[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / CodeGen / SelectionDAG / DAGCombiner.cpp
blobec738227f0ea59d699ffddbe9ffaf61065ca98f4
1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
10 // both before and after the DAG is legalized.
12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
13 // primarily intended to handle simplification opportunities that are implicit
14 // in the LLVM IR and exposed by the various codegen lowering phases.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/IntervalMap.h"
23 #include "llvm/ADT/None.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/CodeGen/DAGCombine.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAG.h"
40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
41 #include "llvm/CodeGen/SelectionDAGNodes.h"
42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Attributes.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/KnownBits.h"
61 #include "llvm/Support/MachineValueType.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <functional>
70 #include <iterator>
71 #include <string>
72 #include <tuple>
73 #include <utility>
75 using namespace llvm;
77 #define DEBUG_TYPE "dagcombine"
79 STATISTIC(NodesCombined , "Number of dag nodes combined");
80 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
81 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
82 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
83 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int");
84 STATISTIC(SlicedLoads, "Number of load sliced");
85 STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops");
87 static cl::opt<bool>
88 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
89 cl::desc("Enable DAG combiner's use of IR alias analysis"));
91 static cl::opt<bool>
92 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
93 cl::desc("Enable DAG combiner's use of TBAA"));
95 #ifndef NDEBUG
96 static cl::opt<std::string>
97 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
98 cl::desc("Only use DAG-combiner alias analysis in this"
99 " function"));
100 #endif
102 /// Hidden option to stress test load slicing, i.e., when this option
103 /// is enabled, load slicing bypasses most of its profitability guards.
104 static cl::opt<bool>
105 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
106 cl::desc("Bypass the profitability model of load slicing"),
107 cl::init(false));
109 static cl::opt<bool>
110 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
111 cl::desc("DAG combiner may split indexing from loads"));
113 static cl::opt<bool>
114 EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true),
115 cl::desc("DAG combiner enable merging multiple stores "
116 "into a wider store"));
118 static cl::opt<unsigned> TokenFactorInlineLimit(
119 "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048),
120 cl::desc("Limit the number of operands to inline for Token Factors"));
122 static cl::opt<unsigned> StoreMergeDependenceLimit(
123 "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10),
124 cl::desc("Limit the number of times for the same StoreNode and RootNode "
125 "to bail out in store merging dependence check"));
127 namespace {
129 class DAGCombiner {
130 SelectionDAG &DAG;
131 const TargetLowering &TLI;
132 CombineLevel Level;
133 CodeGenOpt::Level OptLevel;
134 bool LegalOperations = false;
135 bool LegalTypes = false;
136 bool ForCodeSize;
138 /// Worklist of all of the nodes that need to be simplified.
140 /// This must behave as a stack -- new nodes to process are pushed onto the
141 /// back and when processing we pop off of the back.
143 /// The worklist will not contain duplicates but may contain null entries
144 /// due to nodes being deleted from the underlying DAG.
145 SmallVector<SDNode *, 64> Worklist;
147 /// Mapping from an SDNode to its position on the worklist.
149 /// This is used to find and remove nodes from the worklist (by nulling
150 /// them) when they are deleted from the underlying DAG. It relies on
151 /// stable indices of nodes within the worklist.
152 DenseMap<SDNode *, unsigned> WorklistMap;
153 /// This records all nodes attempted to add to the worklist since we
154 /// considered a new worklist entry. As we keep do not add duplicate nodes
155 /// in the worklist, this is different from the tail of the worklist.
156 SmallSetVector<SDNode *, 32> PruningList;
158 /// Set of nodes which have been combined (at least once).
160 /// This is used to allow us to reliably add any operands of a DAG node
161 /// which have not yet been combined to the worklist.
162 SmallPtrSet<SDNode *, 32> CombinedNodes;
164 /// Map from candidate StoreNode to the pair of RootNode and count.
165 /// The count is used to track how many times we have seen the StoreNode
166 /// with the same RootNode bail out in dependence check. If we have seen
167 /// the bail out for the same pair many times over a limit, we won't
168 /// consider the StoreNode with the same RootNode as store merging
169 /// candidate again.
170 DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap;
172 // AA - Used for DAG load/store alias analysis.
173 AliasAnalysis *AA;
175 /// When an instruction is simplified, add all users of the instruction to
176 /// the work lists because they might get more simplified now.
177 void AddUsersToWorklist(SDNode *N) {
178 for (SDNode *Node : N->uses())
179 AddToWorklist(Node);
182 // Prune potentially dangling nodes. This is called after
183 // any visit to a node, but should also be called during a visit after any
184 // failed combine which may have created a DAG node.
185 void clearAddedDanglingWorklistEntries() {
186 // Check any nodes added to the worklist to see if they are prunable.
187 while (!PruningList.empty()) {
188 auto *N = PruningList.pop_back_val();
189 if (N->use_empty())
190 recursivelyDeleteUnusedNodes(N);
194 SDNode *getNextWorklistEntry() {
195 // Before we do any work, remove nodes that are not in use.
196 clearAddedDanglingWorklistEntries();
197 SDNode *N = nullptr;
198 // The Worklist holds the SDNodes in order, but it may contain null
199 // entries.
200 while (!N && !Worklist.empty()) {
201 N = Worklist.pop_back_val();
204 if (N) {
205 bool GoodWorklistEntry = WorklistMap.erase(N);
206 (void)GoodWorklistEntry;
207 assert(GoodWorklistEntry &&
208 "Found a worklist entry without a corresponding map entry!");
210 return N;
213 /// Call the node-specific routine that folds each particular type of node.
214 SDValue visit(SDNode *N);
216 public:
217 DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL)
218 : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
219 OptLevel(OL), AA(AA) {
220 ForCodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
222 MaximumLegalStoreInBits = 0;
223 for (MVT VT : MVT::all_valuetypes())
224 if (EVT(VT).isSimple() && VT != MVT::Other &&
225 TLI.isTypeLegal(EVT(VT)) &&
226 VT.getSizeInBits() >= MaximumLegalStoreInBits)
227 MaximumLegalStoreInBits = VT.getSizeInBits();
230 void ConsiderForPruning(SDNode *N) {
231 // Mark this for potential pruning.
232 PruningList.insert(N);
235 /// Add to the worklist making sure its instance is at the back (next to be
236 /// processed.)
237 void AddToWorklist(SDNode *N) {
238 assert(N->getOpcode() != ISD::DELETED_NODE &&
239 "Deleted Node added to Worklist");
241 // Skip handle nodes as they can't usefully be combined and confuse the
242 // zero-use deletion strategy.
243 if (N->getOpcode() == ISD::HANDLENODE)
244 return;
246 ConsiderForPruning(N);
248 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second)
249 Worklist.push_back(N);
252 /// Remove all instances of N from the worklist.
253 void removeFromWorklist(SDNode *N) {
254 CombinedNodes.erase(N);
255 PruningList.remove(N);
256 StoreRootCountMap.erase(N);
258 auto It = WorklistMap.find(N);
259 if (It == WorklistMap.end())
260 return; // Not in the worklist.
262 // Null out the entry rather than erasing it to avoid a linear operation.
263 Worklist[It->second] = nullptr;
264 WorklistMap.erase(It);
267 void deleteAndRecombine(SDNode *N);
268 bool recursivelyDeleteUnusedNodes(SDNode *N);
270 /// Replaces all uses of the results of one DAG node with new values.
271 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
272 bool AddTo = true);
274 /// Replaces all uses of the results of one DAG node with new values.
275 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
276 return CombineTo(N, &Res, 1, AddTo);
279 /// Replaces all uses of the results of one DAG node with new values.
280 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
281 bool AddTo = true) {
282 SDValue To[] = { Res0, Res1 };
283 return CombineTo(N, To, 2, AddTo);
286 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
288 private:
289 unsigned MaximumLegalStoreInBits;
291 /// Check the specified integer node value to see if it can be simplified or
292 /// if things it uses can be simplified by bit propagation.
293 /// If so, return true.
294 bool SimplifyDemandedBits(SDValue Op) {
295 unsigned BitWidth = Op.getScalarValueSizeInBits();
296 APInt DemandedBits = APInt::getAllOnesValue(BitWidth);
297 return SimplifyDemandedBits(Op, DemandedBits);
300 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) {
301 EVT VT = Op.getValueType();
302 unsigned NumElts = VT.isVector() ? VT.getVectorNumElements() : 1;
303 APInt DemandedElts = APInt::getAllOnesValue(NumElts);
304 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts);
307 /// Check the specified vector node value to see if it can be simplified or
308 /// if things it uses can be simplified as it only uses some of the
309 /// elements. If so, return true.
310 bool SimplifyDemandedVectorElts(SDValue Op) {
311 unsigned NumElts = Op.getValueType().getVectorNumElements();
312 APInt DemandedElts = APInt::getAllOnesValue(NumElts);
313 return SimplifyDemandedVectorElts(Op, DemandedElts);
316 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
317 const APInt &DemandedElts);
318 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
319 bool AssumeSingleUse = false);
321 bool CombineToPreIndexedLoadStore(SDNode *N);
322 bool CombineToPostIndexedLoadStore(SDNode *N);
323 SDValue SplitIndexingFromLoad(LoadSDNode *LD);
324 bool SliceUpLoad(SDNode *N);
326 // Scalars have size 0 to distinguish from singleton vectors.
327 SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD);
328 bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val);
329 bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val);
331 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
332 /// load.
334 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
335 /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
336 /// \param EltNo index of the vector element to load.
337 /// \param OriginalLoad load that EVE came from to be replaced.
338 /// \returns EVE on success SDValue() on failure.
339 SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
340 SDValue EltNo,
341 LoadSDNode *OriginalLoad);
342 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
343 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
344 SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
345 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
346 SDValue PromoteIntBinOp(SDValue Op);
347 SDValue PromoteIntShiftOp(SDValue Op);
348 SDValue PromoteExtend(SDValue Op);
349 bool PromoteLoad(SDValue Op);
351 /// Call the node-specific routine that knows how to fold each
352 /// particular type of node. If that doesn't do anything, try the
353 /// target-specific DAG combines.
354 SDValue combine(SDNode *N);
356 // Visitation implementation - Implement dag node combining for different
357 // node types. The semantics are as follows:
358 // Return Value:
359 // SDValue.getNode() == 0 - No change was made
360 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
361 // otherwise - N should be replaced by the returned Operand.
363 SDValue visitTokenFactor(SDNode *N);
364 SDValue visitMERGE_VALUES(SDNode *N);
365 SDValue visitADD(SDNode *N);
366 SDValue visitADDLike(SDNode *N);
367 SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference);
368 SDValue visitSUB(SDNode *N);
369 SDValue visitADDSAT(SDNode *N);
370 SDValue visitSUBSAT(SDNode *N);
371 SDValue visitADDC(SDNode *N);
372 SDValue visitADDO(SDNode *N);
373 SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N);
374 SDValue visitSUBC(SDNode *N);
375 SDValue visitSUBO(SDNode *N);
376 SDValue visitADDE(SDNode *N);
377 SDValue visitADDCARRY(SDNode *N);
378 SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N);
379 SDValue visitSUBE(SDNode *N);
380 SDValue visitSUBCARRY(SDNode *N);
381 SDValue visitMUL(SDNode *N);
382 SDValue visitMULFIX(SDNode *N);
383 SDValue useDivRem(SDNode *N);
384 SDValue visitSDIV(SDNode *N);
385 SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N);
386 SDValue visitUDIV(SDNode *N);
387 SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N);
388 SDValue visitREM(SDNode *N);
389 SDValue visitMULHU(SDNode *N);
390 SDValue visitMULHS(SDNode *N);
391 SDValue visitSMUL_LOHI(SDNode *N);
392 SDValue visitUMUL_LOHI(SDNode *N);
393 SDValue visitMULO(SDNode *N);
394 SDValue visitIMINMAX(SDNode *N);
395 SDValue visitAND(SDNode *N);
396 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N);
397 SDValue visitOR(SDNode *N);
398 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N);
399 SDValue visitXOR(SDNode *N);
400 SDValue SimplifyVBinOp(SDNode *N);
401 SDValue visitSHL(SDNode *N);
402 SDValue visitSRA(SDNode *N);
403 SDValue visitSRL(SDNode *N);
404 SDValue visitFunnelShift(SDNode *N);
405 SDValue visitRotate(SDNode *N);
406 SDValue visitABS(SDNode *N);
407 SDValue visitBSWAP(SDNode *N);
408 SDValue visitBITREVERSE(SDNode *N);
409 SDValue visitCTLZ(SDNode *N);
410 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
411 SDValue visitCTTZ(SDNode *N);
412 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
413 SDValue visitCTPOP(SDNode *N);
414 SDValue visitSELECT(SDNode *N);
415 SDValue visitVSELECT(SDNode *N);
416 SDValue visitSELECT_CC(SDNode *N);
417 SDValue visitSETCC(SDNode *N);
418 SDValue visitSETCCCARRY(SDNode *N);
419 SDValue visitSIGN_EXTEND(SDNode *N);
420 SDValue visitZERO_EXTEND(SDNode *N);
421 SDValue visitANY_EXTEND(SDNode *N);
422 SDValue visitAssertExt(SDNode *N);
423 SDValue visitSIGN_EXTEND_INREG(SDNode *N);
424 SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N);
425 SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N);
426 SDValue visitTRUNCATE(SDNode *N);
427 SDValue visitBITCAST(SDNode *N);
428 SDValue visitBUILD_PAIR(SDNode *N);
429 SDValue visitFADD(SDNode *N);
430 SDValue visitFSUB(SDNode *N);
431 SDValue visitFMUL(SDNode *N);
432 SDValue visitFMA(SDNode *N);
433 SDValue visitFDIV(SDNode *N);
434 SDValue visitFREM(SDNode *N);
435 SDValue visitFSQRT(SDNode *N);
436 SDValue visitFCOPYSIGN(SDNode *N);
437 SDValue visitFPOW(SDNode *N);
438 SDValue visitSINT_TO_FP(SDNode *N);
439 SDValue visitUINT_TO_FP(SDNode *N);
440 SDValue visitFP_TO_SINT(SDNode *N);
441 SDValue visitFP_TO_UINT(SDNode *N);
442 SDValue visitFP_ROUND(SDNode *N);
443 SDValue visitFP_ROUND_INREG(SDNode *N);
444 SDValue visitFP_EXTEND(SDNode *N);
445 SDValue visitFNEG(SDNode *N);
446 SDValue visitFABS(SDNode *N);
447 SDValue visitFCEIL(SDNode *N);
448 SDValue visitFTRUNC(SDNode *N);
449 SDValue visitFFLOOR(SDNode *N);
450 SDValue visitFMINNUM(SDNode *N);
451 SDValue visitFMAXNUM(SDNode *N);
452 SDValue visitFMINIMUM(SDNode *N);
453 SDValue visitFMAXIMUM(SDNode *N);
454 SDValue visitBRCOND(SDNode *N);
455 SDValue visitBR_CC(SDNode *N);
456 SDValue visitLOAD(SDNode *N);
458 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain);
459 SDValue replaceStoreOfFPConstant(StoreSDNode *ST);
461 SDValue visitSTORE(SDNode *N);
462 SDValue visitLIFETIME_END(SDNode *N);
463 SDValue visitINSERT_VECTOR_ELT(SDNode *N);
464 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
465 SDValue visitBUILD_VECTOR(SDNode *N);
466 SDValue visitCONCAT_VECTORS(SDNode *N);
467 SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
468 SDValue visitVECTOR_SHUFFLE(SDNode *N);
469 SDValue visitSCALAR_TO_VECTOR(SDNode *N);
470 SDValue visitINSERT_SUBVECTOR(SDNode *N);
471 SDValue visitMLOAD(SDNode *N);
472 SDValue visitMSTORE(SDNode *N);
473 SDValue visitMGATHER(SDNode *N);
474 SDValue visitMSCATTER(SDNode *N);
475 SDValue visitFP_TO_FP16(SDNode *N);
476 SDValue visitFP16_TO_FP(SDNode *N);
477 SDValue visitVECREDUCE(SDNode *N);
479 SDValue visitFADDForFMACombine(SDNode *N);
480 SDValue visitFSUBForFMACombine(SDNode *N);
481 SDValue visitFMULForFMADistributiveCombine(SDNode *N);
483 SDValue XformToShuffleWithZero(SDNode *N);
484 bool reassociationCanBreakAddressingModePattern(unsigned Opc,
485 const SDLoc &DL, SDValue N0,
486 SDValue N1);
487 SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0,
488 SDValue N1);
489 SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
490 SDValue N1, SDNodeFlags Flags);
492 SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt);
494 SDValue foldSelectOfConstants(SDNode *N);
495 SDValue foldVSelectOfConstants(SDNode *N);
496 SDValue foldBinOpIntoSelect(SDNode *BO);
497 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
498 SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N);
499 SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2);
500 SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
501 SDValue N2, SDValue N3, ISD::CondCode CC,
502 bool NotExtCompare = false);
503 SDValue convertSelectOfFPConstantsToLoadOffset(
504 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
505 ISD::CondCode CC);
506 SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1,
507 SDValue N2, SDValue N3, ISD::CondCode CC);
508 SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
509 const SDLoc &DL);
510 SDValue unfoldMaskedMerge(SDNode *N);
511 SDValue unfoldExtremeBitClearingToShifts(SDNode *N);
512 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
513 const SDLoc &DL, bool foldBooleans);
514 SDValue rebuildSetCC(SDValue N);
516 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
517 SDValue &CC) const;
518 bool isOneUseSetCC(SDValue N) const;
520 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
521 unsigned HiOp);
522 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
523 SDValue CombineExtLoad(SDNode *N);
524 SDValue CombineZExtLogicopShiftLoad(SDNode *N);
525 SDValue combineRepeatedFPDivisors(SDNode *N);
526 SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex);
527 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
528 SDValue BuildSDIV(SDNode *N);
529 SDValue BuildSDIVPow2(SDNode *N);
530 SDValue BuildUDIV(SDNode *N);
531 SDValue BuildLogBase2(SDValue V, const SDLoc &DL);
532 SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags Flags);
533 SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags);
534 SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags);
535 SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip);
536 SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations,
537 SDNodeFlags Flags, bool Reciprocal);
538 SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations,
539 SDNodeFlags Flags, bool Reciprocal);
540 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
541 bool DemandHighBits = true);
542 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
543 SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
544 SDValue InnerPos, SDValue InnerNeg,
545 unsigned PosOpcode, unsigned NegOpcode,
546 const SDLoc &DL);
547 SDNode *MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL);
548 SDValue MatchLoadCombine(SDNode *N);
549 SDValue MatchStoreCombine(StoreSDNode *N);
550 SDValue ReduceLoadWidth(SDNode *N);
551 SDValue ReduceLoadOpStoreWidth(SDNode *N);
552 SDValue splitMergedValStore(StoreSDNode *ST);
553 SDValue TransformFPLoadStorePair(SDNode *N);
554 SDValue convertBuildVecZextToZext(SDNode *N);
555 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
556 SDValue reduceBuildVecToShuffle(SDNode *N);
557 SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N,
558 ArrayRef<int> VectorMask, SDValue VecIn1,
559 SDValue VecIn2, unsigned LeftIdx,
560 bool DidSplitVec);
561 SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast);
563 /// Walk up chain skipping non-aliasing memory nodes,
564 /// looking for aliasing nodes and adding them to the Aliases vector.
565 void GatherAllAliases(SDNode *N, SDValue OriginalChain,
566 SmallVectorImpl<SDValue> &Aliases);
568 /// Return true if there is any possibility that the two addresses overlap.
569 bool isAlias(SDNode *Op0, SDNode *Op1) const;
571 /// Walk up chain skipping non-aliasing memory nodes, looking for a better
572 /// chain (aliasing node.)
573 SDValue FindBetterChain(SDNode *N, SDValue Chain);
575 /// Try to replace a store and any possibly adjacent stores on
576 /// consecutive chains with better chains. Return true only if St is
577 /// replaced.
579 /// Notice that other chains may still be replaced even if the function
580 /// returns false.
581 bool findBetterNeighborChains(StoreSDNode *St);
583 // Helper for findBetterNeighborChains. Walk up store chain add additional
584 // chained stores that do not overlap and can be parallelized.
585 bool parallelizeChainedStores(StoreSDNode *St);
587 /// Holds a pointer to an LSBaseSDNode as well as information on where it
588 /// is located in a sequence of memory operations connected by a chain.
589 struct MemOpLink {
590 // Ptr to the mem node.
591 LSBaseSDNode *MemNode;
593 // Offset from the base ptr.
594 int64_t OffsetFromBase;
596 MemOpLink(LSBaseSDNode *N, int64_t Offset)
597 : MemNode(N), OffsetFromBase(Offset) {}
600 /// This is a helper function for visitMUL to check the profitability
601 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
602 /// MulNode is the original multiply, AddNode is (add x, c1),
603 /// and ConstNode is c2.
604 bool isMulAddWithConstProfitable(SDNode *MulNode,
605 SDValue &AddNode,
606 SDValue &ConstNode);
608 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns
609 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns
610 /// the type of the loaded value to be extended.
611 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
612 EVT LoadResultTy, EVT &ExtVT);
614 /// Helper function to calculate whether the given Load/Store can have its
615 /// width reduced to ExtVT.
616 bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType,
617 EVT &MemVT, unsigned ShAmt = 0);
619 /// Used by BackwardsPropagateMask to find suitable loads.
620 bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads,
621 SmallPtrSetImpl<SDNode*> &NodesWithConsts,
622 ConstantSDNode *Mask, SDNode *&NodeToMask);
623 /// Attempt to propagate a given AND node back to load leaves so that they
624 /// can be combined into narrow loads.
625 bool BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG);
627 /// Helper function for MergeConsecutiveStores which merges the
628 /// component store chains.
629 SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
630 unsigned NumStores);
632 /// This is a helper function for MergeConsecutiveStores. When the
633 /// source elements of the consecutive stores are all constants or
634 /// all extracted vector elements, try to merge them into one
635 /// larger store introducing bitcasts if necessary. \return True
636 /// if a merged store was created.
637 bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
638 EVT MemVT, unsigned NumStores,
639 bool IsConstantSrc, bool UseVector,
640 bool UseTrunc);
642 /// This is a helper function for MergeConsecutiveStores. Stores
643 /// that potentially may be merged with St are placed in
644 /// StoreNodes. RootNode is a chain predecessor to all store
645 /// candidates.
646 void getStoreMergeCandidates(StoreSDNode *St,
647 SmallVectorImpl<MemOpLink> &StoreNodes,
648 SDNode *&Root);
650 /// Helper function for MergeConsecutiveStores. Checks if
651 /// candidate stores have indirect dependency through their
652 /// operands. RootNode is the predecessor to all stores calculated
653 /// by getStoreMergeCandidates and is used to prune the dependency check.
654 /// \return True if safe to merge.
655 bool checkMergeStoreCandidatesForDependencies(
656 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
657 SDNode *RootNode);
659 /// Merge consecutive store operations into a wide store.
660 /// This optimization uses wide integers or vectors when possible.
661 /// \return number of stores that were merged into a merged store (the
662 /// affected nodes are stored as a prefix in \p StoreNodes).
663 bool MergeConsecutiveStores(StoreSDNode *St);
665 /// Try to transform a truncation where C is a constant:
666 /// (trunc (and X, C)) -> (and (trunc X), (trunc C))
668 /// \p N needs to be a truncation and its first operand an AND. Other
669 /// requirements are checked by the function (e.g. that trunc is
670 /// single-use) and if missed an empty SDValue is returned.
671 SDValue distributeTruncateThroughAnd(SDNode *N);
673 /// Helper function to determine whether the target supports operation
674 /// given by \p Opcode for type \p VT, that is, whether the operation
675 /// is legal or custom before legalizing operations, and whether is
676 /// legal (but not custom) after legalization.
677 bool hasOperation(unsigned Opcode, EVT VT) {
678 if (LegalOperations)
679 return TLI.isOperationLegal(Opcode, VT);
680 return TLI.isOperationLegalOrCustom(Opcode, VT);
683 public:
684 /// Runs the dag combiner on all nodes in the work list
685 void Run(CombineLevel AtLevel);
687 SelectionDAG &getDAG() const { return DAG; }
689 /// Returns a type large enough to hold any valid shift amount - before type
690 /// legalization these can be huge.
691 EVT getShiftAmountTy(EVT LHSTy) {
692 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
693 return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes);
696 /// This method returns true if we are running before type legalization or
697 /// if the specified VT is legal.
698 bool isTypeLegal(const EVT &VT) {
699 if (!LegalTypes) return true;
700 return TLI.isTypeLegal(VT);
703 /// Convenience wrapper around TargetLowering::getSetCCResultType
704 EVT getSetCCResultType(EVT VT) const {
705 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
708 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
709 SDValue OrigLoad, SDValue ExtLoad,
710 ISD::NodeType ExtType);
713 /// This class is a DAGUpdateListener that removes any deleted
714 /// nodes from the worklist.
715 class WorklistRemover : public SelectionDAG::DAGUpdateListener {
716 DAGCombiner &DC;
718 public:
719 explicit WorklistRemover(DAGCombiner &dc)
720 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
722 void NodeDeleted(SDNode *N, SDNode *E) override {
723 DC.removeFromWorklist(N);
727 class WorklistInserter : public SelectionDAG::DAGUpdateListener {
728 DAGCombiner &DC;
730 public:
731 explicit WorklistInserter(DAGCombiner &dc)
732 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
734 // FIXME: Ideally we could add N to the worklist, but this causes exponential
735 // compile time costs in large DAGs, e.g. Halide.
736 void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); }
739 } // end anonymous namespace
741 //===----------------------------------------------------------------------===//
742 // TargetLowering::DAGCombinerInfo implementation
743 //===----------------------------------------------------------------------===//
745 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
746 ((DAGCombiner*)DC)->AddToWorklist(N);
749 SDValue TargetLowering::DAGCombinerInfo::
750 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
751 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
754 SDValue TargetLowering::DAGCombinerInfo::
755 CombineTo(SDNode *N, SDValue Res, bool AddTo) {
756 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
759 SDValue TargetLowering::DAGCombinerInfo::
760 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
761 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
764 void TargetLowering::DAGCombinerInfo::
765 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
766 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
769 //===----------------------------------------------------------------------===//
770 // Helper Functions
771 //===----------------------------------------------------------------------===//
773 void DAGCombiner::deleteAndRecombine(SDNode *N) {
774 removeFromWorklist(N);
776 // If the operands of this node are only used by the node, they will now be
777 // dead. Make sure to re-visit them and recursively delete dead nodes.
778 for (const SDValue &Op : N->ops())
779 // For an operand generating multiple values, one of the values may
780 // become dead allowing further simplification (e.g. split index
781 // arithmetic from an indexed load).
782 if (Op->hasOneUse() || Op->getNumValues() > 1)
783 AddToWorklist(Op.getNode());
785 DAG.DeleteNode(N);
788 /// Return 1 if we can compute the negated form of the specified expression for
789 /// the same cost as the expression itself, or 2 if we can compute the negated
790 /// form more cheaply than the expression itself.
791 static char isNegatibleForFree(SDValue Op, bool LegalOperations,
792 const TargetLowering &TLI,
793 const TargetOptions *Options,
794 bool ForCodeSize,
795 unsigned Depth = 0) {
796 // fneg is removable even if it has multiple uses.
797 if (Op.getOpcode() == ISD::FNEG)
798 return 2;
800 // Don't allow anything with multiple uses unless we know it is free.
801 EVT VT = Op.getValueType();
802 const SDNodeFlags Flags = Op->getFlags();
803 if (!Op.hasOneUse() &&
804 !(Op.getOpcode() == ISD::FP_EXTEND &&
805 TLI.isFPExtFree(VT, Op.getOperand(0).getValueType())))
806 return 0;
808 // Don't recurse exponentially.
809 if (Depth > 6)
810 return 0;
812 switch (Op.getOpcode()) {
813 default: return false;
814 case ISD::ConstantFP: {
815 if (!LegalOperations)
816 return 1;
818 // Don't invert constant FP values after legalization unless the target says
819 // the negated constant is legal.
820 return TLI.isOperationLegal(ISD::ConstantFP, VT) ||
821 TLI.isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
822 ForCodeSize);
824 case ISD::BUILD_VECTOR: {
825 // Only permit BUILD_VECTOR of constants.
826 if (llvm::any_of(Op->op_values(), [&](SDValue N) {
827 return !N.isUndef() && !isa<ConstantFPSDNode>(N);
829 return 0;
830 if (!LegalOperations)
831 return 1;
832 if (TLI.isOperationLegal(ISD::ConstantFP, VT) &&
833 TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
834 return 1;
835 return llvm::all_of(Op->op_values(), [&](SDValue N) {
836 return N.isUndef() ||
837 TLI.isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
838 ForCodeSize);
841 case ISD::FADD:
842 if (!Options->NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
843 return 0;
845 // After operation legalization, it might not be legal to create new FSUBs.
846 if (LegalOperations && !TLI.isOperationLegalOrCustom(ISD::FSUB, VT))
847 return 0;
849 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
850 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
851 Options, ForCodeSize, Depth + 1))
852 return V;
853 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
854 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
855 ForCodeSize, Depth + 1);
856 case ISD::FSUB:
857 // We can't turn -(A-B) into B-A when we honor signed zeros.
858 if (!Options->NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
859 return 0;
861 // fold (fneg (fsub A, B)) -> (fsub B, A)
862 return 1;
864 case ISD::FMUL:
865 case ISD::FDIV:
866 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
867 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
868 Options, ForCodeSize, Depth + 1))
869 return V;
871 // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
872 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
873 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
874 return 0;
876 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
877 ForCodeSize, Depth + 1);
879 case ISD::FMA:
880 case ISD::FMAD: {
881 if (!Options->NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
882 return 0;
884 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
885 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
886 char V2 = isNegatibleForFree(Op.getOperand(2), LegalOperations, TLI,
887 Options, ForCodeSize, Depth + 1);
888 if (!V2)
889 return 0;
891 // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
892 char V0 = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
893 Options, ForCodeSize, Depth + 1);
894 char V1 = isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI,
895 Options, ForCodeSize, Depth + 1);
896 char V01 = std::max(V0, V1);
897 return V01 ? std::max(V01, V2) : 0;
900 case ISD::FP_EXTEND:
901 case ISD::FP_ROUND:
902 case ISD::FSIN:
903 return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
904 ForCodeSize, Depth + 1);
908 /// If isNegatibleForFree returns true, return the newly negated expression.
909 static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
910 bool LegalOperations, bool ForCodeSize,
911 unsigned Depth = 0) {
912 // fneg is removable even if it has multiple uses.
913 if (Op.getOpcode() == ISD::FNEG)
914 return Op.getOperand(0);
916 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
917 const TargetOptions &Options = DAG.getTarget().Options;
918 const SDNodeFlags Flags = Op->getFlags();
920 switch (Op.getOpcode()) {
921 default: llvm_unreachable("Unknown code");
922 case ISD::ConstantFP: {
923 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
924 V.changeSign();
925 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
927 case ISD::BUILD_VECTOR: {
928 SmallVector<SDValue, 4> Ops;
929 for (SDValue C : Op->op_values()) {
930 if (C.isUndef()) {
931 Ops.push_back(C);
932 continue;
934 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
935 V.changeSign();
936 Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType()));
938 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops);
940 case ISD::FADD:
941 assert((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) &&
942 "Expected NSZ fp-flag");
944 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
945 if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
946 DAG.getTargetLoweringInfo(), &Options, ForCodeSize,
947 Depth + 1))
948 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
949 GetNegatedExpression(Op.getOperand(0), DAG,
950 LegalOperations, ForCodeSize,
951 Depth + 1),
952 Op.getOperand(1), Flags);
953 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
954 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
955 GetNegatedExpression(Op.getOperand(1), DAG,
956 LegalOperations, ForCodeSize,
957 Depth + 1),
958 Op.getOperand(0), Flags);
959 case ISD::FSUB:
960 // fold (fneg (fsub 0, B)) -> B
961 if (ConstantFPSDNode *N0CFP =
962 isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true))
963 if (N0CFP->isZero())
964 return Op.getOperand(1);
966 // fold (fneg (fsub A, B)) -> (fsub B, A)
967 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
968 Op.getOperand(1), Op.getOperand(0), Flags);
970 case ISD::FMUL:
971 case ISD::FDIV:
972 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
973 if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
974 DAG.getTargetLoweringInfo(), &Options, ForCodeSize,
975 Depth + 1))
976 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
977 GetNegatedExpression(Op.getOperand(0), DAG,
978 LegalOperations, ForCodeSize,
979 Depth + 1),
980 Op.getOperand(1), Flags);
982 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
983 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
984 Op.getOperand(0),
985 GetNegatedExpression(Op.getOperand(1), DAG,
986 LegalOperations, ForCodeSize,
987 Depth + 1), Flags);
989 case ISD::FMA:
990 case ISD::FMAD: {
991 assert((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) &&
992 "Expected NSZ fp-flag");
994 SDValue Neg2 = GetNegatedExpression(Op.getOperand(2), DAG, LegalOperations,
995 ForCodeSize, Depth + 1);
997 char V0 = isNegatibleForFree(Op.getOperand(0), LegalOperations,
998 DAG.getTargetLoweringInfo(), &Options,
999 ForCodeSize, Depth + 1);
1000 char V1 = isNegatibleForFree(Op.getOperand(1), LegalOperations,
1001 DAG.getTargetLoweringInfo(), &Options,
1002 ForCodeSize, Depth + 1);
1003 if (V0 >= V1) {
1004 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
1005 SDValue Neg0 = GetNegatedExpression(
1006 Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1);
1007 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0,
1008 Op.getOperand(1), Neg2, Flags);
1011 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
1012 SDValue Neg1 = GetNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
1013 ForCodeSize, Depth + 1);
1014 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
1015 Op.getOperand(0), Neg1, Neg2, Flags);
1018 case ISD::FP_EXTEND:
1019 case ISD::FSIN:
1020 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
1021 GetNegatedExpression(Op.getOperand(0), DAG,
1022 LegalOperations, ForCodeSize,
1023 Depth + 1));
1024 case ISD::FP_ROUND:
1025 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
1026 GetNegatedExpression(Op.getOperand(0), DAG,
1027 LegalOperations, ForCodeSize,
1028 Depth + 1),
1029 Op.getOperand(1));
1033 // APInts must be the same size for most operations, this helper
1034 // function zero extends the shorter of the pair so that they match.
1035 // We provide an Offset so that we can create bitwidths that won't overflow.
1036 static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) {
1037 unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth());
1038 LHS = LHS.zextOrSelf(Bits);
1039 RHS = RHS.zextOrSelf(Bits);
1042 // Return true if this node is a setcc, or is a select_cc
1043 // that selects between the target values used for true and false, making it
1044 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
1045 // the appropriate nodes based on the type of node we are checking. This
1046 // simplifies life a bit for the callers.
1047 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
1048 SDValue &CC) const {
1049 if (N.getOpcode() == ISD::SETCC) {
1050 LHS = N.getOperand(0);
1051 RHS = N.getOperand(1);
1052 CC = N.getOperand(2);
1053 return true;
1056 if (N.getOpcode() != ISD::SELECT_CC ||
1057 !TLI.isConstTrueVal(N.getOperand(2).getNode()) ||
1058 !TLI.isConstFalseVal(N.getOperand(3).getNode()))
1059 return false;
1061 if (TLI.getBooleanContents(N.getValueType()) ==
1062 TargetLowering::UndefinedBooleanContent)
1063 return false;
1065 LHS = N.getOperand(0);
1066 RHS = N.getOperand(1);
1067 CC = N.getOperand(4);
1068 return true;
1071 /// Return true if this is a SetCC-equivalent operation with only one use.
1072 /// If this is true, it allows the users to invert the operation for free when
1073 /// it is profitable to do so.
1074 bool DAGCombiner::isOneUseSetCC(SDValue N) const {
1075 SDValue N0, N1, N2;
1076 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
1077 return true;
1078 return false;
1081 // Returns the SDNode if it is a constant float BuildVector
1082 // or constant float.
1083 static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) {
1084 if (isa<ConstantFPSDNode>(N))
1085 return N.getNode();
1086 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
1087 return N.getNode();
1088 return nullptr;
1091 // Determines if it is a constant integer or a build vector of constant
1092 // integers (and undefs).
1093 // Do not permit build vector implicit truncation.
1094 static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) {
1095 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N))
1096 return !(Const->isOpaque() && NoOpaques);
1097 if (N.getOpcode() != ISD::BUILD_VECTOR)
1098 return false;
1099 unsigned BitWidth = N.getScalarValueSizeInBits();
1100 for (const SDValue &Op : N->op_values()) {
1101 if (Op.isUndef())
1102 continue;
1103 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op);
1104 if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth ||
1105 (Const->isOpaque() && NoOpaques))
1106 return false;
1108 return true;
1111 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
1112 // undef's.
1113 static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) {
1114 if (V.getOpcode() != ISD::BUILD_VECTOR)
1115 return false;
1116 return isConstantOrConstantVector(V, NoOpaques) ||
1117 ISD::isBuildVectorOfConstantFPSDNodes(V.getNode());
1120 bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc,
1121 const SDLoc &DL,
1122 SDValue N0,
1123 SDValue N1) {
1124 // Currently this only tries to ensure we don't undo the GEP splits done by
1125 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this,
1126 // we check if the following transformation would be problematic:
1127 // (load/store (add, (add, x, offset1), offset2)) ->
1128 // (load/store (add, x, offset1+offset2)).
1130 if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD)
1131 return false;
1133 if (N0.hasOneUse())
1134 return false;
1136 auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
1137 auto *C2 = dyn_cast<ConstantSDNode>(N1);
1138 if (!C1 || !C2)
1139 return false;
1141 const APInt &C1APIntVal = C1->getAPIntValue();
1142 const APInt &C2APIntVal = C2->getAPIntValue();
1143 if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64)
1144 return false;
1146 const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal;
1147 if (CombinedValueIntVal.getBitWidth() > 64)
1148 return false;
1149 const int64_t CombinedValue = CombinedValueIntVal.getSExtValue();
1151 for (SDNode *Node : N0->uses()) {
1152 auto LoadStore = dyn_cast<MemSDNode>(Node);
1153 if (LoadStore) {
1154 // Is x[offset2] already not a legal addressing mode? If so then
1155 // reassociating the constants breaks nothing (we test offset2 because
1156 // that's the one we hope to fold into the load or store).
1157 TargetLoweringBase::AddrMode AM;
1158 AM.HasBaseReg = true;
1159 AM.BaseOffs = C2APIntVal.getSExtValue();
1160 EVT VT = LoadStore->getMemoryVT();
1161 unsigned AS = LoadStore->getAddressSpace();
1162 Type *AccessTy = VT.getTypeForEVT(*DAG.getContext());
1163 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
1164 continue;
1166 // Would x[offset1+offset2] still be a legal addressing mode?
1167 AM.BaseOffs = CombinedValue;
1168 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
1169 return true;
1173 return false;
1176 // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression
1177 // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc.
1178 SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL,
1179 SDValue N0, SDValue N1) {
1180 EVT VT = N0.getValueType();
1182 if (N0.getOpcode() != Opc)
1183 return SDValue();
1185 // Don't reassociate reductions.
1186 if (N0->getFlags().hasVectorReduction())
1187 return SDValue();
1189 if (SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) {
1190 if (SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
1191 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2))
1192 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, C1, C2))
1193 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
1194 return SDValue();
1196 if (N0.hasOneUse()) {
1197 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
1198 // iff (op x, c1) has one use
1199 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1);
1200 if (!OpNode.getNode())
1201 return SDValue();
1202 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
1205 return SDValue();
1208 // Try to reassociate commutative binops.
1209 SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
1210 SDValue N1, SDNodeFlags Flags) {
1211 assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative.");
1212 // Don't reassociate reductions.
1213 if (Flags.hasVectorReduction())
1214 return SDValue();
1216 // Floating-point reassociation is not allowed without loose FP math.
1217 if (N0.getValueType().isFloatingPoint() ||
1218 N1.getValueType().isFloatingPoint())
1219 if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros())
1220 return SDValue();
1222 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1))
1223 return Combined;
1224 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0))
1225 return Combined;
1226 return SDValue();
1229 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
1230 bool AddTo) {
1231 assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
1232 ++NodesCombined;
1233 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: ";
1234 To[0].getNode()->dump(&DAG);
1235 dbgs() << " and " << NumTo - 1 << " other values\n");
1236 for (unsigned i = 0, e = NumTo; i != e; ++i)
1237 assert((!To[i].getNode() ||
1238 N->getValueType(i) == To[i].getValueType()) &&
1239 "Cannot combine value to value of different type!");
1241 WorklistRemover DeadNodes(*this);
1242 DAG.ReplaceAllUsesWith(N, To);
1243 if (AddTo) {
1244 // Push the new nodes and any users onto the worklist
1245 for (unsigned i = 0, e = NumTo; i != e; ++i) {
1246 if (To[i].getNode()) {
1247 AddToWorklist(To[i].getNode());
1248 AddUsersToWorklist(To[i].getNode());
1253 // Finally, if the node is now dead, remove it from the graph. The node
1254 // may not be dead if the replacement process recursively simplified to
1255 // something else needing this node.
1256 if (N->use_empty())
1257 deleteAndRecombine(N);
1258 return SDValue(N, 0);
1261 void DAGCombiner::
1262 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
1263 // Replace all uses. If any nodes become isomorphic to other nodes and
1264 // are deleted, make sure to remove them from our worklist.
1265 WorklistRemover DeadNodes(*this);
1266 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
1268 // Push the new node and any (possibly new) users onto the worklist.
1269 AddToWorklist(TLO.New.getNode());
1270 AddUsersToWorklist(TLO.New.getNode());
1272 // Finally, if the node is now dead, remove it from the graph. The node
1273 // may not be dead if the replacement process recursively simplified to
1274 // something else needing this node.
1275 if (TLO.Old.getNode()->use_empty())
1276 deleteAndRecombine(TLO.Old.getNode());
1279 /// Check the specified integer node value to see if it can be simplified or if
1280 /// things it uses can be simplified by bit propagation. If so, return true.
1281 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
1282 const APInt &DemandedElts) {
1283 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
1284 KnownBits Known;
1285 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO))
1286 return false;
1288 // Revisit the node.
1289 AddToWorklist(Op.getNode());
1291 // Replace the old value with the new one.
1292 ++NodesCombined;
1293 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG);
1294 dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG);
1295 dbgs() << '\n');
1297 CommitTargetLoweringOpt(TLO);
1298 return true;
1301 /// Check the specified vector node value to see if it can be simplified or
1302 /// if things it uses can be simplified as it only uses some of the elements.
1303 /// If so, return true.
1304 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op,
1305 const APInt &DemandedElts,
1306 bool AssumeSingleUse) {
1307 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
1308 APInt KnownUndef, KnownZero;
1309 if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero,
1310 TLO, 0, AssumeSingleUse))
1311 return false;
1313 // Revisit the node.
1314 AddToWorklist(Op.getNode());
1316 // Replace the old value with the new one.
1317 ++NodesCombined;
1318 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG);
1319 dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG);
1320 dbgs() << '\n');
1322 CommitTargetLoweringOpt(TLO);
1323 return true;
1326 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
1327 SDLoc DL(Load);
1328 EVT VT = Load->getValueType(0);
1329 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0));
1331 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: ";
1332 Trunc.getNode()->dump(&DAG); dbgs() << '\n');
1333 WorklistRemover DeadNodes(*this);
1334 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
1335 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
1336 deleteAndRecombine(Load);
1337 AddToWorklist(Trunc.getNode());
1340 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
1341 Replace = false;
1342 SDLoc DL(Op);
1343 if (ISD::isUNINDEXEDLoad(Op.getNode())) {
1344 LoadSDNode *LD = cast<LoadSDNode>(Op);
1345 EVT MemVT = LD->getMemoryVT();
1346 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
1347 : LD->getExtensionType();
1348 Replace = true;
1349 return DAG.getExtLoad(ExtType, DL, PVT,
1350 LD->getChain(), LD->getBasePtr(),
1351 MemVT, LD->getMemOperand());
1354 unsigned Opc = Op.getOpcode();
1355 switch (Opc) {
1356 default: break;
1357 case ISD::AssertSext:
1358 if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT))
1359 return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1));
1360 break;
1361 case ISD::AssertZext:
1362 if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT))
1363 return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1));
1364 break;
1365 case ISD::Constant: {
1366 unsigned ExtOpc =
1367 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1368 return DAG.getNode(ExtOpc, DL, PVT, Op);
1372 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
1373 return SDValue();
1374 return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op);
1377 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
1378 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
1379 return SDValue();
1380 EVT OldVT = Op.getValueType();
1381 SDLoc DL(Op);
1382 bool Replace = false;
1383 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1384 if (!NewOp.getNode())
1385 return SDValue();
1386 AddToWorklist(NewOp.getNode());
1388 if (Replace)
1389 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1390 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp,
1391 DAG.getValueType(OldVT));
1394 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
1395 EVT OldVT = Op.getValueType();
1396 SDLoc DL(Op);
1397 bool Replace = false;
1398 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1399 if (!NewOp.getNode())
1400 return SDValue();
1401 AddToWorklist(NewOp.getNode());
1403 if (Replace)
1404 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1405 return DAG.getZeroExtendInReg(NewOp, DL, OldVT);
1408 /// Promote the specified integer binary operation if the target indicates it is
1409 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1410 /// i32 since i16 instructions are longer.
1411 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
1412 if (!LegalOperations)
1413 return SDValue();
1415 EVT VT = Op.getValueType();
1416 if (VT.isVector() || !VT.isInteger())
1417 return SDValue();
1419 // If operation type is 'undesirable', e.g. i16 on x86, consider
1420 // promoting it.
1421 unsigned Opc = Op.getOpcode();
1422 if (TLI.isTypeDesirableForOp(Opc, VT))
1423 return SDValue();
1425 EVT PVT = VT;
1426 // Consult target whether it is a good idea to promote this operation and
1427 // what's the right type to promote it to.
1428 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1429 assert(PVT != VT && "Don't know what type to promote to!");
1431 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
1433 bool Replace0 = false;
1434 SDValue N0 = Op.getOperand(0);
1435 SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
1437 bool Replace1 = false;
1438 SDValue N1 = Op.getOperand(1);
1439 SDValue NN1 = PromoteOperand(N1, PVT, Replace1);
1440 SDLoc DL(Op);
1442 SDValue RV =
1443 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1));
1445 // We are always replacing N0/N1's use in N and only need
1446 // additional replacements if there are additional uses.
1447 Replace0 &= !N0->hasOneUse();
1448 Replace1 &= (N0 != N1) && !N1->hasOneUse();
1450 // Combine Op here so it is preserved past replacements.
1451 CombineTo(Op.getNode(), RV);
1453 // If operands have a use ordering, make sure we deal with
1454 // predecessor first.
1455 if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) {
1456 std::swap(N0, N1);
1457 std::swap(NN0, NN1);
1460 if (Replace0) {
1461 AddToWorklist(NN0.getNode());
1462 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
1464 if (Replace1) {
1465 AddToWorklist(NN1.getNode());
1466 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
1468 return Op;
1470 return SDValue();
1473 /// Promote the specified integer shift operation if the target indicates it is
1474 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1475 /// i32 since i16 instructions are longer.
1476 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
1477 if (!LegalOperations)
1478 return SDValue();
1480 EVT VT = Op.getValueType();
1481 if (VT.isVector() || !VT.isInteger())
1482 return SDValue();
1484 // If operation type is 'undesirable', e.g. i16 on x86, consider
1485 // promoting it.
1486 unsigned Opc = Op.getOpcode();
1487 if (TLI.isTypeDesirableForOp(Opc, VT))
1488 return SDValue();
1490 EVT PVT = VT;
1491 // Consult target whether it is a good idea to promote this operation and
1492 // what's the right type to promote it to.
1493 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1494 assert(PVT != VT && "Don't know what type to promote to!");
1496 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
1498 bool Replace = false;
1499 SDValue N0 = Op.getOperand(0);
1500 SDValue N1 = Op.getOperand(1);
1501 if (Opc == ISD::SRA)
1502 N0 = SExtPromoteOperand(N0, PVT);
1503 else if (Opc == ISD::SRL)
1504 N0 = ZExtPromoteOperand(N0, PVT);
1505 else
1506 N0 = PromoteOperand(N0, PVT, Replace);
1508 if (!N0.getNode())
1509 return SDValue();
1511 SDLoc DL(Op);
1512 SDValue RV =
1513 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1));
1515 if (Replace)
1516 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
1518 // Deal with Op being deleted.
1519 if (Op && Op.getOpcode() != ISD::DELETED_NODE)
1520 return RV;
1522 return SDValue();
1525 SDValue DAGCombiner::PromoteExtend(SDValue Op) {
1526 if (!LegalOperations)
1527 return SDValue();
1529 EVT VT = Op.getValueType();
1530 if (VT.isVector() || !VT.isInteger())
1531 return SDValue();
1533 // If operation type is 'undesirable', e.g. i16 on x86, consider
1534 // promoting it.
1535 unsigned Opc = Op.getOpcode();
1536 if (TLI.isTypeDesirableForOp(Opc, VT))
1537 return SDValue();
1539 EVT PVT = VT;
1540 // Consult target whether it is a good idea to promote this operation and
1541 // what's the right type to promote it to.
1542 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1543 assert(PVT != VT && "Don't know what type to promote to!");
1544 // fold (aext (aext x)) -> (aext x)
1545 // fold (aext (zext x)) -> (zext x)
1546 // fold (aext (sext x)) -> (sext x)
1547 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
1548 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
1550 return SDValue();
1553 bool DAGCombiner::PromoteLoad(SDValue Op) {
1554 if (!LegalOperations)
1555 return false;
1557 if (!ISD::isUNINDEXEDLoad(Op.getNode()))
1558 return false;
1560 EVT VT = Op.getValueType();
1561 if (VT.isVector() || !VT.isInteger())
1562 return false;
1564 // If operation type is 'undesirable', e.g. i16 on x86, consider
1565 // promoting it.
1566 unsigned Opc = Op.getOpcode();
1567 if (TLI.isTypeDesirableForOp(Opc, VT))
1568 return false;
1570 EVT PVT = VT;
1571 // Consult target whether it is a good idea to promote this operation and
1572 // what's the right type to promote it to.
1573 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1574 assert(PVT != VT && "Don't know what type to promote to!");
1576 SDLoc DL(Op);
1577 SDNode *N = Op.getNode();
1578 LoadSDNode *LD = cast<LoadSDNode>(N);
1579 EVT MemVT = LD->getMemoryVT();
1580 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
1581 : LD->getExtensionType();
1582 SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT,
1583 LD->getChain(), LD->getBasePtr(),
1584 MemVT, LD->getMemOperand());
1585 SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD);
1587 LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: ";
1588 Result.getNode()->dump(&DAG); dbgs() << '\n');
1589 WorklistRemover DeadNodes(*this);
1590 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1591 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
1592 deleteAndRecombine(N);
1593 AddToWorklist(Result.getNode());
1594 return true;
1596 return false;
1599 /// Recursively delete a node which has no uses and any operands for
1600 /// which it is the only use.
1602 /// Note that this both deletes the nodes and removes them from the worklist.
1603 /// It also adds any nodes who have had a user deleted to the worklist as they
1604 /// may now have only one use and subject to other combines.
1605 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
1606 if (!N->use_empty())
1607 return false;
1609 SmallSetVector<SDNode *, 16> Nodes;
1610 Nodes.insert(N);
1611 do {
1612 N = Nodes.pop_back_val();
1613 if (!N)
1614 continue;
1616 if (N->use_empty()) {
1617 for (const SDValue &ChildN : N->op_values())
1618 Nodes.insert(ChildN.getNode());
1620 removeFromWorklist(N);
1621 DAG.DeleteNode(N);
1622 } else {
1623 AddToWorklist(N);
1625 } while (!Nodes.empty());
1626 return true;
1629 //===----------------------------------------------------------------------===//
1630 // Main DAG Combiner implementation
1631 //===----------------------------------------------------------------------===//
1633 void DAGCombiner::Run(CombineLevel AtLevel) {
1634 // set the instance variables, so that the various visit routines may use it.
1635 Level = AtLevel;
1636 LegalOperations = Level >= AfterLegalizeVectorOps;
1637 LegalTypes = Level >= AfterLegalizeTypes;
1639 WorklistInserter AddNodes(*this);
1641 // Add all the dag nodes to the worklist.
1642 for (SDNode &Node : DAG.allnodes())
1643 AddToWorklist(&Node);
1645 // Create a dummy node (which is not added to allnodes), that adds a reference
1646 // to the root node, preventing it from being deleted, and tracking any
1647 // changes of the root.
1648 HandleSDNode Dummy(DAG.getRoot());
1650 // While we have a valid worklist entry node, try to combine it.
1651 while (SDNode *N = getNextWorklistEntry()) {
1652 // If N has no uses, it is dead. Make sure to revisit all N's operands once
1653 // N is deleted from the DAG, since they too may now be dead or may have a
1654 // reduced number of uses, allowing other xforms.
1655 if (recursivelyDeleteUnusedNodes(N))
1656 continue;
1658 WorklistRemover DeadNodes(*this);
1660 // If this combine is running after legalizing the DAG, re-legalize any
1661 // nodes pulled off the worklist.
1662 if (Level == AfterLegalizeDAG) {
1663 SmallSetVector<SDNode *, 16> UpdatedNodes;
1664 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
1666 for (SDNode *LN : UpdatedNodes) {
1667 AddToWorklist(LN);
1668 AddUsersToWorklist(LN);
1670 if (!NIsValid)
1671 continue;
1674 LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));
1676 // Add any operands of the new node which have not yet been combined to the
1677 // worklist as well. Because the worklist uniques things already, this
1678 // won't repeatedly process the same operand.
1679 CombinedNodes.insert(N);
1680 for (const SDValue &ChildN : N->op_values())
1681 if (!CombinedNodes.count(ChildN.getNode()))
1682 AddToWorklist(ChildN.getNode());
1684 SDValue RV = combine(N);
1686 if (!RV.getNode())
1687 continue;
1689 ++NodesCombined;
1691 // If we get back the same node we passed in, rather than a new node or
1692 // zero, we know that the node must have defined multiple values and
1693 // CombineTo was used. Since CombineTo takes care of the worklist
1694 // mechanics for us, we have no work to do in this case.
1695 if (RV.getNode() == N)
1696 continue;
1698 assert(N->getOpcode() != ISD::DELETED_NODE &&
1699 RV.getOpcode() != ISD::DELETED_NODE &&
1700 "Node was deleted but visit returned new node!");
1702 LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG));
1704 if (N->getNumValues() == RV.getNode()->getNumValues())
1705 DAG.ReplaceAllUsesWith(N, RV.getNode());
1706 else {
1707 assert(N->getValueType(0) == RV.getValueType() &&
1708 N->getNumValues() == 1 && "Type mismatch");
1709 DAG.ReplaceAllUsesWith(N, &RV);
1712 // Push the new node and any users onto the worklist
1713 AddToWorklist(RV.getNode());
1714 AddUsersToWorklist(RV.getNode());
1716 // Finally, if the node is now dead, remove it from the graph. The node
1717 // may not be dead if the replacement process recursively simplified to
1718 // something else needing this node. This will also take care of adding any
1719 // operands which have lost a user to the worklist.
1720 recursivelyDeleteUnusedNodes(N);
1723 // If the root changed (e.g. it was a dead load, update the root).
1724 DAG.setRoot(Dummy.getValue());
1725 DAG.RemoveDeadNodes();
1728 SDValue DAGCombiner::visit(SDNode *N) {
1729 switch (N->getOpcode()) {
1730 default: break;
1731 case ISD::TokenFactor: return visitTokenFactor(N);
1732 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
1733 case ISD::ADD: return visitADD(N);
1734 case ISD::SUB: return visitSUB(N);
1735 case ISD::SADDSAT:
1736 case ISD::UADDSAT: return visitADDSAT(N);
1737 case ISD::SSUBSAT:
1738 case ISD::USUBSAT: return visitSUBSAT(N);
1739 case ISD::ADDC: return visitADDC(N);
1740 case ISD::SADDO:
1741 case ISD::UADDO: return visitADDO(N);
1742 case ISD::SUBC: return visitSUBC(N);
1743 case ISD::SSUBO:
1744 case ISD::USUBO: return visitSUBO(N);
1745 case ISD::ADDE: return visitADDE(N);
1746 case ISD::ADDCARRY: return visitADDCARRY(N);
1747 case ISD::SUBE: return visitSUBE(N);
1748 case ISD::SUBCARRY: return visitSUBCARRY(N);
1749 case ISD::SMULFIX:
1750 case ISD::SMULFIXSAT:
1751 case ISD::UMULFIX: return visitMULFIX(N);
1752 case ISD::MUL: return visitMUL(N);
1753 case ISD::SDIV: return visitSDIV(N);
1754 case ISD::UDIV: return visitUDIV(N);
1755 case ISD::SREM:
1756 case ISD::UREM: return visitREM(N);
1757 case ISD::MULHU: return visitMULHU(N);
1758 case ISD::MULHS: return visitMULHS(N);
1759 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
1760 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
1761 case ISD::SMULO:
1762 case ISD::UMULO: return visitMULO(N);
1763 case ISD::SMIN:
1764 case ISD::SMAX:
1765 case ISD::UMIN:
1766 case ISD::UMAX: return visitIMINMAX(N);
1767 case ISD::AND: return visitAND(N);
1768 case ISD::OR: return visitOR(N);
1769 case ISD::XOR: return visitXOR(N);
1770 case ISD::SHL: return visitSHL(N);
1771 case ISD::SRA: return visitSRA(N);
1772 case ISD::SRL: return visitSRL(N);
1773 case ISD::ROTR:
1774 case ISD::ROTL: return visitRotate(N);
1775 case ISD::FSHL:
1776 case ISD::FSHR: return visitFunnelShift(N);
1777 case ISD::ABS: return visitABS(N);
1778 case ISD::BSWAP: return visitBSWAP(N);
1779 case ISD::BITREVERSE: return visitBITREVERSE(N);
1780 case ISD::CTLZ: return visitCTLZ(N);
1781 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N);
1782 case ISD::CTTZ: return visitCTTZ(N);
1783 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N);
1784 case ISD::CTPOP: return visitCTPOP(N);
1785 case ISD::SELECT: return visitSELECT(N);
1786 case ISD::VSELECT: return visitVSELECT(N);
1787 case ISD::SELECT_CC: return visitSELECT_CC(N);
1788 case ISD::SETCC: return visitSETCC(N);
1789 case ISD::SETCCCARRY: return visitSETCCCARRY(N);
1790 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
1791 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
1792 case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
1793 case ISD::AssertSext:
1794 case ISD::AssertZext: return visitAssertExt(N);
1795 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
1796 case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N);
1797 case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N);
1798 case ISD::TRUNCATE: return visitTRUNCATE(N);
1799 case ISD::BITCAST: return visitBITCAST(N);
1800 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
1801 case ISD::FADD: return visitFADD(N);
1802 case ISD::FSUB: return visitFSUB(N);
1803 case ISD::FMUL: return visitFMUL(N);
1804 case ISD::FMA: return visitFMA(N);
1805 case ISD::FDIV: return visitFDIV(N);
1806 case ISD::FREM: return visitFREM(N);
1807 case ISD::FSQRT: return visitFSQRT(N);
1808 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
1809 case ISD::FPOW: return visitFPOW(N);
1810 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
1811 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
1812 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
1813 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
1814 case ISD::FP_ROUND: return visitFP_ROUND(N);
1815 case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N);
1816 case ISD::FP_EXTEND: return visitFP_EXTEND(N);
1817 case ISD::FNEG: return visitFNEG(N);
1818 case ISD::FABS: return visitFABS(N);
1819 case ISD::FFLOOR: return visitFFLOOR(N);
1820 case ISD::FMINNUM: return visitFMINNUM(N);
1821 case ISD::FMAXNUM: return visitFMAXNUM(N);
1822 case ISD::FMINIMUM: return visitFMINIMUM(N);
1823 case ISD::FMAXIMUM: return visitFMAXIMUM(N);
1824 case ISD::FCEIL: return visitFCEIL(N);
1825 case ISD::FTRUNC: return visitFTRUNC(N);
1826 case ISD::BRCOND: return visitBRCOND(N);
1827 case ISD::BR_CC: return visitBR_CC(N);
1828 case ISD::LOAD: return visitLOAD(N);
1829 case ISD::STORE: return visitSTORE(N);
1830 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
1831 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1832 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
1833 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
1834 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
1835 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
1836 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N);
1837 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N);
1838 case ISD::MGATHER: return visitMGATHER(N);
1839 case ISD::MLOAD: return visitMLOAD(N);
1840 case ISD::MSCATTER: return visitMSCATTER(N);
1841 case ISD::MSTORE: return visitMSTORE(N);
1842 case ISD::LIFETIME_END: return visitLIFETIME_END(N);
1843 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N);
1844 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N);
1845 case ISD::VECREDUCE_FADD:
1846 case ISD::VECREDUCE_FMUL:
1847 case ISD::VECREDUCE_ADD:
1848 case ISD::VECREDUCE_MUL:
1849 case ISD::VECREDUCE_AND:
1850 case ISD::VECREDUCE_OR:
1851 case ISD::VECREDUCE_XOR:
1852 case ISD::VECREDUCE_SMAX:
1853 case ISD::VECREDUCE_SMIN:
1854 case ISD::VECREDUCE_UMAX:
1855 case ISD::VECREDUCE_UMIN:
1856 case ISD::VECREDUCE_FMAX:
1857 case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N);
1859 return SDValue();
1862 SDValue DAGCombiner::combine(SDNode *N) {
1863 SDValue RV = visit(N);
1865 // If nothing happened, try a target-specific DAG combine.
1866 if (!RV.getNode()) {
1867 assert(N->getOpcode() != ISD::DELETED_NODE &&
1868 "Node was deleted but visit returned NULL!");
1870 if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1871 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1873 // Expose the DAG combiner to the target combiner impls.
1874 TargetLowering::DAGCombinerInfo
1875 DagCombineInfo(DAG, Level, false, this);
1877 RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1881 // If nothing happened still, try promoting the operation.
1882 if (!RV.getNode()) {
1883 switch (N->getOpcode()) {
1884 default: break;
1885 case ISD::ADD:
1886 case ISD::SUB:
1887 case ISD::MUL:
1888 case ISD::AND:
1889 case ISD::OR:
1890 case ISD::XOR:
1891 RV = PromoteIntBinOp(SDValue(N, 0));
1892 break;
1893 case ISD::SHL:
1894 case ISD::SRA:
1895 case ISD::SRL:
1896 RV = PromoteIntShiftOp(SDValue(N, 0));
1897 break;
1898 case ISD::SIGN_EXTEND:
1899 case ISD::ZERO_EXTEND:
1900 case ISD::ANY_EXTEND:
1901 RV = PromoteExtend(SDValue(N, 0));
1902 break;
1903 case ISD::LOAD:
1904 if (PromoteLoad(SDValue(N, 0)))
1905 RV = SDValue(N, 0);
1906 break;
1910 // If N is a commutative binary node, try to eliminate it if the commuted
1911 // version is already present in the DAG.
1912 if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) &&
1913 N->getNumValues() == 1) {
1914 SDValue N0 = N->getOperand(0);
1915 SDValue N1 = N->getOperand(1);
1917 // Constant operands are canonicalized to RHS.
1918 if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) {
1919 SDValue Ops[] = {N1, N0};
1920 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
1921 N->getFlags());
1922 if (CSENode)
1923 return SDValue(CSENode, 0);
1927 return RV;
1930 /// Given a node, return its input chain if it has one, otherwise return a null
1931 /// sd operand.
1932 static SDValue getInputChainForNode(SDNode *N) {
1933 if (unsigned NumOps = N->getNumOperands()) {
1934 if (N->getOperand(0).getValueType() == MVT::Other)
1935 return N->getOperand(0);
1936 if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1937 return N->getOperand(NumOps-1);
1938 for (unsigned i = 1; i < NumOps-1; ++i)
1939 if (N->getOperand(i).getValueType() == MVT::Other)
1940 return N->getOperand(i);
1942 return SDValue();
1945 SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1946 // If N has two operands, where one has an input chain equal to the other,
1947 // the 'other' chain is redundant.
1948 if (N->getNumOperands() == 2) {
1949 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1950 return N->getOperand(0);
1951 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1952 return N->getOperand(1);
1955 // Don't simplify token factors if optnone.
1956 if (OptLevel == CodeGenOpt::None)
1957 return SDValue();
1959 // If the sole user is a token factor, we should make sure we have a
1960 // chance to merge them together. This prevents TF chains from inhibiting
1961 // optimizations.
1962 if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor)
1963 AddToWorklist(*(N->use_begin()));
1965 SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
1966 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
1967 SmallPtrSet<SDNode*, 16> SeenOps;
1968 bool Changed = false; // If we should replace this token factor.
1970 // Start out with this token factor.
1971 TFs.push_back(N);
1973 // Iterate through token factors. The TFs grows when new token factors are
1974 // encountered.
1975 for (unsigned i = 0; i < TFs.size(); ++i) {
1976 // Limit number of nodes to inline, to avoid quadratic compile times.
1977 // We have to add the outstanding Token Factors to Ops, otherwise we might
1978 // drop Ops from the resulting Token Factors.
1979 if (Ops.size() > TokenFactorInlineLimit) {
1980 for (unsigned j = i; j < TFs.size(); j++)
1981 Ops.emplace_back(TFs[j], 0);
1982 // Drop unprocessed Token Factors from TFs, so we do not add them to the
1983 // combiner worklist later.
1984 TFs.resize(i);
1985 break;
1988 SDNode *TF = TFs[i];
1989 // Check each of the operands.
1990 for (const SDValue &Op : TF->op_values()) {
1991 switch (Op.getOpcode()) {
1992 case ISD::EntryToken:
1993 // Entry tokens don't need to be added to the list. They are
1994 // redundant.
1995 Changed = true;
1996 break;
1998 case ISD::TokenFactor:
1999 if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) {
2000 // Queue up for processing.
2001 TFs.push_back(Op.getNode());
2002 Changed = true;
2003 break;
2005 LLVM_FALLTHROUGH;
2007 default:
2008 // Only add if it isn't already in the list.
2009 if (SeenOps.insert(Op.getNode()).second)
2010 Ops.push_back(Op);
2011 else
2012 Changed = true;
2013 break;
2018 // Re-visit inlined Token Factors, to clean them up in case they have been
2019 // removed. Skip the first Token Factor, as this is the current node.
2020 for (unsigned i = 1, e = TFs.size(); i < e; i++)
2021 AddToWorklist(TFs[i]);
2023 // Remove Nodes that are chained to another node in the list. Do so
2024 // by walking up chains breath-first stopping when we've seen
2025 // another operand. In general we must climb to the EntryNode, but we can exit
2026 // early if we find all remaining work is associated with just one operand as
2027 // no further pruning is possible.
2029 // List of nodes to search through and original Ops from which they originate.
2030 SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist;
2031 SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op.
2032 SmallPtrSet<SDNode *, 16> SeenChains;
2033 bool DidPruneOps = false;
2035 unsigned NumLeftToConsider = 0;
2036 for (const SDValue &Op : Ops) {
2037 Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++));
2038 OpWorkCount.push_back(1);
2041 auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) {
2042 // If this is an Op, we can remove the op from the list. Remark any
2043 // search associated with it as from the current OpNumber.
2044 if (SeenOps.count(Op) != 0) {
2045 Changed = true;
2046 DidPruneOps = true;
2047 unsigned OrigOpNumber = 0;
2048 while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op)
2049 OrigOpNumber++;
2050 assert((OrigOpNumber != Ops.size()) &&
2051 "expected to find TokenFactor Operand");
2052 // Re-mark worklist from OrigOpNumber to OpNumber
2053 for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) {
2054 if (Worklist[i].second == OrigOpNumber) {
2055 Worklist[i].second = OpNumber;
2058 OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber];
2059 OpWorkCount[OrigOpNumber] = 0;
2060 NumLeftToConsider--;
2062 // Add if it's a new chain
2063 if (SeenChains.insert(Op).second) {
2064 OpWorkCount[OpNumber]++;
2065 Worklist.push_back(std::make_pair(Op, OpNumber));
2069 for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) {
2070 // We need at least be consider at least 2 Ops to prune.
2071 if (NumLeftToConsider <= 1)
2072 break;
2073 auto CurNode = Worklist[i].first;
2074 auto CurOpNumber = Worklist[i].second;
2075 assert((OpWorkCount[CurOpNumber] > 0) &&
2076 "Node should not appear in worklist");
2077 switch (CurNode->getOpcode()) {
2078 case ISD::EntryToken:
2079 // Hitting EntryToken is the only way for the search to terminate without
2080 // hitting
2081 // another operand's search. Prevent us from marking this operand
2082 // considered.
