the members, see if we can get the
168 // TBAA tag describing our copy.
169 MDNode *CopyMD = nullptr;
170 if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) {
171 CopyMD = M;
172 } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
173 if (M->getNumOperands() == 3 && M->getOperand(0) &&
174 mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
175 mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
176 M->getOperand(1) &&
177 mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
178 mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
179 Size &&
180 M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
181 CopyMD = cast<MDNode>(M->getOperand(2));
184 Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
185 Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
186 LoadInst *L = Builder.CreateLoad(IntType, Src);
187 // Alignment from the mem intrinsic will be better, so use it.
188 L->setAlignment(
189 MaybeAlign(CopySrcAlign)); // FIXME: Check if we can use Align instead.
190 if (CopyMD)
191 L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
192 MDNode *LoopMemParallelMD =
193 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
194 if (LoopMemParallelMD)
195 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
196 MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
197 if (AccessGroupMD)
198 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
200 StoreInst *S = Builder.CreateStore(L, Dest);
201 // Alignment from the mem intrinsic will be better, so use it.
202 S->setAlignment(
203 MaybeAlign(CopyDstAlign)); // FIXME: Check if we can use Align instead.
204 if (CopyMD)
205 S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
206 if (LoopMemParallelMD)
207 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
208 if (AccessGroupMD)
209 S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
211 if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
212 // non-atomics can be volatile
213 L->setVolatile(MT->isVolatile());
214 S->setVolatile(MT->isVolatile());
216 if (isa<AtomicMemTransferInst>(MI)) {
217 // atomics have to be unordered
218 L->setOrdering(AtomicOrdering::Unordered);
219 S->setOrdering(AtomicOrdering::Unordered);
222 // Set the size of the copy to 0, it will be deleted on the next iteration.
223 MI->setLength(Constant::getNullValue(MemOpLength->getType()));
224 return MI;
227 Instruction *InstCombiner::SimplifyAnyMemSet(AnyMemSetInst *MI) {
228 const unsigned KnownAlignment =
229 getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
230 if (MI->getDestAlignment() < KnownAlignment) {
231 MI->setDestAlignment(KnownAlignment);
232 return MI;
235 // If we have a store to a location which is known constant, we can conclude
236 // that the store must be storing the constant value (else the memory
237 // wouldn't be constant), and this must be a noop.
238 if (AA->pointsToConstantMemory(MI->getDest())) {
239 // Set the size of the copy to 0, it will be deleted on the next iteration.
240 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
241 return MI;
244 // Extract the length and alignment and fill if they are constant.
245 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
246 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
247 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
248 return nullptr;
249 const uint64_t Len = LenC->getLimitedValue();
250 assert(Len && "0-sized memory setting should be removed already.");
251 const Align Alignment = assumeAligned(MI->getDestAlignment());
253 // If it is an atomic and alignment is less than the size then we will
254 // introduce the unaligned memory access which will be later transformed
255 // into libcall in CodeGen. This is not evident performance gain so disable
256 // it now.
257 if (isa<AtomicMemSetInst>(MI))
258 if (Alignment < Len)
259 return nullptr;
261 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
262 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
263 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
265 Value *Dest = MI->getDest();
266 unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
267 Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
268 Dest = Builder.CreateBitCast(Dest, NewDstPtrTy);
270 // Extract the fill value and store.
271 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
272 StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest,
273 MI->isVolatile());
274 S->setAlignment(Alignment);
275 if (isa<AtomicMemSetInst>(MI))
276 S->setOrdering(AtomicOrdering::Unordered);
278 // Set the size of the copy to 0, it will be deleted on the next iteration.
279 MI->setLength(Constant::getNullValue(LenC->getType()));
280 return MI;
283 return nullptr;
286 static Value *simplifyX86immShift(const IntrinsicInst &II,
287 InstCombiner::BuilderTy &Builder) {
288 bool LogicalShift = false;
289 bool ShiftLeft = false;
291 switch (II.getIntrinsicID()) {
292 default: llvm_unreachable("Unexpected intrinsic!");
293 case Intrinsic::x86_sse2_psra_d:
294 case Intrinsic::x86_sse2_psra_w:
295 case Intrinsic::x86_sse2_psrai_d:
296 case Intrinsic::x86_sse2_psrai_w:
297 case Intrinsic::x86_avx2_psra_d:
298 case Intrinsic::x86_avx2_psra_w:
299 case Intrinsic::x86_avx2_psrai_d:
300 case Intrinsic::x86_avx2_psrai_w:
301 case Intrinsic::x86_avx512_psra_q_128:
302 case Intrinsic::x86_avx512_psrai_q_128:
303 case Intrinsic::x86_avx512_psra_q_256:
304 case Intrinsic::x86_avx512_psrai_q_256:
305 case Intrinsic::x86_avx512_psra_d_512:
306 case Intrinsic::x86_avx512_psra_q_512:
307 case Intrinsic::x86_avx512_psra_w_512:
308 case Intrinsic::x86_avx512_psrai_d_512:
309 case Intrinsic::x86_avx512_psrai_q_512:
310 case Intrinsic::x86_avx512_psrai_w_512:
311 LogicalShift = false; ShiftLeft = false;
312 break;
313 case Intrinsic::x86_sse2_psrl_d:
314 case Intrinsic::x86_sse2_psrl_q:
315 case Intrinsic::x86_sse2_psrl_w:
316 case Intrinsic::x86_sse2_psrli_d:
317 case Intrinsic::x86_sse2_psrli_q:
318 case Intrinsic::x86_sse2_psrli_w:
319 case Intrinsic::x86_avx2_psrl_d:
320 case Intrinsic::x86_avx2_psrl_q:
321 case Intrinsic::x86_avx2_psrl_w:
322 case Intrinsic::x86_avx2_psrli_d:
323 case Intrinsic::x86_avx2_psrli_q:
324 case Intrinsic::x86_avx2_psrli_w:
325 case Intrinsic::x86_avx512_psrl_d_512:
326 case Intrinsic::x86_avx512_psrl_q_512:
327 case Intrinsic::x86_avx512_psrl_w_512:
328 case Intrinsic::x86_avx512_psrli_d_512:
329 case Intrinsic::x86_avx512_psrli_q_512:
330 case Intrinsic::x86_avx512_psrli_w_512:
331 LogicalShift = true; ShiftLeft = false;
332 break;
333 case Intrinsic::x86_sse2_psll_d:
334 case Intrinsic::x86_sse2_psll_q:
335 case Intrinsic::x86_sse2_psll_w:
336 case Intrinsic::x86_sse2_pslli_d:
337 case Intrinsic::x86_sse2_pslli_q:
338 case Intrinsic::x86_sse2_pslli_w:
339 case Intrinsic::x86_avx2_psll_d:
340 case Intrinsic::x86_avx2_psll_q:
341 case Intrinsic::x86_avx2_psll_w:
342 case Intrinsic::x86_avx2_pslli_d:
343 case Intrinsic::x86_avx2_pslli_q:
344 case Intrinsic::x86_avx2_pslli_w:
345 case Intrinsic::x86_avx512_psll_d_512:
346 case Intrinsic::x86_avx512_psll_q_512:
347 case Intrinsic::x86_avx512_psll_w_512:
348 case Intrinsic::x86_avx512_pslli_d_512:
349 case Intrinsic::x86_avx512_pslli_q_512:
350 case Intrinsic::x86_avx512_pslli_w_512:
351 LogicalShift = true; ShiftLeft = true;
352 break;
354 assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
356 // Simplify if count is constant.
357 auto Arg1 = II.getArgOperand(1);
358 auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1);
359 auto CDV = dyn_cast<ConstantDataVector>(Arg1);
360 auto CInt = dyn_cast<ConstantInt>(Arg1);
361 if (!CAZ && !CDV && !CInt)
362 return nullptr;
364 APInt Count(64, 0);
365 if (CDV) {
366 // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
367 // operand to compute the shift amount.
368 auto VT = cast<VectorType>(CDV->getType());
369 unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits();
370 assert((64 % BitWidth) == 0 && "Unexpected packed shift size");
371 unsigned NumSubElts = 64 / BitWidth;
373 // Concatenate the sub-elements to create the 64-bit value.
374 for (unsigned i = 0; i != NumSubElts; ++i) {
375 unsigned SubEltIdx = (NumSubElts - 1) - i;
376 auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
377 Count <<= BitWidth;
378 Count |= SubElt->getValue().zextOrTrunc(64);
381 else if (CInt)
382 Count = CInt->getValue();
384 auto Vec = II.getArgOperand(0);
385 auto VT = cast<VectorType>(Vec->getType());
386 auto SVT = VT->getElementType();
387 unsigned VWidth = VT->getNumElements();
388 unsigned BitWidth = SVT->getPrimitiveSizeInBits();
390 // If shift-by-zero then just return the original value.
391 if (Count.isNullValue())
392 return Vec;
394 // Handle cases when Shift >= BitWidth.
395 if (Count.uge(BitWidth)) {
396 // If LogicalShift - just return zero.
397 if (LogicalShift)
398 return ConstantAggregateZero::get(VT);
400 // If ArithmeticShift - clamp Shift to (BitWidth - 1).
401 Count = APInt(64, BitWidth - 1);
404 // Get a constant vector of the same type as the first operand.
405 auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
406 auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
408 if (ShiftLeft)
409 return Builder.CreateShl(Vec, ShiftVec);
411 if (LogicalShift)
412 return Builder.CreateLShr(Vec, ShiftVec);
414 return Builder.CreateAShr(Vec, ShiftVec);
417 // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
418 // Unlike the generic IR shifts, the intrinsics have defined behaviour for out
419 // of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
420 static Value *simplifyX86varShift(const IntrinsicInst &II,
421 InstCombiner::BuilderTy &Builder) {
422 bool LogicalShift = false;
423 bool ShiftLeft = false;
425 switch (II.getIntrinsicID()) {
426 default: llvm_unreachable("Unexpected intrinsic!");
427 case Intrinsic::x86_avx2_psrav_d:
428 case Intrinsic::x86_avx2_psrav_d_256:
429 case Intrinsic::x86_avx512_psrav_q_128:
430 case Intrinsic::x86_avx512_psrav_q_256:
431 case Intrinsic::x86_avx512_psrav_d_512:
432 case Intrinsic::x86_avx512_psrav_q_512:
433 case Intrinsic::x86_avx512_psrav_w_128:
434 case Intrinsic::x86_avx512_psrav_w_256:
435 case Intrinsic::x86_avx512_psrav_w_512:
436 LogicalShift = false;
437 ShiftLeft = false;
438 break;
439 case Intrinsic::x86_avx2_psrlv_d:
440 case Intrinsic::x86_avx2_psrlv_d_256:
441 case Intrinsic::x86_avx2_psrlv_q:
442 case Intrinsic::x86_avx2_psrlv_q_256:
443 case Intrinsic::x86_avx512_psrlv_d_512:
444 case Intrinsic::x86_avx512_psrlv_q_512:
445 case Intrinsic::x86_avx512_psrlv_w_128:
446 case Intrinsic::x86_avx512_psrlv_w_256:
447 case Intrinsic::x86_avx512_psrlv_w_512:
448 LogicalShift = true;
449 ShiftLeft = false;
450 break;
451 case Intrinsic::x86_avx2_psllv_d:
452 case Intrinsic::x86_avx2_psllv_d_256:
453 case Intrinsic::x86_avx2_psllv_q:
454 case Intrinsic::x86_avx2_psllv_q_256:
455 case Intrinsic::x86_avx512_psllv_d_512:
456 case Intrinsic::x86_avx512_psllv_q_512:
457 case Intrinsic::x86_avx512_psllv_w_128:
458 case Intrinsic::x86_avx512_psllv_w_256:
459 case Intrinsic::x86_avx512_psllv_w_512:
460 LogicalShift = true;
461 ShiftLeft = true;
462 break;
464 assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
466 // Simplify if all shift amounts are constant/undef.
467 auto *CShift = dyn_cast<Constant>(II.getArgOperand(1));
468 if (!CShift)
469 return nullptr;
471 auto Vec = II.getArgOperand(0);
472 auto VT = cast<VectorType>(II.getType());
473 auto SVT = VT->getVectorElementType();
474 int NumElts = VT->getNumElements();
475 int BitWidth = SVT->getIntegerBitWidth();
477 // Collect each element's shift amount.
478 // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
479 bool AnyOutOfRange = false;
480 SmallVector<int, 8> ShiftAmts;
481 for (int I = 0; I < NumElts; ++I) {
482 auto *CElt = CShift->getAggregateElement(I);
483 if (CElt && isa<UndefValue>(CElt)) {
484 ShiftAmts.push_back(-1);
485 continue;
488 auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
489 if (!COp)
490 return nullptr;
492 // Handle out of range shifts.
493 // If LogicalShift - set to BitWidth (special case).
494 // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
495 APInt ShiftVal = COp->getValue();
496 if (ShiftVal.uge(BitWidth)) {
497 AnyOutOfRange = LogicalShift;
498 ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
499 continue;
502 ShiftAmts.push_back((int)ShiftVal.getZExtValue());
505 // If all elements out of range or UNDEF, return vector of zeros/undefs.
506 // ArithmeticShift should only hit this if they are all UNDEF.
507 auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
508 if (llvm::all_of(ShiftAmts, OutOfRange)) {
509 SmallVector<Constant *, 8> ConstantVec;
510 for (int Idx : ShiftAmts) {
511 if (Idx < 0) {
512 ConstantVec.push_back(UndefValue::get(SVT));
513 } else {
514 assert(LogicalShift && "Logical shift expected");
515 ConstantVec.push_back(ConstantInt::getNullValue(SVT));
518 return ConstantVector::get(ConstantVec);
521 // We can't handle only some out of range values with generic logical shifts.
522 if (AnyOutOfRange)
523 return nullptr;
525 // Build the shift amount constant vector.
526 SmallVector<Constant *, 8> ShiftVecAmts;
527 for (int Idx : ShiftAmts) {
528 if (Idx < 0)
529 ShiftVecAmts.push_back(UndefValue::get(SVT));
530 else
531 ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
533 auto ShiftVec = ConstantVector::get(ShiftVecAmts);
535 if (ShiftLeft)
536 return Builder.CreateShl(Vec, ShiftVec);
538 if (LogicalShift)
539 return Builder.CreateLShr(Vec, ShiftVec);
541 return Builder.CreateAShr(Vec, ShiftVec);
544 static Value *simplifyX86pack(IntrinsicInst &II,
545 InstCombiner::BuilderTy &Builder, bool IsSigned) {
546 Value *Arg0 = II.getArgOperand(0);
547 Value *Arg1 = II.getArgOperand(1);
548 Type *ResTy = II.getType();
550 // Fast all undef handling.
551 if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1))
552 return UndefValue::get(ResTy);
554 Type *ArgTy = Arg0->getType();
555 unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128;
556 unsigned NumSrcElts = ArgTy->getVectorNumElements();
557 assert(ResTy->getVectorNumElements() == (2 * NumSrcElts) &&
558 "Unexpected packing types");
560 unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
561 unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits();
562 unsigned SrcScalarSizeInBits = ArgTy->getScalarSizeInBits();
563 assert(SrcScalarSizeInBits == (2 * DstScalarSizeInBits) &&
564 "Unexpected packing types");
566 // Constant folding.
567 if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1))
568 return nullptr;
570 // Clamp Values - signed/unsigned both use signed clamp values, but they
571 // differ on the min/max values.
572 APInt MinValue, MaxValue;
573 if (IsSigned) {
574 // PACKSS: Truncate signed value with signed saturation.
575 // Source values less than dst minint are saturated to minint.
576 // Source values greater than dst maxint are saturated to maxint.
577 MinValue =
578 APInt::getSignedMinValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
579 MaxValue =
580 APInt::getSignedMaxValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
581 } else {
582 // PACKUS: Truncate signed value with unsigned saturation.
583 // Source values less than zero are saturated to zero.
584 // Source values greater than dst maxuint are saturated to maxuint.
585 MinValue = APInt::getNullValue(SrcScalarSizeInBits);
586 MaxValue = APInt::getLowBitsSet(SrcScalarSizeInBits, DstScalarSizeInBits);
589 auto *MinC = Constant::getIntegerValue(ArgTy, MinValue);
590 auto *MaxC = Constant::getIntegerValue(ArgTy, MaxValue);
591 Arg0 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg0, MinC), MinC, Arg0);
592 Arg1 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg1, MinC), MinC, Arg1);
593 Arg0 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg0, MaxC), MaxC, Arg0);
594 Arg1 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg1, MaxC), MaxC, Arg1);
596 // Shuffle clamped args together at the lane level.
597 SmallVector<unsigned, 32> PackMask;
598 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
599 for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
600 PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane));
601 for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
602 PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane) + NumSrcElts);
604 auto *Shuffle = Builder.CreateShuffleVector(Arg0, Arg1, PackMask);
606 // Truncate to dst size.
607 return Builder.CreateTrunc(Shuffle, ResTy);
610 static Value *simplifyX86movmsk(const IntrinsicInst &II,
611 InstCombiner::BuilderTy &Builder) {
612 Value *Arg = II.getArgOperand(0);
613 Type *ResTy = II.getType();
614 Type *ArgTy = Arg->getType();
616 // movmsk(undef) -> zero as we must ensure the upper bits are zero.
617 if (isa<UndefValue>(Arg))
618 return Constant::getNullValue(ResTy);
620 // We can't easily peek through x86_mmx types.
621 if (!ArgTy->isVectorTy())
622 return nullptr;
624 // Expand MOVMSK to compare/bitcast/zext:
625 // e.g. PMOVMSKB(v16i8 x):
626 // %cmp = icmp slt <16 x i8> %x, zeroinitializer
627 // %int = bitcast <16 x i1> %cmp to i16
628 // %res = zext i16 %int to i32
629 unsigned NumElts = ArgTy->getVectorNumElements();
630 Type *IntegerVecTy = VectorType::getInteger(cast<VectorType>(ArgTy));
631 Type *IntegerTy = Builder.getIntNTy(NumElts);
633 Value *Res = Builder.CreateBitCast(Arg, IntegerVecTy);
634 Res = Builder.CreateICmpSLT(Res, Constant::getNullValue(IntegerVecTy));
635 Res = Builder.CreateBitCast(Res, IntegerTy);
636 Res = Builder.CreateZExtOrTrunc(Res, ResTy);
637 return Res;
640 static Value *simplifyX86addcarry(const IntrinsicInst &II,
641 InstCombiner::BuilderTy &Builder) {
642 Value *CarryIn = II.getArgOperand(0);
643 Value *Op1 = II.getArgOperand(1);
644 Value *Op2 = II.getArgOperand(2);
645 Type *RetTy = II.getType();
646 Type *OpTy = Op1->getType();
647 assert(RetTy->getStructElementType(0)->isIntegerTy(8) &&
648 RetTy->getStructElementType(1) == OpTy && OpTy == Op2->getType() &&
649 "Unexpected types for x86 addcarry");
651 // If carry-in is zero, this is just an unsigned add with overflow.
652 if (match(CarryIn, m_ZeroInt())) {
653 Value *UAdd = Builder.CreateIntrinsic(Intrinsic::uadd_with_overflow, OpTy,
654 { Op1, Op2 });
655 // The types have to be adjusted to match the x86 call types.
656 Value *UAddResult = Builder.CreateExtractValue(UAdd, 0);
657 Value *UAddOV = Builder.CreateZExt(Builder.CreateExtractValue(UAdd, 1),
658 Builder.getInt8Ty());
659 Value *Res = UndefValue::get(RetTy);
660 Res = Builder.CreateInsertValue(Res, UAddOV, 0);
661 return Builder.CreateInsertValue(Res, UAddResult, 1);
664 return nullptr;
667 static Value *simplifyX86insertps(const IntrinsicInst &II,
668 InstCombiner::BuilderTy &Builder) {
669 auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
670 if (!CInt)
671 return nullptr;
673 VectorType *VecTy = cast<VectorType>(II.getType());
674 assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
676 // The immediate permute control byte looks like this:
677 // [3:0] - zero mask for each 32-bit lane
678 // [5:4] - select one 32-bit destination lane
679 // [7:6] - select one 32-bit source lane
681 uint8_t Imm = CInt->getZExtValue();
682 uint8_t ZMask = Imm & 0xf;
683 uint8_t DestLane = (Imm >> 4) & 0x3;
684 uint8_t SourceLane = (Imm >> 6) & 0x3;
686 ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
688 // If all zero mask bits are set, this was just a weird way to
689 // generate a zero vector.
690 if (ZMask == 0xf)
691 return ZeroVector;
693 // Initialize by passing all of the first source bits through.
694 uint32_t ShuffleMask[4] = { 0, 1, 2, 3 };
696 // We may replace the second operand with the zero vector.
697 Value *V1 = II.getArgOperand(1);
699 if (ZMask) {
700 // If the zero mask is being used with a single input or the zero mask
701 // overrides the destination lane, this is a shuffle with the zero vector.
702 if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
703 (ZMask & (1 << DestLane))) {
704 V1 = ZeroVector;
705 // We may still move 32-bits of the first source vector from one lane
706 // to another.
707 ShuffleMask[DestLane] = SourceLane;
708 // The zero mask may override the previous insert operation.
709 for (unsigned i = 0; i < 4; ++i)
710 if ((ZMask >> i) & 0x1)
711 ShuffleMask[i] = i + 4;
712 } else {
713 // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
714 return nullptr;
716 } else {
717 // Replace the selected destination lane with the selected source lane.
718 ShuffleMask[DestLane] = SourceLane + 4;
721 return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
724 /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
725 /// or conversion to a shuffle vector.
