[MIPS GlobalISel] Select MSA vector generic and builtin add
[llvm-complete.git] / lib / Transforms / Utils / FunctionComparator.cpp
bloba9b28754c8e9c223e2f9bd957692db43e566818a
1 //===- FunctionComparator.h - Function Comparator -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the FunctionComparator and GlobalNumberState classes
10 // which are used by the MergeFunctions pass for comparing functions.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/FunctionComparator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CallSite.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InlineAsm.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include <cassert>
46 #include <cstddef>
47 #include <cstdint>
48 #include <utility>
50 using namespace llvm;
52 #define DEBUG_TYPE "functioncomparator"
54 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
55 if (L < R) return -1;
56 if (L > R) return 1;
57 return 0;
60 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
61 if ((int)L < (int)R) return -1;
62 if ((int)L > (int)R) return 1;
63 return 0;
66 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
67 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
68 return Res;
69 if (L.ugt(R)) return 1;
70 if (R.ugt(L)) return -1;
71 return 0;
74 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
75 // Floats are ordered first by semantics (i.e. float, double, half, etc.),
76 // then by value interpreted as a bitstring (aka APInt).
77 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
78 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
79 APFloat::semanticsPrecision(SR)))
80 return Res;
81 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
82 APFloat::semanticsMaxExponent(SR)))
83 return Res;
84 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
85 APFloat::semanticsMinExponent(SR)))
86 return Res;
87 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
88 APFloat::semanticsSizeInBits(SR)))
89 return Res;
90 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
93 int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
94 // Prevent heavy comparison, compare sizes first.
95 if (int Res = cmpNumbers(L.size(), R.size()))
96 return Res;
98 // Compare strings lexicographically only when it is necessary: only when
99 // strings are equal in size.
100 return L.compare(R);
103 int FunctionComparator::cmpAttrs(const AttributeList L,
104 const AttributeList R) const {
105 if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets()))
106 return Res;
108 for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) {
109 AttributeSet LAS = L.getAttributes(i);
110 AttributeSet RAS = R.getAttributes(i);
111 AttributeSet::iterator LI = LAS.begin(), LE = LAS.end();
112 AttributeSet::iterator RI = RAS.begin(), RE = RAS.end();
113 for (; LI != LE && RI != RE; ++LI, ++RI) {
114 Attribute LA = *LI;
115 Attribute RA = *RI;
116 if (LA.isTypeAttribute() && RA.isTypeAttribute()) {
117 if (LA.getKindAsEnum() != RA.getKindAsEnum())
118 return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum());
120 Type *TyL = LA.getValueAsType();
121 Type *TyR = RA.getValueAsType();
122 if (TyL && TyR)
123 return cmpTypes(TyL, TyR);
125 // Two pointers, at least one null, so the comparison result is
126 // independent of the value of a real pointer.
127 return cmpNumbers((uint64_t)TyL, (uint64_t)TyR);
129 if (LA < RA)
130 return -1;
131 if (RA < LA)
132 return 1;
134 if (LI != LE)
135 return 1;
136 if (RI != RE)
137 return -1;
139 return 0;
142 int FunctionComparator::cmpRangeMetadata(const MDNode *L,
143 const MDNode *R) const {
144 if (L == R)
145 return 0;
146 if (!L)
147 return -1;
148 if (!R)
149 return 1;
150 // Range metadata is a sequence of numbers. Make sure they are the same
151 // sequence.
152 // TODO: Note that as this is metadata, it is possible to drop and/or merge
153 // this data when considering functions to merge. Thus this comparison would
154 // return 0 (i.e. equivalent), but merging would become more complicated
155 // because the ranges would need to be unioned. It is not likely that
156 // functions differ ONLY in this metadata if they are actually the same
157 // function semantically.
158 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
159 return Res;
160 for (size_t I = 0; I < L->getNumOperands(); ++I) {
161 ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
162 ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
163 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
164 return Res;
166 return 0;
169 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L,
170 const Instruction *R) const {
171 ImmutableCallSite LCS(L);
172 ImmutableCallSite RCS(R);
174 assert(LCS && RCS && "Must be calls or invokes!");
175 assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!");
177 if (int Res =
178 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
179 return Res;
181 for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) {
182 auto OBL = LCS.getOperandBundleAt(i);
183 auto OBR = RCS.getOperandBundleAt(i);
185 if (int Res = OBL.getTagName().compare(OBR.getTagName()))
186 return Res;
188 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
189 return Res;
192 return 0;
195 /// Constants comparison:
196 /// 1. Check whether type of L constant could be losslessly bitcasted to R
197 /// type.
