[MIPS GlobalISel] Select MSA vector generic and builtin add
[llvm-complete.git] / lib / Transforms / Vectorize / VPlan.cpp
blob4b80d1fb20aa5caba8408ae3f877aa3da04f4cfc
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/Value.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/GenericDomTreeConstruction.h"
37 #include "llvm/Support/GraphWriter.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 #include <cassert>
41 #include <iterator>
42 #include <string>
43 #include <vector>
45 using namespace llvm;
46 extern cl::opt<bool> EnableVPlanNativePath;
48 #define DEBUG_TYPE "vplan"
50 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
51 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(&V))
52 Instr->print(OS);
53 else
54 V.printAsOperand(OS);
55 return OS;
58 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
59 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
60 const VPBlockBase *Block = this;
61 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
62 Block = Region->getEntry();
63 return cast<VPBasicBlock>(Block);
66 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
67 VPBlockBase *Block = this;
68 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
69 Block = Region->getEntry();
70 return cast<VPBasicBlock>(Block);
73 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
74 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
75 const VPBlockBase *Block = this;
76 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
77 Block = Region->getExit();
78 return cast<VPBasicBlock>(Block);
81 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
82 VPBlockBase *Block = this;
83 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
84 Block = Region->getExit();
85 return cast<VPBasicBlock>(Block);
88 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
89 if (!Successors.empty() || !Parent)
90 return this;
91 assert(Parent->getExit() == this &&
92 "Block w/o successors not the exit of its parent.");
93 return Parent->getEnclosingBlockWithSuccessors();
96 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
97 if (!Predecessors.empty() || !Parent)
98 return this;
99 assert(Parent->getEntry() == this &&
100 "Block w/o predecessors not the entry of its parent.");
101 return Parent->getEnclosingBlockWithPredecessors();
104 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
105 SmallVector<VPBlockBase *, 8> Blocks;
106 for (VPBlockBase *Block : depth_first(Entry))
107 Blocks.push_back(Block);
109 for (VPBlockBase *Block : Blocks)
110 delete Block;
113 BasicBlock *
114 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
115 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
116 // Pred stands for Predessor. Prev stands for Previous - last visited/created.
117 BasicBlock *PrevBB = CFG.PrevBB;
118 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
119 PrevBB->getParent(), CFG.LastBB);
120 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
122 // Hook up the new basic block to its predecessors.
123 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
124 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
125 auto &PredVPSuccessors = PredVPBB->getSuccessors();
126 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
128 // In outer loop vectorization scenario, the predecessor BBlock may not yet
129 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
130 // vectorization. We do not encounter this case in inner loop vectorization
131 // as we start out by building a loop skeleton with the vector loop header
132 // and latch blocks. As a result, we never enter this function for the
133 // header block in the non VPlan-native path.
134 if (!PredBB) {
135 assert(EnableVPlanNativePath &&
136 "Unexpected null predecessor in non VPlan-native path");
137 CFG.VPBBsToFix.push_back(PredVPBB);
138 continue;
141 assert(PredBB && "Predecessor basic-block not found building successor.");
142 auto *PredBBTerminator = PredBB->getTerminator();
143 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
144 if (isa<UnreachableInst>(PredBBTerminator)) {
145 assert(PredVPSuccessors.size() == 1 &&
146 "Predecessor ending w/o branch must have single successor.");
147 PredBBTerminator->eraseFromParent();
148 BranchInst::Create(NewBB, PredBB);
149 } else {
150 assert(PredVPSuccessors.size() == 2 &&
151 "Predecessor ending with branch must have two successors.");
152 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
153 assert(!PredBBTerminator->getSuccessor(idx) &&
154 "Trying to reset an existing successor block.");
155 PredBBTerminator->setSuccessor(idx, NewBB);
158 return NewBB;
161 void VPBasicBlock::execute(VPTransformState *State) {
162 bool Replica = State->Instance &&
163 !(State->Instance->Part == 0 && State->Instance->Lane == 0);
164 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
165 VPBlockBase *SingleHPred = nullptr;
166 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
168 // 1. Create an IR basic block, or reuse the last one if possible.