726 static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
727 ConstantInt *CILength, ConstantInt *CIIndex,
728 InstCombiner::BuilderTy &Builder) {
729 auto LowConstantHighUndef = [&](uint64_t Val) {
730 Type *IntTy64 = Type::getInt64Ty(II.getContext());
731 Constant *Args[] = {ConstantInt::get(IntTy64, Val),
732 UndefValue::get(IntTy64)};
733 return ConstantVector::get(Args);
736 // See if we're dealing with constant values.
737 Constant *C0 = dyn_cast<Constant>(Op0);
738 ConstantInt *CI0 =
739 C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
740 : nullptr;
742 // Attempt to constant fold.
743 if (CILength && CIIndex) {
744 // From AMD documentation: "The bit index and field length are each six
745 // bits in length other bits of the field are ignored."
746 APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
747 APInt APLength = CILength->getValue().zextOrTrunc(6);
749 unsigned Index = APIndex.getZExtValue();
751 // From AMD documentation: "a value of zero in the field length is
752 // defined as length of 64".
753 unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
755 // From AMD documentation: "If the sum of the bit index + length field
756 // is greater than 64, the results are undefined".
757 unsigned End = Index + Length;
759 // Note that both field index and field length are 8-bit quantities.
760 // Since variables 'Index' and 'Length' are unsigned values
761 // obtained from zero-extending field index and field length
762 // respectively, their sum should never wrap around.
763 if (End > 64)
764 return UndefValue::get(II.getType());
766 // If we are inserting whole bytes, we can convert this to a shuffle.
767 // Lowering can recognize EXTRQI shuffle masks.
768 if ((Length % 8) == 0 && (Index % 8) == 0) {
769 // Convert bit indices to byte indices.
770 Length /= 8;
771 Index /= 8;
773 Type *IntTy8 = Type::getInt8Ty(II.getContext());
774 Type *IntTy32 = Type::getInt32Ty(II.getContext());
775 VectorType *ShufTy = VectorType::get(IntTy8, 16);
777 SmallVector<Constant *, 16> ShuffleMask;
778 for (int i = 0; i != (int)Length; ++i)
779 ShuffleMask.push_back(
780 Constant::getIntegerValue(IntTy32, APInt(32, i + Index)));
781 for (int i = Length; i != 8; ++i)
782 ShuffleMask.push_back(
783 Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
784 for (int i = 8; i != 16; ++i)
785 ShuffleMask.push_back(UndefValue::get(IntTy32));
787 Value *SV = Builder.CreateShuffleVector(
788 Builder.CreateBitCast(Op0, ShufTy),
789 ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask));
790 return Builder.CreateBitCast(SV, II.getType());
793 // Constant Fold - shift Index'th bit to lowest position and mask off
794 // Length bits.
795 if (CI0) {
796 APInt Elt = CI0->getValue();
797 Elt.lshrInPlace(Index);
798 Elt = Elt.zextOrTrunc(Length);
799 return LowConstantHighUndef(Elt.getZExtValue());
802 // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
803 if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
804 Value *Args[] = {Op0, CILength, CIIndex};
805 Module *M = II.getModule();
806 Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
807 return Builder.CreateCall(F, Args);
811 // Constant Fold - extraction from zero is always {zero, undef}.
812 if (CI0 && CI0->isZero())
813 return LowConstantHighUndef(0);
815 return nullptr;
818 /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
819 /// folding or conversion to a shuffle vector.
820 static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
821 APInt APLength, APInt APIndex,
822 InstCombiner::BuilderTy &Builder) {
823 // From AMD documentation: "The bit index and field length are each six bits
824 // in length other bits of the field are ignored."
825 APIndex = APIndex.zextOrTrunc(6);
826 APLength = APLength.zextOrTrunc(6);
828 // Attempt to constant fold.
829 unsigned Index = APIndex.getZExtValue();
831 // From AMD documentation: "a value of zero in the field length is
832 // defined as length of 64".
833 unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
835 // From AMD documentation: "If the sum of the bit index + length field
836 // is greater than 64, the results are undefined".
837 unsigned End = Index + Length;
839 // Note that both field index and field length are 8-bit quantities.
840 // Since variables 'Index' and 'Length' are unsigned values
841 // obtained from zero-extending field index and field length
842 // respectively, their sum should never wrap around.
843 if (End > 64)
844 return UndefValue::get(II.getType());
846 // If we are inserting whole bytes, we can convert this to a shuffle.
847 // Lowering can recognize INSERTQI shuffle masks.
848 if ((Length % 8) == 0 && (Index % 8) == 0) {
849 // Convert bit indices to byte indices.
850 Length /= 8;
851 Index /= 8;
853 Type *IntTy8 = Type::getInt8Ty(II.getContext());
854 Type *IntTy32 = Type::getInt32Ty(II.getContext());
855 VectorType *ShufTy = VectorType::get(IntTy8, 16);
857 SmallVector<Constant *, 16> ShuffleMask;
858 for (int i = 0; i != (int)Index; ++i)
859 ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
860 for (int i = 0; i != (int)Length; ++i)
861 ShuffleMask.push_back(
862 Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
863 for (int i = Index + Length; i != 8; ++i)
864 ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
865 for (int i = 8; i != 16; ++i)
866 ShuffleMask.push_back(UndefValue::get(IntTy32));
868 Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
869 Builder.CreateBitCast(Op1, ShufTy),
870 ConstantVector::get(ShuffleMask));
871 return Builder.CreateBitCast(SV, II.getType());
874 // See if we're dealing with constant values.
875 Constant *C0 = dyn_cast<Constant>(Op0);
876 Constant *C1 = dyn_cast<Constant>(Op1);
877 ConstantInt *CI00 =
878 C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
879 : nullptr;
880 ConstantInt *CI10 =
881 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
882 : nullptr;
884 // Constant Fold - insert bottom Length bits starting at the Index'th bit.
885 if (CI00 && CI10) {
886 APInt V00 = CI00->getValue();
887 APInt V10 = CI10->getValue();
888 APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
889 V00 = V00 & ~Mask;
890 V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
891 APInt Val = V00 | V10;
892 Type *IntTy64 = Type::getInt64Ty(II.getContext());
893 Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
894 UndefValue::get(IntTy64)};
895 return ConstantVector::get(Args);
898 // If we were an INSERTQ call, we'll save demanded elements if we convert to
899 // INSERTQI.
900 if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
901 Type *IntTy8 = Type::getInt8Ty(II.getContext());
902 Constant *CILength = ConstantInt::get(IntTy8, Length, false);
903 Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
905 Value *Args[] = {Op0, Op1, CILength, CIIndex};
906 Module *M = II.getModule();
907 Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
908 return Builder.CreateCall(F, Args);
911 return nullptr;
914 /// Attempt to convert pshufb* to shufflevector if the mask is constant.
915 static Value *simplifyX86pshufb(const IntrinsicInst &II,
916 InstCombiner::BuilderTy &Builder) {
917 Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
918 if (!V)
919 return nullptr;
921 auto *VecTy = cast<VectorType>(II.getType());
922 auto *MaskEltTy = Type::getInt32Ty(II.getContext());
923 unsigned NumElts = VecTy->getNumElements();
924 assert((NumElts == 16 || NumElts == 32 || NumElts == 64) &&
925 "Unexpected number of elements in shuffle mask!");
927 // Construct a shuffle mask from constant integers or UNDEFs.
928 Constant *Indexes[64] = {nullptr};
930 // Each byte in the shuffle control mask forms an index to permute the
931 // corresponding byte in the destination operand.
932 for (unsigned I = 0; I < NumElts; ++I) {
933 Constant *COp = V->getAggregateElement(I);
934 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
935 return nullptr;
937 if (isa<UndefValue>(COp)) {
938 Indexes[I] = UndefValue::get(MaskEltTy);
939 continue;
942 int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();
944 // If the most significant bit (bit[7]) of each byte of the shuffle
945 // control mask is set, then zero is written in the result byte.
946 // The zero vector is in the right-hand side of the resulting
947 // shufflevector.
949 // The value of each index for the high 128-bit lane is the least
950 // significant 4 bits of the respective shuffle control byte.
951 Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
952 Indexes[I] = ConstantInt::get(MaskEltTy, Index);
955 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
956 auto V1 = II.getArgOperand(0);
957 auto V2 = Constant::getNullValue(VecTy);
958 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
961 /// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
962 static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
963 InstCombiner::BuilderTy &Builder) {
964 Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
965 if (!V)
966 return nullptr;
968 auto *VecTy = cast<VectorType>(II.getType());
969 auto *MaskEltTy = Type::getInt32Ty(II.getContext());
970 unsigned NumElts = VecTy->getVectorNumElements();
971 bool IsPD = VecTy->getScalarType()->isDoubleTy();
972 unsigned NumLaneElts = IsPD ? 2 : 4;
973 assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2);
975 // Construct a shuffle mask from constant integers or UNDEFs.
976 Constant *Indexes[16] = {nullptr};
978 // The intrinsics only read one or two bits, clear the rest.
979 for (unsigned I = 0; I < NumElts; ++I) {
980 Constant *COp = V->getAggregateElement(I);
981 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
982 return nullptr;
984 if (isa<UndefValue>(COp)) {
985 Indexes[I] = UndefValue::get(MaskEltTy);
986 continue;
989 APInt Index = cast<ConstantInt>(COp)->getValue();
990 Index = Index.zextOrTrunc(32).getLoBits(2);
992 // The PD variants uses bit 1 to select per-lane element index, so
993 // shift down to convert to generic shuffle mask index.
994 if (IsPD)
995 Index.lshrInPlace(1);
997 // The _256 variants are a bit trickier since the mask bits always index
998 // into the corresponding 128 half. In order to convert to a generic
999 // shuffle, we have to make that explicit.
1000 Index += APInt(32, (I / NumLaneElts) * NumLaneElts);
1002 Indexes[I] = ConstantInt::get(MaskEltTy, Index);
1005 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
1006 auto V1 = II.getArgOperand(0);
1007 auto V2 = UndefValue::get(V1->getType());
1008 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1011 /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
1012 static Value *simplifyX86vpermv(const IntrinsicInst &II,
1013 InstCombiner::BuilderTy &Builder) {
1014 auto *V = dyn_cast<Constant>(II.getArgOperand(1));
1015 if (!V)
1016 return nullptr;
1018 auto *VecTy = cast<VectorType>(II.getType());
1019 auto *MaskEltTy = Type::getInt32Ty(II.getContext());
1020 unsigned Size = VecTy->getNumElements();
1021 assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) &&
1022 "Unexpected shuffle mask size");
1024 // Construct a shuffle mask from constant integers or UNDEFs.
1025 Constant *Indexes[64] = {nullptr};
1027 for (unsigned I = 0; I < Size; ++I) {
1028 Constant *COp = V->getAggregateElement(I);
1029 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
1030 return nullptr;
1032 if (isa<UndefValue>(COp)) {
1033 Indexes[I] = UndefValue::get(MaskEltTy);
1034 continue;
1037 uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
1038 Index &= Size - 1;
1039 Indexes[I] = ConstantInt::get(MaskEltTy, Index);
1042 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size));
1043 auto V1 = II.getArgOperand(0);
1044 auto V2 = UndefValue::get(VecTy);
1045 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1048 // TODO, Obvious Missing Transforms:
1049 // * Narrow width by halfs excluding zero/undef lanes
1050 Value *InstCombiner::simplifyMaskedLoad(IntrinsicInst &II) {
1051 Value *LoadPtr = II.getArgOperand(0);
1052 unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue();
1054 // If the mask is all ones or undefs, this is a plain vector load of the 1st
1055 // argument.
1056 if (maskIsAllOneOrUndef(II.getArgOperand(2)))
1057 return Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
1058 "unmaskedload");
1060 // If we can unconditionally load from this address, replace with a
1061 // load/select idiom. TODO: use DT for context sensitive query
1062 if (isDereferenceableAndAlignedPointer(
1063 LoadPtr, II.getType(), MaybeAlign(Alignment),
1064 II.getModule()->getDataLayout(), &II, nullptr)) {
1065 Value *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
1066 "unmaskedload");
1067 return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3));
1070 return nullptr;
1073 // TODO, Obvious Missing Transforms:
1074 // * Single constant active lane -> store
1075 // * Narrow width by halfs excluding zero/undef lanes
1076 Instruction *InstCombiner::simplifyMaskedStore(IntrinsicInst &II) {
1077 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1078 if (!ConstMask)
1079 return nullptr;
1081 // If the mask is all zeros, this instruction does nothing.
1082 if (ConstMask->isNullValue())
1083 return eraseInstFromFunction(II);
1085 // If the mask is all ones, this is a plain vector store of the 1st argument.
1086 if (ConstMask->isAllOnesValue()) {
1087 Value *StorePtr = II.getArgOperand(1);
1088 MaybeAlign Alignment(
1089 cast<ConstantInt>(II.getArgOperand(2))->getZExtValue());
1090 return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
1093 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
1094 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
1095 APInt UndefElts(DemandedElts.getBitWidth(), 0);
1096 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0),
1097 DemandedElts, UndefElts)) {
1098 II.setOperand(0, V);
1099 return &II;
1102 return nullptr;
1105 // TODO, Obvious Missing Transforms:
1106 // * Single constant active lane load -> load
1107 // * Dereferenceable address & few lanes -> scalarize speculative load/selects
1108 // * Adjacent vector addresses -> masked.load
1109 // * Narrow width by halfs excluding zero/undef lanes
1110 // * Vector splat address w/known mask -> scalar load
1111 // * Vector incrementing address -> vector masked load
1112 Instruction *InstCombiner::simplifyMaskedGather(IntrinsicInst &II) {
1113 return nullptr;
1116 // TODO, Obvious Missing Transforms:
1117 // * Single constant active lane -> store
1118 // * Adjacent vector addresses -> masked.store
1119 // * Narrow store width by halfs excluding zero/undef lanes
1120 // * Vector splat address w/known mask -> scalar store
1121 // * Vector incrementing address -> vector masked store
1122 Instruction *InstCombiner::simplifyMaskedScatter(IntrinsicInst &II) {
1123 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1124 if (!ConstMask)
1125 return nullptr;
1127 // If the mask is all zeros, a scatter does nothing.
1128 if (ConstMask->isNullValue())
1129 return eraseInstFromFunction(II);
1131 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
1132 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
1133 APInt UndefElts(DemandedElts.getBitWidth(), 0);
1134 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0),
1135 DemandedElts, UndefElts)) {
1136 II.setOperand(0, V);
1137 return &II;
1139 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1),
1140 DemandedElts, UndefElts)) {
1141 II.setOperand(1, V);
1142 return &II;
1145 return nullptr;
1148 /// This function transforms launder.invariant.group and strip.invariant.group
1149 /// like:
1150 /// launder(launder(%x)) -> launder(%x) (the result is not the argument)
1151 /// launder(strip(%x)) -> launder(%x)
1152 /// strip(strip(%x)) -> strip(%x) (the result is not the argument)
1153 /// strip(launder(%x)) -> strip(%x)
1154 /// This is legal because it preserves the most recent information about
1155 /// the presence or absence of invariant.group.
1156 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
1157 InstCombiner &IC) {
1158 auto *Arg = II.getArgOperand(0);
1159 auto *StrippedArg = Arg->stripPointerCasts();
1160 auto *StrippedInvariantGroupsArg = Arg->stripPointerCastsAndInvariantGroups();
1161 if (StrippedArg == StrippedInvariantGroupsArg)
1162 return nullptr; // No launders/strips to remove.
1164 Value *Result = nullptr;
1166 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
1167 Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
1168 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
1169 Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
1170 else
1171 llvm_unreachable(
1172 "simplifyInvariantGroupIntrinsic only handles launder and strip");
1173 if (Result->getType()->getPointerAddressSpace() !=
1174 II.getType()->getPointerAddressSpace())
1175 Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
1176 if (Result->getType() != II.getType())
1177 Result = IC.Builder.CreateBitCast(Result, II.getType());
1179 return cast<Instruction>(Result);
1182 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) {
1183 assert((II.getIntrinsicID() == Intrinsic::cttz ||
1184 II.getIntrinsicID() == Intrinsic::ctlz) &&
1185 "Expected cttz or ctlz intrinsic");
1186 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
1187 Value *Op0 = II.getArgOperand(0);
1188 Value *X;
1189 // ctlz(bitreverse(x)) -> cttz(x)
1190 // cttz(bitreverse(x)) -> ctlz(x)
1191 if (match(Op0, m_BitReverse(m_Value(X)))) {
1192 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
1193 Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType());
1194 return CallInst::Create(F, {X, II.getArgOperand(1)});
1197 if (IsTZ) {
1198 // cttz(-x) -> cttz(x)
1199 if (match(Op0, m_Neg(m_Value(X)))) {
1200 II.setOperand(0, X);
1201 return &II;
1204 // cttz(abs(x)) -> cttz(x)
1205 // cttz(nabs(x)) -> cttz(x)
1206 Value *Y;
1207 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
1208 if (SPF == SPF_ABS || SPF == SPF_NABS) {
1209 II.setOperand(0, X);
1210 return &II;
1214 KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
1216 // Create a mask for bits above (ctlz) or below (cttz) the first known one.
1217 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
1218 : Known.countMaxLeadingZeros();
1219 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
1220 : Known.countMinLeadingZeros();
1222 // If all bits above (ctlz) or below (cttz) the first known one are known
1223 // zero, this value is constant.
1224 // FIXME: This should be in InstSimplify because we're replacing an
1225 // instruction with a constant.
1226 if (PossibleZeros == DefiniteZeros) {
1227 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
1228 return IC.replaceInstUsesWith(II, C);
1231 // If the input to cttz/ctlz is known to be non-zero,
1232 // then change the 'ZeroIsUndef' parameter to 'true'
1233 // because we know the zero behavior can't affect the result.
1234 if (!Known.One.isNullValue() ||
1235 isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
1236 &IC.getDominatorTree())) {
1237 if (!match(II.getArgOperand(1), m_One())) {
1238 II.setOperand(1, IC.Builder.getTrue());
1239 return &II;
1243 // Add range metadata since known bits can't completely reflect what we know.
1244 // TODO: Handle splat vectors.
1245 auto *IT = dyn_cast<IntegerType>(Op0->getType());
1246 if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
1247 Metadata *LowAndHigh[] = {
1248 ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
1249 ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
1250 II.setMetadata(LLVMContext::MD_range,
1251 MDNode::get(II.getContext(), LowAndHigh));
1252 return &II;
1255 return nullptr;
1258 static Instruction *foldCtpop(IntrinsicInst &II, InstCombiner &IC) {
1259 assert(II.getIntrinsicID() == Intrinsic::ctpop &&
1260 "Expected ctpop intrinsic");
1261 Value *Op0 = II.getArgOperand(0);
1262 Value *X;
1263 // ctpop(bitreverse(x)) -> ctpop(x)
1264 // ctpop(bswap(x)) -> ctpop(x)
1265 if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X)))) {
1266 II.setOperand(0, X);
1267 return &II;
1270 // FIXME: Try to simplify vectors of integers.
1271 auto *IT = dyn_cast<IntegerType>(Op0->getType());
1272 if (!IT)
1273 return nullptr;
1275 unsigned BitWidth = IT->getBitWidth();
1276 KnownBits Known(BitWidth);
1277 IC.computeKnownBits(Op0, Known, 0, &II);
1279 unsigned MinCount = Known.countMinPopulation();
1280 unsigned MaxCount = Known.countMaxPopulation();
1282 // Add range metadata since known bits can't completely reflect what we know.
1283 if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
1284 Metadata *LowAndHigh[] = {
1285 ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
1286 ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
1287 II.setMetadata(LLVMContext::MD_range,
1288 MDNode::get(II.getContext(), LowAndHigh));
1289 return &II;
1292 return nullptr;
1295 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1296 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1297 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
1298 static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
1299 Value *Ptr = II.getOperand(0);
1300 Value *Mask = II.getOperand(1);
1301 Constant *ZeroVec = Constant::getNullValue(II.getType());
1303 // Special case a zero mask since that's not a ConstantDataVector.
1304 // This masked load instruction creates a zero vector.
1305 if (isa<ConstantAggregateZero>(Mask))
1306 return IC.replaceInstUsesWith(II, ZeroVec);
1308 auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1309 if (!ConstMask)
1310 return nullptr;
1312 // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1313 // to allow target-independent optimizations.
1315 // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1316 // the LLVM intrinsic definition for the pointer argument.
1317 unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1318 PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
1319 Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
1321 // Second, convert the x86 XMM integer vector mask to a vector of bools based
1322 // on each element's most significant bit (the sign bit).
1323 Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1325 // The pass-through vector for an x86 masked load is a zero vector.
1326 CallInst *NewMaskedLoad =
1327 IC.Builder.CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec);
1328 return IC.replaceInstUsesWith(II, NewMaskedLoad);
1331 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1332 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1333 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
1334 static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
1335 Value *Ptr = II.getOperand(0);
1336 Value *Mask = II.getOperand(1);
1337 Value *Vec = II.getOperand(2);
1339 // Special case a zero mask since that's not a ConstantDataVector:
1340 // this masked store instruction does nothing.
1341 if (isa<ConstantAggregateZero>(Mask)) {
1342 IC.eraseInstFromFunction(II);
1343 return true;
1346 // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
1347 // anything else at this level.
1348 if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
1349 return false;
1351 auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1352 if (!ConstMask)
1353 return false;
1355 // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1356 // to allow target-independent optimizations.
1358 // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1359 // the LLVM intrinsic definition for the pointer argument.
1360 unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1361 PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
1362 Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
1364 // Second, convert the x86 XMM integer vector mask to a vector of bools based
1365 // on each element's most significant bit (the sign bit).
1366 Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1368 IC.Builder.CreateMaskedStore(Vec, PtrCast, 1, BoolMask);
1370 // 'Replace uses' doesn't work for stores. Erase the original masked store.
1371 IC.eraseInstFromFunction(II);
1372 return true;
1375 // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
1377 // A single NaN input is folded to minnum, so we rely on that folding for
1378 // handling NaNs.