2083 NumLeftToConsider++;
2084 break;
2085 case ISD::TokenFactor:
2086 for (const SDValue &Op : CurNode->op_values())
2087 AddToWorklist(i, Op.getNode(), CurOpNumber);
2088 break;
2089 case ISD::LIFETIME_START:
2090 case ISD::LIFETIME_END:
2091 case ISD::CopyFromReg:
2092 case ISD::CopyToReg:
2093 AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber);
2094 break;
2095 default:
2096 if (auto *MemNode = dyn_cast<MemSDNode>(CurNode))
2097 AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber);
2098 break;
2100 OpWorkCount[CurOpNumber]--;
2101 if (OpWorkCount[CurOpNumber] == 0)
2102 NumLeftToConsider--;
2105 // If we've changed things around then replace token factor.
2106 if (Changed) {
2107 SDValue Result;
2108 if (Ops.empty()) {
2109 // The entry token is the only possible outcome.
2110 Result = DAG.getEntryNode();
2111 } else {
2112 if (DidPruneOps) {
2113 SmallVector<SDValue, 8> PrunedOps;
2115 for (const SDValue &Op : Ops) {
2116 if (SeenChains.count(Op.getNode()) == 0)
2117 PrunedOps.push_back(Op);
2119 Result = DAG.getTokenFactor(SDLoc(N), PrunedOps);
2120 } else {
2121 Result = DAG.getTokenFactor(SDLoc(N), Ops);
2124 return Result;
2126 return SDValue();
2129 /// MERGE_VALUES can always be eliminated.
2130 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
2131 WorklistRemover DeadNodes(*this);
2132 // Replacing results may cause a different MERGE_VALUES to suddenly
2133 // be CSE'd with N, and carry its uses with it. Iterate until no
2134 // uses remain, to ensure that the node can be safely deleted.
2135 // First add the users of this node to the work list so that they
2136 // can be tried again once they have new operands.
2137 AddUsersToWorklist(N);
2138 do {
2139 // Do as a single replacement to avoid rewalking use lists.
2140 SmallVector<SDValue, 8> Ops;
2141 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2142 Ops.push_back(N->getOperand(i));
2143 DAG.ReplaceAllUsesWith(N, Ops.data());
2144 } while (!N->use_empty());
2145 deleteAndRecombine(N);
2146 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2149 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
2150 /// ConstantSDNode pointer else nullptr.
2151 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) {
2152 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N);
2153 return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
2156 SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) {
2157 assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 &&
2158 "Unexpected binary operator");
2160 // Don't do this unless the old select is going away. We want to eliminate the
2161 // binary operator, not replace a binop with a select.
2162 // TODO: Handle ISD::SELECT_CC.
2163 unsigned SelOpNo = 0;
2164 SDValue Sel = BO->getOperand(0);
2165 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) {
2166 SelOpNo = 1;
2167 Sel = BO->getOperand(1);
2170 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse())
2171 return SDValue();
2173 SDValue CT = Sel.getOperand(1);
2174 if (!isConstantOrConstantVector(CT, true) &&
2175 !isConstantFPBuildVectorOrConstantFP(CT))
2176 return SDValue();
2178 SDValue CF = Sel.getOperand(2);
2179 if (!isConstantOrConstantVector(CF, true) &&
2180 !isConstantFPBuildVectorOrConstantFP(CF))
2181 return SDValue();
2183 // Bail out if any constants are opaque because we can't constant fold those.
2184 // The exception is "and" and "or" with either 0 or -1 in which case we can
2185 // propagate non constant operands into select. I.e.:
2186 // and (select Cond, 0, -1), X --> select Cond, 0, X
2187 // or X, (select Cond, -1, 0) --> select Cond, -1, X
2188 auto BinOpcode = BO->getOpcode();
2189 bool CanFoldNonConst =
2190 (BinOpcode == ISD::AND || BinOpcode == ISD::OR) &&
2191 (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) &&
2192 (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF));
2194 SDValue CBO = BO->getOperand(SelOpNo ^ 1);
2195 if (!CanFoldNonConst &&
2196 !isConstantOrConstantVector(CBO, true) &&
2197 !isConstantFPBuildVectorOrConstantFP(CBO))
2198 return SDValue();
2200 EVT VT = Sel.getValueType();
2202 // In case of shift value and shift amount may have different VT. For instance
2203 // on x86 shift amount is i8 regardles of LHS type. Bail out if we have
2204 // swapped operands and value types do not match. NB: x86 is fine if operands
2205 // are not swapped with shift amount VT being not bigger than shifted value.
2206 // TODO: that is possible to check for a shift operation, correct VTs and
2207 // still perform optimization on x86 if needed.
2208 if (SelOpNo && VT != CBO.getValueType())
2209 return SDValue();
2211 // We have a select-of-constants followed by a binary operator with a
2212 // constant. Eliminate the binop by pulling the constant math into the select.
2213 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
2214 SDLoc DL(Sel);
2215 SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT)
2216 : DAG.getNode(BinOpcode, DL, VT, CT, CBO);
2217 if (!CanFoldNonConst && !NewCT.isUndef() &&
2218 !isConstantOrConstantVector(NewCT, true) &&
2219 !isConstantFPBuildVectorOrConstantFP(NewCT))
2220 return SDValue();
2222 SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF)
2223 : DAG.getNode(BinOpcode, DL, VT, CF, CBO);
2224 if (!CanFoldNonConst && !NewCF.isUndef() &&
2225 !isConstantOrConstantVector(NewCF, true) &&
2226 !isConstantFPBuildVectorOrConstantFP(NewCF))
2227 return SDValue();
2229 SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF);
2230 SelectOp->setFlags(BO->getFlags());
2231 return SelectOp;
2234 static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) {
2235 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
2236 "Expecting add or sub");
2238 // Match a constant operand and a zext operand for the math instruction:
2239 // add Z, C
2240 // sub C, Z
2241 bool IsAdd = N->getOpcode() == ISD::ADD;
2242 SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0);
2243 SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1);
2244 auto *CN = dyn_cast<ConstantSDNode>(C);
2245 if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND)
2246 return SDValue();
2248 // Match the zext operand as a setcc of a boolean.
2249 if (Z.getOperand(0).getOpcode() != ISD::SETCC ||
2250 Z.getOperand(0).getValueType() != MVT::i1)
2251 return SDValue();
2253 // Match the compare as: setcc (X & 1), 0, eq.
2254 SDValue SetCC = Z.getOperand(0);
2255 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
2256 if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) ||
2257 SetCC.getOperand(0).getOpcode() != ISD::AND ||
2258 !isOneConstant(SetCC.getOperand(0).getOperand(1)))
2259 return SDValue();
2261 // We are adding/subtracting a constant and an inverted low bit. Turn that
2262 // into a subtract/add of the low bit with incremented/decremented constant:
2263 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
2264 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
2265 EVT VT = C.getValueType();
2266 SDLoc DL(N);
2267 SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT);
2268 SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) :
2269 DAG.getConstant(CN->getAPIntValue() - 1, DL, VT);
2270 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit);
2273 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
2274 /// a shift and add with a different constant.
2275 static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) {
2276 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
2277 "Expecting add or sub");
2279 // We need a constant operand for the add/sub, and the other operand is a
2280 // logical shift right: add (srl), C or sub C, (srl).
2281 // TODO - support non-uniform vector amounts.
2282 bool IsAdd = N->getOpcode() == ISD::ADD;
2283 SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0);
2284 SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1);
2285 ConstantSDNode *C = isConstOrConstSplat(ConstantOp);
2286 if (!C || ShiftOp.getOpcode() != ISD::SRL)
2287 return SDValue();
2289 // The shift must be of a 'not' value.
2290 SDValue Not = ShiftOp.getOperand(0);
2291 if (!Not.hasOneUse() || !isBitwiseNot(Not))
2292 return SDValue();
2294 // The shift must be moving the sign bit to the least-significant-bit.
2295 EVT VT = ShiftOp.getValueType();
2296 SDValue ShAmt = ShiftOp.getOperand(1);
2297 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
2298 if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1))
2299 return SDValue();
2301 // Eliminate the 'not' by adjusting the shift and add/sub constant:
2302 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
2303 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
2304 SDLoc DL(N);
2305 auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL;
2306 SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt);
2307 APInt NewC = IsAdd ? C->getAPIntValue() + 1 : C->getAPIntValue() - 1;
2308 return DAG.getNode(ISD::ADD, DL, VT, NewShift, DAG.getConstant(NewC, DL, VT));
2311 /// Try to fold a node that behaves like an ADD (note that N isn't necessarily
2312 /// an ISD::ADD here, it could for example be an ISD::OR if we know that there
2313 /// are no common bits set in the operands).
2314 SDValue DAGCombiner::visitADDLike(SDNode *N) {
2315 SDValue N0 = N->getOperand(0);
2316 SDValue N1 = N->getOperand(1);
2317 EVT VT = N0.getValueType();
2318 SDLoc DL(N);
2320 // fold vector ops
2321 if (VT.isVector()) {
2322 if (SDValue FoldedVOp = SimplifyVBinOp(N))
2323 return FoldedVOp;
2325 // fold (add x, 0) -> x, vector edition
2326 if (ISD::isBuildVectorAllZeros(N1.getNode()))
2327 return N0;
2328 if (ISD::isBuildVectorAllZeros(N0.getNode()))
2329 return N1;
2332 // fold (add x, undef) -> undef
2333 if (N0.isUndef())
2334 return N0;
2336 if (N1.isUndef())
2337 return N1;
2339 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
2340 // canonicalize constant to RHS
2341 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
2342 return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
2343 // fold (add c1, c2) -> c1+c2
2344 return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N0.getNode(),
2345 N1.getNode());
2348 // fold (add x, 0) -> x
2349 if (isNullConstant(N1))
2350 return N0;
2352 if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) {
2353 // fold ((A-c1)+c2) -> (A+(c2-c1))
2354 if (N0.getOpcode() == ISD::SUB &&
2355 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) {
2356 SDValue Sub = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N1.getNode(),
2357 N0.getOperand(1).getNode());
2358 assert(Sub && "Constant folding failed");
2359 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub);
2362 // fold ((c1-A)+c2) -> (c1+c2)-A
2363 if (N0.getOpcode() == ISD::SUB &&
2364 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) {
2365 SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N1.getNode(),
2366 N0.getOperand(0).getNode());
2367 assert(Add && "Constant folding failed");
2368 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
2371 // add (sext i1 X), 1 -> zext (not i1 X)
2372 // We don't transform this pattern:
2373 // add (zext i1 X), -1 -> sext (not i1 X)
2374 // because most (?) targets generate better code for the zext form.
2375 if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() &&
2376 isOneOrOneSplat(N1)) {
2377 SDValue X = N0.getOperand(0);
2378 if ((!LegalOperations ||
2379 (TLI.isOperationLegal(ISD::XOR, X.getValueType()) &&
2380 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) &&
2381 X.getScalarValueSizeInBits() == 1) {
2382 SDValue Not = DAG.getNOT(DL, X, X.getValueType());
2383 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not);
2387 // Undo the add -> or combine to merge constant offsets from a frame index.
2388 if (N0.getOpcode() == ISD::OR &&
2389 isa<FrameIndexSDNode>(N0.getOperand(0)) &&
2390 isa<ConstantSDNode>(N0.getOperand(1)) &&
2391 DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) {
2392 SDValue Add0 = DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(1));
2393 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0);
2397 if (SDValue NewSel = foldBinOpIntoSelect(N))
2398 return NewSel;
2400 // reassociate add
2401 if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) {
2402 if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags()))
2403 return RADD;
2405 // fold ((0-A) + B) -> B-A
2406 if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0)))
2407 return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
2409 // fold (A + (0-B)) -> A-B
2410 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
2411 return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1));
2413 // fold (A+(B-A)) -> B
2414 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
2415 return N1.getOperand(0);
2417 // fold ((B-A)+A) -> B
2418 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
2419 return N0.getOperand(0);
2421 // fold ((A-B)+(C-A)) -> (C-B)
2422 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
2423 N0.getOperand(0) == N1.getOperand(1))
2424 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
2425 N0.getOperand(1));
2427 // fold ((A-B)+(B-C)) -> (A-C)
2428 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
2429 N0.getOperand(1) == N1.getOperand(0))
2430 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
2431 N1.getOperand(1));
2433 // fold (A+(B-(A+C))) to (B-C)
2434 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
2435 N0 == N1.getOperand(1).getOperand(0))
2436 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
2437 N1.getOperand(1).getOperand(1));
2439 // fold (A+(B-(C+A))) to (B-C)
2440 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
2441 N0 == N1.getOperand(1).getOperand(1))
2442 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
2443 N1.getOperand(1).getOperand(0));
2445 // fold (A+((B-A)+or-C)) to (B+or-C)
2446 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
2447 N1.getOperand(0).getOpcode() == ISD::SUB &&
2448 N0 == N1.getOperand(0).getOperand(1))
2449 return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0),
2450 N1.getOperand(1));
2452 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
2453 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
2454 SDValue N00 = N0.getOperand(0);
2455 SDValue N01 = N0.getOperand(1);
2456 SDValue N10 = N1.getOperand(0);
2457 SDValue N11 = N1.getOperand(1);
2459 if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10))
2460 return DAG.getNode(ISD::SUB, DL, VT,
2461 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
2462 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
2465 // fold (add (umax X, C), -C) --> (usubsat X, C)
2466 if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) {
2467 auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) {
2468 return (!Max && !Op) ||
2469 (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue()));
2471 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT,
2472 /*AllowUndefs*/ true))
2473 return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0),
2474 N0.getOperand(1));
2477 if (SimplifyDemandedBits(SDValue(N, 0)))
2478 return SDValue(N, 0);
2480 if (isOneOrOneSplat(N1)) {
2481 // fold (add (xor a, -1), 1) -> (sub 0, a)
2482 if (isBitwiseNot(N0))
2483 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
2484 N0.getOperand(0));
2486 // fold (add (add (xor a, -1), b), 1) -> (sub b, a)
2487 if (N0.getOpcode() == ISD::ADD ||
2488 N0.getOpcode() == ISD::UADDO ||
2489 N0.getOpcode() == ISD::SADDO) {
2490 SDValue A, Xor;
2492 if (isBitwiseNot(N0.getOperand(0))) {
2493 A = N0.getOperand(1);
2494 Xor = N0.getOperand(0);
2495 } else if (isBitwiseNot(N0.getOperand(1))) {
2496 A = N0.getOperand(0);
2497 Xor = N0.getOperand(1);
2500 if (Xor)
2501 return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0));
2504 // Look for:
2505 // add (add x, y), 1
2506 // And if the target does not like this form then turn into:
2507 // sub y, (xor x, -1)
2508 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() &&
2509 N0.getOpcode() == ISD::ADD) {
2510 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
2511 DAG.getAllOnesConstant(DL, VT));
2512 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not);
2516 // (x - y) + -1 -> add (xor y, -1), x
2517 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
2518 isAllOnesOrAllOnesSplat(N1)) {
2519 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1);
2520 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0));
2523 if (SDValue Combined = visitADDLikeCommutative(N0, N1, N))
2524 return Combined;
2526 if (SDValue Combined = visitADDLikeCommutative(N1, N0, N))
2527 return Combined;
2529 return SDValue();
2532 SDValue DAGCombiner::visitADD(SDNode *N) {
2533 SDValue N0 = N->getOperand(0);
2534 SDValue N1 = N->getOperand(1);
2535 EVT VT = N0.getValueType();
2536 SDLoc DL(N);
2538 if (SDValue Combined = visitADDLike(N))
2539 return Combined;
2541 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
2542 return V;
2544 if (SDValue V = foldAddSubOfSignBit(N, DAG))
2545 return V;
2547 // fold (a+b) -> (a|b) iff a and b share no bits.
2548 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
2549 DAG.haveNoCommonBitsSet(N0, N1))
2550 return DAG.getNode(ISD::OR, DL, VT, N0, N1);
2552 return SDValue();
2555 SDValue DAGCombiner::visitADDSAT(SDNode *N) {
2556 unsigned Opcode = N->getOpcode();
2557 SDValue N0 = N->getOperand(0);
2558 SDValue N1 = N->getOperand(1);
2559 EVT VT = N0.getValueType();
2560 SDLoc DL(N);
2562 // fold vector ops
2563 if (VT.isVector()) {
2564 // TODO SimplifyVBinOp
2566 // fold (add_sat x, 0) -> x, vector edition
2567 if (ISD::isBuildVectorAllZeros(N1.getNode()))
2568 return N0;
2569 if (ISD::isBuildVectorAllZeros(N0.getNode()))
2570 return N1;
2573 // fold (add_sat x, undef) -> -1
2574 if (N0.isUndef() || N1.isUndef())
2575 return DAG.getAllOnesConstant(DL, VT);
2577 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
2578 // canonicalize constant to RHS
2579 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
2580 return DAG.getNode(Opcode, DL, VT, N1, N0);
2581 // fold (add_sat c1, c2) -> c3
2582 return DAG.FoldConstantArithmetic(Opcode, DL, VT, N0.getNode(),
2583 N1.getNode());
2586 // fold (add_sat x, 0) -> x
2587 if (isNullConstant(N1))
2588 return N0;
2590 // If it cannot overflow, transform into an add.
2591 if (Opcode == ISD::UADDSAT)
2592 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
2593 return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
2595 return SDValue();
2598 static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) {
2599 bool Masked = false;
2601 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
2602 while (true) {
2603 if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) {
2604 V = V.getOperand(0);
2605 continue;
2608 if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) {
2609 Masked = true;
2610 V = V.getOperand(0);
2611 continue;
2614 break;
2617 // If this is not a carry, return.
2618 if (V.getResNo() != 1)
2619 return SDValue();
2621 if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY &&
2622 V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO)
2623 return SDValue();
2625 EVT VT = V.getNode()->getValueType(0);
2626 if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT))
2627 return SDValue();
2629 // If the result is masked, then no matter what kind of bool it is we can
2630 // return. If it isn't, then we need to make sure the bool type is either 0 or
2631 // 1 and not other values.
2632 if (Masked ||
2633 TLI.getBooleanContents(V.getValueType()) ==
2634 TargetLoweringBase::ZeroOrOneBooleanContent)
2635 return V;
2637 return SDValue();
2640 /// Given the operands of an add/sub operation, see if the 2nd operand is a
2641 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert
2642 /// the opcode and bypass the mask operation.
2643 static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1,
2644 SelectionDAG &DAG, const SDLoc &DL) {
2645 if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1)))
2646 return SDValue();
2648 EVT VT = N0.getValueType();
2649 if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits())
2650 return SDValue();
2652 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X
2653 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X
2654 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0));
2657 /// Helper for doing combines based on N0 and N1 being added to each other.
2658 SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1,
2659 SDNode *LocReference) {
2660 EVT VT = N0.getValueType();
2661 SDLoc DL(LocReference);
2663 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
2664 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB &&
2665 isNullOrNullSplat(N1.getOperand(0).getOperand(0)))
2666 return DAG.getNode(ISD::SUB, DL, VT, N0,
2667 DAG.getNode(ISD::SHL, DL, VT,
2668 N1.getOperand(0).getOperand(1),
2669 N1.getOperand(1)));
2671 if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL))
2672 return V;
2674 // Look for:
2675 // add (add x, 1), y
2676 // And if the target does not like this form then turn into:
2677 // sub y, (xor x, -1)
2678 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() &&
2679 N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) {
2680 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
2681 DAG.getAllOnesConstant(DL, VT));
2682 return DAG.getNode(ISD::SUB, DL, VT, N1, Not);
2685 // Hoist one-use subtraction by non-opaque constant:
2686 // (x - C) + y -> (x + y) - C
2687 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
2688 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
2689 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
2690 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1);
2691 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
2693 // Hoist one-use subtraction from non-opaque constant:
2694 // (C - x) + y -> (y - x) + C
2695 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
2696 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
2697 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
2698 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0));
2701 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1'
2702 // rather than 'add 0/-1' (the zext should get folded).
2703 // add (sext i1 Y), X --> sub X, (zext i1 Y)
2704 if (N0.getOpcode() == ISD::SIGN_EXTEND &&
2705 N0.getOperand(0).getScalarValueSizeInBits() == 1 &&
2706 TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) {
2707 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
2708 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
2711 // add X, (sextinreg Y i1) -> sub X, (and Y 1)
2712 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
2713 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
2714 if (TN->getVT() == MVT::i1) {
2715 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
2716 DAG.getConstant(1, DL, VT));
2717 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
2721 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2722 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) &&
2723 N1.getResNo() == 0)
2724 return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(),
2725 N0, N1.getOperand(0), N1.getOperand(2));
2727 // (add X, Carry) -> (addcarry X, 0, Carry)
2728 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
2729 if (SDValue Carry = getAsCarry(TLI, N1))
2730 return DAG.getNode(ISD::ADDCARRY, DL,
2731 DAG.getVTList(VT, Carry.getValueType()), N0,
2732 DAG.getConstant(0, DL, VT), Carry);
2734 return SDValue();
2737 SDValue DAGCombiner::visitADDC(SDNode *N) {
2738 SDValue N0 = N->getOperand(0);
2739 SDValue N1 = N->getOperand(1);
2740 EVT VT = N0.getValueType();
2741 SDLoc DL(N);
2743 // If the flag result is dead, turn this into an ADD.
2744 if (!N->hasAnyUseOfValue(1))
2745 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2746 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2748 // canonicalize constant to RHS.
2749 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2750 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2751 if (N0C && !N1C)
2752 return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0);
2754 // fold (addc x, 0) -> x + no carry out
2755 if (isNullConstant(N1))
2756 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
2757 DL, MVT::Glue));
2759 // If it cannot overflow, transform into an add.
2760 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
2761 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2762 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2764 return SDValue();
2767 static SDValue flipBoolean(SDValue V, const SDLoc &DL,
2768 SelectionDAG &DAG, const TargetLowering &TLI) {
2769 EVT VT = V.getValueType();
2771 SDValue Cst;
2772 switch (TLI.getBooleanContents(VT)) {
2773 case TargetLowering::ZeroOrOneBooleanContent:
2774 case TargetLowering::UndefinedBooleanContent:
2775 Cst = DAG.getConstant(1, DL, VT);
2776 break;
2777 case TargetLowering::ZeroOrNegativeOneBooleanContent:
2778 Cst = DAG.getAllOnesConstant(DL, VT);
2779 break;
2782 return DAG.getNode(ISD::XOR, DL, VT, V, Cst);
2786 * Flips a boolean if it is cheaper to compute. If the Force parameters is set,
2787 * then the flip also occurs if computing the inverse is the same cost.
2788 * This function returns an empty SDValue in case it cannot flip the boolean
2789 * without increasing the cost of the computation. If you want to flip a boolean
2790 * no matter what, use flipBoolean.
2792 static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG,
2793 const TargetLowering &TLI,
2794 bool Force) {
2795 if (Force && isa<ConstantSDNode>(V))
2796 return flipBoolean(V, SDLoc(V), DAG, TLI);
2798 if (V.getOpcode() != ISD::XOR)
2799 return SDValue();
2801 ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false);
2802 if (!Const)
2803 return SDValue();
2805 EVT VT = V.getValueType();
2807 bool IsFlip = false;
2808 switch(TLI.getBooleanContents(VT)) {
2809 case TargetLowering::ZeroOrOneBooleanContent:
2810 IsFlip = Const->isOne();
2811 break;
2812 case TargetLowering::ZeroOrNegativeOneBooleanContent:
2813 IsFlip = Const->isAllOnesValue();
2814 break;
2815 case TargetLowering::UndefinedBooleanContent:
2816 IsFlip = (Const->getAPIntValue() & 0x01) == 1;
2817 break;
2820 if (IsFlip)
2821 return V.getOperand(0);
2822 if (Force)
2823 return flipBoolean(V, SDLoc(V), DAG, TLI);
2824 return SDValue();
2827 SDValue DAGCombiner::visitADDO(SDNode *N) {
2828 SDValue N0 = N->getOperand(0);
2829 SDValue N1 = N->getOperand(1);
2830 EVT VT = N0.getValueType();
2831 bool IsSigned = (ISD::SADDO == N->getOpcode());
2833 EVT CarryVT = N->getValueType(1);
2834 SDLoc DL(N);
2836 // If the flag result is dead, turn this into an ADD.
2837 if (!N->hasAnyUseOfValue(1))
2838 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2839 DAG.getUNDEF(CarryVT));
2841 // canonicalize constant to RHS.
2842 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
2843 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
2844 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
2846 // fold (addo x, 0) -> x + no carry out
2847 if (isNullOrNullSplat(N1))
2848 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
2850 if (!IsSigned) {
2851 // If it cannot overflow, transform into an add.
2852 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
2853 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2854 DAG.getConstant(0, DL, CarryVT));
2856 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
2857 if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) {
2858 SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(),
2859 DAG.getConstant(0, DL, VT), N0.getOperand(0));
2860 return CombineTo(N, Sub,
2861 flipBoolean(Sub.getValue(1), DL, DAG, TLI));
2864 if (SDValue Combined = visitUADDOLike(N0, N1, N))
2865 return Combined;
2867 if (SDValue Combined = visitUADDOLike(N1, N0, N))
2868 return Combined;
2871 return SDValue();
2874 SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) {
2875 EVT VT = N0.getValueType();
2876 if (VT.isVector())
2877 return SDValue();
2879 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2880 // If Y + 1 cannot overflow.
2881 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) {
2882 SDValue Y = N1.getOperand(0);
2883 SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType());
2884 if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never)
2885 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y,
2886 N1.getOperand(2));
2889 // (uaddo X, Carry) -> (addcarry X, 0, Carry)
2890 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
2891 if (SDValue Carry = getAsCarry(TLI, N1))
2892 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0,
2893 DAG.getConstant(0, SDLoc(N), VT), Carry);
2895 return SDValue();
2898 SDValue DAGCombiner::visitADDE(SDNode *N) {
2899 SDValue N0 = N->getOperand(0);
2900 SDValue N1 = N->getOperand(1);
2901 SDValue CarryIn = N->getOperand(2);
2903 // canonicalize constant to RHS
2904 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2905 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2906 if (N0C && !N1C)
2907 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
2908 N1, N0, CarryIn);
2910 // fold (adde x, y, false) -> (addc x, y)
2911 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
2912 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
2914 return SDValue();
2917 SDValue DAGCombiner::visitADDCARRY(SDNode *N) {
2918 SDValue N0 = N->getOperand(0);
2919 SDValue N1 = N->getOperand(1);
2920 SDValue CarryIn = N->getOperand(2);
2921 SDLoc DL(N);
2923 // canonicalize constant to RHS
2924 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2925 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2926 if (N0C && !N1C)
2927 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn);
2929 // fold (addcarry x, y, false) -> (uaddo x, y)
2930 if (isNullConstant(CarryIn)) {
2931 if (!LegalOperations ||
2932 TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0)))
2933 return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1);
2936 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
2937 if (isNullConstant(N0) && isNullConstant(N1)) {
2938 EVT VT = N0.getValueType();
2939 EVT CarryVT = CarryIn.getValueType();
2940 SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT);
2941 AddToWorklist(CarryExt.getNode());
2942 return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt,
2943 DAG.getConstant(1, DL, VT)),
2944 DAG.getConstant(0, DL, CarryVT));
2947 if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N))
2948 return Combined;
2950 if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N))
2951 return Combined;
2953 return SDValue();
2957 * If we are facing some sort of diamond carry propapagtion pattern try to
2958 * break it up to generate something like:
2959 * (addcarry X, 0, (addcarry A, B, Z):Carry)
2961 * The end result is usually an increase in operation required, but because the
2962 * carry is now linearized, other tranforms can kick in and optimize the DAG.
2964 * Patterns typically look something like
2965 * (uaddo A, B)
2966 * / \
2967 * Carry Sum
2968 * | \
2969 * | (addcarry *, 0, Z)
2970 * | /
2971 * \ Carry
2972 * | /
2973 * (addcarry X, *, *)
2975 * But numerous variation exist. Our goal is to identify A, B, X and Z and
2976 * produce a combine with a single path for carry propagation.
2978 static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG,
2979 SDValue X, SDValue Carry0, SDValue Carry1,
2980 SDNode *N) {
2981 if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1)
2982 return SDValue();
2983 if (Carry1.getOpcode() != ISD::UADDO)
2984 return SDValue();
2986 SDValue Z;
2989 * First look for a suitable Z. It will present itself in the form of
2990 * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true
2992 if (Carry0.getOpcode() == ISD::ADDCARRY &&
2993 isNullConstant(Carry0.getOperand(1))) {
2994 Z = Carry0.getOperand(2);
2995 } else if (Carry0.getOpcode() == ISD::UADDO &&
2996 isOneConstant(Carry0.getOperand(1))) {
2997 EVT VT = Combiner.getSetCCResultType(Carry0.getValueType());
2998 Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT);
2999 } else {
3000 // We couldn't find a suitable Z.
3001 return SDValue();
3005 auto cancelDiamond = [&](SDValue A,SDValue B) {
3006 SDLoc DL(N);
3007 SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z);
3008 Combiner.AddToWorklist(NewY.getNode());
3009 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X,
3010 DAG.getConstant(0, DL, X.getValueType()),
3011 NewY.getValue(1));
3015 * (uaddo A, B)
3017 * Sum
3019 * (addcarry *, 0, Z)
3021 if (Carry0.getOperand(0) == Carry1.getValue(0)) {
3022 return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1));
3026 * (addcarry A, 0, Z)
3028 * Sum
3030 * (uaddo *, B)
3032 if (Carry1.getOperand(0) == Carry0.getValue(0)) {
3033 return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1));
3036 if (Carry1.getOperand(1) == Carry0.getValue(0)) {
3037 return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0));
3040 return SDValue();
3043 SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn,
3044 SDNode *N) {
3045 // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry.
3046 if (isBitwiseNot(N0))
3047 if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) {
3048 SDLoc DL(N);
3049 SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1,
3050 N0.getOperand(0), NotC);
3051 return CombineTo(N, Sub,
3052 flipBoolean(Sub.getValue(1), DL, DAG, TLI));
3055 // Iff the flag result is dead:
3056 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry)
3057 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo
3058 // or the dependency between the instructions.
3059 if ((N0.getOpcode() == ISD::ADD ||
3060 (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 &&
3061 N0.getValue(1) != CarryIn)) &&
3062 isNullConstant(N1) && !N->hasAnyUseOfValue(1))
3063 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(),
3064 N0.getOperand(0), N0.getOperand(1), CarryIn);
3067 * When one of the addcarry argument is itself a carry, we may be facing
3068 * a diamond carry propagation. In which case we try to transform the DAG
3069 * to ensure linear carry propagation if that is possible.
3071 if (auto Y = getAsCarry(TLI, N1)) {
3072 // Because both are carries, Y and Z can be swapped.
3073 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N))
3074 return R;
3075 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N))
3076 return R;
3079 return SDValue();
3082 // Since it may not be valid to emit a fold to zero for vector initializers
3083 // check if we can before folding.
3084 static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT,
3085 SelectionDAG &DAG, bool LegalOperations) {
3086 if (!VT.isVector())
3087 return DAG.getConstant(0, DL, VT);
3088 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
3089 return DAG.getConstant(0, DL, VT);
3090 return SDValue();
3093 SDValue DAGCombiner::visitSUB(SDNode *N) {
3094 SDValue N0 = N->getOperand(0);
3095 SDValue N1 = N->getOperand(1);
3096 EVT VT = N0.getValueType();
3097 SDLoc DL(N);
3099 // fold vector ops
3100 if (VT.isVector()) {
3101 if (SDValue FoldedVOp = SimplifyVBinOp(N))
3102 return FoldedVOp;
3104 // fold (sub x, 0) -> x, vector edition
3105 if (ISD::isBuildVectorAllZeros(N1.getNode()))
3106 return N0;
3109 // fold (sub x, x) -> 0
3110 // FIXME: Refactor this and xor and other similar operations together.
3111 if (N0 == N1)
3112 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
3113 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3114 DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
3115 // fold (sub c1, c2) -> c1-c2
3116 return DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(),
3117 N1.getNode());
3120 if (SDValue NewSel = foldBinOpIntoSelect(N))
3121 return NewSel;
3123 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
3125 // fold (sub x, c) -> (add x, -c)
3126 if (N1C) {
3127 return DAG.getNode(ISD::ADD, DL, VT, N0,
3128 DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
3131 if (isNullOrNullSplat(N0)) {
3132 unsigned BitWidth = VT.getScalarSizeInBits();
3133 // Right-shifting everything out but the sign bit followed by negation is
3134 // the same as flipping arithmetic/logical shift type without the negation:
3135 // -(X >>u 31) -> (X >>s 31)
3136 // -(X >>s 31) -> (X >>u 31)
3137 if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) {
3138 ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1));
3139 if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) {
3140 auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA;
3141 if (!LegalOperations || TLI.isOperationLegal(NewSh, VT))
3142 return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1));
3146 // 0 - X --> 0 if the sub is NUW.
3147 if (N->getFlags().hasNoUnsignedWrap())
3148 return N0;
3150 if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) {
3151 // N1 is either 0 or the minimum signed value. If the sub is NSW, then
3152 // N1 must be 0 because negating the minimum signed value is undefined.
3153 if (N->getFlags().hasNoSignedWrap())
3154 return N0;
3156 // 0 - X --> X if X is 0 or the minimum signed value.
3157 return N1;
3161 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
3162 if (isAllOnesOrAllOnesSplat(N0))
3163 return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
3165 // fold (A - (0-B)) -> A+B
3166 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
3167 return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1));
3169 // fold A-(A-B) -> B
3170 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
3171 return N1.getOperand(1);
3173 // fold (A+B)-A -> B
3174 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
3175 return N0.getOperand(1);
3177 // fold (A+B)-B -> A
3178 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
3179 return N0.getOperand(0);
3181 // fold (A+C1)-C2 -> A+(C1-C2)
3182 if (N0.getOpcode() == ISD::ADD &&
3183 isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
3184 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
3185 SDValue NewC = DAG.FoldConstantArithmetic(
3186 ISD::SUB, DL, VT, N0.getOperand(1).getNode(), N1.getNode());
3187 assert(NewC && "Constant folding failed");
3188 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC);
3191 // fold C2-(A+C1) -> (C2-C1)-A
3192 if (N1.getOpcode() == ISD::ADD) {
3193 SDValue N11 = N1.getOperand(1);
3194 if (isConstantOrConstantVector(N0, /* NoOpaques */ true) &&
3195 isConstantOrConstantVector(N11, /* NoOpaques */ true)) {
3196 SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(),
3197 N11.getNode());
3198 assert(NewC && "Constant folding failed");
3199 return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0));
3203 // fold (A-C1)-C2 -> A-(C1+C2)
3204 if (N0.getOpcode() == ISD::SUB &&
3205 isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
3206 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
3207 SDValue NewC = DAG.FoldConstantArithmetic(
3208 ISD::ADD, DL, VT, N0.getOperand(1).getNode(), N1.getNode());
3209 assert(NewC && "Constant folding failed");
3210 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC);
3213 // fold (c1-A)-c2 -> (c1-c2)-A
3214 if (N0.getOpcode() == ISD::SUB &&
3215 isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
3216 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) {
3217 SDValue NewC = DAG.FoldConstantArithmetic(
3218 ISD::SUB, DL, VT, N0.getOperand(0).getNode(), N1.getNode());
3219 assert(NewC && "Constant folding failed");
3220 return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1));
3223 // fold ((A+(B+or-C))-B) -> A+or-C
3224 if (N0.getOpcode() == ISD::ADD &&
3225 (N0.getOperand(1).getOpcode() == ISD::SUB ||
3226 N0.getOperand(1).getOpcode() == ISD::ADD) &&
3227 N0.getOperand(1).getOperand(0) == N1)
3228 return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0),
3229 N0.getOperand(1).getOperand(1));
3231 // fold ((A+(C+B))-B) -> A+C
3232 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD &&
3233 N0.getOperand(1).getOperand(1) == N1)
3234 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0),
3235 N0.getOperand(1).getOperand(0));
3237 // fold ((A-(B-C))-C) -> A-B
3238 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB &&
3239 N0.getOperand(1).getOperand(1) == N1)
3240 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
3241 N0.getOperand(1).getOperand(0));
3243 // fold (A-(B-C)) -> A+(C-B)
3244 if (N1.getOpcode() == ISD::SUB && N1.hasOneUse())
3245 return DAG.getNode(ISD::ADD, DL, VT, N0,
3246 DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1),
3247 N1.getOperand(0)));
3249 // fold (X - (-Y * Z)) -> (X + (Y * Z))
3250 if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) {
3251 if (N1.getOperand(0).getOpcode() == ISD::SUB &&
3252 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) {
3253 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
3254 N1.getOperand(0).getOperand(1),
3255 N1.getOperand(1));
3256 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
3258 if (N1.getOperand(1).getOpcode() == ISD::SUB &&
3259 isNullOrNullSplat(N1.getOperand(1).getOperand(0))) {
3260 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
3261 N1.getOperand(0),
3262 N1.getOperand(1).getOperand(1));
3263 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
3267 // If either operand of a sub is undef, the result is undef
3268 if (N0.isUndef())
3269 return N0;
3270 if (N1.isUndef())
3271 return N1;
3273 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
3274 return V;
3276 if (SDValue V = foldAddSubOfSignBit(N, DAG))
3277 return V;
3279 if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N)))
3280 return V;
3282 // (x - y) - 1 -> add (xor y, -1), x
3283 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) {
3284 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1),
3285 DAG.getAllOnesConstant(DL, VT));
3286 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0));
3289 // Look for:
3290 // sub y, (xor x, -1)
3291 // And if the target does not like this form then turn into:
3292 // add (add x, y), 1
3293 if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) {
3294 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0));
3295 return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT));
3298 // Hoist one-use addition by non-opaque constant:
3299 // (x + C) - y -> (x - y) + C
3300 if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD &&
3301 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
3302 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
3303 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1));
3305 // y - (x + C) -> (y - x) - C
3306 if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD &&
3307 isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) {
3308 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0));
3309 return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1));
3311 // (x - C) - y -> (x - y) - C
3312 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
3313 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
3314 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
3315 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
3316 return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1));
3318 // (C - x) - y -> C - (x + y)
3319 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
3320 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
3321 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1);
3322 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add);
3325 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1'
3326 // rather than 'sub 0/1' (the sext should get folded).
3327 // sub X, (zext i1 Y) --> add X, (sext i1 Y)
3328 if (N1.getOpcode() == ISD::ZERO_EXTEND &&
3329 N1.getOperand(0).getScalarValueSizeInBits() == 1 &&
3330 TLI.getBooleanContents(VT) ==
3331 TargetLowering::ZeroOrNegativeOneBooleanContent) {
3332 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0));
3333 return DAG.getNode(ISD::ADD, DL, VT, N0, SExt);
3336 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X)
3337 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
3338 if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) {
3339 SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1);
3340 SDValue S0 = N1.getOperand(0);
3341 if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) {
3342 unsigned OpSizeInBits = VT.getScalarSizeInBits();
3343 if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1)))
3344 if (C->getAPIntValue() == (OpSizeInBits - 1))
3345 return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0);
3350 // If the relocation model supports it, consider symbol offsets.
3351 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
3352 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
3353 // fold (sub Sym, c) -> Sym-c
3354 if (N1C && GA->getOpcode() == ISD::GlobalAddress)
3355 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
3356 GA->getOffset() -
3357 (uint64_t)N1C->getSExtValue());
3358 // fold (sub Sym+c1, Sym+c2) -> c1-c2
3359 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
3360 if (GA->getGlobal() == GB->getGlobal())
3361 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
3362 DL, VT);
3365 // sub X, (sextinreg Y i1) -> add X, (and Y 1)
3366 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
3367 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
3368 if (TN->getVT() == MVT::i1) {
3369 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
3370 DAG.getConstant(1, DL, VT));
3371 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
3375 // Prefer an add for more folding potential and possibly better codegen:
3376 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
3377 if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) {
3378 SDValue ShAmt = N1.getOperand(1);
3379 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
3380 if (ShAmtC &&
3381 ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) {
3382 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt);
3383 return DAG.getNode(ISD::ADD, DL, VT, N0, SRA);
3387 return SDValue();
3390 SDValue DAGCombiner::visitSUBSAT(SDNode *N) {
3391 SDValue N0 = N->getOperand(0);
3392 SDValue N1 = N->getOperand(1);
3393 EVT VT = N0.getValueType();
3394 SDLoc DL(N);
3396 // fold vector ops
3397 if (VT.isVector()) {
3398 // TODO SimplifyVBinOp
3400 // fold (sub_sat x, 0) -> x, vector edition
3401 if (ISD::isBuildVectorAllZeros(N1.getNode()))
3402 return N0;
3405 // fold (sub_sat x, undef) -> 0
3406 if (N0.isUndef() || N1.isUndef())
3407 return DAG.getConstant(0, DL, VT);
3409 // fold (sub_sat x, x) -> 0
3410 if (N0 == N1)
3411 return DAG.getConstant(0, DL, VT);
3413 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3414 DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
3415 // fold (sub_sat c1, c2) -> c3
3416 return DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, N0.getNode(),
3417 N1.getNode());
3420 // fold (sub_sat x, 0) -> x
3421 if (isNullConstant(N1))
3422 return N0;
3424 return SDValue();
3427 SDValue DAGCombiner::visitSUBC(SDNode *N) {
3428 SDValue N0 = N->getOperand(0);
3429 SDValue N1 = N->getOperand(1);
3430 EVT VT = N0.getValueType();
3431 SDLoc DL(N);
3433 // If the flag result is dead, turn this into an SUB.
3434 if (!N->hasAnyUseOfValue(1))
3435 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
3436 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3438 // fold (subc x, x) -> 0 + no borrow
3439 if (N0 == N1)
3440 return CombineTo(N, DAG.getConstant(0, DL, VT),
3441 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3443 // fold (subc x, 0) -> x + no borrow
3444 if (isNullConstant(N1))
3445 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3447 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3448 if (isAllOnesConstant(N0))
3449 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
3450 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3452 return SDValue();
3455 SDValue DAGCombiner::visitSUBO(SDNode *N) {
3456 SDValue N0 = N->getOperand(0);
3457 SDValue N1 = N->getOperand(1);
3458 EVT VT = N0.getValueType();
3459 bool IsSigned = (ISD::SSUBO == N->getOpcode());
3461 EVT CarryVT = N->getValueType(1);
3462 SDLoc DL(N);
3464 // If the flag result is dead, turn this into an SUB.
3465 if (!N->hasAnyUseOfValue(1))
3466 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
3467 DAG.getUNDEF(CarryVT));
3469 // fold (subo x, x) -> 0 + no borrow
3470 if (N0 == N1)
3471 return CombineTo(N, DAG.getConstant(0, DL, VT),
3472 DAG.getConstant(0, DL, CarryVT));
3474 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
3476 // fold (subox, c) -> (addo x, -c)
3477 if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) {
3478 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0,
3479 DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
3482 // fold (subo x, 0) -> x + no borrow
3483 if (isNullOrNullSplat(N1))
3484 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
3486 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3487 if (!IsSigned && isAllOnesOrAllOnesSplat(N0))
3488 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
3489 DAG.getConstant(0, DL, CarryVT));
3491 return SDValue();
3494 SDValue DAGCombiner::visitSUBE(SDNode *N) {
3495 SDValue N0 = N->getOperand(0);
3496 SDValue N1 = N->getOperand(1);
3497 SDValue CarryIn = N->getOperand(2);
3499 // fold (sube x, y, false) -> (subc x, y)
3500 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
3501 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
3503 return SDValue();
3506 SDValue DAGCombiner::visitSUBCARRY(SDNode *N) {
3507 SDValue N0 = N->getOperand(0);
3508 SDValue N1 = N->getOperand(1);
3509 SDValue CarryIn = N->getOperand(2);
3511 // fold (subcarry x, y, false) -> (usubo x, y)
3512 if (isNullConstant(CarryIn)) {
3513 if (!LegalOperations ||
3514 TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0)))
3515 return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1);
3518 return SDValue();
3521 // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT and UMULFIX here.
3522 SDValue DAGCombiner::visitMULFIX(SDNode *N) {
3523 SDValue N0 = N->getOperand(0);
3524 SDValue N1 = N->getOperand(1);
3525 SDValue Scale = N->getOperand(2);
3526 EVT VT = N0.getValueType();
3528 // fold (mulfix x, undef, scale) -> 0
3529 if (N0.isUndef() || N1.isUndef())
3530 return DAG.getConstant(0, SDLoc(N), VT);
3532 // Canonicalize constant to RHS (vector doesn't have to splat)
3533 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3534 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
3535 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale);
3537 // fold (mulfix x, 0, scale) -> 0
3538 if (isNullConstant(N1))
3539 return DAG.getConstant(0, SDLoc(N), VT);
3541 return SDValue();
3544 SDValue DAGCombiner::visitMUL(SDNode *N) {
3545 SDValue N0 = N->getOperand(0);
3546 SDValue N1 = N->getOperand(1);
3547 EVT VT = N0.getValueType();
3549 // fold (mul x, undef) -> 0
3550 if (N0.isUndef() || N1.isUndef())
3551 return DAG.getConstant(0, SDLoc(N), VT);
3553 bool N0IsConst = false;
3554 bool N1IsConst = false;
3555 bool N1IsOpaqueConst = false;
3556 bool N0IsOpaqueConst = false;
3557 APInt ConstValue0, ConstValue1;
3558 // fold vector ops
3559 if (VT.isVector()) {
3560 if (SDValue FoldedVOp = SimplifyVBinOp(N))
3561 return FoldedVOp;
3563 N0IsConst = ISD::isConstantSplatVector(N0.getNode(), ConstValue0);
3564 N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1);
3565 assert((!N0IsConst ||
3566 ConstValue0.getBitWidth() == VT.getScalarSizeInBits()) &&
3567 "Splat APInt should be element width");
3568 assert((!N1IsConst ||
3569 ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) &&
3570 "Splat APInt should be element width");
3571 } else {
3572 N0IsConst = isa<ConstantSDNode>(N0);
3573 if (N0IsConst) {
3574 ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue();
3575 N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque();
3577 N1IsConst = isa<ConstantSDNode>(N1);
3578 if (N1IsConst) {
3579 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue();
3580 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
3584 // fold (mul c1, c2) -> c1*c2
3585 if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst)
3586 return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT,
3587 N0.getNode(), N1.getNode());
3589 // canonicalize constant to RHS (vector doesn't have to splat)
3590 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3591 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
3592 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
3593 // fold (mul x, 0) -> 0
3594 if (N1IsConst && ConstValue1.isNullValue())
3595 return N1;
3596 // fold (mul x, 1) -> x
3597 if (N1IsConst && ConstValue1.isOneValue())
3598 return N0;
3600 if (SDValue NewSel = foldBinOpIntoSelect(N))
3601 return NewSel;
3603 // fold (mul x, -1) -> 0-x
3604 if (N1IsConst && ConstValue1.isAllOnesValue()) {
3605 SDLoc DL(N);
3606 return DAG.getNode(ISD::SUB, DL, VT,
3607 DAG.getConstant(0, DL, VT), N0);
3609 // fold (mul x, (1 << c)) -> x << c
3610 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
3611 DAG.isKnownToBeAPowerOfTwo(N1) &&
3612 (!VT.isVector() || Level <= AfterLegalizeVectorOps)) {
3613 SDLoc DL(N);
3614 SDValue LogBase2 = BuildLogBase2(N1, DL);
3615 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
3616 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
3617 return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc);
3619 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
3620 if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) {
3621 unsigned Log2Val = (-ConstValue1).logBase2();
3622 SDLoc DL(N);
3623 // FIXME: If the input is something that is easily negated (e.g. a
3624 // single-use add), we should put the negate there.
3625 return DAG.getNode(ISD::SUB, DL, VT,
3626 DAG.getConstant(0, DL, VT),
3627 DAG.getNode(ISD::SHL, DL, VT, N0,
3628 DAG.getConstant(Log2Val, DL,
3629 getShiftAmountTy(N0.getValueType()))));
3632 // Try to transform multiply-by-(power-of-2 +/- 1) into shift and add/sub.
3633 // mul x, (2^N + 1) --> add (shl x, N), x
3634 // mul x, (2^N - 1) --> sub (shl x, N), x
3635 // Examples: x * 33 --> (x << 5) + x
3636 // x * 15 --> (x << 4) - x
3637 // x * -33 --> -((x << 5) + x)
3638 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
3639 if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) {
3640 // TODO: We could handle more general decomposition of any constant by
3641 // having the target set a limit on number of ops and making a
3642 // callback to determine that sequence (similar to sqrt expansion).
3643 unsigned MathOp = ISD::DELETED_NODE;
3644 APInt MulC = ConstValue1.abs();
3645 if ((MulC - 1).isPowerOf2())
3646 MathOp = ISD::ADD;
3647 else if ((MulC + 1).isPowerOf2())
3648 MathOp = ISD::SUB;
3650 if (MathOp != ISD::DELETED_NODE) {
3651 unsigned ShAmt =
3652 MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2();
3653 assert(ShAmt < VT.getScalarSizeInBits() &&
3654 "multiply-by-constant generated out of bounds shift");
3655 SDLoc DL(N);
3656 SDValue Shl =
3657 DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT));
3658 SDValue R = DAG.getNode(MathOp, DL, VT, Shl, N0);
3659 if (ConstValue1.isNegative())
3660 R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R);
3661 return R;
3665 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
3666 if (N0.getOpcode() == ISD::SHL &&
3667 isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
3668 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
3669 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1));
3670 if (isConstantOrConstantVector(C3))
3671 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3);
3674 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
3675 // use.
3677 SDValue Sh(nullptr, 0), Y(nullptr, 0);
3679 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
3680 if (N0.getOpcode() == ISD::SHL &&
3681 isConstantOrConstantVector(N0.getOperand(1)) &&
3682 N0.getNode()->hasOneUse()) {
3683 Sh = N0; Y = N1;
3684 } else if (N1.getOpcode() == ISD::SHL &&
3685 isConstantOrConstantVector(N1.getOperand(1)) &&
3686 N1.getNode()->hasOneUse()) {
3687 Sh = N1; Y = N0;
3690 if (Sh.getNode()) {
3691 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y);
3692 return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1));
3696 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
3697 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
3698 N0.getOpcode() == ISD::ADD &&
3699 DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
3700 isMulAddWithConstProfitable(N, N0, N1))
3701 return DAG.getNode(ISD::ADD, SDLoc(N), VT,
3702 DAG.getNode(ISD::MUL, SDLoc(N0), VT,
3703 N0.getOperand(0), N1),
3704 DAG.getNode(ISD::MUL, SDLoc(N1), VT,
3705 N0.getOperand(1), N1));
3707 // reassociate mul
3708 if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags()))
3709 return RMUL;
3711 return SDValue();
3714 /// Return true if divmod libcall is available.
3715 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
3716 const TargetLowering &TLI) {
3717 RTLIB::Libcall LC;
3718 EVT NodeType = Node->getValueType(0);
3719 if (!NodeType.isSimple())
3720 return false;
3721 switch (NodeType.getSimpleVT().SimpleTy) {
3722 default: return false; // No libcall for vector types.
3723 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
3724 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
3725 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
3726 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
3727 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
3730 return TLI.getLibcallName(LC) != nullptr;
3733 /// Issue divrem if both quotient and remainder are needed.
3734 SDValue DAGCombiner::useDivRem(SDNode *Node) {
3735 if (Node->use_empty())
3736 return SDValue(); // This is a dead node, leave it alone.
3738 unsigned Opcode = Node->getOpcode();
3739 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM);
3740 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3742 // DivMod lib calls can still work on non-legal types if using lib-calls.
3743 EVT VT = Node->getValueType(0);
3744 if (VT.isVector() || !VT.isInteger())
3745 return SDValue();
3747 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT))
3748 return SDValue();
3750 // If DIVREM is going to get expanded into a libcall,
3751 // but there is no libcall available, then don't combine.
3752 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) &&
3753 !isDivRemLibcallAvailable(Node, isSigned, TLI))
3754 return SDValue();
3756 // If div is legal, it's better to do the normal expansion
3757 unsigned OtherOpcode = 0;
3758 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) {
3759 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM;
3760 if (TLI.isOperationLegalOrCustom(Opcode, VT))
3761 return SDValue();
3762 } else {
3763 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
3764 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT))
3765 return SDValue();
3768 SDValue Op0 = Node->getOperand(0);
3769 SDValue Op1 = Node->getOperand(1);
3770 SDValue combined;
3771 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
3772 UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
3773 SDNode *User = *UI;
3774 if (User == Node || User->getOpcode() == ISD::DELETED_NODE ||
3775 User->use_empty())
3776 continue;
3777 // Convert the other matching node(s), too;
3778 // otherwise, the DIVREM may get target-legalized into something
3779 // target-specific that we won't be able to recognize.
3780 unsigned UserOpc = User->getOpcode();
3781 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) &&
3782 User->getOperand(0) == Op0 &&
3783 User->getOperand(1) == Op1) {
3784 if (!combined) {
3785 if (UserOpc == OtherOpcode) {
3786 SDVTList VTs = DAG.getVTList(VT, VT);
3787 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1);
3788 } else if (UserOpc == DivRemOpc) {
3789 combined = SDValue(User, 0);
3790 } else {
3791 assert(UserOpc == Opcode);
3792 continue;
3795 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV)
3796 CombineTo(User, combined);
3797 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM)
3798 CombineTo(User, combined.getValue(1));
3801 return combined;
3804 static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) {
3805 SDValue N0 = N->getOperand(0);
3806 SDValue N1 = N->getOperand(1);
3807 EVT VT = N->getValueType(0);
3808 SDLoc DL(N);
3810 unsigned Opc = N->getOpcode();
3811 bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc);
3812 ConstantSDNode *N1C = isConstOrConstSplat(N1);
3814 // X / undef -> undef
3815 // X % undef -> undef
3816 // X / 0 -> undef
3817 // X % 0 -> undef
3818 // NOTE: This includes vectors where any divisor element is zero/undef.
3819 if (DAG.isUndef(Opc, {N0, N1}))
3820 return DAG.getUNDEF(VT);
3822 // undef / X -> 0
3823 // undef % X -> 0
3824 if (N0.isUndef())
3825 return DAG.getConstant(0, DL, VT);
3827 // 0 / X -> 0
3828 // 0 % X -> 0
3829 ConstantSDNode *N0C = isConstOrConstSplat(N0);
3830 if (N0C && N0C->isNullValue())
3831 return N0;
3833 // X / X -> 1
3834 // X % X -> 0
3835 if (N0 == N1)
3836 return DAG.getConstant(IsDiv ? 1 : 0, DL, VT);
3838 // X / 1 -> X
3839 // X % 1 -> 0
3840 // If this is a boolean op (single-bit element type), we can't have
3841 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
3842 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume
3843 // it's a 1.
3844 if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1))
3845 return IsDiv ? N0 : DAG.getConstant(0, DL, VT);
3847 return SDValue();
3850 SDValue DAGCombiner::visitSDIV(SDNode *N) {
3851 SDValue N0 = N->getOperand(0);
3852 SDValue N1 = N->getOperand(1);
3853 EVT VT = N->getValueType(0);
3854 EVT CCVT = getSetCCResultType(VT);
3856 // fold vector ops
3857 if (VT.isVector())
3858 if (SDValue FoldedVOp = SimplifyVBinOp(N))
3859 return FoldedVOp;
3861 SDLoc DL(N);
3863 // fold (sdiv c1, c2) -> c1/c2
3864 ConstantSDNode *N0C = isConstOrConstSplat(N0);
3865 ConstantSDNode *N1C = isConstOrConstSplat(N1);
3866 if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque())
3867 return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C);
3868 // fold (sdiv X, -1) -> 0-X
3869 if (N1C && N1C->isAllOnesValue())
3870 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0);
3871 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
3872 if (N1C && N1C->getAPIntValue().isMinSignedValue())
3873 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
3874 DAG.getConstant(1, DL, VT),
3875 DAG.getConstant(0, DL, VT));
3877 if (SDValue V = simplifyDivRem(N, DAG))
3878 return V;
3880 if (SDValue NewSel = foldBinOpIntoSelect(N))
3881 return NewSel;
3883 // If we know the sign bits of both operands are zero, strength reduce to a
3884 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
3885 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
3886 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
3888 if (SDValue V = visitSDIVLike(N0, N1, N)) {
3889 // If the corresponding remainder node exists, update its users with
3890 // (Dividend - (Quotient * Divisor).
3891 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(),
3892 { N0, N1 })) {
3893 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
3894 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
3895 AddToWorklist(Mul.getNode());
3896 AddToWorklist(Sub.getNode());
3897 CombineTo(RemNode, Sub);
3899 return V;
3902 // sdiv, srem -> sdivrem
3903 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
3904 // true. Otherwise, we break the simplification logic in visitREM().
3905 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3906 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
3907 if (SDValue DivRem = useDivRem(N))
3908 return DivRem;
3910 return SDValue();
3913 SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) {
3914 SDLoc DL(N);
3915 EVT VT = N->getValueType(0);
3916 EVT CCVT = getSetCCResultType(VT);
3917 unsigned BitWidth = VT.getScalarSizeInBits();
3919 // Helper for determining whether a value is a power-2 constant scalar or a
3920 // vector of such elements.
3921 auto IsPowerOfTwo = [](ConstantSDNode *C) {
3922 if (C->isNullValue() || C->isOpaque())
3923 return false;
3924 if (C->getAPIntValue().isPowerOf2())
3925 return true;
3926 if ((-C->getAPIntValue()).isPowerOf2())
3927 return true;
3928 return false;
3931 // fold (sdiv X, pow2) -> simple ops after legalize
3932 // FIXME: We check for the exact bit here because the generic lowering gives
3933 // better results in that case. The target-specific lowering should learn how
3934 // to handle exact sdivs efficiently.
3935 if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) {
3936 // Target-specific implementation of sdiv x, pow2.
3937 if (SDValue Res = BuildSDIVPow2(N))
3938 return Res;
3940 // Create constants that are functions of the shift amount value.
3941 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
3942 SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy);
3943 SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1);
3944 C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy);
3945 SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1);
3946 if (!isConstantOrConstantVector(Inexact))
3947 return SDValue();
3949 // Splat the sign bit into the register
3950 SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0,
3951 DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy));
3952 AddToWorklist(Sign.getNode());
3954 // Add (N0 < 0) ? abs2 - 1 : 0;
3955 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact);
3956 AddToWorklist(Srl.getNode());
3957 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl);
3958 AddToWorklist(Add.getNode());
3959 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1);
3960 AddToWorklist(Sra.getNode());
3962 // Special case: (sdiv X, 1) -> X
3963 // Special Case: (sdiv X, -1) -> 0-X
3964 SDValue One = DAG.getConstant(1, DL, VT);
3965 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
3966 SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ);
3967 SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ);
3968 SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes);
3969 Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra);
3971 // If dividing by a positive value, we're done. Otherwise, the result must
3972 // be negated.
3973 SDValue Zero = DAG.getConstant(0, DL, VT);
3974 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra);
3976 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
3977 SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT);
3978 SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra);
3979 return Res;
3982 // If integer divide is expensive and we satisfy the requirements, emit an
3983 // alternate sequence. Targets may check function attributes for size/speed
3984 // trade-offs.
3985 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3986 if (isConstantOrConstantVector(N1) &&
3987 !TLI.isIntDivCheap(N->getValueType(0), Attr))
3988 if (SDValue Op = BuildSDIV(N))
3989 return Op;
3991 return SDValue();
3994 SDValue DAGCombiner::visitUDIV(SDNode *N) {
3995 SDValue N0 = N->getOperand(0);
3996 SDValue N1 = N->getOperand(1);
3997 EVT VT = N->getValueType(0);
3998 EVT CCVT = getSetCCResultType(VT);
4000 // fold vector ops
4001 if (VT.isVector())
4002 if (SDValue FoldedVOp = SimplifyVBinOp(N))
4003 return FoldedVOp;
4005 SDLoc DL(N);
4007 // fold (udiv c1, c2) -> c1/c2
4008 ConstantSDNode *N0C = isConstOrConstSplat(N0);
4009 ConstantSDNode *N1C = isConstOrConstSplat(N1);
4010 if (N0C && N1C)
4011 if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT,
4012 N0C, N1C))
4013 return Folded;
4014 // fold (udiv X, -1) -> select(X == -1, 1, 0)
4015 if (N1C && N1C->getAPIntValue().isAllOnesValue())
4016 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
4017 DAG.getConstant(1, DL, VT),
4018 DAG.getConstant(0, DL, VT));
4020 if (SDValue V = simplifyDivRem(N, DAG))
4021 return V;
4023 if (SDValue NewSel = foldBinOpIntoSelect(N))
4024 return NewSel;
4026 if (SDValue V = visitUDIVLike(N0, N1, N)) {
4027 // If the corresponding remainder node exists, update its users with
4028 // (Dividend - (Quotient * Divisor).
4029 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(),
4030 { N0, N1 })) {
4031 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
4032 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
4033 AddToWorklist(Mul.getNode());
4034 AddToWorklist(Sub.getNode());
4035 CombineTo(RemNode, Sub);
4037 return V;
4040 // sdiv, srem -> sdivrem
4041 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
4042 // true. Otherwise, we break the simplification logic in visitREM().
4043 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4044 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
4045 if (SDValue DivRem = useDivRem(N))
4046 return DivRem;
4048 return SDValue();
4051 SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) {
4052 SDLoc DL(N);
4053 EVT VT = N->getValueType(0);
4055 // fold (udiv x, (1 << c)) -> x >>u c
4056 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
4057 DAG.isKnownToBeAPowerOfTwo(N1)) {
4058 SDValue LogBase2 = BuildLogBase2(N1, DL);
4059 AddToWorklist(LogBase2.getNode());
4061 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
4062 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
4063 AddToWorklist(Trunc.getNode());
4064 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
4067 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
4068 if (N1.getOpcode() == ISD::SHL) {
4069 SDValue N10 = N1.getOperand(0);
4070 if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) &&
4071 DAG.isKnownToBeAPowerOfTwo(N10)) {
4072 SDValue LogBase2 = BuildLogBase2(N10, DL);
4073 AddToWorklist(LogBase2.getNode());
4075 EVT ADDVT = N1.getOperand(1).getValueType();
4076 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT);
4077 AddToWorklist(Trunc.getNode());
4078 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc);
4079 AddToWorklist(Add.getNode());
4080 return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
4084 // fold (udiv x, c) -> alternate
4085 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4086 if (isConstantOrConstantVector(N1) &&
4087 !TLI.isIntDivCheap(N->getValueType(0), Attr))
4088 if (SDValue Op = BuildUDIV(N))
4089 return Op;
4091 return SDValue();
4094 // handles ISD::SREM and ISD::UREM
4095 SDValue DAGCombiner::visitREM(SDNode *N) {
4096 unsigned Opcode = N->getOpcode();
4097 SDValue N0 = N->getOperand(0);
4098 SDValue N1 = N->getOperand(1);
4099 EVT VT = N->getValueType(0);
4100 EVT CCVT = getSetCCResultType(VT);
4102 bool isSigned = (Opcode == ISD::SREM);
4103 SDLoc DL(N);
4105 // fold (rem c1, c2) -> c1%c2
4106 ConstantSDNode *N0C = isConstOrConstSplat(N0);
4107 ConstantSDNode *N1C = isConstOrConstSplat(N1);
4108 if (N0C && N1C)
4109 if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C))
4110 return Folded;
4111 // fold (urem X, -1) -> select(X == -1, 0, x)
4112 if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue())
4113 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
4114 DAG.getConstant(0, DL, VT), N0);
4116 if (SDValue V = simplifyDivRem(N, DAG))
4117 return V;
4119 if (SDValue NewSel = foldBinOpIntoSelect(N))
4120 return NewSel;
4122 if (isSigned) {
4123 // If we know the sign bits of both operands are zero, strength reduce to a
4124 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
4125 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
4126 return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
4127 } else {
4128 SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
4129 if (DAG.isKnownToBeAPowerOfTwo(N1)) {
4130 // fold (urem x, pow2) -> (and x, pow2-1)
4131 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
4132 AddToWorklist(Add.getNode());
4133 return DAG.getNode(ISD::AND, DL, VT, N0, Add);
4135 if (N1.getOpcode() == ISD::SHL &&
4136 DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) {
4137 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
4138 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
4139 AddToWorklist(Add.getNode());
4140 return DAG.getNode(ISD::AND, DL, VT, N0, Add);
4144 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4146 // If X/C can be simplified by the division-by-constant logic, lower
4147 // X%C to the equivalent of X-X/C*C.
4148 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
4149 // speculative DIV must not cause a DIVREM conversion. We guard against this
4150 // by skipping the simplification if isIntDivCheap(). When div is not cheap,
4151 // combine will not return a DIVREM. Regardless, checking cheapness here
4152 // makes sense since the simplification results in fatter code.
4153 if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) {
4154 SDValue OptimizedDiv =
4155 isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N);
4156 if (OptimizedDiv.getNode()) {
4157 // If the equivalent Div node also exists, update its users.
4158 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
4159 if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(),
4160 { N0, N1 }))
4161 CombineTo(DivNode, OptimizedDiv);
4162 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1);
4163 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
4164 AddToWorklist(OptimizedDiv.getNode());
4165 AddToWorklist(Mul.getNode());
4166 return Sub;
4170 // sdiv, srem -> sdivrem
4171 if (SDValue DivRem = useDivRem(N))
4172 return DivRem.getValue(1);
4174 return SDValue();
4177 SDValue DAGCombiner::visitMULHS(SDNode *N) {
4178 SDValue N0 = N->getOperand(0);
4179 SDValue N1 = N->getOperand(1);
4180 EVT VT = N->getValueType(0);
4181 SDLoc DL(N);
4183 if (VT.isVector()) {
4184 // fold (mulhs x, 0) -> 0
4185 if (ISD::isBuildVectorAllZeros(N1.getNode()))
4186 return N1;
4187 if (ISD::isBuildVectorAllZeros(N0.getNode()))
4188 return N0;
4191 // fold (mulhs x, 0) -> 0
4192 if (isNullConstant(N1))
4193 return N1;
4194 // fold (mulhs x, 1) -> (sra x, size(x)-1)
4195 if (isOneConstant(N1))
4196 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0,
4197 DAG.getConstant(N0.getValueSizeInBits() - 1, DL,
4198 getShiftAmountTy(N0.getValueType())));
4200 // fold (mulhs x, undef) -> 0
4201 if (N0.isUndef() || N1.isUndef())
4202 return DAG.getConstant(0, DL, VT);
4204 // If the type twice as wide is legal, transform the mulhs to a wider multiply
4205 // plus a shift.
4206 if (VT.isSimple() && !VT.isVector()) {
4207 MVT Simple = VT.getSimpleVT();
4208 unsigned SimpleSize = Simple.getSizeInBits();
4209 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
4210 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
4211 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
4212 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
4213 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
4214 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
4215 DAG.getConstant(SimpleSize, DL,
4216 getShiftAmountTy(N1.getValueType())));
4217 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
4221 return SDValue();
4224 SDValue DAGCombiner::visitMULHU(SDNode *N) {
4225 SDValue N0 = N->getOperand(0);
4226 SDValue N1 = N->getOperand(1);
4227 EVT VT = N->getValueType(0);
4228 SDLoc DL(N);
4230 if (VT.isVector()) {
4231 // fold (mulhu x, 0) -> 0
4232 if (ISD::isBuildVectorAllZeros(N1.getNode()))
4233 return N1;
4234 if (ISD::isBuildVectorAllZeros(N0.getNode()))
4235 return N0;
4238 // fold (mulhu x, 0) -> 0
4239 if (isNullConstant(N1))
4240 return N1;
4241 // fold (mulhu x, 1) -> 0
4242 if (isOneConstant(N1))
4243 return DAG.getConstant(0, DL, N0.getValueType());
4244 // fold (mulhu x, undef) -> 0
4245 if (N0.isUndef() || N1.isUndef())
4246 return DAG.getConstant(0, DL, VT);
4248 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
4249 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
4250 DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) {
4251 unsigned NumEltBits = VT.getScalarSizeInBits();
4252 SDValue LogBase2 = BuildLogBase2(N1, DL);
4253 SDValue SRLAmt = DAG.getNode(
4254 ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2);
4255 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
4256 SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT);
4257 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
4260 // If the type twice as wide is legal, transform the mulhu to a wider multiply
4261 // plus a shift.
4262 if (VT.isSimple() && !VT.isVector()) {
4263 MVT Simple = VT.getSimpleVT();
4264 unsigned SimpleSize = Simple.getSizeInBits();
4265 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
4266 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
4267 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
4268 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
4269 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
4270 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
4271 DAG.getConstant(SimpleSize, DL,
4272 getShiftAmountTy(N1.getValueType())));
4273 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
4277 return SDValue();
4280 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp
4281 /// give the opcodes for the two computations that are being performed. Return
4282 /// true if a simplification was made.