169 // The last IR basic block is reused, as an optimization, in three cases:
170 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
171 // B. when the current VPBB has a single (hierarchical) predecessor which
172 // is PrevVPBB and the latter has a single (hierarchical) successor; and
173 // C. when the current VPBB is an entry of a region replica - where PrevVPBB
174 // is the exit of this region from a previous instance, or the predecessor
175 // of this region.
176 if (PrevVPBB && /* A */
177 !((SingleHPred = getSingleHierarchicalPredecessor()) &&
178 SingleHPred->getExitBasicBlock() == PrevVPBB &&
179 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
180 !(Replica && getPredecessors().empty())) { /* C */
181 NewBB = createEmptyBasicBlock(State->CFG);
182 State->Builder.SetInsertPoint(NewBB);
183 // Temporarily terminate with unreachable until CFG is rewired.
184 UnreachableInst *Terminator = State->Builder.CreateUnreachable();
185 State->Builder.SetInsertPoint(Terminator);
186 // Register NewBB in its loop. In innermost loops its the same for all BB's.
187 Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
188 L->addBasicBlockToLoop(NewBB, *State->LI);
189 State->CFG.PrevBB = NewBB;
192 // 2. Fill the IR basic block with IR instructions.
193 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
194 << " in BB:" << NewBB->getName() << '\n');
196 State->CFG.VPBB2IRBB[this] = NewBB;
197 State->CFG.PrevVPBB = this;
199 for (VPRecipeBase &Recipe : Recipes)
200 Recipe.execute(*State);
202 VPValue *CBV;
203 if (EnableVPlanNativePath && (CBV = getCondBit())) {
204 Value *IRCBV = CBV->getUnderlyingValue();
205 assert(IRCBV && "Unexpected null underlying value for condition bit");
207 // Condition bit value in a VPBasicBlock is used as the branch selector. In
208 // the VPlan-native path case, since all branches are uniform we generate a
209 // branch instruction using the condition value from vector lane 0 and dummy
210 // successors. The successors are fixed later when the successor blocks are
211 // visited.
212 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0);
213 NewCond = State->Builder.CreateExtractElement(NewCond,
214 State->Builder.getInt32(0));
216 // Replace the temporary unreachable terminator with the new conditional
217 // branch.
218 auto *CurrentTerminator = NewBB->getTerminator();
219 assert(isa<UnreachableInst>(CurrentTerminator) &&
220 "Expected to replace unreachable terminator with conditional "
221 "branch.");
222 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
223 CondBr->setSuccessor(0, nullptr);
224 ReplaceInstWithInst(CurrentTerminator, CondBr);
227 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
230 void VPRegionBlock::execute(VPTransformState *State) {
231 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
233 if (!isReplicator()) {
234 // Visit the VPBlocks connected to "this", starting from it.
235 for (VPBlockBase *Block : RPOT) {
236 if (EnableVPlanNativePath) {
237 // The inner loop vectorization path does not represent loop preheader
238 // and exit blocks as part of the VPlan. In the VPlan-native path, skip
239 // vectorizing loop preheader block. In future, we may replace this
240 // check with the check for loop preheader.
241 if (Block->getNumPredecessors() == 0)
242 continue;
244 // Skip vectorizing loop exit block. In future, we may replace this
245 // check with the check for loop exit.
246 if (Block->getNumSuccessors() == 0)
247 continue;
250 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
251 Block->execute(State);
253 return;
256 assert(!State->Instance && "Replicating a Region with non-null instance.");
258 // Enter replicating mode.
259 State->Instance = {0, 0};
261 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
262 State->Instance->Part = Part;
263 for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) {
264 State->Instance->Lane = Lane;
265 // Visit the VPBlocks connected to \p this, starting from it.
266 for (VPBlockBase *Block : RPOT) {
267 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
268 Block->execute(State);
273 // Exit replicating mode.