198 /// 2. Compare constant contents.
199 /// For more details see declaration comments.
200 int FunctionComparator::cmpConstants(const Constant *L,
201 const Constant *R) const {
202 Type *TyL = L->getType();
203 Type *TyR = R->getType();
205 // Check whether types are bitcastable. This part is just re-factored
206 // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
207 // we also pack into result which type is "less" for us.
208 int TypesRes = cmpTypes(TyL, TyR);
209 if (TypesRes != 0) {
210 // Types are different, but check whether we can bitcast them.
211 if (!TyL->isFirstClassType()) {
212 if (TyR->isFirstClassType())
213 return -1;
214 // Neither TyL nor TyR are values of first class type. Return the result
215 // of comparing the types
216 return TypesRes;
218 if (!TyR->isFirstClassType()) {
219 if (TyL->isFirstClassType())
220 return 1;
221 return TypesRes;
224 // Vector -> Vector conversions are always lossless if the two vector types
225 // have the same size, otherwise not.
226 unsigned TyLWidth = 0;
227 unsigned TyRWidth = 0;
229 if (auto *VecTyL = dyn_cast<VectorType>(TyL))
230 TyLWidth = VecTyL->getBitWidth();
231 if (auto *VecTyR = dyn_cast<VectorType>(TyR))
232 TyRWidth = VecTyR->getBitWidth();
234 if (TyLWidth != TyRWidth)
235 return cmpNumbers(TyLWidth, TyRWidth);
237 // Zero bit-width means neither TyL nor TyR are vectors.
238 if (!TyLWidth) {
239 PointerType *PTyL = dyn_cast<PointerType>(TyL);
240 PointerType *PTyR = dyn_cast<PointerType>(TyR);
241 if (PTyL && PTyR) {
242 unsigned AddrSpaceL = PTyL->getAddressSpace();
243 unsigned AddrSpaceR = PTyR->getAddressSpace();
244 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
245 return Res;
247 if (PTyL)
248 return 1;
249 if (PTyR)
250 return -1;
252 // TyL and TyR aren't vectors, nor pointers. We don't know how to
253 // bitcast them.
254 return TypesRes;
258 // OK, types are bitcastable, now check constant contents.
260 if (L->isNullValue() && R->isNullValue())
261 return TypesRes;
262 if (L->isNullValue() && !R->isNullValue())
263 return 1;
264 if (!L->isNullValue() && R->isNullValue())
265 return -1;
267 auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L));
268 auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R));
269 if (GlobalValueL && GlobalValueR) {
270 return cmpGlobalValues(GlobalValueL, GlobalValueR);
273 if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
274 return Res;
276 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
277 const auto *SeqR = cast<ConstantDataSequential>(R);
278 // This handles ConstantDataArray and ConstantDataVector. Note that we
279 // compare the two raw data arrays, which might differ depending on the host
280 // endianness. This isn't a problem though, because the endiness of a module
281 // will affect the order of the constants, but this order is the same
282 // for a given input module and host platform.
283 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
286 switch (L->getValueID()) {
287 case Value::UndefValueVal:
288 case Value::ConstantTokenNoneVal:
289 return TypesRes;
290 case Value::ConstantIntVal: {
291 const APInt &LInt = cast<ConstantInt>(L)->getValue();
292 const APInt &RInt = cast<ConstantInt>(R)->getValue();
293 return cmpAPInts(LInt, RInt);
295 case Value::ConstantFPVal: {
296 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
297 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
298 return cmpAPFloats(LAPF, RAPF);
300 case Value::ConstantArrayVal: {
301 const ConstantArray *LA = cast<ConstantArray>(L);
302 const ConstantArray *RA = cast<ConstantArray>(R);
303 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
304 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
305 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
306 return Res;
307 for (uint64_t i = 0; i < NumElementsL; ++i) {
308 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
309 cast<Constant>(RA->getOperand(i))))
310 return Res;
312 return 0;
314 case Value::ConstantStructVal: {
315 const ConstantStruct *LS = cast<ConstantStruct>(L);
316 const ConstantStruct *RS = cast<ConstantStruct>(R);
317 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
318 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
319 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
320 return Res;
321 for (unsigned i = 0; i != NumElementsL; ++i) {
322 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
323 cast<Constant>(RS->getOperand(i))))
324 return Res;
326 return 0;
328 case Value::ConstantVectorVal: {
329 const ConstantVector *LV = cast<ConstantVector>(L);
330 const ConstantVector *RV = cast<ConstantVector>(R);
331 unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
332 unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
333 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
334 return Res;
335 for (uint64_t i = 0; i < NumElementsL; ++i) {
336 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
337 cast<Constant>(RV->getOperand(i))))
338 return Res;
340 return 0;
342 case Value::ConstantExprVal: {
343 const ConstantExpr *LE = cast<ConstantExpr>(L);
344 const ConstantExpr *RE = cast<ConstantExpr>(R);
345 unsigned NumOperandsL = LE->getNumOperands();
346 unsigned NumOperandsR = RE->getNumOperands();
347 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
348 return Res;
349 for (unsigned i = 0; i < NumOperandsL; ++i) {
350 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
351 cast<Constant>(RE->getOperand(i))))
352 return Res;
354 return 0;
356 case Value::BlockAddressVal: {
357 const BlockAddress *LBA = cast<BlockAddress>(L);
358 const BlockAddress *RBA = cast<BlockAddress>(R);
359 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
360 return Res;
361 if (LBA->getFunction() == RBA->getFunction()) {
362 // They are BBs in the same function. Order by which comes first in the
363 // BB order of the function. This order is deterministic.