4283 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
4284 unsigned HiOp) {
4285 // If the high half is not needed, just compute the low half.
4286 bool HiExists = N->hasAnyUseOfValue(1);
4287 if (!HiExists && (!LegalOperations ||
4288 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
4289 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
4290 return CombineTo(N, Res, Res);
4293 // If the low half is not needed, just compute the high half.
4294 bool LoExists = N->hasAnyUseOfValue(0);
4295 if (!LoExists && (!LegalOperations ||
4296 TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) {
4297 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
4298 return CombineTo(N, Res, Res);
4301 // If both halves are used, return as it is.
4302 if (LoExists && HiExists)
4303 return SDValue();
4305 // If the two computed results can be simplified separately, separate them.
4306 if (LoExists) {
4307 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
4308 AddToWorklist(Lo.getNode());
4309 SDValue LoOpt = combine(Lo.getNode());
4310 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
4311 (!LegalOperations ||
4312 TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType())))
4313 return CombineTo(N, LoOpt, LoOpt);
4316 if (HiExists) {
4317 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
4318 AddToWorklist(Hi.getNode());
4319 SDValue HiOpt = combine(Hi.getNode());
4320 if (HiOpt.getNode() && HiOpt != Hi &&
4321 (!LegalOperations ||
4322 TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType())))
4323 return CombineTo(N, HiOpt, HiOpt);
4326 return SDValue();
4329 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
4330 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
4331 return Res;
4333 EVT VT = N->getValueType(0);
4334 SDLoc DL(N);
4336 // If the type is twice as wide is legal, transform the mulhu to a wider
4337 // multiply plus a shift.
4338 if (VT.isSimple() && !VT.isVector()) {
4339 MVT Simple = VT.getSimpleVT();
4340 unsigned SimpleSize = Simple.getSizeInBits();
4341 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
4342 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
4343 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
4344 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
4345 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
4346 // Compute the high part as N1.
4347 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
4348 DAG.getConstant(SimpleSize, DL,
4349 getShiftAmountTy(Lo.getValueType())));
4350 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
4351 // Compute the low part as N0.
4352 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
4353 return CombineTo(N, Lo, Hi);
4357 return SDValue();
4360 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
4361 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
4362 return Res;
4364 EVT VT = N->getValueType(0);
4365 SDLoc DL(N);
4367 // (umul_lohi N0, 0) -> (0, 0)
4368 if (isNullConstant(N->getOperand(1))) {
4369 SDValue Zero = DAG.getConstant(0, DL, VT);
4370 return CombineTo(N, Zero, Zero);
4373 // (umul_lohi N0, 1) -> (N0, 0)
4374 if (isOneConstant(N->getOperand(1))) {
4375 SDValue Zero = DAG.getConstant(0, DL, VT);
4376 return CombineTo(N, N->getOperand(0), Zero);
4379 // If the type is twice as wide is legal, transform the mulhu to a wider
4380 // multiply plus a shift.
4381 if (VT.isSimple() && !VT.isVector()) {
4382 MVT Simple = VT.getSimpleVT();
4383 unsigned SimpleSize = Simple.getSizeInBits();
4384 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
4385 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
4386 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
4387 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
4388 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
4389 // Compute the high part as N1.
4390 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
4391 DAG.getConstant(SimpleSize, DL,
4392 getShiftAmountTy(Lo.getValueType())));
4393 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
4394 // Compute the low part as N0.
4395 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
4396 return CombineTo(N, Lo, Hi);
4400 return SDValue();
4403 SDValue DAGCombiner::visitMULO(SDNode *N) {
4404 bool IsSigned = (ISD::SMULO == N->getOpcode());
4406 // (mulo x, 2) -> (addo x, x)
4407 if (ConstantSDNode *C2 = isConstOrConstSplat(N->getOperand(1)))
4408 if (C2->getAPIntValue() == 2)
4409 return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, SDLoc(N),
4410 N->getVTList(), N->getOperand(0), N->getOperand(0));
4412 return SDValue();
4415 SDValue DAGCombiner::visitIMINMAX(SDNode *N) {
4416 SDValue N0 = N->getOperand(0);
4417 SDValue N1 = N->getOperand(1);
4418 EVT VT = N0.getValueType();
4420 // fold vector ops
4421 if (VT.isVector())
4422 if (SDValue FoldedVOp = SimplifyVBinOp(N))
4423 return FoldedVOp;
4425 // fold operation with constant operands.
4426 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
4427 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
4428 if (N0C && N1C)
4429 return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C);
4431 // canonicalize constant to RHS
4432 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
4433 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
4434 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
4436 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
4437 // Only do this if the current op isn't legal and the flipped is.
4438 unsigned Opcode = N->getOpcode();
4439 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4440 if (!TLI.isOperationLegal(Opcode, VT) &&
4441 (N0.isUndef() || DAG.SignBitIsZero(N0)) &&
4442 (N1.isUndef() || DAG.SignBitIsZero(N1))) {
4443 unsigned AltOpcode;
4444 switch (Opcode) {
4445 case ISD::SMIN: AltOpcode = ISD::UMIN; break;
4446 case ISD::SMAX: AltOpcode = ISD::UMAX; break;
4447 case ISD::UMIN: AltOpcode = ISD::SMIN; break;
4448 case ISD::UMAX: AltOpcode = ISD::SMAX; break;
4449 default: llvm_unreachable("Unknown MINMAX opcode");
4451 if (TLI.isOperationLegal(AltOpcode, VT))
4452 return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1);
4455 return SDValue();
4458 /// If this is a bitwise logic instruction and both operands have the same
4459 /// opcode, try to sink the other opcode after the logic instruction.
4460 SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) {
4461 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4462 EVT VT = N0.getValueType();
4463 unsigned LogicOpcode = N->getOpcode();
4464 unsigned HandOpcode = N0.getOpcode();
4465 assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR ||
4466 LogicOpcode == ISD::XOR) && "Expected logic opcode");
4467 assert(HandOpcode == N1.getOpcode() && "Bad input!");
4469 // Bail early if none of these transforms apply.
4470 if (N0.getNumOperands() == 0)
4471 return SDValue();
4473 // FIXME: We should check number of uses of the operands to not increase
4474 // the instruction count for all transforms.
4476 // Handle size-changing casts.
4477 SDValue X = N0.getOperand(0);
4478 SDValue Y = N1.getOperand(0);
4479 EVT XVT = X.getValueType();
4480 SDLoc DL(N);
4481 if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND ||
4482 HandOpcode == ISD::SIGN_EXTEND) {
4483 // If both operands have other uses, this transform would create extra
4484 // instructions without eliminating anything.
4485 if (!N0.hasOneUse() && !N1.hasOneUse())
4486 return SDValue();
4487 // We need matching integer source types.
4488 if (XVT != Y.getValueType())
4489 return SDValue();
4490 // Don't create an illegal op during or after legalization. Don't ever
4491 // create an unsupported vector op.
4492 if ((VT.isVector() || LegalOperations) &&
4493 !TLI.isOperationLegalOrCustom(LogicOpcode, XVT))
4494 return SDValue();
4495 // Avoid infinite looping with PromoteIntBinOp.
4496 // TODO: Should we apply desirable/legal constraints to all opcodes?
4497 if (HandOpcode == ISD::ANY_EXTEND && LegalTypes &&
4498 !TLI.isTypeDesirableForOp(LogicOpcode, XVT))
4499 return SDValue();
4500 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
4501 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4502 return DAG.getNode(HandOpcode, DL, VT, Logic);
4505 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
4506 if (HandOpcode == ISD::TRUNCATE) {
4507 // If both operands have other uses, this transform would create extra
4508 // instructions without eliminating anything.
4509 if (!N0.hasOneUse() && !N1.hasOneUse())
4510 return SDValue();
4511 // We need matching source types.
4512 if (XVT != Y.getValueType())
4513 return SDValue();
4514 // Don't create an illegal op during or after legalization.
4515 if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT))
4516 return SDValue();
4517 // Be extra careful sinking truncate. If it's free, there's no benefit in
4518 // widening a binop. Also, don't create a logic op on an illegal type.
4519 if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT))
4520 return SDValue();
4521 if (!TLI.isTypeLegal(XVT))
4522 return SDValue();
4523 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4524 return DAG.getNode(HandOpcode, DL, VT, Logic);
4527 // For binops SHL/SRL/SRA/AND:
4528 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
4529 if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL ||
4530 HandOpcode == ISD::SRA || HandOpcode == ISD::AND) &&
4531 N0.getOperand(1) == N1.getOperand(1)) {
4532 // If either operand has other uses, this transform is not an improvement.
4533 if (!N0.hasOneUse() || !N1.hasOneUse())
4534 return SDValue();
4535 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4536 return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1));
4539 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
4540 if (HandOpcode == ISD::BSWAP) {
4541 // If either operand has other uses, this transform is not an improvement.
4542 if (!N0.hasOneUse() || !N1.hasOneUse())
4543 return SDValue();
4544 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4545 return DAG.getNode(HandOpcode, DL, VT, Logic);
4548 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
4549 // Only perform this optimization up until type legalization, before
4550 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
4551 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
4552 // we don't want to undo this promotion.
4553 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
4554 // on scalars.
4555 if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) &&
4556 Level <= AfterLegalizeTypes) {
4557 // Input types must be integer and the same.
4558 if (XVT.isInteger() && XVT == Y.getValueType()) {
4559 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4560 return DAG.getNode(HandOpcode, DL, VT, Logic);
4564 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
4565 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
4566 // If both shuffles use the same mask, and both shuffle within a single
4567 // vector, then it is worthwhile to move the swizzle after the operation.
4568 // The type-legalizer generates this pattern when loading illegal
4569 // vector types from memory. In many cases this allows additional shuffle
4570 // optimizations.
4571 // There are other cases where moving the shuffle after the xor/and/or
4572 // is profitable even if shuffles don't perform a swizzle.
4573 // If both shuffles use the same mask, and both shuffles have the same first
4574 // or second operand, then it might still be profitable to move the shuffle
4575 // after the xor/and/or operation.
4576 if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
4577 auto *SVN0 = cast<ShuffleVectorSDNode>(N0);
4578 auto *SVN1 = cast<ShuffleVectorSDNode>(N1);
4579 assert(X.getValueType() == Y.getValueType() &&
4580 "Inputs to shuffles are not the same type");
4582 // Check that both shuffles use the same mask. The masks are known to be of
4583 // the same length because the result vector type is the same.
4584 // Check also that shuffles have only one use to avoid introducing extra
4585 // instructions.
4586 if (!SVN0->hasOneUse() || !SVN1->hasOneUse() ||
4587 !SVN0->getMask().equals(SVN1->getMask()))
4588 return SDValue();
4590 // Don't try to fold this node if it requires introducing a
4591 // build vector of all zeros that might be illegal at this stage.
4592 SDValue ShOp = N0.getOperand(1);
4593 if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
4594 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
4596 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
4597 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
4598 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT,
4599 N0.getOperand(0), N1.getOperand(0));
4600 return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask());
4603 // Don't try to fold this node if it requires introducing a
4604 // build vector of all zeros that might be illegal at this stage.
4605 ShOp = N0.getOperand(0);
4606 if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
4607 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
4609 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
4610 if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) {
4611 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1),
4612 N1.getOperand(1));
4613 return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask());
4617 return SDValue();
4620 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
4621 SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
4622 const SDLoc &DL) {
4623 SDValue LL, LR, RL, RR, N0CC, N1CC;
4624 if (!isSetCCEquivalent(N0, LL, LR, N0CC) ||
4625 !isSetCCEquivalent(N1, RL, RR, N1CC))
4626 return SDValue();
4628 assert(N0.getValueType() == N1.getValueType() &&
4629 "Unexpected operand types for bitwise logic op");
4630 assert(LL.getValueType() == LR.getValueType() &&
4631 RL.getValueType() == RR.getValueType() &&
4632 "Unexpected operand types for setcc");
4634 // If we're here post-legalization or the logic op type is not i1, the logic
4635 // op type must match a setcc result type. Also, all folds require new
4636 // operations on the left and right operands, so those types must match.
4637 EVT VT = N0.getValueType();
4638 EVT OpVT = LL.getValueType();
4639 if (LegalOperations || VT.getScalarType() != MVT::i1)
4640 if (VT != getSetCCResultType(OpVT))
4641 return SDValue();
4642 if (OpVT != RL.getValueType())
4643 return SDValue();
4645 ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get();
4646 ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get();
4647 bool IsInteger = OpVT.isInteger();
4648 if (LR == RR && CC0 == CC1 && IsInteger) {
4649 bool IsZero = isNullOrNullSplat(LR);
4650 bool IsNeg1 = isAllOnesOrAllOnesSplat(LR);
4652 // All bits clear?
4653 bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero;
4654 // All sign bits clear?
4655 bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1;
4656 // Any bits set?
4657 bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero;
4658 // Any sign bits set?
4659 bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero;
4661 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
4662 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
4663 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
4664 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
4665 if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) {
4666 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL);
4667 AddToWorklist(Or.getNode());
4668 return DAG.getSetCC(DL, VT, Or, LR, CC1);
4671 // All bits set?
4672 bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1;
4673 // All sign bits set?
4674 bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero;
4675 // Any bits clear?
4676 bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1;
4677 // Any sign bits clear?
4678 bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1;
4680 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
4681 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
4682 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
4683 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
4684 if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) {
4685 SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL);
4686 AddToWorklist(And.getNode());
4687 return DAG.getSetCC(DL, VT, And, LR, CC1);
4691 // TODO: What is the 'or' equivalent of this fold?
4692 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
4693 if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 &&
4694 IsInteger && CC0 == ISD::SETNE &&
4695 ((isNullConstant(LR) && isAllOnesConstant(RR)) ||
4696 (isAllOnesConstant(LR) && isNullConstant(RR)))) {
4697 SDValue One = DAG.getConstant(1, DL, OpVT);
4698 SDValue Two = DAG.getConstant(2, DL, OpVT);
4699 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One);
4700 AddToWorklist(Add.getNode());
4701 return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE);
4704 // Try more general transforms if the predicates match and the only user of
4705 // the compares is the 'and' or 'or'.
4706 if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 &&
4707 N0.hasOneUse() && N1.hasOneUse()) {
4708 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
4709 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
4710 if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) {
4711 SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR);
4712 SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR);
4713 SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR);
4714 SDValue Zero = DAG.getConstant(0, DL, OpVT);
4715 return DAG.getSetCC(DL, VT, Or, Zero, CC1);
4718 // Turn compare of constants whose difference is 1 bit into add+and+setcc.
4719 // TODO - support non-uniform vector amounts.
4720 if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) {
4721 // Match a shared variable operand and 2 non-opaque constant operands.
4722 ConstantSDNode *C0 = isConstOrConstSplat(LR);
4723 ConstantSDNode *C1 = isConstOrConstSplat(RR);
4724 if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) {
4725 // Canonicalize larger constant as C0.
4726 if (C1->getAPIntValue().ugt(C0->getAPIntValue()))
4727 std::swap(C0, C1);
4729 // The difference of the constants must be a single bit.
4730 const APInt &C0Val = C0->getAPIntValue();
4731 const APInt &C1Val = C1->getAPIntValue();
4732 if ((C0Val - C1Val).isPowerOf2()) {
4733 // and/or (setcc X, C0, ne), (setcc X, C1, ne/eq) -->
4734 // setcc ((add X, -C1), ~(C0 - C1)), 0, ne/eq
4735 SDValue OffsetC = DAG.getConstant(-C1Val, DL, OpVT);
4736 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LL, OffsetC);
4737 SDValue MaskC = DAG.getConstant(~(C0Val - C1Val), DL, OpVT);
4738 SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Add, MaskC);
4739 SDValue Zero = DAG.getConstant(0, DL, OpVT);
4740 return DAG.getSetCC(DL, VT, And, Zero, CC0);
4746 // Canonicalize equivalent operands to LL == RL.
4747 if (LL == RR && LR == RL) {
4748 CC1 = ISD::getSetCCSwappedOperands(CC1);
4749 std::swap(RL, RR);
4752 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
4753 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
4754 if (LL == RL && LR == RR) {
4755 ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, IsInteger)
4756 : ISD::getSetCCOrOperation(CC0, CC1, IsInteger);
4757 if (NewCC != ISD::SETCC_INVALID &&
4758 (!LegalOperations ||
4759 (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) &&
4760 TLI.isOperationLegal(ISD::SETCC, OpVT))))
4761 return DAG.getSetCC(DL, VT, LL, LR, NewCC);
4764 return SDValue();
4767 /// This contains all DAGCombine rules which reduce two values combined by
4768 /// an And operation to a single value. This makes them reusable in the context
4769 /// of visitSELECT(). Rules involving constants are not included as
4770 /// visitSELECT() already handles those cases.
4771 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) {
4772 EVT VT = N1.getValueType();
4773 SDLoc DL(N);
4775 // fold (and x, undef) -> 0
4776 if (N0.isUndef() || N1.isUndef())
4777 return DAG.getConstant(0, DL, VT);
4779 if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL))
4780 return V;
4782 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
4783 VT.getSizeInBits() <= 64) {
4784 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4785 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
4786 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
4787 // immediate for an add, but it is legal if its top c2 bits are set,
4788 // transform the ADD so the immediate doesn't need to be materialized
4789 // in a register.
4790 APInt ADDC = ADDI->getAPIntValue();
4791 APInt SRLC = SRLI->getAPIntValue();
4792 if (ADDC.getMinSignedBits() <= 64 &&
4793 SRLC.ult(VT.getSizeInBits()) &&
4794 !TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
4795 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
4796 SRLC.getZExtValue());
4797 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
4798 ADDC |= Mask;
4799 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
4800 SDLoc DL0(N0);
4801 SDValue NewAdd =
4802 DAG.getNode(ISD::ADD, DL0, VT,
4803 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
4804 CombineTo(N0.getNode(), NewAdd);
4805 // Return N so it doesn't get rechecked!
4806 return SDValue(N, 0);
4814 // Reduce bit extract of low half of an integer to the narrower type.
4815 // (and (srl i64:x, K), KMask) ->
4816 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
4817 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
4818 if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) {
4819 if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4820 unsigned Size = VT.getSizeInBits();
4821 const APInt &AndMask = CAnd->getAPIntValue();
4822 unsigned ShiftBits = CShift->getZExtValue();
4824 // Bail out, this node will probably disappear anyway.
4825 if (ShiftBits == 0)
4826 return SDValue();
4828 unsigned MaskBits = AndMask.countTrailingOnes();
4829 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2);
4831 if (AndMask.isMask() &&
4832 // Required bits must not span the two halves of the integer and
4833 // must fit in the half size type.
4834 (ShiftBits + MaskBits <= Size / 2) &&
4835 TLI.isNarrowingProfitable(VT, HalfVT) &&
4836 TLI.isTypeDesirableForOp(ISD::AND, HalfVT) &&
4837 TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) &&
4838 TLI.isTruncateFree(VT, HalfVT) &&
4839 TLI.isZExtFree(HalfVT, VT)) {
4840 // The isNarrowingProfitable is to avoid regressions on PPC and
4841 // AArch64 which match a few 64-bit bit insert / bit extract patterns
4842 // on downstream users of this. Those patterns could probably be
4843 // extended to handle extensions mixed in.
4845 SDValue SL(N0);
4846 assert(MaskBits <= Size);
4848 // Extracting the highest bit of the low half.
4849 EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout());
4850 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT,
4851 N0.getOperand(0));
4853 SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT);
4854 SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT);
4855 SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK);
4856 SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask);
4857 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And);
4863 return SDValue();
4866 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
4867 EVT LoadResultTy, EVT &ExtVT) {
4868 if (!AndC->getAPIntValue().isMask())
4869 return false;
4871 unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes();
4873 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
4874 EVT LoadedVT = LoadN->getMemoryVT();
4876 if (ExtVT == LoadedVT &&
4877 (!LegalOperations ||
4878 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) {
4879 // ZEXTLOAD will match without needing to change the size of the value being
4880 // loaded.
4881 return true;
4884 // Do not change the width of a volatile load.
4885 if (LoadN->isVolatile())
4886 return false;
4888 // Do not generate loads of non-round integer types since these can
4889 // be expensive (and would be wrong if the type is not byte sized).
4890 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound())
4891 return false;
4893 if (LegalOperations &&
4894 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))
4895 return false;
4897 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT))
4898 return false;
4900 return true;
4903 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST,
4904 ISD::LoadExtType ExtType, EVT &MemVT,
4905 unsigned ShAmt) {
4906 if (!LDST)
4907 return false;
4908 // Only allow byte offsets.
4909 if (ShAmt % 8)
4910 return false;
4912 // Do not generate loads of non-round integer types since these can
4913 // be expensive (and would be wrong if the type is not byte sized).
4914 if (!MemVT.isRound())
4915 return false;
4917 // Don't change the width of a volatile load.
4918 if (LDST->isVolatile())
4919 return false;
4921 // Verify that we are actually reducing a load width here.
4922 if (LDST->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits())
4923 return false;
4925 // Ensure that this isn't going to produce an unsupported unaligned access.
4926 if (ShAmt &&
4927 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
4928 LDST->getAddressSpace(), ShAmt / 8,
4929 LDST->getMemOperand()->getFlags()))
4930 return false;
4932 // It's not possible to generate a constant of extended or untyped type.
4933 EVT PtrType = LDST->getBasePtr().getValueType();
4934 if (PtrType == MVT::Untyped || PtrType.isExtended())
4935 return false;
4937 if (isa<LoadSDNode>(LDST)) {
4938 LoadSDNode *Load = cast<LoadSDNode>(LDST);
4939 // Don't transform one with multiple uses, this would require adding a new
4940 // load.
4941 if (!SDValue(Load, 0).hasOneUse())
4942 return false;
4944 if (LegalOperations &&
4945 !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT))
4946 return false;
4948 // For the transform to be legal, the load must produce only two values
4949 // (the value loaded and the chain). Don't transform a pre-increment
4950 // load, for example, which produces an extra value. Otherwise the
4951 // transformation is not equivalent, and the downstream logic to replace
4952 // uses gets things wrong.
4953 if (Load->getNumValues() > 2)
4954 return false;
4956 // If the load that we're shrinking is an extload and we're not just
4957 // discarding the extension we can't simply shrink the load. Bail.
4958 // TODO: It would be possible to merge the extensions in some cases.
4959 if (Load->getExtensionType() != ISD::NON_EXTLOAD &&
4960 Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
4961 return false;
4963 if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT))
4964 return false;
4965 } else {
4966 assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode");
4967 StoreSDNode *Store = cast<StoreSDNode>(LDST);
4968 // Can't write outside the original store
4969 if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
4970 return false;
4972 if (LegalOperations &&
4973 !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT))
4974 return false;
4976 return true;
4979 bool DAGCombiner::SearchForAndLoads(SDNode *N,
4980 SmallVectorImpl<LoadSDNode*> &Loads,
4981 SmallPtrSetImpl<SDNode*> &NodesWithConsts,
4982 ConstantSDNode *Mask,
4983 SDNode *&NodeToMask) {
4984 // Recursively search for the operands, looking for loads which can be
4985 // narrowed.
4986 for (SDValue Op : N->op_values()) {
4987 if (Op.getValueType().isVector())
4988 return false;
4990 // Some constants may need fixing up later if they are too large.
4991 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
4992 if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) &&
4993 (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue())
4994 NodesWithConsts.insert(N);
4995 continue;
4998 if (!Op.hasOneUse())
4999 return false;
5001 switch(Op.getOpcode()) {
5002 case ISD::LOAD: {
5003 auto *Load = cast<LoadSDNode>(Op);
5004 EVT ExtVT;
5005 if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) &&
5006 isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) {
5008 // ZEXTLOAD is already small enough.
5009 if (Load->getExtensionType() == ISD::ZEXTLOAD &&
5010 ExtVT.bitsGE(Load->getMemoryVT()))
5011 continue;
5013 // Use LE to convert equal sized loads to zext.
5014 if (ExtVT.bitsLE(Load->getMemoryVT()))
5015 Loads.push_back(Load);
5017 continue;
5019 return false;
5021 case ISD::ZERO_EXTEND:
5022 case ISD::AssertZext: {
5023 unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes();
5024 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
5025 EVT VT = Op.getOpcode() == ISD::AssertZext ?
5026 cast<VTSDNode>(Op.getOperand(1))->getVT() :
5027 Op.getOperand(0).getValueType();
5029 // We can accept extending nodes if the mask is wider or an equal
5030 // width to the original type.
5031 if (ExtVT.bitsGE(VT))
5032 continue;
5033 break;
5035 case ISD::OR:
5036 case ISD::XOR:
5037 case ISD::AND:
5038 if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask,
5039 NodeToMask))
5040 return false;
5041 continue;
5044 // Allow one node which will masked along with any loads found.
5045 if (NodeToMask)
5046 return false;
5048 // Also ensure that the node to be masked only produces one data result.
5049 NodeToMask = Op.getNode();
5050 if (NodeToMask->getNumValues() > 1) {
5051 bool HasValue = false;
5052 for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) {
5053 MVT VT = SDValue(NodeToMask, i).getSimpleValueType();
5054 if (VT != MVT::Glue && VT != MVT::Other) {
5055 if (HasValue) {
5056 NodeToMask = nullptr;
5057 return false;
5059 HasValue = true;
5062 assert(HasValue && "Node to be masked has no data result?");
5065 return true;
5068 bool DAGCombiner::BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG) {
5069 auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
5070 if (!Mask)
5071 return false;
5073 if (!Mask->getAPIntValue().isMask())
5074 return false;
5076 // No need to do anything if the and directly uses a load.
5077 if (isa<LoadSDNode>(N->getOperand(0)))
5078 return false;
5080 SmallVector<LoadSDNode*, 8> Loads;
5081 SmallPtrSet<SDNode*, 2> NodesWithConsts;
5082 SDNode *FixupNode = nullptr;
5083 if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) {
5084 if (Loads.size() == 0)
5085 return false;
5087 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump());
5088 SDValue MaskOp = N->getOperand(1);
5090 // If it exists, fixup the single node we allow in the tree that needs
5091 // masking.
5092 if (FixupNode) {
5093 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump());
5094 SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode),
5095 FixupNode->getValueType(0),
5096 SDValue(FixupNode, 0), MaskOp);
5097 DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And);
5098 if (And.getOpcode() == ISD ::AND)
5099 DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp);
5102 // Narrow any constants that need it.
5103 for (auto *LogicN : NodesWithConsts) {
5104 SDValue Op0 = LogicN->getOperand(0);
5105 SDValue Op1 = LogicN->getOperand(1);
5107 if (isa<ConstantSDNode>(Op0))
5108 std::swap(Op0, Op1);
5110 SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(),
5111 Op1, MaskOp);
5113 DAG.UpdateNodeOperands(LogicN, Op0, And);
5116 // Create narrow loads.
5117 for (auto *Load : Loads) {
5118 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump());
5119 SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0),
5120 SDValue(Load, 0), MaskOp);
5121 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And);
5122 if (And.getOpcode() == ISD ::AND)
5123 And = SDValue(
5124 DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0);
5125 SDValue NewLoad = ReduceLoadWidth(And.getNode());
5126 assert(NewLoad &&
5127 "Shouldn't be masking the load if it can't be narrowed");
5128 CombineTo(Load, NewLoad, NewLoad.getValue(1));
5130 DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode());
5131 return true;
5133 return false;
5136 // Unfold
5137 // x & (-1 'logical shift' y)
5138 // To
5139 // (x 'opposite logical shift' y) 'logical shift' y
5140 // if it is better for performance.
5141 SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) {
5142 assert(N->getOpcode() == ISD::AND);
5144 SDValue N0 = N->getOperand(0);
5145 SDValue N1 = N->getOperand(1);
5147 // Do we actually prefer shifts over mask?
5148 if (!TLI.shouldFoldMaskToVariableShiftPair(N0))
5149 return SDValue();
5151 // Try to match (-1 '[outer] logical shift' y)
5152 unsigned OuterShift;
5153 unsigned InnerShift; // The opposite direction to the OuterShift.
5154 SDValue Y; // Shift amount.
5155 auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool {
5156 if (!M.hasOneUse())
5157 return false;
5158 OuterShift = M->getOpcode();
5159 if (OuterShift == ISD::SHL)
5160 InnerShift = ISD::SRL;
5161 else if (OuterShift == ISD::SRL)
5162 InnerShift = ISD::SHL;
5163 else
5164 return false;
5165 if (!isAllOnesConstant(M->getOperand(0)))
5166 return false;
5167 Y = M->getOperand(1);
5168 return true;
5171 SDValue X;
5172 if (matchMask(N1))
5173 X = N0;
5174 else if (matchMask(N0))
5175 X = N1;
5176 else
5177 return SDValue();
5179 SDLoc DL(N);
5180 EVT VT = N->getValueType(0);
5182 // tmp = x 'opposite logical shift' y
5183 SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y);
5184 // ret = tmp 'logical shift' y
5185 SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y);
5187 return T1;
5190 SDValue DAGCombiner::visitAND(SDNode *N) {
5191 SDValue N0 = N->getOperand(0);
5192 SDValue N1 = N->getOperand(1);
5193 EVT VT = N1.getValueType();
5195 // x & x --> x
5196 if (N0 == N1)
5197 return N0;
5199 // fold vector ops
5200 if (VT.isVector()) {
5201 if (SDValue FoldedVOp = SimplifyVBinOp(N))
5202 return FoldedVOp;
5204 // fold (and x, 0) -> 0, vector edition
5205 if (ISD::isBuildVectorAllZeros(N0.getNode()))
5206 // do not return N0, because undef node may exist in N0
5207 return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()),
5208 SDLoc(N), N0.getValueType());
5209 if (ISD::isBuildVectorAllZeros(N1.getNode()))
5210 // do not return N1, because undef node may exist in N1
5211 return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()),
5212 SDLoc(N), N1.getValueType());
5214 // fold (and x, -1) -> x, vector edition
5215 if (ISD::isBuildVectorAllOnes(N0.getNode()))
5216 return N1;
5217 if (ISD::isBuildVectorAllOnes(N1.getNode()))
5218 return N0;
5221 // fold (and c1, c2) -> c1&c2
5222 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
5223 ConstantSDNode *N1C = isConstOrConstSplat(N1);
5224 if (N0C && N1C && !N1C->isOpaque())
5225 return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C);
5226 // canonicalize constant to RHS
5227 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
5228 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
5229 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
5230 // fold (and x, -1) -> x
5231 if (isAllOnesConstant(N1))
5232 return N0;
5233 // if (and x, c) is known to be zero, return 0
5234 unsigned BitWidth = VT.getScalarSizeInBits();
5235 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
5236 APInt::getAllOnesValue(BitWidth)))
5237 return DAG.getConstant(0, SDLoc(N), VT);
5239 if (SDValue NewSel = foldBinOpIntoSelect(N))
5240 return NewSel;
5242 // reassociate and
5243 if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags()))
5244 return RAND;
5246 // Try to convert a constant mask AND into a shuffle clear mask.
5247 if (VT.isVector())
5248 if (SDValue Shuffle = XformToShuffleWithZero(N))
5249 return Shuffle;
5251 // fold (and (or x, C), D) -> D if (C & D) == D
5252 auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) {
5253 return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue());
5255 if (N0.getOpcode() == ISD::OR &&
5256 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset))
5257 return N1;
5258 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
5259 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
5260 SDValue N0Op0 = N0.getOperand(0);
5261 APInt Mask = ~N1C->getAPIntValue();
5262 Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits());
5263 if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
5264 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
5265 N0.getValueType(), N0Op0);
5267 // Replace uses of the AND with uses of the Zero extend node.
5268 CombineTo(N, Zext);
5270 // We actually want to replace all uses of the any_extend with the
5271 // zero_extend, to avoid duplicating things. This will later cause this
5272 // AND to be folded.
5273 CombineTo(N0.getNode(), Zext);
5274 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5278 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
5279 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
5280 // already be zero by virtue of the width of the base type of the load.
5282 // the 'X' node here can either be nothing or an extract_vector_elt to catch
5283 // more cases.
5284 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5285 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() &&
5286 N0.getOperand(0).getOpcode() == ISD::LOAD &&
5287 N0.getOperand(0).getResNo() == 0) ||
5288 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) {
5289 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
5290 N0 : N0.getOperand(0) );
5292 // Get the constant (if applicable) the zero'th operand is being ANDed with.
5293 // This can be a pure constant or a vector splat, in which case we treat the
5294 // vector as a scalar and use the splat value.
5295 APInt Constant = APInt::getNullValue(1);
5296 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
5297 Constant = C->getAPIntValue();
5298 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
5299 APInt SplatValue, SplatUndef;
5300 unsigned SplatBitSize;
5301 bool HasAnyUndefs;
5302 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
5303 SplatBitSize, HasAnyUndefs);
5304 if (IsSplat) {
5305 // Undef bits can contribute to a possible optimisation if set, so
5306 // set them.
5307 SplatValue |= SplatUndef;
5309 // The splat value may be something like "0x00FFFFFF", which means 0 for
5310 // the first vector value and FF for the rest, repeating. We need a mask
5311 // that will apply equally to all members of the vector, so AND all the
5312 // lanes of the constant together.
5313 unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits();
5315 // If the splat value has been compressed to a bitlength lower
5316 // than the size of the vector lane, we need to re-expand it to
5317 // the lane size.
5318 if (EltBitWidth > SplatBitSize)
5319 for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth);
5320 SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2)
5321 SplatValue |= SplatValue.shl(SplatBitSize);
5323 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
5324 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
5325 if ((SplatBitSize % EltBitWidth) == 0) {
5326 Constant = APInt::getAllOnesValue(EltBitWidth);
5327 for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i)
5328 Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth);
5333 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
5334 // actually legal and isn't going to get expanded, else this is a false
5335 // optimisation.
5336 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
5337 Load->getValueType(0),
5338 Load->getMemoryVT());
5340 // Resize the constant to the same size as the original memory access before
5341 // extension. If it is still the AllOnesValue then this AND is completely
5342 // unneeded.
5343 Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits());
5345 bool B;
5346 switch (Load->getExtensionType()) {
5347 default: B = false; break;
5348 case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
5349 case ISD::ZEXTLOAD:
5350 case ISD::NON_EXTLOAD: B = true; break;
5353 if (B && Constant.isAllOnesValue()) {
5354 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
5355 // preserve semantics once we get rid of the AND.
5356 SDValue NewLoad(Load, 0);
5358 // Fold the AND away. NewLoad may get replaced immediately.
5359 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
5361 if (Load->getExtensionType() == ISD::EXTLOAD) {
5362 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
5363 Load->getValueType(0), SDLoc(Load),
5364 Load->getChain(), Load->getBasePtr(),
5365 Load->getOffset(), Load->getMemoryVT(),
5366 Load->getMemOperand());
5367 // Replace uses of the EXTLOAD with the new ZEXTLOAD.
5368 if (Load->getNumValues() == 3) {
5369 // PRE/POST_INC loads have 3 values.
5370 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
5371 NewLoad.getValue(2) };
5372 CombineTo(Load, To, 3, true);
5373 } else {
5374 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
5378 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5382 // fold (and (load x), 255) -> (zextload x, i8)
5383 // fold (and (extload x, i16), 255) -> (zextload x, i8)
5384 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
5385 if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD ||
5386 (N0.getOpcode() == ISD::ANY_EXTEND &&
5387 N0.getOperand(0).getOpcode() == ISD::LOAD))) {
5388 if (SDValue Res = ReduceLoadWidth(N)) {
5389 LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND
5390 ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0);
5391 AddToWorklist(N);
5392 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res);
5393 return SDValue(N, 0);
5397 if (Level >= AfterLegalizeTypes) {
5398 // Attempt to propagate the AND back up to the leaves which, if they're
5399 // loads, can be combined to narrow loads and the AND node can be removed.
5400 // Perform after legalization so that extend nodes will already be
5401 // combined into the loads.
5402 if (BackwardsPropagateMask(N, DAG)) {
5403 return SDValue(N, 0);
5407 if (SDValue Combined = visitANDLike(N0, N1, N))
5408 return Combined;
5410 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
5411 if (N0.getOpcode() == N1.getOpcode())
5412 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
5413 return V;
5415 // Masking the negated extension of a boolean is just the zero-extended
5416 // boolean:
5417 // and (sub 0, zext(bool X)), 1 --> zext(bool X)
5418 // and (sub 0, sext(bool X)), 1 --> zext(bool X)
5420 // Note: the SimplifyDemandedBits fold below can make an information-losing
5421 // transform, and then we have no way to find this better fold.
5422 if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) {
5423 if (isNullOrNullSplat(N0.getOperand(0))) {
5424 SDValue SubRHS = N0.getOperand(1);
5425 if (SubRHS.getOpcode() == ISD::ZERO_EXTEND &&
5426 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
5427 return SubRHS;
5428 if (SubRHS.getOpcode() == ISD::SIGN_EXTEND &&
5429 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
5430 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0));
5434 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
5435 // fold (and (sra)) -> (and (srl)) when possible.
5436 if (SimplifyDemandedBits(SDValue(N, 0)))
5437 return SDValue(N, 0);
5439 // fold (zext_inreg (extload x)) -> (zextload x)
5440 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
5441 if (ISD::isUNINDEXEDLoad(N0.getNode()) &&
5442 (ISD::isEXTLoad(N0.getNode()) ||
5443 (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) {
5444 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5445 EVT MemVT = LN0->getMemoryVT();
5446 // If we zero all the possible extended bits, then we can turn this into
5447 // a zextload if we are running before legalize or the operation is legal.
5448 unsigned ExtBitSize = N1.getScalarValueSizeInBits();
5449 unsigned MemBitSize = MemVT.getScalarSizeInBits();
5450 APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize);
5451 if (DAG.MaskedValueIsZero(N1, ExtBits) &&
5452 ((!LegalOperations && !LN0->isVolatile()) ||
5453 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
5454 SDValue ExtLoad =
5455 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(),
5456 LN0->getBasePtr(), MemVT, LN0->getMemOperand());
5457 AddToWorklist(N);
5458 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5459 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5463 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
5464 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
5465 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5466 N0.getOperand(1), false))
5467 return BSwap;
5470 if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N))
5471 return Shifts;
5473 return SDValue();
5476 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
5477 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
5478 bool DemandHighBits) {
5479 if (!LegalOperations)
5480 return SDValue();
5482 EVT VT = N->getValueType(0);
5483 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
5484 return SDValue();
5485 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
5486 return SDValue();
5488 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
5489 bool LookPassAnd0 = false;
5490 bool LookPassAnd1 = false;
5491 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
5492 std::swap(N0, N1);
5493 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
5494 std::swap(N0, N1);
5495 if (N0.getOpcode() == ISD::AND) {
5496 if (!N0.getNode()->hasOneUse())
5497 return SDValue();
5498 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5499 // Also handle 0xffff since the LHS is guaranteed to have zeros there.
5500 // This is needed for X86.
5501 if (!N01C || (N01C->getZExtValue() != 0xFF00 &&
5502 N01C->getZExtValue() != 0xFFFF))
5503 return SDValue();
5504 N0 = N0.getOperand(0);
5505 LookPassAnd0 = true;
5508 if (N1.getOpcode() == ISD::AND) {
5509 if (!N1.getNode()->hasOneUse())
5510 return SDValue();
5511 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5512 if (!N11C || N11C->getZExtValue() != 0xFF)
5513 return SDValue();
5514 N1 = N1.getOperand(0);
5515 LookPassAnd1 = true;
5518 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
5519 std::swap(N0, N1);
5520 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
5521 return SDValue();
5522 if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse())
5523 return SDValue();
5525 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5526 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5527 if (!N01C || !N11C)
5528 return SDValue();
5529 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
5530 return SDValue();
5532 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
5533 SDValue N00 = N0->getOperand(0);
5534 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
5535 if (!N00.getNode()->hasOneUse())
5536 return SDValue();
5537 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
5538 if (!N001C || N001C->getZExtValue() != 0xFF)
5539 return SDValue();
5540 N00 = N00.getOperand(0);
5541 LookPassAnd0 = true;
5544 SDValue N10 = N1->getOperand(0);
5545 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
5546 if (!N10.getNode()->hasOneUse())
5547 return SDValue();
5548 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
5549 // Also allow 0xFFFF since the bits will be shifted out. This is needed
5550 // for X86.
5551 if (!N101C || (N101C->getZExtValue() != 0xFF00 &&
5552 N101C->getZExtValue() != 0xFFFF))
5553 return SDValue();
5554 N10 = N10.getOperand(0);
5555 LookPassAnd1 = true;
5558 if (N00 != N10)
5559 return SDValue();
5561 // Make sure everything beyond the low halfword gets set to zero since the SRL
5562 // 16 will clear the top bits.
5563 unsigned OpSizeInBits = VT.getSizeInBits();
5564 if (DemandHighBits && OpSizeInBits > 16) {
5565 // If the left-shift isn't masked out then the only way this is a bswap is
5566 // if all bits beyond the low 8 are 0. In that case the entire pattern
5567 // reduces to a left shift anyway: leave it for other parts of the combiner.
5568 if (!LookPassAnd0)
5569 return SDValue();
5571 // However, if the right shift isn't masked out then it might be because
5572 // it's not needed. See if we can spot that too.
5573 if (!LookPassAnd1 &&
5574 !DAG.MaskedValueIsZero(
5575 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
5576 return SDValue();
5579 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
5580 if (OpSizeInBits > 16) {
5581 SDLoc DL(N);
5582 Res = DAG.getNode(ISD::SRL, DL, VT, Res,
5583 DAG.getConstant(OpSizeInBits - 16, DL,
5584 getShiftAmountTy(VT)));
5586 return Res;
5589 /// Return true if the specified node is an element that makes up a 32-bit
5590 /// packed halfword byteswap.
5591 /// ((x & 0x000000ff) << 8) |
5592 /// ((x & 0x0000ff00) >> 8) |
5593 /// ((x & 0x00ff0000) << 8) |
5594 /// ((x & 0xff000000) >> 8)
5595 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) {
5596 if (!N.getNode()->hasOneUse())
5597 return false;
5599 unsigned Opc = N.getOpcode();
5600 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
5601 return false;
5603 SDValue N0 = N.getOperand(0);
5604 unsigned Opc0 = N0.getOpcode();
5605 if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL)
5606 return false;
5608 ConstantSDNode *N1C = nullptr;
5609 // SHL or SRL: look upstream for AND mask operand
5610 if (Opc == ISD::AND)
5611 N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
5612 else if (Opc0 == ISD::AND)
5613 N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5614 if (!N1C)
5615 return false;
5617 unsigned MaskByteOffset;
5618 switch (N1C->getZExtValue()) {
5619 default:
5620 return false;
5621 case 0xFF: MaskByteOffset = 0; break;
5622 case 0xFF00: MaskByteOffset = 1; break;
5623 case 0xFFFF:
5624 // In case demanded bits didn't clear the bits that will be shifted out.
5625 // This is needed for X86.
5626 if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) {
5627 MaskByteOffset = 1;
5628 break;
5630 return false;
5631 case 0xFF0000: MaskByteOffset = 2; break;
5632 case 0xFF000000: MaskByteOffset = 3; break;
5635 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
5636 if (Opc == ISD::AND) {
5637 if (MaskByteOffset == 0 || MaskByteOffset == 2) {
5638 // (x >> 8) & 0xff
5639 // (x >> 8) & 0xff0000
5640 if (Opc0 != ISD::SRL)
5641 return false;
5642 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5643 if (!C || C->getZExtValue() != 8)
5644 return false;
5645 } else {
5646 // (x << 8) & 0xff00
5647 // (x << 8) & 0xff000000
5648 if (Opc0 != ISD::SHL)
5649 return false;
5650 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5651 if (!C || C->getZExtValue() != 8)
5652 return false;
5654 } else if (Opc == ISD::SHL) {
5655 // (x & 0xff) << 8
5656 // (x & 0xff0000) << 8
5657 if (MaskByteOffset != 0 && MaskByteOffset != 2)
5658 return false;
5659 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
5660 if (!C || C->getZExtValue() != 8)
5661 return false;
5662 } else { // Opc == ISD::SRL
5663 // (x & 0xff00) >> 8
5664 // (x & 0xff000000) >> 8
5665 if (MaskByteOffset != 1 && MaskByteOffset != 3)
5666 return false;
5667 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
5668 if (!C || C->getZExtValue() != 8)
5669 return false;
5672 if (Parts[MaskByteOffset])
5673 return false;
5675 Parts[MaskByteOffset] = N0.getOperand(0).getNode();
5676 return true;
5679 /// Match a 32-bit packed halfword bswap. That is
5680 /// ((x & 0x000000ff) << 8) |
5681 /// ((x & 0x0000ff00) >> 8) |
5682 /// ((x & 0x00ff0000) << 8) |
5683 /// ((x & 0xff000000) >> 8)
5684 /// => (rotl (bswap x), 16)
5685 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
5686 if (!LegalOperations)
5687 return SDValue();
5689 EVT VT = N->getValueType(0);
5690 if (VT != MVT::i32)
5691 return SDValue();
5692 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
5693 return SDValue();
5695 // Look for either
5696 // (or (or (and), (and)), (or (and), (and)))
5697 // (or (or (or (and), (and)), (and)), (and))
5698 if (N0.getOpcode() != ISD::OR)
5699 return SDValue();
5700 SDValue N00 = N0.getOperand(0);
5701 SDValue N01 = N0.getOperand(1);
5702 SDNode *Parts[4] = {};
5704 if (N1.getOpcode() == ISD::OR &&
5705 N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
5706 // (or (or (and), (and)), (or (and), (and)))
5707 if (!isBSwapHWordElement(N00, Parts))
5708 return SDValue();
5710 if (!isBSwapHWordElement(N01, Parts))
5711 return SDValue();
5712 SDValue N10 = N1.getOperand(0);
5713 if (!isBSwapHWordElement(N10, Parts))
5714 return SDValue();
5715 SDValue N11 = N1.getOperand(1);
5716 if (!isBSwapHWordElement(N11, Parts))
5717 return SDValue();
5718 } else {
5719 // (or (or (or (and), (and)), (and)), (and))
5720 if (!isBSwapHWordElement(N1, Parts))
5721 return SDValue();
5722 if (!isBSwapHWordElement(N01, Parts))
5723 return SDValue();
5724 if (N00.getOpcode() != ISD::OR)
5725 return SDValue();
5726 SDValue N000 = N00.getOperand(0);
5727 if (!isBSwapHWordElement(N000, Parts))
5728 return SDValue();
5729 SDValue N001 = N00.getOperand(1);
5730 if (!isBSwapHWordElement(N001, Parts))
5731 return SDValue();
5734 // Make sure the parts are all coming from the same node.
5735 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
5736 return SDValue();
5738 SDLoc DL(N);
5739 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
5740 SDValue(Parts[0], 0));
5742 // Result of the bswap should be rotated by 16. If it's not legal, then
5743 // do (x << 16) | (x >> 16).
5744 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT));
5745 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
5746 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
5747 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
5748 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
5749 return DAG.getNode(ISD::OR, DL, VT,
5750 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
5751 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
5754 /// This contains all DAGCombine rules which reduce two values combined by
5755 /// an Or operation to a single value \see visitANDLike().
5756 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) {
5757 EVT VT = N1.getValueType();
5758 SDLoc DL(N);
5760 // fold (or x, undef) -> -1
5761 if (!LegalOperations && (N0.isUndef() || N1.isUndef()))
5762 return DAG.getAllOnesConstant(DL, VT);
5764 if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL))
5765 return V;
5767 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
5768 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
5769 // Don't increase # computations.
5770 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
5771 // We can only do this xform if we know that bits from X that are set in C2
5772 // but not in C1 are already zero. Likewise for Y.
5773 if (const ConstantSDNode *N0O1C =
5774 getAsNonOpaqueConstant(N0.getOperand(1))) {
5775 if (const ConstantSDNode *N1O1C =
5776 getAsNonOpaqueConstant(N1.getOperand(1))) {
5777 // We can only do this xform if we know that bits from X that are set in
5778 // C2 but not in C1 are already zero. Likewise for Y.
5779 const APInt &LHSMask = N0O1C->getAPIntValue();
5780 const APInt &RHSMask = N1O1C->getAPIntValue();
5782 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
5783 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
5784 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
5785 N0.getOperand(0), N1.getOperand(0));
5786 return DAG.getNode(ISD::AND, DL, VT, X,
5787 DAG.getConstant(LHSMask | RHSMask, DL, VT));
5793 // (or (and X, M), (and X, N)) -> (and X, (or M, N))
5794 if (N0.getOpcode() == ISD::AND &&
5795 N1.getOpcode() == ISD::AND &&
5796 N0.getOperand(0) == N1.getOperand(0) &&
5797 // Don't increase # computations.
5798 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
5799 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
5800 N0.getOperand(1), N1.getOperand(1));
5801 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X);
5804 return SDValue();
5807 /// OR combines for which the commuted variant will be tried as well.
5808 static SDValue visitORCommutative(
5809 SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) {
5810 EVT VT = N0.getValueType();
5811 if (N0.getOpcode() == ISD::AND) {
5812 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y)
5813 if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1)
5814 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1);
5816 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y)
5817 if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1)
5818 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1);
5821 return SDValue();
5824 SDValue DAGCombiner::visitOR(SDNode *N) {
5825 SDValue N0 = N->getOperand(0);
5826 SDValue N1 = N->getOperand(1);
5827 EVT VT = N1.getValueType();
5829 // x | x --> x
5830 if (N0 == N1)
5831 return N0;
5833 // fold vector ops
5834 if (VT.isVector()) {
5835 if (SDValue FoldedVOp = SimplifyVBinOp(N))
5836 return FoldedVOp;
5838 // fold (or x, 0) -> x, vector edition
5839 if (ISD::isBuildVectorAllZeros(N0.getNode()))
5840 return N1;
5841 if (ISD::isBuildVectorAllZeros(N1.getNode()))
5842 return N0;
5844 // fold (or x, -1) -> -1, vector edition
5845 if (ISD::isBuildVectorAllOnes(N0.getNode()))
5846 // do not return N0, because undef node may exist in N0
5847 return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType());
5848 if (ISD::isBuildVectorAllOnes(N1.getNode()))
5849 // do not return N1, because undef node may exist in N1
5850 return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType());
5852 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
5853 // Do this only if the resulting shuffle is legal.
5854 if (isa<ShuffleVectorSDNode>(N0) &&
5855 isa<ShuffleVectorSDNode>(N1) &&
5856 // Avoid folding a node with illegal type.
5857 TLI.isTypeLegal(VT)) {
5858 bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode());
5859 bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode());
5860 bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
5861 bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode());
5862 // Ensure both shuffles have a zero input.
5863 if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) {
5864 assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!");
5865 assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!");
5866 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0);
5867 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1);
5868 bool CanFold = true;
5869 int NumElts = VT.getVectorNumElements();
5870 SmallVector<int, 4> Mask(NumElts);
5872 for (int i = 0; i != NumElts; ++i) {
5873 int M0 = SV0->getMaskElt(i);
5874 int M1 = SV1->getMaskElt(i);
5876 // Determine if either index is pointing to a zero vector.
5877 bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts));
5878 bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts));
5880 // If one element is zero and the otherside is undef, keep undef.
5881 // This also handles the case that both are undef.
5882 if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) {
5883 Mask[i] = -1;
5884 continue;
5887 // Make sure only one of the elements is zero.
5888 if (M0Zero == M1Zero) {
5889 CanFold = false;
5890 break;
5893 assert((M0 >= 0 || M1 >= 0) && "Undef index!");
5895 // We have a zero and non-zero element. If the non-zero came from
5896 // SV0 make the index a LHS index. If it came from SV1, make it
5897 // a RHS index. We need to mod by NumElts because we don't care
5898 // which operand it came from in the original shuffles.
5899 Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts;
5902 if (CanFold) {
5903 SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0);
5904 SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0);
5906 bool LegalMask = TLI.isShuffleMaskLegal(Mask, VT);
5907 if (!LegalMask) {
5908 std::swap(NewLHS, NewRHS);
5909 ShuffleVectorSDNode::commuteMask(Mask);
5910 LegalMask = TLI.isShuffleMaskLegal(Mask, VT);
5913 if (LegalMask)
5914 return DAG.getVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, Mask);
5920 // fold (or c1, c2) -> c1|c2
5921 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
5922 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5923 if (N0C && N1C && !N1C->isOpaque())
5924 return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C);
5925 // canonicalize constant to RHS
5926 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
5927 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
5928 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
5929 // fold (or x, 0) -> x
5930 if (isNullConstant(N1))
5931 return N0;
5932 // fold (or x, -1) -> -1
5933 if (isAllOnesConstant(N1))
5934 return N1;
5936 if (SDValue NewSel = foldBinOpIntoSelect(N))
5937 return NewSel;
5939 // fold (or x, c) -> c iff (x & ~c) == 0
5940 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
5941 return N1;
5943 if (SDValue Combined = visitORLike(N0, N1, N))
5944 return Combined;
5946 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
5947 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1))
5948 return BSwap;
5949 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1))
5950 return BSwap;
5952 // reassociate or
5953 if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags()))
5954 return ROR;
5956 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
5957 // iff (c1 & c2) != 0 or c1/c2 are undef.
5958 auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) {
5959 return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue());
5961 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
5962 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) {
5963 if (SDValue COR = DAG.FoldConstantArithmetic(
5964 ISD::OR, SDLoc(N1), VT, N1.getNode(), N0.getOperand(1).getNode())) {
5965 SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1);
5966 AddToWorklist(IOR.getNode());
5967 return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR);
5971 if (SDValue Combined = visitORCommutative(DAG, N0, N1, N))
5972 return Combined;
5973 if (SDValue Combined = visitORCommutative(DAG, N1, N0, N))
5974 return Combined;
5976 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
5977 if (N0.getOpcode() == N1.getOpcode())
5978 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
5979 return V;
5981 // See if this is some rotate idiom.
5982 if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
5983 return SDValue(Rot, 0);
5985 if (SDValue Load = MatchLoadCombine(N))
5986 return Load;
5988 // Simplify the operands using demanded-bits information.
5989 if (SimplifyDemandedBits(SDValue(N, 0)))
5990 return SDValue(N, 0);
5992 // If OR can be rewritten into ADD, try combines based on ADD.
5993 if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) &&
5994 DAG.haveNoCommonBitsSet(N0, N1))
5995 if (SDValue Combined = visitADDLike(N))
5996 return Combined;
5998 return SDValue();
6001 static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) {
6002 if (Op.getOpcode() == ISD::AND &&
6003 DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) {
6004 Mask = Op.getOperand(1);
6005 return Op.getOperand(0);
6007 return Op;
6010 /// Match "(X shl/srl V1) & V2" where V2 may not be present.
6011 static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift,
6012 SDValue &Mask) {
6013 Op = stripConstantMask(DAG, Op, Mask);
6014 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
6015 Shift = Op;
6016 return true;
6018 return false;
6021 /// Helper function for visitOR to extract the needed side of a rotate idiom
6022 /// from a shl/srl/mul/udiv. This is meant to handle cases where
6023 /// InstCombine merged some outside op with one of the shifts from
6024 /// the rotate pattern.
6025 /// \returns An empty \c SDValue if the needed shift couldn't be extracted.
6026 /// Otherwise, returns an expansion of \p ExtractFrom based on the following
6027 /// patterns:
6029 /// (or (mul v c0) (shrl (mul v c1) c2)):
6030 /// expands (mul v c0) -> (shl (mul v c1) c3)
6032 /// (or (udiv v c0) (shl (udiv v c1) c2)):
6033 /// expands (udiv v c0) -> (shrl (udiv v c1) c3)
6035 /// (or (shl v c0) (shrl (shl v c1) c2)):
6036 /// expands (shl v c0) -> (shl (shl v c1) c3)
6038 /// (or (shrl v c0) (shl (shrl v c1) c2)):
6039 /// expands (shrl v c0) -> (shrl (shrl v c1) c3)
6041 /// Such that in all cases, c3+c2==bitwidth(op v c1).
6042 static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift,
6043 SDValue ExtractFrom, SDValue &Mask,
6044 const SDLoc &DL) {
6045 assert(OppShift && ExtractFrom && "Empty SDValue");
6046 assert(
6047 (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) &&
6048 "Existing shift must be valid as a rotate half");
6050 ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask);
6051 // Preconditions:
6052 // (or (op0 v c0) (shiftl/r (op0 v c1) c2))
6054 // Find opcode of the needed shift to be extracted from (op0 v c0).
6055 unsigned Opcode = ISD::DELETED_NODE;
6056 bool IsMulOrDiv = false;
6057 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
6058 // opcode or its arithmetic (mul or udiv) variant.
6059 auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) {
6060 IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant;
6061 if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift)
6062 return false;
6063 Opcode = NeededShift;
6064 return true;
6066 // op0 must be either the needed shift opcode or the mul/udiv equivalent
6067 // that the needed shift can be extracted from.
6068 if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) &&
6069 (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV)))
6070 return SDValue();
6072 // op0 must be the same opcode on both sides, have the same LHS argument,
6073 // and produce the same value type.
6074 SDValue OppShiftLHS = OppShift.getOperand(0);
6075 EVT ShiftedVT = OppShiftLHS.getValueType();
6076 if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() ||
6077 OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) ||
6078 ShiftedVT != ExtractFrom.getValueType())
6079 return SDValue();
6081 // Amount of the existing shift.
6082 ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1));
6083 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
6084 ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1));
6085 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
6086 ConstantSDNode *ExtractFromCst =
6087 isConstOrConstSplat(ExtractFrom.getOperand(1));
6088 // TODO: We should be able to handle non-uniform constant vectors for these values
6089 // Check that we have constant values.
6090 if (!OppShiftCst || !OppShiftCst->getAPIntValue() ||
6091 !OppLHSCst || !OppLHSCst->getAPIntValue() ||
6092 !ExtractFromCst || !ExtractFromCst->getAPIntValue())
6093 return SDValue();
6095 // Compute the shift amount we need to extract to complete the rotate.
6096 const unsigned VTWidth = ShiftedVT.getScalarSizeInBits();
6097 if (OppShiftCst->getAPIntValue().ugt(VTWidth))
6098 return SDValue();
6099 APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue();
6100 // Normalize the bitwidth of the two mul/udiv/shift constant operands.
6101 APInt ExtractFromAmt = ExtractFromCst->getAPIntValue();
6102 APInt OppLHSAmt = OppLHSCst->getAPIntValue();
6103 zeroExtendToMatch(ExtractFromAmt, OppLHSAmt);
6105 // Now try extract the needed shift from the ExtractFrom op and see if the
6106 // result matches up with the existing shift's LHS op.
6107 if (IsMulOrDiv) {
6108 // Op to extract from is a mul or udiv by a constant.
6109 // Check:
6110 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
6111 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
6112 const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(),
6113 NeededShiftAmt.getZExtValue());
6114 APInt ResultAmt;
6115 APInt Rem;
6116 APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem);
6117 if (Rem != 0 || ResultAmt != OppLHSAmt)
6118 return SDValue();
6119 } else {
6120 // Op to extract from is a shift by a constant.
6121 // Check:
6122 // c2 - (bitwidth(op0 v c0) - c1) == c0
6123 if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc(
6124 ExtractFromAmt.getBitWidth()))
6125 return SDValue();
6128 // Return the expanded shift op that should allow a rotate to be formed.
6129 EVT ShiftVT = OppShift.getOperand(1).getValueType();
6130 EVT ResVT = ExtractFrom.getValueType();
6131 SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT);
6132 return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode);
6135 // Return true if we can prove that, whenever Neg and Pos are both in the
6136 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
6137 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
6139 // (or (shift1 X, Neg), (shift2 X, Pos))
6141 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
6142 // in direction shift1 by Neg. The range [0, EltSize) means that we only need
6143 // to consider shift amounts with defined behavior.
6144 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize,
6145 SelectionDAG &DAG) {
6146 // If EltSize is a power of 2 then:
6148 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
6149 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
6151 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
6152 // for the stronger condition:
6154 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
6156 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
6157 // we can just replace Neg with Neg' for the rest of the function.
6159 // In other cases we check for the even stronger condition:
6161 // Neg == EltSize - Pos [B]
6163 // for all Neg and Pos. Note that the (or ...) then invokes undefined
6164 // behavior if Pos == 0 (and consequently Neg == EltSize).
6166 // We could actually use [A] whenever EltSize is a power of 2, but the
6167 // only extra cases that it would match are those uninteresting ones
6168 // where Neg and Pos are never in range at the same time. E.g. for
6169 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
6170 // as well as (sub 32, Pos), but:
6172 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
6174 // always invokes undefined behavior for 32-bit X.
6176 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
6177 unsigned MaskLoBits = 0;
6178 if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) {
6179 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) {
6180 KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0));
6181 unsigned Bits = Log2_64(EltSize);
6182 if (NegC->getAPIntValue().getActiveBits() <= Bits &&
6183 ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) {
6184 Neg = Neg.getOperand(0);
6185 MaskLoBits = Bits;
6190 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
6191 if (Neg.getOpcode() != ISD::SUB)
6192 return false;
6193 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0));
6194 if (!NegC)
6195 return false;
6196 SDValue NegOp1 = Neg.getOperand(1);
6198 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
6199 // Pos'. The truncation is redundant for the purpose of the equality.
6200 if (MaskLoBits && Pos.getOpcode() == ISD::AND) {
6201 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) {
6202 KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0));
6203 if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits &&
6204 ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >=
6205 MaskLoBits))
6206 Pos = Pos.getOperand(0);
6210 // The condition we need is now:
6212 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
6214 // If NegOp1 == Pos then we need:
6216 // EltSize & Mask == NegC & Mask
6218 // (because "x & Mask" is a truncation and distributes through subtraction).
6219 APInt Width;
6220 if (Pos == NegOp1)
6221 Width = NegC->getAPIntValue();
6223 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
6224 // Then the condition we want to prove becomes:
6226 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
6228 // which, again because "x & Mask" is a truncation, becomes:
6230 // NegC & Mask == (EltSize - PosC) & Mask
6231 // EltSize & Mask == (NegC + PosC) & Mask
6232 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
6233 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
6234 Width = PosC->getAPIntValue() + NegC->getAPIntValue();
6235 else
6236 return false;
6237 } else
6238 return false;
6240 // Now we just need to check that EltSize & Mask == Width & Mask.
6241 if (MaskLoBits)
6242 // EltSize & Mask is 0 since Mask is EltSize - 1.
6243 return Width.getLoBits(MaskLoBits) == 0;
6244 return Width == EltSize;
6247 // A subroutine of MatchRotate used once we have found an OR of two opposite
6248 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
6249 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
6250 // former being preferred if supported. InnerPos and InnerNeg are Pos and
6251 // Neg with outer conversions stripped away.
6252 SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
6253 SDValue Neg, SDValue InnerPos,
6254 SDValue InnerNeg, unsigned PosOpcode,
6255 unsigned NegOpcode, const SDLoc &DL) {
6256 // fold (or (shl x, (*ext y)),
6257 // (srl x, (*ext (sub 32, y)))) ->
6258 // (rotl x, y) or (rotr x, (sub 32, y))
6260 // fold (or (shl x, (*ext (sub 32, y))),
6261 // (srl x, (*ext y))) ->
6262 // (rotr x, y) or (rotl x, (sub 32, y))
6263 EVT VT = Shifted.getValueType();
6264 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG)) {
6265 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
6266 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
6267 HasPos ? Pos : Neg).getNode();
6270 return nullptr;
6273 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
6274 // idioms for rotate, and if the target supports rotation instructions, generate
6275 // a rot[lr].
6276 SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) {
6277 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
6278 EVT VT = LHS.getValueType();
6279 if (!TLI.isTypeLegal(VT)) return nullptr;
6281 // The target must have at least one rotate flavor.
6282 bool HasROTL = hasOperation(ISD::ROTL, VT);
6283 bool HasROTR = hasOperation(ISD::ROTR, VT);
6284 if (!HasROTL && !HasROTR) return nullptr;
6286 // Check for truncated rotate.
6287 if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE &&
6288 LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) {
6289 assert(LHS.getValueType() == RHS.getValueType());
6290 if (SDNode *Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) {
6291 return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(),
6292 SDValue(Rot, 0)).getNode();
6296 // Match "(X shl/srl V1) & V2" where V2 may not be present.
6297 SDValue LHSShift; // The shift.
6298 SDValue LHSMask; // AND value if any.
6299 matchRotateHalf(DAG, LHS, LHSShift, LHSMask);
6301 SDValue RHSShift; // The shift.
6302 SDValue RHSMask; // AND value if any.
6303 matchRotateHalf(DAG, RHS, RHSShift, RHSMask);
6305 // If neither side matched a rotate half, bail
6306 if (!LHSShift && !RHSShift)
6307 return nullptr;
6309 // InstCombine may have combined a constant shl, srl, mul, or udiv with one
6310 // side of the rotate, so try to handle that here. In all cases we need to
6311 // pass the matched shift from the opposite side to compute the opcode and
6312 // needed shift amount to extract. We still want to do this if both sides
6313 // matched a rotate half because one half may be a potential overshift that
6314 // can be broken down (ie if InstCombine merged two shl or srl ops into a
6315 // single one).
6317 // Have LHS side of the rotate, try to extract the needed shift from the RHS.
6318 if (LHSShift)
6319 if (SDValue NewRHSShift =
6320 extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL))
6321 RHSShift = NewRHSShift;
6322 // Have RHS side of the rotate, try to extract the needed shift from the LHS.
6323 if (RHSShift)
6324 if (SDValue NewLHSShift =
6325 extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL))
6326 LHSShift = NewLHSShift;
6328 // If a side is still missing, nothing else we can do.
6329 if (!RHSShift || !LHSShift)
6330 return nullptr;
6332 // At this point we've matched or extracted a shift op on each side.
6334 if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
6335 return nullptr; // Not shifting the same value.
6337 if (LHSShift.getOpcode() == RHSShift.getOpcode())
6338 return nullptr; // Shifts must disagree.
6340 // Canonicalize shl to left side in a shl/srl pair.
6341 if (RHSShift.getOpcode() == ISD::SHL) {
6342 std::swap(LHS, RHS);
6343 std::swap(LHSShift, RHSShift);
6344 std::swap(LHSMask, RHSMask);
6347 unsigned EltSizeInBits = VT.getScalarSizeInBits();
6348 SDValue LHSShiftArg = LHSShift.getOperand(0);
6349 SDValue LHSShiftAmt = LHSShift.getOperand(1);
6350 SDValue RHSShiftArg = RHSShift.getOperand(0);
6351 SDValue RHSShiftAmt = RHSShift.getOperand(1);
6353 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
6354 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
6355 auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS,
6356 ConstantSDNode *RHS) {
6357 return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits;
6359 if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) {
6360 SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
6361 LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
6363 // If there is an AND of either shifted operand, apply it to the result.
6364 if (LHSMask.getNode() || RHSMask.getNode()) {
6365 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
6366 SDValue Mask = AllOnes;
6368 if (LHSMask.getNode()) {
6369 SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt);
6370 Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
6371 DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits));
6373 if (RHSMask.getNode()) {
6374 SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt);
6375 Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
6376 DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits));
6379 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask);
6382 return Rot.getNode();
6385 // If there is a mask here, and we have a variable shift, we can't be sure
6386 // that we're masking out the right stuff.
6387 if (LHSMask.getNode() || RHSMask.getNode())
6388 return nullptr;
6390 // If the shift amount is sign/zext/any-extended just peel it off.
6391 SDValue LExtOp0 = LHSShiftAmt;
6392 SDValue RExtOp0 = RHSShiftAmt;
6393 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
6394 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
6395 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
6396 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
6397 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
6398 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
6399 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
6400 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
6401 LExtOp0 = LHSShiftAmt.getOperand(0);
6402 RExtOp0 = RHSShiftAmt.getOperand(0);
6405 SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt,
6406 LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL);
6407 if (TryL)
6408 return TryL;
6410 SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
6411 RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL);
6412 if (TryR)
6413 return TryR;
6415 return nullptr;
6418 namespace {
6420 /// Represents known origin of an individual byte in load combine pattern. The
6421 /// value of the byte is either constant zero or comes from memory.
6422 struct ByteProvider {
6423 // For constant zero providers Load is set to nullptr. For memory providers
6424 // Load represents the node which loads the byte from memory.
6425 // ByteOffset is the offset of the byte in the value produced by the load.
6426 LoadSDNode *Load = nullptr;
6427 unsigned ByteOffset = 0;
6429 ByteProvider() = default;
6431 static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) {
6432 return ByteProvider(Load, ByteOffset);
6435 static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); }
6437 bool isConstantZero() const { return !Load; }
6438 bool isMemory() const { return Load; }
6440 bool operator==(const ByteProvider &Other) const {
6441 return Other.Load == Load && Other.ByteOffset == ByteOffset;
6444 private:
6445 ByteProvider(LoadSDNode *Load, unsigned ByteOffset)
6446 : Load(Load), ByteOffset(ByteOffset) {}
6449 } // end anonymous namespace
6451 /// Recursively traverses the expression calculating the origin of the requested
6452 /// byte of the given value. Returns None if the provider can't be calculated.