274 State->Instance.reset();
277 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
278 Parent = InsertPos->getParent();
279 Parent->getRecipeList().insert(InsertPos->getIterator(), this);
282 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
283 return getParent()->getRecipeList().erase(getIterator());
286 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
287 InsertPos->getParent()->getRecipeList().splice(
288 std::next(InsertPos->getIterator()), getParent()->getRecipeList(),
289 getIterator());
292 void VPInstruction::generateInstruction(VPTransformState &State,
293 unsigned Part) {
294 IRBuilder<> &Builder = State.Builder;
296 if (Instruction::isBinaryOp(getOpcode())) {
297 Value *A = State.get(getOperand(0), Part);
298 Value *B = State.get(getOperand(1), Part);
299 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
300 State.set(this, V, Part);
301 return;
304 switch (getOpcode()) {
305 case VPInstruction::Not: {
306 Value *A = State.get(getOperand(0), Part);
307 Value *V = Builder.CreateNot(A);
308 State.set(this, V, Part);
309 break;
311 case VPInstruction::ICmpULE: {
312 Value *IV = State.get(getOperand(0), Part);
313 Value *TC = State.get(getOperand(1), Part);
314 Value *V = Builder.CreateICmpULE(IV, TC);
315 State.set(this, V, Part);
316 break;
318 case Instruction::Select: {
319 Value *Cond = State.get(getOperand(0), Part);
320 Value *Op1 = State.get(getOperand(1), Part);
321 Value *Op2 = State.get(getOperand(2), Part);
322 Value *V = Builder.CreateSelect(Cond, Op1, Op2);
323 State.set(this, V, Part);
324 break;
326 default:
327 llvm_unreachable("Unsupported opcode for instruction");
331 void VPInstruction::execute(VPTransformState &State) {
332 assert(!State.Instance && "VPInstruction executing an Instance");
333 for (unsigned Part = 0; Part < State.UF; ++Part)
334 generateInstruction(State, Part);
337 void VPInstruction::print(raw_ostream &O, const Twine &Indent) const {
338 O << " +\n" << Indent << "\"EMIT ";
339 print(O);
340 O << "\\l\"";
343 void VPInstruction::print(raw_ostream &O) const {
344 printAsOperand(O);
345 O << " = ";
347 switch (getOpcode()) {
348 case VPInstruction::Not:
349 O << "not";
350 break;
351 case VPInstruction::ICmpULE:
352 O << "icmp ule";
353 break;
354 case VPInstruction::SLPLoad:
355 O << "combined load";
356 break;
357 case VPInstruction::SLPStore:
358 O << "combined store";
359 break;
360 default:
361 O << Instruction::getOpcodeName(getOpcode());
364 for (const VPValue *Operand : operands()) {
365 O << " ";
366 Operand->printAsOperand(O);
370 /// Generate the code inside the body of the vectorized loop. Assumes a single
371 /// LoopVectorBody basic-block was created for this. Introduce additional
372 /// basic-blocks as needed, and fill them all.
373 void VPlan::execute(VPTransformState *State) {
374 // -1. Check if the backedge taken count is needed, and if so build it.
375 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
376 Value *TC = State->TripCount;
377 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
378 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
379 "trip.count.minus.1");
380 Value2VPValue[TCMO] = BackedgeTakenCount;
383 // 0. Set the reverse mapping from VPValues to Values for code generation.
384 for (auto &Entry : Value2VPValue)
385 State->VPValue2Value[Entry.second] = Entry.first;
387 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
388 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
389 assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
391 // 1. Make room to generate basic-blocks inside loop body if needed.
392 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
393 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
394 Loop *L = State->LI->getLoopFor(VectorHeaderBB);
395 L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
396 // Remove the edge between Header and Latch to allow other connections.
397 // Temporarily terminate with unreachable until CFG is rewired.
398 // Note: this asserts the generated code's assumption that
399 // getFirstInsertionPt() can be dereferenced into an Instruction.