364 Function* F = LBA->getFunction();
365 BasicBlock *LBB = LBA->getBasicBlock();
366 BasicBlock *RBB = RBA->getBasicBlock();
367 if (LBB == RBB)
368 return 0;
369 for(BasicBlock &BB : F->getBasicBlockList()) {
370 if (&BB == LBB) {
371 assert(&BB != RBB);
372 return -1;
374 if (&BB == RBB)
375 return 1;
377 llvm_unreachable("Basic Block Address does not point to a basic block in "
378 "its function.");
379 return -1;
380 } else {
381 // cmpValues said the functions are the same. So because they aren't
382 // literally the same pointer, they must respectively be the left and
383 // right functions.
384 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
385 // cmpValues will tell us if these are equivalent BasicBlocks, in the
386 // context of their respective functions.
387 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
390 default: // Unknown constant, abort.
391 LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
392 llvm_unreachable("Constant ValueID not recognized.");
393 return -1;
397 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
398 uint64_t LNumber = GlobalNumbers->getNumber(L);
399 uint64_t RNumber = GlobalNumbers->getNumber(R);
400 return cmpNumbers(LNumber, RNumber);
403 /// cmpType - compares two types,
404 /// defines total ordering among the types set.
405 /// See method declaration comments for more details.
406 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
407 PointerType *PTyL = dyn_cast<PointerType>(TyL);
408 PointerType *PTyR = dyn_cast<PointerType>(TyR);
410 const DataLayout &DL = FnL->getParent()->getDataLayout();
411 if (PTyL && PTyL->getAddressSpace() == 0)
412 TyL = DL.getIntPtrType(TyL);
413 if (PTyR && PTyR->getAddressSpace() == 0)
414 TyR = DL.getIntPtrType(TyR);
416 if (TyL == TyR)
417 return 0;
419 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
420 return Res;
422 switch (TyL->getTypeID()) {
423 default:
424 llvm_unreachable("Unknown type!");
425 case Type::IntegerTyID:
426 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
427 cast<IntegerType>(TyR)->getBitWidth());
428 // TyL == TyR would have returned true earlier, because types are uniqued.
429 case Type::VoidTyID:
430 case Type::FloatTyID:
431 case Type::DoubleTyID:
432 case Type::X86_FP80TyID:
433 case Type::FP128TyID:
434 case Type::PPC_FP128TyID:
435 case Type::LabelTyID:
436 case Type::MetadataTyID:
437 case Type::TokenTyID:
438 return 0;
440 case Type::PointerTyID:
441 assert(PTyL && PTyR && "Both types must be pointers here.");
442 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
444 case Type::StructTyID: {
445 StructType *STyL = cast<StructType>(TyL);
446 StructType *STyR = cast<StructType>(TyR);
447 if (STyL->getNumElements() != STyR->getNumElements())
448 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
450 if (STyL->isPacked() != STyR->isPacked())
451 return cmpNumbers(STyL->isPacked(), STyR->isPacked());
453 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
454 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
455 return Res;
457 return 0;
460 case Type::FunctionTyID: {
461 FunctionType *FTyL = cast<FunctionType>(TyL);
462 FunctionType *FTyR = cast<FunctionType>(TyR);
463 if (FTyL->getNumParams() != FTyR->getNumParams())
464 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
466 if (FTyL->isVarArg() != FTyR->isVarArg())
467 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
469 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
470 return Res;
472 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
473 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
474 return Res;
476 return 0;
479 case Type::ArrayTyID:
480 case Type::VectorTyID: {
481 auto *STyL = cast<SequentialType>(TyL);
482 auto *STyR = cast<SequentialType>(TyR);
483 if (STyL->getNumElements() != STyR->getNumElements())
484 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
485 return cmpTypes(STyL->getElementType(), STyR->getElementType());
490 // Determine whether the two operations are the same except that pointer-to-A
491 // and pointer-to-B are equivalent. This should be kept in sync with
492 // Instruction::isSameOperationAs.