6454 /// For all the values except the root of the expression verifies that the value
6455 /// has exactly one use and if it's not true return None. This way if the origin
6456 /// of the byte is returned it's guaranteed that the values which contribute to
6457 /// the byte are not used outside of this expression.
6459 /// Because the parts of the expression are not allowed to have more than one
6460 /// use this function iterates over trees, not DAGs. So it never visits the same
6461 /// node more than once.
6462 static const Optional<ByteProvider>
6463 calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth,
6464 bool Root = false) {
6465 // Typical i64 by i8 pattern requires recursion up to 8 calls depth
6466 if (Depth == 10)
6467 return None;
6469 if (!Root && !Op.hasOneUse())
6470 return None;
6472 assert(Op.getValueType().isScalarInteger() && "can't handle other types");
6473 unsigned BitWidth = Op.getValueSizeInBits();
6474 if (BitWidth % 8 != 0)
6475 return None;
6476 unsigned ByteWidth = BitWidth / 8;
6477 assert(Index < ByteWidth && "invalid index requested");
6478 (void) ByteWidth;
6480 switch (Op.getOpcode()) {
6481 case ISD::OR: {
6482 auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1);
6483 if (!LHS)
6484 return None;
6485 auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1);
6486 if (!RHS)
6487 return None;
6489 if (LHS->isConstantZero())
6490 return RHS;
6491 if (RHS->isConstantZero())
6492 return LHS;
6493 return None;
6495 case ISD::SHL: {
6496 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
6497 if (!ShiftOp)
6498 return None;
6500 uint64_t BitShift = ShiftOp->getZExtValue();
6501 if (BitShift % 8 != 0)
6502 return None;
6503 uint64_t ByteShift = BitShift / 8;
6505 return Index < ByteShift
6506 ? ByteProvider::getConstantZero()
6507 : calculateByteProvider(Op->getOperand(0), Index - ByteShift,
6508 Depth + 1);
6510 case ISD::ANY_EXTEND:
6511 case ISD::SIGN_EXTEND:
6512 case ISD::ZERO_EXTEND: {
6513 SDValue NarrowOp = Op->getOperand(0);
6514 unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
6515 if (NarrowBitWidth % 8 != 0)
6516 return None;
6517 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
6519 if (Index >= NarrowByteWidth)
6520 return Op.getOpcode() == ISD::ZERO_EXTEND
6521 ? Optional<ByteProvider>(ByteProvider::getConstantZero())
6522 : None;
6523 return calculateByteProvider(NarrowOp, Index, Depth + 1);
6525 case ISD::BSWAP:
6526 return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1,
6527 Depth + 1);
6528 case ISD::LOAD: {
6529 auto L = cast<LoadSDNode>(Op.getNode());
6530 if (L->isVolatile() || L->isIndexed())
6531 return None;
6533 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
6534 if (NarrowBitWidth % 8 != 0)
6535 return None;
6536 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
6538 if (Index >= NarrowByteWidth)
6539 return L->getExtensionType() == ISD::ZEXTLOAD
6540 ? Optional<ByteProvider>(ByteProvider::getConstantZero())
6541 : None;
6542 return ByteProvider::getMemory(L, Index);
6546 return None;
6549 static unsigned LittleEndianByteAt(unsigned BW, unsigned i) {
6550 return i;
6553 static unsigned BigEndianByteAt(unsigned BW, unsigned i) {
6554 return BW - i - 1;
6557 // Check if the bytes offsets we are looking at match with either big or
6558 // little endian value loaded. Return true for big endian, false for little
6559 // endian, and None if match failed.
6560 static Optional<bool> isBigEndian(const SmallVector<int64_t, 4> &ByteOffsets,
6561 int64_t FirstOffset) {
6562 // The endian can be decided only when it is 2 bytes at least.
6563 unsigned Width = ByteOffsets.size();
6564 if (Width < 2)
6565 return None;
6567 bool BigEndian = true, LittleEndian = true;
6568 for (unsigned i = 0; i < Width; i++) {
6569 int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset;
6570 LittleEndian &= CurrentByteOffset == LittleEndianByteAt(Width, i);
6571 BigEndian &= CurrentByteOffset == BigEndianByteAt(Width, i);
6572 if (!BigEndian && !LittleEndian)
6573 return None;
6576 assert((BigEndian != LittleEndian) && "It should be either big endian or"
6577 "little endian");
6578 return BigEndian;
6581 static SDValue stripTruncAndExt(SDValue Value) {
6582 switch (Value.getOpcode()) {
6583 case ISD::TRUNCATE:
6584 case ISD::ZERO_EXTEND:
6585 case ISD::SIGN_EXTEND:
6586 case ISD::ANY_EXTEND:
6587 return stripTruncAndExt(Value.getOperand(0));
6589 return Value;
6592 /// Match a pattern where a wide type scalar value is stored by several narrow
6593 /// stores. Fold it into a single store or a BSWAP and a store if the targets
6594 /// supports it.
6596 /// Assuming little endian target:
6597 /// i8 *p = ...
6598 /// i32 val = ...
6599 /// p[0] = (val >> 0) & 0xFF;
6600 /// p[1] = (val >> 8) & 0xFF;
6601 /// p[2] = (val >> 16) & 0xFF;
6602 /// p[3] = (val >> 24) & 0xFF;
6603 /// =>
6604 /// *((i32)p) = val;
6606 /// i8 *p = ...
6607 /// i32 val = ...
6608 /// p[0] = (val >> 24) & 0xFF;
6609 /// p[1] = (val >> 16) & 0xFF;
6610 /// p[2] = (val >> 8) & 0xFF;
6611 /// p[3] = (val >> 0) & 0xFF;
6612 /// =>
6613 /// *((i32)p) = BSWAP(val);
6614 SDValue DAGCombiner::MatchStoreCombine(StoreSDNode *N) {
6615 // Collect all the stores in the chain.
6616 SDValue Chain;
6617 SmallVector<StoreSDNode *, 8> Stores;
6618 for (StoreSDNode *Store = N; Store; Store = dyn_cast<StoreSDNode>(Chain)) {
6619 if (Store->getMemoryVT() != MVT::i8 ||
6620 Store->isVolatile() || Store->isIndexed())
6621 return SDValue();
6622 Stores.push_back(Store);
6623 Chain = Store->getChain();
6625 // Handle the simple type only.
6626 unsigned Width = Stores.size();
6627 EVT VT = EVT::getIntegerVT(
6628 *DAG.getContext(), Width * N->getMemoryVT().getSizeInBits());
6629 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
6630 return SDValue();
6632 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6633 if (LegalOperations && !TLI.isOperationLegal(ISD::STORE, VT))
6634 return SDValue();
6636 // Check if all the bytes of the combined value we are looking at are stored
6637 // to the same base address. Collect bytes offsets from Base address into
6638 // ByteOffsets.
6639 SDValue CombinedValue;
6640 SmallVector<int64_t, 4> ByteOffsets(Width, INT64_MAX);
6641 int64_t FirstOffset = INT64_MAX;
6642 StoreSDNode *FirstStore = nullptr;
6643 Optional<BaseIndexOffset> Base;
6644 for (auto Store : Stores) {
6645 // All the stores store different byte of the CombinedValue. A truncate is
6646 // required to get that byte value.
6647 SDValue Trunc = Store->getValue();
6648 if (Trunc.getOpcode() != ISD::TRUNCATE)
6649 return SDValue();
6650 // A shift operation is required to get the right byte offset, except the
6651 // first byte.
6652 int64_t Offset = 0;
6653 SDValue Value = Trunc.getOperand(0);
6654 if (Value.getOpcode() == ISD::SRL ||
6655 Value.getOpcode() == ISD::SRA) {
6656 ConstantSDNode *ShiftOffset =
6657 dyn_cast<ConstantSDNode>(Value.getOperand(1));
6658 // Trying to match the following pattern. The shift offset must be
6659 // a constant and a multiple of 8. It is the byte offset in "y".
6661 // x = srl y, offset
6662 // i8 z = trunc x
6663 // store z, ...
6664 if (!ShiftOffset || (ShiftOffset->getSExtValue() % 8))
6665 return SDValue();
6667 Offset = ShiftOffset->getSExtValue()/8;
6668 Value = Value.getOperand(0);
6671 // Stores must share the same combined value with different offsets.
6672 if (!CombinedValue)
6673 CombinedValue = Value;
6674 else if (stripTruncAndExt(CombinedValue) != stripTruncAndExt(Value))
6675 return SDValue();
6677 // The trunc and all the extend operation should be stripped to get the
6678 // real value we are stored.
6679 else if (CombinedValue.getValueType() != VT) {
6680 if (Value.getValueType() == VT ||
6681 Value.getValueSizeInBits() > CombinedValue.getValueSizeInBits())
6682 CombinedValue = Value;
6683 // Give up if the combined value type is smaller than the store size.
6684 if (CombinedValue.getValueSizeInBits() < VT.getSizeInBits())
6685 return SDValue();
6688 // Stores must share the same base address
6689 BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG);
6690 int64_t ByteOffsetFromBase = 0;
6691 if (!Base)
6692 Base = Ptr;
6693 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
6694 return SDValue();
6696 // Remember the first byte store
6697 if (ByteOffsetFromBase < FirstOffset) {
6698 FirstStore = Store;
6699 FirstOffset = ByteOffsetFromBase;
6701 // Map the offset in the store and the offset in the combined value, and
6702 // early return if it has been set before.
6703 if (Offset < 0 || Offset >= Width || ByteOffsets[Offset] != INT64_MAX)
6704 return SDValue();
6705 ByteOffsets[Offset] = ByteOffsetFromBase;
6708 assert(FirstOffset != INT64_MAX && "First byte offset must be set");
6709 assert(FirstStore && "First store must be set");
6711 // Check if the bytes of the combined value we are looking at match with
6712 // either big or little endian value store.
6713 Optional<bool> IsBigEndian = isBigEndian(ByteOffsets, FirstOffset);
6714 if (!IsBigEndian.hasValue())
6715 return SDValue();
6717 // The node we are looking at matches with the pattern, check if we can
6718 // replace it with a single bswap if needed and store.
6720 // If the store needs byte swap check if the target supports it
6721 bool NeedsBswap = DAG.getDataLayout().isBigEndian() != *IsBigEndian;
6723 // Before legalize we can introduce illegal bswaps which will be later
6724 // converted to an explicit bswap sequence. This way we end up with a single
6725 // store and byte shuffling instead of several stores and byte shuffling.
6726 if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT))
6727 return SDValue();
6729 // Check that a store of the wide type is both allowed and fast on the target
6730 bool Fast = false;
6731 bool Allowed =
6732 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
6733 *FirstStore->getMemOperand(), &Fast);
6734 if (!Allowed || !Fast)
6735 return SDValue();
6737 if (VT != CombinedValue.getValueType()) {
6738 assert(CombinedValue.getValueType().getSizeInBits() > VT.getSizeInBits() &&
6739 "Get unexpected store value to combine");
6740 CombinedValue = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT,
6741 CombinedValue);
6744 if (NeedsBswap)
6745 CombinedValue = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, CombinedValue);
6747 SDValue NewStore =
6748 DAG.getStore(Chain, SDLoc(N), CombinedValue, FirstStore->getBasePtr(),
6749 FirstStore->getPointerInfo(), FirstStore->getAlignment());
6751 // Rely on other DAG combine rules to remove the other individual stores.
6752 DAG.ReplaceAllUsesWith(N, NewStore.getNode());
6753 return NewStore;
6756 /// Match a pattern where a wide type scalar value is loaded by several narrow
6757 /// loads and combined by shifts and ors. Fold it into a single load or a load
6758 /// and a BSWAP if the targets supports it.
6760 /// Assuming little endian target:
6761 /// i8 *a = ...
6762 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
6763 /// =>
6764 /// i32 val = *((i32)a)
6766 /// i8 *a = ...
6767 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
6768 /// =>
6769 /// i32 val = BSWAP(*((i32)a))
6771 /// TODO: This rule matches complex patterns with OR node roots and doesn't
6772 /// interact well with the worklist mechanism. When a part of the pattern is
6773 /// updated (e.g. one of the loads) its direct users are put into the worklist,
6774 /// but the root node of the pattern which triggers the load combine is not
6775 /// necessarily a direct user of the changed node. For example, once the address
6776 /// of t28 load is reassociated load combine won't be triggered:
6777 /// t25: i32 = add t4, Constant:i32<2>
6778 /// t26: i64 = sign_extend t25
6779 /// t27: i64 = add t2, t26
6780 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
6781 /// t29: i32 = zero_extend t28
6782 /// t32: i32 = shl t29, Constant:i8<8>
6783 /// t33: i32 = or t23, t32
6784 /// As a possible fix visitLoad can check if the load can be a part of a load
6785 /// combine pattern and add corresponding OR roots to the worklist.
6786 SDValue DAGCombiner::MatchLoadCombine(SDNode *N) {
6787 assert(N->getOpcode() == ISD::OR &&
6788 "Can only match load combining against OR nodes");
6790 // Handles simple types only
6791 EVT VT = N->getValueType(0);
6792 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
6793 return SDValue();
6794 unsigned ByteWidth = VT.getSizeInBits() / 8;
6796 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6797 // Before legalize we can introduce too wide illegal loads which will be later
6798 // split into legal sized loads. This enables us to combine i64 load by i8
6799 // patterns to a couple of i32 loads on 32 bit targets.
6800 if (LegalOperations && !TLI.isOperationLegal(ISD::LOAD, VT))
6801 return SDValue();
6803 bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian();
6804 auto MemoryByteOffset = [&] (ByteProvider P) {
6805 assert(P.isMemory() && "Must be a memory byte provider");
6806 unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits();
6807 assert(LoadBitWidth % 8 == 0 &&
6808 "can only analyze providers for individual bytes not bit");
6809 unsigned LoadByteWidth = LoadBitWidth / 8;
6810 return IsBigEndianTarget
6811 ? BigEndianByteAt(LoadByteWidth, P.ByteOffset)
6812 : LittleEndianByteAt(LoadByteWidth, P.ByteOffset);
6815 Optional<BaseIndexOffset> Base;
6816 SDValue Chain;
6818 SmallPtrSet<LoadSDNode *, 8> Loads;
6819 Optional<ByteProvider> FirstByteProvider;
6820 int64_t FirstOffset = INT64_MAX;
6822 // Check if all the bytes of the OR we are looking at are loaded from the same
6823 // base address. Collect bytes offsets from Base address in ByteOffsets.
6824 SmallVector<int64_t, 4> ByteOffsets(ByteWidth);
6825 for (unsigned i = 0; i < ByteWidth; i++) {
6826 auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true);
6827 if (!P || !P->isMemory()) // All the bytes must be loaded from memory
6828 return SDValue();
6830 LoadSDNode *L = P->Load;
6831 assert(L->hasNUsesOfValue(1, 0) && !L->isVolatile() && !L->isIndexed() &&
6832 "Must be enforced by calculateByteProvider");
6833 assert(L->getOffset().isUndef() && "Unindexed load must have undef offset");
6835 // All loads must share the same chain
6836 SDValue LChain = L->getChain();
6837 if (!Chain)
6838 Chain = LChain;
6839 else if (Chain != LChain)
6840 return SDValue();
6842 // Loads must share the same base address
6843 BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG);
6844 int64_t ByteOffsetFromBase = 0;
6845 if (!Base)
6846 Base = Ptr;
6847 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
6848 return SDValue();
6850 // Calculate the offset of the current byte from the base address
6851 ByteOffsetFromBase += MemoryByteOffset(*P);
6852 ByteOffsets[i] = ByteOffsetFromBase;
6854 // Remember the first byte load
6855 if (ByteOffsetFromBase < FirstOffset) {
6856 FirstByteProvider = P;
6857 FirstOffset = ByteOffsetFromBase;
6860 Loads.insert(L);
6862 assert(!Loads.empty() && "All the bytes of the value must be loaded from "
6863 "memory, so there must be at least one load which produces the value");
6864 assert(Base && "Base address of the accessed memory location must be set");
6865 assert(FirstOffset != INT64_MAX && "First byte offset must be set");
6867 // Check if the bytes of the OR we are looking at match with either big or
6868 // little endian value load
6869 Optional<bool> IsBigEndian = isBigEndian(ByteOffsets, FirstOffset);
6870 if (!IsBigEndian.hasValue())
6871 return SDValue();
6873 assert(FirstByteProvider && "must be set");
6875 // Ensure that the first byte is loaded from zero offset of the first load.
6876 // So the combined value can be loaded from the first load address.
6877 if (MemoryByteOffset(*FirstByteProvider) != 0)
6878 return SDValue();
6879 LoadSDNode *FirstLoad = FirstByteProvider->Load;
6881 // The node we are looking at matches with the pattern, check if we can
6882 // replace it with a single load and bswap if needed.
6884 // If the load needs byte swap check if the target supports it
6885 bool NeedsBswap = IsBigEndianTarget != *IsBigEndian;
6887 // Before legalize we can introduce illegal bswaps which will be later
6888 // converted to an explicit bswap sequence. This way we end up with a single
6889 // load and byte shuffling instead of several loads and byte shuffling.
6890 if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT))
6891 return SDValue();
6893 // Check that a load of the wide type is both allowed and fast on the target
6894 bool Fast = false;
6895 bool Allowed = TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(),
6896 VT, *FirstLoad->getMemOperand(), &Fast);
6897 if (!Allowed || !Fast)
6898 return SDValue();
6900 SDValue NewLoad =
6901 DAG.getLoad(VT, SDLoc(N), Chain, FirstLoad->getBasePtr(),
6902 FirstLoad->getPointerInfo(), FirstLoad->getAlignment());
6904 // Transfer chain users from old loads to the new load.
6905 for (LoadSDNode *L : Loads)
6906 DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1));
6908 return NeedsBswap ? DAG.getNode(ISD::BSWAP, SDLoc(N), VT, NewLoad) : NewLoad;
6911 // If the target has andn, bsl, or a similar bit-select instruction,
6912 // we want to unfold masked merge, with canonical pattern of:
6913 // | A | |B|
6914 // ((x ^ y) & m) ^ y
6915 // | D |
6916 // Into:
6917 // (x & m) | (y & ~m)
6918 // If y is a constant, and the 'andn' does not work with immediates,
6919 // we unfold into a different pattern:
6920 // ~(~x & m) & (m | y)
6921 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
6922 // the very least that breaks andnpd / andnps patterns, and because those
6923 // patterns are simplified in IR and shouldn't be created in the DAG
6924 SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) {
6925 assert(N->getOpcode() == ISD::XOR);
6927 // Don't touch 'not' (i.e. where y = -1).
6928 if (isAllOnesOrAllOnesSplat(N->getOperand(1)))
6929 return SDValue();
6931 EVT VT = N->getValueType(0);
6933 // There are 3 commutable operators in the pattern,
6934 // so we have to deal with 8 possible variants of the basic pattern.
6935 SDValue X, Y, M;
6936 auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) {
6937 if (And.getOpcode() != ISD::AND || !And.hasOneUse())
6938 return false;
6939 SDValue Xor = And.getOperand(XorIdx);
6940 if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse())
6941 return false;
6942 SDValue Xor0 = Xor.getOperand(0);
6943 SDValue Xor1 = Xor.getOperand(1);
6944 // Don't touch 'not' (i.e. where y = -1).
6945 if (isAllOnesOrAllOnesSplat(Xor1))
6946 return false;
6947 if (Other == Xor0)
6948 std::swap(Xor0, Xor1);
6949 if (Other != Xor1)
6950 return false;
6951 X = Xor0;
6952 Y = Xor1;
6953 M = And.getOperand(XorIdx ? 0 : 1);
6954 return true;
6957 SDValue N0 = N->getOperand(0);
6958 SDValue N1 = N->getOperand(1);
6959 if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) &&
6960 !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0))
6961 return SDValue();
6963 // Don't do anything if the mask is constant. This should not be reachable.
6964 // InstCombine should have already unfolded this pattern, and DAGCombiner
6965 // probably shouldn't produce it, too.
6966 if (isa<ConstantSDNode>(M.getNode()))
6967 return SDValue();
6969 // We can transform if the target has AndNot
6970 if (!TLI.hasAndNot(M))
6971 return SDValue();
6973 SDLoc DL(N);
6975 // If Y is a constant, check that 'andn' works with immediates.
6976 if (!TLI.hasAndNot(Y)) {
6977 assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable.");
6978 // If not, we need to do a bit more work to make sure andn is still used.
6979 SDValue NotX = DAG.getNOT(DL, X, VT);
6980 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M);
6981 SDValue NotLHS = DAG.getNOT(DL, LHS, VT);
6982 SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y);
6983 return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS);
6986 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M);
6987 SDValue NotM = DAG.getNOT(DL, M, VT);
6988 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM);
6990 return DAG.getNode(ISD::OR, DL, VT, LHS, RHS);
6993 SDValue DAGCombiner::visitXOR(SDNode *N) {
6994 SDValue N0 = N->getOperand(0);
6995 SDValue N1 = N->getOperand(1);
6996 EVT VT = N0.getValueType();
6998 // fold vector ops
6999 if (VT.isVector()) {
7000 if (SDValue FoldedVOp = SimplifyVBinOp(N))
7001 return FoldedVOp;
7003 // fold (xor x, 0) -> x, vector edition
7004 if (ISD::isBuildVectorAllZeros(N0.getNode()))
7005 return N1;
7006 if (ISD::isBuildVectorAllZeros(N1.getNode()))
7007 return N0;
7010 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
7011 SDLoc DL(N);
7012 if (N0.isUndef() && N1.isUndef())
7013 return DAG.getConstant(0, DL, VT);
7014 // fold (xor x, undef) -> undef
7015 if (N0.isUndef())
7016 return N0;
7017 if (N1.isUndef())
7018 return N1;
7019 // fold (xor c1, c2) -> c1^c2
7020 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
7021 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
7022 if (N0C && N1C)
7023 return DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, N0C, N1C);
7024 // canonicalize constant to RHS
7025 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
7026 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
7027 return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
7028 // fold (xor x, 0) -> x
7029 if (isNullConstant(N1))
7030 return N0;
7032 if (SDValue NewSel = foldBinOpIntoSelect(N))
7033 return NewSel;
7035 // reassociate xor
7036 if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags()))
7037 return RXOR;
7039 // fold !(x cc y) -> (x !cc y)
7040 unsigned N0Opcode = N0.getOpcode();
7041 SDValue LHS, RHS, CC;
7042 if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) {
7043 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
7044 LHS.getValueType().isInteger());
7045 if (!LegalOperations ||
7046 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
7047 switch (N0Opcode) {
7048 default:
7049 llvm_unreachable("Unhandled SetCC Equivalent!");
7050 case ISD::SETCC:
7051 return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC);
7052 case ISD::SELECT_CC:
7053 return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2),
7054 N0.getOperand(3), NotCC);
7059 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
7060 if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() &&
7061 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
7062 SDValue V = N0.getOperand(0);
7063 SDLoc DL0(N0);
7064 V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V,
7065 DAG.getConstant(1, DL0, V.getValueType()));
7066 AddToWorklist(V.getNode());
7067 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V);
7070 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
7071 if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() &&
7072 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
7073 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
7074 if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
7075 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
7076 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
7077 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
7078 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode());
7079 return DAG.getNode(NewOpcode, DL, VT, LHS, RHS);
7082 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
7083 if (isAllOnesConstant(N1) && N0.hasOneUse() &&
7084 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
7085 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
7086 if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
7087 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
7088 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
7089 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
7090 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode());
7091 return DAG.getNode(NewOpcode, DL, VT, LHS, RHS);
7095 // fold (not (neg x)) -> (add X, -1)
7096 // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if
7097 // Y is a constant or the subtract has a single use.
7098 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB &&
7099 isNullConstant(N0.getOperand(0))) {
7100 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1),
7101 DAG.getAllOnesConstant(DL, VT));
7104 // fold (xor (and x, y), y) -> (and (not x), y)
7105 if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) {
7106 SDValue X = N0.getOperand(0);
7107 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
7108 AddToWorklist(NotX.getNode());
7109 return DAG.getNode(ISD::AND, DL, VT, NotX, N1);
7112 if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) {
7113 ConstantSDNode *XorC = isConstOrConstSplat(N1);
7114 ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1));
7115 unsigned BitWidth = VT.getScalarSizeInBits();
7116 if (XorC && ShiftC) {
7117 // Don't crash on an oversized shift. We can not guarantee that a bogus
7118 // shift has been simplified to undef.
7119 uint64_t ShiftAmt = ShiftC->getLimitedValue();
7120 if (ShiftAmt < BitWidth) {
7121 APInt Ones = APInt::getAllOnesValue(BitWidth);
7122 Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt);
7123 if (XorC->getAPIntValue() == Ones) {
7124 // If the xor constant is a shifted -1, do a 'not' before the shift:
7125 // xor (X << ShiftC), XorC --> (not X) << ShiftC
7126 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
7127 SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT);
7128 return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1));
7134 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
7135 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
7136 SDValue A = N0Opcode == ISD::ADD ? N0 : N1;
7137 SDValue S = N0Opcode == ISD::SRA ? N0 : N1;
7138 if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) {
7139 SDValue A0 = A.getOperand(0), A1 = A.getOperand(1);
7140 SDValue S0 = S.getOperand(0);
7141 if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) {
7142 unsigned OpSizeInBits = VT.getScalarSizeInBits();
7143 if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1)))
7144 if (C->getAPIntValue() == (OpSizeInBits - 1))
7145 return DAG.getNode(ISD::ABS, DL, VT, S0);
7150 // fold (xor x, x) -> 0
7151 if (N0 == N1)
7152 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
7154 // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
7155 // Here is a concrete example of this equivalence:
7156 // i16 x == 14
7157 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000
7158 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
7160 // =>
7162 // i16 ~1 == 0b1111111111111110
7163 // i16 rol(~1, 14) == 0b1011111111111111
7165 // Some additional tips to help conceptualize this transform:
7166 // - Try to see the operation as placing a single zero in a value of all ones.
7167 // - There exists no value for x which would allow the result to contain zero.
7168 // - Values of x larger than the bitwidth are undefined and do not require a
7169 // consistent result.
7170 // - Pushing the zero left requires shifting one bits in from the right.
7171 // A rotate left of ~1 is a nice way of achieving the desired result.
7172 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL &&
7173 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) {
7174 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT),
7175 N0.getOperand(1));
7178 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
7179 if (N0Opcode == N1.getOpcode())
7180 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
7181 return V;
7183 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
7184 if (SDValue MM = unfoldMaskedMerge(N))
7185 return MM;
7187 // Simplify the expression using non-local knowledge.
7188 if (SimplifyDemandedBits(SDValue(N, 0)))
7189 return SDValue(N, 0);
7191 return SDValue();
7194 /// Handle transforms common to the three shifts, when the shift amount is a
7195 /// constant.
7196 /// We are looking for: (shift being one of shl/sra/srl)
7197 /// shift (binop X, C0), C1
7198 /// And want to transform into:
7199 /// binop (shift X, C1), (shift C0, C1)
7200 SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) {
7201 // Do not turn a 'not' into a regular xor.
7202 if (isBitwiseNot(N->getOperand(0)))
7203 return SDValue();
7205 // The inner binop must be one-use, since we want to replace it.
7206 SDNode *LHS = N->getOperand(0).getNode();
7207 if (!LHS->hasOneUse()) return SDValue();
7209 // We want to pull some binops through shifts, so that we have (and (shift))
7210 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
7211 // thing happens with address calculations, so it's important to canonicalize
7212 // it.
7213 switch (LHS->getOpcode()) {
7214 default:
7215 return SDValue();
7216 case ISD::OR:
7217 case ISD::XOR:
7218 case ISD::AND:
7219 break;
7220 case ISD::ADD:
7221 if (N->getOpcode() != ISD::SHL)
7222 return SDValue(); // only shl(add) not sr[al](add).
7223 break;
7226 // We require the RHS of the binop to be a constant and not opaque as well.
7227 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1));
7228 if (!BinOpCst)
7229 return SDValue();
7231 // FIXME: disable this unless the input to the binop is a shift by a constant
7232 // or is copy/select. Enable this in other cases when figure out it's exactly
7233 // profitable.
7234 SDValue BinOpLHSVal = LHS->getOperand(0);
7235 bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL ||
7236 BinOpLHSVal.getOpcode() == ISD::SRA ||
7237 BinOpLHSVal.getOpcode() == ISD::SRL) &&
7238 isa<ConstantSDNode>(BinOpLHSVal.getOperand(1));
7239 bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg ||
7240 BinOpLHSVal.getOpcode() == ISD::SELECT;
7242 if (!IsShiftByConstant && !IsCopyOrSelect)
7243 return SDValue();
7245 if (IsCopyOrSelect && N->hasOneUse())
7246 return SDValue();
7248 EVT VT = N->getValueType(0);
7250 if (!TLI.isDesirableToCommuteWithShift(N, Level))
7251 return SDValue();
7253 // Fold the constants, shifting the binop RHS by the shift amount.
7254 SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
7255 N->getValueType(0),
7256 LHS->getOperand(1), N->getOperand(1));
7257 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!");
7259 // Create the new shift.
7260 SDValue NewShift = DAG.getNode(N->getOpcode(),
7261 SDLoc(LHS->getOperand(0)),
7262 VT, LHS->getOperand(0), N->getOperand(1));
7264 // Create the new binop.
7265 return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
7268 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
7269 assert(N->getOpcode() == ISD::TRUNCATE);
7270 assert(N->getOperand(0).getOpcode() == ISD::AND);
7272 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
7273 EVT TruncVT = N->getValueType(0);
7274 if (N->hasOneUse() && N->getOperand(0).hasOneUse() &&
7275 TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) {
7276 SDValue N01 = N->getOperand(0).getOperand(1);
7277 if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) {
7278 SDLoc DL(N);
7279 SDValue N00 = N->getOperand(0).getOperand(0);
7280 SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00);
7281 SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01);
7282 AddToWorklist(Trunc00.getNode());
7283 AddToWorklist(Trunc01.getNode());
7284 return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01);
7288 return SDValue();
7291 SDValue DAGCombiner::visitRotate(SDNode *N) {
7292 SDLoc dl(N);
7293 SDValue N0 = N->getOperand(0);
7294 SDValue N1 = N->getOperand(1);
7295 EVT VT = N->getValueType(0);
7296 unsigned Bitsize = VT.getScalarSizeInBits();
7298 // fold (rot x, 0) -> x
7299 if (isNullOrNullSplat(N1))
7300 return N0;
7302 // fold (rot x, c) -> x iff (c % BitSize) == 0
7303 if (isPowerOf2_32(Bitsize) && Bitsize > 1) {
7304 APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1);
7305 if (DAG.MaskedValueIsZero(N1, ModuloMask))
7306 return N0;
7309 // fold (rot x, c) -> (rot x, c % BitSize)
7310 // TODO - support non-uniform vector amounts.
7311 if (ConstantSDNode *Cst = isConstOrConstSplat(N1)) {
7312 if (Cst->getAPIntValue().uge(Bitsize)) {
7313 uint64_t RotAmt = Cst->getAPIntValue().urem(Bitsize);
7314 return DAG.getNode(N->getOpcode(), dl, VT, N0,
7315 DAG.getConstant(RotAmt, dl, N1.getValueType()));
7319 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
7320 if (N1.getOpcode() == ISD::TRUNCATE &&
7321 N1.getOperand(0).getOpcode() == ISD::AND) {
7322 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
7323 return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1);
7326 unsigned NextOp = N0.getOpcode();
7327 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize)
7328 if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) {
7329 SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1);
7330 SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1));
7331 if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) {
7332 EVT ShiftVT = C1->getValueType(0);
7333 bool SameSide = (N->getOpcode() == NextOp);
7334 unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB;
7335 if (SDValue CombinedShift =
7336 DAG.FoldConstantArithmetic(CombineOp, dl, ShiftVT, C1, C2)) {
7337 SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT);
7338 SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic(
7339 ISD::SREM, dl, ShiftVT, CombinedShift.getNode(),
7340 BitsizeC.getNode());
7341 return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0),
7342 CombinedShiftNorm);
7346 return SDValue();
7349 SDValue DAGCombiner::visitSHL(SDNode *N) {
7350 SDValue N0 = N->getOperand(0);
7351 SDValue N1 = N->getOperand(1);
7352 if (SDValue V = DAG.simplifyShift(N0, N1))
7353 return V;
7355 EVT VT = N0.getValueType();
7356 EVT ShiftVT = N1.getValueType();
7357 unsigned OpSizeInBits = VT.getScalarSizeInBits();
7359 // fold vector ops
7360 if (VT.isVector()) {
7361 if (SDValue FoldedVOp = SimplifyVBinOp(N))
7362 return FoldedVOp;
7364 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
7365 // If setcc produces all-one true value then:
7366 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
7367 if (N1CV && N1CV->isConstant()) {
7368 if (N0.getOpcode() == ISD::AND) {
7369 SDValue N00 = N0->getOperand(0);
7370 SDValue N01 = N0->getOperand(1);
7371 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
7373 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
7374 TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
7375 TargetLowering::ZeroOrNegativeOneBooleanContent) {
7376 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT,
7377 N01CV, N1CV))
7378 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
7384 ConstantSDNode *N1C = isConstOrConstSplat(N1);
7386 // fold (shl c1, c2) -> c1<<c2
7387 // TODO - support non-uniform vector shift amounts.
7388 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
7389 if (N0C && N1C && !N1C->isOpaque())
7390 return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C);
7392 if (SDValue NewSel = foldBinOpIntoSelect(N))
7393 return NewSel;
7395 // if (shl x, c) is known to be zero, return 0
7396 if (DAG.MaskedValueIsZero(SDValue(N, 0),
7397 APInt::getAllOnesValue(OpSizeInBits)))
7398 return DAG.getConstant(0, SDLoc(N), VT);
7400 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
7401 if (N1.getOpcode() == ISD::TRUNCATE &&
7402 N1.getOperand(0).getOpcode() == ISD::AND) {
7403 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
7404 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1);
7407 // TODO - support non-uniform vector shift amounts.
7408 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
7409 return SDValue(N, 0);
7411 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
7412 if (N0.getOpcode() == ISD::SHL) {
7413 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
7414 ConstantSDNode *RHS) {
7415 APInt c1 = LHS->getAPIntValue();
7416 APInt c2 = RHS->getAPIntValue();
7417 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7418 return (c1 + c2).uge(OpSizeInBits);
7420 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
7421 return DAG.getConstant(0, SDLoc(N), VT);
7423 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
7424 ConstantSDNode *RHS) {
7425 APInt c1 = LHS->getAPIntValue();
7426 APInt c2 = RHS->getAPIntValue();
7427 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7428 return (c1 + c2).ult(OpSizeInBits);
7430 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
7431 SDLoc DL(N);
7432 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
7433 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum);
7437 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2))
7438 // For this to be valid, the second form must not preserve any of the bits
7439 // that are shifted out by the inner shift in the first form. This means
7440 // the outer shift size must be >= the number of bits added by the ext.
7441 // As a corollary, we don't care what kind of ext it is.
7442 if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
7443 N0.getOpcode() == ISD::ANY_EXTEND ||
7444 N0.getOpcode() == ISD::SIGN_EXTEND) &&
7445 N0.getOperand(0).getOpcode() == ISD::SHL) {
7446 SDValue N0Op0 = N0.getOperand(0);
7447 SDValue InnerShiftAmt = N0Op0.getOperand(1);
7448 EVT InnerVT = N0Op0.getValueType();
7449 uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits();
7451 auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
7452 ConstantSDNode *RHS) {
7453 APInt c1 = LHS->getAPIntValue();
7454 APInt c2 = RHS->getAPIntValue();
7455 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7456 return c2.uge(OpSizeInBits - InnerBitwidth) &&
7457 (c1 + c2).uge(OpSizeInBits);
7459 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange,
7460 /*AllowUndefs*/ false,
7461 /*AllowTypeMismatch*/ true))
7462 return DAG.getConstant(0, SDLoc(N), VT);
7464 auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
7465 ConstantSDNode *RHS) {
7466 APInt c1 = LHS->getAPIntValue();
7467 APInt c2 = RHS->getAPIntValue();
7468 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7469 return c2.uge(OpSizeInBits - InnerBitwidth) &&
7470 (c1 + c2).ult(OpSizeInBits);
7472 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange,
7473 /*AllowUndefs*/ false,
7474 /*AllowTypeMismatch*/ true)) {
7475 SDLoc DL(N);
7476 SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0));
7477 SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT);
7478 Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1);
7479 return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum);
7483 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
7484 // Only fold this if the inner zext has no other uses to avoid increasing
7485 // the total number of instructions.
7486 if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
7487 N0.getOperand(0).getOpcode() == ISD::SRL) {
7488 SDValue N0Op0 = N0.getOperand(0);
7489 SDValue InnerShiftAmt = N0Op0.getOperand(1);
7491 auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) {
7492 APInt c1 = LHS->getAPIntValue();
7493 APInt c2 = RHS->getAPIntValue();
7494 zeroExtendToMatch(c1, c2);
7495 return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2);
7497 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual,
7498 /*AllowUndefs*/ false,
7499 /*AllowTypeMismatch*/ true)) {
7500 SDLoc DL(N);
7501 EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType();
7502 SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT);
7503 NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL);
7504 AddToWorklist(NewSHL.getNode());
7505 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
7509 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
7510 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2
7511 // TODO - support non-uniform vector shift amounts.
7512 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) &&
7513 N0->getFlags().hasExact()) {
7514 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
7515 uint64_t C1 = N0C1->getZExtValue();
7516 uint64_t C2 = N1C->getZExtValue();
7517 SDLoc DL(N);
7518 if (C1 <= C2)
7519 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
7520 DAG.getConstant(C2 - C1, DL, ShiftVT));
7521 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0),
7522 DAG.getConstant(C1 - C2, DL, ShiftVT));
7526 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
7527 // (and (srl x, (sub c1, c2), MASK)
7528 // Only fold this if the inner shift has no other uses -- if it does, folding
7529 // this will increase the total number of instructions.
7530 // TODO - drop hasOneUse requirement if c1 == c2?
7531 // TODO - support non-uniform vector shift amounts.
7532 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
7533 TLI.shouldFoldConstantShiftPairToMask(N, Level)) {
7534 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
7535 if (N0C1->getAPIntValue().ult(OpSizeInBits)) {
7536 uint64_t c1 = N0C1->getZExtValue();
7537 uint64_t c2 = N1C->getZExtValue();
7538 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1);
7539 SDValue Shift;
7540 if (c2 > c1) {
7541 Mask <<= c2 - c1;
7542 SDLoc DL(N);
7543 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
7544 DAG.getConstant(c2 - c1, DL, ShiftVT));
7545 } else {
7546 Mask.lshrInPlace(c1 - c2);
7547 SDLoc DL(N);
7548 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
7549 DAG.getConstant(c1 - c2, DL, ShiftVT));
7551 SDLoc DL(N0);
7552 return DAG.getNode(ISD::AND, DL, VT, Shift,
7553 DAG.getConstant(Mask, DL, VT));
7558 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
7559 if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) &&
7560 isConstantOrConstantVector(N1, /* No Opaques */ true)) {
7561 SDLoc DL(N);
7562 SDValue AllBits = DAG.getAllOnesConstant(DL, VT);
7563 SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1);
7564 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask);
7567 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
7568 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
7569 // Variant of version done on multiply, except mul by a power of 2 is turned
7570 // into a shift.
7571 if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) &&
7572 N0.getNode()->hasOneUse() &&
7573 isConstantOrConstantVector(N1, /* No Opaques */ true) &&
7574 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) &&
7575 TLI.isDesirableToCommuteWithShift(N, Level)) {
7576 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
7577 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
7578 AddToWorklist(Shl0.getNode());
7579 AddToWorklist(Shl1.getNode());
7580 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1);
7583 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
7584 if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() &&
7585 isConstantOrConstantVector(N1, /* No Opaques */ true) &&
7586 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) {
7587 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
7588 if (isConstantOrConstantVector(Shl))
7589 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl);
7592 if (N1C && !N1C->isOpaque())
7593 if (SDValue NewSHL = visitShiftByConstant(N, N1C))
7594 return NewSHL;
7596 return SDValue();
7599 SDValue DAGCombiner::visitSRA(SDNode *N) {
7600 SDValue N0 = N->getOperand(0);
7601 SDValue N1 = N->getOperand(1);
7602 if (SDValue V = DAG.simplifyShift(N0, N1))
7603 return V;
7605 EVT VT = N0.getValueType();
7606 unsigned OpSizeInBits = VT.getScalarSizeInBits();
7608 // Arithmetic shifting an all-sign-bit value is a no-op.
7609 // fold (sra 0, x) -> 0
7610 // fold (sra -1, x) -> -1
7611 if (DAG.ComputeNumSignBits(N0) == OpSizeInBits)
7612 return N0;
7614 // fold vector ops
7615 if (VT.isVector())
7616 if (SDValue FoldedVOp = SimplifyVBinOp(N))
7617 return FoldedVOp;
7619 ConstantSDNode *N1C = isConstOrConstSplat(N1);
7621 // fold (sra c1, c2) -> (sra c1, c2)
7622 // TODO - support non-uniform vector shift amounts.
7623 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
7624 if (N0C && N1C && !N1C->isOpaque())
7625 return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C);
7627 if (SDValue NewSel = foldBinOpIntoSelect(N))
7628 return NewSel;
7630 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
7631 // sext_inreg.
7632 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
7633 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
7634 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
7635 if (VT.isVector())
7636 ExtVT = EVT::getVectorVT(*DAG.getContext(),
7637 ExtVT, VT.getVectorNumElements());
7638 if ((!LegalOperations ||
7639 TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
7640 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
7641 N0.getOperand(0), DAG.getValueType(ExtVT));
7644 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
7645 // clamp (add c1, c2) to max shift.
7646 if (N0.getOpcode() == ISD::SRA) {
7647 SDLoc DL(N);
7648 EVT ShiftVT = N1.getValueType();
7649 EVT ShiftSVT = ShiftVT.getScalarType();
7650 SmallVector<SDValue, 16> ShiftValues;
7652 auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) {
7653 APInt c1 = LHS->getAPIntValue();
7654 APInt c2 = RHS->getAPIntValue();
7655 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7656 APInt Sum = c1 + c2;
7657 unsigned ShiftSum =
7658 Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue();
7659 ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT));
7660 return true;
7662 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) {
7663 SDValue ShiftValue;
7664 if (VT.isVector())
7665 ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues);
7666 else
7667 ShiftValue = ShiftValues[0];
7668 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue);
7672 // fold (sra (shl X, m), (sub result_size, n))
7673 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
7674 // result_size - n != m.
7675 // If truncate is free for the target sext(shl) is likely to result in better
7676 // code.
7677 if (N0.getOpcode() == ISD::SHL && N1C) {
7678 // Get the two constanst of the shifts, CN0 = m, CN = n.
7679 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
7680 if (N01C) {
7681 LLVMContext &Ctx = *DAG.getContext();
7682 // Determine what the truncate's result bitsize and type would be.
7683 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
7685 if (VT.isVector())
7686 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements());
7688 // Determine the residual right-shift amount.
7689 int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
7691 // If the shift is not a no-op (in which case this should be just a sign
7692 // extend already), the truncated to type is legal, sign_extend is legal
7693 // on that type, and the truncate to that type is both legal and free,
7694 // perform the transform.
7695 if ((ShiftAmt > 0) &&
7696 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
7697 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
7698 TLI.isTruncateFree(VT, TruncVT)) {
7699 SDLoc DL(N);
7700 SDValue Amt = DAG.getConstant(ShiftAmt, DL,
7701 getShiftAmountTy(N0.getOperand(0).getValueType()));
7702 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
7703 N0.getOperand(0), Amt);
7704 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
7705 Shift);
7706 return DAG.getNode(ISD::SIGN_EXTEND, DL,
7707 N->getValueType(0), Trunc);
7712 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper.
7713 // sra (add (shl X, N1C), AddC), N1C -->
7714 // sext (add (trunc X to (width - N1C)), AddC')
7715 if (!LegalTypes && N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C &&
7716 N0.getOperand(0).getOpcode() == ISD::SHL &&
7717 N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) {
7718 if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) {
7719 SDValue Shl = N0.getOperand(0);
7720 // Determine what the truncate's type would be and ask the target if that
7721 // is a free operation.
7722 LLVMContext &Ctx = *DAG.getContext();
7723 unsigned ShiftAmt = N1C->getZExtValue();
7724 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt);
7725 if (VT.isVector())
7726 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements());
7728 // TODO: The simple type check probably belongs in the default hook
7729 // implementation and/or target-specific overrides (because
7730 // non-simple types likely require masking when legalized), but that
7731 // restriction may conflict with other transforms.
7732 if (TruncVT.isSimple() && TLI.isTruncateFree(VT, TruncVT)) {
7733 SDLoc DL(N);
7734 SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT);
7735 SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt).
7736 trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT);
7737 SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC);
7738 return DAG.getSExtOrTrunc(Add, DL, VT);
7743 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
7744 if (N1.getOpcode() == ISD::TRUNCATE &&
7745 N1.getOperand(0).getOpcode() == ISD::AND) {
7746 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
7747 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1);
7750 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2))
7751 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
7752 // if c1 is equal to the number of bits the trunc removes
7753 // TODO - support non-uniform vector shift amounts.
7754 if (N0.getOpcode() == ISD::TRUNCATE &&
7755 (N0.getOperand(0).getOpcode() == ISD::SRL ||
7756 N0.getOperand(0).getOpcode() == ISD::SRA) &&
7757 N0.getOperand(0).hasOneUse() &&
7758 N0.getOperand(0).getOperand(1).hasOneUse() && N1C) {
7759 SDValue N0Op0 = N0.getOperand(0);
7760 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
7761 EVT LargeVT = N0Op0.getValueType();
7762 unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits;
7763 if (LargeShift->getAPIntValue() == TruncBits) {
7764 SDLoc DL(N);
7765 SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL,
7766 getShiftAmountTy(LargeVT));
7767 SDValue SRA =
7768 DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt);
7769 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
7774 // Simplify, based on bits shifted out of the LHS.
7775 // TODO - support non-uniform vector shift amounts.
7776 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
7777 return SDValue(N, 0);
7779 // If the sign bit is known to be zero, switch this to a SRL.
7780 if (DAG.SignBitIsZero(N0))
7781 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
7783 if (N1C && !N1C->isOpaque())
7784 if (SDValue NewSRA = visitShiftByConstant(N, N1C))
7785 return NewSRA;
7787 return SDValue();
7790 SDValue DAGCombiner::visitSRL(SDNode *N) {
7791 SDValue N0 = N->getOperand(0);
7792 SDValue N1 = N->getOperand(1);
7793 if (SDValue V = DAG.simplifyShift(N0, N1))
7794 return V;
7796 EVT VT = N0.getValueType();
7797 unsigned OpSizeInBits = VT.getScalarSizeInBits();
7799 // fold vector ops
7800 if (VT.isVector())
7801 if (SDValue FoldedVOp = SimplifyVBinOp(N))
7802 return FoldedVOp;
7804 ConstantSDNode *N1C = isConstOrConstSplat(N1);
7806 // fold (srl c1, c2) -> c1 >>u c2
7807 // TODO - support non-uniform vector shift amounts.
7808 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
7809 if (N0C && N1C && !N1C->isOpaque())
7810 return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C);
7812 if (SDValue NewSel = foldBinOpIntoSelect(N))
7813 return NewSel;
7815 // if (srl x, c) is known to be zero, return 0
7816 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
7817 APInt::getAllOnesValue(OpSizeInBits)))
7818 return DAG.getConstant(0, SDLoc(N), VT);
7820 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
7821 if (N0.getOpcode() == ISD::SRL) {
7822 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
7823 ConstantSDNode *RHS) {
7824 APInt c1 = LHS->getAPIntValue();
7825 APInt c2 = RHS->getAPIntValue();
7826 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7827 return (c1 + c2).uge(OpSizeInBits);
7829 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
7830 return DAG.getConstant(0, SDLoc(N), VT);
7832 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
7833 ConstantSDNode *RHS) {
7834 APInt c1 = LHS->getAPIntValue();
7835 APInt c2 = RHS->getAPIntValue();
7836 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7837 return (c1 + c2).ult(OpSizeInBits);
7839 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
7840 SDLoc DL(N);
7841 EVT ShiftVT = N1.getValueType();
7842 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
7843 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum);
7847 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
7848 // TODO - support non-uniform vector shift amounts.
7849 if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
7850 N0.getOperand(0).getOpcode() == ISD::SRL) {
7851 if (auto N001C = isConstOrConstSplat(N0.getOperand(0).getOperand(1))) {
7852 uint64_t c1 = N001C->getZExtValue();
7853 uint64_t c2 = N1C->getZExtValue();
7854 EVT InnerShiftVT = N0.getOperand(0).getValueType();
7855 EVT ShiftCountVT = N0.getOperand(0).getOperand(1).getValueType();
7856 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
7857 // This is only valid if the OpSizeInBits + c1 = size of inner shift.
7858 if (c1 + OpSizeInBits == InnerShiftSize) {
7859 SDLoc DL(N0);
7860 if (c1 + c2 >= InnerShiftSize)
7861 return DAG.getConstant(0, DL, VT);
7862 return DAG.getNode(ISD::TRUNCATE, DL, VT,
7863 DAG.getNode(ISD::SRL, DL, InnerShiftVT,
7864 N0.getOperand(0).getOperand(0),
7865 DAG.getConstant(c1 + c2, DL,
7866 ShiftCountVT)));
7871 // fold (srl (shl x, c), c) -> (and x, cst2)
7872 // TODO - (srl (shl x, c1), c2).
7873 if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
7874 isConstantOrConstantVector(N1, /* NoOpaques */ true)) {
7875 SDLoc DL(N);
7876 SDValue Mask =
7877 DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1);
7878 AddToWorklist(Mask.getNode());
7879 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask);
7882 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
7883 // TODO - support non-uniform vector shift amounts.
7884 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
7885 // Shifting in all undef bits?
7886 EVT SmallVT = N0.getOperand(0).getValueType();
7887 unsigned BitSize = SmallVT.getScalarSizeInBits();
7888 if (N1C->getAPIntValue().uge(BitSize))
7889 return DAG.getUNDEF(VT);
7891 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
7892 uint64_t ShiftAmt = N1C->getZExtValue();
7893 SDLoc DL0(N0);
7894 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT,
7895 N0.getOperand(0),
7896 DAG.getConstant(ShiftAmt, DL0,
7897 getShiftAmountTy(SmallVT)));
7898 AddToWorklist(SmallShift.getNode());
7899 APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt);
7900 SDLoc DL(N);
7901 return DAG.getNode(ISD::AND, DL, VT,
7902 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
7903 DAG.getConstant(Mask, DL, VT));
7907 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
7908 // bit, which is unmodified by sra.
7909 if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) {
7910 if (N0.getOpcode() == ISD::SRA)
7911 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
7914 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
7915 if (N1C && N0.getOpcode() == ISD::CTLZ &&
7916 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
7917 KnownBits Known = DAG.computeKnownBits(N0.getOperand(0));
7919 // If any of the input bits are KnownOne, then the input couldn't be all
7920 // zeros, thus the result of the srl will always be zero.
7921 if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);
7923 // If all of the bits input the to ctlz node are known to be zero, then
7924 // the result of the ctlz is "32" and the result of the shift is one.
7925 APInt UnknownBits = ~Known.Zero;
7926 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);
7928 // Otherwise, check to see if there is exactly one bit input to the ctlz.
7929 if (UnknownBits.isPowerOf2()) {
7930 // Okay, we know that only that the single bit specified by UnknownBits
7931 // could be set on input to the CTLZ node. If this bit is set, the SRL
7932 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
7933 // to an SRL/XOR pair, which is likely to simplify more.
7934 unsigned ShAmt = UnknownBits.countTrailingZeros();
7935 SDValue Op = N0.getOperand(0);
7937 if (ShAmt) {
7938 SDLoc DL(N0);
7939 Op = DAG.getNode(ISD::SRL, DL, VT, Op,
7940 DAG.getConstant(ShAmt, DL,
7941 getShiftAmountTy(Op.getValueType())));
7942 AddToWorklist(Op.getNode());
7945 SDLoc DL(N);
7946 return DAG.getNode(ISD::XOR, DL, VT,
7947 Op, DAG.getConstant(1, DL, VT));
7951 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
7952 if (N1.getOpcode() == ISD::TRUNCATE &&
7953 N1.getOperand(0).getOpcode() == ISD::AND) {
7954 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
7955 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1);
7958 // fold operands of srl based on knowledge that the low bits are not
7959 // demanded.
7960 // TODO - support non-uniform vector shift amounts.
7961 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
7962 return SDValue(N, 0);
7964 if (N1C && !N1C->isOpaque())
7965 if (SDValue NewSRL = visitShiftByConstant(N, N1C))
7966 return NewSRL;
7968 // Attempt to convert a srl of a load into a narrower zero-extending load.
7969 if (SDValue NarrowLoad = ReduceLoadWidth(N))
7970 return NarrowLoad;
7972 // Here is a common situation. We want to optimize:
7974 // %a = ...
7975 // %b = and i32 %a, 2
7976 // %c = srl i32 %b, 1
7977 // brcond i32 %c ...
7979 // into
7981 // %a = ...
7982 // %b = and %a, 2
7983 // %c = setcc eq %b, 0
7984 // brcond %c ...
7986 // However when after the source operand of SRL is optimized into AND, the SRL
7987 // itself may not be optimized further. Look for it and add the BRCOND into
7988 // the worklist.
7989 if (N->hasOneUse()) {
7990 SDNode *Use = *N->use_begin();
7991 if (Use->getOpcode() == ISD::BRCOND)
7992 AddToWorklist(Use);
7993 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
7994 // Also look pass the truncate.
7995 Use = *Use->use_begin();
7996 if (Use->getOpcode() == ISD::BRCOND)
7997 AddToWorklist(Use);
8001 return SDValue();
8004 SDValue DAGCombiner::visitFunnelShift(SDNode *N) {
8005 EVT VT = N->getValueType(0);
8006 SDValue N0 = N->getOperand(0);
8007 SDValue N1 = N->getOperand(1);
8008 SDValue N2 = N->getOperand(2);
8009 bool IsFSHL = N->getOpcode() == ISD::FSHL;
8010 unsigned BitWidth = VT.getScalarSizeInBits();
8012 // fold (fshl N0, N1, 0) -> N0
8013 // fold (fshr N0, N1, 0) -> N1
8014 if (isPowerOf2_32(BitWidth))
8015 if (DAG.MaskedValueIsZero(
8016 N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1)))
8017 return IsFSHL ? N0 : N1;
8019 auto IsUndefOrZero = [](SDValue V) {
8020 return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true);
8023 // TODO - support non-uniform vector shift amounts.
8024 if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) {
8025 EVT ShAmtTy = N2.getValueType();
8027 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
8028 if (Cst->getAPIntValue().uge(BitWidth)) {
8029 uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth);
8030 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1,
8031 DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy));
8034 unsigned ShAmt = Cst->getZExtValue();
8035 if (ShAmt == 0)
8036 return IsFSHL ? N0 : N1;
8038 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C)
8039 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C)
8040 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C)
8041 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C)
8042 if (IsUndefOrZero(N0))
8043 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1,
8044 DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt,
8045 SDLoc(N), ShAmtTy));
8046 if (IsUndefOrZero(N1))
8047 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
8048 DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt,
8049 SDLoc(N), ShAmtTy));
8052 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2)
8053 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2)
8054 // iff We know the shift amount is in range.
8055 // TODO: when is it worth doing SUB(BW, N2) as well?
8056 if (isPowerOf2_32(BitWidth)) {
8057 APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1);
8058 if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
8059 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2);
8060 if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
8061 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2);
8064 // fold (fshl N0, N0, N2) -> (rotl N0, N2)
8065 // fold (fshr N0, N0, N2) -> (rotr N0, N2)
8066 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift
8067 // is legal as well we might be better off avoiding non-constant (BW - N2).
8068 unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR;
8069 if (N0 == N1 && hasOperation(RotOpc, VT))
8070 return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2);
8072 // Simplify, based on bits shifted out of N0/N1.
8073 if (SimplifyDemandedBits(SDValue(N, 0)))
8074 return SDValue(N, 0);
8076 return SDValue();
8079 SDValue DAGCombiner::visitABS(SDNode *N) {
8080 SDValue N0 = N->getOperand(0);
8081 EVT VT = N->getValueType(0);
8083 // fold (abs c1) -> c2
8084 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8085 return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0);
8086 // fold (abs (abs x)) -> (abs x)
8087 if (N0.getOpcode() == ISD::ABS)
8088 return N0;
8089 // fold (abs x) -> x iff not-negative
8090 if (DAG.SignBitIsZero(N0))
8091 return N0;
8092 return SDValue();
8095 SDValue DAGCombiner::visitBSWAP(SDNode *N) {
8096 SDValue N0 = N->getOperand(0);
8097 EVT VT = N->getValueType(0);
8099 // fold (bswap c1) -> c2
8100 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8101 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0);
8102 // fold (bswap (bswap x)) -> x
8103 if (N0.getOpcode() == ISD::BSWAP)
8104 return N0->getOperand(0);
8105 return SDValue();
8108 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) {
8109 SDValue N0 = N->getOperand(0);
8110 EVT VT = N->getValueType(0);
8112 // fold (bitreverse c1) -> c2
8113 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8114 return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0);
8115 // fold (bitreverse (bitreverse x)) -> x
8116 if (N0.getOpcode() == ISD::BITREVERSE)
8117 return N0.getOperand(0);
8118 return SDValue();
8121 SDValue DAGCombiner::visitCTLZ(SDNode *N) {
8122 SDValue N0 = N->getOperand(0);
8123 EVT VT = N->getValueType(0);
8125 // fold (ctlz c1) -> c2
8126 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8127 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
8129 // If the value is known never to be zero, switch to the undef version.
8130 if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) {
8131 if (DAG.isKnownNeverZero(N0))
8132 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
8135 return SDValue();
8138 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
8139 SDValue N0 = N->getOperand(0);
8140 EVT VT = N->getValueType(0);
8142 // fold (ctlz_zero_undef c1) -> c2
8143 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8144 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
8145 return SDValue();
8148 SDValue DAGCombiner::visitCTTZ(SDNode *N) {
8149 SDValue N0 = N->getOperand(0);
8150 EVT VT = N->getValueType(0);
8152 // fold (cttz c1) -> c2
8153 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8154 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
8156 // If the value is known never to be zero, switch to the undef version.
8157 if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) {
8158 if (DAG.isKnownNeverZero(N0))
8159 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
8162 return SDValue();
8165 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
8166 SDValue N0 = N->getOperand(0);
8167 EVT VT = N->getValueType(0);
8169 // fold (cttz_zero_undef c1) -> c2
8170 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8171 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
8172 return SDValue();
8175 SDValue DAGCombiner::visitCTPOP(SDNode *N) {
8176 SDValue N0 = N->getOperand(0);
8177 EVT VT = N->getValueType(0);
8179 // fold (ctpop c1) -> c2
8180 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8181 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
8182 return SDValue();
8185 // FIXME: This should be checking for no signed zeros on individual operands, as
8186 // well as no nans.
8187 static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS,
8188 SDValue RHS,
8189 const TargetLowering &TLI) {
8190 const TargetOptions &Options = DAG.getTarget().Options;
8191 EVT VT = LHS.getValueType();
8193 return Options.NoSignedZerosFPMath && VT.isFloatingPoint() &&
8194 TLI.isProfitableToCombineMinNumMaxNum(VT) &&
8195 DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS);
8198 /// Generate Min/Max node
8199 static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
8200 SDValue RHS, SDValue True, SDValue False,
8201 ISD::CondCode CC, const TargetLowering &TLI,
8202 SelectionDAG &DAG) {
8203 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
8204 return SDValue();
8206 EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
8207 switch (CC) {
8208 case ISD::SETOLT:
8209 case ISD::SETOLE:
8210 case ISD::SETLT:
8211 case ISD::SETLE:
8212 case ISD::SETULT:
8213 case ISD::SETULE: {
8214 // Since it's known never nan to get here already, either fminnum or
8215 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
8216 // expanded in terms of it.
8217 unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8218 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
8219 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
8221 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
8222 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
8223 return DAG.getNode(Opcode, DL, VT, LHS, RHS);
8224 return SDValue();
8226 case ISD::SETOGT:
8227 case ISD::SETOGE:
8228 case ISD::SETGT:
8229 case ISD::SETGE:
8230 case ISD::SETUGT:
8231 case ISD::SETUGE: {
8232 unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
8233 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
8234 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
8236 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
8237 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
8238 return DAG.getNode(Opcode, DL, VT, LHS, RHS);
8239 return SDValue();
8241 default:
8242 return SDValue();
8246 SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) {
8247 SDValue Cond = N->getOperand(0);
8248 SDValue N1 = N->getOperand(1);
8249 SDValue N2 = N->getOperand(2);
8250 EVT VT = N->getValueType(0);
8251 EVT CondVT = Cond.getValueType();
8252 SDLoc DL(N);
8254 if (!VT.isInteger())
8255 return SDValue();
8257 auto *C1 = dyn_cast<ConstantSDNode>(N1);
8258 auto *C2 = dyn_cast<ConstantSDNode>(N2);
8259 if (!C1 || !C2)
8260 return SDValue();
8262 // Only do this before legalization to avoid conflicting with target-specific
8263 // transforms in the other direction (create a select from a zext/sext). There
8264 // is also a target-independent combine here in DAGCombiner in the other
8265 // direction for (select Cond, -1, 0) when the condition is not i1.
8266 if (CondVT == MVT::i1 && !LegalOperations) {
8267 if (C1->isNullValue() && C2->isOne()) {
8268 // select Cond, 0, 1 --> zext (!Cond)
8269 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
8270 if (VT != MVT::i1)
8271 NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond);
8272 return NotCond;
8274 if (C1->isNullValue() && C2->isAllOnesValue()) {
8275 // select Cond, 0, -1 --> sext (!Cond)
8276 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
8277 if (VT != MVT::i1)
8278 NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond);
8279 return NotCond;
8281 if (C1->isOne() && C2->isNullValue()) {
8282 // select Cond, 1, 0 --> zext (Cond)
8283 if (VT != MVT::i1)
8284 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
8285 return Cond;
8287 if (C1->isAllOnesValue() && C2->isNullValue()) {
8288 // select Cond, -1, 0 --> sext (Cond)
8289 if (VT != MVT::i1)
8290 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
8291 return Cond;
8294 // For any constants that differ by 1, we can transform the select into an
8295 // extend and add. Use a target hook because some targets may prefer to
8296 // transform in the other direction.
8297 if (TLI.convertSelectOfConstantsToMath(VT)) {
8298 if (C1->getAPIntValue() - 1 == C2->getAPIntValue()) {
8299 // select Cond, C1, C1-1 --> add (zext Cond), C1-1
8300 if (VT != MVT::i1)
8301 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
8302 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
8304 if (C1->getAPIntValue() + 1 == C2->getAPIntValue()) {
8305 // select Cond, C1, C1+1 --> add (sext Cond), C1+1
8306 if (VT != MVT::i1)
8307 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
8308 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
8312 return SDValue();
8315 // fold (select Cond, 0, 1) -> (xor Cond, 1)
8316 // We can't do this reliably if integer based booleans have different contents
8317 // to floating point based booleans. This is because we can't tell whether we
8318 // have an integer-based boolean or a floating-point-based boolean unless we
8319 // can find the SETCC that produced it and inspect its operands. This is
8320 // fairly easy if C is the SETCC node, but it can potentially be
8321 // undiscoverable (or not reasonably discoverable). For example, it could be
8322 // in another basic block or it could require searching a complicated
8323 // expression.
8324 if (CondVT.isInteger() &&
8325 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
8326 TargetLowering::ZeroOrOneBooleanContent &&
8327 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
8328 TargetLowering::ZeroOrOneBooleanContent &&
8329 C1->isNullValue() && C2->isOne()) {
8330 SDValue NotCond =
8331 DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT));
8332 if (VT.bitsEq(CondVT))
8333 return NotCond;
8334 return DAG.getZExtOrTrunc(NotCond, DL, VT);
8337 return SDValue();
8340 SDValue DAGCombiner::visitSELECT(SDNode *N) {
8341 SDValue N0 = N->getOperand(0);
8342 SDValue N1 = N->getOperand(1);
8343 SDValue N2 = N->getOperand(2);
8344 EVT VT = N->getValueType(0);
8345 EVT VT0 = N0.getValueType();
8346 SDLoc DL(N);
8347 SDNodeFlags Flags = N->getFlags();
8349 if (SDValue V = DAG.simplifySelect(N0, N1, N2))
8350 return V;
8352 // fold (select X, X, Y) -> (or X, Y)
8353 // fold (select X, 1, Y) -> (or C, Y)
8354 if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1)))
8355 return DAG.getNode(ISD::OR, DL, VT, N0, N2);
8357 if (SDValue V = foldSelectOfConstants(N))
8358 return V;
8360 // fold (select C, 0, X) -> (and (not C), X)
8361 if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) {
8362 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
8363 AddToWorklist(NOTNode.getNode());
8364 return DAG.getNode(ISD::AND, DL, VT, NOTNode, N2);
8366 // fold (select C, X, 1) -> (or (not C), X)
8367 if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) {
8368 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
8369 AddToWorklist(NOTNode.getNode());
8370 return DAG.getNode(ISD::OR, DL, VT, NOTNode, N1);
8372 // fold (select X, Y, X) -> (and X, Y)
8373 // fold (select X, Y, 0) -> (and X, Y)
8374 if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2)))
8375 return DAG.getNode(ISD::AND, DL, VT, N0, N1);
8377 // If we can fold this based on the true/false value, do so.
8378 if (SimplifySelectOps(N, N1, N2))
8379 return SDValue(N, 0); // Don't revisit N.
8381 if (VT0 == MVT::i1) {
8382 // The code in this block deals with the following 2 equivalences:
8383 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
8384 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
8385 // The target can specify its preferred form with the
8386 // shouldNormalizeToSelectSequence() callback. However we always transform
8387 // to the right anyway if we find the inner select exists in the DAG anyway
8388 // and we always transform to the left side if we know that we can further
8389 // optimize the combination of the conditions.
8390 bool normalizeToSequence =
8391 TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT);
8392 // select (and Cond0, Cond1), X, Y
8393 // -> select Cond0, (select Cond1, X, Y), Y
8394 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
8395 SDValue Cond0 = N0->getOperand(0);
8396 SDValue Cond1 = N0->getOperand(1);
8397 SDValue InnerSelect =
8398 DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags);
8399 if (normalizeToSequence || !InnerSelect.use_empty())
8400 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0,
8401 InnerSelect, N2, Flags);
8402 // Cleanup on failure.
8403 if (InnerSelect.use_empty())
8404 recursivelyDeleteUnusedNodes(InnerSelect.getNode());
8406 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
8407 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
8408 SDValue Cond0 = N0->getOperand(0);
8409 SDValue Cond1 = N0->getOperand(1);
8410 SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(),
8411 Cond1, N1, N2, Flags);
8412 if (normalizeToSequence || !InnerSelect.use_empty())
8413 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1,
8414 InnerSelect, Flags);
8415 // Cleanup on failure.
8416 if (InnerSelect.use_empty())
8417 recursivelyDeleteUnusedNodes(InnerSelect.getNode());
8420 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
8421 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) {
8422 SDValue N1_0 = N1->getOperand(0);
8423 SDValue N1_1 = N1->getOperand(1);
8424 SDValue N1_2 = N1->getOperand(2);
8425 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
8426 // Create the actual and node if we can generate good code for it.
8427 if (!normalizeToSequence) {
8428 SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0);
8429 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1,
8430 N2, Flags);
8432 // Otherwise see if we can optimize the "and" to a better pattern.
8433 if (SDValue Combined = visitANDLike(N0, N1_0, N)) {
8434 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1,
8435 N2, Flags);
8439 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
8440 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) {
8441 SDValue N2_0 = N2->getOperand(0);
8442 SDValue N2_1 = N2->getOperand(1);
8443 SDValue N2_2 = N2->getOperand(2);
8444 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
8445 // Create the actual or node if we can generate good code for it.
8446 if (!normalizeToSequence) {
8447 SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0);
8448 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1,
8449 N2_2, Flags);
8451 // Otherwise see if we can optimize to a better pattern.
8452 if (SDValue Combined = visitORLike(N0, N2_0, N))
8453 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1,
8454 N2_2, Flags);
8459 // select (not Cond), N1, N2 -> select Cond, N2, N1
8460 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) {
8461 SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1);
8462 SelectOp->setFlags(Flags);
8463 return SelectOp;
8466 // Fold selects based on a setcc into other things, such as min/max/abs.