400 VectorHeaderBB->getTerminator()->eraseFromParent();
401 State->Builder.SetInsertPoint(VectorHeaderBB);
402 UnreachableInst *Terminator = State->Builder.CreateUnreachable();
403 State->Builder.SetInsertPoint(Terminator);
405 // 2. Generate code in loop body.
406 State->CFG.PrevVPBB = nullptr;
407 State->CFG.PrevBB = VectorHeaderBB;
408 State->CFG.LastBB = VectorLatchBB;
410 for (VPBlockBase *Block : depth_first(Entry))
411 Block->execute(State);
413 // Setup branch terminator successors for VPBBs in VPBBsToFix based on
414 // VPBB's successors.
415 for (auto VPBB : State->CFG.VPBBsToFix) {
416 assert(EnableVPlanNativePath &&
417 "Unexpected VPBBsToFix in non VPlan-native path");
418 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
419 assert(BB && "Unexpected null basic block for VPBB");
421 unsigned Idx = 0;
422 auto *BBTerminator = BB->getTerminator();
424 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
425 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
426 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
427 ++Idx;
431 // 3. Merge the temporary latch created with the last basic-block filled.
432 BasicBlock *LastBB = State->CFG.PrevBB;
433 // Connect LastBB to VectorLatchBB to facilitate their merge.
434 assert((EnableVPlanNativePath ||
435 isa<UnreachableInst>(LastBB->getTerminator())) &&
436 "Expected InnerLoop VPlan CFG to terminate with unreachable");
437 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
438 "Expected VPlan CFG to terminate with branch in NativePath");
439 LastBB->getTerminator()->eraseFromParent();
440 BranchInst::Create(VectorLatchBB, LastBB);
442 // Merge LastBB with Latch.
443 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
444 (void)Merged;
445 assert(Merged && "Could not merge last basic block with latch.");
446 VectorLatchBB = LastBB;
448 // We do not attempt to preserve DT for outer loop vectorization currently.
449 if (!EnableVPlanNativePath)
450 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB);
453 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
454 BasicBlock *LoopLatchBB) {
455 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
456 assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
457 DT->addNewBlock(LoopHeaderBB, LoopPreHeaderBB);
458 // The vector body may be more than a single basic-block by this point.
459 // Update the dominator tree information inside the vector body by propagating
460 // it from header to latch, expecting only triangular control-flow, if any.
461 BasicBlock *PostDomSucc = nullptr;
462 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
463 // Get the list of successors of this block.
464 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
465 assert(Succs.size() <= 2 &&
466 "Basic block in vector loop has more than 2 successors.");
467 PostDomSucc = Succs[0];
468 if (Succs.size() == 1) {
469 assert(PostDomSucc->getSinglePredecessor() &&
470 "PostDom successor has more than one predecessor.");
471 DT->addNewBlock(PostDomSucc, BB);
472 continue;
474 BasicBlock *InterimSucc = Succs[1];
475 if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
476 PostDomSucc = Succs[1];
477 InterimSucc = Succs[0];
479 assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
480 "One successor of a basic block does not lead to the other.");
481 assert(InterimSucc->getSinglePredecessor() &&
482 "Interim successor has more than one predecessor.");
483 assert(PostDomSucc->hasNPredecessors(2) &&
484 "PostDom successor has more than two predecessors.");
485 DT->addNewBlock(InterimSucc, BB);
486 DT->addNewBlock(PostDomSucc, BB);
490 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
491 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
492 Twine(getOrCreateBID(Block));
495 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
496 const std::string &Name = Block->getName();
497 if (!Name.empty())
498 return Name;
499 return "VPB" + Twine(getOrCreateBID(Block));
502 void VPlanPrinter::dump() {
503 Depth = 1;
504 bumpIndent(0);
505 OS << "digraph VPlan {\n";
506 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
507 if (!Plan.getName().empty())
508 OS << "\\n" << DOT::EscapeString(Plan.getName());
509 if (!Plan.Value2VPValue.empty() || Plan.BackedgeTakenCount) {
510 OS << ", where:";
511 if (Plan.BackedgeTakenCount)
512 OS << "\\n"
513 << *Plan.getOrCreateBackedgeTakenCount() << " := BackedgeTakenCount";
514 for (auto Entry : Plan.Value2VPValue) {
515 OS << "\\n" << *Entry.second;
516 OS << DOT::EscapeString(" := ");
517 Entry.first->printAsOperand(OS, false);
520 OS << "\"]\n";
521 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
522 OS << "edge [fontname=Courier, fontsize=30]\n";
523 OS << "compound=true\n";
525 for (VPBlockBase *Block : depth_first(Plan.getEntry()))
526 dumpBlock(Block);
528 OS << "}\n";
531 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
532 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
533 dumpBasicBlock(BasicBlock);
534 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
535 dumpRegion(Region);
536 else
537 llvm_unreachable("Unsupported kind of VPBlock.");
540 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
541 bool Hidden, const Twine &Label) {
542 // Due to "dot" we print an edge between two regions as an edge between the
543 // exit basic block and the entry basic of the respective regions.