493 // Read method declaration comments for more details.
494 int FunctionComparator::cmpOperations(const Instruction *L,
495 const Instruction *R,
496 bool &needToCmpOperands) const {
497 needToCmpOperands = true;
498 if (int Res = cmpValues(L, R))
499 return Res;
501 // Differences from Instruction::isSameOperationAs:
502 // * replace type comparison with calls to cmpTypes.
503 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
504 // * because of the above, we don't test for the tail bit on calls later on.
505 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
506 return Res;
508 if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
509 needToCmpOperands = false;
510 const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
511 if (int Res =
512 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
513 return Res;
514 return cmpGEPs(GEPL, GEPR);
517 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
518 return Res;
520 if (int Res = cmpTypes(L->getType(), R->getType()))
521 return Res;
523 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
524 R->getRawSubclassOptionalData()))
525 return Res;
527 // We have two instructions of identical opcode and #operands. Check to see
528 // if all operands are the same type
529 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
530 if (int Res =
531 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
532 return Res;
535 // Check special state that is a part of some instructions.
536 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
537 if (int Res = cmpTypes(AI->getAllocatedType(),
538 cast<AllocaInst>(R)->getAllocatedType()))
539 return Res;
540 return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment());
542 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
543 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
544 return Res;
545 if (int Res =
546 cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
547 return Res;
548 if (int Res =
549 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
550 return Res;
551 if (int Res = cmpNumbers(LI->getSyncScopeID(),
552 cast<LoadInst>(R)->getSyncScopeID()))
553 return Res;
554 return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range),
555 cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
557 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
558 if (int Res =
559 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
560 return Res;
561 if (int Res =
562 cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
563 return Res;
564 if (int Res =
565 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
566 return Res;
567 return cmpNumbers(SI->getSyncScopeID(),
568 cast<StoreInst>(R)->getSyncScopeID());
570 if (const CmpInst *CI = dyn_cast<CmpInst>(L))
571 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
572 if (auto CSL = CallSite(const_cast<Instruction *>(L))) {
573 auto CSR = CallSite(const_cast<Instruction *>(R));
574 if (int Res = cmpNumbers(CSL.getCallingConv(), CSR.getCallingConv()))
575 return Res;
576 if (int Res = cmpAttrs(CSL.getAttributes(), CSR.getAttributes()))
577 return Res;
578 if (int Res = cmpOperandBundlesSchema(L, R))
579 return Res;
580 if (const CallInst *CI = dyn_cast<CallInst>(L))
581 if (int Res = cmpNumbers(CI->getTailCallKind(),
582 cast<CallInst>(R)->getTailCallKind()))
583 return Res;
584 return cmpRangeMetadata(L->getMetadata(LLVMContext::MD_range),
585 R->getMetadata(LLVMContext::MD_range));
587 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
588 ArrayRef<unsigned> LIndices = IVI->getIndices();
589 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
590 if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
591 return Res;
592 for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
593 if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
594 return Res;
596 return 0;
598 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
599 ArrayRef<unsigned> LIndices = EVI->getIndices();
600 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
601 if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
602 return Res;
603 for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
604 if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
605 return Res;
608 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
609 if (int Res =
610 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
611 return Res;
612 return cmpNumbers(FI->getSyncScopeID(),
613 cast<FenceInst>(R)->getSyncScopeID());
615 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
616 if (int Res = cmpNumbers(CXI->isVolatile(),
617 cast<AtomicCmpXchgInst>(R)->isVolatile()))
618 return Res;
619 if (int Res = cmpNumbers(CXI->isWeak(),
620 cast<AtomicCmpXchgInst>(R)->isWeak()))
621 return Res;
622 if (int Res =
623 cmpOrderings(CXI->getSuccessOrdering(),
624 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
625 return Res;
626 if (int Res =
627 cmpOrderings(CXI->getFailureOrdering(),
628 cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
629 return Res;
630 return cmpNumbers(CXI->getSyncScopeID(),
631 cast<AtomicCmpXchgInst>(R)->getSyncScopeID());
633 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
634 if (int Res = cmpNumbers(RMWI->getOperation(),
635 cast<AtomicRMWInst>(R)->getOperation()))
636 return Res;
637 if (int Res = cmpNumbers(RMWI->isVolatile(),
638 cast<AtomicRMWInst>(R)->isVolatile()))
639 return Res;
640 if (int Res = cmpOrderings(RMWI->getOrdering(),
641 cast<AtomicRMWInst>(R)->getOrdering()))
642 return Res;
643 return cmpNumbers(RMWI->getSyncScopeID(),
644 cast<AtomicRMWInst>(R)->getSyncScopeID());
646 if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
647 const PHINode *PNR = cast<PHINode>(R);
648 // Ensure that in addition to the incoming values being identical
649 // (checked by the caller of this function), the incoming blocks
650 // are also identical.