1379 static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1,
1380 const APFloat &Src2) {
1381 APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2);
1383 APFloat::cmpResult Cmp0 = Max3.compare(Src0);
1384 assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately");
1385 if (Cmp0 == APFloat::cmpEqual)
1386 return maxnum(Src1, Src2);
1388 APFloat::cmpResult Cmp1 = Max3.compare(Src1);
1389 assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately");
1390 if (Cmp1 == APFloat::cmpEqual)
1391 return maxnum(Src0, Src2);
1393 return maxnum(Src0, Src1);
1396 /// Convert a table lookup to shufflevector if the mask is constant.
1397 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
1398 /// which case we could lower the shufflevector with rev64 instructions
1399 /// as it's actually a byte reverse.
1400 static Value *simplifyNeonTbl1(const IntrinsicInst &II,
1401 InstCombiner::BuilderTy &Builder) {
1402 // Bail out if the mask is not a constant.
1403 auto *C = dyn_cast<Constant>(II.getArgOperand(1));
1404 if (!C)
1405 return nullptr;
1407 auto *VecTy = cast<VectorType>(II.getType());
1408 unsigned NumElts = VecTy->getNumElements();
1410 // Only perform this transformation for <8 x i8> vector types.
1411 if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
1412 return nullptr;
1414 uint32_t Indexes[8];
1416 for (unsigned I = 0; I < NumElts; ++I) {
1417 Constant *COp = C->getAggregateElement(I);
1419 if (!COp || !isa<ConstantInt>(COp))
1420 return nullptr;
1422 Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
1424 // Make sure the mask indices are in range.
1425 if (Indexes[I] >= NumElts)
1426 return nullptr;
1429 auto *ShuffleMask = ConstantDataVector::get(II.getContext(),
1430 makeArrayRef(Indexes));
1431 auto *V1 = II.getArgOperand(0);
1432 auto *V2 = Constant::getNullValue(V1->getType());
1433 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1436 /// Convert a vector load intrinsic into a simple llvm load instruction.
1437 /// This is beneficial when the underlying object being addressed comes
1438 /// from a constant, since we get constant-folding for free.
1439 static Value *simplifyNeonVld1(const IntrinsicInst &II,
1440 unsigned MemAlign,
1441 InstCombiner::BuilderTy &Builder) {
1442 auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
1444 if (!IntrAlign)
1445 return nullptr;
1447 unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign ?
1448 MemAlign : IntrAlign->getLimitedValue();
1450 if (!isPowerOf2_32(Alignment))
1451 return nullptr;
1453 auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
1454 PointerType::get(II.getType(), 0));
1455 return Builder.CreateAlignedLoad(II.getType(), BCastInst, Alignment);
1458 // Returns true iff the 2 intrinsics have the same operands, limiting the
1459 // comparison to the first NumOperands.
1460 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
1461 unsigned NumOperands) {
1462 assert(I.getNumArgOperands() >= NumOperands && "Not enough operands");
1463 assert(E.getNumArgOperands() >= NumOperands && "Not enough operands");
1464 for (unsigned i = 0; i < NumOperands; i++)
1465 if (I.getArgOperand(i) != E.getArgOperand(i))
1466 return false;
1467 return true;
1470 // Remove trivially empty start/end intrinsic ranges, i.e. a start
1471 // immediately followed by an end (ignoring debuginfo or other
1472 // start/end intrinsics in between). As this handles only the most trivial
1473 // cases, tracking the nesting level is not needed:
1475 // call @llvm.foo.start(i1 0) ; &I
1476 // call @llvm.foo.start(i1 0)
1477 // call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed
1478 // call @llvm.foo.end(i1 0)
1479 static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID,
1480 unsigned EndID, InstCombiner &IC) {
1481 assert(I.getIntrinsicID() == StartID &&
1482 "Start intrinsic does not have expected ID");
1483 BasicBlock::iterator BI(I), BE(I.getParent()->end());
1484 for (++BI; BI != BE; ++BI) {
1485 if (auto *E = dyn_cast<IntrinsicInst>(BI)) {
1486 if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID)
1487 continue;
1488 if (E->getIntrinsicID() == EndID &&
1489 haveSameOperands(I, *E, E->getNumArgOperands())) {
1490 IC.eraseInstFromFunction(*E);
1491 IC.eraseInstFromFunction(I);
1492 return true;
1495 break;
1498 return false;
1501 // Convert NVVM intrinsics to target-generic LLVM code where possible.
1502 static Instruction *SimplifyNVVMIntrinsic(IntrinsicInst *II, InstCombiner &IC) {
1503 // Each NVVM intrinsic we can simplify can be replaced with one of:
1505 // * an LLVM intrinsic,
1506 // * an LLVM cast operation,
1507 // * an LLVM binary operation, or
1508 // * ad-hoc LLVM IR for the particular operation.
1510 // Some transformations are only valid when the module's
1511 // flush-denormals-to-zero (ftz) setting is true/false, whereas other
1512 // transformations are valid regardless of the module's ftz setting.
1513 enum FtzRequirementTy {
1514 FTZ_Any, // Any ftz setting is ok.
1515 FTZ_MustBeOn, // Transformation is valid only if ftz is on.
1516 FTZ_MustBeOff, // Transformation is valid only if ftz is off.
1518 // Classes of NVVM intrinsics that can't be replaced one-to-one with a
1519 // target-generic intrinsic, cast op, or binary op but that we can nonetheless
1520 // simplify.
1521 enum SpecialCase {
1522 SPC_Reciprocal,
1525 // SimplifyAction is a poor-man's variant (plus an additional flag) that
1526 // represents how to replace an NVVM intrinsic with target-generic LLVM IR.
1527 struct SimplifyAction {
1528 // Invariant: At most one of these Optionals has a value.
1529 Optional<Intrinsic::ID> IID;
1530 Optional<Instruction::CastOps> CastOp;
1531 Optional<Instruction::BinaryOps> BinaryOp;
1532 Optional<SpecialCase> Special;
1534 FtzRequirementTy FtzRequirement = FTZ_Any;
1536 SimplifyAction() = default;
1538 SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq)
1539 : IID(IID), FtzRequirement(FtzReq) {}
1541 // Cast operations don't have anything to do with FTZ, so we skip that
1542 // argument.
1543 SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
1545 SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
1546 : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
1548 SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
1549 : Special(Special), FtzRequirement(FtzReq) {}
1552 // Try to generate a SimplifyAction describing how to replace our
1553 // IntrinsicInstr with target-generic LLVM IR.
1554 const SimplifyAction Action = [II]() -> SimplifyAction {
1555 switch (II->getIntrinsicID()) {
1556 // NVVM intrinsics that map directly to LLVM intrinsics.
1557 case Intrinsic::nvvm_ceil_d:
1558 return {Intrinsic::ceil, FTZ_Any};
1559 case Intrinsic::nvvm_ceil_f:
1560 return {Intrinsic::ceil, FTZ_MustBeOff};
1561 case Intrinsic::nvvm_ceil_ftz_f:
1562 return {Intrinsic::ceil, FTZ_MustBeOn};
1563 case Intrinsic::nvvm_fabs_d:
1564 return {Intrinsic::fabs, FTZ_Any};
1565 case Intrinsic::nvvm_fabs_f:
1566 return {Intrinsic::fabs, FTZ_MustBeOff};
1567 case Intrinsic::nvvm_fabs_ftz_f:
1568 return {Intrinsic::fabs, FTZ_MustBeOn};
1569 case Intrinsic::nvvm_floor_d:
1570 return {Intrinsic::floor, FTZ_Any};
1571 case Intrinsic::nvvm_floor_f:
1572 return {Intrinsic::floor, FTZ_MustBeOff};
1573 case Intrinsic::nvvm_floor_ftz_f:
1574 return {Intrinsic::floor, FTZ_MustBeOn};
1575 case Intrinsic::nvvm_fma_rn_d:
1576 return {Intrinsic::fma, FTZ_Any};
1577 case Intrinsic::nvvm_fma_rn_f:
1578 return {Intrinsic::fma, FTZ_MustBeOff};
1579 case Intrinsic::nvvm_fma_rn_ftz_f:
1580 return {Intrinsic::fma, FTZ_MustBeOn};
1581 case Intrinsic::nvvm_fmax_d:
1582 return {Intrinsic::maxnum, FTZ_Any};
1583 case Intrinsic::nvvm_fmax_f:
1584 return {Intrinsic::maxnum, FTZ_MustBeOff};
1585 case Intrinsic::nvvm_fmax_ftz_f:
1586 return {Intrinsic::maxnum, FTZ_MustBeOn};
1587 case Intrinsic::nvvm_fmin_d:
1588 return {Intrinsic::minnum, FTZ_Any};
1589 case Intrinsic::nvvm_fmin_f:
1590 return {Intrinsic::minnum, FTZ_MustBeOff};
1591 case Intrinsic::nvvm_fmin_ftz_f:
1592 return {Intrinsic::minnum, FTZ_MustBeOn};
1593 case Intrinsic::nvvm_round_d:
1594 return {Intrinsic::round, FTZ_Any};
1595 case Intrinsic::nvvm_round_f:
1596 return {Intrinsic::round, FTZ_MustBeOff};
1597 case Intrinsic::nvvm_round_ftz_f:
1598 return {Intrinsic::round, FTZ_MustBeOn};
1599 case Intrinsic::nvvm_sqrt_rn_d:
1600 return {Intrinsic::sqrt, FTZ_Any};
1601 case Intrinsic::nvvm_sqrt_f:
1602 // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the
1603 // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts
1604 // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are
1605 // the versions with explicit ftz-ness.
1606 return {Intrinsic::sqrt, FTZ_Any};
1607 case Intrinsic::nvvm_sqrt_rn_f:
1608 return {Intrinsic::sqrt, FTZ_MustBeOff};
1609 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1610 return {Intrinsic::sqrt, FTZ_MustBeOn};
1611 case Intrinsic::nvvm_trunc_d:
1612 return {Intrinsic::trunc, FTZ_Any};
1613 case Intrinsic::nvvm_trunc_f:
1614 return {Intrinsic::trunc, FTZ_MustBeOff};
1615 case Intrinsic::nvvm_trunc_ftz_f:
1616 return {Intrinsic::trunc, FTZ_MustBeOn};
1618 // NVVM intrinsics that map to LLVM cast operations.
1620 // Note that llvm's target-generic conversion operators correspond to the rz
1621 // (round to zero) versions of the nvvm conversion intrinsics, even though
1622 // most everything else here uses the rn (round to nearest even) nvvm ops.
1623 case Intrinsic::nvvm_d2i_rz:
1624 case Intrinsic::nvvm_f2i_rz:
1625 case Intrinsic::nvvm_d2ll_rz:
1626 case Intrinsic::nvvm_f2ll_rz:
1627 return {Instruction::FPToSI};
1628 case Intrinsic::nvvm_d2ui_rz:
1629 case Intrinsic::nvvm_f2ui_rz:
1630 case Intrinsic::nvvm_d2ull_rz:
1631 case Intrinsic::nvvm_f2ull_rz:
1632 return {Instruction::FPToUI};
1633 case Intrinsic::nvvm_i2d_rz:
1634 case Intrinsic::nvvm_i2f_rz:
1635 case Intrinsic::nvvm_ll2d_rz:
1636 case Intrinsic::nvvm_ll2f_rz:
1637 return {Instruction::SIToFP};
1638 case Intrinsic::nvvm_ui2d_rz:
1639 case Intrinsic::nvvm_ui2f_rz:
1640 case Intrinsic::nvvm_ull2d_rz:
1641 case Intrinsic::nvvm_ull2f_rz:
1642 return {Instruction::UIToFP};
1644 // NVVM intrinsics that map to LLVM binary ops.
1645 case Intrinsic::nvvm_add_rn_d:
1646 return {Instruction::FAdd, FTZ_Any};
1647 case Intrinsic::nvvm_add_rn_f:
1648 return {Instruction::FAdd, FTZ_MustBeOff};
1649 case Intrinsic::nvvm_add_rn_ftz_f:
1650 return {Instruction::FAdd, FTZ_MustBeOn};
1651 case Intrinsic::nvvm_mul_rn_d:
1652 return {Instruction::FMul, FTZ_Any};
1653 case Intrinsic::nvvm_mul_rn_f:
1654 return {Instruction::FMul, FTZ_MustBeOff};
1655 case Intrinsic::nvvm_mul_rn_ftz_f:
1656 return {Instruction::FMul, FTZ_MustBeOn};
1657 case Intrinsic::nvvm_div_rn_d:
1658 return {Instruction::FDiv, FTZ_Any};
1659 case Intrinsic::nvvm_div_rn_f:
1660 return {Instruction::FDiv, FTZ_MustBeOff};
1661 case Intrinsic::nvvm_div_rn_ftz_f:
1662 return {Instruction::FDiv, FTZ_MustBeOn};
1664 // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
1665 // need special handling.
1667 // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just
1668 // as well.
1669 case Intrinsic::nvvm_rcp_rn_d:
1670 return {SPC_Reciprocal, FTZ_Any};
1671 case Intrinsic::nvvm_rcp_rn_f:
1672 return {SPC_Reciprocal, FTZ_MustBeOff};
1673 case Intrinsic::nvvm_rcp_rn_ftz_f:
1674 return {SPC_Reciprocal, FTZ_MustBeOn};
1676 // We do not currently simplify intrinsics that give an approximate answer.
1677 // These include:
1679 // - nvvm_cos_approx_{f,ftz_f}
1680 // - nvvm_ex2_approx_{d,f,ftz_f}
1681 // - nvvm_lg2_approx_{d,f,ftz_f}
1682 // - nvvm_sin_approx_{f,ftz_f}
1683 // - nvvm_sqrt_approx_{f,ftz_f}
1684 // - nvvm_rsqrt_approx_{d,f,ftz_f}
1685 // - nvvm_div_approx_{ftz_d,ftz_f,f}
1686 // - nvvm_rcp_approx_ftz_d
1688 // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
1689 // means that fastmath is enabled in the intrinsic. Unfortunately only
1690 // binary operators (currently) have a fastmath bit in SelectionDAG, so this
1691 // information gets lost and we can't select on it.
1693 // TODO: div and rcp are lowered to a binary op, so these we could in theory
1694 // lower them to "fast fdiv".
1696 default:
1697 return {};
1699 }();
1701 // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
1702 // can bail out now. (Notice that in the case that IID is not an NVVM
1703 // intrinsic, we don't have to look up any module metadata, as
1704 // FtzRequirementTy will be FTZ_Any.)
1705 if (Action.FtzRequirement != FTZ_Any) {
1706 bool FtzEnabled =
1707 II->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() ==
1708 "true";
1710 if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
1711 return nullptr;
1714 // Simplify to target-generic intrinsic.
1715 if (Action.IID) {
1716 SmallVector<Value *, 4> Args(II->arg_operands());
1717 // All the target-generic intrinsics currently of interest to us have one
1718 // type argument, equal to that of the nvvm intrinsic's argument.
1719 Type *Tys[] = {II->getArgOperand(0)->getType()};
1720 return CallInst::Create(
1721 Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args);
1724 // Simplify to target-generic binary op.
1725 if (Action.BinaryOp)
1726 return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
1727 II->getArgOperand(1), II->getName());
1729 // Simplify to target-generic cast op.
1730 if (Action.CastOp)
1731 return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
1732 II->getName());
1734 // All that's left are the special cases.
1735 if (!Action.Special)
1736 return nullptr;
1738 switch (*Action.Special) {
1739 case SPC_Reciprocal:
1740 // Simplify reciprocal.
1741 return BinaryOperator::Create(
1742 Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
1743 II->getArgOperand(0), II->getName());
1745 llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
1748 Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) {
1749 removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this);
1750 return nullptr;
1753 Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) {
1754 removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this);
1755 return nullptr;
1758 static Instruction *canonicalizeConstantArg0ToArg1(CallInst &Call) {
1759 assert(Call.getNumArgOperands() > 1 && "Need at least 2 args to swap");
1760 Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
1761 if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
1762 Call.setArgOperand(0, Arg1);
1763 Call.setArgOperand(1, Arg0);
1764 return &Call;
1766 return nullptr;
1769 Instruction *InstCombiner::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
1770 WithOverflowInst *WO = cast<WithOverflowInst>(II);
1771 Value *OperationResult = nullptr;
1772 Constant *OverflowResult = nullptr;
1773 if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
1774 WO->getRHS(), *WO, OperationResult, OverflowResult))
1775 return CreateOverflowTuple(WO, OperationResult, OverflowResult);
1776 return nullptr;
1779 /// CallInst simplification. This mostly only handles folding of intrinsic
1780 /// instructions. For normal calls, it allows visitCallBase to do the heavy
1781 /// lifting.
1782 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
1783 if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI)))
1784 return replaceInstUsesWith(CI, V);
1786 if (isFreeCall(&CI, &TLI))
1787 return visitFree(CI);
1789 // If the caller function is nounwind, mark the call as nounwind, even if the
1790 // callee isn't.
1791 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
1792 CI.setDoesNotThrow();
1793 return &CI;
1796 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
1797 if (!II) return visitCallBase(CI);
1799 // Intrinsics cannot occur in an invoke or a callbr, so handle them here
1800 // instead of in visitCallBase.
1801 if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
1802 bool Changed = false;
1804 // memmove/cpy/set of zero bytes is a noop.
1805 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
1806 if (NumBytes->isNullValue())
1807 return eraseInstFromFunction(CI);
1809 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
1810 if (CI->getZExtValue() == 1) {
1811 // Replace the instruction with just byte operations. We would
1812 // transform other cases to loads/stores, but we don't know if
1813 // alignment is sufficient.
1817 // No other transformations apply to volatile transfers.
1818 if (auto *M = dyn_cast<MemIntrinsic>(MI))
1819 if (M->isVolatile())
1820 return nullptr;
1822 // If we have a memmove and the source operation is a constant global,
1823 // then the source and dest pointers can't alias, so we can change this
1824 // into a call to memcpy.
1825 if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
1826 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1827 if (GVSrc->isConstant()) {
1828 Module *M = CI.getModule();
1829 Intrinsic::ID MemCpyID =
1830 isa<AtomicMemMoveInst>(MMI)
1831 ? Intrinsic::memcpy_element_unordered_atomic
1832 : Intrinsic::memcpy;
1833 Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1834 CI.getArgOperand(1)->getType(),
1835 CI.getArgOperand(2)->getType() };
1836 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
1837 Changed = true;
1841 if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1842 // memmove(x,x,size) -> noop.
1843 if (MTI->getSource() == MTI->getDest())
1844 return eraseInstFromFunction(CI);
1847 // If we can determine a pointer alignment that is bigger than currently
1848 // set, update the alignment.
1849 if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1850 if (Instruction *I = SimplifyAnyMemTransfer(MTI))
1851 return I;
1852 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
1853 if (Instruction *I = SimplifyAnyMemSet(MSI))
1854 return I;
1857 if (Changed) return II;
1860 // For vector result intrinsics, use the generic demanded vector support.
1861 if (II->getType()->isVectorTy()) {
1862 auto VWidth = II->getType()->getVectorNumElements();
1863 APInt UndefElts(VWidth, 0);
1864 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1865 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
1866 if (V != II)
1867 return replaceInstUsesWith(*II, V);
1868 return II;
1872 if (Instruction *I = SimplifyNVVMIntrinsic(II, *this))
1873 return I;
1875 auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width,
1876 unsigned DemandedWidth) {
1877 APInt UndefElts(Width, 0);
1878 APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
1879 return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
1882 Intrinsic::ID IID = II->getIntrinsicID();
1883 switch (IID) {
1884 default: break;
1885 case Intrinsic::objectsize:
1886 if (Value *V = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false))
1887 return replaceInstUsesWith(CI, V);
1888 return nullptr;
1889 case Intrinsic::bswap: {
1890 Value *IIOperand = II->getArgOperand(0);
1891 Value *X = nullptr;
1893 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1894 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1895 unsigned C = X->getType()->getPrimitiveSizeInBits() -
1896 IIOperand->getType()->getPrimitiveSizeInBits();
1897 Value *CV = ConstantInt::get(X->getType(), C);
1898 Value *V = Builder.CreateLShr(X, CV);
1899 return new TruncInst(V, IIOperand->getType());
1901 break;
1903 case Intrinsic::masked_load:
1904 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
1905 return replaceInstUsesWith(CI, SimplifiedMaskedOp);
1906 break;
1907 case Intrinsic::masked_store:
1908 return simplifyMaskedStore(*II);
1909 case Intrinsic::masked_gather:
1910 return simplifyMaskedGather(*II);
1911 case Intrinsic::masked_scatter:
1912 return simplifyMaskedScatter(*II);
1913 case Intrinsic::launder_invariant_group:
1914 case Intrinsic::strip_invariant_group:
1915 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
1916 return replaceInstUsesWith(*II, SkippedBarrier);
1917 break;
1918 case Intrinsic::powi:
1919 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
1920 // 0 and 1 are handled in instsimplify
1922 // powi(x, -1) -> 1/x
1923 if (Power->isMinusOne())
1924 return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
1925 II->getArgOperand(0));
1926 // powi(x, 2) -> x*x
1927 if (Power->equalsInt(2))
1928 return BinaryOperator::CreateFMul(II->getArgOperand(0),
1929 II->getArgOperand(0));
1931 break;
1933 case Intrinsic::cttz:
1934 case Intrinsic::ctlz:
1935 if (auto *I = foldCttzCtlz(*II, *this))
1936 return I;
1937 break;
1939 case Intrinsic::ctpop:
1940 if (auto *I = foldCtpop(*II, *this))
1941 return I;
1942 break;
1944 case Intrinsic::fshl:
1945 case Intrinsic::fshr: {
1946 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1947 Type *Ty = II->getType();
1948 unsigned BitWidth = Ty->getScalarSizeInBits();
1949 Constant *ShAmtC;
1950 if (match(II->getArgOperand(2), m_Constant(ShAmtC)) &&
1951 !isa<ConstantExpr>(ShAmtC) && !ShAmtC->containsConstantExpression()) {
1952 // Canonicalize a shift amount constant operand to modulo the bit-width.