544 const VPBlockBase *Tail = From->getExitBasicBlock();
545 const VPBlockBase *Head = To->getEntryBasicBlock();
546 OS << Indent << getUID(Tail) << " -> " << getUID(Head);
547 OS << " [ label=\"" << Label << '\"';
548 if (Tail != From)
549 OS << " ltail=" << getUID(From);
550 if (Head != To)
551 OS << " lhead=" << getUID(To);
552 if (Hidden)
553 OS << "; splines=none";
554 OS << "]\n";
557 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
558 auto &Successors = Block->getSuccessors();
559 if (Successors.size() == 1)
560 drawEdge(Block, Successors.front(), false, "");
561 else if (Successors.size() == 2) {
562 drawEdge(Block, Successors.front(), false, "T");
563 drawEdge(Block, Successors.back(), false, "F");
564 } else {
565 unsigned SuccessorNumber = 0;
566 for (auto *Successor : Successors)
567 drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
571 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
572 OS << Indent << getUID(BasicBlock) << " [label =\n";
573 bumpIndent(1);
574 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
575 bumpIndent(1);
577 // Dump the block predicate.
578 const VPValue *Pred = BasicBlock->getPredicate();
579 if (Pred) {
580 OS << " +\n" << Indent << " \"BlockPredicate: ";
581 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) {
582 PredI->printAsOperand(OS);
583 OS << " (" << DOT::EscapeString(PredI->getParent()->getName())
584 << ")\\l\"";
585 } else
586 Pred->printAsOperand(OS);
589 for (const VPRecipeBase &Recipe : *BasicBlock)
590 Recipe.print(OS, Indent);
592 // Dump the condition bit.
593 const VPValue *CBV = BasicBlock->getCondBit();
594 if (CBV) {
595 OS << " +\n" << Indent << " \"CondBit: ";
596 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
597 CBI->printAsOperand(OS);
598 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
599 } else {
600 CBV->printAsOperand(OS);
601 OS << "\"";
605 bumpIndent(-2);
606 OS << "\n" << Indent << "]\n";
607 dumpEdges(BasicBlock);
610 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
611 OS << Indent << "subgraph " << getUID(Region) << " {\n";
612 bumpIndent(1);
613 OS << Indent << "fontname=Courier\n"
614 << Indent << "label=\""
615 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
616 << DOT::EscapeString(Region->getName()) << "\"\n";
617 // Dump the blocks of the region.