651 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
652 if (int Res =
653 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
654 return Res;
657 return 0;
660 // Determine whether two GEP operations perform the same underlying arithmetic.
661 // Read method declaration comments for more details.
662 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
663 const GEPOperator *GEPR) const {
664 unsigned int ASL = GEPL->getPointerAddressSpace();
665 unsigned int ASR = GEPR->getPointerAddressSpace();
667 if (int Res = cmpNumbers(ASL, ASR))
668 return Res;
670 // When we have target data, we can reduce the GEP down to the value in bytes
671 // added to the address.
672 const DataLayout &DL = FnL->getParent()->getDataLayout();
673 unsigned BitWidth = DL.getPointerSizeInBits(ASL);
674 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
675 if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
676 GEPR->accumulateConstantOffset(DL, OffsetR))
677 return cmpAPInts(OffsetL, OffsetR);
678 if (int Res = cmpTypes(GEPL->getSourceElementType(),
679 GEPR->getSourceElementType()))
680 return Res;
682 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
683 return Res;
685 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
686 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
687 return Res;
690 return 0;
693 int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
694 const InlineAsm *R) const {
695 // InlineAsm's are uniqued. If they are the same pointer, obviously they are
696 // the same, otherwise compare the fields.
697 if (L == R)
698 return 0;
699 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
700 return Res;
701 if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
702 return Res;
703 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
704 return Res;
705 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
706 return Res;
707 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
708 return Res;
709 if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
710 return Res;
711 assert(L->getFunctionType() != R->getFunctionType());
712 return 0;
715 /// Compare two values used by the two functions under pair-wise comparison. If
716 /// this is the first time the values are seen, they're added to the mapping so
717 /// that we will detect mismatches on next use.
718 /// See comments in declaration for more details.
719 int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
720 // Catch self-reference case.
721 if (L == FnL) {
722 if (R == FnR)
723 return 0;
724 return -1;
726 if (R == FnR) {
727 if (L == FnL)
728 return 0;
729 return 1;
732 const Constant *ConstL = dyn_cast<Constant>(L);
733 const Constant *ConstR = dyn_cast<Constant>(R);
734 if (ConstL && ConstR) {
735 if (L == R)
736 return 0;
737 return cmpConstants(ConstL, ConstR);
740 if (ConstL)
741 return 1;
742 if (ConstR)
743 return -1;
745 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
746 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
748 if (InlineAsmL && InlineAsmR)
749 return cmpInlineAsm(InlineAsmL, InlineAsmR);
750 if (InlineAsmL)
751 return 1;
752 if (InlineAsmR)
753 return -1;
755 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
756 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
758 return cmpNumbers(LeftSN.first->second, RightSN.first->second);
761 // Test whether two basic blocks have equivalent behaviour.
762 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
763 const BasicBlock *BBR) const {
764 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
765 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
767 do {
768 bool needToCmpOperands = true;
769 if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
770 return Res;
771 if (needToCmpOperands) {
772 assert(InstL->getNumOperands() == InstR->getNumOperands());
774 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
775 Value *OpL = InstL->getOperand(i);
776 Value *OpR = InstR->getOperand(i);
777 if (int Res = cmpValues(OpL, OpR))
778 return Res;
779 // cmpValues should ensure this is true.