1953 Constant *WidthC = ConstantInt::get(Ty, BitWidth);
1954 Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC);
1955 if (ModuloC != ShAmtC) {
1956 II->setArgOperand(2, ModuloC);
1957 return II;
1959 assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) ==
1960 ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) &&
1961 "Shift amount expected to be modulo bitwidth");
1963 // Canonicalize funnel shift right by constant to funnel shift left. This
1964 // is not entirely arbitrary. For historical reasons, the backend may
1965 // recognize rotate left patterns but miss rotate right patterns.
1966 if (IID == Intrinsic::fshr) {
1967 // fshr X, Y, C --> fshl X, Y, (BitWidth - C)
1968 Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
1969 Module *Mod = II->getModule();
1970 Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
1971 return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
1973 assert(IID == Intrinsic::fshl &&
1974 "All funnel shifts by simple constants should go left");
1976 // fshl(X, 0, C) --> shl X, C
1977 // fshl(X, undef, C) --> shl X, C
1978 if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
1979 return BinaryOperator::CreateShl(Op0, ShAmtC);
1981 // fshl(0, X, C) --> lshr X, (BW-C)
1982 // fshl(undef, X, C) --> lshr X, (BW-C)
1983 if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
1984 return BinaryOperator::CreateLShr(Op1,
1985 ConstantExpr::getSub(WidthC, ShAmtC));
1987 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
1988 if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
1989 Module *Mod = II->getModule();
1990 Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty);
1991 return CallInst::Create(Bswap, { Op0 });
1995 // Left or right might be masked.
1996 if (SimplifyDemandedInstructionBits(*II))
1997 return &CI;
1999 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
2000 // so only the low bits of the shift amount are demanded if the bitwidth is
2001 // a power-of-2.
2002 if (!isPowerOf2_32(BitWidth))
2003 break;
2004 APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth));
2005 KnownBits Op2Known(BitWidth);
2006 if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
2007 return &CI;
2008 break;
2010 case Intrinsic::uadd_with_overflow:
2011 case Intrinsic::sadd_with_overflow: {
2012 if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2013 return I;
2014 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2015 return I;
2017 // Given 2 constant operands whose sum does not overflow:
2018 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
2019 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
2020 Value *X;
2021 const APInt *C0, *C1;
2022 Value *Arg0 = II->getArgOperand(0);
2023 Value *Arg1 = II->getArgOperand(1);
2024 bool IsSigned = IID == Intrinsic::sadd_with_overflow;
2025 bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0)))
2026 : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0)));
2027 if (HasNWAdd && match(Arg1, m_APInt(C1))) {
2028 bool Overflow;
2029 APInt NewC =
2030 IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
2031 if (!Overflow)
2032 return replaceInstUsesWith(
2033 *II, Builder.CreateBinaryIntrinsic(
2034 IID, X, ConstantInt::get(Arg1->getType(), NewC)));
2036 break;
2039 case Intrinsic::umul_with_overflow:
2040 case Intrinsic::smul_with_overflow:
2041 if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2042 return I;
2043 LLVM_FALLTHROUGH;
2045 case Intrinsic::usub_with_overflow:
2046 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2047 return I;
2048 break;
2050 case Intrinsic::ssub_with_overflow: {
2051 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2052 return I;
2054 Constant *C;
2055 Value *Arg0 = II->getArgOperand(0);
2056 Value *Arg1 = II->getArgOperand(1);
2057 // Given a constant C that is not the minimum signed value
2058 // for an integer of a given bit width:
2060 // ssubo X, C -> saddo X, -C
2061 if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
2062 Value *NegVal = ConstantExpr::getNeg(C);
2063 // Build a saddo call that is equivalent to the discovered
2064 // ssubo call.
2065 return replaceInstUsesWith(
2066 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
2067 Arg0, NegVal));
2070 break;
2073 case Intrinsic::uadd_sat:
2074 case Intrinsic::sadd_sat:
2075 if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2076 return I;
2077 LLVM_FALLTHROUGH;
2078 case Intrinsic::usub_sat:
2079 case Intrinsic::ssub_sat: {
2080 SaturatingInst *SI = cast<SaturatingInst>(II);
2081 Type *Ty = SI->getType();
2082 Value *Arg0 = SI->getLHS();
2083 Value *Arg1 = SI->getRHS();
2085 // Make use of known overflow information.
2086 OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
2087 Arg0, Arg1, SI);
2088 switch (OR) {
2089 case OverflowResult::MayOverflow:
2090 break;
2091 case OverflowResult::NeverOverflows:
2092 if (SI->isSigned())
2093 return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
2094 else
2095 return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
2096 case OverflowResult::AlwaysOverflowsLow: {
2097 unsigned BitWidth = Ty->getScalarSizeInBits();
2098 APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
2099 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
2101 case OverflowResult::AlwaysOverflowsHigh: {
2102 unsigned BitWidth = Ty->getScalarSizeInBits();
2103 APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
2104 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
2108 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
2109 Constant *C;
2110 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
2111 C->isNotMinSignedValue()) {
2112 Value *NegVal = ConstantExpr::getNeg(C);
2113 return replaceInstUsesWith(
2114 *II, Builder.CreateBinaryIntrinsic(
2115 Intrinsic::sadd_sat, Arg0, NegVal));
2118 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
2119 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
2120 // if Val and Val2 have the same sign
2121 if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
2122 Value *X;
2123 const APInt *Val, *Val2;
2124 APInt NewVal;
2125 bool IsUnsigned =
2126 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
2127 if (Other->getIntrinsicID() == IID &&
2128 match(Arg1, m_APInt(Val)) &&
2129 match(Other->getArgOperand(0), m_Value(X)) &&
2130 match(Other->getArgOperand(1), m_APInt(Val2))) {
2131 if (IsUnsigned)
2132 NewVal = Val->uadd_sat(*Val2);
2133 else if (Val->isNonNegative() == Val2->isNonNegative()) {
2134 bool Overflow;
2135 NewVal = Val->sadd_ov(*Val2, Overflow);
2136 if (Overflow) {
2137 // Both adds together may add more than SignedMaxValue
2138 // without saturating the final result.
2139 break;
2141 } else {
2142 // Cannot fold saturated addition with different signs.
2143 break;
2146 return replaceInstUsesWith(
2147 *II, Builder.CreateBinaryIntrinsic(
2148 IID, X, ConstantInt::get(II->getType(), NewVal)));
2151 break;
2154 case Intrinsic::minnum:
2155 case Intrinsic::maxnum:
2156 case Intrinsic::minimum:
2157 case Intrinsic::maximum: {
2158 if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2159 return I;
2160 Value *Arg0 = II->getArgOperand(0);
2161 Value *Arg1 = II->getArgOperand(1);
2162 Value *X, *Y;
2163 if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
2164 (Arg0->hasOneUse() || Arg1->hasOneUse())) {
2165 // If both operands are negated, invert the call and negate the result:
2166 // min(-X, -Y) --> -(max(X, Y))
2167 // max(-X, -Y) --> -(min(X, Y))
2168 Intrinsic::ID NewIID;
2169 switch (IID) {
2170 case Intrinsic::maxnum:
2171 NewIID = Intrinsic::minnum;
2172 break;
2173 case Intrinsic::minnum:
2174 NewIID = Intrinsic::maxnum;
2175 break;
2176 case Intrinsic::maximum:
2177 NewIID = Intrinsic::minimum;
2178 break;
2179 case Intrinsic::minimum:
2180 NewIID = Intrinsic::maximum;
2181 break;
2182 default:
2183 llvm_unreachable("unexpected intrinsic ID");
2185 Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
2186 Instruction *FNeg = BinaryOperator::CreateFNeg(NewCall);
2187 FNeg->copyIRFlags(II);
2188 return FNeg;
2191 // m(m(X, C2), C1) -> m(X, C)
2192 const APFloat *C1, *C2;
2193 if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
2194 if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
2195 ((match(M->getArgOperand(0), m_Value(X)) &&
2196 match(M->getArgOperand(1), m_APFloat(C2))) ||
2197 (match(M->getArgOperand(1), m_Value(X)) &&
2198 match(M->getArgOperand(0), m_APFloat(C2))))) {
2199 APFloat Res(0.0);
2200 switch (IID) {
2201 case Intrinsic::maxnum:
2202 Res = maxnum(*C1, *C2);
2203 break;
2204 case Intrinsic::minnum:
2205 Res = minnum(*C1, *C2);
2206 break;
2207 case Intrinsic::maximum:
2208 Res = maximum(*C1, *C2);
2209 break;
2210 case Intrinsic::minimum:
2211 Res = minimum(*C1, *C2);
2212 break;
2213 default:
2214 llvm_unreachable("unexpected intrinsic ID");
2216 Instruction *NewCall = Builder.CreateBinaryIntrinsic(
2217 IID, X, ConstantFP::get(Arg0->getType(), Res));
2218 NewCall->copyIRFlags(II);
2219 return replaceInstUsesWith(*II, NewCall);
2223 break;
2225 case Intrinsic::fmuladd: {
2226 // Canonicalize fast fmuladd to the separate fmul + fadd.
2227 if (II->isFast()) {
2228 BuilderTy::FastMathFlagGuard Guard(Builder);
2229 Builder.setFastMathFlags(II->getFastMathFlags());
2230 Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
2231 II->getArgOperand(1));
2232 Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
2233 Add->takeName(II);
2234 return replaceInstUsesWith(*II, Add);
2237 // Try to simplify the underlying FMul.
2238 if (Value *V = SimplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
2239 II->getFastMathFlags(),
2240 SQ.getWithInstruction(II))) {
2241 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
2242 FAdd->copyFastMathFlags(II);
2243 return FAdd;
2246 LLVM_FALLTHROUGH;
2248 case Intrinsic::fma: {
2249 if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2250 return I;
2252 // fma fneg(x), fneg(y), z -> fma x, y, z
2253 Value *Src0 = II->getArgOperand(0);
2254 Value *Src1 = II->getArgOperand(1);
2255 Value *X, *Y;
2256 if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
2257 II->setArgOperand(0, X);
2258 II->setArgOperand(1, Y);
2259 return II;
2262 // fma fabs(x), fabs(x), z -> fma x, x, z
2263 if (match(Src0, m_FAbs(m_Value(X))) &&
2264 match(Src1, m_FAbs(m_Specific(X)))) {
2265 II->setArgOperand(0, X);
2266 II->setArgOperand(1, X);
2267 return II;
2270 // Try to simplify the underlying FMul. We can only apply simplifications
2271 // that do not require rounding.
2272 if (Value *V = SimplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1),
2273 II->getFastMathFlags(),
2274 SQ.getWithInstruction(II))) {
2275 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
2276 FAdd->copyFastMathFlags(II);
2277 return FAdd;
2280 break;
2282 case Intrinsic::fabs: {
2283 Value *Cond;
2284 Constant *LHS, *RHS;
2285 if (match(II->getArgOperand(0),
2286 m_Select(m_Value(Cond), m_Constant(LHS), m_Constant(RHS)))) {
2287 CallInst *Call0 = Builder.CreateCall(II->getCalledFunction(), {LHS});
2288 CallInst *Call1 = Builder.CreateCall(II->getCalledFunction(), {RHS});
2289 return SelectInst::Create(Cond, Call0, Call1);
2292 LLVM_FALLTHROUGH;
2294 case Intrinsic::ceil:
2295 case Intrinsic::floor:
2296 case Intrinsic::round:
2297 case Intrinsic::nearbyint:
2298 case Intrinsic::rint:
2299 case Intrinsic::trunc: {
2300 Value *ExtSrc;
2301 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
2302 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
2303 Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
2304 return new FPExtInst(NarrowII, II->getType());
2306 break;
2308 case Intrinsic::cos:
2309 case Intrinsic::amdgcn_cos: {
2310 Value *X;
2311 Value *Src = II->getArgOperand(0);
2312 if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) {
2313 // cos(-x) -> cos(x)
2314 // cos(fabs(x)) -> cos(x)
2315 II->setArgOperand(0, X);
2316 return II;
2318 break;
2320 case Intrinsic::sin: {
2321 Value *X;
2322 if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
2323 // sin(-x) --> -sin(x)
2324 Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II);
2325 Instruction *FNeg = BinaryOperator::CreateFNeg(NewSin);
2326 FNeg->copyFastMathFlags(II);
2327 return FNeg;
2329 break;
2331 case Intrinsic::ppc_altivec_lvx:
2332 case Intrinsic::ppc_altivec_lvxl:
2333 // Turn PPC lvx -> load if the pointer is known aligned.
2334 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
2335 &DT) >= 16) {
2336 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2337 PointerType::getUnqual(II->getType()));
2338 return new LoadInst(II->getType(), Ptr);
2340 break;
2341 case Intrinsic::ppc_vsx_lxvw4x:
2342 case Intrinsic::ppc_vsx_lxvd2x: {
2343 // Turn PPC VSX loads into normal loads.
2344 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2345 PointerType::getUnqual(II->getType()));
2346 return new LoadInst(II->getType(), Ptr, Twine(""), false, Align::None());
2348 case Intrinsic::ppc_altivec_stvx:
2349 case Intrinsic::ppc_altivec_stvxl:
2350 // Turn stvx -> store if the pointer is known aligned.
2351 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
2352 &DT) >= 16) {
2353 Type *OpPtrTy =
2354 PointerType::getUnqual(II->getArgOperand(0)->getType());
2355 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2356 return new StoreInst(II->getArgOperand(0), Ptr);
2358 break;
2359 case Intrinsic::ppc_vsx_stxvw4x:
2360 case Intrinsic::ppc_vsx_stxvd2x: {
2361 // Turn PPC VSX stores into normal stores.
2362 Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
2363 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2364 return new StoreInst(II->getArgOperand(0), Ptr, false, Align::None());
2366 case Intrinsic::ppc_qpx_qvlfs:
2367 // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
2368 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
2369 &DT) >= 16) {
2370 Type *VTy = VectorType::get(Builder.getFloatTy(),
2371 II->getType()->getVectorNumElements());
2372 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2373 PointerType::getUnqual(VTy));
2374 Value *Load = Builder.CreateLoad(VTy, Ptr);
2375 return new FPExtInst(Load, II->getType());
2377 break;
2378 case Intrinsic::ppc_qpx_qvlfd:
2379 // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
2380 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, &AC,
2381 &DT) >= 32) {
2382 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2383 PointerType::getUnqual(II->getType()));
2384 return new LoadInst(II->getType(), Ptr);
2386 break;
2387 case Intrinsic::ppc_qpx_qvstfs:
2388 // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
2389 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
2390 &DT) >= 16) {
2391 Type *VTy = VectorType::get(Builder.getFloatTy(),
2392 II->getArgOperand(0)->getType()->getVectorNumElements());
2393 Value *TOp = Builder.CreateFPTrunc(II->getArgOperand(0), VTy);
2394 Type *OpPtrTy = PointerType::getUnqual(VTy);
2395 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2396 return new StoreInst(TOp, Ptr);
2398 break;
2399 case Intrinsic::ppc_qpx_qvstfd:
2400 // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
2401 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, &AC,
2402 &DT) >= 32) {
2403 Type *OpPtrTy =
2404 PointerType::getUnqual(II->getArgOperand(0)->getType());
2405 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2406 return new StoreInst(II->getArgOperand(0), Ptr);
2408 break;
2410 case Intrinsic::x86_bmi_bextr_32:
2411 case Intrinsic::x86_bmi_bextr_64:
2412 case Intrinsic::x86_tbm_bextri_u32:
2413 case Intrinsic::x86_tbm_bextri_u64:
2414 // If the RHS is a constant we can try some simplifications.
2415 if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2416 uint64_t Shift = C->getZExtValue();
2417 uint64_t Length = (Shift >> 8) & 0xff;
2418 Shift &= 0xff;
2419 unsigned BitWidth = II->getType()->getIntegerBitWidth();
2420 // If the length is 0 or the shift is out of range, replace with zero.
2421 if (Length == 0 || Shift >= BitWidth)
2422 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
2423 // If the LHS is also a constant, we can completely constant fold this.
2424 if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
2425 uint64_t Result = InC->getZExtValue() >> Shift;
2426 if (Length > BitWidth)
2427 Length = BitWidth;
2428 Result &= maskTrailingOnes<uint64_t>(Length);
2429 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
2431 // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we
2432 // are only masking bits that a shift already cleared?
2434 break;
2436 case Intrinsic::x86_bmi_bzhi_32:
2437 case Intrinsic::x86_bmi_bzhi_64:
2438 // If the RHS is a constant we can try some simplifications.
2439 if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2440 uint64_t Index = C->getZExtValue() & 0xff;
2441 unsigned BitWidth = II->getType()->getIntegerBitWidth();
2442 if (Index >= BitWidth)
2443 return replaceInstUsesWith(CI, II->getArgOperand(0));
2444 if (Index == 0)
2445 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
2446 // If the LHS is also a constant, we can completely constant fold this.
2447 if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
2448 uint64_t Result = InC->getZExtValue();
2449 Result &= maskTrailingOnes<uint64_t>(Index);
2450 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
2452 // TODO should we convert this to an AND if the RHS is constant?
2454 break;
2456 case Intrinsic::x86_vcvtph2ps_128:
2457 case Intrinsic::x86_vcvtph2ps_256: {
2458 auto Arg = II->getArgOperand(0);
2459 auto ArgType = cast<VectorType>(Arg->getType());
2460 auto RetType = cast<VectorType>(II->getType());
2461 unsigned ArgWidth = ArgType->getNumElements();
2462 unsigned RetWidth = RetType->getNumElements();
2463 assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths");
2464 assert(ArgType->isIntOrIntVectorTy() &&
2465 ArgType->getScalarSizeInBits() == 16 &&
2466 "CVTPH2PS input type should be 16-bit integer vector");
2467 assert(RetType->getScalarType()->isFloatTy() &&
2468 "CVTPH2PS output type should be 32-bit float vector");
2470 // Constant folding: Convert to generic half to single conversion.
2471 if (isa<ConstantAggregateZero>(Arg))
2472 return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType));
2474 if (isa<ConstantDataVector>(Arg)) {
2475 auto VectorHalfAsShorts = Arg;
2476 if (RetWidth < ArgWidth) {
2477 SmallVector<uint32_t, 8> SubVecMask;
2478 for (unsigned i = 0; i != RetWidth; ++i)
2479 SubVecMask.push_back((int)i);
2480 VectorHalfAsShorts = Builder.CreateShuffleVector(
2481 Arg, UndefValue::get(ArgType), SubVecMask);
2484 auto VectorHalfType =
2485 VectorType::get(Type::getHalfTy(II->getContext()), RetWidth);
2486 auto VectorHalfs =
2487 Builder.CreateBitCast(VectorHalfAsShorts, VectorHalfType);
2488 auto VectorFloats = Builder.CreateFPExt(VectorHalfs, RetType);
2489 return replaceInstUsesWith(*II, VectorFloats);
2492 // We only use the lowest lanes of the argument.
2493 if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) {
2494 II->setArgOperand(0, V);
2495 return II;
2497 break;
2500 case Intrinsic::x86_sse_cvtss2si:
2501 case Intrinsic::x86_sse_cvtss2si64:
2502 case Intrinsic::x86_sse_cvttss2si:
2503 case Intrinsic::x86_sse_cvttss2si64:
2504 case Intrinsic::x86_sse2_cvtsd2si:
2505 case Intrinsic::x86_sse2_cvtsd2si64:
2506 case Intrinsic::x86_sse2_cvttsd2si:
2507 case Intrinsic::x86_sse2_cvttsd2si64:
2508 case Intrinsic::x86_avx512_vcvtss2si32:
2509 case Intrinsic::x86_avx512_vcvtss2si64:
2510 case Intrinsic::x86_avx512_vcvtss2usi32:
2511 case Intrinsic::x86_avx512_vcvtss2usi64:
2512 case Intrinsic::x86_avx512_vcvtsd2si32:
2513 case Intrinsic::x86_avx512_vcvtsd2si64:
2514 case Intrinsic::x86_avx512_vcvtsd2usi32:
2515 case Intrinsic::x86_avx512_vcvtsd2usi64:
2516 case Intrinsic::x86_avx512_cvttss2si:
2517 case Intrinsic::x86_avx512_cvttss2si64:
2518 case Intrinsic::x86_avx512_cvttss2usi:
2519 case Intrinsic::x86_avx512_cvttss2usi64:
2520 case Intrinsic::x86_avx512_cvttsd2si:
2521 case Intrinsic::x86_avx512_cvttsd2si64:
2522 case Intrinsic::x86_avx512_cvttsd2usi:
2523 case Intrinsic::x86_avx512_cvttsd2usi64: {
2524 // These intrinsics only demand the 0th element of their input vectors. If
2525 // we can simplify the input based on that, do so now.