8467 if (N0.getOpcode() == ISD::SETCC) {
8468 SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1);
8469 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
8471 // select (fcmp lt x, y), x, y -> fminnum x, y
8472 // select (fcmp gt x, y), x, y -> fmaxnum x, y
8474 // This is OK if we don't care what happens if either operand is a NaN.
8475 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI))
8476 if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2,
8477 CC, TLI, DAG))
8478 return FMinMax;
8480 // Use 'unsigned add with overflow' to optimize an unsigned saturating add.
8481 // This is conservatively limited to pre-legal-operations to give targets
8482 // a chance to reverse the transform if they want to do that. Also, it is
8483 // unlikely that the pattern would be formed late, so it's probably not
8484 // worth going through the other checks.
8485 if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) &&
8486 CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) &&
8487 N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) {
8488 auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1));
8489 auto *NotC = dyn_cast<ConstantSDNode>(Cond1);
8490 if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) {
8491 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
8492 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0
8494 // The IR equivalent of this transform would have this form:
8495 // %a = add %x, C
8496 // %c = icmp ugt %x, ~C
8497 // %r = select %c, -1, %a
8498 // =>
8499 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
8500 // %u0 = extractvalue %u, 0
8501 // %u1 = extractvalue %u, 1
8502 // %r = select %u1, -1, %u0
8503 SDVTList VTs = DAG.getVTList(VT, VT0);
8504 SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1));
8505 return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0));
8509 if (TLI.isOperationLegal(ISD::SELECT_CC, VT) ||
8510 (!LegalOperations &&
8511 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) {
8512 // Any flags available in a select/setcc fold will be on the setcc as they
8513 // migrated from fcmp
8514 Flags = N0.getNode()->getFlags();
8515 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1,
8516 N2, N0.getOperand(2));
8517 SelectNode->setFlags(Flags);
8518 return SelectNode;
8521 return SimplifySelect(DL, N0, N1, N2);
8524 return SDValue();
8527 // This function assumes all the vselect's arguments are CONCAT_VECTOR
8528 // nodes and that the condition is a BV of ConstantSDNodes (or undefs).
8529 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
8530 SDLoc DL(N);
8531 SDValue Cond = N->getOperand(0);
8532 SDValue LHS = N->getOperand(1);
8533 SDValue RHS = N->getOperand(2);
8534 EVT VT = N->getValueType(0);
8535 int NumElems = VT.getVectorNumElements();
8536 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
8537 RHS.getOpcode() == ISD::CONCAT_VECTORS &&
8538 Cond.getOpcode() == ISD::BUILD_VECTOR);
8540 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
8541 // binary ones here.
8542 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
8543 return SDValue();
8545 // We're sure we have an even number of elements due to the
8546 // concat_vectors we have as arguments to vselect.
8547 // Skip BV elements until we find one that's not an UNDEF
8548 // After we find an UNDEF element, keep looping until we get to half the
8549 // length of the BV and see if all the non-undef nodes are the same.
8550 ConstantSDNode *BottomHalf = nullptr;
8551 for (int i = 0; i < NumElems / 2; ++i) {
8552 if (Cond->getOperand(i)->isUndef())
8553 continue;
8555 if (BottomHalf == nullptr)
8556 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
8557 else if (Cond->getOperand(i).getNode() != BottomHalf)
8558 return SDValue();
8561 // Do the same for the second half of the BuildVector
8562 ConstantSDNode *TopHalf = nullptr;
8563 for (int i = NumElems / 2; i < NumElems; ++i) {
8564 if (Cond->getOperand(i)->isUndef())
8565 continue;
8567 if (TopHalf == nullptr)
8568 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
8569 else if (Cond->getOperand(i).getNode() != TopHalf)
8570 return SDValue();
8573 assert(TopHalf && BottomHalf &&
8574 "One half of the selector was all UNDEFs and the other was all the "
8575 "same value. This should have been addressed before this function.");
8576 return DAG.getNode(
8577 ISD::CONCAT_VECTORS, DL, VT,
8578 BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0),
8579 TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
8582 SDValue DAGCombiner::visitMSCATTER(SDNode *N) {
8583 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
8584 SDValue Mask = MSC->getMask();
8585 SDValue Chain = MSC->getChain();
8586 SDLoc DL(N);
8588 // Zap scatters with a zero mask.
8589 if (ISD::isBuildVectorAllZeros(Mask.getNode()))
8590 return Chain;
8592 return SDValue();
8595 SDValue DAGCombiner::visitMSTORE(SDNode *N) {
8596 MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
8597 SDValue Mask = MST->getMask();
8598 SDValue Chain = MST->getChain();
8599 SDLoc DL(N);
8601 // Zap masked stores with a zero mask.
8602 if (ISD::isBuildVectorAllZeros(Mask.getNode()))
8603 return Chain;
8605 return SDValue();
8608 SDValue DAGCombiner::visitMGATHER(SDNode *N) {
8609 MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N);
8610 SDValue Mask = MGT->getMask();
8611 SDLoc DL(N);
8613 // Zap gathers with a zero mask.
8614 if (ISD::isBuildVectorAllZeros(Mask.getNode()))
8615 return CombineTo(N, MGT->getPassThru(), MGT->getChain());
8617 return SDValue();
8620 SDValue DAGCombiner::visitMLOAD(SDNode *N) {
8621 MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
8622 SDValue Mask = MLD->getMask();
8623 SDLoc DL(N);
8625 // Zap masked loads with a zero mask.
8626 if (ISD::isBuildVectorAllZeros(Mask.getNode()))
8627 return CombineTo(N, MLD->getPassThru(), MLD->getChain());
8629 return SDValue();
8632 /// A vector select of 2 constant vectors can be simplified to math/logic to
8633 /// avoid a variable select instruction and possibly avoid constant loads.
8634 SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) {
8635 SDValue Cond = N->getOperand(0);
8636 SDValue N1 = N->getOperand(1);
8637 SDValue N2 = N->getOperand(2);
8638 EVT VT = N->getValueType(0);
8639 if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 ||
8640 !TLI.convertSelectOfConstantsToMath(VT) ||
8641 !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) ||
8642 !ISD::isBuildVectorOfConstantSDNodes(N2.getNode()))
8643 return SDValue();
8645 // Check if we can use the condition value to increment/decrement a single
8646 // constant value. This simplifies a select to an add and removes a constant
8647 // load/materialization from the general case.
8648 bool AllAddOne = true;
8649 bool AllSubOne = true;
8650 unsigned Elts = VT.getVectorNumElements();
8651 for (unsigned i = 0; i != Elts; ++i) {
8652 SDValue N1Elt = N1.getOperand(i);
8653 SDValue N2Elt = N2.getOperand(i);
8654 if (N1Elt.isUndef() || N2Elt.isUndef())
8655 continue;
8657 const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue();
8658 const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue();
8659 if (C1 != C2 + 1)
8660 AllAddOne = false;
8661 if (C1 != C2 - 1)
8662 AllSubOne = false;
8665 // Further simplifications for the extra-special cases where the constants are
8666 // all 0 or all -1 should be implemented as folds of these patterns.
8667 SDLoc DL(N);
8668 if (AllAddOne || AllSubOne) {
8669 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
8670 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
8671 auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
8672 SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond);
8673 return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2);
8676 // The general case for select-of-constants:
8677 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
8678 // ...but that only makes sense if a vselect is slower than 2 logic ops, so
8679 // leave that to a machine-specific pass.
8680 return SDValue();
8683 SDValue DAGCombiner::visitVSELECT(SDNode *N) {
8684 SDValue N0 = N->getOperand(0);
8685 SDValue N1 = N->getOperand(1);
8686 SDValue N2 = N->getOperand(2);
8687 EVT VT = N->getValueType(0);
8688 SDLoc DL(N);
8690 if (SDValue V = DAG.simplifySelect(N0, N1, N2))
8691 return V;
8693 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1
8694 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false))
8695 return DAG.getSelect(DL, VT, F, N2, N1);
8697 // Canonicalize integer abs.
8698 // vselect (setg[te] X, 0), X, -X ->
8699 // vselect (setgt X, -1), X, -X ->
8700 // vselect (setl[te] X, 0), -X, X ->
8701 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
8702 if (N0.getOpcode() == ISD::SETCC) {
8703 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
8704 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
8705 bool isAbs = false;
8706 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
8708 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
8709 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
8710 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
8711 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
8712 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
8713 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
8714 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
8716 if (isAbs) {
8717 EVT VT = LHS.getValueType();
8718 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT))
8719 return DAG.getNode(ISD::ABS, DL, VT, LHS);
8721 SDValue Shift = DAG.getNode(
8722 ISD::SRA, DL, VT, LHS,
8723 DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT));
8724 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
8725 AddToWorklist(Shift.getNode());
8726 AddToWorklist(Add.getNode());
8727 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
8730 // vselect x, y (fcmp lt x, y) -> fminnum x, y
8731 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y
8733 // This is OK if we don't care about what happens if either operand is a
8734 // NaN.
8736 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N0.getOperand(0),
8737 N0.getOperand(1), TLI)) {
8738 if (SDValue FMinMax = combineMinNumMaxNum(
8739 DL, VT, N0.getOperand(0), N0.getOperand(1), N1, N2, CC, TLI, DAG))
8740 return FMinMax;
8743 // If this select has a condition (setcc) with narrower operands than the
8744 // select, try to widen the compare to match the select width.
8745 // TODO: This should be extended to handle any constant.
8746 // TODO: This could be extended to handle non-loading patterns, but that
8747 // requires thorough testing to avoid regressions.
8748 if (isNullOrNullSplat(RHS)) {
8749 EVT NarrowVT = LHS.getValueType();
8750 EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger();
8751 EVT SetCCVT = getSetCCResultType(LHS.getValueType());
8752 unsigned SetCCWidth = SetCCVT.getScalarSizeInBits();
8753 unsigned WideWidth = WideVT.getScalarSizeInBits();
8754 bool IsSigned = isSignedIntSetCC(CC);
8755 auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
8756 if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() &&
8757 SetCCWidth != 1 && SetCCWidth < WideWidth &&
8758 TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) &&
8759 TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) {
8760 // Both compare operands can be widened for free. The LHS can use an
8761 // extended load, and the RHS is a constant:
8762 // vselect (ext (setcc load(X), C)), N1, N2 -->
8763 // vselect (setcc extload(X), C'), N1, N2
8764 auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
8765 SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS);
8766 SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS);
8767 EVT WideSetCCVT = getSetCCResultType(WideVT);
8768 SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC);
8769 return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2);
8774 if (SimplifySelectOps(N, N1, N2))
8775 return SDValue(N, 0); // Don't revisit N.
8777 // Fold (vselect (build_vector all_ones), N1, N2) -> N1
8778 if (ISD::isBuildVectorAllOnes(N0.getNode()))
8779 return N1;
8780 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2
8781 if (ISD::isBuildVectorAllZeros(N0.getNode()))
8782 return N2;
8784 // The ConvertSelectToConcatVector function is assuming both the above
8785 // checks for (vselect (build_vector all{ones,zeros) ...) have been made
8786 // and addressed.
8787 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
8788 N2.getOpcode() == ISD::CONCAT_VECTORS &&
8789 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
8790 if (SDValue CV = ConvertSelectToConcatVector(N, DAG))
8791 return CV;
8794 if (SDValue V = foldVSelectOfConstants(N))
8795 return V;
8797 return SDValue();
8800 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
8801 SDValue N0 = N->getOperand(0);
8802 SDValue N1 = N->getOperand(1);
8803 SDValue N2 = N->getOperand(2);
8804 SDValue N3 = N->getOperand(3);
8805 SDValue N4 = N->getOperand(4);
8806 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
8808 // fold select_cc lhs, rhs, x, x, cc -> x
8809 if (N2 == N3)
8810 return N2;
8812 // Determine if the condition we're dealing with is constant
8813 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1,
8814 CC, SDLoc(N), false)) {
8815 AddToWorklist(SCC.getNode());
8817 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
8818 if (!SCCC->isNullValue())
8819 return N2; // cond always true -> true val
8820 else
8821 return N3; // cond always false -> false val
8822 } else if (SCC->isUndef()) {
8823 // When the condition is UNDEF, just return the first operand. This is
8824 // coherent the DAG creation, no setcc node is created in this case
8825 return N2;
8826 } else if (SCC.getOpcode() == ISD::SETCC) {
8827 // Fold to a simpler select_cc
8828 SDValue SelectOp = DAG.getNode(
8829 ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0),
8830 SCC.getOperand(1), N2, N3, SCC.getOperand(2));
8831 SelectOp->setFlags(SCC->getFlags());
8832 return SelectOp;
8836 // If we can fold this based on the true/false value, do so.
8837 if (SimplifySelectOps(N, N2, N3))
8838 return SDValue(N, 0); // Don't revisit N.
8840 // fold select_cc into other things, such as min/max/abs
8841 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
8844 SDValue DAGCombiner::visitSETCC(SDNode *N) {
8845 // setcc is very commonly used as an argument to brcond. This pattern
8846 // also lend itself to numerous combines and, as a result, it is desired
8847 // we keep the argument to a brcond as a setcc as much as possible.
8848 bool PreferSetCC =
8849 N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND;
8851 SDValue Combined = SimplifySetCC(
8852 N->getValueType(0), N->getOperand(0), N->getOperand(1),
8853 cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC);
8855 if (!Combined)
8856 return SDValue();
8858 // If we prefer to have a setcc, and we don't, we'll try our best to
8859 // recreate one using rebuildSetCC.
8860 if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) {
8861 SDValue NewSetCC = rebuildSetCC(Combined);
8863 // We don't have anything interesting to combine to.
8864 if (NewSetCC.getNode() == N)
8865 return SDValue();
8867 if (NewSetCC)
8868 return NewSetCC;
8871 return Combined;
8874 SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) {
8875 SDValue LHS = N->getOperand(0);
8876 SDValue RHS = N->getOperand(1);
8877 SDValue Carry = N->getOperand(2);
8878 SDValue Cond = N->getOperand(3);
8880 // If Carry is false, fold to a regular SETCC.
8881 if (isNullConstant(Carry))
8882 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond);
8884 return SDValue();
8887 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
8888 /// a build_vector of constants.
8889 /// This function is called by the DAGCombiner when visiting sext/zext/aext
8890 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
8891 /// Vector extends are not folded if operations are legal; this is to
8892 /// avoid introducing illegal build_vector dag nodes.
8893 static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI,
8894 SelectionDAG &DAG, bool LegalTypes) {
8895 unsigned Opcode = N->getOpcode();
8896 SDValue N0 = N->getOperand(0);
8897 EVT VT = N->getValueType(0);
8898 SDLoc DL(N);
8900 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
8901 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
8902 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG)
8903 && "Expected EXTEND dag node in input!");
8905 // fold (sext c1) -> c1
8906 // fold (zext c1) -> c1
8907 // fold (aext c1) -> c1
8908 if (isa<ConstantSDNode>(N0))
8909 return DAG.getNode(Opcode, DL, VT, N0);
8911 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
8912 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2)
8913 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
8914 if (N0->getOpcode() == ISD::SELECT) {
8915 SDValue Op1 = N0->getOperand(1);
8916 SDValue Op2 = N0->getOperand(2);
8917 if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) &&
8918 (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) {
8919 // For any_extend, choose sign extension of the constants to allow a
8920 // possible further transform to sign_extend_inreg.i.e.
8922 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0>
8923 // t2: i64 = any_extend t1
8924 // -->
8925 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0>
8926 // -->
8927 // t4: i64 = sign_extend_inreg t3
8928 unsigned FoldOpc = Opcode;
8929 if (FoldOpc == ISD::ANY_EXTEND)
8930 FoldOpc = ISD::SIGN_EXTEND;
8931 return DAG.getSelect(DL, VT, N0->getOperand(0),
8932 DAG.getNode(FoldOpc, DL, VT, Op1),
8933 DAG.getNode(FoldOpc, DL, VT, Op2));
8937 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
8938 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
8939 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
8940 EVT SVT = VT.getScalarType();
8941 if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) &&
8942 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())))
8943 return SDValue();
8945 // We can fold this node into a build_vector.
8946 unsigned VTBits = SVT.getSizeInBits();
8947 unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits();
8948 SmallVector<SDValue, 8> Elts;
8949 unsigned NumElts = VT.getVectorNumElements();
8951 // For zero-extensions, UNDEF elements still guarantee to have the upper
8952 // bits set to zero.
8953 bool IsZext =
8954 Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG;
8956 for (unsigned i = 0; i != NumElts; ++i) {
8957 SDValue Op = N0.getOperand(i);
8958 if (Op.isUndef()) {
8959 Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT));
8960 continue;
8963 SDLoc DL(Op);
8964 // Get the constant value and if needed trunc it to the size of the type.
8965 // Nodes like build_vector might have constants wider than the scalar type.
8966 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits);
8967 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
8968 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT));
8969 else
8970 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT));
8973 return DAG.getBuildVector(VT, DL, Elts);
8976 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
8977 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
8978 // transformation. Returns true if extension are possible and the above
8979 // mentioned transformation is profitable.
8980 static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0,
8981 unsigned ExtOpc,
8982 SmallVectorImpl<SDNode *> &ExtendNodes,
8983 const TargetLowering &TLI) {
8984 bool HasCopyToRegUses = false;
8985 bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType());
8986 for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
8987 UE = N0.getNode()->use_end();
8988 UI != UE; ++UI) {
8989 SDNode *User = *UI;
8990 if (User == N)
8991 continue;
8992 if (UI.getUse().getResNo() != N0.getResNo())
8993 continue;
8994 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
8995 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
8996 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
8997 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
8998 // Sign bits will be lost after a zext.
8999 return false;
9000 bool Add = false;
9001 for (unsigned i = 0; i != 2; ++i) {
9002 SDValue UseOp = User->getOperand(i);
9003 if (UseOp == N0)
9004 continue;
9005 if (!isa<ConstantSDNode>(UseOp))
9006 return false;
9007 Add = true;
9009 if (Add)
9010 ExtendNodes.push_back(User);
9011 continue;
9013 // If truncates aren't free and there are users we can't
9014 // extend, it isn't worthwhile.
9015 if (!isTruncFree)
9016 return false;
9017 // Remember if this value is live-out.
9018 if (User->getOpcode() == ISD::CopyToReg)
9019 HasCopyToRegUses = true;
9022 if (HasCopyToRegUses) {
9023 bool BothLiveOut = false;
9024 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
9025 UI != UE; ++UI) {
9026 SDUse &Use = UI.getUse();
9027 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
9028 BothLiveOut = true;
9029 break;
9032 if (BothLiveOut)
9033 // Both unextended and extended values are live out. There had better be
9034 // a good reason for the transformation.
9035 return ExtendNodes.size();
9037 return true;
9040 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
9041 SDValue OrigLoad, SDValue ExtLoad,
9042 ISD::NodeType ExtType) {
9043 // Extend SetCC uses if necessary.
9044 SDLoc DL(ExtLoad);
9045 for (SDNode *SetCC : SetCCs) {
9046 SmallVector<SDValue, 4> Ops;
9048 for (unsigned j = 0; j != 2; ++j) {
9049 SDValue SOp = SetCC->getOperand(j);
9050 if (SOp == OrigLoad)
9051 Ops.push_back(ExtLoad);
9052 else
9053 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
9056 Ops.push_back(SetCC->getOperand(2));
9057 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
9061 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
9062 SDValue DAGCombiner::CombineExtLoad(SDNode *N) {
9063 SDValue N0 = N->getOperand(0);
9064 EVT DstVT = N->getValueType(0);
9065 EVT SrcVT = N0.getValueType();
9067 assert((N->getOpcode() == ISD::SIGN_EXTEND ||
9068 N->getOpcode() == ISD::ZERO_EXTEND) &&
9069 "Unexpected node type (not an extend)!");
9071 // fold (sext (load x)) to multiple smaller sextloads; same for zext.
9072 // For example, on a target with legal v4i32, but illegal v8i32, turn:
9073 // (v8i32 (sext (v8i16 (load x))))
9074 // into:
9075 // (v8i32 (concat_vectors (v4i32 (sextload x)),
9076 // (v4i32 (sextload (x + 16)))))
9077 // Where uses of the original load, i.e.:
9078 // (v8i16 (load x))
9079 // are replaced with:
9080 // (v8i16 (truncate
9081 // (v8i32 (concat_vectors (v4i32 (sextload x)),
9082 // (v4i32 (sextload (x + 16)))))))
9084 // This combine is only applicable to illegal, but splittable, vectors.
9085 // All legal types, and illegal non-vector types, are handled elsewhere.
9086 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
9088 if (N0->getOpcode() != ISD::LOAD)
9089 return SDValue();
9091 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9093 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) ||
9094 !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() ||
9095 !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
9096 return SDValue();
9098 SmallVector<SDNode *, 4> SetCCs;
9099 if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI))
9100 return SDValue();
9102 ISD::LoadExtType ExtType =
9103 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
9105 // Try to split the vector types to get down to legal types.
9106 EVT SplitSrcVT = SrcVT;
9107 EVT SplitDstVT = DstVT;
9108 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) &&
9109 SplitSrcVT.getVectorNumElements() > 1) {
9110 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first;
9111 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first;
9114 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT))
9115 return SDValue();
9117 SDLoc DL(N);
9118 const unsigned NumSplits =
9119 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements();
9120 const unsigned Stride = SplitSrcVT.getStoreSize();
9121 SmallVector<SDValue, 4> Loads;
9122 SmallVector<SDValue, 4> Chains;
9124 SDValue BasePtr = LN0->getBasePtr();
9125 for (unsigned Idx = 0; Idx < NumSplits; Idx++) {
9126 const unsigned Offset = Idx * Stride;
9127 const unsigned Align = MinAlign(LN0->getAlignment(), Offset);
9129 SDValue SplitLoad = DAG.getExtLoad(
9130 ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr,
9131 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align,
9132 LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
9134 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
9135 DAG.getConstant(Stride, DL, BasePtr.getValueType()));
9137 Loads.push_back(SplitLoad.getValue(0));
9138 Chains.push_back(SplitLoad.getValue(1));
9141 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
9142 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads);
9144 // Simplify TF.
9145 AddToWorklist(NewChain.getNode());
9147 CombineTo(N, NewValue);
9149 // Replace uses of the original load (before extension)
9150 // with a truncate of the concatenated sextloaded vectors.
9151 SDValue Trunc =
9152 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue);
9153 ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode());
9154 CombineTo(N0.getNode(), Trunc, NewChain);
9155 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9158 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
9159 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
9160 SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) {
9161 assert(N->getOpcode() == ISD::ZERO_EXTEND);
9162 EVT VT = N->getValueType(0);
9163 EVT OrigVT = N->getOperand(0).getValueType();
9164 if (TLI.isZExtFree(OrigVT, VT))
9165 return SDValue();
9167 // and/or/xor
9168 SDValue N0 = N->getOperand(0);
9169 if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
9170 N0.getOpcode() == ISD::XOR) ||
9171 N0.getOperand(1).getOpcode() != ISD::Constant ||
9172 (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT)))
9173 return SDValue();
9175 // shl/shr
9176 SDValue N1 = N0->getOperand(0);
9177 if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) ||
9178 N1.getOperand(1).getOpcode() != ISD::Constant ||
9179 (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT)))
9180 return SDValue();
9182 // load
9183 if (!isa<LoadSDNode>(N1.getOperand(0)))
9184 return SDValue();
9185 LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0));
9186 EVT MemVT = Load->getMemoryVT();
9187 if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) ||
9188 Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed())
9189 return SDValue();
9192 // If the shift op is SHL, the logic op must be AND, otherwise the result
9193 // will be wrong.
9194 if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND)
9195 return SDValue();
9197 if (!N0.hasOneUse() || !N1.hasOneUse())
9198 return SDValue();
9200 SmallVector<SDNode*, 4> SetCCs;
9201 if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0),
9202 ISD::ZERO_EXTEND, SetCCs, TLI))
9203 return SDValue();
9205 // Actually do the transformation.
9206 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT,
9207 Load->getChain(), Load->getBasePtr(),
9208 Load->getMemoryVT(), Load->getMemOperand());
9210 SDLoc DL1(N1);
9211 SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad,
9212 N1.getOperand(1));
9214 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9215 Mask = Mask.zext(VT.getSizeInBits());
9216 SDLoc DL0(N0);
9217 SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift,
9218 DAG.getConstant(Mask, DL0, VT));
9220 ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
9221 CombineTo(N, And);
9222 if (SDValue(Load, 0).hasOneUse()) {
9223 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1));
9224 } else {
9225 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load),
9226 Load->getValueType(0), ExtLoad);
9227 CombineTo(Load, Trunc, ExtLoad.getValue(1));
9230 // N0 is dead at this point.
9231 recursivelyDeleteUnusedNodes(N0.getNode());
9233 return SDValue(N,0); // Return N so it doesn't get rechecked!
9236 /// If we're narrowing or widening the result of a vector select and the final
9237 /// size is the same size as a setcc (compare) feeding the select, then try to
9238 /// apply the cast operation to the select's operands because matching vector
9239 /// sizes for a select condition and other operands should be more efficient.
9240 SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) {
9241 unsigned CastOpcode = Cast->getOpcode();
9242 assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND ||
9243 CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND ||
9244 CastOpcode == ISD::FP_ROUND) &&
9245 "Unexpected opcode for vector select narrowing/widening");
9247 // We only do this transform before legal ops because the pattern may be
9248 // obfuscated by target-specific operations after legalization. Do not create
9249 // an illegal select op, however, because that may be difficult to lower.
9250 EVT VT = Cast->getValueType(0);
9251 if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
9252 return SDValue();
9254 SDValue VSel = Cast->getOperand(0);
9255 if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() ||
9256 VSel.getOperand(0).getOpcode() != ISD::SETCC)
9257 return SDValue();
9259 // Does the setcc have the same vector size as the casted select?
9260 SDValue SetCC = VSel.getOperand(0);
9261 EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType());
9262 if (SetCCVT.getSizeInBits() != VT.getSizeInBits())
9263 return SDValue();
9265 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
9266 SDValue A = VSel.getOperand(1);
9267 SDValue B = VSel.getOperand(2);
9268 SDValue CastA, CastB;
9269 SDLoc DL(Cast);
9270 if (CastOpcode == ISD::FP_ROUND) {
9271 // FP_ROUND (fptrunc) has an extra flag operand to pass along.
9272 CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1));
9273 CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1));
9274 } else {
9275 CastA = DAG.getNode(CastOpcode, DL, VT, A);
9276 CastB = DAG.getNode(CastOpcode, DL, VT, B);
9278 return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB);
9281 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
9282 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
9283 static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner,
9284 const TargetLowering &TLI, EVT VT,
9285 bool LegalOperations, SDNode *N,
9286 SDValue N0, ISD::LoadExtType ExtLoadType) {
9287 SDNode *N0Node = N0.getNode();
9288 bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node)
9289 : ISD::isZEXTLoad(N0Node);
9290 if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) ||
9291 !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse())
9292 return SDValue();
9294 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9295 EVT MemVT = LN0->getMemoryVT();
9296 if ((LegalOperations || LN0->isVolatile() || VT.isVector()) &&
9297 !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT))
9298 return SDValue();
9300 SDValue ExtLoad =
9301 DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
9302 LN0->getBasePtr(), MemVT, LN0->getMemOperand());
9303 Combiner.CombineTo(N, ExtLoad);
9304 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
9305 if (LN0->use_empty())
9306 Combiner.recursivelyDeleteUnusedNodes(LN0);
9307 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9310 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
9311 // Only generate vector extloads when 1) they're legal, and 2) they are
9312 // deemed desirable by the target.
9313 static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner,
9314 const TargetLowering &TLI, EVT VT,
9315 bool LegalOperations, SDNode *N, SDValue N0,
9316 ISD::LoadExtType ExtLoadType,
9317 ISD::NodeType ExtOpc) {
9318 if (!ISD::isNON_EXTLoad(N0.getNode()) ||
9319 !ISD::isUNINDEXEDLoad(N0.getNode()) ||
9320 ((LegalOperations || VT.isVector() ||
9321 cast<LoadSDNode>(N0)->isVolatile()) &&
9322 !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType())))
9323 return {};
9325 bool DoXform = true;
9326 SmallVector<SDNode *, 4> SetCCs;
9327 if (!N0.hasOneUse())
9328 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI);
9329 if (VT.isVector())
9330 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
9331 if (!DoXform)
9332 return {};
9334 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9335 SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
9336 LN0->getBasePtr(), N0.getValueType(),
9337 LN0->getMemOperand());
9338 Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc);
9339 // If the load value is used only by N, replace it via CombineTo N.
9340 bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse();
9341 Combiner.CombineTo(N, ExtLoad);
9342 if (NoReplaceTrunc) {
9343 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
9344 Combiner.recursivelyDeleteUnusedNodes(LN0);
9345 } else {
9346 SDValue Trunc =
9347 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
9348 Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1));
9350 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9353 static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG,
9354 bool LegalOperations) {
9355 assert((N->getOpcode() == ISD::SIGN_EXTEND ||
9356 N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext");
9358 SDValue SetCC = N->getOperand(0);
9359 if (LegalOperations || SetCC.getOpcode() != ISD::SETCC ||
9360 !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1)
9361 return SDValue();
9363 SDValue X = SetCC.getOperand(0);
9364 SDValue Ones = SetCC.getOperand(1);
9365 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
9366 EVT VT = N->getValueType(0);
9367 EVT XVT = X.getValueType();
9368 // setge X, C is canonicalized to setgt, so we do not need to match that
9369 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does
9370 // not require the 'not' op.
9371 if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) {
9372 // Invert and smear/shift the sign bit:
9373 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
9374 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
9375 SDLoc DL(N);
9376 SDValue NotX = DAG.getNOT(DL, X, VT);
9377 SDValue ShiftAmount = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
9378 auto ShiftOpcode = N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL;
9379 return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount);
9381 return SDValue();
9384 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
9385 SDValue N0 = N->getOperand(0);
9386 EVT VT = N->getValueType(0);
9387 SDLoc DL(N);
9389 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
9390 return Res;
9392 // fold (sext (sext x)) -> (sext x)
9393 // fold (sext (aext x)) -> (sext x)
9394 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
9395 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0));
9397 if (N0.getOpcode() == ISD::TRUNCATE) {
9398 // fold (sext (truncate (load x))) -> (sext (smaller load x))
9399 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
9400 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
9401 SDNode *oye = N0.getOperand(0).getNode();
9402 if (NarrowLoad.getNode() != N0.getNode()) {
9403 CombineTo(N0.getNode(), NarrowLoad);
9404 // CombineTo deleted the truncate, if needed, but not what's under it.
9405 AddToWorklist(oye);
9407 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9410 // See if the value being truncated is already sign extended. If so, just
9411 // eliminate the trunc/sext pair.
9412 SDValue Op = N0.getOperand(0);
9413 unsigned OpBits = Op.getScalarValueSizeInBits();
9414 unsigned MidBits = N0.getScalarValueSizeInBits();
9415 unsigned DestBits = VT.getScalarSizeInBits();
9416 unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
9418 if (OpBits == DestBits) {
9419 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
9420 // bits, it is already ready.
9421 if (NumSignBits > DestBits-MidBits)
9422 return Op;
9423 } else if (OpBits < DestBits) {
9424 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
9425 // bits, just sext from i32.
9426 if (NumSignBits > OpBits-MidBits)
9427 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op);
9428 } else {
9429 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
9430 // bits, just truncate to i32.
9431 if (NumSignBits > OpBits-MidBits)
9432 return DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
9435 // fold (sext (truncate x)) -> (sextinreg x).
9436 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
9437 N0.getValueType())) {
9438 if (OpBits < DestBits)
9439 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
9440 else if (OpBits > DestBits)
9441 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
9442 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op,
9443 DAG.getValueType(N0.getValueType()));
9447 // Try to simplify (sext (load x)).
9448 if (SDValue foldedExt =
9449 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
9450 ISD::SEXTLOAD, ISD::SIGN_EXTEND))
9451 return foldedExt;
9453 // fold (sext (load x)) to multiple smaller sextloads.
9454 // Only on illegal but splittable vectors.
9455 if (SDValue ExtLoad = CombineExtLoad(N))
9456 return ExtLoad;
9458 // Try to simplify (sext (sextload x)).
9459 if (SDValue foldedExt = tryToFoldExtOfExtload(
9460 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD))
9461 return foldedExt;
9463 // fold (sext (and/or/xor (load x), cst)) ->
9464 // (and/or/xor (sextload x), (sext cst))
9465 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
9466 N0.getOpcode() == ISD::XOR) &&
9467 isa<LoadSDNode>(N0.getOperand(0)) &&
9468 N0.getOperand(1).getOpcode() == ISD::Constant &&
9469 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
9470 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
9471 EVT MemVT = LN00->getMemoryVT();
9472 if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) &&
9473 LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) {
9474 SmallVector<SDNode*, 4> SetCCs;
9475 bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
9476 ISD::SIGN_EXTEND, SetCCs, TLI);
9477 if (DoXform) {
9478 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT,
9479 LN00->getChain(), LN00->getBasePtr(),
9480 LN00->getMemoryVT(),
9481 LN00->getMemOperand());
9482 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9483 Mask = Mask.sext(VT.getSizeInBits());
9484 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
9485 ExtLoad, DAG.getConstant(Mask, DL, VT));
9486 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND);
9487 bool NoReplaceTruncAnd = !N0.hasOneUse();
9488 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
9489 CombineTo(N, And);
9490 // If N0 has multiple uses, change other uses as well.
9491 if (NoReplaceTruncAnd) {
9492 SDValue TruncAnd =
9493 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
9494 CombineTo(N0.getNode(), TruncAnd);
9496 if (NoReplaceTrunc) {
9497 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
9498 } else {
9499 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
9500 LN00->getValueType(0), ExtLoad);
9501 CombineTo(LN00, Trunc, ExtLoad.getValue(1));
9503 return SDValue(N,0); // Return N so it doesn't get rechecked!
9508 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
9509 return V;
9511 if (N0.getOpcode() == ISD::SETCC) {
9512 SDValue N00 = N0.getOperand(0);
9513 SDValue N01 = N0.getOperand(1);
9514 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
9515 EVT N00VT = N0.getOperand(0).getValueType();
9517 // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
9518 // Only do this before legalize for now.
9519 if (VT.isVector() && !LegalOperations &&
9520 TLI.getBooleanContents(N00VT) ==
9521 TargetLowering::ZeroOrNegativeOneBooleanContent) {
9522 // On some architectures (such as SSE/NEON/etc) the SETCC result type is
9523 // of the same size as the compared operands. Only optimize sext(setcc())
9524 // if this is the case.
9525 EVT SVT = getSetCCResultType(N00VT);
9527 // If we already have the desired type, don't change it.
9528 if (SVT != N0.getValueType()) {
9529 // We know that the # elements of the results is the same as the
9530 // # elements of the compare (and the # elements of the compare result
9531 // for that matter). Check to see that they are the same size. If so,
9532 // we know that the element size of the sext'd result matches the
9533 // element size of the compare operands.
9534 if (VT.getSizeInBits() == SVT.getSizeInBits())
9535 return DAG.getSetCC(DL, VT, N00, N01, CC);
9537 // If the desired elements are smaller or larger than the source
9538 // elements, we can use a matching integer vector type and then
9539 // truncate/sign extend.
9540 EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger();
9541 if (SVT == MatchingVecType) {
9542 SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC);
9543 return DAG.getSExtOrTrunc(VsetCC, DL, VT);
9548 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
9549 // Here, T can be 1 or -1, depending on the type of the setcc and
9550 // getBooleanContents().
9551 unsigned SetCCWidth = N0.getScalarValueSizeInBits();
9553 // To determine the "true" side of the select, we need to know the high bit
9554 // of the value returned by the setcc if it evaluates to true.
9555 // If the type of the setcc is i1, then the true case of the select is just
9556 // sext(i1 1), that is, -1.
9557 // If the type of the setcc is larger (say, i8) then the value of the high
9558 // bit depends on getBooleanContents(), so ask TLI for a real "true" value
9559 // of the appropriate width.
9560 SDValue ExtTrueVal = (SetCCWidth == 1)
9561 ? DAG.getAllOnesConstant(DL, VT)
9562 : DAG.getBoolConstant(true, DL, VT, N00VT);
9563 SDValue Zero = DAG.getConstant(0, DL, VT);
9564 if (SDValue SCC =
9565 SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true))
9566 return SCC;
9568 if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) {
9569 EVT SetCCVT = getSetCCResultType(N00VT);
9570 // Don't do this transform for i1 because there's a select transform
9571 // that would reverse it.
9572 // TODO: We should not do this transform at all without a target hook
9573 // because a sext is likely cheaper than a select?
9574 if (SetCCVT.getScalarSizeInBits() != 1 &&
9575 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) {
9576 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC);
9577 return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero);
9582 // fold (sext x) -> (zext x) if the sign bit is known zero.
9583 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
9584 DAG.SignBitIsZero(N0))
9585 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0);
9587 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
9588 return NewVSel;
9590 // Eliminate this sign extend by doing a negation in the destination type:
9591 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64)
9592 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
9593 isNullOrNullSplat(N0.getOperand(0)) &&
9594 N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND &&
9595 TLI.isOperationLegalOrCustom(ISD::SUB, VT)) {
9596 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT);
9597 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext);
9599 // Eliminate this sign extend by doing a decrement in the destination type:
9600 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1)
9601 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() &&
9602 isAllOnesOrAllOnesSplat(N0.getOperand(1)) &&
9603 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
9604 TLI.isOperationLegalOrCustom(ISD::ADD, VT)) {
9605 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT);
9606 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT));
9609 return SDValue();
9612 // isTruncateOf - If N is a truncate of some other value, return true, record
9613 // the value being truncated in Op and which of Op's bits are zero/one in Known.
9614 // This function computes KnownBits to avoid a duplicated call to
9615 // computeKnownBits in the caller.
9616 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
9617 KnownBits &Known) {
9618 if (N->getOpcode() == ISD::TRUNCATE) {
9619 Op = N->getOperand(0);
9620 Known = DAG.computeKnownBits(Op);
9621 return true;
9624 if (N.getOpcode() != ISD::SETCC ||
9625 N.getValueType().getScalarType() != MVT::i1 ||
9626 cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE)
9627 return false;
9629 SDValue Op0 = N->getOperand(0);
9630 SDValue Op1 = N->getOperand(1);
9631 assert(Op0.getValueType() == Op1.getValueType());
9633 if (isNullOrNullSplat(Op0))
9634 Op = Op1;
9635 else if (isNullOrNullSplat(Op1))
9636 Op = Op0;
9637 else
9638 return false;
9640 Known = DAG.computeKnownBits(Op);
9642 return (Known.Zero | 1).isAllOnesValue();
9645 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
9646 SDValue N0 = N->getOperand(0);
9647 EVT VT = N->getValueType(0);
9649 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
9650 return Res;
9652 // fold (zext (zext x)) -> (zext x)
9653 // fold (zext (aext x)) -> (zext x)
9654 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
9655 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
9656 N0.getOperand(0));
9658 // fold (zext (truncate x)) -> (zext x) or
9659 // (zext (truncate x)) -> (truncate x)
9660 // This is valid when the truncated bits of x are already zero.
9661 SDValue Op;
9662 KnownBits Known;
9663 if (isTruncateOf(DAG, N0, Op, Known)) {
9664 APInt TruncatedBits =
9665 (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ?
9666 APInt(Op.getScalarValueSizeInBits(), 0) :
9667 APInt::getBitsSet(Op.getScalarValueSizeInBits(),
9668 N0.getScalarValueSizeInBits(),
9669 std::min(Op.getScalarValueSizeInBits(),
9670 VT.getScalarSizeInBits()));
9671 if (TruncatedBits.isSubsetOf(Known.Zero))
9672 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
9675 // fold (zext (truncate x)) -> (and x, mask)
9676 if (N0.getOpcode() == ISD::TRUNCATE) {
9677 // fold (zext (truncate (load x))) -> (zext (smaller load x))
9678 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
9679 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
9680 SDNode *oye = N0.getOperand(0).getNode();
9681 if (NarrowLoad.getNode() != N0.getNode()) {
9682 CombineTo(N0.getNode(), NarrowLoad);
9683 // CombineTo deleted the truncate, if needed, but not what's under it.
9684 AddToWorklist(oye);
9686 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9689 EVT SrcVT = N0.getOperand(0).getValueType();
9690 EVT MinVT = N0.getValueType();
9692 // Try to mask before the extension to avoid having to generate a larger mask,
9693 // possibly over several sub-vectors.
9694 if (SrcVT.bitsLT(VT) && VT.isVector()) {
9695 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) &&
9696 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) {
9697 SDValue Op = N0.getOperand(0);
9698 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
9699 AddToWorklist(Op.getNode());
9700 SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
9701 // Transfer the debug info; the new node is equivalent to N0.
9702 DAG.transferDbgValues(N0, ZExtOrTrunc);
9703 return ZExtOrTrunc;
9707 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) {
9708 SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
9709 AddToWorklist(Op.getNode());
9710 SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
9711 // We may safely transfer the debug info describing the truncate node over
9712 // to the equivalent and operation.
9713 DAG.transferDbgValues(N0, And);
9714 return And;
9718 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
9719 // if either of the casts is not free.
9720 if (N0.getOpcode() == ISD::AND &&
9721 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
9722 N0.getOperand(1).getOpcode() == ISD::Constant &&
9723 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
9724 N0.getValueType()) ||
9725 !TLI.isZExtFree(N0.getValueType(), VT))) {
9726 SDValue X = N0.getOperand(0).getOperand(0);
9727 X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT);
9728 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9729 Mask = Mask.zext(VT.getSizeInBits());
9730 SDLoc DL(N);
9731 return DAG.getNode(ISD::AND, DL, VT,
9732 X, DAG.getConstant(Mask, DL, VT));
9735 // Try to simplify (zext (load x)).
9736 if (SDValue foldedExt =
9737 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
9738 ISD::ZEXTLOAD, ISD::ZERO_EXTEND))
9739 return foldedExt;
9741 // fold (zext (load x)) to multiple smaller zextloads.
9742 // Only on illegal but splittable vectors.
9743 if (SDValue ExtLoad = CombineExtLoad(N))
9744 return ExtLoad;
9746 // fold (zext (and/or/xor (load x), cst)) ->
9747 // (and/or/xor (zextload x), (zext cst))
9748 // Unless (and (load x) cst) will match as a zextload already and has
9749 // additional users.
9750 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
9751 N0.getOpcode() == ISD::XOR) &&
9752 isa<LoadSDNode>(N0.getOperand(0)) &&
9753 N0.getOperand(1).getOpcode() == ISD::Constant &&
9754 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
9755 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
9756 EVT MemVT = LN00->getMemoryVT();
9757 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) &&
9758 LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) {
9759 bool DoXform = true;
9760 SmallVector<SDNode*, 4> SetCCs;
9761 if (!N0.hasOneUse()) {
9762 if (N0.getOpcode() == ISD::AND) {
9763 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1));
9764 EVT LoadResultTy = AndC->getValueType(0);
9765 EVT ExtVT;
9766 if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT))
9767 DoXform = false;
9770 if (DoXform)
9771 DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
9772 ISD::ZERO_EXTEND, SetCCs, TLI);
9773 if (DoXform) {
9774 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT,
9775 LN00->getChain(), LN00->getBasePtr(),
9776 LN00->getMemoryVT(),
9777 LN00->getMemOperand());
9778 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9779 Mask = Mask.zext(VT.getSizeInBits());
9780 SDLoc DL(N);
9781 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
9782 ExtLoad, DAG.getConstant(Mask, DL, VT));
9783 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
9784 bool NoReplaceTruncAnd = !N0.hasOneUse();
9785 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
9786 CombineTo(N, And);
9787 // If N0 has multiple uses, change other uses as well.
9788 if (NoReplaceTruncAnd) {
9789 SDValue TruncAnd =
9790 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
9791 CombineTo(N0.getNode(), TruncAnd);
9793 if (NoReplaceTrunc) {
9794 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
9795 } else {
9796 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
9797 LN00->getValueType(0), ExtLoad);
9798 CombineTo(LN00, Trunc, ExtLoad.getValue(1));
9800 return SDValue(N,0); // Return N so it doesn't get rechecked!
9805 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
9806 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
9807 if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N))
9808 return ZExtLoad;
9810 // Try to simplify (zext (zextload x)).
9811 if (SDValue foldedExt = tryToFoldExtOfExtload(
9812 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD))
9813 return foldedExt;
9815 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
9816 return V;
9818 if (N0.getOpcode() == ISD::SETCC) {
9819 // Only do this before legalize for now.
9820 if (!LegalOperations && VT.isVector() &&
9821 N0.getValueType().getVectorElementType() == MVT::i1) {
9822 EVT N00VT = N0.getOperand(0).getValueType();
9823 if (getSetCCResultType(N00VT) == N0.getValueType())
9824 return SDValue();
9826 // We know that the # elements of the results is the same as the #
9827 // elements of the compare (and the # elements of the compare result for
9828 // that matter). Check to see that they are the same size. If so, we know
9829 // that the element size of the sext'd result matches the element size of
9830 // the compare operands.
9831 SDLoc DL(N);
9832 SDValue VecOnes = DAG.getConstant(1, DL, VT);
9833 if (VT.getSizeInBits() == N00VT.getSizeInBits()) {
9834 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
9835 SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0),
9836 N0.getOperand(1), N0.getOperand(2));
9837 return DAG.getNode(ISD::AND, DL, VT, VSetCC, VecOnes);
9840 // If the desired elements are smaller or larger than the source
9841 // elements we can use a matching integer vector type and then
9842 // truncate/sign extend.
9843 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
9844 SDValue VsetCC =
9845 DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0),
9846 N0.getOperand(1), N0.getOperand(2));
9847 return DAG.getNode(ISD::AND, DL, VT, DAG.getSExtOrTrunc(VsetCC, DL, VT),
9848 VecOnes);
9851 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
9852 SDLoc DL(N);
9853 if (SDValue SCC = SimplifySelectCC(
9854 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
9855 DAG.getConstant(0, DL, VT),
9856 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
9857 return SCC;
9860 // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
9861 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
9862 isa<ConstantSDNode>(N0.getOperand(1)) &&
9863 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
9864 N0.hasOneUse()) {
9865 SDValue ShAmt = N0.getOperand(1);
9866 if (N0.getOpcode() == ISD::SHL) {
9867 SDValue InnerZExt = N0.getOperand(0);
9868 // If the original shl may be shifting out bits, do not perform this
9869 // transformation.
9870 unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() -
9871 InnerZExt.getOperand(0).getValueSizeInBits();
9872 if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits))
9873 return SDValue();
9876 SDLoc DL(N);
9878 // Ensure that the shift amount is wide enough for the shifted value.
9879 if (VT.getSizeInBits() >= 256)
9880 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
9882 return DAG.getNode(N0.getOpcode(), DL, VT,
9883 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
9884 ShAmt);
9887 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
9888 return NewVSel;
9890 return SDValue();
9893 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
9894 SDValue N0 = N->getOperand(0);
9895 EVT VT = N->getValueType(0);
9897 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
9898 return Res;
9900 // fold (aext (aext x)) -> (aext x)
9901 // fold (aext (zext x)) -> (zext x)
9902 // fold (aext (sext x)) -> (sext x)
9903 if (N0.getOpcode() == ISD::ANY_EXTEND ||
9904 N0.getOpcode() == ISD::ZERO_EXTEND ||
9905 N0.getOpcode() == ISD::SIGN_EXTEND)
9906 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
9908 // fold (aext (truncate (load x))) -> (aext (smaller load x))
9909 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
9910 if (N0.getOpcode() == ISD::TRUNCATE) {
9911 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
9912 SDNode *oye = N0.getOperand(0).getNode();
9913 if (NarrowLoad.getNode() != N0.getNode()) {
9914 CombineTo(N0.getNode(), NarrowLoad);
9915 // CombineTo deleted the truncate, if needed, but not what's under it.
9916 AddToWorklist(oye);
9918 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9922 // fold (aext (truncate x))
9923 if (N0.getOpcode() == ISD::TRUNCATE)
9924 return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
9926 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
9927 // if the trunc is not free.
9928 if (N0.getOpcode() == ISD::AND &&
9929 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
9930 N0.getOperand(1).getOpcode() == ISD::Constant &&
9931 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
9932 N0.getValueType())) {
9933 SDLoc DL(N);
9934 SDValue X = N0.getOperand(0).getOperand(0);
9935 X = DAG.getAnyExtOrTrunc(X, DL, VT);
9936 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9937 Mask = Mask.zext(VT.getSizeInBits());
9938 return DAG.getNode(ISD::AND, DL, VT,
9939 X, DAG.getConstant(Mask, DL, VT));
9942 // fold (aext (load x)) -> (aext (truncate (extload x)))
9943 // None of the supported targets knows how to perform load and any_ext
9944 // on vectors in one instruction. We only perform this transformation on
9945 // scalars.
9946 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
9947 ISD::isUNINDEXEDLoad(N0.getNode()) &&
9948 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
9949 bool DoXform = true;
9950 SmallVector<SDNode*, 4> SetCCs;
9951 if (!N0.hasOneUse())
9952 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs,
9953 TLI);
9954 if (DoXform) {
9955 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9956 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
9957 LN0->getChain(),
9958 LN0->getBasePtr(), N0.getValueType(),
9959 LN0->getMemOperand());
9960 ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND);
9961 // If the load value is used only by N, replace it via CombineTo N.
9962 bool NoReplaceTrunc = N0.hasOneUse();
9963 CombineTo(N, ExtLoad);
9964 if (NoReplaceTrunc) {
9965 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
9966 recursivelyDeleteUnusedNodes(LN0);
9967 } else {
9968 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
9969 N0.getValueType(), ExtLoad);
9970 CombineTo(LN0, Trunc, ExtLoad.getValue(1));
9972 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9976 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
9977 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
9978 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
9979 if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) &&
9980 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
9981 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9982 ISD::LoadExtType ExtType = LN0->getExtensionType();
9983 EVT MemVT = LN0->getMemoryVT();
9984 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
9985 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N),
9986 VT, LN0->getChain(), LN0->getBasePtr(),
9987 MemVT, LN0->getMemOperand());
9988 CombineTo(N, ExtLoad);
9989 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
9990 recursivelyDeleteUnusedNodes(LN0);
9991 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9995 if (N0.getOpcode() == ISD::SETCC) {
9996 // For vectors:
9997 // aext(setcc) -> vsetcc
9998 // aext(setcc) -> truncate(vsetcc)
9999 // aext(setcc) -> aext(vsetcc)
10000 // Only do this before legalize for now.
10001 if (VT.isVector() && !LegalOperations) {
10002 EVT N00VT = N0.getOperand(0).getValueType();
10003 if (getSetCCResultType(N00VT) == N0.getValueType())
10004 return SDValue();
10006 // We know that the # elements of the results is the same as the
10007 // # elements of the compare (and the # elements of the compare result
10008 // for that matter). Check to see that they are the same size. If so,
10009 // we know that the element size of the sext'd result matches the
10010 // element size of the compare operands.
10011 if (VT.getSizeInBits() == N00VT.getSizeInBits())
10012 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
10013 N0.getOperand(1),
10014 cast<CondCodeSDNode>(N0.getOperand(2))->get());
10016 // If the desired elements are smaller or larger than the source
10017 // elements we can use a matching integer vector type and then
10018 // truncate/any extend
10019 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
10020 SDValue VsetCC =
10021 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
10022 N0.getOperand(1),
10023 cast<CondCodeSDNode>(N0.getOperand(2))->get());
10024 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT);
10027 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
10028 SDLoc DL(N);
10029 if (SDValue SCC = SimplifySelectCC(
10030 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
10031 DAG.getConstant(0, DL, VT),
10032 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
10033 return SCC;
10036 return SDValue();
10039 SDValue DAGCombiner::visitAssertExt(SDNode *N) {
10040 unsigned Opcode = N->getOpcode();
10041 SDValue N0 = N->getOperand(0);
10042 SDValue N1 = N->getOperand(1);
10043 EVT AssertVT = cast<VTSDNode>(N1)->getVT();
10045 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
10046 if (N0.getOpcode() == Opcode &&
10047 AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT())
10048 return N0;
10050 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
10051 N0.getOperand(0).getOpcode() == Opcode) {
10052 // We have an assert, truncate, assert sandwich. Make one stronger assert
10053 // by asserting on the smallest asserted type to the larger source type.
10054 // This eliminates the later assert:
10055 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
10056 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
10057 SDValue BigA = N0.getOperand(0);
10058 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
10059 assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&
10060 "Asserting zero/sign-extended bits to a type larger than the "
10061 "truncated destination does not provide information");
10063 SDLoc DL(N);
10064 EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT;
10065 SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT);
10066 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
10067 BigA.getOperand(0), MinAssertVTVal);
10068 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
10071 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller
10072 // than X. Just move the AssertZext in front of the truncate and drop the
10073 // AssertSExt.
10074 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
10075 N0.getOperand(0).getOpcode() == ISD::AssertSext &&
10076 Opcode == ISD::AssertZext) {
10077 SDValue BigA = N0.getOperand(0);
10078 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
10079 assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&
10080 "Asserting zero/sign-extended bits to a type larger than the "
10081 "truncated destination does not provide information");
10083 if (AssertVT.bitsLT(BigA_AssertVT)) {
10084 SDLoc DL(N);
10085 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
10086 BigA.getOperand(0), N1);
10087 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
10091 return SDValue();
10094 /// If the result of a wider load is shifted to right of N bits and then
10095 /// truncated to a narrower type and where N is a multiple of number of bits of
10096 /// the narrower type, transform it to a narrower load from address + N / num of
10097 /// bits of new type. Also narrow the load if the result is masked with an AND
10098 /// to effectively produce a smaller type. If the result is to be extended, also
10099 /// fold the extension to form a extending load.
10100 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
10101 unsigned Opc = N->getOpcode();
10103 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
10104 SDValue N0 = N->getOperand(0);
10105 EVT VT = N->getValueType(0);
10106 EVT ExtVT = VT;
10108 // This transformation isn't valid for vector loads.
10109 if (VT.isVector())
10110 return SDValue();
10112 unsigned ShAmt = 0;
10113 bool HasShiftedOffset = false;
10114 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
10115 // extended to VT.
10116 if (Opc == ISD::SIGN_EXTEND_INREG) {
10117 ExtType = ISD::SEXTLOAD;
10118 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
10119 } else if (Opc == ISD::SRL) {
10120 // Another special-case: SRL is basically zero-extending a narrower value,
10121 // or it maybe shifting a higher subword, half or byte into the lowest
10122 // bits.
10123 ExtType = ISD::ZEXTLOAD;
10124 N0 = SDValue(N, 0);
10126 auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0));
10127 auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
10128 if (!N01 || !LN0)
10129 return SDValue();
10131 uint64_t ShiftAmt = N01->getZExtValue();
10132 uint64_t MemoryWidth = LN0->getMemoryVT().getSizeInBits();
10133 if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt)
10134 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt);
10135 else
10136 ExtVT = EVT::getIntegerVT(*DAG.getContext(),
10137 VT.getSizeInBits() - ShiftAmt);
10138 } else if (Opc == ISD::AND) {
10139 // An AND with a constant mask is the same as a truncate + zero-extend.
10140 auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1));
10141 if (!AndC)
10142 return SDValue();
10144 const APInt &Mask = AndC->getAPIntValue();
10145 unsigned ActiveBits = 0;
10146 if (Mask.isMask()) {
10147 ActiveBits = Mask.countTrailingOnes();
10148 } else if (Mask.isShiftedMask()) {
10149 ShAmt = Mask.countTrailingZeros();
10150 APInt ShiftedMask = Mask.lshr(ShAmt);
10151 ActiveBits = ShiftedMask.countTrailingOnes();
10152 HasShiftedOffset = true;
10153 } else
10154 return SDValue();
10156 ExtType = ISD::ZEXTLOAD;
10157 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
10160 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
10161 SDValue SRL = N0;
10162 if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) {
10163 ShAmt = ConstShift->getZExtValue();
10164 unsigned EVTBits = ExtVT.getSizeInBits();
10165 // Is the shift amount a multiple of size of VT?
10166 if ((ShAmt & (EVTBits-1)) == 0) {
10167 N0 = N0.getOperand(0);
10168 // Is the load width a multiple of size of VT?
10169 if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0)
10170 return SDValue();
10173 // At this point, we must have a load or else we can't do the transform.
10174 if (!isa<LoadSDNode>(N0)) return SDValue();
10176 auto *LN0 = cast<LoadSDNode>(N0);
10178 // Because a SRL must be assumed to *need* to zero-extend the high bits
10179 // (as opposed to anyext the high bits), we can't combine the zextload
10180 // lowering of SRL and an sextload.
10181 if (LN0->getExtensionType() == ISD::SEXTLOAD)
10182 return SDValue();
10184 // If the shift amount is larger than the input type then we're not
10185 // accessing any of the loaded bytes. If the load was a zextload/extload
10186 // then the result of the shift+trunc is zero/undef (handled elsewhere).
10187 if (ShAmt >= LN0->getMemoryVT().getSizeInBits())
10188 return SDValue();
10190 // If the SRL is only used by a masking AND, we may be able to adjust
10191 // the ExtVT to make the AND redundant.
10192 SDNode *Mask = *(SRL->use_begin());
10193 if (Mask->getOpcode() == ISD::AND &&
10194 isa<ConstantSDNode>(Mask->getOperand(1))) {
10195 const APInt &ShiftMask =
10196 cast<ConstantSDNode>(Mask->getOperand(1))->getAPIntValue();
10197 if (ShiftMask.isMask()) {
10198 EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(),
10199 ShiftMask.countTrailingOnes());
10200 // If the mask is smaller, recompute the type.
10201 if ((ExtVT.getSizeInBits() > MaskedVT.getSizeInBits()) &&
10202 TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT))
10203 ExtVT = MaskedVT;
10209 // If the load is shifted left (and the result isn't shifted back right),
10210 // we can fold the truncate through the shift.
10211 unsigned ShLeftAmt = 0;
10212 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
10213 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
10214 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
10215 ShLeftAmt = N01->getZExtValue();
10216 N0 = N0.getOperand(0);
10220 // If we haven't found a load, we can't narrow it.
10221 if (!isa<LoadSDNode>(N0))
10222 return SDValue();
10224 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10225 if (!isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt))
10226 return SDValue();
10228 auto AdjustBigEndianShift = [&](unsigned ShAmt) {
10229 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
10230 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
10231 return LVTStoreBits - EVTStoreBits - ShAmt;
10234 // For big endian targets, we need to adjust the offset to the pointer to
10235 // load the correct bytes.
10236 if (DAG.getDataLayout().isBigEndian())
10237 ShAmt = AdjustBigEndianShift(ShAmt);
10239 EVT PtrType = N0.getOperand(1).getValueType();
10240 uint64_t PtrOff = ShAmt / 8;
10241 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
10242 SDLoc DL(LN0);
10243 // The original load itself didn't wrap, so an offset within it doesn't.
10244 SDNodeFlags Flags;
10245 Flags.setNoUnsignedWrap(true);
10246 SDValue NewPtr = DAG.getNode(ISD::ADD, DL,
10247 PtrType, LN0->getBasePtr(),
10248 DAG.getConstant(PtrOff, DL, PtrType),
10249 Flags);
10250 AddToWorklist(NewPtr.getNode());
10252 SDValue Load;
10253 if (ExtType == ISD::NON_EXTLOAD)
10254 Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
10255 LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign,
10256 LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
10257 else
10258 Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(), NewPtr,
10259 LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT,
10260 NewAlign, LN0->getMemOperand()->getFlags(),
10261 LN0->getAAInfo());
10263 // Replace the old load's chain with the new load's chain.
10264 WorklistRemover DeadNodes(*this);
10265 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
10267 // Shift the result left, if we've swallowed a left shift.
10268 SDValue Result = Load;
10269 if (ShLeftAmt != 0) {
10270 EVT ShImmTy = getShiftAmountTy(Result.getValueType());
10271 if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
10272 ShImmTy = VT;
10273 // If the shift amount is as large as the result size (but, presumably,
10274 // no larger than the source) then the useful bits of the result are
10275 // zero; we can't simply return the shortened shift, because the result
10276 // of that operation is undefined.
10277 SDLoc DL(N0);
10278 if (ShLeftAmt >= VT.getSizeInBits())
10279 Result = DAG.getConstant(0, DL, VT);
10280 else
10281 Result = DAG.getNode(ISD::SHL, DL, VT,
10282 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy));
10285 if (HasShiftedOffset) {
10286 // Recalculate the shift amount after it has been altered to calculate
10287 // the offset.
10288 if (DAG.getDataLayout().isBigEndian())
10289 ShAmt = AdjustBigEndianShift(ShAmt);
10291 // We're using a shifted mask, so the load now has an offset. This means
10292 // that data has been loaded into the lower bytes than it would have been
10293 // before, so we need to shl the loaded data into the correct position in the
10294 // register.
10295 SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT);
10296 Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC);
10297 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
10300 // Return the new loaded value.
10301 return Result;
10304 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
10305 SDValue N0 = N->getOperand(0);
10306 SDValue N1 = N->getOperand(1);
10307 EVT VT = N->getValueType(0);
10308 EVT EVT = cast<VTSDNode>(N1)->getVT();
10309 unsigned VTBits = VT.getScalarSizeInBits();
10310 unsigned EVTBits = EVT.getScalarSizeInBits();
10312 if (N0.isUndef())
10313 return DAG.getUNDEF(VT);
10315 // fold (sext_in_reg c1) -> c1
10316 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
10317 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
10319 // If the input is already sign extended, just drop the extension.
10320 if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
10321 return N0;
10323 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
10324 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
10325 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
10326 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
10327 N0.getOperand(0), N1);
10329 // fold (sext_in_reg (sext x)) -> (sext x)
10330 // fold (sext_in_reg (aext x)) -> (sext x)
10331 // if x is small enough or if we know that x has more than 1 sign bit and the
10332 // sign_extend_inreg is extending from one of them.
10333 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
10334 SDValue N00 = N0.getOperand(0);
10335 unsigned N00Bits = N00.getScalarValueSizeInBits();
10336 if ((N00Bits <= EVTBits ||
10337 (N00Bits - DAG.ComputeNumSignBits(N00)) < EVTBits) &&
10338 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
10339 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00);
10342 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
10343 if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG ||
10344 N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG ||
10345 N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) &&
10346 N0.getOperand(0).getScalarValueSizeInBits() == EVTBits) {
10347 if (!LegalOperations ||
10348 TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT))
10349 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT,
10350 N0.getOperand(0));
10353 // fold (sext_in_reg (zext x)) -> (sext x)
10354 // iff we are extending the source sign bit.
10355 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
10356 SDValue N00 = N0.getOperand(0);
10357 if (N00.getScalarValueSizeInBits() == EVTBits &&
10358 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
10359 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
10362 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
10363 if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, EVTBits - 1)))
10364 return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT.getScalarType());
10366 // fold operands of sext_in_reg based on knowledge that the top bits are not
10367 // demanded.
10368 if (SimplifyDemandedBits(SDValue(N, 0)))
10369 return SDValue(N, 0);
10371 // fold (sext_in_reg (load x)) -> (smaller sextload x)
10372 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
10373 if (SDValue NarrowLoad = ReduceLoadWidth(N))
10374 return NarrowLoad;
10376 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
10377 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
10378 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
10379 if (N0.getOpcode() == ISD::SRL) {
10380 if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
10381 if (ShAmt->getAPIntValue().ule(VTBits - EVTBits)) {
10382 // We can turn this into an SRA iff the input to the SRL is already sign
10383 // extended enough.
10384 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
10385 if (((VTBits - EVTBits) - ShAmt->getZExtValue()) < InSignBits)
10386 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
10387 N0.getOperand(1));
10391 // fold (sext_inreg (extload x)) -> (sextload x)
10392 // If sextload is not supported by target, we can only do the combine when
10393 // load has one use. Doing otherwise can block folding the extload with other
10394 // extends that the target does support.
10395 if (ISD::isEXTLoad(N0.getNode()) &&
10396 ISD::isUNINDEXEDLoad(N0.getNode()) &&
10397 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
10398 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile() &&
10399 N0.hasOneUse()) ||
10400 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
10401 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10402 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
10403 LN0->getChain(),
10404 LN0->getBasePtr(), EVT,
10405 LN0->getMemOperand());
10406 CombineTo(N, ExtLoad);
10407 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
10408 AddToWorklist(ExtLoad.getNode());
10409 return SDValue(N, 0); // Return N so it doesn't get rechecked!
10411 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
10412 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
10413 N0.hasOneUse() &&
10414 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
10415 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
10416 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
10417 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10418 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
10419 LN0->getChain(),
10420 LN0->getBasePtr(), EVT,
10421 LN0->getMemOperand());
10422 CombineTo(N, ExtLoad);
10423 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
10424 return SDValue(N, 0); // Return N so it doesn't get rechecked!
10427 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
10428 if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
10429 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
10430 N0.getOperand(1), false))
10431 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
10432 BSwap, N1);
10435 return SDValue();
10438 SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) {
10439 SDValue N0 = N->getOperand(0);
10440 EVT VT = N->getValueType(0);
10442 if (N0.isUndef())
10443 return DAG.getUNDEF(VT);
10445 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
10446 return Res;
10448 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
10449 return SDValue(N, 0);
10451 return SDValue();
10454 SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) {
10455 SDValue N0 = N->getOperand(0);
10456 EVT VT = N->getValueType(0);
10458 if (N0.isUndef())
10459 return DAG.getUNDEF(VT);
10461 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
10462 return Res;
10464 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
10465 return SDValue(N, 0);
10467 return SDValue();
10470 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
10471 SDValue N0 = N->getOperand(0);
10472 EVT VT = N->getValueType(0);
10473 EVT SrcVT = N0.getValueType();
10474 bool isLE = DAG.getDataLayout().isLittleEndian();
10476 // noop truncate
10477 if (SrcVT == VT)
10478 return N0;
10480 // fold (truncate (truncate x)) -> (truncate x)
10481 if (N0.getOpcode() == ISD::TRUNCATE)
10482 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
10484 // fold (truncate c1) -> c1
10485 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
10486 SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
10487 if (C.getNode() != N)
10488 return C;
10491 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
10492 if (N0.getOpcode() == ISD::ZERO_EXTEND ||
10493 N0.getOpcode() == ISD::SIGN_EXTEND ||
10494 N0.getOpcode() == ISD::ANY_EXTEND) {
10495 // if the source is smaller than the dest, we still need an extend.
10496 if (N0.getOperand(0).getValueType().bitsLT(VT))
10497 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
10498 // if the source is larger than the dest, than we just need the truncate.
10499 if (N0.getOperand(0).getValueType().bitsGT(VT))
10500 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
10501 // if the source and dest are the same type, we can drop both the extend
10502 // and the truncate.
10503 return N0.getOperand(0);
10506 // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
10507 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND))
10508 return SDValue();
10510 // Fold extract-and-trunc into a narrow extract. For example:
10511 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
10512 // i32 y = TRUNCATE(i64 x)
10513 // -- becomes --
10514 // v16i8 b = BITCAST (v2i64 val)
10515 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
10517 // Note: We only run this optimization after type legalization (which often
10518 // creates this pattern) and before operation legalization after which
10519 // we need to be more careful about the vector instructions that we generate.
10520 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
10521 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) {
10522 EVT VecTy = N0.getOperand(0).getValueType();
10523 EVT ExTy = N0.getValueType();
10524 EVT TrTy = N->getValueType(0);
10526 unsigned NumElem = VecTy.getVectorNumElements();
10527 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
10529 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
10530 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
10532 SDValue EltNo = N0->getOperand(1);
10533 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
10534 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
10535 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
10536 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
10538 SDLoc DL(N);
10539 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy,
10540 DAG.getBitcast(NVT, N0.getOperand(0)),
10541 DAG.getConstant(Index, DL, IndexTy));
10545 // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
10546 if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) {
10547 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) &&
10548 TLI.isTruncateFree(SrcVT, VT)) {
10549 SDLoc SL(N0);
10550 SDValue Cond = N0.getOperand(0);
10551 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
10552 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2));
10553 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1);
10557 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
10558 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
10559 (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) &&
10560 TLI.isTypeDesirableForOp(ISD::SHL, VT)) {
10561 SDValue Amt = N0.getOperand(1);
10562 KnownBits Known = DAG.computeKnownBits(Amt);
10563 unsigned Size = VT.getScalarSizeInBits();
10564 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) {
10565 SDLoc SL(N);
10566 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
10568 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
10569 if (AmtVT != Amt.getValueType()) {
10570 Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT);
10571 AddToWorklist(Amt.getNode());
10573 return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt);
10577 // Attempt to pre-truncate BUILD_VECTOR sources.