618 assert(Region->getEntry() && "Region contains no inner blocks.");
619 for (const VPBlockBase *Block : depth_first(Region->getEntry()))
620 dumpBlock(Block);
621 bumpIndent(-1);
622 OS << Indent << "}\n";
623 dumpEdges(Region);
626 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) {
627 std::string IngredientString;
628 raw_string_ostream RSO(IngredientString);
629 if (auto *Inst = dyn_cast<Instruction>(V)) {
630 if (!Inst->getType()->isVoidTy()) {
631 Inst->printAsOperand(RSO, false);
632 RSO << " = ";
634 RSO << Inst->getOpcodeName() << " ";
635 unsigned E = Inst->getNumOperands();
636 if (E > 0) {
637 Inst->getOperand(0)->printAsOperand(RSO, false);
638 for (unsigned I = 1; I < E; ++I)
639 Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
641 } else // !Inst
642 V->printAsOperand(RSO, false);
643 RSO.flush();
644 O << DOT::EscapeString(IngredientString);
647 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent) const {
648 O << " +\n" << Indent << "\"WIDEN\\l\"";
649 for (auto &Instr : make_range(Begin, End))
650 O << " +\n" << Indent << "\" " << VPlanIngredient(&Instr) << "\\l\"";
653 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O,
654 const Twine &Indent) const {
655 O << " +\n" << Indent << "\"WIDEN-INDUCTION";
656 if (Trunc) {
657 O << "\\l\"";
658 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\"";
659 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\"";
660 } else
661 O << " " << VPlanIngredient(IV) << "\\l\"";
664 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent) const {
665 O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\"";
668 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent) const {
669 O << " +\n" << Indent << "\"BLEND ";
670 Phi->printAsOperand(O, false);
671 O << " =";
672 if (!User) {
673 // Not a User of any mask: not really blending, this is a
674 // single-predecessor phi.
675 O << " ";
676 Phi->getIncomingValue(0)->printAsOperand(O, false);
677 } else {
678 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
679 O << " ";
680 Phi->getIncomingValue(I)->printAsOperand(O, false);
681 O << "/";
682 User->getOperand(I)->printAsOperand(O);
685 O << "\\l\"";
688 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent) const {
689 O << " +\n"
690 << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ")
691 << VPlanIngredient(Ingredient);
692 if (AlsoPack)
693 O << " (S->V)";
694 O << "\\l\"";
697 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent) const {
698 O << " +\n"
699 << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst)
700 << "\\l\"";
703 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O,
704 const Twine &Indent) const {
705 O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr);
706 if (User) {
707 O << ", ";
708 User->getOperand(0)->printAsOperand(O);
710 O << "\\l\"";
713 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
715 void VPValue::replaceAllUsesWith(VPValue *New) {
716 for (VPUser *User : users())
717 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
718 if (User->getOperand(I) == this)
719 User->setOperand(I, New);
722 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
723 Old2NewTy &Old2New,
724 InterleavedAccessInfo &IAI) {
725 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
726 for (VPBlockBase *Base : RPOT) {
727 visitBlock(Base, Old2New, IAI);
731 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
732 InterleavedAccessInfo &IAI) {
733 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
734 for (VPRecipeBase &VPI : *VPBB) {
735 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
736 auto *VPInst = cast<VPInstruction>(&VPI);
737 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
738 auto *IG = IAI.getInterleaveGroup(Inst);
739 if (!IG)
740 continue;
742 auto NewIGIter = Old2New.find(IG);
743 if (NewIGIter == Old2New.end())
744 Old2New[IG] = new InterleaveGroup<VPInstruction>(
745 IG->getFactor(), IG->isReverse(), Align(IG->getAlignment()));
747 if (Inst == IG->getInsertPos())
748 Old2New[IG]->setInsertPos(VPInst);
750 InterleaveGroupMap[VPInst] = Old2New[IG];
751 InterleaveGroupMap[VPInst]->insertMember(
752 VPInst, IG->getIndex(Inst),
753 Align(IG->isReverse() ? (-1) * int(IG->getFactor())
754 : IG->getFactor()));
756 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
757 visitRegion(Region, Old2New, IAI);
758 else
759 llvm_unreachable("Unsupported kind of VPBlock.");
762 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
763 InterleavedAccessInfo &IAI) {
764 Old2NewTy Old2New;
765 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);