2526 Value *Arg = II->getArgOperand(0);
2527 unsigned VWidth = Arg->getType()->getVectorNumElements();
2528 if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
2529 II->setArgOperand(0, V);
2530 return II;
2532 break;
2535 case Intrinsic::x86_mmx_pmovmskb:
2536 case Intrinsic::x86_sse_movmsk_ps:
2537 case Intrinsic::x86_sse2_movmsk_pd:
2538 case Intrinsic::x86_sse2_pmovmskb_128:
2539 case Intrinsic::x86_avx_movmsk_pd_256:
2540 case Intrinsic::x86_avx_movmsk_ps_256:
2541 case Intrinsic::x86_avx2_pmovmskb:
2542 if (Value *V = simplifyX86movmsk(*II, Builder))
2543 return replaceInstUsesWith(*II, V);
2544 break;
2546 case Intrinsic::x86_sse_comieq_ss:
2547 case Intrinsic::x86_sse_comige_ss:
2548 case Intrinsic::x86_sse_comigt_ss:
2549 case Intrinsic::x86_sse_comile_ss:
2550 case Intrinsic::x86_sse_comilt_ss:
2551 case Intrinsic::x86_sse_comineq_ss:
2552 case Intrinsic::x86_sse_ucomieq_ss:
2553 case Intrinsic::x86_sse_ucomige_ss:
2554 case Intrinsic::x86_sse_ucomigt_ss:
2555 case Intrinsic::x86_sse_ucomile_ss:
2556 case Intrinsic::x86_sse_ucomilt_ss:
2557 case Intrinsic::x86_sse_ucomineq_ss:
2558 case Intrinsic::x86_sse2_comieq_sd:
2559 case Intrinsic::x86_sse2_comige_sd:
2560 case Intrinsic::x86_sse2_comigt_sd:
2561 case Intrinsic::x86_sse2_comile_sd:
2562 case Intrinsic::x86_sse2_comilt_sd:
2563 case Intrinsic::x86_sse2_comineq_sd:
2564 case Intrinsic::x86_sse2_ucomieq_sd:
2565 case Intrinsic::x86_sse2_ucomige_sd:
2566 case Intrinsic::x86_sse2_ucomigt_sd:
2567 case Intrinsic::x86_sse2_ucomile_sd:
2568 case Intrinsic::x86_sse2_ucomilt_sd:
2569 case Intrinsic::x86_sse2_ucomineq_sd:
2570 case Intrinsic::x86_avx512_vcomi_ss:
2571 case Intrinsic::x86_avx512_vcomi_sd:
2572 case Intrinsic::x86_avx512_mask_cmp_ss:
2573 case Intrinsic::x86_avx512_mask_cmp_sd: {
2574 // These intrinsics only demand the 0th element of their input vectors. If
2575 // we can simplify the input based on that, do so now.
2576 bool MadeChange = false;
2577 Value *Arg0 = II->getArgOperand(0);
2578 Value *Arg1 = II->getArgOperand(1);
2579 unsigned VWidth = Arg0->getType()->getVectorNumElements();
2580 if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
2581 II->setArgOperand(0, V);
2582 MadeChange = true;
2584 if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
2585 II->setArgOperand(1, V);
2586 MadeChange = true;
2588 if (MadeChange)
2589 return II;
2590 break;
2592 case Intrinsic::x86_avx512_cmp_pd_128:
2593 case Intrinsic::x86_avx512_cmp_pd_256:
2594 case Intrinsic::x86_avx512_cmp_pd_512:
2595 case Intrinsic::x86_avx512_cmp_ps_128:
2596 case Intrinsic::x86_avx512_cmp_ps_256:
2597 case Intrinsic::x86_avx512_cmp_ps_512: {
2598 // Folding cmp(sub(a,b),0) -> cmp(a,b) and cmp(0,sub(a,b)) -> cmp(b,a)
2599 Value *Arg0 = II->getArgOperand(0);
2600 Value *Arg1 = II->getArgOperand(1);
2601 bool Arg0IsZero = match(Arg0, m_PosZeroFP());
2602 if (Arg0IsZero)
2603 std::swap(Arg0, Arg1);
2604 Value *A, *B;
2605 // This fold requires only the NINF(not +/- inf) since inf minus
2606 // inf is nan.
2607 // NSZ(No Signed Zeros) is not needed because zeros of any sign are
2608 // equal for both compares.
2609 // NNAN is not needed because nans compare the same for both compares.
2610 // The compare intrinsic uses the above assumptions and therefore
2611 // doesn't require additional flags.
2612 if ((match(Arg0, m_OneUse(m_FSub(m_Value(A), m_Value(B)))) &&
2613 match(Arg1, m_PosZeroFP()) && isa<Instruction>(Arg0) &&
2614 cast<Instruction>(Arg0)->getFastMathFlags().noInfs())) {
2615 if (Arg0IsZero)
2616 std::swap(A, B);
2617 II->setArgOperand(0, A);
2618 II->setArgOperand(1, B);
2619 return II;
2621 break;
2624 case Intrinsic::x86_avx512_add_ps_512:
2625 case Intrinsic::x86_avx512_div_ps_512:
2626 case Intrinsic::x86_avx512_mul_ps_512:
2627 case Intrinsic::x86_avx512_sub_ps_512:
2628 case Intrinsic::x86_avx512_add_pd_512:
2629 case Intrinsic::x86_avx512_div_pd_512:
2630 case Intrinsic::x86_avx512_mul_pd_512:
2631 case Intrinsic::x86_avx512_sub_pd_512:
2632 // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2633 // IR operations.
2634 if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
2635 if (R->getValue() == 4) {
2636 Value *Arg0 = II->getArgOperand(0);
2637 Value *Arg1 = II->getArgOperand(1);
2639 Value *V;
2640 switch (IID) {
2641 default: llvm_unreachable("Case stmts out of sync!");
2642 case Intrinsic::x86_avx512_add_ps_512:
2643 case Intrinsic::x86_avx512_add_pd_512:
2644 V = Builder.CreateFAdd(Arg0, Arg1);
2645 break;
2646 case Intrinsic::x86_avx512_sub_ps_512:
2647 case Intrinsic::x86_avx512_sub_pd_512:
2648 V = Builder.CreateFSub(Arg0, Arg1);
2649 break;
2650 case Intrinsic::x86_avx512_mul_ps_512:
2651 case Intrinsic::x86_avx512_mul_pd_512:
2652 V = Builder.CreateFMul(Arg0, Arg1);
2653 break;
2654 case Intrinsic::x86_avx512_div_ps_512:
2655 case Intrinsic::x86_avx512_div_pd_512:
2656 V = Builder.CreateFDiv(Arg0, Arg1);
2657 break;
2660 return replaceInstUsesWith(*II, V);
2663 break;
2665 case Intrinsic::x86_avx512_mask_add_ss_round:
2666 case Intrinsic::x86_avx512_mask_div_ss_round:
2667 case Intrinsic::x86_avx512_mask_mul_ss_round:
2668 case Intrinsic::x86_avx512_mask_sub_ss_round:
2669 case Intrinsic::x86_avx512_mask_add_sd_round:
2670 case Intrinsic::x86_avx512_mask_div_sd_round:
2671 case Intrinsic::x86_avx512_mask_mul_sd_round:
2672 case Intrinsic::x86_avx512_mask_sub_sd_round:
2673 // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2674 // IR operations.
2675 if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) {
2676 if (R->getValue() == 4) {
2677 // Extract the element as scalars.
2678 Value *Arg0 = II->getArgOperand(0);
2679 Value *Arg1 = II->getArgOperand(1);
2680 Value *LHS = Builder.CreateExtractElement(Arg0, (uint64_t)0);
2681 Value *RHS = Builder.CreateExtractElement(Arg1, (uint64_t)0);
2683 Value *V;
2684 switch (IID) {
2685 default: llvm_unreachable("Case stmts out of sync!");
2686 case Intrinsic::x86_avx512_mask_add_ss_round:
2687 case Intrinsic::x86_avx512_mask_add_sd_round:
2688 V = Builder.CreateFAdd(LHS, RHS);
2689 break;
2690 case Intrinsic::x86_avx512_mask_sub_ss_round:
2691 case Intrinsic::x86_avx512_mask_sub_sd_round:
2692 V = Builder.CreateFSub(LHS, RHS);
2693 break;
2694 case Intrinsic::x86_avx512_mask_mul_ss_round:
2695 case Intrinsic::x86_avx512_mask_mul_sd_round:
2696 V = Builder.CreateFMul(LHS, RHS);
2697 break;
2698 case Intrinsic::x86_avx512_mask_div_ss_round:
2699 case Intrinsic::x86_avx512_mask_div_sd_round:
2700 V = Builder.CreateFDiv(LHS, RHS);
2701 break;
2704 // Handle the masking aspect of the intrinsic.
2705 Value *Mask = II->getArgOperand(3);
2706 auto *C = dyn_cast<ConstantInt>(Mask);
2707 // We don't need a select if we know the mask bit is a 1.
2708 if (!C || !C->getValue()[0]) {
2709 // Cast the mask to an i1 vector and then extract the lowest element.
2710 auto *MaskTy = VectorType::get(Builder.getInt1Ty(),
2711 cast<IntegerType>(Mask->getType())->getBitWidth());
2712 Mask = Builder.CreateBitCast(Mask, MaskTy);
2713 Mask = Builder.CreateExtractElement(Mask, (uint64_t)0);
2714 // Extract the lowest element from the passthru operand.
2715 Value *Passthru = Builder.CreateExtractElement(II->getArgOperand(2),
2716 (uint64_t)0);
2717 V = Builder.CreateSelect(Mask, V, Passthru);
2720 // Insert the result back into the original argument 0.
2721 V = Builder.CreateInsertElement(Arg0, V, (uint64_t)0);
2723 return replaceInstUsesWith(*II, V);
2726 break;
2728 // Constant fold ashr( <A x Bi>, Ci ).
2729 // Constant fold lshr( <A x Bi>, Ci ).
2730 // Constant fold shl( <A x Bi>, Ci ).
2731 case Intrinsic::x86_sse2_psrai_d:
2732 case Intrinsic::x86_sse2_psrai_w:
2733 case Intrinsic::x86_avx2_psrai_d:
2734 case Intrinsic::x86_avx2_psrai_w:
2735 case Intrinsic::x86_avx512_psrai_q_128:
2736 case Intrinsic::x86_avx512_psrai_q_256:
2737 case Intrinsic::x86_avx512_psrai_d_512:
2738 case Intrinsic::x86_avx512_psrai_q_512:
2739 case Intrinsic::x86_avx512_psrai_w_512:
2740 case Intrinsic::x86_sse2_psrli_d:
2741 case Intrinsic::x86_sse2_psrli_q:
2742 case Intrinsic::x86_sse2_psrli_w:
2743 case Intrinsic::x86_avx2_psrli_d:
2744 case Intrinsic::x86_avx2_psrli_q:
2745 case Intrinsic::x86_avx2_psrli_w:
2746 case Intrinsic::x86_avx512_psrli_d_512:
2747 case Intrinsic::x86_avx512_psrli_q_512:
2748 case Intrinsic::x86_avx512_psrli_w_512:
2749 case Intrinsic::x86_sse2_pslli_d:
2750 case Intrinsic::x86_sse2_pslli_q:
2751 case Intrinsic::x86_sse2_pslli_w:
2752 case Intrinsic::x86_avx2_pslli_d:
2753 case Intrinsic::x86_avx2_pslli_q:
2754 case Intrinsic::x86_avx2_pslli_w:
2755 case Intrinsic::x86_avx512_pslli_d_512:
2756 case Intrinsic::x86_avx512_pslli_q_512:
2757 case Intrinsic::x86_avx512_pslli_w_512:
2758 if (Value *V = simplifyX86immShift(*II, Builder))
2759 return replaceInstUsesWith(*II, V);
2760 break;
2762 case Intrinsic::x86_sse2_psra_d:
2763 case Intrinsic::x86_sse2_psra_w:
2764 case Intrinsic::x86_avx2_psra_d:
2765 case Intrinsic::x86_avx2_psra_w:
2766 case Intrinsic::x86_avx512_psra_q_128:
2767 case Intrinsic::x86_avx512_psra_q_256:
2768 case Intrinsic::x86_avx512_psra_d_512:
2769 case Intrinsic::x86_avx512_psra_q_512:
2770 case Intrinsic::x86_avx512_psra_w_512:
2771 case Intrinsic::x86_sse2_psrl_d:
2772 case Intrinsic::x86_sse2_psrl_q:
2773 case Intrinsic::x86_sse2_psrl_w:
2774 case Intrinsic::x86_avx2_psrl_d:
2775 case Intrinsic::x86_avx2_psrl_q:
2776 case Intrinsic::x86_avx2_psrl_w:
2777 case Intrinsic::x86_avx512_psrl_d_512:
2778 case Intrinsic::x86_avx512_psrl_q_512:
2779 case Intrinsic::x86_avx512_psrl_w_512:
2780 case Intrinsic::x86_sse2_psll_d:
2781 case Intrinsic::x86_sse2_psll_q:
2782 case Intrinsic::x86_sse2_psll_w:
2783 case Intrinsic::x86_avx2_psll_d:
2784 case Intrinsic::x86_avx2_psll_q:
2785 case Intrinsic::x86_avx2_psll_w:
2786 case Intrinsic::x86_avx512_psll_d_512:
2787 case Intrinsic::x86_avx512_psll_q_512:
2788 case Intrinsic::x86_avx512_psll_w_512: {
2789 if (Value *V = simplifyX86immShift(*II, Builder))
2790 return replaceInstUsesWith(*II, V);
2792 // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
2793 // operand to compute the shift amount.
2794 Value *Arg1 = II->getArgOperand(1);
2795 assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
2796 "Unexpected packed shift size");
2797 unsigned VWidth = Arg1->getType()->getVectorNumElements();
2799 if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
2800 II->setArgOperand(1, V);
2801 return II;
2803 break;
2806 case Intrinsic::x86_avx2_psllv_d:
2807 case Intrinsic::x86_avx2_psllv_d_256:
2808 case Intrinsic::x86_avx2_psllv_q:
2809 case Intrinsic::x86_avx2_psllv_q_256:
2810 case Intrinsic::x86_avx512_psllv_d_512:
2811 case Intrinsic::x86_avx512_psllv_q_512:
2812 case Intrinsic::x86_avx512_psllv_w_128:
2813 case Intrinsic::x86_avx512_psllv_w_256:
2814 case Intrinsic::x86_avx512_psllv_w_512:
2815 case Intrinsic::x86_avx2_psrav_d:
2816 case Intrinsic::x86_avx2_psrav_d_256:
2817 case Intrinsic::x86_avx512_psrav_q_128:
2818 case Intrinsic::x86_avx512_psrav_q_256:
2819 case Intrinsic::x86_avx512_psrav_d_512:
2820 case Intrinsic::x86_avx512_psrav_q_512:
2821 case Intrinsic::x86_avx512_psrav_w_128:
2822 case Intrinsic::x86_avx512_psrav_w_256:
2823 case Intrinsic::x86_avx512_psrav_w_512:
2824 case Intrinsic::x86_avx2_psrlv_d:
2825 case Intrinsic::x86_avx2_psrlv_d_256:
2826 case Intrinsic::x86_avx2_psrlv_q:
2827 case Intrinsic::x86_avx2_psrlv_q_256:
2828 case Intrinsic::x86_avx512_psrlv_d_512:
2829 case Intrinsic::x86_avx512_psrlv_q_512:
2830 case Intrinsic::x86_avx512_psrlv_w_128:
2831 case Intrinsic::x86_avx512_psrlv_w_256:
2832 case Intrinsic::x86_avx512_psrlv_w_512:
2833 if (Value *V = simplifyX86varShift(*II, Builder))
2834 return replaceInstUsesWith(*II, V);
2835 break;
2837 case Intrinsic::x86_sse2_packssdw_128:
2838 case Intrinsic::x86_sse2_packsswb_128:
2839 case Intrinsic::x86_avx2_packssdw:
2840 case Intrinsic::x86_avx2_packsswb:
2841 case Intrinsic::x86_avx512_packssdw_512:
2842 case Intrinsic::x86_avx512_packsswb_512:
2843 if (Value *V = simplifyX86pack(*II, Builder, true))
2844 return replaceInstUsesWith(*II, V);
2845 break;
2847 case Intrinsic::x86_sse2_packuswb_128:
2848 case Intrinsic::x86_sse41_packusdw:
2849 case Intrinsic::x86_avx2_packusdw:
2850 case Intrinsic::x86_avx2_packuswb:
2851 case Intrinsic::x86_avx512_packusdw_512:
2852 case Intrinsic::x86_avx512_packuswb_512:
2853 if (Value *V = simplifyX86pack(*II, Builder, false))
2854 return replaceInstUsesWith(*II, V);
2855 break;
2857 case Intrinsic::x86_pclmulqdq:
2858 case Intrinsic::x86_pclmulqdq_256:
2859 case Intrinsic::x86_pclmulqdq_512: {
2860 if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
2861 unsigned Imm = C->getZExtValue();
2863 bool MadeChange = false;
2864 Value *Arg0 = II->getArgOperand(0);
2865 Value *Arg1 = II->getArgOperand(1);
2866 unsigned VWidth = Arg0->getType()->getVectorNumElements();
2868 APInt UndefElts1(VWidth, 0);
2869 APInt DemandedElts1 = APInt::getSplat(VWidth,
2870 APInt(2, (Imm & 0x01) ? 2 : 1));
2871 if (Value *V = SimplifyDemandedVectorElts(Arg0, DemandedElts1,
2872 UndefElts1)) {
2873 II->setArgOperand(0, V);
2874 MadeChange = true;
2877 APInt UndefElts2(VWidth, 0);
2878 APInt DemandedElts2 = APInt::getSplat(VWidth,
2879 APInt(2, (Imm & 0x10) ? 2 : 1));
2880 if (Value *V = SimplifyDemandedVectorElts(Arg1, DemandedElts2,
2881 UndefElts2)) {
2882 II->setArgOperand(1, V);
2883 MadeChange = true;
2886 // If either input elements are undef, the result is zero.
2887 if (DemandedElts1.isSubsetOf(UndefElts1) ||
2888 DemandedElts2.isSubsetOf(UndefElts2))
2889 return replaceInstUsesWith(*II,
2890 ConstantAggregateZero::get(II->getType()));
2892 if (MadeChange)
2893 return II;
2895 break;
2898 case Intrinsic::x86_sse41_insertps:
2899 if (Value *V = simplifyX86insertps(*II, Builder))
2900 return replaceInstUsesWith(*II, V);
2901 break;
2903 case Intrinsic::x86_sse4a_extrq: {
2904 Value *Op0 = II->getArgOperand(0);
2905 Value *Op1 = II->getArgOperand(1);
2906 unsigned VWidth0 = Op0->getType()->getVectorNumElements();
2907 unsigned VWidth1 = Op1->getType()->getVectorNumElements();
2908 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2909 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
2910 VWidth1 == 16 && "Unexpected operand sizes");
2912 // See if we're dealing with constant values.
2913 Constant *C1 = dyn_cast<Constant>(Op1);
2914 ConstantInt *CILength =
2915 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
2916 : nullptr;
2917 ConstantInt *CIIndex =
2918 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
2919 : nullptr;
2921 // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
2922 if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
2923 return replaceInstUsesWith(*II, V);
2925 // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
2926 // operands and the lowest 16-bits of the second.
2927 bool MadeChange = false;
2928 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
2929 II->setArgOperand(0, V);
2930 MadeChange = true;
2932 if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
2933 II->setArgOperand(1, V);
2934 MadeChange = true;
2936 if (MadeChange)
2937 return II;
2938 break;
2941 case Intrinsic::x86_sse4a_extrqi: {
2942 // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
2943 // bits of the lower 64-bits. The upper 64-bits are undefined.
2944 Value *Op0 = II->getArgOperand(0);
2945 unsigned VWidth = Op0->getType()->getVectorNumElements();
2946 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2947 "Unexpected operand size");
2949 // See if we're dealing with constant values.
2950 ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1));
2951 ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2));
2953 // Attempt to simplify to a constant or shuffle vector.
2954 if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
2955 return replaceInstUsesWith(*II, V);
2957 // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
2958 // operand.
2959 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
2960 II->setArgOperand(0, V);
2961 return II;
2963 break;
2966 case Intrinsic::x86_sse4a_insertq: {
2967 Value *Op0 = II->getArgOperand(0);
2968 Value *Op1 = II->getArgOperand(1);
2969 unsigned VWidth = Op0->getType()->getVectorNumElements();
2970 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2971 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2972 Op1->getType()->getVectorNumElements() == 2 &&
2973 "Unexpected operand size");
2975 // See if we're dealing with constant values.
2976 Constant *C1 = dyn_cast<Constant>(Op1);
2977 ConstantInt *CI11 =
2978 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
2979 : nullptr;
2981 // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
2982 if (CI11) {
2983 const APInt &V11 = CI11->getValue();
2984 APInt Len = V11.zextOrTrunc(6);
2985 APInt Idx = V11.lshr(8).zextOrTrunc(6);
2986 if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
2987 return replaceInstUsesWith(*II, V);
2990 // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
2991 // operand.
2992 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
2993 II->setArgOperand(0, V);
2994 return II;
2996 break;
2999 case Intrinsic::x86_sse4a_insertqi: {
3000 // INSERTQI: Extract lowest Length bits from lower half of second source and
3001 // insert over first source starting at Index bit. The upper 64-bits are
3002 // undefined.
3003 Value *Op0 = II->getArgOperand(0);
3004 Value *Op1 = II->getArgOperand(1);
3005 unsigned VWidth0 = Op0->getType()->getVectorNumElements();
3006 unsigned VWidth1 = Op1->getType()->getVectorNumElements();
3007 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
3008 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
3009 VWidth1 == 2 && "Unexpected operand sizes");
3011 // See if we're dealing with constant values.
3012 ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2));
3013 ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3));
3015 // Attempt to simplify to a constant or shuffle vector.
3016 if (CILength && CIIndex) {
3017 APInt Len = CILength->getValue().zextOrTrunc(6);
3018 APInt Idx = CIIndex->getValue().zextOrTrunc(6);
3019 if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
3020 return replaceInstUsesWith(*II, V);
3023 // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
3024 // operands.