10578 if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations &&
10579 TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType())) {
10580 SDLoc DL(N);
10581 EVT SVT = VT.getScalarType();
10582 SmallVector<SDValue, 8> TruncOps;
10583 for (const SDValue &Op : N0->op_values()) {
10584 SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op);
10585 TruncOps.push_back(TruncOp);
10587 return DAG.getBuildVector(VT, DL, TruncOps);
10590 // Fold a series of buildvector, bitcast, and truncate if possible.
10591 // For example fold
10592 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
10593 // (2xi32 (buildvector x, y)).
10594 if (Level == AfterLegalizeVectorOps && VT.isVector() &&
10595 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
10596 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
10597 N0.getOperand(0).hasOneUse()) {
10598 SDValue BuildVect = N0.getOperand(0);
10599 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
10600 EVT TruncVecEltTy = VT.getVectorElementType();
10602 // Check that the element types match.
10603 if (BuildVectEltTy == TruncVecEltTy) {
10604 // Now we only need to compute the offset of the truncated elements.
10605 unsigned BuildVecNumElts = BuildVect.getNumOperands();
10606 unsigned TruncVecNumElts = VT.getVectorNumElements();
10607 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
10609 assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
10610 "Invalid number of elements");
10612 SmallVector<SDValue, 8> Opnds;
10613 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
10614 Opnds.push_back(BuildVect.getOperand(i));
10616 return DAG.getBuildVector(VT, SDLoc(N), Opnds);
10620 // See if we can simplify the input to this truncate through knowledge that
10621 // only the low bits are being used.
10622 // For example "trunc (or (shl x, 8), y)" // -> trunc y
10623 // Currently we only perform this optimization on scalars because vectors
10624 // may have different active low bits.
10625 if (!VT.isVector()) {
10626 APInt Mask =
10627 APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits());
10628 if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask))
10629 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
10632 // fold (truncate (load x)) -> (smaller load x)
10633 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
10634 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
10635 if (SDValue Reduced = ReduceLoadWidth(N))
10636 return Reduced;
10638 // Handle the case where the load remains an extending load even
10639 // after truncation.
10640 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
10641 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10642 if (!LN0->isVolatile() &&
10643 LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) {
10644 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0),
10645 VT, LN0->getChain(), LN0->getBasePtr(),
10646 LN0->getMemoryVT(),
10647 LN0->getMemOperand());
10648 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
10649 return NewLoad;
10654 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
10655 // where ... are all 'undef'.
10656 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
10657 SmallVector<EVT, 8> VTs;
10658 SDValue V;
10659 unsigned Idx = 0;
10660 unsigned NumDefs = 0;
10662 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
10663 SDValue X = N0.getOperand(i);
10664 if (!X.isUndef()) {
10665 V = X;
10666 Idx = i;
10667 NumDefs++;
10669 // Stop if more than one members are non-undef.
10670 if (NumDefs > 1)
10671 break;
10672 VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
10673 VT.getVectorElementType(),
10674 X.getValueType().getVectorNumElements()));
10677 if (NumDefs == 0)
10678 return DAG.getUNDEF(VT);
10680 if (NumDefs == 1) {
10681 assert(V.getNode() && "The single defined operand is empty!");
10682 SmallVector<SDValue, 8> Opnds;
10683 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
10684 if (i != Idx) {
10685 Opnds.push_back(DAG.getUNDEF(VTs[i]));
10686 continue;
10688 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
10689 AddToWorklist(NV.getNode());
10690 Opnds.push_back(NV);
10692 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds);
10696 // Fold truncate of a bitcast of a vector to an extract of the low vector
10697 // element.
10699 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
10700 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) {
10701 SDValue VecSrc = N0.getOperand(0);
10702 EVT SrcVT = VecSrc.getValueType();
10703 if (SrcVT.isVector() && SrcVT.getScalarType() == VT &&
10704 (!LegalOperations ||
10705 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, SrcVT))) {
10706 SDLoc SL(N);
10708 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
10709 unsigned Idx = isLE ? 0 : SrcVT.getVectorNumElements() - 1;
10710 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT,
10711 VecSrc, DAG.getConstant(Idx, SL, IdxVT));
10715 // Simplify the operands using demanded-bits information.
10716 if (!VT.isVector() &&
10717 SimplifyDemandedBits(SDValue(N, 0)))
10718 return SDValue(N, 0);
10720 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
10721 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry)
10722 // When the adde's carry is not used.
10723 if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) &&
10724 N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) &&
10725 // We only do for addcarry before legalize operation
10726 ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) ||
10727 TLI.isOperationLegal(N0.getOpcode(), VT))) {
10728 SDLoc SL(N);
10729 auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
10730 auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
10731 auto VTs = DAG.getVTList(VT, N0->getValueType(1));
10732 return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2));
10735 // fold (truncate (extract_subvector(ext x))) ->
10736 // (extract_subvector x)
10737 // TODO: This can be generalized to cover cases where the truncate and extract
10738 // do not fully cancel each other out.
10739 if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
10740 SDValue N00 = N0.getOperand(0);
10741 if (N00.getOpcode() == ISD::SIGN_EXTEND ||
10742 N00.getOpcode() == ISD::ZERO_EXTEND ||
10743 N00.getOpcode() == ISD::ANY_EXTEND) {
10744 if (N00.getOperand(0)->getValueType(0).getVectorElementType() ==
10745 VT.getVectorElementType())
10746 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT,
10747 N00.getOperand(0), N0.getOperand(1));
10751 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
10752 return NewVSel;
10754 // Narrow a suitable binary operation with a non-opaque constant operand by
10755 // moving it ahead of the truncate. This is limited to pre-legalization
10756 // because targets may prefer a wider type during later combines and invert
10757 // this transform.
10758 switch (N0.getOpcode()) {
10759 case ISD::ADD:
10760 case ISD::SUB:
10761 case ISD::MUL:
10762 case ISD::AND:
10763 case ISD::OR:
10764 case ISD::XOR:
10765 if (!LegalOperations && N0.hasOneUse() &&
10766 (isConstantOrConstantVector(N0.getOperand(0), true) ||
10767 isConstantOrConstantVector(N0.getOperand(1), true))) {
10768 // TODO: We already restricted this to pre-legalization, but for vectors
10769 // we are extra cautious to not create an unsupported operation.
10770 // Target-specific changes are likely needed to avoid regressions here.
10771 if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) {
10772 SDLoc DL(N);
10773 SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
10774 SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1));
10775 return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR);
10780 return SDValue();
10783 static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
10784 SDValue Elt = N->getOperand(i);
10785 if (Elt.getOpcode() != ISD::MERGE_VALUES)
10786 return Elt.getNode();
10787 return Elt.getOperand(Elt.getResNo()).getNode();
10790 /// build_pair (load, load) -> load
10791 /// if load locations are consecutive.
10792 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
10793 assert(N->getOpcode() == ISD::BUILD_PAIR);
10795 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
10796 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
10798 // A BUILD_PAIR is always having the least significant part in elt 0 and the
10799 // most significant part in elt 1. So when combining into one large load, we
10800 // need to consider the endianness.
10801 if (DAG.getDataLayout().isBigEndian())
10802 std::swap(LD1, LD2);
10804 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
10805 LD1->getAddressSpace() != LD2->getAddressSpace())
10806 return SDValue();
10807 EVT LD1VT = LD1->getValueType(0);
10808 unsigned LD1Bytes = LD1VT.getStoreSize();
10809 if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() &&
10810 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) {
10811 unsigned Align = LD1->getAlignment();
10812 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
10813 VT.getTypeForEVT(*DAG.getContext()));
10815 if (NewAlign <= Align &&
10816 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
10817 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(),
10818 LD1->getPointerInfo(), Align);
10821 return SDValue();
10824 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) {
10825 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
10826 // and Lo parts; on big-endian machines it doesn't.
10827 return DAG.getDataLayout().isBigEndian() ? 1 : 0;
10830 static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG,
10831 const TargetLowering &TLI) {
10832 // If this is not a bitcast to an FP type or if the target doesn't have
10833 // IEEE754-compliant FP logic, we're done.
10834 EVT VT = N->getValueType(0);
10835 if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT))
10836 return SDValue();
10838 // TODO: Handle cases where the integer constant is a different scalar
10839 // bitwidth to the FP.
10840 SDValue N0 = N->getOperand(0);
10841 EVT SourceVT = N0.getValueType();
10842 if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits())
10843 return SDValue();
10845 unsigned FPOpcode;
10846 APInt SignMask;
10847 switch (N0.getOpcode()) {
10848 case ISD::AND:
10849 FPOpcode = ISD::FABS;
10850 SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits());
10851 break;
10852 case ISD::XOR:
10853 FPOpcode = ISD::FNEG;
10854 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
10855 break;
10856 case ISD::OR:
10857 FPOpcode = ISD::FABS;
10858 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
10859 break;
10860 default:
10861 return SDValue();
10864 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
10865 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
10866 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
10867 // fneg (fabs X)
10868 SDValue LogicOp0 = N0.getOperand(0);
10869 ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true);
10870 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask &&
10871 LogicOp0.getOpcode() == ISD::BITCAST &&
10872 LogicOp0.getOperand(0).getValueType() == VT) {
10873 SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0));
10874 NumFPLogicOpsConv++;
10875 if (N0.getOpcode() == ISD::OR)
10876 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp);
10877 return FPOp;
10880 return SDValue();
10883 SDValue DAGCombiner::visitBITCAST(SDNode *N) {
10884 SDValue N0 = N->getOperand(0);
10885 EVT VT = N->getValueType(0);
10887 if (N0.isUndef())
10888 return DAG.getUNDEF(VT);
10890 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
10891 // Only do this before legalize types, unless both types are integer and the
10892 // scalar type is legal. Only do this before legalize ops, since the target
10893 // maybe depending on the bitcast.
10894 // First check to see if this is all constant.
10895 // TODO: Support FP bitcasts after legalize types.
10896 if (VT.isVector() &&
10897 (!LegalTypes ||
10898 (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() &&
10899 TLI.isTypeLegal(VT.getVectorElementType()))) &&
10900 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
10901 cast<BuildVectorSDNode>(N0)->isConstant())
10902 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(),
10903 VT.getVectorElementType());
10905 // If the input is a constant, let getNode fold it.
10906 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
10907 // If we can't allow illegal operations, we need to check that this is just
10908 // a fp -> int or int -> conversion and that the resulting operation will
10909 // be legal.
10910 if (!LegalOperations ||
10911 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() &&
10912 TLI.isOperationLegal(ISD::ConstantFP, VT)) ||
10913 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() &&
10914 TLI.isOperationLegal(ISD::Constant, VT))) {
10915 SDValue C = DAG.getBitcast(VT, N0);
10916 if (C.getNode() != N)
10917 return C;
10921 // (conv (conv x, t1), t2) -> (conv x, t2)
10922 if (N0.getOpcode() == ISD::BITCAST)
10923 return DAG.getBitcast(VT, N0.getOperand(0));
10925 // fold (conv (load x)) -> (load (conv*)x)
10926 // If the resultant load doesn't need a higher alignment than the original!
10927 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
10928 // Do not remove the cast if the types differ in endian layout.
10929 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) ==
10930 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) &&
10931 // If the load is volatile, we only want to change the load type if the
10932 // resulting load is legal. Otherwise we might increase the number of
10933 // memory accesses. We don't care if the original type was legal or not
10934 // as we assume software couldn't rely on the number of accesses of an
10935 // illegal type.
10936 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
10937 TLI.isOperationLegal(ISD::LOAD, VT))) {
10938 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10940 if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG,
10941 *LN0->getMemOperand())) {
10942 SDValue Load =
10943 DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
10944 LN0->getPointerInfo(), LN0->getAlignment(),
10945 LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
10946 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
10947 return Load;
10951 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI))
10952 return V;
10954 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
10955 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
10957 // For ppc_fp128:
10958 // fold (bitcast (fneg x)) ->
10959 // flipbit = signbit
10960 // (xor (bitcast x) (build_pair flipbit, flipbit))
10962 // fold (bitcast (fabs x)) ->
10963 // flipbit = (and (extract_element (bitcast x), 0), signbit)
10964 // (xor (bitcast x) (build_pair flipbit, flipbit))
10965 // This often reduces constant pool loads.
10966 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
10967 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
10968 N0.getNode()->hasOneUse() && VT.isInteger() &&
10969 !VT.isVector() && !N0.getValueType().isVector()) {
10970 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0));
10971 AddToWorklist(NewConv.getNode());
10973 SDLoc DL(N);
10974 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
10975 assert(VT.getSizeInBits() == 128);
10976 SDValue SignBit = DAG.getConstant(
10977 APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64);
10978 SDValue FlipBit;
10979 if (N0.getOpcode() == ISD::FNEG) {
10980 FlipBit = SignBit;
10981 AddToWorklist(FlipBit.getNode());
10982 } else {
10983 assert(N0.getOpcode() == ISD::FABS);
10984 SDValue Hi =
10985 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv,
10986 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
10987 SDLoc(NewConv)));
10988 AddToWorklist(Hi.getNode());
10989 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit);
10990 AddToWorklist(FlipBit.getNode());
10992 SDValue FlipBits =
10993 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
10994 AddToWorklist(FlipBits.getNode());
10995 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits);
10997 APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
10998 if (N0.getOpcode() == ISD::FNEG)
10999 return DAG.getNode(ISD::XOR, DL, VT,
11000 NewConv, DAG.getConstant(SignBit, DL, VT));
11001 assert(N0.getOpcode() == ISD::FABS);
11002 return DAG.getNode(ISD::AND, DL, VT,
11003 NewConv, DAG.getConstant(~SignBit, DL, VT));
11006 // fold (bitconvert (fcopysign cst, x)) ->
11007 // (or (and (bitconvert x), sign), (and cst, (not sign)))
11008 // Note that we don't handle (copysign x, cst) because this can always be
11009 // folded to an fneg or fabs.
11011 // For ppc_fp128:
11012 // fold (bitcast (fcopysign cst, x)) ->
11013 // flipbit = (and (extract_element
11014 // (xor (bitcast cst), (bitcast x)), 0),
11015 // signbit)
11016 // (xor (bitcast cst) (build_pair flipbit, flipbit))
11017 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
11018 isa<ConstantFPSDNode>(N0.getOperand(0)) &&
11019 VT.isInteger() && !VT.isVector()) {
11020 unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits();
11021 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
11022 if (isTypeLegal(IntXVT)) {
11023 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1));
11024 AddToWorklist(X.getNode());
11026 // If X has a different width than the result/lhs, sext it or truncate it.
11027 unsigned VTWidth = VT.getSizeInBits();
11028 if (OrigXWidth < VTWidth) {
11029 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
11030 AddToWorklist(X.getNode());
11031 } else if (OrigXWidth > VTWidth) {
11032 // To get the sign bit in the right place, we have to shift it right
11033 // before truncating.
11034 SDLoc DL(X);
11035 X = DAG.getNode(ISD::SRL, DL,
11036 X.getValueType(), X,
11037 DAG.getConstant(OrigXWidth-VTWidth, DL,
11038 X.getValueType()));
11039 AddToWorklist(X.getNode());
11040 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
11041 AddToWorklist(X.getNode());
11044 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
11045 APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2);
11046 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
11047 AddToWorklist(Cst.getNode());
11048 SDValue X = DAG.getBitcast(VT, N0.getOperand(1));
11049 AddToWorklist(X.getNode());
11050 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X);
11051 AddToWorklist(XorResult.getNode());
11052 SDValue XorResult64 = DAG.getNode(
11053 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult,
11054 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
11055 SDLoc(XorResult)));
11056 AddToWorklist(XorResult64.getNode());
11057 SDValue FlipBit =
11058 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64,
11059 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64));
11060 AddToWorklist(FlipBit.getNode());
11061 SDValue FlipBits =
11062 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
11063 AddToWorklist(FlipBits.getNode());
11064 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits);
11066 APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
11067 X = DAG.getNode(ISD::AND, SDLoc(X), VT,
11068 X, DAG.getConstant(SignBit, SDLoc(X), VT));
11069 AddToWorklist(X.getNode());
11071 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
11072 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
11073 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT));
11074 AddToWorklist(Cst.getNode());
11076 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
11080 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
11081 if (N0.getOpcode() == ISD::BUILD_PAIR)
11082 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT))
11083 return CombineLD;
11085 // Remove double bitcasts from shuffles - this is often a legacy of
11086 // XformToShuffleWithZero being used to combine bitmaskings (of
11087 // float vectors bitcast to integer vectors) into shuffles.
11088 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
11089 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() &&
11090 N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() &&
11091 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() &&
11092 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) {
11093 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0);
11095 // If operands are a bitcast, peek through if it casts the original VT.
11096 // If operands are a constant, just bitcast back to original VT.
11097 auto PeekThroughBitcast = [&](SDValue Op) {
11098 if (Op.getOpcode() == ISD::BITCAST &&
11099 Op.getOperand(0).getValueType() == VT)
11100 return SDValue(Op.getOperand(0));
11101 if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) ||
11102 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode()))
11103 return DAG.getBitcast(VT, Op);
11104 return SDValue();
11107 // FIXME: If either input vector is bitcast, try to convert the shuffle to
11108 // the result type of this bitcast. This would eliminate at least one
11109 // bitcast. See the transform in InstCombine.
11110 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0));
11111 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1));
11112 if (!(SV0 && SV1))
11113 return SDValue();
11115 int MaskScale =
11116 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements();
11117 SmallVector<int, 8> NewMask;
11118 for (int M : SVN->getMask())
11119 for (int i = 0; i != MaskScale; ++i)
11120 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i);
11122 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT);
11123 if (!LegalMask) {
11124 std::swap(SV0, SV1);
11125 ShuffleVectorSDNode::commuteMask(NewMask);
11126 LegalMask = TLI.isShuffleMaskLegal(NewMask, VT);
11129 if (LegalMask)
11130 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask);
11133 return SDValue();
11136 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
11137 EVT VT = N->getValueType(0);
11138 return CombineConsecutiveLoads(N, VT);
11141 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef
11142 /// operands. DstEltVT indicates the destination element value type.
11143 SDValue DAGCombiner::
11144 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
11145 EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
11147 // If this is already the right type, we're done.
11148 if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
11150 unsigned SrcBitSize = SrcEltVT.getSizeInBits();
11151 unsigned DstBitSize = DstEltVT.getSizeInBits();
11153 // If this is a conversion of N elements of one type to N elements of another
11154 // type, convert each element. This handles FP<->INT cases.
11155 if (SrcBitSize == DstBitSize) {
11156 SmallVector<SDValue, 8> Ops;
11157 for (SDValue Op : BV->op_values()) {
11158 // If the vector element type is not legal, the BUILD_VECTOR operands
11159 // are promoted and implicitly truncated. Make that explicit here.
11160 if (Op.getValueType() != SrcEltVT)
11161 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
11162 Ops.push_back(DAG.getBitcast(DstEltVT, Op));
11163 AddToWorklist(Ops.back().getNode());
11165 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
11166 BV->getValueType(0).getVectorNumElements());
11167 return DAG.getBuildVector(VT, SDLoc(BV), Ops);
11170 // Otherwise, we're growing or shrinking the elements. To avoid having to
11171 // handle annoying details of growing/shrinking FP values, we convert them to
11172 // int first.
11173 if (SrcEltVT.isFloatingPoint()) {
11174 // Convert the input float vector to a int vector where the elements are the
11175 // same sizes.
11176 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
11177 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
11178 SrcEltVT = IntVT;
11181 // Now we know the input is an integer vector. If the output is a FP type,
11182 // convert to integer first, then to FP of the right size.
11183 if (DstEltVT.isFloatingPoint()) {
11184 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
11185 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
11187 // Next, convert to FP elements of the same size.
11188 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
11191 SDLoc DL(BV);
11193 // Okay, we know the src/dst types are both integers of differing types.
11194 // Handling growing first.
11195 assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
11196 if (SrcBitSize < DstBitSize) {
11197 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
11199 SmallVector<SDValue, 8> Ops;
11200 for (unsigned i = 0, e = BV->getNumOperands(); i != e;
11201 i += NumInputsPerOutput) {
11202 bool isLE = DAG.getDataLayout().isLittleEndian();
11203 APInt NewBits = APInt(DstBitSize, 0);
11204 bool EltIsUndef = true;
11205 for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
11206 // Shift the previously computed bits over.
11207 NewBits <<= SrcBitSize;
11208 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
11209 if (Op.isUndef()) continue;
11210 EltIsUndef = false;
11212 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
11213 zextOrTrunc(SrcBitSize).zext(DstBitSize);
11216 if (EltIsUndef)
11217 Ops.push_back(DAG.getUNDEF(DstEltVT));
11218 else
11219 Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT));
11222 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
11223 return DAG.getBuildVector(VT, DL, Ops);
11226 // Finally, this must be the case where we are shrinking elements: each input
11227 // turns into multiple outputs.
11228 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
11229 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
11230 NumOutputsPerInput*BV->getNumOperands());
11231 SmallVector<SDValue, 8> Ops;
11233 for (const SDValue &Op : BV->op_values()) {
11234 if (Op.isUndef()) {
11235 Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT));
11236 continue;
11239 APInt OpVal = cast<ConstantSDNode>(Op)->
11240 getAPIntValue().zextOrTrunc(SrcBitSize);
11242 for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
11243 APInt ThisVal = OpVal.trunc(DstBitSize);
11244 Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT));
11245 OpVal.lshrInPlace(DstBitSize);
11248 // For big endian targets, swap the order of the pieces of each element.
11249 if (DAG.getDataLayout().isBigEndian())
11250 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
11253 return DAG.getBuildVector(VT, DL, Ops);
11256 static bool isContractable(SDNode *N) {
11257 SDNodeFlags F = N->getFlags();
11258 return F.hasAllowContract() || F.hasAllowReassociation();
11261 /// Try to perform FMA combining on a given FADD node.
11262 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
11263 SDValue N0 = N->getOperand(0);
11264 SDValue N1 = N->getOperand(1);
11265 EVT VT = N->getValueType(0);
11266 SDLoc SL(N);
11268 const TargetOptions &Options = DAG.getTarget().Options;
11270 // Floating-point multiply-add with intermediate rounding.
11271 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
11273 // Floating-point multiply-add without intermediate rounding.
11274 bool HasFMA =
11275 TLI.isFMAFasterThanFMulAndFAdd(VT) &&
11276 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
11278 // No valid opcode, do not combine.
11279 if (!HasFMAD && !HasFMA)
11280 return SDValue();
11282 SDNodeFlags Flags = N->getFlags();
11283 bool CanFuse = Options.UnsafeFPMath || isContractable(N);
11284 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
11285 CanFuse || HasFMAD);
11286 // If the addition is not contractable, do not combine.
11287 if (!AllowFusionGlobally && !isContractable(N))
11288 return SDValue();
11290 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo();
11291 if (STI && STI->generateFMAsInMachineCombiner(OptLevel))
11292 return SDValue();
11294 // Always prefer FMAD to FMA for precision.
11295 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
11296 bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
11298 // Is the node an FMUL and contractable either due to global flags or
11299 // SDNodeFlags.
11300 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
11301 if (N.getOpcode() != ISD::FMUL)
11302 return false;
11303 return AllowFusionGlobally || isContractable(N.getNode());
11305 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
11306 // prefer to fold the multiply with fewer uses.
11307 if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) {
11308 if (N0.getNode()->use_size() > N1.getNode()->use_size())
11309 std::swap(N0, N1);
11312 // fold (fadd (fmul x, y), z) -> (fma x, y, z)
11313 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
11314 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11315 N0.getOperand(0), N0.getOperand(1), N1, Flags);
11318 // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
11319 // Note: Commutes FADD operands.
11320 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
11321 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11322 N1.getOperand(0), N1.getOperand(1), N0, Flags);
11325 // Look through FP_EXTEND nodes to do more combining.
11327 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
11328 if (N0.getOpcode() == ISD::FP_EXTEND) {
11329 SDValue N00 = N0.getOperand(0);
11330 if (isContractableFMUL(N00) &&
11331 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
11332 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11333 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11334 N00.getOperand(0)),
11335 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11336 N00.getOperand(1)), N1, Flags);
11340 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
11341 // Note: Commutes FADD operands.
11342 if (N1.getOpcode() == ISD::FP_EXTEND) {
11343 SDValue N10 = N1.getOperand(0);
11344 if (isContractableFMUL(N10) &&
11345 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
11346 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11347 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11348 N10.getOperand(0)),
11349 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11350 N10.getOperand(1)), N0, Flags);
11354 // More folding opportunities when target permits.
11355 if (Aggressive) {
11356 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z))
11357 if (CanFuse &&
11358 N0.getOpcode() == PreferredFusedOpcode &&
11359 N0.getOperand(2).getOpcode() == ISD::FMUL &&
11360 N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) {
11361 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11362 N0.getOperand(0), N0.getOperand(1),
11363 DAG.getNode(PreferredFusedOpcode, SL, VT,
11364 N0.getOperand(2).getOperand(0),
11365 N0.getOperand(2).getOperand(1),
11366 N1, Flags), Flags);
11369 // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x))
11370 if (CanFuse &&
11371 N1->getOpcode() == PreferredFusedOpcode &&
11372 N1.getOperand(2).getOpcode() == ISD::FMUL &&
11373 N1->hasOneUse() && N1.getOperand(2)->hasOneUse()) {
11374 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11375 N1.getOperand(0), N1.getOperand(1),
11376 DAG.getNode(PreferredFusedOpcode, SL, VT,
11377 N1.getOperand(2).getOperand(0),
11378 N1.getOperand(2).getOperand(1),
11379 N0, Flags), Flags);
11383 // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
11384 // -> (fma x, y, (fma (fpext u), (fpext v), z))
11385 auto FoldFAddFMAFPExtFMul = [&] (
11386 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z,
11387 SDNodeFlags Flags) {
11388 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y,
11389 DAG.getNode(PreferredFusedOpcode, SL, VT,
11390 DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
11391 DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
11392 Z, Flags), Flags);
11394 if (N0.getOpcode() == PreferredFusedOpcode) {
11395 SDValue N02 = N0.getOperand(2);
11396 if (N02.getOpcode() == ISD::FP_EXTEND) {
11397 SDValue N020 = N02.getOperand(0);
11398 if (isContractableFMUL(N020) &&
11399 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) {
11400 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1),
11401 N020.getOperand(0), N020.getOperand(1),
11402 N1, Flags);
11407 // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
11408 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
11409 // FIXME: This turns two single-precision and one double-precision
11410 // operation into two double-precision operations, which might not be
11411 // interesting for all targets, especially GPUs.
11412 auto FoldFAddFPExtFMAFMul = [&] (
11413 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z,
11414 SDNodeFlags Flags) {
11415 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11416 DAG.getNode(ISD::FP_EXTEND, SL, VT, X),
11417 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y),
11418 DAG.getNode(PreferredFusedOpcode, SL, VT,
11419 DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
11420 DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
11421 Z, Flags), Flags);
11423 if (N0.getOpcode() == ISD::FP_EXTEND) {
11424 SDValue N00 = N0.getOperand(0);
11425 if (N00.getOpcode() == PreferredFusedOpcode) {
11426 SDValue N002 = N00.getOperand(2);
11427 if (isContractableFMUL(N002) &&
11428 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
11429 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1),
11430 N002.getOperand(0), N002.getOperand(1),
11431 N1, Flags);
11436 // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
11437 // -> (fma y, z, (fma (fpext u), (fpext v), x))
11438 if (N1.getOpcode() == PreferredFusedOpcode) {
11439 SDValue N12 = N1.getOperand(2);
11440 if (N12.getOpcode() == ISD::FP_EXTEND) {
11441 SDValue N120 = N12.getOperand(0);
11442 if (isContractableFMUL(N120) &&
11443 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) {
11444 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1),
11445 N120.getOperand(0), N120.getOperand(1),
11446 N0, Flags);
11451 // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
11452 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
11453 // FIXME: This turns two single-precision and one double-precision
11454 // operation into two double-precision operations, which might not be
11455 // interesting for all targets, especially GPUs.
11456 if (N1.getOpcode() == ISD::FP_EXTEND) {
11457 SDValue N10 = N1.getOperand(0);
11458 if (N10.getOpcode() == PreferredFusedOpcode) {
11459 SDValue N102 = N10.getOperand(2);
11460 if (isContractableFMUL(N102) &&
11461 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
11462 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1),
11463 N102.getOperand(0), N102.getOperand(1),
11464 N0, Flags);
11470 return SDValue();
11473 /// Try to perform FMA combining on a given FSUB node.
11474 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
11475 SDValue N0 = N->getOperand(0);
11476 SDValue N1 = N->getOperand(1);
11477 EVT VT = N->getValueType(0);
11478 SDLoc SL(N);
11480 const TargetOptions &Options = DAG.getTarget().Options;
11481 // Floating-point multiply-add with intermediate rounding.
11482 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
11484 // Floating-point multiply-add without intermediate rounding.
11485 bool HasFMA =
11486 TLI.isFMAFasterThanFMulAndFAdd(VT) &&
11487 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
11489 // No valid opcode, do not combine.
11490 if (!HasFMAD && !HasFMA)
11491 return SDValue();
11493 const SDNodeFlags Flags = N->getFlags();
11494 bool CanFuse = Options.UnsafeFPMath || isContractable(N);
11495 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
11496 CanFuse || HasFMAD);
11498 // If the subtraction is not contractable, do not combine.
11499 if (!AllowFusionGlobally && !isContractable(N))
11500 return SDValue();
11502 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo();
11503 if (STI && STI->generateFMAsInMachineCombiner(OptLevel))
11504 return SDValue();
11506 // Always prefer FMAD to FMA for precision.
11507 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
11508 bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
11510 // Is the node an FMUL and contractable either due to global flags or
11511 // SDNodeFlags.
11512 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
11513 if (N.getOpcode() != ISD::FMUL)
11514 return false;
11515 return AllowFusionGlobally || isContractable(N.getNode());
11518 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
11519 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
11520 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11521 N0.getOperand(0), N0.getOperand(1),
11522 DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
11525 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
11526 // Note: Commutes FSUB operands.
11527 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
11528 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11529 DAG.getNode(ISD::FNEG, SL, VT,
11530 N1.getOperand(0)),
11531 N1.getOperand(1), N0, Flags);
11534 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
11535 if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) &&
11536 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) {
11537 SDValue N00 = N0.getOperand(0).getOperand(0);
11538 SDValue N01 = N0.getOperand(0).getOperand(1);
11539 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11540 DAG.getNode(ISD::FNEG, SL, VT, N00), N01,
11541 DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
11544 // Look through FP_EXTEND nodes to do more combining.
11546 // fold (fsub (fpext (fmul x, y)), z)
11547 // -> (fma (fpext x), (fpext y), (fneg z))
11548 if (N0.getOpcode() == ISD::FP_EXTEND) {
11549 SDValue N00 = N0.getOperand(0);
11550 if (isContractableFMUL(N00) &&
11551 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
11552 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11553 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11554 N00.getOperand(0)),
11555 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11556 N00.getOperand(1)),
11557 DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
11561 // fold (fsub x, (fpext (fmul y, z)))
11562 // -> (fma (fneg (fpext y)), (fpext z), x)
11563 // Note: Commutes FSUB operands.
11564 if (N1.getOpcode() == ISD::FP_EXTEND) {
11565 SDValue N10 = N1.getOperand(0);
11566 if (isContractableFMUL(N10) &&
11567 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
11568 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11569 DAG.getNode(ISD::FNEG, SL, VT,
11570 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11571 N10.getOperand(0))),
11572 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11573 N10.getOperand(1)),
11574 N0, Flags);
11578 // fold (fsub (fpext (fneg (fmul, x, y))), z)
11579 // -> (fneg (fma (fpext x), (fpext y), z))
11580 // Note: This could be removed with appropriate canonicalization of the
11581 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
11582 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
11583 // from implementing the canonicalization in visitFSUB.
11584 if (N0.getOpcode() == ISD::FP_EXTEND) {
11585 SDValue N00 = N0.getOperand(0);
11586 if (N00.getOpcode() == ISD::FNEG) {
11587 SDValue N000 = N00.getOperand(0);
11588 if (isContractableFMUL(N000) &&
11589 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
11590 return DAG.getNode(ISD::FNEG, SL, VT,
11591 DAG.getNode(PreferredFusedOpcode, SL, VT,
11592 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11593 N000.getOperand(0)),
11594 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11595 N000.getOperand(1)),
11596 N1, Flags));
11601 // fold (fsub (fneg (fpext (fmul, x, y))), z)
11602 // -> (fneg (fma (fpext x)), (fpext y), z)
11603 // Note: This could be removed with appropriate canonicalization of the
11604 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
11605 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
11606 // from implementing the canonicalization in visitFSUB.
11607 if (N0.getOpcode() == ISD::FNEG) {
11608 SDValue N00 = N0.getOperand(0);
11609 if (N00.getOpcode() == ISD::FP_EXTEND) {
11610 SDValue N000 = N00.getOperand(0);
11611 if (isContractableFMUL(N000) &&
11612 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N000.getValueType())) {
11613 return DAG.getNode(ISD::FNEG, SL, VT,
11614 DAG.getNode(PreferredFusedOpcode, SL, VT,
11615 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11616 N000.getOperand(0)),
11617 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11618 N000.getOperand(1)),
11619 N1, Flags));
11624 // More folding opportunities when target permits.
11625 if (Aggressive) {
11626 // fold (fsub (fma x, y, (fmul u, v)), z)
11627 // -> (fma x, y (fma u, v, (fneg z)))
11628 if (CanFuse && N0.getOpcode() == PreferredFusedOpcode &&
11629 isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() &&
11630 N0.getOperand(2)->hasOneUse()) {
11631 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11632 N0.getOperand(0), N0.getOperand(1),
11633 DAG.getNode(PreferredFusedOpcode, SL, VT,
11634 N0.getOperand(2).getOperand(0),
11635 N0.getOperand(2).getOperand(1),
11636 DAG.getNode(ISD::FNEG, SL, VT,
11637 N1), Flags), Flags);
11640 // fold (fsub x, (fma y, z, (fmul u, v)))
11641 // -> (fma (fneg y), z, (fma (fneg u), v, x))
11642 if (CanFuse && N1.getOpcode() == PreferredFusedOpcode &&
11643 isContractableFMUL(N1.getOperand(2))) {
11644 SDValue N20 = N1.getOperand(2).getOperand(0);
11645 SDValue N21 = N1.getOperand(2).getOperand(1);
11646 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11647 DAG.getNode(ISD::FNEG, SL, VT,
11648 N1.getOperand(0)),
11649 N1.getOperand(1),
11650 DAG.getNode(PreferredFusedOpcode, SL, VT,
11651 DAG.getNode(ISD::FNEG, SL, VT, N20),
11652 N21, N0, Flags), Flags);
11656 // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
11657 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
11658 if (N0.getOpcode() == PreferredFusedOpcode) {
11659 SDValue N02 = N0.getOperand(2);
11660 if (N02.getOpcode() == ISD::FP_EXTEND) {
11661 SDValue N020 = N02.getOperand(0);
11662 if (isContractableFMUL(N020) &&
11663 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) {
11664 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11665 N0.getOperand(0), N0.getOperand(1),
11666 DAG.getNode(PreferredFusedOpcode, SL, VT,
11667 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11668 N020.getOperand(0)),
11669 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11670 N020.getOperand(1)),
11671 DAG.getNode(ISD::FNEG, SL, VT,
11672 N1), Flags), Flags);
11677 // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
11678 // -> (fma (fpext x), (fpext y),
11679 // (fma (fpext u), (fpext v), (fneg z)))
11680 // FIXME: This turns two single-precision and one double-precision
11681 // operation into two double-precision operations, which might not be
11682 // interesting for all targets, especially GPUs.
11683 if (N0.getOpcode() == ISD::FP_EXTEND) {
11684 SDValue N00 = N0.getOperand(0);
11685 if (N00.getOpcode() == PreferredFusedOpcode) {
11686 SDValue N002 = N00.getOperand(2);
11687 if (isContractableFMUL(N002) &&
11688 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
11689 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11690 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11691 N00.getOperand(0)),
11692 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11693 N00.getOperand(1)),
11694 DAG.getNode(PreferredFusedOpcode, SL, VT,
11695 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11696 N002.getOperand(0)),
11697 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11698 N002.getOperand(1)),
11699 DAG.getNode(ISD::FNEG, SL, VT,
11700 N1), Flags), Flags);
11705 // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
11706 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
11707 if (N1.getOpcode() == PreferredFusedOpcode &&
11708 N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) {
11709 SDValue N120 = N1.getOperand(2).getOperand(0);
11710 if (isContractableFMUL(N120) &&
11711 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) {
11712 SDValue N1200 = N120.getOperand(0);
11713 SDValue N1201 = N120.getOperand(1);
11714 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11715 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)),
11716 N1.getOperand(1),
11717 DAG.getNode(PreferredFusedOpcode, SL, VT,
11718 DAG.getNode(ISD::FNEG, SL, VT,
11719 DAG.getNode(ISD::FP_EXTEND, SL,
11720 VT, N1200)),
11721 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11722 N1201),
11723 N0, Flags), Flags);
11727 // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
11728 // -> (fma (fneg (fpext y)), (fpext z),
11729 // (fma (fneg (fpext u)), (fpext v), x))
11730 // FIXME: This turns two single-precision and one double-precision
11731 // operation into two double-precision operations, which might not be
11732 // interesting for all targets, especially GPUs.
11733 if (N1.getOpcode() == ISD::FP_EXTEND &&
11734 N1.getOperand(0).getOpcode() == PreferredFusedOpcode) {
11735 SDValue CvtSrc = N1.getOperand(0);
11736 SDValue N100 = CvtSrc.getOperand(0);
11737 SDValue N101 = CvtSrc.getOperand(1);
11738 SDValue N102 = CvtSrc.getOperand(2);
11739 if (isContractableFMUL(N102) &&
11740 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, CvtSrc.getValueType())) {
11741 SDValue N1020 = N102.getOperand(0);
11742 SDValue N1021 = N102.getOperand(1);
11743 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11744 DAG.getNode(ISD::FNEG, SL, VT,
11745 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11746 N100)),
11747 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101),
11748 DAG.getNode(PreferredFusedOpcode, SL, VT,
11749 DAG.getNode(ISD::FNEG, SL, VT,
11750 DAG.getNode(ISD::FP_EXTEND, SL,
11751 VT, N1020)),
11752 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11753 N1021),
11754 N0, Flags), Flags);
11759 return SDValue();
11762 /// Try to perform FMA combining on a given FMUL node based on the distributive
11763 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
11764 /// subtraction instead of addition).
11765 SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) {
11766 SDValue N0 = N->getOperand(0);
11767 SDValue N1 = N->getOperand(1);
11768 EVT VT = N->getValueType(0);
11769 SDLoc SL(N);
11770 const SDNodeFlags Flags = N->getFlags();
11772 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation");
11774 const TargetOptions &Options = DAG.getTarget().Options;
11776 // The transforms below are incorrect when x == 0 and y == inf, because the
11777 // intermediate multiplication produces a nan.
11778 if (!Options.NoInfsFPMath)
11779 return SDValue();
11781 // Floating-point multiply-add without intermediate rounding.
11782 bool HasFMA =
11783 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) &&
11784 TLI.isFMAFasterThanFMulAndFAdd(VT) &&
11785 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
11787 // Floating-point multiply-add with intermediate rounding. This can result
11788 // in a less precise result due to the changed rounding order.
11789 bool HasFMAD = Options.UnsafeFPMath &&
11790 (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
11792 // No valid opcode, do not combine.
11793 if (!HasFMAD && !HasFMA)
11794 return SDValue();
11796 // Always prefer FMAD to FMA for precision.
11797 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
11798 bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
11800 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
11801 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
11802 auto FuseFADD = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) {
11803 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) {
11804 if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) {
11805 if (C->isExactlyValue(+1.0))
11806 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
11807 Y, Flags);
11808 if (C->isExactlyValue(-1.0))
11809 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
11810 DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
11813 return SDValue();
11816 if (SDValue FMA = FuseFADD(N0, N1, Flags))
11817 return FMA;
11818 if (SDValue FMA = FuseFADD(N1, N0, Flags))
11819 return FMA;
11821 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
11822 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
11823 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
11824 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
11825 auto FuseFSUB = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) {
11826 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) {
11827 if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) {
11828 if (C0->isExactlyValue(+1.0))
11829 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11830 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
11831 Y, Flags);
11832 if (C0->isExactlyValue(-1.0))
11833 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11834 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
11835 DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
11837 if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) {
11838 if (C1->isExactlyValue(+1.0))
11839 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
11840 DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
11841 if (C1->isExactlyValue(-1.0))
11842 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
11843 Y, Flags);
11846 return SDValue();
11849 if (SDValue FMA = FuseFSUB(N0, N1, Flags))
11850 return FMA;
11851 if (SDValue FMA = FuseFSUB(N1, N0, Flags))
11852 return FMA;
11854 return SDValue();
11857 SDValue DAGCombiner::visitFADD(SDNode *N) {
11858 SDValue N0 = N->getOperand(0);
11859 SDValue N1 = N->getOperand(1);
11860 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0);
11861 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
11862 EVT VT = N->getValueType(0);
11863 SDLoc DL(N);
11864 const TargetOptions &Options = DAG.getTarget().Options;
11865 const SDNodeFlags Flags = N->getFlags();
11867 // fold vector ops
11868 if (VT.isVector())
11869 if (SDValue FoldedVOp = SimplifyVBinOp(N))
11870 return FoldedVOp;
11872 // fold (fadd c1, c2) -> c1 + c2
11873 if (N0CFP && N1CFP)
11874 return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags);
11876 // canonicalize constant to RHS
11877 if (N0CFP && !N1CFP)
11878 return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags);
11880 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
11881 ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true);
11882 if (N1C && N1C->isZero())
11883 if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())
11884 return N0;
11886 if (SDValue NewSel = foldBinOpIntoSelect(N))
11887 return NewSel;
11889 // fold (fadd A, (fneg B)) -> (fsub A, B)
11890 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
11891 isNegatibleForFree(N1, LegalOperations, TLI, &Options, ForCodeSize) == 2)
11892 return DAG.getNode(ISD::FSUB, DL, VT, N0,
11893 GetNegatedExpression(N1, DAG, LegalOperations,
11894 ForCodeSize), Flags);
11896 // fold (fadd (fneg A), B) -> (fsub B, A)
11897 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
11898 isNegatibleForFree(N0, LegalOperations, TLI, &Options, ForCodeSize) == 2)
11899 return DAG.getNode(ISD::FSUB, DL, VT, N1,
11900 GetNegatedExpression(N0, DAG, LegalOperations,
11901 ForCodeSize), Flags);
11903 auto isFMulNegTwo = [](SDValue FMul) {
11904 if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL)
11905 return false;
11906 auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true);
11907 return C && C->isExactlyValue(-2.0);
11910 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
11911 if (isFMulNegTwo(N0)) {
11912 SDValue B = N0.getOperand(0);
11913 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags);
11914 return DAG.getNode(ISD::FSUB, DL, VT, N1, Add, Flags);
11916 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
11917 if (isFMulNegTwo(N1)) {
11918 SDValue B = N1.getOperand(0);
11919 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags);
11920 return DAG.getNode(ISD::FSUB, DL, VT, N0, Add, Flags);
11923 // No FP constant should be created after legalization as Instruction
11924 // Selection pass has a hard time dealing with FP constants.
11925 bool AllowNewConst = (Level < AfterLegalizeDAG);
11927 // If nnan is enabled, fold lots of things.
11928 if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) {
11929 // If allowed, fold (fadd (fneg x), x) -> 0.0
11930 if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
11931 return DAG.getConstantFP(0.0, DL, VT);
11933 // If allowed, fold (fadd x, (fneg x)) -> 0.0
11934 if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
11935 return DAG.getConstantFP(0.0, DL, VT);
11938 // If 'unsafe math' or reassoc and nsz, fold lots of things.
11939 // TODO: break out portions of the transformations below for which Unsafe is
11940 // considered and which do not require both nsz and reassoc
11941 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) ||
11942 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
11943 AllowNewConst) {
11944 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2
11945 if (N1CFP && N0.getOpcode() == ISD::FADD &&
11946 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
11947 SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, Flags);
11948 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC, Flags);
11951 // We can fold chains of FADD's of the same value into multiplications.
11952 // This transform is not safe in general because we are reducing the number
11953 // of rounding steps.
11954 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
11955 if (N0.getOpcode() == ISD::FMUL) {
11956 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
11957 bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1));
11959 // (fadd (fmul x, c), x) -> (fmul x, c+1)
11960 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
11961 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
11962 DAG.getConstantFP(1.0, DL, VT), Flags);
11963 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags);
11966 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
11967 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
11968 N1.getOperand(0) == N1.getOperand(1) &&
11969 N0.getOperand(0) == N1.getOperand(0)) {
11970 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
11971 DAG.getConstantFP(2.0, DL, VT), Flags);
11972 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags);
11976 if (N1.getOpcode() == ISD::FMUL) {
11977 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
11978 bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1));
11980 // (fadd x, (fmul x, c)) -> (fmul x, c+1)
11981 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
11982 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
11983 DAG.getConstantFP(1.0, DL, VT), Flags);
11984 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags);
11987 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
11988 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
11989 N0.getOperand(0) == N0.getOperand(1) &&
11990 N1.getOperand(0) == N0.getOperand(0)) {
11991 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
11992 DAG.getConstantFP(2.0, DL, VT), Flags);
11993 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags);
11997 if (N0.getOpcode() == ISD::FADD) {
11998 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
11999 // (fadd (fadd x, x), x) -> (fmul x, 3.0)
12000 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) &&
12001 (N0.getOperand(0) == N1)) {
12002 return DAG.getNode(ISD::FMUL, DL, VT,
12003 N1, DAG.getConstantFP(3.0, DL, VT), Flags);
12007 if (N1.getOpcode() == ISD::FADD) {
12008 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
12009 // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
12010 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
12011 N1.getOperand(0) == N0) {
12012 return DAG.getNode(ISD::FMUL, DL, VT,
12013 N0, DAG.getConstantFP(3.0, DL, VT), Flags);
12017 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
12018 if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
12019 N0.getOperand(0) == N0.getOperand(1) &&
12020 N1.getOperand(0) == N1.getOperand(1) &&
12021 N0.getOperand(0) == N1.getOperand(0)) {
12022 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0),
12023 DAG.getConstantFP(4.0, DL, VT), Flags);
12026 } // enable-unsafe-fp-math
12028 // FADD -> FMA combines:
12029 if (SDValue Fused = visitFADDForFMACombine(N)) {
12030 AddToWorklist(Fused.getNode());
12031 return Fused;
12033 return SDValue();
12036 SDValue DAGCombiner::visitFSUB(SDNode *N) {
12037 SDValue N0 = N->getOperand(0);
12038 SDValue N1 = N->getOperand(1);
12039 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
12040 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
12041 EVT VT = N->getValueType(0);
12042 SDLoc DL(N);
12043 const TargetOptions &Options = DAG.getTarget().Options;
12044 const SDNodeFlags Flags = N->getFlags();
12046 // fold vector ops
12047 if (VT.isVector())
12048 if (SDValue FoldedVOp = SimplifyVBinOp(N))
12049 return FoldedVOp;
12051 // fold (fsub c1, c2) -> c1-c2
12052 if (N0CFP && N1CFP)
12053 return DAG.getNode(ISD::FSUB, DL, VT, N0, N1, Flags);
12055 if (SDValue NewSel = foldBinOpIntoSelect(N))
12056 return NewSel;
12058 // (fsub A, 0) -> A
12059 if (N1CFP && N1CFP->isZero()) {
12060 if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath ||
12061 Flags.hasNoSignedZeros()) {
12062 return N0;
12066 if (N0 == N1) {
12067 // (fsub x, x) -> 0.0
12068 if (Options.NoNaNsFPMath || Flags.hasNoNaNs())
12069 return DAG.getConstantFP(0.0f, DL, VT);
12072 // (fsub -0.0, N1) -> -N1
12073 // NOTE: It is safe to transform an FSUB(-0.0,X) into an FNEG(X), since the
12074 // FSUB does not specify the sign bit of a NaN. Also note that for
12075 // the same reason, the inverse transform is not safe, unless fast math
12076 // flags are in play.
12077 if (N0CFP && N0CFP->isZero()) {
12078 if (N0CFP->isNegative() ||
12079 (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) {
12080 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options, ForCodeSize))
12081 return GetNegatedExpression(N1, DAG, LegalOperations, ForCodeSize);
12082 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
12083 return DAG.getNode(ISD::FNEG, DL, VT, N1, Flags);
12087 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) ||
12088 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros()))
12089 && N1.getOpcode() == ISD::FADD) {
12090 // X - (X + Y) -> -Y
12091 if (N0 == N1->getOperand(0))
12092 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1), Flags);
12093 // X - (Y + X) -> -Y
12094 if (N0 == N1->getOperand(1))
12095 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0), Flags);
12098 // fold (fsub A, (fneg B)) -> (fadd A, B)
12099 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options, ForCodeSize))
12100 return DAG.getNode(ISD::FADD, DL, VT, N0,
12101 GetNegatedExpression(N1, DAG, LegalOperations,
12102 ForCodeSize), Flags);
12104 // FSUB -> FMA combines:
12105 if (SDValue Fused = visitFSUBForFMACombine(N)) {
12106 AddToWorklist(Fused.getNode());
12107 return Fused;
12110 return SDValue();
12113 SDValue DAGCombiner::visitFMUL(SDNode *N) {
12114 SDValue N0 = N->getOperand(0);
12115 SDValue N1 = N->getOperand(1);
12116 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
12117 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
12118 EVT VT = N->getValueType(0);
12119 SDLoc DL(N);
12120 const TargetOptions &Options = DAG.getTarget().Options;
12121 const SDNodeFlags Flags = N->getFlags();
12123 // fold vector ops
12124 if (VT.isVector()) {
12125 // This just handles C1 * C2 for vectors. Other vector folds are below.
12126 if (SDValue FoldedVOp = SimplifyVBinOp(N))
12127 return FoldedVOp;
12130 // fold (fmul c1, c2) -> c1*c2
12131 if (N0CFP && N1CFP)
12132 return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags);
12134 // canonicalize constant to RHS
12135 if (isConstantFPBuildVectorOrConstantFP(N0) &&
12136 !isConstantFPBuildVectorOrConstantFP(N1))
12137 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags);
12139 if (SDValue NewSel = foldBinOpIntoSelect(N))
12140 return NewSel;
12142 if ((Options.NoNaNsFPMath && Options.NoSignedZerosFPMath) ||
12143 (Flags.hasNoNaNs() && Flags.hasNoSignedZeros())) {
12144 // fold (fmul A, 0) -> 0
12145 if (N1CFP && N1CFP->isZero())
12146 return N1;
12149 if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) {
12150 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2
12151 if (isConstantFPBuildVectorOrConstantFP(N1) &&
12152 N0.getOpcode() == ISD::FMUL) {
12153 SDValue N00 = N0.getOperand(0);
12154 SDValue N01 = N0.getOperand(1);
12155 // Avoid an infinite loop by making sure that N00 is not a constant
12156 // (the inner multiply has not been constant folded yet).
12157 if (isConstantFPBuildVectorOrConstantFP(N01) &&
12158 !isConstantFPBuildVectorOrConstantFP(N00)) {
12159 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags);
12160 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags);
12164 // Match a special-case: we convert X * 2.0 into fadd.
12165 // fmul (fadd X, X), C -> fmul X, 2.0 * C
12166 if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() &&
12167 N0.getOperand(0) == N0.getOperand(1)) {
12168 const SDValue Two = DAG.getConstantFP(2.0, DL, VT);
12169 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags);
12170 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags);
12174 // fold (fmul X, 2.0) -> (fadd X, X)
12175 if (N1CFP && N1CFP->isExactlyValue(+2.0))
12176 return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags);
12178 // fold (fmul X, -1.0) -> (fneg X)
12179 if (N1CFP && N1CFP->isExactlyValue(-1.0))
12180 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
12181 return DAG.getNode(ISD::FNEG, DL, VT, N0);
12183 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
12184 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options,
12185 ForCodeSize)) {
12186 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options,
12187 ForCodeSize)) {
12188 // Both can be negated for free, check to see if at least one is cheaper
12189 // negated.
12190 if (LHSNeg == 2 || RHSNeg == 2)
12191 return DAG.getNode(ISD::FMUL, DL, VT,
12192 GetNegatedExpression(N0, DAG, LegalOperations,
12193 ForCodeSize),
12194 GetNegatedExpression(N1, DAG, LegalOperations,
12195 ForCodeSize),
12196 Flags);
12200 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
12201 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
12202 if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() &&
12203 (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) &&
12204 TLI.isOperationLegal(ISD::FABS, VT)) {
12205 SDValue Select = N0, X = N1;
12206 if (Select.getOpcode() != ISD::SELECT)
12207 std::swap(Select, X);
12209 SDValue Cond = Select.getOperand(0);
12210 auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1));
12211 auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2));
12213 if (TrueOpnd && FalseOpnd &&
12214 Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X &&
12215 isa<ConstantFPSDNode>(Cond.getOperand(1)) &&
12216 cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) {
12217 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12218 switch (CC) {
12219 default: break;
12220 case ISD::SETOLT:
12221 case ISD::SETULT:
12222 case ISD::SETOLE:
12223 case ISD::SETULE:
12224 case ISD::SETLT:
12225 case ISD::SETLE:
12226 std::swap(TrueOpnd, FalseOpnd);
12227 LLVM_FALLTHROUGH;
12228 case ISD::SETOGT:
12229 case ISD::SETUGT:
12230 case ISD::SETOGE:
12231 case ISD::SETUGE:
12232 case ISD::SETGT:
12233 case ISD::SETGE:
12234 if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) &&
12235 TLI.isOperationLegal(ISD::FNEG, VT))
12236 return DAG.getNode(ISD::FNEG, DL, VT,
12237 DAG.getNode(ISD::FABS, DL, VT, X));
12238 if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0))
12239 return DAG.getNode(ISD::FABS, DL, VT, X);
12241 break;
12246 // FMUL -> FMA combines:
12247 if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) {
12248 AddToWorklist(Fused.getNode());
12249 return Fused;
12252 return SDValue();
12255 SDValue DAGCombiner::visitFMA(SDNode *N) {
12256 SDValue N0 = N->getOperand(0);
12257 SDValue N1 = N->getOperand(1);
12258 SDValue N2 = N->getOperand(2);
12259 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
12260 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
12261 EVT VT = N->getValueType(0);
12262 SDLoc DL(N);
12263 const TargetOptions &Options = DAG.getTarget().Options;
12265 // FMA nodes have flags that propagate to the created nodes.
12266 const SDNodeFlags Flags = N->getFlags();
12267 bool UnsafeFPMath = Options.UnsafeFPMath || isContractable(N);
12269 // Constant fold FMA.
12270 if (isa<ConstantFPSDNode>(N0) &&
12271 isa<ConstantFPSDNode>(N1) &&
12272 isa<ConstantFPSDNode>(N2)) {
12273 return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2);
12276 if (UnsafeFPMath) {
12277 if (N0CFP && N0CFP->isZero())
12278 return N2;
12279 if (N1CFP && N1CFP->isZero())
12280 return N2;
12282 // TODO: The FMA node should have flags that propagate to these nodes.
12283 if (N0CFP && N0CFP->isExactlyValue(1.0))
12284 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
12285 if (N1CFP && N1CFP->isExactlyValue(1.0))
12286 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
12288 // Canonicalize (fma c, x, y) -> (fma x, c, y)
12289 if (isConstantFPBuildVectorOrConstantFP(N0) &&
12290 !isConstantFPBuildVectorOrConstantFP(N1))
12291 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
12293 if (UnsafeFPMath) {
12294 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
12295 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) &&
12296 isConstantFPBuildVectorOrConstantFP(N1) &&
12297 isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) {
12298 return DAG.getNode(ISD::FMUL, DL, VT, N0,
12299 DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1),
12300 Flags), Flags);
12303 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
12304 if (N0.getOpcode() == ISD::FMUL &&
12305 isConstantFPBuildVectorOrConstantFP(N1) &&
12306 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
12307 return DAG.getNode(ISD::FMA, DL, VT,
12308 N0.getOperand(0),
12309 DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1),
12310 Flags),
12311 N2);
12315 // (fma x, 1, y) -> (fadd x, y)
12316 // (fma x, -1, y) -> (fadd (fneg x), y)
12317 if (N1CFP) {
12318 if (N1CFP->isExactlyValue(1.0))
12319 // TODO: The FMA node should have flags that propagate to this node.
12320 return DAG.getNode(ISD::FADD, DL, VT, N0, N2);
12322 if (N1CFP->isExactlyValue(-1.0) &&
12323 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
12324 SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0);
12325 AddToWorklist(RHSNeg.getNode());
12326 // TODO: The FMA node should have flags that propagate to this node.
12327 return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg);
12330 // fma (fneg x), K, y -> fma x -K, y
12331 if (N0.getOpcode() == ISD::FNEG &&
12332 (TLI.isOperationLegal(ISD::ConstantFP, VT) ||
12333 (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT,
12334 ForCodeSize)))) {
12335 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0),
12336 DAG.getNode(ISD::FNEG, DL, VT, N1, Flags), N2);
12340 if (UnsafeFPMath) {
12341 // (fma x, c, x) -> (fmul x, (c+1))
12342 if (N1CFP && N0 == N2) {
12343 return DAG.getNode(ISD::FMUL, DL, VT, N0,
12344 DAG.getNode(ISD::FADD, DL, VT, N1,
12345 DAG.getConstantFP(1.0, DL, VT), Flags),
12346 Flags);
12349 // (fma x, c, (fneg x)) -> (fmul x, (c-1))
12350 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
12351 return DAG.getNode(ISD::FMUL, DL, VT, N0,
12352 DAG.getNode(ISD::FADD, DL, VT, N1,
12353 DAG.getConstantFP(-1.0, DL, VT), Flags),
12354 Flags);
12358 return SDValue();
12361 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12362 // reciprocal.
12363 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
12364 // Notice that this is not always beneficial. One reason is different targets
12365 // may have different costs for FDIV and FMUL, so sometimes the cost of two
12366 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
12367 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
12368 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) {
12369 // TODO: Limit this transform based on optsize/minsize - it always creates at
12370 // least 1 extra instruction. But the perf win may be substantial enough
12371 // that only minsize should restrict this.
12372 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath;
12373 const SDNodeFlags Flags = N->getFlags();
12374 if (!UnsafeMath && !Flags.hasAllowReciprocal())
12375 return SDValue();
12377 // Skip if current node is a reciprocal/fneg-reciprocal.
12378 SDValue N0 = N->getOperand(0);
12379 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true);
12380 if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0)))
12381 return SDValue();
12383 // Exit early if the target does not want this transform or if there can't
12384 // possibly be enough uses of the divisor to make the transform worthwhile.
12385 SDValue N1 = N->getOperand(1);
12386 unsigned MinUses = TLI.combineRepeatedFPDivisors();
12388 // For splat vectors, scale the number of uses by the splat factor. If we can
12389 // convert the division into a scalar op, that will likely be much faster.
12390 unsigned NumElts = 1;
12391 EVT VT = N->getValueType(0);
12392 if (VT.isVector() && DAG.isSplatValue(N1))
12393 NumElts = VT.getVectorNumElements();
12395 if (!MinUses || (N1->use_size() * NumElts) < MinUses)
12396 return SDValue();
12398 // Find all FDIV users of the same divisor.
12399 // Use a set because duplicates may be present in the user list.
12400 SetVector<SDNode *> Users;
12401 for (auto *U : N1->uses()) {
12402 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) {
12403 // This division is eligible for optimization only if global unsafe math
12404 // is enabled or if this division allows reciprocal formation.
12405 if (UnsafeMath || U->getFlags().hasAllowReciprocal())
12406 Users.insert(U);
12410 // Now that we have the actual number of divisor uses, make sure it meets
12411 // the minimum threshold specified by the target.
12412 if ((Users.size() * NumElts) < MinUses)
12413 return SDValue();
12415 SDLoc DL(N);
12416 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
12417 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags);
12419 // Dividend / Divisor -> Dividend * Reciprocal
12420 for (auto *U : Users) {
12421 SDValue Dividend = U->getOperand(0);
12422 if (Dividend != FPOne) {
12423 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend,
12424 Reciprocal, Flags);
12425 CombineTo(U, NewNode);
12426 } else if (U != Reciprocal.getNode()) {
12427 // In the absence of fast-math-flags, this user node is always the
12428 // same node as Reciprocal, but with FMF they may be different nodes.
12429 CombineTo(U, Reciprocal);
12432 return SDValue(N, 0); // N was replaced.
12435 SDValue DAGCombiner::visitFDIV(SDNode *N) {
12436 SDValue N0 = N->getOperand(0);
12437 SDValue N1 = N->getOperand(1);
12438 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
12439 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
12440 EVT VT = N->getValueType(0);
12441 SDLoc DL(N);
12442 const TargetOptions &Options = DAG.getTarget().Options;
12443 SDNodeFlags Flags = N->getFlags();
12445 // fold vector ops
12446 if (VT.isVector())
12447 if (SDValue FoldedVOp = SimplifyVBinOp(N))
12448 return FoldedVOp;
12450 // fold (fdiv c1, c2) -> c1/c2
12451 if (N0CFP && N1CFP)
12452 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags);
12454 if (SDValue NewSel = foldBinOpIntoSelect(N))
12455 return NewSel;
12457 if (SDValue V = combineRepeatedFPDivisors(N))
12458 return V;
12460 if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) {
12461 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
12462 if (N1CFP) {
12463 // Compute the reciprocal 1.0 / c2.
12464 const APFloat &N1APF = N1CFP->getValueAPF();
12465 APFloat Recip(N1APF.getSemantics(), 1); // 1.0
12466 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
12467 // Only do the transform if the reciprocal is a legal fp immediate that
12468 // isn't too nasty (eg NaN, denormal, ...).
12469 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
12470 (!LegalOperations ||
12471 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
12472 // backend)... we should handle this gracefully after Legalize.
12473 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
12474 TLI.isOperationLegal(ISD::ConstantFP, VT) ||
12475 TLI.isFPImmLegal(Recip, VT, ForCodeSize)))
12476 return DAG.getNode(ISD::FMUL, DL, VT, N0,
12477 DAG.getConstantFP(Recip, DL, VT), Flags);
12480 // If this FDIV is part of a reciprocal square root, it may be folded
12481 // into a target-specific square root estimate instruction.
12482 if (N1.getOpcode() == ISD::FSQRT) {
12483 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags))
12484 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
12485 } else if (N1.getOpcode() == ISD::FP_EXTEND &&
12486 N1.getOperand(0).getOpcode() == ISD::FSQRT) {
12487 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0),
12488 Flags)) {
12489 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
12490 AddToWorklist(RV.getNode());
12491 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
12493 } else if (N1.getOpcode() == ISD::FP_ROUND &&
12494 N1.getOperand(0).getOpcode() == ISD::FSQRT) {
12495 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0),
12496 Flags)) {
12497 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
12498 AddToWorklist(RV.getNode());
12499 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
12501 } else if (N1.getOpcode() == ISD::FMUL) {
12502 // Look through an FMUL. Even though this won't remove the FDIV directly,
12503 // it's still worthwhile to get rid of the FSQRT if possible.
12504 SDValue SqrtOp;
12505 SDValue OtherOp;
12506 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
12507 SqrtOp = N1.getOperand(0);
12508 OtherOp = N1.getOperand(1);
12509 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
12510 SqrtOp = N1.getOperand(1);
12511 OtherOp = N1.getOperand(0);
12513 if (SqrtOp.getNode()) {
12514 // We found a FSQRT, so try to make this fold:
12515 // x / (y * sqrt(z)) -> x * (rsqrt(z) / y)
12516 if (SDValue RV = buildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) {
12517 RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags);
12518 AddToWorklist(RV.getNode());
12519 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
12524 // Fold into a reciprocal estimate and multiply instead of a real divide.
12525 if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) {
12526 AddToWorklist(RV.getNode());
12527 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
12531 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
12532 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options,
12533 ForCodeSize)) {
12534 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options,
12535 ForCodeSize)) {
12536 // Both can be negated for free, check to see if at least one is cheaper
12537 // negated.
12538 if (LHSNeg == 2 || RHSNeg == 2)
12539 return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
12540 GetNegatedExpression(N0, DAG, LegalOperations,
12541 ForCodeSize),
12542 GetNegatedExpression(N1, DAG, LegalOperations,
12543 ForCodeSize),
12544 Flags);
12548 return SDValue();
12551 SDValue DAGCombiner::visitFREM(SDNode *N) {
12552 SDValue N0 = N->getOperand(0);
12553 SDValue N1 = N->getOperand(1);
12554 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
12555 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
12556 EVT VT = N->getValueType(0);
12558 // fold (frem c1, c2) -> fmod(c1,c2)
12559 if (N0CFP && N1CFP)
12560 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, N->getFlags());
12562 if (SDValue NewSel = foldBinOpIntoSelect(N))
12563 return NewSel;
12565 return SDValue();
12568 SDValue DAGCombiner::visitFSQRT(SDNode *N) {
12569 SDNodeFlags Flags = N->getFlags();
12570 if (!DAG.getTarget().Options.UnsafeFPMath &&
12571 !Flags.hasApproximateFuncs())
12572 return SDValue();
12574 SDValue N0 = N->getOperand(0);
12575 if (TLI.isFsqrtCheap(N0, DAG))
12576 return SDValue();
12578 // FSQRT nodes have flags that propagate to the created nodes.
12579 return buildSqrtEstimate(N0, Flags);
12582 /// copysign(x, fp_extend(y)) -> copysign(x, y)
12583 /// copysign(x, fp_round(y)) -> copysign(x, y)
12584 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) {
12585 SDValue N1 = N->getOperand(1);
12586 if ((N1.getOpcode() == ISD::FP_EXTEND ||
12587 N1.getOpcode() == ISD::FP_ROUND)) {
12588 // Do not optimize out type conversion of f128 type yet.
12589 // For some targets like x86_64, configuration is changed to keep one f128
12590 // value in one SSE register, but instruction selection cannot handle
12591 // FCOPYSIGN on SSE registers yet.
12592 EVT N1VT = N1->getValueType(0);
12593 EVT N1Op0VT = N1->getOperand(0).getValueType();
12594 return (N1VT == N1Op0VT || N1Op0VT != MVT::f128);
12596 return false;
12599 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
12600 SDValue N0 = N->getOperand(0);
12601 SDValue N1 = N->getOperand(1);
12602 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0);
12603 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
12604 EVT VT = N->getValueType(0);
12606 if (N0CFP && N1CFP) // Constant fold
12607 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
12609 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) {
12610 const APFloat &V = N1C->getValueAPF();
12611 // copysign(x, c1) -> fabs(x) iff ispos(c1)
12612 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
12613 if (!V.isNegative()) {
12614 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
12615 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
12616 } else {
12617 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
12618 return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
12619 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
12623 // copysign(fabs(x), y) -> copysign(x, y)
12624 // copysign(fneg(x), y) -> copysign(x, y)
12625 // copysign(copysign(x,z), y) -> copysign(x, y)
12626 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
12627 N0.getOpcode() == ISD::FCOPYSIGN)
12628 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1);
12630 // copysign(x, abs(y)) -> abs(x)
12631 if (N1.getOpcode() == ISD::FABS)
12632 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
12634 // copysign(x, copysign(y,z)) -> copysign(x, z)
12635 if (N1.getOpcode() == ISD::FCOPYSIGN)
12636 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1));
12638 // copysign(x, fp_extend(y)) -> copysign(x, y)
12639 // copysign(x, fp_round(y)) -> copysign(x, y)
12640 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N))
12641 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0));
12643 return SDValue();
12646 SDValue DAGCombiner::visitFPOW(SDNode *N) {
12647 ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1));
12648 if (!ExponentC)
12649 return SDValue();
12651 // Try to convert x ** (1/3) into cube root.
12652 // TODO: Handle the various flavors of long double.
12653 // TODO: Since we're approximating, we don't need an exact 1/3 exponent.
12654 // Some range near 1/3 should be fine.
12655 EVT VT = N->getValueType(0);
12656 if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) ||
12657 (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) {
12658 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
12659 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
12660 // pow(-val, 1/3) = nan; cbrt(-val) = -num.
12661 // For regular numbers, rounding may cause the results to differ.
12662 // Therefore, we require { nsz ninf nnan afn } for this transform.
12663 // TODO: We could select out the special cases if we don't have nsz/ninf.
12664 SDNodeFlags Flags = N->getFlags();
12665 if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() ||
12666 !Flags.hasApproximateFuncs())
12667 return SDValue();
12669 // Do not create a cbrt() libcall if the target does not have it, and do not
12670 // turn a pow that has lowering support into a cbrt() libcall.
12671 if (!DAG.getLibInfo().has(LibFunc_cbrt) ||
12672 (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) &&
12673 DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT)))
12674 return SDValue();
12676 return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0), Flags);
12679 // Try to convert x ** (1/4) and x ** (3/4) into square roots.