780 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
784 ++InstL;
785 ++InstR;
786 } while (InstL != InstLE && InstR != InstRE);
788 if (InstL != InstLE && InstR == InstRE)
789 return 1;
790 if (InstL == InstLE && InstR != InstRE)
791 return -1;
792 return 0;
795 int FunctionComparator::compareSignature() const {
796 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
797 return Res;
799 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
800 return Res;
802 if (FnL->hasGC()) {
803 if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
804 return Res;
807 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
808 return Res;
810 if (FnL->hasSection()) {
811 if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
812 return Res;
815 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
816 return Res;
818 // TODO: if it's internal and only used in direct calls, we could handle this
819 // case too.
820 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
821 return Res;
823 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
824 return Res;
826 assert(FnL->arg_size() == FnR->arg_size() &&
827 "Identically typed functions have different numbers of args!");
829 // Visit the arguments so that they get enumerated in the order they're
830 // passed in.
831 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
832 ArgRI = FnR->arg_begin(),
833 ArgLE = FnL->arg_end();
834 ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
835 if (cmpValues(&*ArgLI, &*ArgRI) != 0)
836 llvm_unreachable("Arguments repeat!");
838 return 0;
841 // Test whether the two functions have equivalent behaviour.
842 int FunctionComparator::compare() {
843 beginCompare();
845 if (int Res = compareSignature())
846 return Res;
848 // We do a CFG-ordered walk since the actual ordering of the blocks in the
849 // linked list is immaterial. Our walk starts at the entry block for both
850 // functions, then takes each block from each terminator in order. As an
851 // artifact, this also means that unreachable blocks are ignored.
852 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
853 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
855 FnLBBs.push_back(&FnL->getEntryBlock());
856 FnRBBs.push_back(&FnR->getEntryBlock());
858 VisitedBBs.insert(FnLBBs[0]);
859 while (!FnLBBs.empty()) {
860 const BasicBlock *BBL = FnLBBs.pop_back_val();
861 const BasicBlock *BBR = FnRBBs.pop_back_val();
863 if (int Res = cmpValues(BBL, BBR))
864 return Res;
866 if (int Res = cmpBasicBlocks(BBL, BBR))
867 return Res;
869 const Instruction *TermL = BBL->getTerminator();
870 const Instruction *TermR = BBR->getTerminator();
872 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
873 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
874 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
875 continue;
877 FnLBBs.push_back(TermL->getSuccessor(i));
878 FnRBBs.push_back(TermR->getSuccessor(i));
881 return 0;
884 namespace {
886 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
887 // hash of a sequence of 64bit ints, but the entire input does not need to be
888 // available at once. This interface is necessary for functionHash because it
889 // needs to accumulate the hash as the structure of the function is traversed
890 // without saving these values to an intermediate buffer. This form of hashing
891 // is not often needed, as usually the object to hash is just read from a
892 // buffer.
893 class HashAccumulator64 {
894 uint64_t Hash;
896 public:
897 // Initialize to random constant, so the state isn't zero.
898 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
900 void add(uint64_t V) {
901 Hash = hashing::detail::hash_16_bytes(Hash, V);
904 // No finishing is required, because the entire hash value is used.
905 uint64_t getHash() { return Hash; }
908 } // end anonymous namespace
910 // A function hash is calculated by considering only the number of arguments and
911 // whether a function is varargs, the order of basic blocks (given by the
912 // successors of each basic block in depth first order), and the order of
913 // opcodes of each instruction within each of these basic blocks. This mirrors
914 // the strategy compare() uses to compare functions by walking the BBs in depth
915 // first order and comparing each instruction in sequence. Because this hash
916 // does not look at the operands, it is insensitive to things such as the
917 // target of calls and the constants used in the function, which makes it useful
918 // when possibly merging functions which are the same modulo constants and call
919 // targets.
920 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
921 HashAccumulator64 H;
922 H.add(F.isVarArg());
923 H.add(F.arg_size());
925 SmallVector<const BasicBlock *, 8> BBs;
926 SmallPtrSet<const BasicBlock *, 16> VisitedBBs;
928 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
929 // accumulating the hash of the function "structure." (BB and opcode sequence)
930 BBs.push_back(&F.getEntryBlock());
931 VisitedBBs.insert(BBs[0]);
932 while (!BBs.empty()) {
933 const BasicBlock *BB = BBs.pop_back_val();
934 // This random value acts as a block header, as otherwise the partition of
935 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
936 H.add(45798);
937 for (auto &Inst : *BB) {
938 H.add(Inst.getOpcode());
940 const Instruction *Term = BB->getTerminator();
941 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
942 if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
943 continue;
944 BBs.push_back(Term->getSuccessor(i));
947 return H.getHash();