3025 bool MadeChange = false;
3026 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
3027 II->setArgOperand(0, V);
3028 MadeChange = true;
3030 if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
3031 II->setArgOperand(1, V);
3032 MadeChange = true;
3034 if (MadeChange)
3035 return II;
3036 break;
3039 case Intrinsic::x86_sse41_pblendvb:
3040 case Intrinsic::x86_sse41_blendvps:
3041 case Intrinsic::x86_sse41_blendvpd:
3042 case Intrinsic::x86_avx_blendv_ps_256:
3043 case Intrinsic::x86_avx_blendv_pd_256:
3044 case Intrinsic::x86_avx2_pblendvb: {
3045 // fold (blend A, A, Mask) -> A
3046 Value *Op0 = II->getArgOperand(0);
3047 Value *Op1 = II->getArgOperand(1);
3048 Value *Mask = II->getArgOperand(2);
3049 if (Op0 == Op1)
3050 return replaceInstUsesWith(CI, Op0);
3052 // Zero Mask - select 1st argument.
3053 if (isa<ConstantAggregateZero>(Mask))
3054 return replaceInstUsesWith(CI, Op0);
3056 // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
3057 if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
3058 Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
3059 return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
3062 // Convert to a vector select if we can bypass casts and find a boolean
3063 // vector condition value.
3064 Value *BoolVec;
3065 Mask = peekThroughBitcast(Mask);
3066 if (match(Mask, m_SExt(m_Value(BoolVec))) &&
3067 BoolVec->getType()->isVectorTy() &&
3068 BoolVec->getType()->getScalarSizeInBits() == 1) {
3069 assert(Mask->getType()->getPrimitiveSizeInBits() ==
3070 II->getType()->getPrimitiveSizeInBits() &&
3071 "Not expecting mask and operands with different sizes");
3073 unsigned NumMaskElts = Mask->getType()->getVectorNumElements();
3074 unsigned NumOperandElts = II->getType()->getVectorNumElements();
3075 if (NumMaskElts == NumOperandElts)
3076 return SelectInst::Create(BoolVec, Op1, Op0);
3078 // If the mask has less elements than the operands, each mask bit maps to
3079 // multiple elements of the operands. Bitcast back and forth.
3080 if (NumMaskElts < NumOperandElts) {
3081 Value *CastOp0 = Builder.CreateBitCast(Op0, Mask->getType());
3082 Value *CastOp1 = Builder.CreateBitCast(Op1, Mask->getType());
3083 Value *Sel = Builder.CreateSelect(BoolVec, CastOp1, CastOp0);
3084 return new BitCastInst(Sel, II->getType());
3088 break;
3091 case Intrinsic::x86_ssse3_pshuf_b_128:
3092 case Intrinsic::x86_avx2_pshuf_b:
3093 case Intrinsic::x86_avx512_pshuf_b_512:
3094 if (Value *V = simplifyX86pshufb(*II, Builder))
3095 return replaceInstUsesWith(*II, V);
3096 break;
3098 case Intrinsic::x86_avx_vpermilvar_ps:
3099 case Intrinsic::x86_avx_vpermilvar_ps_256:
3100 case Intrinsic::x86_avx512_vpermilvar_ps_512:
3101 case Intrinsic::x86_avx_vpermilvar_pd:
3102 case Intrinsic::x86_avx_vpermilvar_pd_256:
3103 case Intrinsic::x86_avx512_vpermilvar_pd_512:
3104 if (Value *V = simplifyX86vpermilvar(*II, Builder))
3105 return replaceInstUsesWith(*II, V);
3106 break;
3108 case Intrinsic::x86_avx2_permd:
3109 case Intrinsic::x86_avx2_permps:
3110 case Intrinsic::x86_avx512_permvar_df_256:
3111 case Intrinsic::x86_avx512_permvar_df_512:
3112 case Intrinsic::x86_avx512_permvar_di_256:
3113 case Intrinsic::x86_avx512_permvar_di_512:
3114 case Intrinsic::x86_avx512_permvar_hi_128:
3115 case Intrinsic::x86_avx512_permvar_hi_256:
3116 case Intrinsic::x86_avx512_permvar_hi_512:
3117 case Intrinsic::x86_avx512_permvar_qi_128:
3118 case Intrinsic::x86_avx512_permvar_qi_256:
3119 case Intrinsic::x86_avx512_permvar_qi_512:
3120 case Intrinsic::x86_avx512_permvar_sf_512:
3121 case Intrinsic::x86_avx512_permvar_si_512:
3122 if (Value *V = simplifyX86vpermv(*II, Builder))
3123 return replaceInstUsesWith(*II, V);
3124 break;
3126 case Intrinsic::x86_avx_maskload_ps:
3127 case Intrinsic::x86_avx_maskload_pd:
3128 case Intrinsic::x86_avx_maskload_ps_256:
3129 case Intrinsic::x86_avx_maskload_pd_256:
3130 case Intrinsic::x86_avx2_maskload_d:
3131 case Intrinsic::x86_avx2_maskload_q:
3132 case Intrinsic::x86_avx2_maskload_d_256:
3133 case Intrinsic::x86_avx2_maskload_q_256:
3134 if (Instruction *I = simplifyX86MaskedLoad(*II, *this))
3135 return I;
3136 break;
3138 case Intrinsic::x86_sse2_maskmov_dqu:
3139 case Intrinsic::x86_avx_maskstore_ps:
3140 case Intrinsic::x86_avx_maskstore_pd:
3141 case Intrinsic::x86_avx_maskstore_ps_256:
3142 case Intrinsic::x86_avx_maskstore_pd_256:
3143 case Intrinsic::x86_avx2_maskstore_d:
3144 case Intrinsic::x86_avx2_maskstore_q:
3145 case Intrinsic::x86_avx2_maskstore_d_256:
3146 case Intrinsic::x86_avx2_maskstore_q_256:
3147 if (simplifyX86MaskedStore(*II, *this))
3148 return nullptr;
3149 break;
3151 case Intrinsic::x86_addcarry_32:
3152 case Intrinsic::x86_addcarry_64:
3153 if (Value *V = simplifyX86addcarry(*II, Builder))
3154 return replaceInstUsesWith(*II, V);
3155 break;
3157 case Intrinsic::ppc_altivec_vperm:
3158 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
3159 // Note that ppc_altivec_vperm has a big-endian bias, so when creating
3160 // a vectorshuffle for little endian, we must undo the transformation
3161 // performed on vec_perm in altivec.h. That is, we must complement
3162 // the permutation mask with respect to 31 and reverse the order of
3163 // V1 and V2.
3164 if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
3165 assert(Mask->getType()->getVectorNumElements() == 16 &&
3166 "Bad type for intrinsic!");
3168 // Check that all of the elements are integer constants or undefs.
3169 bool AllEltsOk = true;
3170 for (unsigned i = 0; i != 16; ++i) {
3171 Constant *Elt = Mask->getAggregateElement(i);
3172 if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
3173 AllEltsOk = false;
3174 break;
3178 if (AllEltsOk) {
3179 // Cast the input vectors to byte vectors.
3180 Value *Op0 = Builder.CreateBitCast(II->getArgOperand(0),
3181 Mask->getType());
3182 Value *Op1 = Builder.CreateBitCast(II->getArgOperand(1),
3183 Mask->getType());
3184 Value *Result = UndefValue::get(Op0->getType());
3186 // Only extract each element once.
3187 Value *ExtractedElts[32];
3188 memset(ExtractedElts, 0, sizeof(ExtractedElts));
3190 for (unsigned i = 0; i != 16; ++i) {
3191 if (isa<UndefValue>(Mask->getAggregateElement(i)))
3192 continue;
3193 unsigned Idx =
3194 cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
3195 Idx &= 31; // Match the hardware behavior.
3196 if (DL.isLittleEndian())
3197 Idx = 31 - Idx;
3199 if (!ExtractedElts[Idx]) {
3200 Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
3201 Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
3202 ExtractedElts[Idx] =
3203 Builder.CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
3204 Builder.getInt32(Idx&15));
3207 // Insert this value into the result vector.
3208 Result = Builder.CreateInsertElement(Result, ExtractedElts[Idx],
3209 Builder.getInt32(i));
3211 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
3214 break;
3216 case Intrinsic::arm_neon_vld1: {
3217 unsigned MemAlign = getKnownAlignment(II->getArgOperand(0),
3218 DL, II, &AC, &DT);
3219 if (Value *V = simplifyNeonVld1(*II, MemAlign, Builder))
3220 return replaceInstUsesWith(*II, V);
3221 break;
3224 case Intrinsic::arm_neon_vld2:
3225 case Intrinsic::arm_neon_vld3:
3226 case Intrinsic::arm_neon_vld4:
3227 case Intrinsic::arm_neon_vld2lane:
3228 case Intrinsic::arm_neon_vld3lane:
3229 case Intrinsic::arm_neon_vld4lane:
3230 case Intrinsic::arm_neon_vst1:
3231 case Intrinsic::arm_neon_vst2:
3232 case Intrinsic::arm_neon_vst3:
3233 case Intrinsic::arm_neon_vst4:
3234 case Intrinsic::arm_neon_vst2lane:
3235 case Intrinsic::arm_neon_vst3lane:
3236 case Intrinsic::arm_neon_vst4lane: {
3237 unsigned MemAlign =
3238 getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
3239 unsigned AlignArg = II->getNumArgOperands() - 1;
3240 ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
3241 if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
3242 II->setArgOperand(AlignArg,
3243 ConstantInt::get(Type::getInt32Ty(II->getContext()),
3244 MemAlign, false));
3245 return II;
3247 break;
3250 case Intrinsic::arm_neon_vtbl1:
3251 case Intrinsic::aarch64_neon_tbl1:
3252 if (Value *V = simplifyNeonTbl1(*II, Builder))
3253 return replaceInstUsesWith(*II, V);
3254 break;
3256 case Intrinsic::arm_neon_vmulls:
3257 case Intrinsic::arm_neon_vmullu:
3258 case Intrinsic::aarch64_neon_smull:
3259 case Intrinsic::aarch64_neon_umull: {
3260 Value *Arg0 = II->getArgOperand(0);
3261 Value *Arg1 = II->getArgOperand(1);
3263 // Handle mul by zero first:
3264 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
3265 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
3268 // Check for constant LHS & RHS - in this case we just simplify.
3269 bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
3270 IID == Intrinsic::aarch64_neon_umull);
3271 VectorType *NewVT = cast<VectorType>(II->getType());
3272 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
3273 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
3274 CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
3275 CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
3277 return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
3280 // Couldn't simplify - canonicalize constant to the RHS.
3281 std::swap(Arg0, Arg1);
3284 // Handle mul by one:
3285 if (Constant *CV1 = dyn_cast<Constant>(Arg1))
3286 if (ConstantInt *Splat =
3287 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
3288 if (Splat->isOne())
3289 return CastInst::CreateIntegerCast(Arg0, II->getType(),
3290 /*isSigned=*/!Zext);
3292 break;
3294 case Intrinsic::arm_neon_aesd:
3295 case Intrinsic::arm_neon_aese:
3296 case Intrinsic::aarch64_crypto_aesd:
3297 case Intrinsic::aarch64_crypto_aese: {
3298 Value *DataArg = II->getArgOperand(0);
3299 Value *KeyArg = II->getArgOperand(1);
3301 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
3302 Value *Data, *Key;
3303 if (match(KeyArg, m_ZeroInt()) &&
3304 match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
3305 II->setArgOperand(0, Data);
3306 II->setArgOperand(1, Key);
3307 return II;
3309 break;
3311 case Intrinsic::amdgcn_rcp: {
3312 Value *Src = II->getArgOperand(0);
3314 // TODO: Move to ConstantFolding/InstSimplify?
3315 if (isa<UndefValue>(Src))
3316 return replaceInstUsesWith(CI, Src);
3318 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
3319 const APFloat &ArgVal = C->getValueAPF();
3320 APFloat Val(ArgVal.getSemantics(), 1.0);
3321 APFloat::opStatus Status = Val.divide(ArgVal,
3322 APFloat::rmNearestTiesToEven);
3323 // Only do this if it was exact and therefore not dependent on the
3324 // rounding mode.
3325 if (Status == APFloat::opOK)
3326 return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
3329 break;
3331 case Intrinsic::amdgcn_rsq: {
3332 Value *Src = II->getArgOperand(0);
3334 // TODO: Move to ConstantFolding/InstSimplify?
3335 if (isa<UndefValue>(Src))
3336 return replaceInstUsesWith(CI, Src);
3337 break;
3339 case Intrinsic::amdgcn_frexp_mant:
3340 case Intrinsic::amdgcn_frexp_exp: {
3341 Value *Src = II->getArgOperand(0);
3342 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
3343 int Exp;
3344 APFloat Significand = frexp(C->getValueAPF(), Exp,
3345 APFloat::rmNearestTiesToEven);
3347 if (IID == Intrinsic::amdgcn_frexp_mant) {
3348 return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(),
3349 Significand));
3352 // Match instruction special case behavior.
3353 if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
3354 Exp = 0;
3356 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp));
3359 if (isa<UndefValue>(Src))
3360 return replaceInstUsesWith(CI, UndefValue::get(II->getType()));
3362 break;
3364 case Intrinsic::amdgcn_class: {
3365 enum {
3366 S_NAN = 1 << 0, // Signaling NaN
3367 Q_NAN = 1 << 1, // Quiet NaN
3368 N_INFINITY = 1 << 2, // Negative infinity
3369 N_NORMAL = 1 << 3, // Negative normal
3370 N_SUBNORMAL = 1 << 4, // Negative subnormal
3371 N_ZERO = 1 << 5, // Negative zero
3372 P_ZERO = 1 << 6, // Positive zero
3373 P_SUBNORMAL = 1 << 7, // Positive subnormal
3374 P_NORMAL = 1 << 8, // Positive normal
3375 P_INFINITY = 1 << 9 // Positive infinity
3378 const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL |
3379 N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY;
3381 Value *Src0 = II->getArgOperand(0);
3382 Value *Src1 = II->getArgOperand(1);
3383 const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1);
3384 if (!CMask) {
3385 if (isa<UndefValue>(Src0))
3386 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3388 if (isa<UndefValue>(Src1))
3389 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
3390 break;
3393 uint32_t Mask = CMask->getZExtValue();
3395 // If all tests are made, it doesn't matter what the value is.
3396 if ((Mask & FullMask) == FullMask)
3397 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true));
3399 if ((Mask & FullMask) == 0)
3400 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
3402 if (Mask == (S_NAN | Q_NAN)) {
3403 // Equivalent of isnan. Replace with standard fcmp.
3404 Value *FCmp = Builder.CreateFCmpUNO(Src0, Src0);
3405 FCmp->takeName(II);
3406 return replaceInstUsesWith(*II, FCmp);
3409 if (Mask == (N_ZERO | P_ZERO)) {
3410 // Equivalent of == 0.
3411 Value *FCmp = Builder.CreateFCmpOEQ(
3412 Src0, ConstantFP::get(Src0->getType(), 0.0));
3414 FCmp->takeName(II);
3415 return replaceInstUsesWith(*II, FCmp);
3418 // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
3419 if (((Mask & S_NAN) || (Mask & Q_NAN)) && isKnownNeverNaN(Src0, &TLI)) {
3420 II->setArgOperand(1, ConstantInt::get(Src1->getType(),
3421 Mask & ~(S_NAN | Q_NAN)));
3422 return II;
3425 const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0);
3426 if (!CVal) {
3427 if (isa<UndefValue>(Src0))
3428 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3430 // Clamp mask to used bits
3431 if ((Mask & FullMask) != Mask) {
3432 CallInst *NewCall = Builder.CreateCall(II->getCalledFunction(),
3433 { Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) }
3436 NewCall->takeName(II);
3437 return replaceInstUsesWith(*II, NewCall);
3440 break;
3443 const APFloat &Val = CVal->getValueAPF();
3445 bool Result =
3446 ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) ||
3447 ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) ||
3448 ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) ||
3449 ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) ||
3450 ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) ||
3451 ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) ||
3452 ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) ||
3453 ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) ||
3454 ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) ||
3455 ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative());
3457 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result));
3459 case Intrinsic::amdgcn_cvt_pkrtz: {
3460 Value *Src0 = II->getArgOperand(0);
3461 Value *Src1 = II->getArgOperand(1);
3462 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
3463 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
3464 const fltSemantics &HalfSem
3465 = II->getType()->getScalarType()->getFltSemantics();
3466 bool LosesInfo;
3467 APFloat Val0 = C0->getValueAPF();
3468 APFloat Val1 = C1->getValueAPF();
3469 Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
3470 Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
3472 Constant *Folded = ConstantVector::get({
3473 ConstantFP::get(II->getContext(), Val0),
3474 ConstantFP::get(II->getContext(), Val1) });
3475 return replaceInstUsesWith(*II, Folded);
3479 if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
3480 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3482 break;
3484 case Intrinsic::amdgcn_cvt_pknorm_i16:
3485 case Intrinsic::amdgcn_cvt_pknorm_u16:
3486 case Intrinsic::amdgcn_cvt_pk_i16:
3487 case Intrinsic::amdgcn_cvt_pk_u16: {
3488 Value *Src0 = II->getArgOperand(0);
3489 Value *Src1 = II->getArgOperand(1);
3491 if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
3492 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3494 break;
3496 case Intrinsic::amdgcn_ubfe:
3497 case Intrinsic::amdgcn_sbfe: {
3498 // Decompose simple cases into standard shifts.
3499 Value *Src = II->getArgOperand(0);
3500 if (isa<UndefValue>(Src))
3501 return replaceInstUsesWith(*II, Src);
3503 unsigned Width;
3504 Type *Ty = II->getType();
3505 unsigned IntSize = Ty->getIntegerBitWidth();
3507 ConstantInt *CWidth = dyn_cast<ConstantInt>(II->getArgOperand(2));
3508 if (CWidth) {
3509 Width = CWidth->getZExtValue();
3510 if ((Width & (IntSize - 1)) == 0)
3511 return replaceInstUsesWith(*II, ConstantInt::getNullValue(Ty));
3513 if (Width >= IntSize) {
3514 // Hardware ignores high bits, so remove those.
3515 II->setArgOperand(2, ConstantInt::get(CWidth->getType(),
3516 Width & (IntSize - 1)));
3517 return II;
3521 unsigned Offset;
3522 ConstantInt *COffset = dyn_cast<ConstantInt>(II->getArgOperand(1));
3523 if (COffset) {
3524 Offset = COffset->getZExtValue();
3525 if (Offset >= IntSize) {
3526 II->setArgOperand(1, ConstantInt::get(COffset->getType(),
3527 Offset & (IntSize - 1)));
3528 return II;
3532 bool Signed = IID == Intrinsic::amdgcn_sbfe;
3534 if (!CWidth || !COffset)
3535 break;
3537 // The case of Width == 0 is handled above, which makes this tranformation
3538 // safe. If Width == 0, then the ashr and lshr instructions become poison
3539 // value since the shift amount would be equal to the bit size.
3540 assert(Width != 0);
3542 // TODO: This allows folding to undef when the hardware has specific
3543 // behavior?
3544 if (Offset + Width < IntSize) {
3545 Value *Shl = Builder.CreateShl(Src, IntSize - Offset - Width);
3546 Value *RightShift = Signed ? Builder.CreateAShr(Shl, IntSize - Width)
3547 : Builder.CreateLShr(Shl, IntSize - Width);
3548 RightShift->takeName(II);
3549 return replaceInstUsesWith(*II, RightShift);
3552 Value *RightShift = Signed ? Builder.CreateAShr(Src, Offset)
3553 : Builder.CreateLShr(Src, Offset);
3555 RightShift->takeName(II);
3556 return replaceInstUsesWith(*II, RightShift);
3558 case Intrinsic::amdgcn_exp:
3559 case Intrinsic::amdgcn_exp_compr: {
3560 ConstantInt *En = cast<ConstantInt>(II->getArgOperand(1));
3561 unsigned EnBits = En->getZExtValue();
3562 if (EnBits == 0xf)
3563 break; // All inputs enabled.
3565 bool IsCompr = IID == Intrinsic::amdgcn_exp_compr;
3566 bool Changed = false;
3567 for (int I = 0; I < (IsCompr ? 2 : 4); ++I) {
3568 if ((!IsCompr && (EnBits & (1 << I)) == 0) ||
3569 (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) {
3570 Value *Src = II->getArgOperand(I + 2);
3571 if (!isa<UndefValue>(Src)) {
3572 II->setArgOperand(I + 2, UndefValue::get(Src->getType()));
3573 Changed = true;
3578 if (Changed)
3579 return II;
3581 break;
3583 case Intrinsic::amdgcn_fmed3: {
3584 // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
3585 // for the shader.
3587 Value *Src0 = II->getArgOperand(0);
3588 Value *Src1 = II->getArgOperand(1);
3589 Value *Src2 = II->getArgOperand(2);
3591 // Checking for NaN before canonicalization provides better fidelity when
3592 // mapping other operations onto fmed3 since the order of operands is
3593 // unchanged.
3594 CallInst *NewCall = nullptr;
3595 if (match(Src0, m_NaN()) || isa<UndefValue>(Src0)) {
3596 NewCall = Builder.CreateMinNum(Src1, Src2);
3597 } else if (match(Src1, m_NaN()) || isa<UndefValue>(Src1)) {
3598 NewCall = Builder.CreateMinNum(Src0, Src2);
3599 } else if (match(Src2, m_NaN()) || isa<UndefValue>(Src2)) {
3600 NewCall = Builder.CreateMaxNum(Src0, Src1);
3603 if (NewCall) {
3604 NewCall->copyFastMathFlags(II);
3605 NewCall->takeName(II);
3606 return replaceInstUsesWith(*II, NewCall);
3609 bool Swap = false;
3610 // Canonicalize constants to RHS operands.