12680 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
12681 // TODO: This could be extended (using a target hook) to handle smaller
12682 // power-of-2 fractional exponents.
12683 bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25);
12684 bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75);
12685 if (ExponentIs025 || ExponentIs075) {
12686 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
12687 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN.
12688 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0.
12689 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN.
12690 // For regular numbers, rounding may cause the results to differ.
12691 // Therefore, we require { nsz ninf afn } for this transform.
12692 // TODO: We could select out the special cases if we don't have nsz/ninf.
12693 SDNodeFlags Flags = N->getFlags();
12695 // We only need no signed zeros for the 0.25 case.
12696 if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() ||
12697 !Flags.hasApproximateFuncs())
12698 return SDValue();
12700 // Don't double the number of libcalls. We are trying to inline fast code.
12701 if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT))
12702 return SDValue();
12704 // Assume that libcalls are the smallest code.
12705 // TODO: This restriction should probably be lifted for vectors.
12706 if (DAG.getMachineFunction().getFunction().hasOptSize())
12707 return SDValue();
12709 // pow(X, 0.25) --> sqrt(sqrt(X))
12710 SDLoc DL(N);
12711 SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0), Flags);
12712 SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt, Flags);
12713 if (ExponentIs025)
12714 return SqrtSqrt;
12715 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X))
12716 return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt, Flags);
12719 return SDValue();
12722 static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG,
12723 const TargetLowering &TLI) {
12724 // This optimization is guarded by a function attribute because it may produce
12725 // unexpected results. Ie, programs may be relying on the platform-specific
12726 // undefined behavior when the float-to-int conversion overflows.
12727 const Function &F = DAG.getMachineFunction().getFunction();
12728 Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow");
12729 if (StrictOverflow.getValueAsString().equals("false"))
12730 return SDValue();
12732 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be
12733 // replacing casts with a libcall. We also must be allowed to ignore -0.0
12734 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
12735 // conversions would return +0.0.
12736 // FIXME: We should be able to use node-level FMF here.
12737 // TODO: If strict math, should we use FABS (+ range check for signed cast)?
12738 EVT VT = N->getValueType(0);
12739 if (!TLI.isOperationLegal(ISD::FTRUNC, VT) ||
12740 !DAG.getTarget().Options.NoSignedZerosFPMath)
12741 return SDValue();
12743 // fptosi/fptoui round towards zero, so converting from FP to integer and
12744 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
12745 SDValue N0 = N->getOperand(0);
12746 if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT &&
12747 N0.getOperand(0).getValueType() == VT)
12748 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
12750 if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT &&
12751 N0.getOperand(0).getValueType() == VT)
12752 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
12754 return SDValue();
12757 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
12758 SDValue N0 = N->getOperand(0);
12759 EVT VT = N->getValueType(0);
12760 EVT OpVT = N0.getValueType();
12762 // [us]itofp(undef) = 0, because the result value is bounded.
12763 if (N0.isUndef())
12764 return DAG.getConstantFP(0.0, SDLoc(N), VT);
12766 // fold (sint_to_fp c1) -> c1fp
12767 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
12768 // ...but only if the target supports immediate floating-point values
12769 (!LegalOperations ||
12770 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
12771 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
12773 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
12774 // but UINT_TO_FP is legal on this target, try to convert.
12775 if (!hasOperation(ISD::SINT_TO_FP, OpVT) &&
12776 hasOperation(ISD::UINT_TO_FP, OpVT)) {
12777 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
12778 if (DAG.SignBitIsZero(N0))
12779 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
12782 // The next optimizations are desirable only if SELECT_CC can be lowered.
12783 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
12784 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
12785 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
12786 !VT.isVector() &&
12787 (!LegalOperations ||
12788 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
12789 SDLoc DL(N);
12790 SDValue Ops[] =
12791 { N0.getOperand(0), N0.getOperand(1),
12792 DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
12793 N0.getOperand(2) };
12794 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
12797 // fold (sint_to_fp (zext (setcc x, y, cc))) ->
12798 // (select_cc x, y, 1.0, 0.0,, cc)
12799 if (N0.getOpcode() == ISD::ZERO_EXTEND &&
12800 N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
12801 (!LegalOperations ||
12802 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
12803 SDLoc DL(N);
12804 SDValue Ops[] =
12805 { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
12806 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
12807 N0.getOperand(0).getOperand(2) };
12808 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
12812 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
12813 return FTrunc;
12815 return SDValue();
12818 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
12819 SDValue N0 = N->getOperand(0);
12820 EVT VT = N->getValueType(0);
12821 EVT OpVT = N0.getValueType();
12823 // [us]itofp(undef) = 0, because the result value is bounded.
12824 if (N0.isUndef())
12825 return DAG.getConstantFP(0.0, SDLoc(N), VT);
12827 // fold (uint_to_fp c1) -> c1fp
12828 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
12829 // ...but only if the target supports immediate floating-point values
12830 (!LegalOperations ||
12831 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
12832 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
12834 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
12835 // but SINT_TO_FP is legal on this target, try to convert.
12836 if (!hasOperation(ISD::UINT_TO_FP, OpVT) &&
12837 hasOperation(ISD::SINT_TO_FP, OpVT)) {
12838 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
12839 if (DAG.SignBitIsZero(N0))
12840 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
12843 // The next optimizations are desirable only if SELECT_CC can be lowered.
12844 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
12845 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
12846 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
12847 (!LegalOperations ||
12848 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
12849 SDLoc DL(N);
12850 SDValue Ops[] =
12851 { N0.getOperand(0), N0.getOperand(1),
12852 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
12853 N0.getOperand(2) };
12854 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
12858 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
12859 return FTrunc;
12861 return SDValue();
12864 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
12865 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) {
12866 SDValue N0 = N->getOperand(0);
12867 EVT VT = N->getValueType(0);
12869 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP)
12870 return SDValue();
12872 SDValue Src = N0.getOperand(0);
12873 EVT SrcVT = Src.getValueType();
12874 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP;
12875 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT;
12877 // We can safely assume the conversion won't overflow the output range,
12878 // because (for example) (uint8_t)18293.f is undefined behavior.
12880 // Since we can assume the conversion won't overflow, our decision as to
12881 // whether the input will fit in the float should depend on the minimum
12882 // of the input range and output range.
12884 // This means this is also safe for a signed input and unsigned output, since
12885 // a negative input would lead to undefined behavior.
12886 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned;
12887 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned;
12888 unsigned ActualSize = std::min(InputSize, OutputSize);
12889 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType());
12891 // We can only fold away the float conversion if the input range can be
12892 // represented exactly in the float range.
12893 if (APFloat::semanticsPrecision(sem) >= ActualSize) {
12894 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) {
12895 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND
12896 : ISD::ZERO_EXTEND;
12897 return DAG.getNode(ExtOp, SDLoc(N), VT, Src);
12899 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits())
12900 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src);
12901 return DAG.getBitcast(VT, Src);
12903 return SDValue();
12906 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
12907 SDValue N0 = N->getOperand(0);
12908 EVT VT = N->getValueType(0);
12910 // fold (fp_to_sint undef) -> undef
12911 if (N0.isUndef())
12912 return DAG.getUNDEF(VT);
12914 // fold (fp_to_sint c1fp) -> c1
12915 if (isConstantFPBuildVectorOrConstantFP(N0))
12916 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
12918 return FoldIntToFPToInt(N, DAG);
12921 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
12922 SDValue N0 = N->getOperand(0);
12923 EVT VT = N->getValueType(0);
12925 // fold (fp_to_uint undef) -> undef
12926 if (N0.isUndef())
12927 return DAG.getUNDEF(VT);
12929 // fold (fp_to_uint c1fp) -> c1
12930 if (isConstantFPBuildVectorOrConstantFP(N0))
12931 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
12933 return FoldIntToFPToInt(N, DAG);
12936 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
12937 SDValue N0 = N->getOperand(0);
12938 SDValue N1 = N->getOperand(1);
12939 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
12940 EVT VT = N->getValueType(0);
12942 // fold (fp_round c1fp) -> c1fp
12943 if (N0CFP)
12944 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
12946 // fold (fp_round (fp_extend x)) -> x
12947 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
12948 return N0.getOperand(0);
12950 // fold (fp_round (fp_round x)) -> (fp_round x)
12951 if (N0.getOpcode() == ISD::FP_ROUND) {
12952 const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
12953 const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1;
12955 // Skip this folding if it results in an fp_round from f80 to f16.
12957 // f80 to f16 always generates an expensive (and as yet, unimplemented)
12958 // libcall to __truncxfhf2 instead of selecting native f16 conversion
12959 // instructions from f32 or f64. Moreover, the first (value-preserving)
12960 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
12961 // x86.
12962 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16)
12963 return SDValue();
12965 // If the first fp_round isn't a value preserving truncation, it might
12966 // introduce a tie in the second fp_round, that wouldn't occur in the
12967 // single-step fp_round we want to fold to.
12968 // In other words, double rounding isn't the same as rounding.
12969 // Also, this is a value preserving truncation iff both fp_round's are.
12970 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) {
12971 SDLoc DL(N);
12972 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0),
12973 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL));
12977 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
12978 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
12979 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
12980 N0.getOperand(0), N1);
12981 AddToWorklist(Tmp.getNode());
12982 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
12983 Tmp, N0.getOperand(1));
12986 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
12987 return NewVSel;
12989 return SDValue();
12992 SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
12993 SDValue N0 = N->getOperand(0);
12994 EVT VT = N->getValueType(0);
12995 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
12996 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
12998 // fold (fp_round_inreg c1fp) -> c1fp
12999 if (N0CFP && isTypeLegal(EVT)) {
13000 SDLoc DL(N);
13001 SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT);
13002 return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round);
13005 return SDValue();
13008 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
13009 SDValue N0 = N->getOperand(0);
13010 EVT VT = N->getValueType(0);
13012 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
13013 if (N->hasOneUse() &&
13014 N->use_begin()->getOpcode() == ISD::FP_ROUND)
13015 return SDValue();
13017 // fold (fp_extend c1fp) -> c1fp
13018 if (isConstantFPBuildVectorOrConstantFP(N0))
13019 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
13021 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
13022 if (N0.getOpcode() == ISD::FP16_TO_FP &&
13023 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal)
13024 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0));
13026 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
13027 // value of X.
13028 if (N0.getOpcode() == ISD::FP_ROUND
13029 && N0.getConstantOperandVal(1) == 1) {
13030 SDValue In = N0.getOperand(0);
13031 if (In.getValueType() == VT) return In;
13032 if (VT.bitsLT(In.getValueType()))
13033 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
13034 In, N0.getOperand(1));
13035 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
13038 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
13039 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
13040 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
13041 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
13042 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
13043 LN0->getChain(),
13044 LN0->getBasePtr(), N0.getValueType(),
13045 LN0->getMemOperand());
13046 CombineTo(N, ExtLoad);
13047 CombineTo(N0.getNode(),
13048 DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
13049 N0.getValueType(), ExtLoad,
13050 DAG.getIntPtrConstant(1, SDLoc(N0))),
13051 ExtLoad.getValue(1));
13052 return SDValue(N, 0); // Return N so it doesn't get rechecked!
13055 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
13056 return NewVSel;
13058 return SDValue();
13061 SDValue DAGCombiner::visitFCEIL(SDNode *N) {
13062 SDValue N0 = N->getOperand(0);
13063 EVT VT = N->getValueType(0);
13065 // fold (fceil c1) -> fceil(c1)
13066 if (isConstantFPBuildVectorOrConstantFP(N0))
13067 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
13069 return SDValue();
13072 SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
13073 SDValue N0 = N->getOperand(0);
13074 EVT VT = N->getValueType(0);
13076 // fold (ftrunc c1) -> ftrunc(c1)
13077 if (isConstantFPBuildVectorOrConstantFP(N0))
13078 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
13080 // fold ftrunc (known rounded int x) -> x
13081 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
13082 // likely to be generated to extract integer from a rounded floating value.
13083 switch (N0.getOpcode()) {
13084 default: break;
13085 case ISD::FRINT:
13086 case ISD::FTRUNC:
13087 case ISD::FNEARBYINT:
13088 case ISD::FFLOOR:
13089 case ISD::FCEIL:
13090 return N0;
13093 return SDValue();
13096 SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
13097 SDValue N0 = N->getOperand(0);
13098 EVT VT = N->getValueType(0);
13100 // fold (ffloor c1) -> ffloor(c1)
13101 if (isConstantFPBuildVectorOrConstantFP(N0))
13102 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
13104 return SDValue();
13107 // FIXME: FNEG and FABS have a lot in common; refactor.
13108 SDValue DAGCombiner::visitFNEG(SDNode *N) {
13109 SDValue N0 = N->getOperand(0);
13110 EVT VT = N->getValueType(0);
13112 // Constant fold FNEG.
13113 if (isConstantFPBuildVectorOrConstantFP(N0))
13114 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
13116 if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
13117 &DAG.getTarget().Options, ForCodeSize))
13118 return GetNegatedExpression(N0, DAG, LegalOperations, ForCodeSize);
13120 // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading
13121 // constant pool values.
13122 if (!TLI.isFNegFree(VT) &&
13123 N0.getOpcode() == ISD::BITCAST &&
13124 N0.getNode()->hasOneUse()) {
13125 SDValue Int = N0.getOperand(0);
13126 EVT IntVT = Int.getValueType();
13127 if (IntVT.isInteger() && !IntVT.isVector()) {
13128 APInt SignMask;
13129 if (N0.getValueType().isVector()) {
13130 // For a vector, get a mask such as 0x80... per scalar element
13131 // and splat it.
13132 SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits());
13133 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
13134 } else {
13135 // For a scalar, just generate 0x80...
13136 SignMask = APInt::getSignMask(IntVT.getSizeInBits());
13138 SDLoc DL0(N0);
13139 Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int,
13140 DAG.getConstant(SignMask, DL0, IntVT));
13141 AddToWorklist(Int.getNode());
13142 return DAG.getBitcast(VT, Int);
13146 // (fneg (fmul c, x)) -> (fmul -c, x)
13147 if (N0.getOpcode() == ISD::FMUL &&
13148 (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) {
13149 ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
13150 if (CFP1) {
13151 APFloat CVal = CFP1->getValueAPF();
13152 CVal.changeSign();
13153 if (Level >= AfterLegalizeDAG &&
13154 (TLI.isFPImmLegal(CVal, VT, ForCodeSize) ||
13155 TLI.isOperationLegal(ISD::ConstantFP, VT)))
13156 return DAG.getNode(
13157 ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
13158 DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0.getOperand(1)),
13159 N0->getFlags());
13163 return SDValue();
13166 static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N,
13167 APFloat (*Op)(const APFloat &, const APFloat &)) {
13168 SDValue N0 = N->getOperand(0);
13169 SDValue N1 = N->getOperand(1);
13170 EVT VT = N->getValueType(0);
13171 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
13172 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
13174 if (N0CFP && N1CFP) {
13175 const APFloat &C0 = N0CFP->getValueAPF();
13176 const APFloat &C1 = N1CFP->getValueAPF();
13177 return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT);
13180 // Canonicalize to constant on RHS.
13181 if (isConstantFPBuildVectorOrConstantFP(N0) &&
13182 !isConstantFPBuildVectorOrConstantFP(N1))
13183 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
13185 return SDValue();
13188 SDValue DAGCombiner::visitFMINNUM(SDNode *N) {
13189 return visitFMinMax(DAG, N, minnum);
13192 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) {
13193 return visitFMinMax(DAG, N, maxnum);
13196 SDValue DAGCombiner::visitFMINIMUM(SDNode *N) {
13197 return visitFMinMax(DAG, N, minimum);
13200 SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) {
13201 return visitFMinMax(DAG, N, maximum);
13204 SDValue DAGCombiner::visitFABS(SDNode *N) {
13205 SDValue N0 = N->getOperand(0);
13206 EVT VT = N->getValueType(0);
13208 // fold (fabs c1) -> fabs(c1)
13209 if (isConstantFPBuildVectorOrConstantFP(N0))
13210 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
13212 // fold (fabs (fabs x)) -> (fabs x)
13213 if (N0.getOpcode() == ISD::FABS)
13214 return N->getOperand(0);
13216 // fold (fabs (fneg x)) -> (fabs x)
13217 // fold (fabs (fcopysign x, y)) -> (fabs x)
13218 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
13219 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
13221 // fabs(bitcast(x)) -> bitcast(x & ~sign) to avoid constant pool loads.
13222 if (!TLI.isFAbsFree(VT) && N0.getOpcode() == ISD::BITCAST && N0.hasOneUse()) {
13223 SDValue Int = N0.getOperand(0);
13224 EVT IntVT = Int.getValueType();
13225 if (IntVT.isInteger() && !IntVT.isVector()) {
13226 APInt SignMask;
13227 if (N0.getValueType().isVector()) {
13228 // For a vector, get a mask such as 0x7f... per scalar element
13229 // and splat it.
13230 SignMask = ~APInt::getSignMask(N0.getScalarValueSizeInBits());
13231 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
13232 } else {
13233 // For a scalar, just generate 0x7f...
13234 SignMask = ~APInt::getSignMask(IntVT.getSizeInBits());
13236 SDLoc DL(N0);
13237 Int = DAG.getNode(ISD::AND, DL, IntVT, Int,
13238 DAG.getConstant(SignMask, DL, IntVT));
13239 AddToWorklist(Int.getNode());
13240 return DAG.getBitcast(N->getValueType(0), Int);
13244 return SDValue();
13247 SDValue DAGCombiner::visitBRCOND(SDNode *N) {
13248 SDValue Chain = N->getOperand(0);
13249 SDValue N1 = N->getOperand(1);
13250 SDValue N2 = N->getOperand(2);
13252 // If N is a constant we could fold this into a fallthrough or unconditional
13253 // branch. However that doesn't happen very often in normal code, because
13254 // Instcombine/SimplifyCFG should have handled the available opportunities.
13255 // If we did this folding here, it would be necessary to update the
13256 // MachineBasicBlock CFG, which is awkward.
13258 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
13259 // on the target.
13260 if (N1.getOpcode() == ISD::SETCC &&
13261 TLI.isOperationLegalOrCustom(ISD::BR_CC,
13262 N1.getOperand(0).getValueType())) {
13263 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
13264 Chain, N1.getOperand(2),
13265 N1.getOperand(0), N1.getOperand(1), N2);
13268 if (N1.hasOneUse()) {
13269 if (SDValue NewN1 = rebuildSetCC(N1))
13270 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, NewN1, N2);
13273 return SDValue();
13276 SDValue DAGCombiner::rebuildSetCC(SDValue N) {
13277 if (N.getOpcode() == ISD::SRL ||
13278 (N.getOpcode() == ISD::TRUNCATE &&
13279 (N.getOperand(0).hasOneUse() &&
13280 N.getOperand(0).getOpcode() == ISD::SRL))) {
13281 // Look pass the truncate.
13282 if (N.getOpcode() == ISD::TRUNCATE)
13283 N = N.getOperand(0);
13285 // Match this pattern so that we can generate simpler code:
13287 // %a = ...
13288 // %b = and i32 %a, 2
13289 // %c = srl i32 %b, 1
13290 // brcond i32 %c ...
13292 // into
13294 // %a = ...
13295 // %b = and i32 %a, 2
13296 // %c = setcc eq %b, 0
13297 // brcond %c ...
13299 // This applies only when the AND constant value has one bit set and the
13300 // SRL constant is equal to the log2 of the AND constant. The back-end is
13301 // smart enough to convert the result into a TEST/JMP sequence.
13302 SDValue Op0 = N.getOperand(0);
13303 SDValue Op1 = N.getOperand(1);
13305 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) {
13306 SDValue AndOp1 = Op0.getOperand(1);
13308 if (AndOp1.getOpcode() == ISD::Constant) {
13309 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
13311 if (AndConst.isPowerOf2() &&
13312 cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) {
13313 SDLoc DL(N);
13314 return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()),
13315 Op0, DAG.getConstant(0, DL, Op0.getValueType()),
13316 ISD::SETNE);
13322 // Transform br(xor(x, y)) -> br(x != y)
13323 // Transform br(xor(xor(x,y), 1)) -> br (x == y)
13324 if (N.getOpcode() == ISD::XOR) {
13325 // Because we may call this on a speculatively constructed
13326 // SimplifiedSetCC Node, we need to simplify this node first.
13327 // Ideally this should be folded into SimplifySetCC and not
13328 // here. For now, grab a handle to N so we don't lose it from
13329 // replacements interal to the visit.
13330 HandleSDNode XORHandle(N);
13331 while (N.getOpcode() == ISD::XOR) {
13332 SDValue Tmp = visitXOR(N.getNode());
13333 // No simplification done.
13334 if (!Tmp.getNode())
13335 break;
13336 // Returning N is form in-visit replacement that may invalidated
13337 // N. Grab value from Handle.
13338 if (Tmp.getNode() == N.getNode())
13339 N = XORHandle.getValue();
13340 else // Node simplified. Try simplifying again.
13341 N = Tmp;
13344 if (N.getOpcode() != ISD::XOR)
13345 return N;
13347 SDNode *TheXor = N.getNode();
13349 SDValue Op0 = TheXor->getOperand(0);
13350 SDValue Op1 = TheXor->getOperand(1);
13352 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
13353 bool Equal = false;
13354 if (isOneConstant(Op0) && Op0.hasOneUse() &&
13355 Op0.getOpcode() == ISD::XOR) {
13356 TheXor = Op0.getNode();
13357 Equal = true;
13360 EVT SetCCVT = N.getValueType();
13361 if (LegalTypes)
13362 SetCCVT = getSetCCResultType(SetCCVT);
13363 // Replace the uses of XOR with SETCC
13364 return DAG.getSetCC(SDLoc(TheXor), SetCCVT, Op0, Op1,
13365 Equal ? ISD::SETEQ : ISD::SETNE);
13369 return SDValue();
13372 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
13374 SDValue DAGCombiner::visitBR_CC(SDNode *N) {
13375 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
13376 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
13378 // If N is a constant we could fold this into a fallthrough or unconditional
13379 // branch. However that doesn't happen very often in normal code, because
13380 // Instcombine/SimplifyCFG should have handled the available opportunities.
13381 // If we did this folding here, it would be necessary to update the
13382 // MachineBasicBlock CFG, which is awkward.
13384 // Use SimplifySetCC to simplify SETCC's.
13385 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
13386 CondLHS, CondRHS, CC->get(), SDLoc(N),
13387 false);
13388 if (Simp.getNode()) AddToWorklist(Simp.getNode());
13390 // fold to a simpler setcc
13391 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
13392 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
13393 N->getOperand(0), Simp.getOperand(2),
13394 Simp.getOperand(0), Simp.getOperand(1),
13395 N->getOperand(4));
13397 return SDValue();
13400 /// Return true if 'Use' is a load or a store that uses N as its base pointer
13401 /// and that N may be folded in the load / store addressing mode.
13402 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
13403 SelectionDAG &DAG,
13404 const TargetLowering &TLI) {
13405 EVT VT;
13406 unsigned AS;
13408 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
13409 if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
13410 return false;
13411 VT = LD->getMemoryVT();
13412 AS = LD->getAddressSpace();
13413 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
13414 if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
13415 return false;
13416 VT = ST->getMemoryVT();
13417 AS = ST->getAddressSpace();
13418 } else
13419 return false;
13421 TargetLowering::AddrMode AM;
13422 if (N->getOpcode() == ISD::ADD) {
13423 AM.HasBaseReg = true;
13424 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
13425 if (Offset)
13426 // [reg +/- imm]
13427 AM.BaseOffs = Offset->getSExtValue();
13428 else
13429 // [reg +/- reg]
13430 AM.Scale = 1;
13431 } else if (N->getOpcode() == ISD::SUB) {
13432 AM.HasBaseReg = true;
13433 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
13434 if (Offset)
13435 // [reg +/- imm]
13436 AM.BaseOffs = -Offset->getSExtValue();
13437 else
13438 // [reg +/- reg]
13439 AM.Scale = 1;
13440 } else
13441 return false;
13443 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM,
13444 VT.getTypeForEVT(*DAG.getContext()), AS);
13447 /// Try turning a load/store into a pre-indexed load/store when the base
13448 /// pointer is an add or subtract and it has other uses besides the load/store.
13449 /// After the transformation, the new indexed load/store has effectively folded
13450 /// the add/subtract in and all of its other uses are redirected to the
13451 /// new load/store.
13452 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
13453 if (Level < AfterLegalizeDAG)
13454 return false;
13456 bool isLoad = true;
13457 SDValue Ptr;
13458 EVT VT;
13459 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13460 if (LD->isIndexed())
13461 return false;
13462 VT = LD->getMemoryVT();
13463 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
13464 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
13465 return false;
13466 Ptr = LD->getBasePtr();
13467 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
13468 if (ST->isIndexed())
13469 return false;
13470 VT = ST->getMemoryVT();
13471 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
13472 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
13473 return false;
13474 Ptr = ST->getBasePtr();
13475 isLoad = false;
13476 } else {
13477 return false;
13480 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
13481 // out. There is no reason to make this a preinc/predec.
13482 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
13483 Ptr.getNode()->hasOneUse())
13484 return false;
13486 // Ask the target to do addressing mode selection.
13487 SDValue BasePtr;
13488 SDValue Offset;
13489 ISD::MemIndexedMode AM = ISD::UNINDEXED;
13490 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
13491 return false;
13493 // Backends without true r+i pre-indexed forms may need to pass a
13494 // constant base with a variable offset so that constant coercion
13495 // will work with the patterns in canonical form.
13496 bool Swapped = false;
13497 if (isa<ConstantSDNode>(BasePtr)) {
13498 std::swap(BasePtr, Offset);
13499 Swapped = true;
13502 // Don't create a indexed load / store with zero offset.
13503 if (isNullConstant(Offset))
13504 return false;
13506 // Try turning it into a pre-indexed load / store except when:
13507 // 1) The new base ptr is a frame index.
13508 // 2) If N is a store and the new base ptr is either the same as or is a
13509 // predecessor of the value being stored.
13510 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
13511 // that would create a cycle.
13512 // 4) All uses are load / store ops that use it as old base ptr.
13514 // Check #1. Preinc'ing a frame index would require copying the stack pointer
13515 // (plus the implicit offset) to a register to preinc anyway.
13516 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
13517 return false;
13519 // Check #2.
13520 if (!isLoad) {
13521 SDValue Val = cast<StoreSDNode>(N)->getValue();
13523 // Would require a copy.
13524 if (Val == BasePtr)
13525 return false;
13527 // Would create a cycle.
13528 if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode()))
13529 return false;
13532 // Caches for hasPredecessorHelper.
13533 SmallPtrSet<const SDNode *, 32> Visited;
13534 SmallVector<const SDNode *, 16> Worklist;
13535 Worklist.push_back(N);
13537 // If the offset is a constant, there may be other adds of constants that
13538 // can be folded with this one. We should do this to avoid having to keep
13539 // a copy of the original base pointer.
13540 SmallVector<SDNode *, 16> OtherUses;
13541 if (isa<ConstantSDNode>(Offset))
13542 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(),
13543 UE = BasePtr.getNode()->use_end();
13544 UI != UE; ++UI) {
13545 SDUse &Use = UI.getUse();
13546 // Skip the use that is Ptr and uses of other results from BasePtr's
13547 // node (important for nodes that return multiple results).
13548 if (Use.getUser() == Ptr.getNode() || Use != BasePtr)
13549 continue;
13551 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist))
13552 continue;
13554 if (Use.getUser()->getOpcode() != ISD::ADD &&
13555 Use.getUser()->getOpcode() != ISD::SUB) {
13556 OtherUses.clear();
13557 break;
13560 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1);
13561 if (!isa<ConstantSDNode>(Op1)) {
13562 OtherUses.clear();
13563 break;
13566 // FIXME: In some cases, we can be smarter about this.
13567 if (Op1.getValueType() != Offset.getValueType()) {
13568 OtherUses.clear();
13569 break;
13572 OtherUses.push_back(Use.getUser());
13575 if (Swapped)
13576 std::swap(BasePtr, Offset);
13578 // Now check for #3 and #4.
13579 bool RealUse = false;
13581 for (SDNode *Use : Ptr.getNode()->uses()) {
13582 if (Use == N)
13583 continue;
13584 if (SDNode::hasPredecessorHelper(Use, Visited, Worklist))
13585 return false;
13587 // If Ptr may be folded in addressing mode of other use, then it's
13588 // not profitable to do this transformation.
13589 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
13590 RealUse = true;
13593 if (!RealUse)
13594 return false;
13596 SDValue Result;
13597 if (isLoad)
13598 Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
13599 BasePtr, Offset, AM);
13600 else
13601 Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
13602 BasePtr, Offset, AM);
13603 ++PreIndexedNodes;
13604 ++NodesCombined;
13605 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: ";
13606 Result.getNode()->dump(&DAG); dbgs() << '\n');
13607 WorklistRemover DeadNodes(*this);
13608 if (isLoad) {
13609 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
13610 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
13611 } else {
13612 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
13615 // Finally, since the node is now dead, remove it from the graph.
13616 deleteAndRecombine(N);
13618 if (Swapped)
13619 std::swap(BasePtr, Offset);
13621 // Replace other uses of BasePtr that can be updated to use Ptr
13622 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
13623 unsigned OffsetIdx = 1;
13624 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
13625 OffsetIdx = 0;
13626 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
13627 BasePtr.getNode() && "Expected BasePtr operand");
13629 // We need to replace ptr0 in the following expression:
13630 // x0 * offset0 + y0 * ptr0 = t0
13631 // knowing that
13632 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
13634 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
13635 // indexed load/store and the expression that needs to be re-written.
13637 // Therefore, we have:
13638 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
13640 ConstantSDNode *CN =
13641 cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
13642 int X0, X1, Y0, Y1;
13643 const APInt &Offset0 = CN->getAPIntValue();
13644 APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
13646 X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
13647 Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
13648 X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
13649 Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
13651 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
13653 APInt CNV = Offset0;
13654 if (X0 < 0) CNV = -CNV;
13655 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
13656 else CNV = CNV - Offset1;
13658 SDLoc DL(OtherUses[i]);
13660 // We can now generate the new expression.
13661 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0));
13662 SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
13664 SDValue NewUse = DAG.getNode(Opcode,
13666 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
13667 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
13668 deleteAndRecombine(OtherUses[i]);
13671 // Replace the uses of Ptr with uses of the updated base value.
13672 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
13673 deleteAndRecombine(Ptr.getNode());
13674 AddToWorklist(Result.getNode());
13676 return true;
13679 /// Try to combine a load/store with a add/sub of the base pointer node into a
13680 /// post-indexed load/store. The transformation folded the add/subtract into the
13681 /// new indexed load/store effectively and all of its uses are redirected to the
13682 /// new load/store.
13683 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
13684 if (Level < AfterLegalizeDAG)
13685 return false;
13687 bool isLoad = true;
13688 SDValue Ptr;
13689 EVT VT;
13690 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13691 if (LD->isIndexed())
13692 return false;
13693 VT = LD->getMemoryVT();
13694 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
13695 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
13696 return false;
13697 Ptr = LD->getBasePtr();
13698 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
13699 if (ST->isIndexed())
13700 return false;
13701 VT = ST->getMemoryVT();
13702 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
13703 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
13704 return false;
13705 Ptr = ST->getBasePtr();
13706 isLoad = false;
13707 } else {
13708 return false;
13711 if (Ptr.getNode()->hasOneUse())
13712 return false;
13714 for (SDNode *Op : Ptr.getNode()->uses()) {
13715 if (Op == N ||
13716 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
13717 continue;
13719 SDValue BasePtr;
13720 SDValue Offset;
13721 ISD::MemIndexedMode AM = ISD::UNINDEXED;
13722 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
13723 // Don't create a indexed load / store with zero offset.
13724 if (isNullConstant(Offset))
13725 continue;
13727 // Try turning it into a post-indexed load / store except when
13728 // 1) All uses are load / store ops that use it as base ptr (and
13729 // it may be folded as addressing mmode).
13730 // 2) Op must be independent of N, i.e. Op is neither a predecessor
13731 // nor a successor of N. Otherwise, if Op is folded that would
13732 // create a cycle.
13734 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
13735 continue;
13737 // Check for #1.
13738 bool TryNext = false;
13739 for (SDNode *Use : BasePtr.getNode()->uses()) {
13740 if (Use == Ptr.getNode())
13741 continue;
13743 // If all the uses are load / store addresses, then don't do the
13744 // transformation.
13745 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
13746 bool RealUse = false;
13747 for (SDNode *UseUse : Use->uses()) {
13748 if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
13749 RealUse = true;
13752 if (!RealUse) {
13753 TryNext = true;
13754 break;
13759 if (TryNext)
13760 continue;
13762 // Check for #2.
13763 SmallPtrSet<const SDNode *, 32> Visited;
13764 SmallVector<const SDNode *, 8> Worklist;
13765 // Ptr is predecessor to both N and Op.
13766 Visited.insert(Ptr.getNode());
13767 Worklist.push_back(N);
13768 Worklist.push_back(Op);
13769 if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) &&
13770 !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) {
13771 SDValue Result = isLoad
13772 ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
13773 BasePtr, Offset, AM)
13774 : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
13775 BasePtr, Offset, AM);
13776 ++PostIndexedNodes;
13777 ++NodesCombined;
13778 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG);
13779 dbgs() << "\nWith: "; Result.getNode()->dump(&DAG);
13780 dbgs() << '\n');
13781 WorklistRemover DeadNodes(*this);
13782 if (isLoad) {
13783 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
13784 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
13785 } else {
13786 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
13789 // Finally, since the node is now dead, remove it from the graph.
13790 deleteAndRecombine(N);
13792 // Replace the uses of Use with uses of the updated base value.
13793 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
13794 Result.getValue(isLoad ? 1 : 0));
13795 deleteAndRecombine(Op);
13796 return true;
13801 return false;
13804 /// Return the base-pointer arithmetic from an indexed \p LD.
13805 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
13806 ISD::MemIndexedMode AM = LD->getAddressingMode();
13807 assert(AM != ISD::UNINDEXED);
13808 SDValue BP = LD->getOperand(1);
13809 SDValue Inc = LD->getOperand(2);
13811 // Some backends use TargetConstants for load offsets, but don't expect
13812 // TargetConstants in general ADD nodes. We can convert these constants into
13813 // regular Constants (if the constant is not opaque).
13814 assert((Inc.getOpcode() != ISD::TargetConstant ||
13815 !cast<ConstantSDNode>(Inc)->isOpaque()) &&
13816 "Cannot split out indexing using opaque target constants");
13817 if (Inc.getOpcode() == ISD::TargetConstant) {
13818 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
13819 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc),
13820 ConstInc->getValueType(0));
13823 unsigned Opc =
13824 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
13825 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
13828 static inline int numVectorEltsOrZero(EVT T) {
13829 return T.isVector() ? T.getVectorNumElements() : 0;
13832 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) {
13833 Val = ST->getValue();
13834 EVT STType = Val.getValueType();
13835 EVT STMemType = ST->getMemoryVT();
13836 if (STType == STMemType)
13837 return true;
13838 if (isTypeLegal(STMemType))
13839 return false; // fail.
13840 if (STType.isFloatingPoint() && STMemType.isFloatingPoint() &&
13841 TLI.isOperationLegal(ISD::FTRUNC, STMemType)) {
13842 Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val);
13843 return true;
13845 if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) &&
13846 STType.isInteger() && STMemType.isInteger()) {
13847 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val);
13848 return true;
13850 if (STType.getSizeInBits() == STMemType.getSizeInBits()) {
13851 Val = DAG.getBitcast(STMemType, Val);
13852 return true;
13854 return false; // fail.
13857 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) {
13858 EVT LDMemType = LD->getMemoryVT();
13859 EVT LDType = LD->getValueType(0);
13860 assert(Val.getValueType() == LDMemType &&
13861 "Attempting to extend value of non-matching type");
13862 if (LDType == LDMemType)
13863 return true;
13864 if (LDMemType.isInteger() && LDType.isInteger()) {
13865 switch (LD->getExtensionType()) {
13866 case ISD::NON_EXTLOAD:
13867 Val = DAG.getBitcast(LDType, Val);
13868 return true;
13869 case ISD::EXTLOAD:
13870 Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val);
13871 return true;
13872 case ISD::SEXTLOAD:
13873 Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val);
13874 return true;
13875 case ISD::ZEXTLOAD:
13876 Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val);
13877 return true;
13880 return false;
13883 SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) {
13884 if (OptLevel == CodeGenOpt::None || LD->isVolatile())
13885 return SDValue();
13886 SDValue Chain = LD->getOperand(0);
13887 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode());
13888 if (!ST || ST->isVolatile())
13889 return SDValue();
13891 EVT LDType = LD->getValueType(0);
13892 EVT LDMemType = LD->getMemoryVT();
13893 EVT STMemType = ST->getMemoryVT();
13894 EVT STType = ST->getValue().getValueType();
13896 BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG);
13897 BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG);
13898 int64_t Offset;
13899 if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset))
13900 return SDValue();
13902 // Normalize for Endianness. After this Offset=0 will denote that the least
13903 // significant bit in the loaded value maps to the least significant bit in
13904 // the stored value). With Offset=n (for n > 0) the loaded value starts at the
13905 // n:th least significant byte of the stored value.
13906 if (DAG.getDataLayout().isBigEndian())
13907 Offset = (STMemType.getStoreSizeInBits() -
13908 LDMemType.getStoreSizeInBits()) / 8 - Offset;
13910 // Check that the stored value cover all bits that are loaded.
13911 bool STCoversLD =
13912 (Offset >= 0) &&
13913 (Offset * 8 + LDMemType.getSizeInBits() <= STMemType.getSizeInBits());
13915 auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue {
13916 if (LD->isIndexed()) {
13917 bool IsSub = (LD->getAddressingMode() == ISD::PRE_DEC ||
13918 LD->getAddressingMode() == ISD::POST_DEC);
13919 unsigned Opc = IsSub ? ISD::SUB : ISD::ADD;
13920 SDValue Idx = DAG.getNode(Opc, SDLoc(LD), LD->getOperand(1).getValueType(),
13921 LD->getOperand(1), LD->getOperand(2));
13922 SDValue Ops[] = {Val, Idx, Chain};
13923 return CombineTo(LD, Ops, 3);
13925 return CombineTo(LD, Val, Chain);
13928 if (!STCoversLD)
13929 return SDValue();
13931 // Memory as copy space (potentially masked).
13932 if (Offset == 0 && LDType == STType && STMemType == LDMemType) {
13933 // Simple case: Direct non-truncating forwarding
13934 if (LDType.getSizeInBits() == LDMemType.getSizeInBits())
13935 return ReplaceLd(LD, ST->getValue(), Chain);
13936 // Can we model the truncate and extension with an and mask?
13937 if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() &&
13938 !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) {
13939 // Mask to size of LDMemType
13940 auto Mask =
13941 DAG.getConstant(APInt::getLowBitsSet(STType.getSizeInBits(),
13942 STMemType.getSizeInBits()),
13943 SDLoc(ST), STType);
13944 auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask);
13945 return ReplaceLd(LD, Val, Chain);
13949 // TODO: Deal with nonzero offset.
13950 if (LD->getBasePtr().isUndef() || Offset != 0)
13951 return SDValue();
13952 // Model necessary truncations / extenstions.
13953 SDValue Val;
13954 // Truncate Value To Stored Memory Size.
13955 do {
13956 if (!getTruncatedStoreValue(ST, Val))
13957 continue;
13958 if (!isTypeLegal(LDMemType))
13959 continue;
13960 if (STMemType != LDMemType) {
13961 // TODO: Support vectors? This requires extract_subvector/bitcast.
13962 if (!STMemType.isVector() && !LDMemType.isVector() &&
13963 STMemType.isInteger() && LDMemType.isInteger())
13964 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val);
13965 else
13966 continue;
13968 if (!extendLoadedValueToExtension(LD, Val))
13969 continue;
13970 return ReplaceLd(LD, Val, Chain);
13971 } while (false);
13973 // On failure, cleanup dead nodes we may have created.
13974 if (Val->use_empty())
13975 deleteAndRecombine(Val.getNode());
13976 return SDValue();
13979 SDValue DAGCombiner::visitLOAD(SDNode *N) {
13980 LoadSDNode *LD = cast<LoadSDNode>(N);
13981 SDValue Chain = LD->getChain();
13982 SDValue Ptr = LD->getBasePtr();
13984 // If load is not volatile and there are no uses of the loaded value (and
13985 // the updated indexed value in case of indexed loads), change uses of the
13986 // chain value into uses of the chain input (i.e. delete the dead load).
13987 if (!LD->isVolatile()) {
13988 if (N->getValueType(1) == MVT::Other) {
13989 // Unindexed loads.
13990 if (!N->hasAnyUseOfValue(0)) {
13991 // It's not safe to use the two value CombineTo variant here. e.g.
13992 // v1, chain2 = load chain1, loc
13993 // v2, chain3 = load chain2, loc
13994 // v3 = add v2, c
13995 // Now we replace use of chain2 with chain1. This makes the second load
13996 // isomorphic to the one we are deleting, and thus makes this load live.
13997 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG);
13998 dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG);
13999 dbgs() << "\n");
14000 WorklistRemover DeadNodes(*this);
14001 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
14002 AddUsersToWorklist(Chain.getNode());
14003 if (N->use_empty())
14004 deleteAndRecombine(N);
14006 return SDValue(N, 0); // Return N so it doesn't get rechecked!
14008 } else {
14009 // Indexed loads.
14010 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
14012 // If this load has an opaque TargetConstant offset, then we cannot split
14013 // the indexing into an add/sub directly (that TargetConstant may not be
14014 // valid for a different type of node, and we cannot convert an opaque
14015 // target constant into a regular constant).
14016 bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant &&
14017 cast<ConstantSDNode>(LD->getOperand(2))->isOpaque();
14019 if (!N->hasAnyUseOfValue(0) &&
14020 ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) {
14021 SDValue Undef = DAG.getUNDEF(N->getValueType(0));
14022 SDValue Index;
14023 if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) {
14024 Index = SplitIndexingFromLoad(LD);
14025 // Try to fold the base pointer arithmetic into subsequent loads and
14026 // stores.
14027 AddUsersToWorklist(N);
14028 } else
14029 Index = DAG.getUNDEF(N->getValueType(1));
14030 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG);
14031 dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG);
14032 dbgs() << " and 2 other values\n");
14033 WorklistRemover DeadNodes(*this);
14034 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
14035 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
14036 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
14037 deleteAndRecombine(N);
14038 return SDValue(N, 0); // Return N so it doesn't get rechecked!
14043 // If this load is directly stored, replace the load value with the stored
14044 // value.
14045 if (auto V = ForwardStoreValueToDirectLoad(LD))
14046 return V;
14048 // Try to infer better alignment information than the load already has.
14049 if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
14050 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
14051 if (Align > LD->getAlignment() && LD->getSrcValueOffset() % Align == 0) {
14052 SDValue NewLoad = DAG.getExtLoad(
14053 LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr,
14054 LD->getPointerInfo(), LD->getMemoryVT(), Align,
14055 LD->getMemOperand()->getFlags(), LD->getAAInfo());
14056 // NewLoad will always be N as we are only refining the alignment
14057 assert(NewLoad.getNode() == N);
14058 (void)NewLoad;
14063 if (LD->isUnindexed()) {
14064 // Walk up chain skipping non-aliasing memory nodes.
14065 SDValue BetterChain = FindBetterChain(LD, Chain);
14067 // If there is a better chain.
14068 if (Chain != BetterChain) {
14069 SDValue ReplLoad;
14071 // Replace the chain to void dependency.
14072 if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
14073 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
14074 BetterChain, Ptr, LD->getMemOperand());
14075 } else {
14076 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
14077 LD->getValueType(0),
14078 BetterChain, Ptr, LD->getMemoryVT(),
14079 LD->getMemOperand());
14082 // Create token factor to keep old chain connected.
14083 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
14084 MVT::Other, Chain, ReplLoad.getValue(1));
14086 // Replace uses with load result and token factor
14087 return CombineTo(N, ReplLoad.getValue(0), Token);
14091 // Try transforming N to an indexed load.
14092 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
14093 return SDValue(N, 0);
14095 // Try to slice up N to more direct loads if the slices are mapped to
14096 // different register banks or pairing can take place.
14097 if (SliceUpLoad(N))
14098 return SDValue(N, 0);
14100 return SDValue();
14103 namespace {
14105 /// Helper structure used to slice a load in smaller loads.
14106 /// Basically a slice is obtained from the following sequence:
14107 /// Origin = load Ty1, Base
14108 /// Shift = srl Ty1 Origin, CstTy Amount
14109 /// Inst = trunc Shift to Ty2
14111 /// Then, it will be rewritten into:
14112 /// Slice = load SliceTy, Base + SliceOffset
14113 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
14115 /// SliceTy is deduced from the number of bits that are actually used to
14116 /// build Inst.
14117 struct LoadedSlice {
14118 /// Helper structure used to compute the cost of a slice.
14119 struct Cost {
14120 /// Are we optimizing for code size.
14121 bool ForCodeSize;
14123 /// Various cost.
14124 unsigned Loads = 0;
14125 unsigned Truncates = 0;
14126 unsigned CrossRegisterBanksCopies = 0;
14127 unsigned ZExts = 0;
14128 unsigned Shift = 0;
14130 Cost(bool ForCodeSize = false) : ForCodeSize(ForCodeSize) {}
14132 /// Get the cost of one isolated slice.
14133 Cost(const LoadedSlice &LS, bool ForCodeSize = false)
14134 : ForCodeSize(ForCodeSize), Loads(1) {
14135 EVT TruncType = LS.Inst->getValueType(0);
14136 EVT LoadedType = LS.getLoadedType();
14137 if (TruncType != LoadedType &&
14138 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
14139 ZExts = 1;
14142 /// Account for slicing gain in the current cost.
14143 /// Slicing provide a few gains like removing a shift or a
14144 /// truncate. This method allows to grow the cost of the original
14145 /// load with the gain from this slice.
14146 void addSliceGain(const LoadedSlice &LS) {
14147 // Each slice saves a truncate.
14148 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
14149 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(),
14150 LS.Inst->getValueType(0)))
14151 ++Truncates;
14152 // If there is a shift amount, this slice gets rid of it.
14153 if (LS.Shift)
14154 ++Shift;
14155 // If this slice can merge a cross register bank copy, account for it.
14156 if (LS.canMergeExpensiveCrossRegisterBankCopy())
14157 ++CrossRegisterBanksCopies;
14160 Cost &operator+=(const Cost &RHS) {
14161 Loads += RHS.Loads;
14162 Truncates += RHS.Truncates;
14163 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
14164 ZExts += RHS.ZExts;
14165 Shift += RHS.Shift;
14166 return *this;
14169 bool operator==(const Cost &RHS) const {
14170 return Loads == RHS.Loads && Truncates == RHS.Truncates &&
14171 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
14172 ZExts == RHS.ZExts && Shift == RHS.Shift;
14175 bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
14177 bool operator<(const Cost &RHS) const {
14178 // Assume cross register banks copies are as expensive as loads.
14179 // FIXME: Do we want some more target hooks?
14180 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
14181 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
14182 // Unless we are optimizing for code size, consider the
14183 // expensive operation first.
14184 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
14185 return ExpensiveOpsLHS < ExpensiveOpsRHS;
14186 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
14187 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
14190 bool operator>(const Cost &RHS) const { return RHS < *this; }
14192 bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
14194 bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
14197 // The last instruction that represent the slice. This should be a
14198 // truncate instruction.
14199 SDNode *Inst;
14201 // The original load instruction.
14202 LoadSDNode *Origin;
14204 // The right shift amount in bits from the original load.
14205 unsigned Shift;
14207 // The DAG from which Origin came from.
14208 // This is used to get some contextual information about legal types, etc.
14209 SelectionDAG *DAG;
14211 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
14212 unsigned Shift = 0, SelectionDAG *DAG = nullptr)
14213 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
14215 /// Get the bits used in a chunk of bits \p BitWidth large.
14216 /// \return Result is \p BitWidth and has used bits set to 1 and
14217 /// not used bits set to 0.
14218 APInt getUsedBits() const {
14219 // Reproduce the trunc(lshr) sequence:
14220 // - Start from the truncated value.
14221 // - Zero extend to the desired bit width.
14222 // - Shift left.
14223 assert(Origin && "No original load to compare against.");
14224 unsigned BitWidth = Origin->getValueSizeInBits(0);
14225 assert(Inst && "This slice is not bound to an instruction");
14226 assert(Inst->getValueSizeInBits(0) <= BitWidth &&
14227 "Extracted slice is bigger than the whole type!");
14228 APInt UsedBits(Inst->getValueSizeInBits(0), 0);
14229 UsedBits.setAllBits();
14230 UsedBits = UsedBits.zext(BitWidth);
14231 UsedBits <<= Shift;
14232 return UsedBits;
14235 /// Get the size of the slice to be loaded in bytes.
14236 unsigned getLoadedSize() const {
14237 unsigned SliceSize = getUsedBits().countPopulation();
14238 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
14239 return SliceSize / 8;
14242 /// Get the type that will be loaded for this slice.
14243 /// Note: This may not be the final type for the slice.
14244 EVT getLoadedType() const {
14245 assert(DAG && "Missing context");
14246 LLVMContext &Ctxt = *DAG->getContext();
14247 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
14250 /// Get the alignment of the load used for this slice.
14251 unsigned getAlignment() const {
14252 unsigned Alignment = Origin->getAlignment();
14253 uint64_t Offset = getOffsetFromBase();
14254 if (Offset != 0)
14255 Alignment = MinAlign(Alignment, Alignment + Offset);
14256 return Alignment;
14259 /// Check if this slice can be rewritten with legal operations.
14260 bool isLegal() const {
14261 // An invalid slice is not legal.
14262 if (!Origin || !Inst || !DAG)
14263 return false;
14265 // Offsets are for indexed load only, we do not handle that.
14266 if (!Origin->getOffset().isUndef())
14267 return false;
14269 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
14271 // Check that the type is legal.
14272 EVT SliceType = getLoadedType();
14273 if (!TLI.isTypeLegal(SliceType))
14274 return false;
14276 // Check that the load is legal for this type.
14277 if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
14278 return false;
14280 // Check that the offset can be computed.
14281 // 1. Check its type.
14282 EVT PtrType = Origin->getBasePtr().getValueType();
14283 if (PtrType == MVT::Untyped || PtrType.isExtended())
14284 return false;
14286 // 2. Check that it fits in the immediate.
14287 if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
14288 return false;
14290 // 3. Check that the computation is legal.
14291 if (!TLI.isOperationLegal(ISD::ADD, PtrType))
14292 return false;
14294 // Check that the zext is legal if it needs one.
14295 EVT TruncateType = Inst->getValueType(0);
14296 if (TruncateType != SliceType &&
14297 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
14298 return false;
14300 return true;
14303 /// Get the offset in bytes of this slice in the original chunk of
14304 /// bits.
14305 /// \pre DAG != nullptr.
14306 uint64_t getOffsetFromBase() const {
14307 assert(DAG && "Missing context.");
14308 bool IsBigEndian = DAG->getDataLayout().isBigEndian();
14309 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
14310 uint64_t Offset = Shift / 8;
14311 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
14312 assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
14313 "The size of the original loaded type is not a multiple of a"
14314 " byte.");
14315 // If Offset is bigger than TySizeInBytes, it means we are loading all
14316 // zeros. This should have been optimized before in the process.
14317 assert(TySizeInBytes > Offset &&
14318 "Invalid shift amount for given loaded size");
14319 if (IsBigEndian)
14320 Offset = TySizeInBytes - Offset - getLoadedSize();
14321 return Offset;
14324 /// Generate the sequence of instructions to load the slice
14325 /// represented by this object and redirect the uses of this slice to
14326 /// this new sequence of instructions.
14327 /// \pre this->Inst && this->Origin are valid Instructions and this
14328 /// object passed the legal check: LoadedSlice::isLegal returned true.
14329 /// \return The last instruction of the sequence used to load the slice.
14330 SDValue loadSlice() const {
14331 assert(Inst && Origin && "Unable to replace a non-existing slice.");
14332 const SDValue &OldBaseAddr = Origin->getBasePtr();
14333 SDValue BaseAddr = OldBaseAddr;
14334 // Get the offset in that chunk of bytes w.r.t. the endianness.
14335 int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
14336 assert(Offset >= 0 && "Offset too big to fit in int64_t!");
14337 if (Offset) {
14338 // BaseAddr = BaseAddr + Offset.
14339 EVT ArithType = BaseAddr.getValueType();
14340 SDLoc DL(Origin);
14341 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr,
14342 DAG->getConstant(Offset, DL, ArithType));
14345 // Create the type of the loaded slice according to its size.
14346 EVT SliceType = getLoadedType();
14348 // Create the load for the slice.
14349 SDValue LastInst =
14350 DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
14351 Origin->getPointerInfo().getWithOffset(Offset),
14352 getAlignment(), Origin->getMemOperand()->getFlags());
14353 // If the final type is not the same as the loaded type, this means that
14354 // we have to pad with zero. Create a zero extend for that.
14355 EVT FinalType = Inst->getValueType(0);
14356 if (SliceType != FinalType)
14357 LastInst =
14358 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
14359 return LastInst;
14362 /// Check if this slice can be merged with an expensive cross register
14363 /// bank copy. E.g.,
14364 /// i = load i32
14365 /// f = bitcast i32 i to float
14366 bool canMergeExpensiveCrossRegisterBankCopy() const {
14367 if (!Inst || !Inst->hasOneUse())
14368 return false;
14369 SDNode *Use = *Inst->use_begin();
14370 if (Use->getOpcode() != ISD::BITCAST)
14371 return false;
14372 assert(DAG && "Missing context");
14373 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
14374 EVT ResVT = Use->getValueType(0);
14375 const TargetRegisterClass *ResRC =
14376 TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent());
14377 const TargetRegisterClass *ArgRC =
14378 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(),
14379 Use->getOperand(0)->isDivergent());
14380 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
14381 return false;
14383 // At this point, we know that we perform a cross-register-bank copy.
14384 // Check if it is expensive.
14385 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
14386 // Assume bitcasts are cheap, unless both register classes do not
14387 // explicitly share a common sub class.
14388 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
14389 return false;
14391 // Check if it will be merged with the load.
14392 // 1. Check the alignment constraint.
14393 unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment(
14394 ResVT.getTypeForEVT(*DAG->getContext()));
14396 if (RequiredAlignment > getAlignment())
14397 return false;
14399 // 2. Check that the load is a legal operation for that type.
14400 if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
14401 return false;
14403 // 3. Check that we do not have a zext in the way.
14404 if (Inst->getValueType(0) != getLoadedType())
14405 return false;
14407 return true;
14411 } // end anonymous namespace
14413 /// Check that all bits set in \p UsedBits form a dense region, i.e.,
14414 /// \p UsedBits looks like 0..0 1..1 0..0.
14415 static bool areUsedBitsDense(const APInt &UsedBits) {
14416 // If all the bits are one, this is dense!
14417 if (UsedBits.isAllOnesValue())
14418 return true;
14420 // Get rid of the unused bits on the right.
14421 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
14422 // Get rid of the unused bits on the left.
14423 if (NarrowedUsedBits.countLeadingZeros())
14424 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
14425 // Check that the chunk of bits is completely used.
14426 return NarrowedUsedBits.isAllOnesValue();
14429 /// Check whether or not \p First and \p Second are next to each other
14430 /// in memory. This means that there is no hole between the bits loaded
14431 /// by \p First and the bits loaded by \p Second.
14432 static bool areSlicesNextToEachOther(const LoadedSlice &First,
14433 const LoadedSlice &Second) {
14434 assert(First.Origin == Second.Origin && First.Origin &&
14435 "Unable to match different memory origins.");
14436 APInt UsedBits = First.getUsedBits();
14437 assert((UsedBits & Second.getUsedBits()) == 0 &&
14438 "Slices are not supposed to overlap.");
14439 UsedBits |= Second.getUsedBits();
14440 return areUsedBitsDense(UsedBits);
14443 /// Adjust the \p GlobalLSCost according to the target
14444 /// paring capabilities and the layout of the slices.
14445 /// \pre \p GlobalLSCost should account for at least as many loads as
14446 /// there is in the slices in \p LoadedSlices.
14447 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
14448 LoadedSlice::Cost &GlobalLSCost) {
14449 unsigned NumberOfSlices = LoadedSlices.size();
14450 // If there is less than 2 elements, no pairing is possible.
14451 if (NumberOfSlices < 2)
14452 return;
14454 // Sort the slices so that elements that are likely to be next to each
14455 // other in memory are next to each other in the list.
14456 llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) {
14457 assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
14458 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
14460 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
14461 // First (resp. Second) is the first (resp. Second) potentially candidate
14462 // to be placed in a paired load.
14463 const LoadedSlice *First = nullptr;
14464 const LoadedSlice *Second = nullptr;
14465 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
14466 // Set the beginning of the pair.
14467 First = Second) {
14468 Second = &LoadedSlices[CurrSlice];
14470 // If First is NULL, it means we start a new pair.
14471 // Get to the next slice.
14472 if (!First)
14473 continue;
14475 EVT LoadedType = First->getLoadedType();
14477 // If the types of the slices are different, we cannot pair them.
14478 if (LoadedType != Second->getLoadedType())
14479 continue;
14481 // Check if the target supplies paired loads for this type.
14482 unsigned RequiredAlignment = 0;
14483 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
14484 // move to the next pair, this type is hopeless.
14485 Second = nullptr;
14486 continue;
14488 // Check if we meet the alignment requirement.
14489 if (RequiredAlignment > First->getAlignment())
14490 continue;
14492 // Check that both loads are next to each other in memory.
14493 if (!areSlicesNextToEachOther(*First, *Second))
14494 continue;
14496 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
14497 --GlobalLSCost.Loads;
14498 // Move to the next pair.
14499 Second = nullptr;
14503 /// Check the profitability of all involved LoadedSlice.
14504 /// Currently, it is considered profitable if there is exactly two
14505 /// involved slices (1) which are (2) next to each other in memory, and
14506 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
14508 /// Note: The order of the elements in \p LoadedSlices may be modified, but not
14509 /// the elements themselves.
14511 /// FIXME: When the cost model will be mature enough, we can relax
14512 /// constraints (1) and (2).
14513 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
14514 const APInt &UsedBits, bool ForCodeSize) {
14515 unsigned NumberOfSlices = LoadedSlices.size();
14516 if (StressLoadSlicing)
14517 return NumberOfSlices > 1;
14519 // Check (1).
14520 if (NumberOfSlices != 2)
14521 return false;
14523 // Check (2).
14524 if (!areUsedBitsDense(UsedBits))
14525 return false;
14527 // Check (3).
14528 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
14529 // The original code has one big load.
14530 OrigCost.Loads = 1;
14531 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
14532 const LoadedSlice &LS = LoadedSlices[CurrSlice];
14533 // Accumulate the cost of all the slices.
14534 LoadedSlice::Cost SliceCost(LS, ForCodeSize);
14535 GlobalSlicingCost += SliceCost;
14537 // Account as cost in the original configuration the gain obtained
14538 // with the current slices.
14539 OrigCost.addSliceGain(LS);
14542 // If the target supports paired load, adjust the cost accordingly.
14543 adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
14544 return OrigCost > GlobalSlicingCost;
14547 /// If the given load, \p LI, is used only by trunc or trunc(lshr)
14548 /// operations, split it in the various pieces being extracted.
14550 /// This sort of thing is introduced by SROA.
14551 /// This slicing takes care not to insert overlapping loads.
14552 /// \pre LI is a simple load (i.e., not an atomic or volatile load).
14553 bool DAGCombiner::SliceUpLoad(SDNode *N) {
14554 if (Level < AfterLegalizeDAG)
14555 return false;
14557 LoadSDNode *LD = cast<LoadSDNode>(N);
14558 if (LD->isVolatile() || !ISD::isNormalLoad(LD) ||
14559 !LD->getValueType(0).isInteger())
14560 return false;
14562 // Keep track of already used bits to detect overlapping values.
14563 // In that case, we will just abort the transformation.
14564 APInt UsedBits(LD->getValueSizeInBits(0), 0);
14566 SmallVector<LoadedSlice, 4> LoadedSlices;
14568 // Check if this load is used as several smaller chunks of bits.
14569 // Basically, look for uses in trunc or trunc(lshr) and record a new chain
14570 // of computation for each trunc.
14571 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
14572 UI != UIEnd; ++UI) {
14573 // Skip the uses of the chain.
14574 if (UI.getUse().getResNo() != 0)
14575 continue;
14577 SDNode *User = *UI;
14578 unsigned Shift = 0;
14580 // Check if this is a trunc(lshr).
14581 if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
14582 isa<ConstantSDNode>(User->getOperand(1))) {
14583 Shift = User->getConstantOperandVal(1);
14584 User = *User->use_begin();
14587 // At this point, User is a Truncate, iff we encountered, trunc or
14588 // trunc(lshr).
14589 if (User->getOpcode() != ISD::TRUNCATE)
14590 return false;
14592 // The width of the type must be a power of 2 and greater than 8-bits.
14593 // Otherwise the load cannot be represented in LLVM IR.
14594 // Moreover, if we shifted with a non-8-bits multiple, the slice
14595 // will be across several bytes. We do not support that.
14596 unsigned Width = User->getValueSizeInBits(0);
14597 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
14598 return false;
14600 // Build the slice for this chain of computations.
14601 LoadedSlice LS(User, LD, Shift, &DAG);
14602 APInt CurrentUsedBits = LS.getUsedBits();
14604 // Check if this slice overlaps with another.
14605 if ((CurrentUsedBits & UsedBits) != 0)
14606 return false;
14607 // Update the bits used globally.
14608 UsedBits |= CurrentUsedBits;
14610 // Check if the new slice would be legal.
14611 if (!LS.isLegal())
14612 return false;
14614 // Record the slice.
14615 LoadedSlices.push_back(LS);
14618 // Abort slicing if it does not seem to be profitable.
14619 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
14620 return false;
14622 ++SlicedLoads;
14624 // Rewrite each chain to use an independent load.
14625 // By construction, each chain can be represented by a unique load.
14627 // Prepare the argument for the new token factor for all the slices.
14628 SmallVector<SDValue, 8> ArgChains;
14629 for (SmallVectorImpl<LoadedSlice>::const_iterator
14630 LSIt = LoadedSlices.begin(),
14631 LSItEnd = LoadedSlices.end();
14632 LSIt != LSItEnd; ++LSIt) {
14633 SDValue SliceInst = LSIt->loadSlice();
14634 CombineTo(LSIt->Inst, SliceInst, true);
14635 if (SliceInst.getOpcode() != ISD::LOAD)
14636 SliceInst = SliceInst.getOperand(0);
14637 assert(SliceInst->getOpcode() == ISD::LOAD &&
14638 "It takes more than a zext to get to the loaded slice!!");
14639 ArgChains.push_back(SliceInst.getValue(1));
14642 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
14643 ArgChains);
14644 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
14645 AddToWorklist(Chain.getNode());
14646 return true;
14649 /// Check to see if V is (and load (ptr), imm), where the load is having
14650 /// specific bytes cleared out. If so, return the byte size being masked out
14651 /// and the shift amount.
14652 static std::pair<unsigned, unsigned>
14653 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
14654 std::pair<unsigned, unsigned> Result(0, 0);
14656 // Check for the structure we're looking for.
14657 if (V->getOpcode() != ISD::AND ||
14658 !isa<ConstantSDNode>(V->getOperand(1)) ||
14659 !ISD::isNormalLoad(V->getOperand(0).getNode()))
14660 return Result;
14662 // Check the chain and pointer.
14663 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
14664 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer.
14666 // This only handles simple types.
14667 if (V.getValueType() != MVT::i16 &&
14668 V.getValueType() != MVT::i32 &&
14669 V.getValueType() != MVT::i64)
14670 return Result;
14672 // Check the constant mask. Invert it so that the bits being masked out are
14673 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
14674 // follow the sign bit for uniformity.
14675 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
14676 unsigned NotMaskLZ = countLeadingZeros(NotMask);
14677 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte.
14678 unsigned NotMaskTZ = countTrailingZeros(NotMask);
14679 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte.
14680 if (NotMaskLZ == 64) return Result; // All zero mask.
14682 // See if we have a continuous run of bits. If so, we have 0*1+0*
14683 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64)
14684 return Result;
14686 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
14687 if (V.getValueType() != MVT::i64 && NotMaskLZ)
14688 NotMaskLZ -= 64-V.getValueSizeInBits();
14690 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
14691 switch (MaskedBytes) {
14692 case 1:
14693 case 2:
14694 case 4: break;
14695 default: return Result; // All one mask, or 5-byte mask.
14698 // Verify that the first bit starts at a multiple of mask so that the access
14699 // is aligned the same as the access width.
14700 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
14702 // For narrowing to be valid, it must be the case that the load the
14703 // immediately preceding memory operation before the store.
14704 if (LD == Chain.getNode())
14705 ; // ok.
14706 else if (Chain->getOpcode() == ISD::TokenFactor &&
14707 SDValue(LD, 1).hasOneUse()) {
14708 // LD has only 1 chain use so they are no indirect dependencies.
14709 if (!LD->isOperandOf(Chain.getNode()))
14710 return Result;
14711 } else
14712 return Result; // Fail.
14714 Result.first = MaskedBytes;
14715 Result.second = NotMaskTZ/8;
14716 return Result;
14719 /// Check to see if IVal is something that provides a value as specified by
14720 /// MaskInfo. If so, replace the specified store with a narrower store of
14721 /// truncated IVal.
14722 static SDValue
14723 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
14724 SDValue IVal, StoreSDNode *St,
14725 DAGCombiner *DC) {
14726 unsigned NumBytes = MaskInfo.first;
14727 unsigned ByteShift = MaskInfo.second;
14728 SelectionDAG &DAG = DC->getDAG();
14730 // Check to see if IVal is all zeros in the part being masked in by the 'or'
14731 // that uses this. If not, this is not a replacement.
14732 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
14733 ByteShift*8, (ByteShift+NumBytes)*8);
14734 if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue();
14736 // Check that it is legal on the target to do this. It is legal if the new
14737 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
14738 // legalization.
14739 MVT VT = MVT::getIntegerVT(NumBytes*8);
14740 if (!DC->isTypeLegal(VT))
14741 return SDValue();
14743 // Okay, we can do this! Replace the 'St' store with a store of IVal that is
14744 // shifted by ByteShift and truncated down to NumBytes.
14745 if (ByteShift) {
14746 SDLoc DL(IVal);
14747 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal,
14748 DAG.getConstant(ByteShift*8, DL,
14749 DC->getShiftAmountTy(IVal.getValueType())));
14752 // Figure out the offset for the store and the alignment of the access.
14753 unsigned StOffset;
14754 unsigned NewAlign = St->getAlignment();
14756 if (DAG.getDataLayout().isLittleEndian())
14757 StOffset = ByteShift;
14758 else
14759 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
14761 SDValue Ptr = St->getBasePtr();
14762 if (StOffset) {
14763 SDLoc DL(IVal);
14764 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(),
14765 Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType()));
14766 NewAlign = MinAlign(NewAlign, StOffset);
14769 // Truncate down to the new size.
14770 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
14772 ++OpsNarrowed;
14773 return DAG
14774 .getStore(St->getChain(), SDLoc(St), IVal, Ptr,
14775 St->getPointerInfo().getWithOffset(StOffset), NewAlign);
14778 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and
14779 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
14780 /// narrowing the load and store if it would end up being a win for performance
14781 /// or code size.
14782 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
14783 StoreSDNode *ST = cast<StoreSDNode>(N);
14784 if (ST->isVolatile())
14785 return SDValue();
14787 SDValue Chain = ST->getChain();
14788 SDValue Value = ST->getValue();
14789 SDValue Ptr = ST->getBasePtr();
14790 EVT VT = Value.getValueType();
14792 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
14793 return SDValue();
14795 unsigned Opc = Value.getOpcode();
14797 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
14798 // is a byte mask indicating a consecutive number of bytes, check to see if
14799 // Y is known to provide just those bytes. If so, we try to replace the
14800 // load + replace + store sequence with a single (narrower) store, which makes
14801 // the load dead.
14802 if (Opc == ISD::OR) {
14803 std::pair<unsigned, unsigned> MaskedLoad;
14804 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
14805 if (MaskedLoad.first)
14806 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
14807 Value.getOperand(1), ST,this))
14808 return NewST;
14810 // Or is commutative, so try swapping X and Y.
14811 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
14812 if (MaskedLoad.first)
14813 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
14814 Value.getOperand(0), ST,this))
14815 return NewST;
14818 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
14819 Value.getOperand(1).getOpcode() != ISD::Constant)
14820 return SDValue();
14822 SDValue N0 = Value.getOperand(0);
14823 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
14824 Chain == SDValue(N0.getNode(), 1)) {
14825 LoadSDNode *LD = cast<LoadSDNode>(N0);
14826 if (LD->getBasePtr() != Ptr ||
14827 LD->getPointerInfo().getAddrSpace() !=
14828 ST->getPointerInfo().getAddrSpace())
14829 return SDValue();
14831 // Find the type to narrow it the load / op / store to.