3612 // fmed3(c0, x, c1) -> fmed3(x, c0, c1)
3613 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
3614 std::swap(Src0, Src1);
3615 Swap = true;
3618 if (isa<Constant>(Src1) && !isa<Constant>(Src2)) {
3619 std::swap(Src1, Src2);
3620 Swap = true;
3623 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
3624 std::swap(Src0, Src1);
3625 Swap = true;
3628 if (Swap) {
3629 II->setArgOperand(0, Src0);
3630 II->setArgOperand(1, Src1);
3631 II->setArgOperand(2, Src2);
3632 return II;
3635 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
3636 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
3637 if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) {
3638 APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(),
3639 C2->getValueAPF());
3640 return replaceInstUsesWith(*II,
3641 ConstantFP::get(Builder.getContext(), Result));
3646 break;
3648 case Intrinsic::amdgcn_icmp:
3649 case Intrinsic::amdgcn_fcmp: {
3650 const ConstantInt *CC = cast<ConstantInt>(II->getArgOperand(2));
3651 // Guard against invalid arguments.
3652 int64_t CCVal = CC->getZExtValue();
3653 bool IsInteger = IID == Intrinsic::amdgcn_icmp;
3654 if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE ||
3655 CCVal > CmpInst::LAST_ICMP_PREDICATE)) ||
3656 (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE ||
3657 CCVal > CmpInst::LAST_FCMP_PREDICATE)))
3658 break;
3660 Value *Src0 = II->getArgOperand(0);
3661 Value *Src1 = II->getArgOperand(1);
3663 if (auto *CSrc0 = dyn_cast<Constant>(Src0)) {
3664 if (auto *CSrc1 = dyn_cast<Constant>(Src1)) {
3665 Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1);
3666 if (CCmp->isNullValue()) {
3667 return replaceInstUsesWith(
3668 *II, ConstantExpr::getSExt(CCmp, II->getType()));
3671 // The result of V_ICMP/V_FCMP assembly instructions (which this
3672 // intrinsic exposes) is one bit per thread, masked with the EXEC
3673 // register (which contains the bitmask of live threads). So a
3674 // comparison that always returns true is the same as a read of the
3675 // EXEC register.
3676 Function *NewF = Intrinsic::getDeclaration(
3677 II->getModule(), Intrinsic::read_register, II->getType());
3678 Metadata *MDArgs[] = {MDString::get(II->getContext(), "exec")};
3679 MDNode *MD = MDNode::get(II->getContext(), MDArgs);
3680 Value *Args[] = {MetadataAsValue::get(II->getContext(), MD)};
3681 CallInst *NewCall = Builder.CreateCall(NewF, Args);
3682 NewCall->addAttribute(AttributeList::FunctionIndex,
3683 Attribute::Convergent);
3684 NewCall->takeName(II);
3685 return replaceInstUsesWith(*II, NewCall);
3688 // Canonicalize constants to RHS.
3689 CmpInst::Predicate SwapPred
3690 = CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal));
3691 II->setArgOperand(0, Src1);
3692 II->setArgOperand(1, Src0);
3693 II->setArgOperand(2, ConstantInt::get(CC->getType(),
3694 static_cast<int>(SwapPred)));
3695 return II;
3698 if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE)
3699 break;
3701 // Canonicalize compare eq with true value to compare != 0
3702 // llvm.amdgcn.icmp(zext (i1 x), 1, eq)
3703 // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne)
3704 // llvm.amdgcn.icmp(sext (i1 x), -1, eq)
3705 // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne)
3706 Value *ExtSrc;
3707 if (CCVal == CmpInst::ICMP_EQ &&
3708 ((match(Src1, m_One()) && match(Src0, m_ZExt(m_Value(ExtSrc)))) ||
3709 (match(Src1, m_AllOnes()) && match(Src0, m_SExt(m_Value(ExtSrc))))) &&
3710 ExtSrc->getType()->isIntegerTy(1)) {
3711 II->setArgOperand(1, ConstantInt::getNullValue(Src1->getType()));
3712 II->setArgOperand(2, ConstantInt::get(CC->getType(), CmpInst::ICMP_NE));
3713 return II;
3716 CmpInst::Predicate SrcPred;
3717 Value *SrcLHS;
3718 Value *SrcRHS;
3720 // Fold compare eq/ne with 0 from a compare result as the predicate to the
3721 // intrinsic. The typical use is a wave vote function in the library, which
3722 // will be fed from a user code condition compared with 0. Fold in the
3723 // redundant compare.
3725 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne)
3726 // -> llvm.amdgcn.[if]cmp(a, b, pred)
3728 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq)
3729 // -> llvm.amdgcn.[if]cmp(a, b, inv pred)
3730 if (match(Src1, m_Zero()) &&
3731 match(Src0,
3732 m_ZExtOrSExt(m_Cmp(SrcPred, m_Value(SrcLHS), m_Value(SrcRHS))))) {
3733 if (CCVal == CmpInst::ICMP_EQ)
3734 SrcPred = CmpInst::getInversePredicate(SrcPred);
3736 Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) ?
3737 Intrinsic::amdgcn_fcmp : Intrinsic::amdgcn_icmp;
3739 Type *Ty = SrcLHS->getType();
3740 if (auto *CmpType = dyn_cast<IntegerType>(Ty)) {
3741 // Promote to next legal integer type.
3742 unsigned Width = CmpType->getBitWidth();
3743 unsigned NewWidth = Width;
3745 // Don't do anything for i1 comparisons.
3746 if (Width == 1)
3747 break;
3749 if (Width <= 16)
3750 NewWidth = 16;
3751 else if (Width <= 32)
3752 NewWidth = 32;
3753 else if (Width <= 64)
3754 NewWidth = 64;
3755 else if (Width > 64)
3756 break; // Can't handle this.
3758 if (Width != NewWidth) {
3759 IntegerType *CmpTy = Builder.getIntNTy(NewWidth);
3760 if (CmpInst::isSigned(SrcPred)) {
3761 SrcLHS = Builder.CreateSExt(SrcLHS, CmpTy);
3762 SrcRHS = Builder.CreateSExt(SrcRHS, CmpTy);
3763 } else {
3764 SrcLHS = Builder.CreateZExt(SrcLHS, CmpTy);
3765 SrcRHS = Builder.CreateZExt(SrcRHS, CmpTy);
3768 } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy())
3769 break;
3771 Function *NewF =
3772 Intrinsic::getDeclaration(II->getModule(), NewIID,
3773 { II->getType(),
3774 SrcLHS->getType() });
3775 Value *Args[] = { SrcLHS, SrcRHS,
3776 ConstantInt::get(CC->getType(), SrcPred) };
3777 CallInst *NewCall = Builder.CreateCall(NewF, Args);
3778 NewCall->takeName(II);
3779 return replaceInstUsesWith(*II, NewCall);
3782 break;
3784 case Intrinsic::amdgcn_wqm_vote: {
3785 // wqm_vote is identity when the argument is constant.
3786 if (!isa<Constant>(II->getArgOperand(0)))
3787 break;
3789 return replaceInstUsesWith(*II, II->getArgOperand(0));
3791 case Intrinsic::amdgcn_kill: {
3792 const ConstantInt *C = dyn_cast<ConstantInt>(II->getArgOperand(0));
3793 if (!C || !C->getZExtValue())
3794 break;
3796 // amdgcn.kill(i1 1) is a no-op
3797 return eraseInstFromFunction(CI);
3799 case Intrinsic::amdgcn_update_dpp: {
3800 Value *Old = II->getArgOperand(0);
3802 auto BC = cast<ConstantInt>(II->getArgOperand(5));
3803 auto RM = cast<ConstantInt>(II->getArgOperand(3));
3804 auto BM = cast<ConstantInt>(II->getArgOperand(4));
3805 if (BC->isZeroValue() ||
3806 RM->getZExtValue() != 0xF ||
3807 BM->getZExtValue() != 0xF ||
3808 isa<UndefValue>(Old))
3809 break;
3811 // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value.
3812 II->setOperand(0, UndefValue::get(Old->getType()));
3813 return II;
3815 case Intrinsic::amdgcn_readfirstlane:
3816 case Intrinsic::amdgcn_readlane: {
3817 // A constant value is trivially uniform.
3818 if (Constant *C = dyn_cast<Constant>(II->getArgOperand(0)))
3819 return replaceInstUsesWith(*II, C);
3821 // The rest of these may not be safe if the exec may not be the same between
3822 // the def and use.
3823 Value *Src = II->getArgOperand(0);
3824 Instruction *SrcInst = dyn_cast<Instruction>(Src);
3825 if (SrcInst && SrcInst->getParent() != II->getParent())
3826 break;
3828 // readfirstlane (readfirstlane x) -> readfirstlane x
3829 // readlane (readfirstlane x), y -> readfirstlane x
3830 if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readfirstlane>()))
3831 return replaceInstUsesWith(*II, Src);
3833 if (IID == Intrinsic::amdgcn_readfirstlane) {
3834 // readfirstlane (readlane x, y) -> readlane x, y
3835 if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readlane>()))
3836 return replaceInstUsesWith(*II, Src);
3837 } else {
3838 // readlane (readlane x, y), y -> readlane x, y
3839 if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readlane>(
3840 m_Value(), m_Specific(II->getArgOperand(1)))))
3841 return replaceInstUsesWith(*II, Src);
3844 break;
3846 case Intrinsic::stackrestore: {
3847 // If the save is right next to the restore, remove the restore. This can
3848 // happen when variable allocas are DCE'd.
3849 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
3850 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
3851 // Skip over debug info.
3852 if (SS->getNextNonDebugInstruction() == II) {
3853 return eraseInstFromFunction(CI);
3858 // Scan down this block to see if there is another stack restore in the
3859 // same block without an intervening call/alloca.
3860 BasicBlock::iterator BI(II);
3861 Instruction *TI = II->getParent()->getTerminator();
3862 bool CannotRemove = false;
3863 for (++BI; &*BI != TI; ++BI) {
3864 if (isa<AllocaInst>(BI)) {
3865 CannotRemove = true;
3866 break;
3868 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
3869 if (auto *II2 = dyn_cast<IntrinsicInst>(BCI)) {
3870 // If there is a stackrestore below this one, remove this one.
3871 if (II2->getIntrinsicID() == Intrinsic::stackrestore)
3872 return eraseInstFromFunction(CI);
3874 // Bail if we cross over an intrinsic with side effects, such as
3875 // llvm.stacksave, llvm.read_register, or llvm.setjmp.
3876 if (II2->mayHaveSideEffects()) {
3877 CannotRemove = true;
3878 break;
3880 } else {
3881 // If we found a non-intrinsic call, we can't remove the stack
3882 // restore.
3883 CannotRemove = true;
3884 break;
3889 // If the stack restore is in a return, resume, or unwind block and if there
3890 // are no allocas or calls between the restore and the return, nuke the
3891 // restore.
3892 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
3893 return eraseInstFromFunction(CI);
3894 break;
3896 case Intrinsic::lifetime_start:
3897 // Asan needs to poison memory to detect invalid access which is possible
3898 // even for empty lifetime range.
3899 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3900 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
3901 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3902 break;
3904 if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start,
3905 Intrinsic::lifetime_end, *this))
3906 return nullptr;
3907 break;
3908 case Intrinsic::assume: {
3909 Value *IIOperand = II->getArgOperand(0);
3910 // Remove an assume if it is followed by an identical assume.
3911 // TODO: Do we need this? Unless there are conflicting assumptions, the
3912 // computeKnownBits(IIOperand) below here eliminates redundant assumes.
3913 Instruction *Next = II->getNextNonDebugInstruction();
3914 if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
3915 return eraseInstFromFunction(CI);
3917 // Canonicalize assume(a && b) -> assume(a); assume(b);
3918 // Note: New assumption intrinsics created here are registered by
3919 // the InstCombineIRInserter object.
3920 FunctionType *AssumeIntrinsicTy = II->getFunctionType();
3921 Value *AssumeIntrinsic = II->getCalledValue();
3922 Value *A, *B;
3923 if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
3924 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, II->getName());
3925 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
3926 return eraseInstFromFunction(*II);
3928 // assume(!(a || b)) -> assume(!a); assume(!b);
3929 if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
3930 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3931 Builder.CreateNot(A), II->getName());
3932 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3933 Builder.CreateNot(B), II->getName());
3934 return eraseInstFromFunction(*II);
3937 // assume( (load addr) != null ) -> add 'nonnull' metadata to load
3938 // (if assume is valid at the load)
3939 CmpInst::Predicate Pred;
3940 Instruction *LHS;
3941 if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
3942 Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
3943 LHS->getType()->isPointerTy() &&
3944 isValidAssumeForContext(II, LHS, &DT)) {
3945 MDNode *MD = MDNode::get(II->getContext(), None);
3946 LHS->setMetadata(LLVMContext::MD_nonnull, MD);
3947 return eraseInstFromFunction(*II);
3949 // TODO: apply nonnull return attributes to calls and invokes
3950 // TODO: apply range metadata for range check patterns?
3953 // If there is a dominating assume with the same condition as this one,
3954 // then this one is redundant, and should be removed.
3955 KnownBits Known(1);
3956 computeKnownBits(IIOperand, Known, 0, II);
3957 if (Known.isAllOnes())
3958 return eraseInstFromFunction(*II);
3960 // Update the cache of affected values for this assumption (we might be
3961 // here because we just simplified the condition).
3962 AC.updateAffectedValues(II);
3963 break;
3965 case Intrinsic::experimental_gc_relocate: {
3966 auto &GCR = *cast<GCRelocateInst>(II);
3968 // If we have two copies of the same pointer in the statepoint argument
3969 // list, canonicalize to one. This may let us common gc.relocates.
3970 if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
3971 GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
3972 auto *OpIntTy = GCR.getOperand(2)->getType();
3973 II->setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
3974 return II;
3977 // Translate facts known about a pointer before relocating into
3978 // facts about the relocate value, while being careful to
3979 // preserve relocation semantics.
3980 Value *DerivedPtr = GCR.getDerivedPtr();
3982 // Remove the relocation if unused, note that this check is required
3983 // to prevent the cases below from looping forever.
3984 if (II->use_empty())
3985 return eraseInstFromFunction(*II);
3987 // Undef is undef, even after relocation.
3988 // TODO: provide a hook for this in GCStrategy. This is clearly legal for
3989 // most practical collectors, but there was discussion in the review thread
3990 // about whether it was legal for all possible collectors.
3991 if (isa<UndefValue>(DerivedPtr))
3992 // Use undef of gc_relocate's type to replace it.
3993 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3995 if (auto *PT = dyn_cast<PointerType>(II->getType())) {
3996 // The relocation of null will be null for most any collector.
3997 // TODO: provide a hook for this in GCStrategy. There might be some
3998 // weird collector this property does not hold for.
3999 if (isa<ConstantPointerNull>(DerivedPtr))
4000 // Use null-pointer of gc_relocate's type to replace it.
4001 return replaceInstUsesWith(*II, ConstantPointerNull::get(PT));
4003 // isKnownNonNull -> nonnull attribute
4004 if (!II->hasRetAttr(Attribute::NonNull) &&
4005 isKnownNonZero(DerivedPtr, DL, 0, &AC, II, &DT)) {
4006 II->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
4007 return II;
4011 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
4012 // Canonicalize on the type from the uses to the defs
4014 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
4015 break;
4018 case Intrinsic::experimental_guard: {
4019 // Is this guard followed by another guard? We scan forward over a small
4020 // fixed window of instructions to handle common cases with conditions
4021 // computed between guards.
4022 Instruction *NextInst = II->getNextNode();
4023 for (unsigned i = 0; i < GuardWideningWindow; i++) {
4024 // Note: Using context-free form to avoid compile time blow up
4025 if (!isSafeToSpeculativelyExecute(NextInst))
4026 break;
4027 NextInst = NextInst->getNextNode();
4029 Value *NextCond = nullptr;
4030 if (match(NextInst,
4031 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
4032 Value *CurrCond = II->getArgOperand(0);
4034 // Remove a guard that it is immediately preceded by an identical guard.
4035 if (CurrCond == NextCond)
4036 return eraseInstFromFunction(*NextInst);
4038 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
4039 Instruction* MoveI = II->getNextNode();
4040 while (MoveI != NextInst) {
4041 auto *Temp = MoveI;
4042 MoveI = MoveI->getNextNode();
4043 Temp->moveBefore(II);
4045 II->setArgOperand(0, Builder.CreateAnd(CurrCond, NextCond));
4046 return eraseInstFromFunction(*NextInst);
4048 break;
4051 return visitCallBase(*II);
4054 // Fence instruction simplification
4055 Instruction *InstCombiner::visitFenceInst(FenceInst &FI) {
4056 // Remove identical consecutive fences.
4057 Instruction *Next = FI.getNextNonDebugInstruction();
4058 if (auto *NFI = dyn_cast<FenceInst>(Next))
4059 if (FI.isIdenticalTo(NFI))
4060 return eraseInstFromFunction(FI);
4061 return nullptr;
4064 // InvokeInst simplification
4065 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
4066 return visitCallBase(II);
4069 // CallBrInst simplification
4070 Instruction *InstCombiner::visitCallBrInst(CallBrInst &CBI) {
4071 return visitCallBase(CBI);
4074 /// If this cast does not affect the value passed through the varargs area, we
4075 /// can eliminate the use of the cast.
4076 static bool isSafeToEliminateVarargsCast(const CallBase &Call,
4077 const DataLayout &DL,
4078 const CastInst *const CI,
4079 const int ix) {
4080 if (!CI->isLosslessCast())
4081 return false;
4083 // If this is a GC intrinsic, avoid munging types. We need types for
4084 // statepoint reconstruction in SelectionDAG.
4085 // TODO: This is probably something which should be expanded to all
4086 // intrinsics since the entire point of intrinsics is that
4087 // they are understandable by the optimizer.
4088 if (isStatepoint(&Call) || isGCRelocate(&Call) || isGCResult(&Call))
4089 return false;
4091 // The size of ByVal or InAlloca arguments is derived from the type, so we
4092 // can't change to a type with a different size. If the size were
4093 // passed explicitly we could avoid this check.
4094 if (!Call.isByValOrInAllocaArgument(ix))
4095 return true;
4097 Type* SrcTy =
4098 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
4099 Type *DstTy = Call.isByValArgument(ix)
4100 ? Call.getParamByValType(ix)
4101 : cast<PointerType>(CI->getType())->getElementType();
4102 if (!SrcTy->isSized() || !DstTy->isSized())
4103 return false;
4104 if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
4105 return false;
4106 return true;
4109 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
4110 if (!CI->getCalledFunction()) return nullptr;
4112 auto InstCombineRAUW = [this](Instruction *From, Value *With) {
4113 replaceInstUsesWith(*From, With);
4115 auto InstCombineErase = [this](Instruction *I) {
4116 eraseInstFromFunction(*I);
4118 LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW,
4119 InstCombineErase);
4120 if (Value *With = Simplifier.optimizeCall(CI)) {
4121 ++NumSimplified;
4122 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
4125 return nullptr;
4128 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
4129 // Strip off at most one level of pointer casts, looking for an alloca. This
4130 // is good enough in practice and simpler than handling any number of casts.
4131 Value *Underlying = TrampMem->stripPointerCasts();
4132 if (Underlying != TrampMem &&
4133 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
4134 return nullptr;
4135 if (!isa<AllocaInst>(Underlying))
4136 return nullptr;
4138 IntrinsicInst *InitTrampoline = nullptr;
4139 for (User *U : TrampMem->users()) {
4140 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4141 if (!II)
4142 return nullptr;
4143 if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
4144 if (InitTrampoline)
4145 // More than one init_trampoline writes to this value. Give up.
4146 return nullptr;
4147 InitTrampoline = II;
4148 continue;
4150 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
4151 // Allow any number of calls to adjust.trampoline.
4152 continue;
4153 return nullptr;
4156 // No call to init.trampoline found.
4157 if (!InitTrampoline)
4158 return nullptr;
4160 // Check that the alloca is being used in the expected way.
4161 if (InitTrampoline->getOperand(0) != TrampMem)
4162 return nullptr;
4164 return InitTrampoline;
4167 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
4168 Value *TrampMem) {
4169 // Visit all the previous instructions in the basic block, and try to find a
4170 // init.trampoline which has a direct path to the adjust.trampoline.
4171 for (BasicBlock::iterator I = AdjustTramp->getIterator(),
4172 E = AdjustTramp->getParent()->begin();
4173 I != E;) {
4174 Instruction *Inst = &*--I;
4175 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
4176 if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
4177 II->getOperand(0) == TrampMem)
4178 return II;
4179 if (Inst->mayWriteToMemory())
4180 return nullptr;
4182 return nullptr;
4185 // Given a call to llvm.adjust.trampoline, find and return the corresponding
4186 // call to llvm.init.trampoline if the call to the trampoline can be optimized
4187 // to a direct call to a function. Otherwise return NULL.
4188 static IntrinsicInst *findInitTrampoline(Value *Callee) {
4189 Callee = Callee->stripPointerCasts();
4190 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
4191 if (!AdjustTramp ||
4192 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
4193 return nullptr;
4195 Value *TrampMem = AdjustTramp->getOperand(0);
4197 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
4198 return IT;
4199 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
4200 return IT;
4201 return nullptr;
4204 static void annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI) {
4205 unsigned NumArgs = Call.getNumArgOperands();
4206 ConstantInt *Op0C = dyn_cast<ConstantInt>(Call.getOperand(0));
4207 ConstantInt *Op1C =
4208 (NumArgs == 1) ? nullptr : dyn_cast<ConstantInt>(Call.getOperand(1));
4209 // Bail out if the allocation size is zero.
4210 if ((Op0C && Op0C->isNullValue()) || (Op1C && Op1C->isNullValue()))
4211 return;
4213 if (isMallocLikeFn(&Call, TLI) && Op0C) {
4214 if (isOpNewLikeFn(&Call, TLI))
4215 Call.addAttribute(AttributeList::ReturnIndex,
4216 Attribute::getWithDereferenceableBytes(
4217 Call.getContext(), Op0C->getZExtValue()));
4218 else
4219 Call.addAttribute(AttributeList::ReturnIndex,
4220 Attribute::getWithDereferenceableOrNullBytes(
4221 Call.getContext(), Op0C->getZExtValue()));
4222 } else if (isReallocLikeFn(&Call, TLI) && Op1C) {
4223 Call.addAttribute(AttributeList::ReturnIndex,
4224 Attribute::getWithDereferenceableOrNullBytes(
4225 Call.getContext(), Op1C->getZExtValue()));
4226 } else if (isCallocLikeFn(&Call, TLI) && Op0C && Op1C) {
4227 bool Overflow;
4228 const APInt &N = Op0C->getValue();
4229 APInt Size = N.umul_ov(Op1C->getValue(), Overflow);
4230 if (!Overflow)
4231 Call.addAttribute(AttributeList::ReturnIndex,
4232 Attribute::getWithDereferenceableOrNullBytes(
4233 Call.getContext(), Size.getZExtValue()));
4234 } else if (isStrdupLikeFn(&Call, TLI)) {
4235 uint64_t Len = GetStringLength(Call.getOperand(0));
4236 if (Len) {
4237 // strdup
4238 if (NumArgs == 1)
4239 Call.addAttribute(AttributeList::ReturnIndex,
4240 Attribute::getWithDereferenceableOrNullBytes(
4241 Call.getContext(), Len));
4242 // strndup
4243 else if (NumArgs == 2 && Op1C)
4244 Call.addAttribute(
4245 AttributeList::ReturnIndex,
4246 Attribute::getWithDereferenceableOrNullBytes(
4247 Call.getContext(), std::min(Len, Op1C->getZExtValue() + 1)));
4252 /// Improvements for call, callbr and invoke instructions.
4253 Instruction *InstCombiner::visitCallBase(CallBase &Call) {
4254 if (isAllocationFn(&Call, &TLI))
4255 annotateAnyAllocSite(Call, &TLI);
4257 bool Changed = false;
4259 // Mark any parameters that are known to be non-null with the nonnull
4260 // attribute. This is helpful for inlining calls to functions with null
4261 // checks on their arguments.
4262 SmallVector<unsigned, 4> ArgNos;
4263 unsigned ArgNo = 0;
4265 for (Value *V : Call.args()) {
4266 if (V->getType()->isPointerTy() &&
4267 !Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
4268 isKnownNonZero(V, DL, 0, &AC, &Call, &DT))
4269 ArgNos.push_back(ArgNo);
4270 ArgNo++;
4273 assert(ArgNo == Call.arg_size() && "sanity check");
4275 if (!ArgNos.empty()) {
4276 AttributeList AS = Call.getAttributes();
4277 LLVMContext &Ctx = Call.getContext();
4278 AS = AS.addParamAttribute(Ctx, ArgNos,
4279 Attribute::get(Ctx, Attribute::NonNull));
4280 Call.setAttributes(AS);
4281 Changed = true;
4284 // If the callee is a pointer to a function, attempt to move any casts to the
4285 // arguments of the call/callbr/invoke.
4286 Value *Callee = Call.getCalledValue();
4287 if (!isa<Function>(Callee) && transformConstExprCastCall(Call))
4288 return nullptr;
4290 if (Function *CalleeF = dyn_cast<Function>(Callee)) {
4291 // Remove the convergent attr on calls when the callee is not convergent.
4292 if (Call.isConvergent() && !CalleeF->isConvergent() &&
4293 !CalleeF->isIntrinsic()) {
4294 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
4295 << "\n");
4296 Call.setNotConvergent();
4297 return &Call;
4300 // If the call and callee calling conventions don't match, this call must
4301 // be unreachable, as the call is undefined.
4302 if (CalleeF->getCallingConv() != Call.getCallingConv() &&
4303 // Only do this for calls to a function with a body. A prototype may
4304 // not actually end up matching the implementation's calling conv for a
4305 // variety of reasons (e.g. it may be written in assembly).
4306 !CalleeF->isDeclaration()) {
4307 Instruction *OldCall = &Call;
4308 CreateNonTerminatorUnreachable(OldCall);
4309 // If OldCall does not return void then replaceAllUsesWith undef.
4310 // This allows ValueHandlers and custom metadata to adjust itself.
4311 if (!OldCall->getType()->isVoidTy())
4312 replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
4313 if (isa<CallInst>(OldCall))
4314 return eraseInstFromFunction(*OldCall);
4316 // We cannot remove an invoke or a callbr, because it would change thexi
4317 // CFG, just change the callee to a null pointer.
4318 cast<CallBase>(OldCall)->setCalledFunction(
4319 CalleeF->getFunctionType(),
4320 Constant::getNullValue(CalleeF->getType()));
4321 return nullptr;
4325 if ((isa<ConstantPointerNull>(Callee) &&
4326 !NullPointerIsDefined(Call.getFunction())) ||
4327 isa<UndefValue>(Callee)) {
4328 // If Call does not return void then replaceAllUsesWith undef.
4329 // This allows ValueHandlers and custom metadata to adjust itself.
4330 if (!Call.getType()->isVoidTy())
4331 replaceInstUsesWith(Call, UndefValue::get(Call.getType()));
4333 if (Call.isTerminator()) {
4334 // Can't remove an invoke or callbr because we cannot change the CFG.
4335 return nullptr;
4338 // This instruction is not reachable, just remove it.
4339 CreateNonTerminatorUnreachable(&Call);
4340 return eraseInstFromFunction(Call);
4343 if (IntrinsicInst *II = findInitTrampoline(Callee))
4344 return transformCallThroughTrampoline(Call, *II);
4346 PointerType *PTy = cast<PointerType>(Callee->getType());
4347 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
4348 if (FTy->isVarArg()) {
4349 int ix = FTy->getNumParams();
4350 // See if we can optimize any arguments passed through the varargs area of
4351 // the call.
4352 for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end();
4353 I != E; ++I, ++ix) {
4354 CastInst *CI = dyn_cast<CastInst>(*I);
4355 if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) {
4356 *I = CI->getOperand(0);
4358 // Update the byval type to match the argument type.
4359 if (Call.isByValArgument(ix)) {
4360 Call.removeParamAttr(ix, Attribute::ByVal);
4361 Call.addParamAttr(
4362 ix, Attribute::getWithByValType(
4363 Call.getContext(),
4364 CI->getOperand(0)->getType()->getPointerElementType()));
4366 Changed = true;
4371 if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
4372 // Inline asm calls cannot throw - mark them 'nounwind'.
4373 Call.setDoesNotThrow();
4374 Changed = true;
4377 // Try to optimize the call if possible, we require DataLayout for most of
4378 // this. None of these calls are seen as possibly dead so go ahead and
4379 // delete the instruction now.
4380 if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
4381 Instruction *I = tryOptimizeCall(CI);
4382 // If we changed something return the result, etc. Otherwise let
4383 // the fallthrough check.
4384 if (I) return eraseInstFromFunction(*I);
4387 if (isAllocLikeFn(&Call, &TLI))
4388 return visitAllocSite(Call);
4390 return Changed ? &Call : nullptr;
4393 /// If the callee is a constexpr cast of a function, attempt to move the cast to
4394 /// the arguments of the call/callbr/invoke.
4395 bool InstCombiner::transformConstExprCastCall(CallBase &Call) {
4396 auto *Callee = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts());
4397 if (!Callee)
4398 return false;
4400 // If this is a call to a thunk function, don't remove the cast. Thunks are
4401 // used to transparently forward all incoming parameters and outgoing return
4402 // values, so it's important to leave the cast in place.
4403 if (Callee->hasFnAttribute("thunk"))
4404 return false;
4406 // If this is a musttail call, the callee's prototype must match the caller's
4407 // prototype with the exception of pointee types. The code below doesn't
4408 // implement that, so we can't do this transform.
4409 // TODO: Do the transform if it only requires adding pointer casts.
4410 if (Call.isMustTailCall())
4411 return false;
4413 Instruction *Caller = &Call;
4414 const AttributeList &CallerPAL = Call.getAttributes();
4416 // Okay, this is a cast from a function to a different type. Unless doing so
4417 // would cause a type conversion of one of our arguments, change this call to
4418 // be a direct call with arguments casted to the appropriate types.
4419 FunctionType *FT = Callee->getFunctionType();
4420 Type *OldRetTy = Caller->getType();
4421 Type *NewRetTy = FT->getReturnType();
4423 // Check to see if we are changing the return type...
4424 if (OldRetTy != NewRetTy) {
4426 if (NewRetTy->isStructTy())
4427 return false; // TODO: Handle multiple return values.
4429 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
4430 if (Callee->isDeclaration())
4431 return false; // Cannot transform this return value.
4433 if (!Caller->use_empty() &&
4434 // void -> non-void is handled specially
4435 !NewRetTy->isVoidTy())
4436 return false; // Cannot transform this return value.
4439 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
4440 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
4441 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
4442 return false; // Attribute not compatible with transformed value.
4445 // If the callbase is an invoke/callbr instruction, and the return value is
4446 // used by a PHI node in a successor, we cannot change the return type of
4447 // the call because there is no place to put the cast instruction (without
4448 // breaking the critical edge). Bail out in this case.
4449 if (!Caller->use_empty()) {
4450 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
4451 for (User *U : II->users())
4452 if (PHINode *PN = dyn_cast<PHINode>(U))
4453 if (PN->getParent() == II->getNormalDest() ||
4454 PN->getParent() == II->getUnwindDest())
4455 return false;
4456 // FIXME: Be conservative for callbr to avoid a quadratic search.
4457 if (isa<CallBrInst>(Caller))
4458 return false;
4462 unsigned NumActualArgs = Call.arg_size();
4463 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
4465 // Prevent us turning:
4466 // declare void @takes_i32_inalloca(i32* inalloca)
4467 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
4469 // into:
4470 // call void @takes_i32_inalloca(i32* null)
4472 // Similarly, avoid folding away bitcasts of byval calls.
4473 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
4474 Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
4475 return false;
4477 auto AI = Call.arg_begin();
4478 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
4479 Type *ParamTy = FT->getParamType(i);
4480 Type *ActTy = (*AI)->getType();
4482 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
4483 return false; // Cannot transform this parameter value.
4485 if (AttrBuilder(CallerPAL.getParamAttributes(i))
4486 .overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
4487 return false; // Attribute not compatible with transformed value.
4489 if (Call.isInAllocaArgument(i))
4490 return false; // Cannot transform to and from inalloca.
4492 // If the parameter is passed as a byval argument, then we have to have a
4493 // sized type and the sized type has to have the same size as the old type.
4494 if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
4495 PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
4496 if (!ParamPTy || !ParamPTy->getElementType()->isSized())
4497 return false;
4499 Type *CurElTy = Call.getParamByValType(i);
4500 if (DL.getTypeAllocSize(CurElTy) !=
4501 DL.getTypeAllocSize(ParamPTy->getElementType()))
4502 return false;
4506 if (Callee->isDeclaration()) {
4507 // Do not delete arguments unless we have a function body.
4508 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
4509 return false;
4511 // If the callee is just a declaration, don't change the varargsness of the
4512 // call. We don't want to introduce a varargs call where one doesn't
4513 // already exist.
4514 PointerType *APTy = cast<PointerType>(Call.getCalledValue()->getType());
4515 if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
4516 return false;
4518 // If both the callee and the cast type are varargs, we still have to make
4519 // sure the number of fixed parameters are the same or we have the same
4520 // ABI issues as if we introduce a varargs call.
4521 if (FT->isVarArg() &&
4522 cast<FunctionType>(APTy->getElementType())->isVarArg() &&
4523 FT->getNumParams() !=
4524 cast<FunctionType>(APTy->getElementType())->getNumParams())
4525 return false;
4528 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
4529 !CallerPAL.isEmpty()) {
4530 // In this case we have more arguments than the new function type, but we
4531 // won't be dropping them. Check that these extra arguments have attributes
4532 // that are compatible with being a vararg call argument.
4533 unsigned SRetIdx;
4534 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
4535 SRetIdx > FT->getNumParams())
4536 return false;
4539 // Okay, we decided that this is a safe thing to do: go ahead and start
4540 // inserting cast instructions as necessary.
4541 SmallVector<Value *, 8> Args;
4542 SmallVector<AttributeSet, 8> ArgAttrs;
4543 Args.reserve(NumActualArgs);
4544 ArgAttrs.reserve(NumActualArgs);
4546 // Get any return attributes.
4547 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
4549 // If the return value is not being used, the type may not be compatible
4550 // with the existing attributes. Wipe out any problematic attributes.
4551 RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
4553 LLVMContext &Ctx = Call.getContext();
4554 AI = Call.arg_begin();
4555 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
4556 Type *ParamTy = FT->getParamType(i);
4558 Value *NewArg = *AI;
4559 if ((*AI)->getType() != ParamTy)
4560 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
4561 Args.push_back(NewArg);
4563 // Add any parameter attributes.
4564 if (CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
4565 AttrBuilder AB(CallerPAL.getParamAttributes(i));
4566 AB.addByValAttr(NewArg->getType()->getPointerElementType());
4567 ArgAttrs.push_back(AttributeSet::get(Ctx, AB));
4568 } else
4569 ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
4572 // If the function takes more arguments than the call was taking, add them
4573 // now.
4574 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
4575 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
4576 ArgAttrs.push_back(AttributeSet());
4579 // If we are removing arguments to the function, emit an obnoxious warning.
4580 if (FT->getNumParams() < NumActualArgs) {
4581 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
4582 if (FT->isVarArg()) {
4583 // Add all of the arguments in their promoted form to the arg list.
4584 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
4585 Type *PTy = getPromotedType((*AI)->getType());
4586 Value *NewArg = *AI;
4587 if (PTy != (*AI)->getType()) {
4588 // Must promote to pass through va_arg area!
4589 Instruction::CastOps opcode =
4590 CastInst::getCastOpcode(*AI, false, PTy, false);
4591 NewArg = Builder.CreateCast(opcode, *AI, PTy);
4593 Args.push_back(NewArg);
4595 // Add any parameter attributes.
4596 ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
4601 AttributeSet FnAttrs = CallerPAL.getFnAttributes();
4603 if (NewRetTy->isVoidTy())
4604 Caller->setName(""); // Void type should not have a name.
4606 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
4607 "missing argument attributes");
4608 AttributeList NewCallerPAL = AttributeList::get(
4609 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
4611 SmallVector<OperandBundleDef, 1> OpBundles;
4612 Call.getOperandBundlesAsDefs(OpBundles);
4614 CallBase *NewCall;
4615 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4616 NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
4617 II->getUnwindDest(), Args, OpBundles);
4618 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
4619 NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(),
4620 CBI->getIndirectDests(), Args, OpBundles);
4621 } else {
4622 NewCall = Builder.CreateCall(Callee, Args, OpBundles);
4623 cast<CallInst>(NewCall)->setTailCallKind(
4624 cast<CallInst>(Caller)->getTailCallKind());
4626 NewCall->takeName(Caller);
4627 NewCall->setCallingConv(Call.getCallingConv());
4628 NewCall->setAttributes(NewCallerPAL);
4630 // Preserve the weight metadata for the new call instruction. The metadata
4631 // is used by SamplePGO to check callsite's hotness.
4632 uint64_t W;
4633 if (Caller->extractProfTotalWeight(W))
4634 NewCall->setProfWeight(W);
4636 // Insert a cast of the return type as necessary.
4637 Instruction *NC = NewCall;
4638 Value *NV = NC;
4639 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
4640 if (!NV->getType()->isVoidTy()) {
4641 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
4642 NC->setDebugLoc(Caller->getDebugLoc());
4644 // If this is an invoke/callbr instruction, we should insert it after the
4645 // first non-phi instruction in the normal successor block.
4646 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4647 BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
4648 InsertNewInstBefore(NC, *I);
4649 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
4650 BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt();
4651 InsertNewInstBefore(NC, *I);
4652 } else {
4653 // Otherwise, it's a call, just insert cast right after the call.
4654 InsertNewInstBefore(NC, *Caller);
4656 Worklist.AddUsersToWorkList(*Caller);
4657 } else {
4658 NV = UndefValue::get(Caller->getType());
4662 if (!Caller->use_empty())
4663 replaceInstUsesWith(*Caller, NV);
4664 else if (Caller->hasValueHandle()) {
4665 if (OldRetTy == NV->getType())
4666 ValueHandleBase::ValueIsRAUWd(Caller, NV);
4667 else
4668 // We cannot call ValueIsRAUWd with a different type, and the
4669 // actual tracked value will disappear.
4670 ValueHandleBase::ValueIsDeleted(Caller);
4673 eraseInstFromFunction(*Caller);
4674 return true;
4677 /// Turn a call to a function created by init_trampoline / adjust_trampoline
4678 /// intrinsic pair into a direct call to the underlying function.
4679 Instruction *
4680 InstCombiner::transformCallThroughTrampoline(CallBase &Call,
4681 IntrinsicInst &Tramp) {
4682 Value *Callee = Call.getCalledValue();
4683 Type *CalleeTy = Callee->getType();
4684 FunctionType *FTy = Call.getFunctionType();
4685 AttributeList Attrs = Call.getAttributes();
4687 // If the call already has the 'nest' attribute somewhere then give up -
4688 // otherwise 'nest' would occur twice after splicing in the chain.
4689 if (Attrs.hasAttrSomewhere(Attribute::Nest))
4690 return nullptr;
4692 Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts());
4693 FunctionType *NestFTy = NestF->getFunctionType();
4695 AttributeList NestAttrs = NestF->getAttributes();
4696 if (!NestAttrs.isEmpty()) {
4697 unsigned NestArgNo = 0;
4698 Type *NestTy = nullptr;
4699 AttributeSet NestAttr;
4701 // Look for a parameter marked with the 'nest' attribute.
4702 for (FunctionType::param_iterator I = NestFTy->param_begin(),
4703 E = NestFTy->param_end();
4704 I != E; ++NestArgNo, ++I) {
4705 AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo);
4706 if (AS.hasAttribute(Attribute::Nest)) {
4707 // Record the parameter type and any other attributes.
4708 NestTy = *I;
4709 NestAttr = AS;
4710 break;
4714 if (NestTy) {
4715 std::vector<Value*> NewArgs;
4716 std::vector<AttributeSet> NewArgAttrs;
4717 NewArgs.reserve(Call.arg_size() + 1);
4718 NewArgAttrs.reserve(Call.arg_size());
4720 // Insert the nest argument into the call argument list, which may
4721 // mean appending it. Likewise for attributes.
4724 unsigned ArgNo = 0;
4725 auto I = Call.arg_begin(), E = Call.arg_end();
4726 do {
4727 if (ArgNo == NestArgNo) {
4728 // Add the chain argument and attributes.
4729 Value *NestVal = Tramp.getArgOperand(2);
4730 if (NestVal->getType() != NestTy)
4731 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
4732 NewArgs.push_back(NestVal);
4733 NewArgAttrs.push_back(NestAttr);
4736 if (I == E)
4737 break;
4739 // Add the original argument and attributes.
4740 NewArgs.push_back(*I);
4741 NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
4743 ++ArgNo;
4744 ++I;
4745 } while (true);
4748 // The trampoline may have been bitcast to a bogus type (FTy).
4749 // Handle this by synthesizing a new function type, equal to FTy
4750 // with the chain parameter inserted.
4752 std::vector<Type*> NewTypes;
4753 NewTypes.reserve(FTy->getNumParams()+1);
4755 // Insert the chain's type into the list of parameter types, which may
4756 // mean appending it.
4758 unsigned ArgNo = 0;
4759 FunctionType::param_iterator I = FTy->param_begin(),
4760 E = FTy->param_end();
4762 do {
4763 if (ArgNo == NestArgNo)
4764 // Add the chain's type.
4765 NewTypes.push_back(NestTy);
4767 if (I == E)
4768 break;
4770 // Add the original type.
4771 NewTypes.push_back(*I);
4773 ++ArgNo;
4774 ++I;
4775 } while (true);
4778 // Replace the trampoline call with a direct call. Let the generic
4779 // code sort out any function type mismatches.
4780 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
4781 FTy->isVarArg());
4782 Constant *NewCallee =
4783 NestF->getType() == PointerType::getUnqual(NewFTy) ?
4784 NestF : ConstantExpr::getBitCast(NestF,
4785 PointerType::getUnqual(NewFTy));
4786 AttributeList NewPAL =
4787 AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(),
4788 Attrs.getRetAttributes(), NewArgAttrs);
4790 SmallVector<OperandBundleDef, 1> OpBundles;
4791 Call.getOperandBundlesAsDefs(OpBundles);
4793 Instruction *NewCaller;
4794 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
4795 NewCaller = InvokeInst::Create(NewFTy, NewCallee,
4796 II->getNormalDest(), II->getUnwindDest(),
4797 NewArgs, OpBundles);
4798 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
4799 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
4800 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
4801 NewCaller =
4802 CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(),
4803 CBI->getIndirectDests(), NewArgs, OpBundles);
4804 cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
4805 cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
4806 } else {
4807 NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles);
4808 cast<CallInst>(NewCaller)->setTailCallKind(
4809 cast<CallInst>(Call).getTailCallKind());
4810 cast<CallInst>(NewCaller)->setCallingConv(
4811 cast<CallInst>(Call).getCallingConv());
4812 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
4814 NewCaller->setDebugLoc(Call.getDebugLoc());
4816 return NewCaller;
4820 // Replace the trampoline call with a direct call. Since there is no 'nest'
4821 // parameter, there is no need to adjust the argument list. Let the generic
4822 // code sort out any function type mismatches.
4823 Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy);
4824 Call.setCalledFunction(FTy, NewCallee);
4825 return &Call;