14832 SDValue N1 = Value.getOperand(1);
14833 unsigned BitWidth = N1.getValueSizeInBits();
14834 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
14835 if (Opc == ISD::AND)
14836 Imm ^= APInt::getAllOnesValue(BitWidth);
14837 if (Imm == 0 || Imm.isAllOnesValue())
14838 return SDValue();
14839 unsigned ShAmt = Imm.countTrailingZeros();
14840 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
14841 unsigned NewBW = NextPowerOf2(MSB - ShAmt);
14842 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
14843 // The narrowing should be profitable, the load/store operation should be
14844 // legal (or custom) and the store size should be equal to the NewVT width.
14845 while (NewBW < BitWidth &&
14846 (NewVT.getStoreSizeInBits() != NewBW ||
14847 !TLI.isOperationLegalOrCustom(Opc, NewVT) ||
14848 !TLI.isNarrowingProfitable(VT, NewVT))) {
14849 NewBW = NextPowerOf2(NewBW);
14850 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
14852 if (NewBW >= BitWidth)
14853 return SDValue();
14855 // If the lsb changed does not start at the type bitwidth boundary,
14856 // start at the previous one.
14857 if (ShAmt % NewBW)
14858 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
14859 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
14860 std::min(BitWidth, ShAmt + NewBW));
14861 if ((Imm & Mask) == Imm) {
14862 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
14863 if (Opc == ISD::AND)
14864 NewImm ^= APInt::getAllOnesValue(NewBW);
14865 uint64_t PtrOff = ShAmt / 8;
14866 // For big endian targets, we need to adjust the offset to the pointer to
14867 // load the correct bytes.
14868 if (DAG.getDataLayout().isBigEndian())
14869 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
14871 unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
14872 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
14873 if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy))
14874 return SDValue();
14876 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
14877 Ptr.getValueType(), Ptr,
14878 DAG.getConstant(PtrOff, SDLoc(LD),
14879 Ptr.getValueType()));
14880 SDValue NewLD =
14881 DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr,
14882 LD->getPointerInfo().getWithOffset(PtrOff), NewAlign,
14883 LD->getMemOperand()->getFlags(), LD->getAAInfo());
14884 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
14885 DAG.getConstant(NewImm, SDLoc(Value),
14886 NewVT));
14887 SDValue NewST =
14888 DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr,
14889 ST->getPointerInfo().getWithOffset(PtrOff), NewAlign);
14891 AddToWorklist(NewPtr.getNode());
14892 AddToWorklist(NewLD.getNode());
14893 AddToWorklist(NewVal.getNode());
14894 WorklistRemover DeadNodes(*this);
14895 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
14896 ++OpsNarrowed;
14897 return NewST;
14901 return SDValue();
14904 /// For a given floating point load / store pair, if the load value isn't used
14905 /// by any other operations, then consider transforming the pair to integer
14906 /// load / store operations if the target deems the transformation profitable.
14907 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
14908 StoreSDNode *ST = cast<StoreSDNode>(N);
14909 SDValue Value = ST->getValue();
14910 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
14911 Value.hasOneUse()) {
14912 LoadSDNode *LD = cast<LoadSDNode>(Value);
14913 EVT VT = LD->getMemoryVT();
14914 if (!VT.isFloatingPoint() ||
14915 VT != ST->getMemoryVT() ||
14916 LD->isNonTemporal() ||
14917 ST->isNonTemporal() ||
14918 LD->getPointerInfo().getAddrSpace() != 0 ||
14919 ST->getPointerInfo().getAddrSpace() != 0)
14920 return SDValue();
14922 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
14923 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
14924 !TLI.isOperationLegal(ISD::STORE, IntVT) ||
14925 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
14926 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
14927 return SDValue();
14929 unsigned LDAlign = LD->getAlignment();
14930 unsigned STAlign = ST->getAlignment();
14931 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
14932 unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy);
14933 if (LDAlign < ABIAlign || STAlign < ABIAlign)
14934 return SDValue();
14936 SDValue NewLD =
14937 DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(),
14938 LD->getPointerInfo(), LDAlign);
14940 SDValue NewST =
14941 DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(),
14942 ST->getPointerInfo(), STAlign);
14944 AddToWorklist(NewLD.getNode());
14945 AddToWorklist(NewST.getNode());
14946 WorklistRemover DeadNodes(*this);
14947 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
14948 ++LdStFP2Int;
14949 return NewST;
14952 return SDValue();
14955 // This is a helper function for visitMUL to check the profitability
14956 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
14957 // MulNode is the original multiply, AddNode is (add x, c1),
14958 // and ConstNode is c2.
14960 // If the (add x, c1) has multiple uses, we could increase
14961 // the number of adds if we make this transformation.
14962 // It would only be worth doing this if we can remove a
14963 // multiply in the process. Check for that here.
14964 // To illustrate:
14965 // (A + c1) * c3
14966 // (A + c2) * c3
14967 // We're checking for cases where we have common "c3 * A" expressions.
14968 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode,
14969 SDValue &AddNode,
14970 SDValue &ConstNode) {
14971 APInt Val;
14973 // If the add only has one use, this would be OK to do.
14974 if (AddNode.getNode()->hasOneUse())
14975 return true;
14977 // Walk all the users of the constant with which we're multiplying.
14978 for (SDNode *Use : ConstNode->uses()) {
14979 if (Use == MulNode) // This use is the one we're on right now. Skip it.
14980 continue;
14982 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use.
14983 SDNode *OtherOp;
14984 SDNode *MulVar = AddNode.getOperand(0).getNode();
14986 // OtherOp is what we're multiplying against the constant.
14987 if (Use->getOperand(0) == ConstNode)
14988 OtherOp = Use->getOperand(1).getNode();
14989 else
14990 OtherOp = Use->getOperand(0).getNode();
14992 // Check to see if multiply is with the same operand of our "add".
14994 // ConstNode = CONST
14995 // Use = ConstNode * A <-- visiting Use. OtherOp is A.
14996 // ...
14997 // AddNode = (A + c1) <-- MulVar is A.
14998 // = AddNode * ConstNode <-- current visiting instruction.
15000 // If we make this transformation, we will have a common
15001 // multiply (ConstNode * A) that we can save.
15002 if (OtherOp == MulVar)
15003 return true;
15005 // Now check to see if a future expansion will give us a common
15006 // multiply.
15008 // ConstNode = CONST
15009 // AddNode = (A + c1)
15010 // ... = AddNode * ConstNode <-- current visiting instruction.
15011 // ...
15012 // OtherOp = (A + c2)
15013 // Use = OtherOp * ConstNode <-- visiting Use.
15015 // If we make this transformation, we will have a common
15016 // multiply (CONST * A) after we also do the same transformation
15017 // to the "t2" instruction.
15018 if (OtherOp->getOpcode() == ISD::ADD &&
15019 DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) &&
15020 OtherOp->getOperand(0).getNode() == MulVar)
15021 return true;
15025 // Didn't find a case where this would be profitable.
15026 return false;
15029 SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
15030 unsigned NumStores) {
15031 SmallVector<SDValue, 8> Chains;
15032 SmallPtrSet<const SDNode *, 8> Visited;
15033 SDLoc StoreDL(StoreNodes[0].MemNode);
15035 for (unsigned i = 0; i < NumStores; ++i) {
15036 Visited.insert(StoreNodes[i].MemNode);
15039 // don't include nodes that are children or repeated nodes.
15040 for (unsigned i = 0; i < NumStores; ++i) {
15041 if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second)
15042 Chains.push_back(StoreNodes[i].MemNode->getChain());
15045 assert(Chains.size() > 0 && "Chain should have generated a chain");
15046 return DAG.getTokenFactor(StoreDL, Chains);
15049 bool DAGCombiner::MergeStoresOfConstantsOrVecElts(
15050 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores,
15051 bool IsConstantSrc, bool UseVector, bool UseTrunc) {
15052 // Make sure we have something to merge.
15053 if (NumStores < 2)
15054 return false;
15056 // The latest Node in the DAG.
15057 SDLoc DL(StoreNodes[0].MemNode);
15059 int64_t ElementSizeBits = MemVT.getStoreSizeInBits();
15060 unsigned SizeInBits = NumStores * ElementSizeBits;
15061 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
15063 EVT StoreTy;
15064 if (UseVector) {
15065 unsigned Elts = NumStores * NumMemElts;
15066 // Get the type for the merged vector store.
15067 StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
15068 } else
15069 StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
15071 SDValue StoredVal;
15072 if (UseVector) {
15073 if (IsConstantSrc) {
15074 SmallVector<SDValue, 8> BuildVector;
15075 for (unsigned I = 0; I != NumStores; ++I) {
15076 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode);
15077 SDValue Val = St->getValue();
15078 // If constant is of the wrong type, convert it now.
15079 if (MemVT != Val.getValueType()) {
15080 Val = peekThroughBitcasts(Val);
15081 // Deal with constants of wrong size.
15082 if (ElementSizeBits != Val.getValueSizeInBits()) {
15083 EVT IntMemVT =
15084 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
15085 if (isa<ConstantFPSDNode>(Val)) {
15086 // Not clear how to truncate FP values.
15087 return false;
15088 } else if (auto *C = dyn_cast<ConstantSDNode>(Val))
15089 Val = DAG.getConstant(C->getAPIntValue()
15090 .zextOrTrunc(Val.getValueSizeInBits())
15091 .zextOrTrunc(ElementSizeBits),
15092 SDLoc(C), IntMemVT);
15094 // Make sure correctly size type is the correct type.
15095 Val = DAG.getBitcast(MemVT, Val);
15097 BuildVector.push_back(Val);
15099 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
15100 : ISD::BUILD_VECTOR,
15101 DL, StoreTy, BuildVector);
15102 } else {
15103 SmallVector<SDValue, 8> Ops;
15104 for (unsigned i = 0; i < NumStores; ++i) {
15105 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
15106 SDValue Val = peekThroughBitcasts(St->getValue());
15107 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
15108 // type MemVT. If the underlying value is not the correct
15109 // type, but it is an extraction of an appropriate vector we
15110 // can recast Val to be of the correct type. This may require
15111 // converting between EXTRACT_VECTOR_ELT and
15112 // EXTRACT_SUBVECTOR.
15113 if ((MemVT != Val.getValueType()) &&
15114 (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
15115 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) {
15116 EVT MemVTScalarTy = MemVT.getScalarType();
15117 // We may need to add a bitcast here to get types to line up.
15118 if (MemVTScalarTy != Val.getValueType().getScalarType()) {
15119 Val = DAG.getBitcast(MemVT, Val);
15120 } else {
15121 unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR
15122 : ISD::EXTRACT_VECTOR_ELT;
15123 SDValue Vec = Val.getOperand(0);
15124 SDValue Idx = Val.getOperand(1);
15125 Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx);
15128 Ops.push_back(Val);
15131 // Build the extracted vector elements back into a vector.
15132 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
15133 : ISD::BUILD_VECTOR,
15134 DL, StoreTy, Ops);
15136 } else {
15137 // We should always use a vector store when merging extracted vector
15138 // elements, so this path implies a store of constants.
15139 assert(IsConstantSrc && "Merged vector elements should use vector store");
15141 APInt StoreInt(SizeInBits, 0);
15143 // Construct a single integer constant which is made of the smaller
15144 // constant inputs.
15145 bool IsLE = DAG.getDataLayout().isLittleEndian();
15146 for (unsigned i = 0; i < NumStores; ++i) {
15147 unsigned Idx = IsLE ? (NumStores - 1 - i) : i;
15148 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
15150 SDValue Val = St->getValue();
15151 Val = peekThroughBitcasts(Val);
15152 StoreInt <<= ElementSizeBits;
15153 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
15154 StoreInt |= C->getAPIntValue()
15155 .zextOrTrunc(ElementSizeBits)
15156 .zextOrTrunc(SizeInBits);
15157 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
15158 StoreInt |= C->getValueAPF()
15159 .bitcastToAPInt()
15160 .zextOrTrunc(ElementSizeBits)
15161 .zextOrTrunc(SizeInBits);
15162 // If fp truncation is necessary give up for now.
15163 if (MemVT.getSizeInBits() != ElementSizeBits)
15164 return false;
15165 } else {
15166 llvm_unreachable("Invalid constant element type");
15170 // Create the new Load and Store operations.
15171 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy);
15174 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
15175 SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores);
15177 // make sure we use trunc store if it's necessary to be legal.
15178 SDValue NewStore;
15179 if (!UseTrunc) {
15180 NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(),
15181 FirstInChain->getPointerInfo(),
15182 FirstInChain->getAlignment());
15183 } else { // Must be realized as a trunc store
15184 EVT LegalizedStoredValTy =
15185 TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
15186 unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits();
15187 ConstantSDNode *C = cast<ConstantSDNode>(StoredVal);
15188 SDValue ExtendedStoreVal =
15189 DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL,
15190 LegalizedStoredValTy);
15191 NewStore = DAG.getTruncStore(
15192 NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(),
15193 FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/,
15194 FirstInChain->getAlignment(),
15195 FirstInChain->getMemOperand()->getFlags());
15198 // Replace all merged stores with the new store.
15199 for (unsigned i = 0; i < NumStores; ++i)
15200 CombineTo(StoreNodes[i].MemNode, NewStore);
15202 AddToWorklist(NewChain.getNode());
15203 return true;
15206 void DAGCombiner::getStoreMergeCandidates(
15207 StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes,
15208 SDNode *&RootNode) {
15209 // This holds the base pointer, index, and the offset in bytes from the base
15210 // pointer.
15211 BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
15212 EVT MemVT = St->getMemoryVT();
15214 SDValue Val = peekThroughBitcasts(St->getValue());
15215 // We must have a base and an offset.
15216 if (!BasePtr.getBase().getNode())
15217 return;
15219 // Do not handle stores to undef base pointers.
15220 if (BasePtr.getBase().isUndef())
15221 return;
15223 bool IsConstantSrc = isa<ConstantSDNode>(Val) || isa<ConstantFPSDNode>(Val);
15224 bool IsExtractVecSrc = (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
15225 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR);
15226 bool IsLoadSrc = isa<LoadSDNode>(Val);
15227 BaseIndexOffset LBasePtr;
15228 // Match on loadbaseptr if relevant.
15229 EVT LoadVT;
15230 if (IsLoadSrc) {
15231 auto *Ld = cast<LoadSDNode>(Val);
15232 LBasePtr = BaseIndexOffset::match(Ld, DAG);
15233 LoadVT = Ld->getMemoryVT();
15234 // Load and store should be the same type.
15235 if (MemVT != LoadVT)
15236 return;
15237 // Loads must only have one use.
15238 if (!Ld->hasNUsesOfValue(1, 0))
15239 return;
15240 // The memory operands must not be volatile/indexed.
15241 if (Ld->isVolatile() || Ld->isIndexed())
15242 return;
15244 auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr,
15245 int64_t &Offset) -> bool {
15246 // The memory operands must not be volatile/indexed.
15247 if (Other->isVolatile() || Other->isIndexed())
15248 return false;
15249 // Don't mix temporal stores with non-temporal stores.
15250 if (St->isNonTemporal() != Other->isNonTemporal())
15251 return false;
15252 SDValue OtherBC = peekThroughBitcasts(Other->getValue());
15253 // Allow merging constants of different types as integers.
15254 bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT())
15255 : Other->getMemoryVT() != MemVT;
15256 if (IsLoadSrc) {
15257 if (NoTypeMatch)
15258 return false;
15259 // The Load's Base Ptr must also match
15260 if (LoadSDNode *OtherLd = dyn_cast<LoadSDNode>(OtherBC)) {
15261 BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG);
15262 if (LoadVT != OtherLd->getMemoryVT())
15263 return false;
15264 // Loads must only have one use.
15265 if (!OtherLd->hasNUsesOfValue(1, 0))
15266 return false;
15267 // The memory operands must not be volatile/indexed.
15268 if (OtherLd->isVolatile() || OtherLd->isIndexed())
15269 return false;
15270 // Don't mix temporal loads with non-temporal loads.
15271 if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal())
15272 return false;
15273 if (!(LBasePtr.equalBaseIndex(LPtr, DAG)))
15274 return false;
15275 } else
15276 return false;
15278 if (IsConstantSrc) {
15279 if (NoTypeMatch)
15280 return false;
15281 if (!(isa<ConstantSDNode>(OtherBC) || isa<ConstantFPSDNode>(OtherBC)))
15282 return false;
15284 if (IsExtractVecSrc) {
15285 // Do not merge truncated stores here.
15286 if (Other->isTruncatingStore())
15287 return false;
15288 if (!MemVT.bitsEq(OtherBC.getValueType()))
15289 return false;
15290 if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT &&
15291 OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR)
15292 return false;
15294 Ptr = BaseIndexOffset::match(Other, DAG);
15295 return (BasePtr.equalBaseIndex(Ptr, DAG, Offset));
15298 // Check if the pair of StoreNode and the RootNode already bail out many
15299 // times which is over the limit in dependence check.
15300 auto OverLimitInDependenceCheck = [&](SDNode *StoreNode,
15301 SDNode *RootNode) -> bool {
15302 auto RootCount = StoreRootCountMap.find(StoreNode);
15303 if (RootCount != StoreRootCountMap.end() &&
15304 RootCount->second.first == RootNode &&
15305 RootCount->second.second > StoreMergeDependenceLimit)
15306 return true;
15307 return false;
15310 // We looking for a root node which is an ancestor to all mergable
15311 // stores. We search up through a load, to our root and then down
15312 // through all children. For instance we will find Store{1,2,3} if
15313 // St is Store1, Store2. or Store3 where the root is not a load
15314 // which always true for nonvolatile ops. TODO: Expand
15315 // the search to find all valid candidates through multiple layers of loads.
15317 // Root
15318 // |-------|-------|
15319 // Load Load Store3
15320 // | |
15321 // Store1 Store2
15323 // FIXME: We should be able to climb and
15324 // descend TokenFactors to find candidates as well.
15326 RootNode = St->getChain().getNode();
15328 unsigned NumNodesExplored = 0;
15329 if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(RootNode)) {
15330 RootNode = Ldn->getChain().getNode();
15331 for (auto I = RootNode->use_begin(), E = RootNode->use_end();
15332 I != E && NumNodesExplored < 1024; ++I, ++NumNodesExplored)
15333 if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) // walk down chain
15334 for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2)
15335 if (I2.getOperandNo() == 0)
15336 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I2)) {
15337 BaseIndexOffset Ptr;
15338 int64_t PtrDiff;
15339 if (CandidateMatch(OtherST, Ptr, PtrDiff) &&
15340 !OverLimitInDependenceCheck(OtherST, RootNode))
15341 StoreNodes.push_back(MemOpLink(OtherST, PtrDiff));
15343 } else
15344 for (auto I = RootNode->use_begin(), E = RootNode->use_end();
15345 I != E && NumNodesExplored < 1024; ++I, ++NumNodesExplored)
15346 if (I.getOperandNo() == 0)
15347 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) {
15348 BaseIndexOffset Ptr;
15349 int64_t PtrDiff;
15350 if (CandidateMatch(OtherST, Ptr, PtrDiff) &&
15351 !OverLimitInDependenceCheck(OtherST, RootNode))
15352 StoreNodes.push_back(MemOpLink(OtherST, PtrDiff));
15356 // We need to check that merging these stores does not cause a loop in
15357 // the DAG. Any store candidate may depend on another candidate
15358 // indirectly through its operand (we already consider dependencies
15359 // through the chain). Check in parallel by searching up from
15360 // non-chain operands of candidates.
15361 bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
15362 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
15363 SDNode *RootNode) {
15364 // FIXME: We should be able to truncate a full search of
15365 // predecessors by doing a BFS and keeping tabs the originating
15366 // stores from which worklist nodes come from in a similar way to
15367 // TokenFactor simplfication.
15369 SmallPtrSet<const SDNode *, 32> Visited;
15370 SmallVector<const SDNode *, 8> Worklist;
15372 // RootNode is a predecessor to all candidates so we need not search
15373 // past it. Add RootNode (peeking through TokenFactors). Do not count
15374 // these towards size check.
15376 Worklist.push_back(RootNode);
15377 while (!Worklist.empty()) {
15378 auto N = Worklist.pop_back_val();
15379 if (!Visited.insert(N).second)
15380 continue; // Already present in Visited.
15381 if (N->getOpcode() == ISD::TokenFactor) {
15382 for (SDValue Op : N->ops())
15383 Worklist.push_back(Op.getNode());
15387 // Don't count pruning nodes towards max.
15388 unsigned int Max = 1024 + Visited.size();
15389 // Search Ops of store candidates.
15390 for (unsigned i = 0; i < NumStores; ++i) {
15391 SDNode *N = StoreNodes[i].MemNode;
15392 // Of the 4 Store Operands:
15393 // * Chain (Op 0) -> We have already considered these
15394 // in candidate selection and can be
15395 // safely ignored
15396 // * Value (Op 1) -> Cycles may happen (e.g. through load chains)
15397 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant,
15398 // but aren't necessarily fromt the same base node, so
15399 // cycles possible (e.g. via indexed store).
15400 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for
15401 // non-indexed stores). Not constant on all targets (e.g. ARM)
15402 // and so can participate in a cycle.
15403 for (unsigned j = 1; j < N->getNumOperands(); ++j)
15404 Worklist.push_back(N->getOperand(j).getNode());
15406 // Search through DAG. We can stop early if we find a store node.
15407 for (unsigned i = 0; i < NumStores; ++i)
15408 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist,
15409 Max)) {
15410 // If the searching bail out, record the StoreNode and RootNode in the
15411 // StoreRootCountMap. If we have seen the pair many times over a limit,
15412 // we won't add the StoreNode into StoreNodes set again.
15413 if (Visited.size() >= Max) {
15414 auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode];
15415 if (RootCount.first == RootNode)
15416 RootCount.second++;
15417 else
15418 RootCount = {RootNode, 1};
15420 return false;
15422 return true;
15425 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode *St) {
15426 if (OptLevel == CodeGenOpt::None || !EnableStoreMerging)
15427 return false;
15429 EVT MemVT = St->getMemoryVT();
15430 int64_t ElementSizeBytes = MemVT.getStoreSize();
15431 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
15433 if (MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits)
15434 return false;
15436 bool NoVectors = DAG.getMachineFunction().getFunction().hasFnAttribute(
15437 Attribute::NoImplicitFloat);
15439 // This function cannot currently deal with non-byte-sized memory sizes.
15440 if (ElementSizeBytes * 8 != MemVT.getSizeInBits())
15441 return false;
15443 if (!MemVT.isSimple())
15444 return false;
15446 // Perform an early exit check. Do not bother looking at stored values that
15447 // are not constants, loads, or extracted vector elements.
15448 SDValue StoredVal = peekThroughBitcasts(St->getValue());
15449 bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
15450 bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) ||
15451 isa<ConstantFPSDNode>(StoredVal);
15452 bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
15453 StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR);
15454 bool IsNonTemporalStore = St->isNonTemporal();
15455 bool IsNonTemporalLoad =
15456 IsLoadSrc && cast<LoadSDNode>(StoredVal)->isNonTemporal();
15458 if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc)
15459 return false;
15461 SmallVector<MemOpLink, 8> StoreNodes;
15462 SDNode *RootNode;
15463 // Find potential store merge candidates by searching through chain sub-DAG
15464 getStoreMergeCandidates(St, StoreNodes, RootNode);
15466 // Check if there is anything to merge.
15467 if (StoreNodes.size() < 2)
15468 return false;
15470 // Sort the memory operands according to their distance from the
15471 // base pointer.
15472 llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) {
15473 return LHS.OffsetFromBase < RHS.OffsetFromBase;
15476 // Store Merge attempts to merge the lowest stores. This generally
15477 // works out as if successful, as the remaining stores are checked
15478 // after the first collection of stores is merged. However, in the
15479 // case that a non-mergeable store is found first, e.g., {p[-2],
15480 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
15481 // mergeable cases. To prevent this, we prune such stores from the
15482 // front of StoreNodes here.
15484 bool RV = false;
15485 while (StoreNodes.size() > 1) {
15486 size_t StartIdx = 0;
15487 while ((StartIdx + 1 < StoreNodes.size()) &&
15488 StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes !=
15489 StoreNodes[StartIdx + 1].OffsetFromBase)
15490 ++StartIdx;
15492 // Bail if we don't have enough candidates to merge.
15493 if (StartIdx + 1 >= StoreNodes.size())
15494 return RV;
15496 if (StartIdx)
15497 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx);
15499 // Scan the memory operations on the chain and find the first
15500 // non-consecutive store memory address.
15501 unsigned NumConsecutiveStores = 1;
15502 int64_t StartAddress = StoreNodes[0].OffsetFromBase;
15503 // Check that the addresses are consecutive starting from the second
15504 // element in the list of stores.
15505 for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) {
15506 int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
15507 if (CurrAddress - StartAddress != (ElementSizeBytes * i))
15508 break;
15509 NumConsecutiveStores = i + 1;
15512 if (NumConsecutiveStores < 2) {
15513 StoreNodes.erase(StoreNodes.begin(),
15514 StoreNodes.begin() + NumConsecutiveStores);
15515 continue;
15518 // The node with the lowest store address.
15519 LLVMContext &Context = *DAG.getContext();
15520 const DataLayout &DL = DAG.getDataLayout();
15522 // Store the constants into memory as one consecutive store.
15523 if (IsConstantSrc) {
15524 while (NumConsecutiveStores >= 2) {
15525 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
15526 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
15527 unsigned FirstStoreAlign = FirstInChain->getAlignment();
15528 unsigned LastLegalType = 1;
15529 unsigned LastLegalVectorType = 1;
15530 bool LastIntegerTrunc = false;
15531 bool NonZero = false;
15532 unsigned FirstZeroAfterNonZero = NumConsecutiveStores;
15533 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
15534 StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode);
15535 SDValue StoredVal = ST->getValue();
15536 bool IsElementZero = false;
15537 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal))
15538 IsElementZero = C->isNullValue();
15539 else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal))
15540 IsElementZero = C->getConstantFPValue()->isNullValue();
15541 if (IsElementZero) {
15542 if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores)
15543 FirstZeroAfterNonZero = i;
15545 NonZero |= !IsElementZero;
15547 // Find a legal type for the constant store.
15548 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
15549 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits);
15550 bool IsFast = false;
15552 // Break early when size is too large to be legal.
15553 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
15554 break;
15556 if (TLI.isTypeLegal(StoreTy) &&
15557 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
15558 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15559 *FirstInChain->getMemOperand(), &IsFast) &&
15560 IsFast) {
15561 LastIntegerTrunc = false;
15562 LastLegalType = i + 1;
15563 // Or check whether a truncstore is legal.
15564 } else if (TLI.getTypeAction(Context, StoreTy) ==
15565 TargetLowering::TypePromoteInteger) {
15566 EVT LegalizedStoredValTy =
15567 TLI.getTypeToTransformTo(Context, StoredVal.getValueType());
15568 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
15569 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
15570 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15571 *FirstInChain->getMemOperand(),
15572 &IsFast) &&
15573 IsFast) {
15574 LastIntegerTrunc = true;
15575 LastLegalType = i + 1;
15579 // We only use vectors if the constant is known to be zero or the
15580 // target allows it and the function is not marked with the
15581 // noimplicitfloat attribute.
15582 if ((!NonZero ||
15583 TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) &&
15584 !NoVectors) {
15585 // Find a legal type for the vector store.
15586 unsigned Elts = (i + 1) * NumMemElts;
15587 EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
15588 if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) &&
15589 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
15590 TLI.allowsMemoryAccess(
15591 Context, DL, Ty, *FirstInChain->getMemOperand(), &IsFast) &&
15592 IsFast)
15593 LastLegalVectorType = i + 1;
15597 bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
15598 unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType;
15600 // Check if we found a legal integer type that creates a meaningful
15601 // merge.
15602 if (NumElem < 2) {
15603 // We know that candidate stores are in order and of correct
15604 // shape. While there is no mergeable sequence from the
15605 // beginning one may start later in the sequence. The only
15606 // reason a merge of size N could have failed where another of
15607 // the same size would not have, is if the alignment has
15608 // improved or we've dropped a non-zero value. Drop as many
15609 // candidates as we can here.
15610 unsigned NumSkip = 1;
15611 while (
15612 (NumSkip < NumConsecutiveStores) &&
15613 (NumSkip < FirstZeroAfterNonZero) &&
15614 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
15615 NumSkip++;
15617 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
15618 NumConsecutiveStores -= NumSkip;
15619 continue;
15622 // Check that we can merge these candidates without causing a cycle.
15623 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
15624 RootNode)) {
15625 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
15626 NumConsecutiveStores -= NumElem;
15627 continue;
15630 RV |= MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, true,
15631 UseVector, LastIntegerTrunc);
15633 // Remove merged stores for next iteration.
15634 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
15635 NumConsecutiveStores -= NumElem;
15637 continue;
15640 // When extracting multiple vector elements, try to store them
15641 // in one vector store rather than a sequence of scalar stores.
15642 if (IsExtractVecSrc) {
15643 // Loop on Consecutive Stores on success.
15644 while (NumConsecutiveStores >= 2) {
15645 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
15646 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
15647 unsigned FirstStoreAlign = FirstInChain->getAlignment();
15648 unsigned NumStoresToMerge = 1;
15649 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
15650 // Find a legal type for the vector store.
15651 unsigned Elts = (i + 1) * NumMemElts;
15652 EVT Ty =
15653 EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
15654 bool IsFast;
15656 // Break early when size is too large to be legal.
15657 if (Ty.getSizeInBits() > MaximumLegalStoreInBits)
15658 break;
15660 if (TLI.isTypeLegal(Ty) &&
15661 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
15662 TLI.allowsMemoryAccess(Context, DL, Ty,
15663 *FirstInChain->getMemOperand(), &IsFast) &&
15664 IsFast)
15665 NumStoresToMerge = i + 1;
15668 // Check if we found a legal integer type creating a meaningful
15669 // merge.
15670 if (NumStoresToMerge < 2) {
15671 // We know that candidate stores are in order and of correct
15672 // shape. While there is no mergeable sequence from the
15673 // beginning one may start later in the sequence. The only
15674 // reason a merge of size N could have failed where another of
15675 // the same size would not have, is if the alignment has
15676 // improved. Drop as many candidates as we can here.
15677 unsigned NumSkip = 1;
15678 while (
15679 (NumSkip < NumConsecutiveStores) &&
15680 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
15681 NumSkip++;
15683 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
15684 NumConsecutiveStores -= NumSkip;
15685 continue;
15688 // Check that we can merge these candidates without causing a cycle.
15689 if (!checkMergeStoreCandidatesForDependencies(
15690 StoreNodes, NumStoresToMerge, RootNode)) {
15691 StoreNodes.erase(StoreNodes.begin(),
15692 StoreNodes.begin() + NumStoresToMerge);
15693 NumConsecutiveStores -= NumStoresToMerge;
15694 continue;
15697 RV |= MergeStoresOfConstantsOrVecElts(
15698 StoreNodes, MemVT, NumStoresToMerge, false, true, false);
15700 StoreNodes.erase(StoreNodes.begin(),
15701 StoreNodes.begin() + NumStoresToMerge);
15702 NumConsecutiveStores -= NumStoresToMerge;
15704 continue;
15707 // Below we handle the case of multiple consecutive stores that
15708 // come from multiple consecutive loads. We merge them into a single
15709 // wide load and a single wide store.
15711 // Look for load nodes which are used by the stored values.
15712 SmallVector<MemOpLink, 8> LoadNodes;
15714 // Find acceptable loads. Loads need to have the same chain (token factor),
15715 // must not be zext, volatile, indexed, and they must be consecutive.
15716 BaseIndexOffset LdBasePtr;
15718 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
15719 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
15720 SDValue Val = peekThroughBitcasts(St->getValue());
15721 LoadSDNode *Ld = cast<LoadSDNode>(Val);
15723 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG);
15724 // If this is not the first ptr that we check.
15725 int64_t LdOffset = 0;
15726 if (LdBasePtr.getBase().getNode()) {
15727 // The base ptr must be the same.
15728 if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset))
15729 break;
15730 } else {
15731 // Check that all other base pointers are the same as this one.
15732 LdBasePtr = LdPtr;
15735 // We found a potential memory operand to merge.
15736 LoadNodes.push_back(MemOpLink(Ld, LdOffset));
15739 while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) {
15740 // If we have load/store pair instructions and we only have two values,
15741 // don't bother merging.
15742 unsigned RequiredAlignment;
15743 if (LoadNodes.size() == 2 &&
15744 TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
15745 StoreNodes[0].MemNode->getAlignment() >= RequiredAlignment) {
15746 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2);
15747 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2);
15748 break;
15750 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
15751 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
15752 unsigned FirstStoreAlign = FirstInChain->getAlignment();
15753 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
15754 unsigned FirstLoadAlign = FirstLoad->getAlignment();
15756 // Scan the memory operations on the chain and find the first
15757 // non-consecutive load memory address. These variables hold the index in
15758 // the store node array.
15760 unsigned LastConsecutiveLoad = 1;
15762 // This variable refers to the size and not index in the array.
15763 unsigned LastLegalVectorType = 1;
15764 unsigned LastLegalIntegerType = 1;
15765 bool isDereferenceable = true;
15766 bool DoIntegerTruncate = false;
15767 StartAddress = LoadNodes[0].OffsetFromBase;
15768 SDValue FirstChain = FirstLoad->getChain();
15769 for (unsigned i = 1; i < LoadNodes.size(); ++i) {
15770 // All loads must share the same chain.
15771 if (LoadNodes[i].MemNode->getChain() != FirstChain)
15772 break;
15774 int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
15775 if (CurrAddress - StartAddress != (ElementSizeBytes * i))
15776 break;
15777 LastConsecutiveLoad = i;
15779 if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable())
15780 isDereferenceable = false;
15782 // Find a legal type for the vector store.
15783 unsigned Elts = (i + 1) * NumMemElts;
15784 EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
15786 // Break early when size is too large to be legal.
15787 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
15788 break;
15790 bool IsFastSt, IsFastLd;
15791 if (TLI.isTypeLegal(StoreTy) &&
15792 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
15793 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15794 *FirstInChain->getMemOperand(), &IsFastSt) &&
15795 IsFastSt &&
15796 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15797 *FirstLoad->getMemOperand(), &IsFastLd) &&
15798 IsFastLd) {
15799 LastLegalVectorType = i + 1;
15802 // Find a legal type for the integer store.
15803 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
15804 StoreTy = EVT::getIntegerVT(Context, SizeInBits);
15805 if (TLI.isTypeLegal(StoreTy) &&
15806 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
15807 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15808 *FirstInChain->getMemOperand(), &IsFastSt) &&
15809 IsFastSt &&
15810 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15811 *FirstLoad->getMemOperand(), &IsFastLd) &&
15812 IsFastLd) {
15813 LastLegalIntegerType = i + 1;
15814 DoIntegerTruncate = false;
15815 // Or check whether a truncstore and extload is legal.
15816 } else if (TLI.getTypeAction(Context, StoreTy) ==
15817 TargetLowering::TypePromoteInteger) {
15818 EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy);
15819 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
15820 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
15821 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy,
15822 StoreTy) &&
15823 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy,
15824 StoreTy) &&
15825 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) &&
15826 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15827 *FirstInChain->getMemOperand(),
15828 &IsFastSt) &&
15829 IsFastSt &&
15830 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15831 *FirstLoad->getMemOperand(), &IsFastLd) &&
15832 IsFastLd) {
15833 LastLegalIntegerType = i + 1;
15834 DoIntegerTruncate = true;
15839 // Only use vector types if the vector type is larger than the integer
15840 // type. If they are the same, use integers.
15841 bool UseVectorTy =
15842 LastLegalVectorType > LastLegalIntegerType && !NoVectors;
15843 unsigned LastLegalType =
15844 std::max(LastLegalVectorType, LastLegalIntegerType);
15846 // We add +1 here because the LastXXX variables refer to location while
15847 // the NumElem refers to array/index size.
15848 unsigned NumElem =
15849 std::min(NumConsecutiveStores, LastConsecutiveLoad + 1);
15850 NumElem = std::min(LastLegalType, NumElem);
15852 if (NumElem < 2) {
15853 // We know that candidate stores are in order and of correct
15854 // shape. While there is no mergeable sequence from the
15855 // beginning one may start later in the sequence. The only
15856 // reason a merge of size N could have failed where another of
15857 // the same size would not have is if the alignment or either
15858 // the load or store has improved. Drop as many candidates as we
15859 // can here.
15860 unsigned NumSkip = 1;
15861 while ((NumSkip < LoadNodes.size()) &&
15862 (LoadNodes[NumSkip].MemNode->getAlignment() <= FirstLoadAlign) &&
15863 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
15864 NumSkip++;
15865 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
15866 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip);
15867 NumConsecutiveStores -= NumSkip;
15868 continue;
15871 // Check that we can merge these candidates without causing a cycle.
15872 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
15873 RootNode)) {
15874 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
15875 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
15876 NumConsecutiveStores -= NumElem;
15877 continue;
15880 // Find if it is better to use vectors or integers to load and store
15881 // to memory.
15882 EVT JointMemOpVT;
15883 if (UseVectorTy) {
15884 // Find a legal type for the vector store.
15885 unsigned Elts = NumElem * NumMemElts;
15886 JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
15887 } else {
15888 unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
15889 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits);
15892 SDLoc LoadDL(LoadNodes[0].MemNode);
15893 SDLoc StoreDL(StoreNodes[0].MemNode);
15895 // The merged loads are required to have the same incoming chain, so
15896 // using the first's chain is acceptable.
15898 SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem);
15899 AddToWorklist(NewStoreChain.getNode());
15901 MachineMemOperand::Flags LdMMOFlags =
15902 isDereferenceable ? MachineMemOperand::MODereferenceable
15903 : MachineMemOperand::MONone;
15904 if (IsNonTemporalLoad)
15905 LdMMOFlags |= MachineMemOperand::MONonTemporal;
15907 MachineMemOperand::Flags StMMOFlags =
15908 IsNonTemporalStore ? MachineMemOperand::MONonTemporal
15909 : MachineMemOperand::MONone;
15911 SDValue NewLoad, NewStore;
15912 if (UseVectorTy || !DoIntegerTruncate) {
15913 NewLoad =
15914 DAG.getLoad(JointMemOpVT, LoadDL, FirstLoad->getChain(),
15915 FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(),
15916 FirstLoadAlign, LdMMOFlags);
15917 NewStore = DAG.getStore(
15918 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(),
15919 FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags);
15920 } else { // This must be the truncstore/extload case
15921 EVT ExtendedTy =
15922 TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT);
15923 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy,
15924 FirstLoad->getChain(), FirstLoad->getBasePtr(),
15925 FirstLoad->getPointerInfo(), JointMemOpVT,
15926 FirstLoadAlign, LdMMOFlags);
15927 NewStore = DAG.getTruncStore(NewStoreChain, StoreDL, NewLoad,
15928 FirstInChain->getBasePtr(),
15929 FirstInChain->getPointerInfo(),
15930 JointMemOpVT, FirstInChain->getAlignment(),
15931 FirstInChain->getMemOperand()->getFlags());
15934 // Transfer chain users from old loads to the new load.
15935 for (unsigned i = 0; i < NumElem; ++i) {
15936 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
15937 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
15938 SDValue(NewLoad.getNode(), 1));
15941 // Replace the all stores with the new store. Recursively remove
15942 // corresponding value if its no longer used.
15943 for (unsigned i = 0; i < NumElem; ++i) {
15944 SDValue Val = StoreNodes[i].MemNode->getOperand(1);
15945 CombineTo(StoreNodes[i].MemNode, NewStore);
15946 if (Val.getNode()->use_empty())
15947 recursivelyDeleteUnusedNodes(Val.getNode());
15950 RV = true;
15951 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
15952 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
15953 NumConsecutiveStores -= NumElem;
15956 return RV;
15959 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) {
15960 SDLoc SL(ST);
15961 SDValue ReplStore;
15963 // Replace the chain to avoid dependency.
15964 if (ST->isTruncatingStore()) {
15965 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(),
15966 ST->getBasePtr(), ST->getMemoryVT(),
15967 ST->getMemOperand());
15968 } else {
15969 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(),
15970 ST->getMemOperand());
15973 // Create token to keep both nodes around.
15974 SDValue Token = DAG.getNode(ISD::TokenFactor, SL,
15975 MVT::Other, ST->getChain(), ReplStore);
15977 // Make sure the new and old chains are cleaned up.
15978 AddToWorklist(Token.getNode());
15980 // Don't add users to work list.
15981 return CombineTo(ST, Token, false);
15984 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) {
15985 SDValue Value = ST->getValue();
15986 if (Value.getOpcode() == ISD::TargetConstantFP)
15987 return SDValue();
15989 SDLoc DL(ST);
15991 SDValue Chain = ST->getChain();
15992 SDValue Ptr = ST->getBasePtr();
15994 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value);
15996 // NOTE: If the original store is volatile, this transform must not increase
15997 // the number of stores. For example, on x86-32 an f64 can be stored in one
15998 // processor operation but an i64 (which is not legal) requires two. So the
15999 // transform should not be done in this case.
16001 SDValue Tmp;
16002 switch (CFP->getSimpleValueType(0).SimpleTy) {
16003 default:
16004 llvm_unreachable("Unknown FP type");
16005 case MVT::f16: // We don't do this for these yet.
16006 case MVT::f80:
16007 case MVT::f128:
16008 case MVT::ppcf128:
16009 return SDValue();
16010 case MVT::f32:
16011 if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
16012 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
16014 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
16015 bitcastToAPInt().getZExtValue(), SDLoc(CFP),
16016 MVT::i32);
16017 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand());
16020 return SDValue();
16021 case MVT::f64:
16022 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
16023 !ST->isVolatile()) ||
16024 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
16026 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
16027 getZExtValue(), SDLoc(CFP), MVT::i64);
16028 return DAG.getStore(Chain, DL, Tmp,
16029 Ptr, ST->getMemOperand());
16032 if (!ST->isVolatile() &&
16033 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
16034 // Many FP stores are not made apparent until after legalize, e.g. for
16035 // argument passing. Since this is so common, custom legalize the
16036 // 64-bit integer store into two 32-bit stores.
16037 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
16038 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32);
16039 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32);
16040 if (DAG.getDataLayout().isBigEndian())
16041 std::swap(Lo, Hi);
16043 unsigned Alignment = ST->getAlignment();
16044 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
16045 AAMDNodes AAInfo = ST->getAAInfo();
16047 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
16048 ST->getAlignment(), MMOFlags, AAInfo);
16049 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
16050 DAG.getConstant(4, DL, Ptr.getValueType()));
16051 Alignment = MinAlign(Alignment, 4U);
16052 SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr,
16053 ST->getPointerInfo().getWithOffset(4),
16054 Alignment, MMOFlags, AAInfo);
16055 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
16056 St0, St1);
16059 return SDValue();
16063 SDValue DAGCombiner::visitSTORE(SDNode *N) {
16064 StoreSDNode *ST = cast<StoreSDNode>(N);
16065 SDValue Chain = ST->getChain();
16066 SDValue Value = ST->getValue();
16067 SDValue Ptr = ST->getBasePtr();
16069 // If this is a store of a bit convert, store the input value if the
16070 // resultant store does not need a higher alignment than the original.
16071 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
16072 ST->isUnindexed()) {
16073 EVT SVT = Value.getOperand(0).getValueType();
16074 // If the store is volatile, we only want to change the store type if the
16075 // resulting store is legal. Otherwise we might increase the number of
16076 // memory accesses. We don't care if the original type was legal or not
16077 // as we assume software couldn't rely on the number of accesses of an
16078 // illegal type.
16079 if (((!LegalOperations && !ST->isVolatile()) ||
16080 TLI.isOperationLegal(ISD::STORE, SVT)) &&
16081 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT,
16082 DAG, *ST->getMemOperand())) {
16083 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
16084 ST->getPointerInfo(), ST->getAlignment(),
16085 ST->getMemOperand()->getFlags(), ST->getAAInfo());
16089 // Turn 'store undef, Ptr' -> nothing.
16090 if (Value.isUndef() && ST->isUnindexed())
16091 return Chain;
16093 // Try to infer better alignment information than the store already has.
16094 if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
16095 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
16096 if (Align > ST->getAlignment() && ST->getSrcValueOffset() % Align == 0) {
16097 SDValue NewStore =
16098 DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(),
16099 ST->getMemoryVT(), Align,
16100 ST->getMemOperand()->getFlags(), ST->getAAInfo());
16101 // NewStore will always be N as we are only refining the alignment
16102 assert(NewStore.getNode() == N);
16103 (void)NewStore;
16108 // Try transforming a pair floating point load / store ops to integer
16109 // load / store ops.
16110 if (SDValue NewST = TransformFPLoadStorePair(N))
16111 return NewST;
16113 // Try transforming several stores into STORE (BSWAP).
16114 if (SDValue Store = MatchStoreCombine(ST))
16115 return Store;
16117 if (ST->isUnindexed()) {
16118 // Walk up chain skipping non-aliasing memory nodes, on this store and any
16119 // adjacent stores.
16120 if (findBetterNeighborChains(ST)) {
16121 // replaceStoreChain uses CombineTo, which handled all of the worklist
16122 // manipulation. Return the original node to not do anything else.
16123 return SDValue(ST, 0);
16125 Chain = ST->getChain();
16128 // FIXME: is there such a thing as a truncating indexed store?
16129 if (ST->isTruncatingStore() && ST->isUnindexed() &&
16130 Value.getValueType().isInteger() &&
16131 (!isa<ConstantSDNode>(Value) ||
16132 !cast<ConstantSDNode>(Value)->isOpaque())) {
16133 APInt TruncDemandedBits =
16134 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
16135 ST->getMemoryVT().getScalarSizeInBits());
16137 // See if we can simplify the input to this truncstore with knowledge that
16138 // only the low bits are being used. For example:
16139 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
16140 AddToWorklist(Value.getNode());
16141 if (SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits))
16142 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(),
16143 ST->getMemOperand());
16145 // Otherwise, see if we can simplify the operation with
16146 // SimplifyDemandedBits, which only works if the value has a single use.
16147 if (SimplifyDemandedBits(Value, TruncDemandedBits)) {
16148 // Re-visit the store if anything changed and the store hasn't been merged
16149 // with another node (N is deleted) SimplifyDemandedBits will add Value's
16150 // node back to the worklist if necessary, but we also need to re-visit
16151 // the Store node itself.
16152 if (N->getOpcode() != ISD::DELETED_NODE)
16153 AddToWorklist(N);
16154 return SDValue(N, 0);
16158 // If this is a load followed by a store to the same location, then the store
16159 // is dead/noop.
16160 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
16161 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
16162 ST->isUnindexed() && !ST->isVolatile() &&
16163 // There can't be any side effects between the load and store, such as
16164 // a call or store.
16165 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
16166 // The store is dead, remove it.
16167 return Chain;
16171 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
16172 if (ST->isUnindexed() && !ST->isVolatile() && ST1->isUnindexed() &&
16173 !ST1->isVolatile()) {
16174 if (ST1->getBasePtr() == Ptr && ST1->getValue() == Value &&
16175 ST->getMemoryVT() == ST1->getMemoryVT()) {
16176 // If this is a store followed by a store with the same value to the
16177 // same location, then the store is dead/noop.
16178 return Chain;
16181 if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() &&
16182 !ST1->getBasePtr().isUndef()) {
16183 const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG);
16184 const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG);
16185 unsigned STBitSize = ST->getMemoryVT().getSizeInBits();
16186 unsigned ChainBitSize = ST1->getMemoryVT().getSizeInBits();
16187 // If this is a store who's preceding store to a subset of the current
16188 // location and no one other node is chained to that store we can
16189 // effectively drop the store. Do not remove stores to undef as they may
16190 // be used as data sinks.
16191 if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) {
16192 CombineTo(ST1, ST1->getChain());
16193 return SDValue();
16196 // If ST stores to a subset of preceding store's write set, we may be
16197 // able to fold ST's value into the preceding stored value. As we know
16198 // the other uses of ST1's chain are unconcerned with ST, this folding
16199 // will not affect those nodes.
16200 int64_t BitOffset;
16201 if (ChainBase.contains(DAG, ChainBitSize, STBase, STBitSize,
16202 BitOffset)) {
16203 SDValue ChainValue = ST1->getValue();
16204 if (auto *C1 = dyn_cast<ConstantSDNode>(ChainValue)) {
16205 if (auto *C = dyn_cast<ConstantSDNode>(Value)) {
16206 APInt Val = C1->getAPIntValue();
16207 APInt InsertVal = C->getAPIntValue().zextOrTrunc(STBitSize);
16208 // FIXME: Handle Big-endian mode.
16209 if (!DAG.getDataLayout().isBigEndian()) {
16210 Val.insertBits(InsertVal, BitOffset);
16211 SDValue NewSDVal =
16212 DAG.getConstant(Val, SDLoc(C), ChainValue.getValueType(),
16213 C1->isTargetOpcode(), C1->isOpaque());
16214 SDNode *NewST1 = DAG.UpdateNodeOperands(
16215 ST1, ST1->getChain(), NewSDVal, ST1->getOperand(2),
16216 ST1->getOperand(3));
16217 return CombineTo(ST, SDValue(NewST1, 0));
16221 } // End ST subset of ST1 case.
16226 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
16227 // truncating store. We can do this even if this is already a truncstore.
16228 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
16229 && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
16230 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
16231 ST->getMemoryVT())) {
16232 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
16233 Ptr, ST->getMemoryVT(), ST->getMemOperand());
16236 // Always perform this optimization before types are legal. If the target
16237 // prefers, also try this after legalization to catch stores that were created
16238 // by intrinsics or other nodes.
16239 if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) {
16240 while (true) {
16241 // There can be multiple store sequences on the same chain.
16242 // Keep trying to merge store sequences until we are unable to do so
16243 // or until we merge the last store on the chain.
16244 bool Changed = MergeConsecutiveStores(ST);
16245 if (!Changed) break;
16246 // Return N as merge only uses CombineTo and no worklist clean
16247 // up is necessary.
16248 if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N))
16249 return SDValue(N, 0);
16253 // Try transforming N to an indexed store.
16254 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
16255 return SDValue(N, 0);
16257 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
16259 // Make sure to do this only after attempting to merge stores in order to
16260 // avoid changing the types of some subset of stores due to visit order,
16261 // preventing their merging.
16262 if (isa<ConstantFPSDNode>(ST->getValue())) {
16263 if (SDValue NewSt = replaceStoreOfFPConstant(ST))
16264 return NewSt;
16267 if (SDValue NewSt = splitMergedValStore(ST))
16268 return NewSt;
16270 return ReduceLoadOpStoreWidth(N);
16273 SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) {
16274 const auto *LifetimeEnd = cast<LifetimeSDNode>(N);
16275 if (!LifetimeEnd->hasOffset())
16276 return SDValue();
16278 const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(),
16279 LifetimeEnd->getOffset(), false);
16281 // We walk up the chains to find stores.
16282 SmallVector<SDValue, 8> Chains = {N->getOperand(0)};
16283 while (!Chains.empty()) {
16284 SDValue Chain = Chains.back();
16285 Chains.pop_back();
16286 if (!Chain.hasOneUse())
16287 continue;
16288 switch (Chain.getOpcode()) {
16289 case ISD::TokenFactor:
16290 for (unsigned Nops = Chain.getNumOperands(); Nops;)
16291 Chains.push_back(Chain.getOperand(--Nops));
16292 break;
16293 case ISD::LIFETIME_START:
16294 case ISD::LIFETIME_END:
16295 // We can forward past any lifetime start/end that can be proven not to
16296 // alias the node.
16297 if (!isAlias(Chain.getNode(), N))
16298 Chains.push_back(Chain.getOperand(0));
16299 break;
16300 case ISD::STORE: {
16301 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain);
16302 if (ST->isVolatile() || ST->isIndexed())
16303 continue;
16304 const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG);
16305 // If we store purely within object bounds just before its lifetime ends,
16306 // we can remove the store.
16307 if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase,
16308 ST->getMemoryVT().getStoreSizeInBits())) {
16309 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump();
16310 dbgs() << "\nwithin LIFETIME_END of : ";
16311 LifetimeEndBase.dump(); dbgs() << "\n");
16312 CombineTo(ST, ST->getChain());
16313 return SDValue(N, 0);
16318 return SDValue();
16321 /// For the instruction sequence of store below, F and I values
16322 /// are bundled together as an i64 value before being stored into memory.
16323 /// Sometimes it is more efficent to generate separate stores for F and I,
16324 /// which can remove the bitwise instructions or sink them to colder places.
16326 /// (store (or (zext (bitcast F to i32) to i64),
16327 /// (shl (zext I to i64), 32)), addr) -->
16328 /// (store F, addr) and (store I, addr+4)
16330 /// Similarly, splitting for other merged store can also be beneficial, like:
16331 /// For pair of {i32, i32}, i64 store --> two i32 stores.
16332 /// For pair of {i32, i16}, i64 store --> two i32 stores.
16333 /// For pair of {i16, i16}, i32 store --> two i16 stores.
16334 /// For pair of {i16, i8}, i32 store --> two i16 stores.
16335 /// For pair of {i8, i8}, i16 store --> two i8 stores.
16337 /// We allow each target to determine specifically which kind of splitting is
16338 /// supported.
16340 /// The store patterns are commonly seen from the simple code snippet below
16341 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
16342 /// void goo(const std::pair<int, float> &);
16343 /// hoo() {
16344 /// ...
16345 /// goo(std::make_pair(tmp, ftmp));
16346 /// ...
16347 /// }
16349 SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) {
16350 if (OptLevel == CodeGenOpt::None)
16351 return SDValue();
16353 SDValue Val = ST->getValue();
16354 SDLoc DL(ST);
16356 // Match OR operand.
16357 if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR)
16358 return SDValue();
16360 // Match SHL operand and get Lower and Higher parts of Val.
16361 SDValue Op1 = Val.getOperand(0);
16362 SDValue Op2 = Val.getOperand(1);
16363 SDValue Lo, Hi;
16364 if (Op1.getOpcode() != ISD::SHL) {
16365 std::swap(Op1, Op2);
16366 if (Op1.getOpcode() != ISD::SHL)
16367 return SDValue();
16369 Lo = Op2;
16370 Hi = Op1.getOperand(0);
16371 if (!Op1.hasOneUse())
16372 return SDValue();
16374 // Match shift amount to HalfValBitSize.
16375 unsigned HalfValBitSize = Val.getValueSizeInBits() / 2;
16376 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1));
16377 if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize)
16378 return SDValue();
16380 // Lo and Hi are zero-extended from int with size less equal than 32
16381 // to i64.
16382 if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() ||
16383 !Lo.getOperand(0).getValueType().isScalarInteger() ||
16384 Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize ||
16385 Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() ||
16386 !Hi.getOperand(0).getValueType().isScalarInteger() ||
16387 Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize)
16388 return SDValue();
16390 // Use the EVT of low and high parts before bitcast as the input
16391 // of target query.
16392 EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST)
16393 ? Lo.getOperand(0).getValueType()
16394 : Lo.getValueType();
16395 EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST)
16396 ? Hi.getOperand(0).getValueType()
16397 : Hi.getValueType();
16398 if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
16399 return SDValue();
16401 // Start to split store.
16402 unsigned Alignment = ST->getAlignment();
16403 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
16404 AAMDNodes AAInfo = ST->getAAInfo();
16406 // Change the sizes of Lo and Hi's value types to HalfValBitSize.
16407 EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize);
16408 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0));
16409 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0));
16411 SDValue Chain = ST->getChain();
16412 SDValue Ptr = ST->getBasePtr();
16413 // Lower value store.
16414 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
16415 ST->getAlignment(), MMOFlags, AAInfo);
16416 Ptr =
16417 DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
16418 DAG.getConstant(HalfValBitSize / 8, DL, Ptr.getValueType()));
16419 // Higher value store.
16420 SDValue St1 =
16421 DAG.getStore(St0, DL, Hi, Ptr,
16422 ST->getPointerInfo().getWithOffset(HalfValBitSize / 8),
16423 Alignment / 2, MMOFlags, AAInfo);
16424 return St1;
16427 /// Convert a disguised subvector insertion into a shuffle:
16428 /// insert_vector_elt V, (bitcast X from vector type), IdxC -->
16429 /// bitcast(shuffle (bitcast V), (extended X), Mask)
16430 /// Note: We do not use an insert_subvector node because that requires a legal
16431 /// subvector type.
16432 SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) {
16433 SDValue InsertVal = N->getOperand(1);
16434 if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() ||
16435 !InsertVal.getOperand(0).getValueType().isVector())
16436 return SDValue();
16438 SDValue SubVec = InsertVal.getOperand(0);
16439 SDValue DestVec = N->getOperand(0);
16440 EVT SubVecVT = SubVec.getValueType();
16441 EVT VT = DestVec.getValueType();
16442 unsigned NumSrcElts = SubVecVT.getVectorNumElements();
16443 unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits();
16444 unsigned NumMaskVals = ExtendRatio * NumSrcElts;
16446 // Step 1: Create a shuffle mask that implements this insert operation. The
16447 // vector that we are inserting into will be operand 0 of the shuffle, so
16448 // those elements are just 'i'. The inserted subvector is in the first
16449 // positions of operand 1 of the shuffle. Example:
16450 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
16451 SmallVector<int, 16> Mask(NumMaskVals);
16452 for (unsigned i = 0; i != NumMaskVals; ++i) {
16453 if (i / NumSrcElts == InsIndex)
16454 Mask[i] = (i % NumSrcElts) + NumMaskVals;
16455 else
16456 Mask[i] = i;
16459 // Bail out if the target can not handle the shuffle we want to create.
16460 EVT SubVecEltVT = SubVecVT.getVectorElementType();
16461 EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals);
16462 if (!TLI.isShuffleMaskLegal(Mask, ShufVT))
16463 return SDValue();
16465 // Step 2: Create a wide vector from the inserted source vector by appending
16466 // undefined elements. This is the same size as our destination vector.
16467 SDLoc DL(N);
16468 SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT));
16469 ConcatOps[0] = SubVec;
16470 SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps);
16472 // Step 3: Shuffle in the padded subvector.
16473 SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec);
16474 SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask);
16475 AddToWorklist(PaddedSubV.getNode());
16476 AddToWorklist(DestVecBC.getNode());
16477 AddToWorklist(Shuf.getNode());
16478 return DAG.getBitcast(VT, Shuf);
16481 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
16482 SDValue InVec = N->getOperand(0);
16483 SDValue InVal = N->getOperand(1);
16484 SDValue EltNo = N->getOperand(2);
16485 SDLoc DL(N);
16487 // If the inserted element is an UNDEF, just use the input vector.
16488 if (InVal.isUndef())
16489 return InVec;
16491 EVT VT = InVec.getValueType();
16492 unsigned NumElts = VT.getVectorNumElements();
16494 // Remove redundant insertions:
16495 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
16496 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
16497 InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1))
16498 return InVec;
16500 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
16501 if (!IndexC) {
16502 // If this is variable insert to undef vector, it might be better to splat:
16503 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
16504 if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) {
16505 SmallVector<SDValue, 8> Ops(NumElts, InVal);
16506 return DAG.getBuildVector(VT, DL, Ops);
16508 return SDValue();
16511 // We must know which element is being inserted for folds below here.
16512 unsigned Elt = IndexC->getZExtValue();
16513 if (SDValue Shuf = combineInsertEltToShuffle(N, Elt))
16514 return Shuf;
16516 // Canonicalize insert_vector_elt dag nodes.
16517 // Example:
16518 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
16519 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
16521 // Do this only if the child insert_vector node has one use; also
16522 // do this only if indices are both constants and Idx1 < Idx0.
16523 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
16524 && isa<ConstantSDNode>(InVec.getOperand(2))) {
16525 unsigned OtherElt = InVec.getConstantOperandVal(2);
16526 if (Elt < OtherElt) {
16527 // Swap nodes.
16528 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
16529 InVec.getOperand(0), InVal, EltNo);
16530 AddToWorklist(NewOp.getNode());
16531 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
16532 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
16536 // If we can't generate a legal BUILD_VECTOR, exit
16537 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
16538 return SDValue();
16540 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
16541 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
16542 // vector elements.
16543 SmallVector<SDValue, 8> Ops;
16544 // Do not combine these two vectors if the output vector will not replace
16545 // the input vector.
16546 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
16547 Ops.append(InVec.getNode()->op_begin(),
16548 InVec.getNode()->op_end());
16549 } else if (InVec.isUndef()) {
16550 Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType()));
16551 } else {
16552 return SDValue();
16554 assert(Ops.size() == NumElts && "Unexpected vector size");
16556 // Insert the element
16557 if (Elt < Ops.size()) {
16558 // All the operands of BUILD_VECTOR must have the same type;
16559 // we enforce that here.
16560 EVT OpVT = Ops[0].getValueType();
16561 Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal;
16564 // Return the new vector
16565 return DAG.getBuildVector(VT, DL, Ops);
16568 SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
16569 SDValue EltNo,
16570 LoadSDNode *OriginalLoad) {
16571 assert(!OriginalLoad->isVolatile());
16573 EVT ResultVT = EVE->getValueType(0);
16574 EVT VecEltVT = InVecVT.getVectorElementType();
16575 unsigned Align = OriginalLoad->getAlignment();
16576 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
16577 VecEltVT.getTypeForEVT(*DAG.getContext()));
16579 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
16580 return SDValue();
16582 ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ?
16583 ISD::NON_EXTLOAD : ISD::EXTLOAD;
16584 if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT))
16585 return SDValue();
16587 Align = NewAlign;
16589 SDValue NewPtr = OriginalLoad->getBasePtr();
16590 SDValue Offset;
16591 EVT PtrType = NewPtr.getValueType();
16592 MachinePointerInfo MPI;
16593 SDLoc DL(EVE);
16594 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
16595 int Elt = ConstEltNo->getZExtValue();
16596 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8;
16597 Offset = DAG.getConstant(PtrOff, DL, PtrType);
16598 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff);
16599 } else {
16600 Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType);
16601 Offset = DAG.getNode(
16602 ISD::MUL, DL, PtrType, Offset,
16603 DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType));
16604 // Discard the pointer info except the address space because the memory
16605 // operand can't represent this new access since the offset is variable.
16606 MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace());
16608 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset);
16610 // The replacement we need to do here is a little tricky: we need to
16611 // replace an extractelement of a load with a load.
16612 // Use ReplaceAllUsesOfValuesWith to do the replacement.
16613 // Note that this replacement assumes that the extractvalue is the only
16614 // use of the load; that's okay because we don't want to perform this
16615 // transformation in other cases anyway.
16616 SDValue Load;
16617 SDValue Chain;
16618 if (ResultVT.bitsGT(VecEltVT)) {
16619 // If the result type of vextract is wider than the load, then issue an
16620 // extending load instead.
16621 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT,
16622 VecEltVT)
16623 ? ISD::ZEXTLOAD
16624 : ISD::EXTLOAD;
16625 Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT,
16626 OriginalLoad->getChain(), NewPtr, MPI, VecEltVT,
16627 Align, OriginalLoad->getMemOperand()->getFlags(),
16628 OriginalLoad->getAAInfo());
16629 Chain = Load.getValue(1);
16630 } else {
16631 Load = DAG.getLoad(VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr,
16632 MPI, Align, OriginalLoad->getMemOperand()->getFlags(),
16633 OriginalLoad->getAAInfo());
16634 Chain = Load.getValue(1);
16635 if (ResultVT.bitsLT(VecEltVT))
16636 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load);
16637 else
16638 Load = DAG.getBitcast(ResultVT, Load);
16640 WorklistRemover DeadNodes(*this);
16641 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) };
16642 SDValue To[] = { Load, Chain };
16643 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
16644 // Since we're explicitly calling ReplaceAllUses, add the new node to the
16645 // worklist explicitly as well.
16646 AddToWorklist(Load.getNode());
16647 AddUsersToWorklist(Load.getNode()); // Add users too
16648 // Make sure to revisit this node to clean it up; it will usually be dead.
16649 AddToWorklist(EVE);
16650 ++OpsNarrowed;
16651 return SDValue(EVE, 0);
16654 /// Transform a vector binary operation into a scalar binary operation by moving
16655 /// the math/logic after an extract element of a vector.
16656 static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG,
16657 bool LegalOperations) {
16658 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16659 SDValue Vec = ExtElt->getOperand(0);
16660 SDValue Index = ExtElt->getOperand(1);
16661 auto *IndexC = dyn_cast<ConstantSDNode>(Index);
16662 if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() ||
16663 Vec.getNode()->getNumValues() != 1)
16664 return SDValue();
16666 // Targets may want to avoid this to prevent an expensive register transfer.
16667 if (!TLI.shouldScalarizeBinop(Vec))
16668 return SDValue();
16670 // Extracting an element of a vector constant is constant-folded, so this
16671 // transform is just replacing a vector op with a scalar op while moving the
16672 // extract.
16673 SDValue Op0 = Vec.getOperand(0);
16674 SDValue Op1 = Vec.getOperand(1);
16675 if (isAnyConstantBuildVector(Op0, true) ||
16676 isAnyConstantBuildVector(Op1, true)) {
16677 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C'
16678 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC)
16679 SDLoc DL(ExtElt);
16680 EVT VT = ExtElt->getValueType(0);
16681 SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index);
16682 SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index);
16683 return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1);
16686 return SDValue();
16689 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
16690 SDValue VecOp = N->getOperand(0);
16691 SDValue Index = N->getOperand(1);
16692 EVT ScalarVT = N->getValueType(0);
16693 EVT VecVT = VecOp.getValueType();
16694 if (VecOp.isUndef())
16695 return DAG.getUNDEF(ScalarVT);
16697 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
16699 // This only really matters if the index is non-constant since other combines
16700 // on the constant elements already work.
16701 SDLoc DL(N);
16702 if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT &&
16703 Index == VecOp.getOperand(2)) {
16704 SDValue Elt = VecOp.getOperand(1);
16705 return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt;
16708 // (vextract (scalar_to_vector val, 0) -> val
16709 if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) {
16710 // Check if the result type doesn't match the inserted element type. A
16711 // SCALAR_TO_VECTOR may truncate the inserted element and the
16712 // EXTRACT_VECTOR_ELT may widen the extracted vector.
16713 SDValue InOp = VecOp.getOperand(0);
16714 if (InOp.getValueType() != ScalarVT) {
16715 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
16716 return DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
16718 return InOp;
16721 // extract_vector_elt of out-of-bounds element -> UNDEF
16722 auto *IndexC = dyn_cast<ConstantSDNode>(Index);
16723 unsigned NumElts = VecVT.getVectorNumElements();
16724 if (IndexC && IndexC->getAPIntValue().uge(NumElts))
16725 return DAG.getUNDEF(ScalarVT);
16727 // extract_vector_elt (build_vector x, y), 1 -> y
16728 if (IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR &&
16729 TLI.isTypeLegal(VecVT) &&
16730 (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) {
16731 SDValue Elt = VecOp.getOperand(IndexC->getZExtValue());
16732 EVT InEltVT = Elt.getValueType();
16734 // Sometimes build_vector's scalar input types do not match result type.
16735 if (ScalarVT == InEltVT)
16736 return Elt;
16738 // TODO: It may be useful to truncate if free if the build_vector implicitly
16739 // converts.
16742 // TODO: These transforms should not require the 'hasOneUse' restriction, but
16743 // there are regressions on multiple targets without it. We can end up with a
16744 // mess of scalar and vector code if we reduce only part of the DAG to scalar.
16745 if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() &&
16746 VecOp.hasOneUse()) {
16747 // The vector index of the LSBs of the source depend on the endian-ness.
16748 bool IsLE = DAG.getDataLayout().isLittleEndian();
16749 unsigned ExtractIndex = IndexC->getZExtValue();
16750 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
16751 unsigned BCTruncElt = IsLE ? 0 : NumElts - 1;
16752 SDValue BCSrc = VecOp.getOperand(0);
16753 if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger())
16754 return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc);
16756 if (LegalTypes && BCSrc.getValueType().isInteger() &&
16757 BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) {
16758 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt -->
16759 // trunc i64 X to i32
16760 SDValue X = BCSrc.getOperand(0);
16761 assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() &&
16762 "Extract element and scalar to vector can't change element type "
16763 "from FP to integer.");
16764 unsigned XBitWidth = X.getValueSizeInBits();
16765 unsigned VecEltBitWidth = VecVT.getScalarSizeInBits();
16766 BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1;
16768 // An extract element return value type can be wider than its vector
16769 // operand element type. In that case, the high bits are undefined, so
16770 // it's possible that we may need to extend rather than truncate.
16771 if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) {
16772 assert(XBitWidth % VecEltBitWidth == 0 &&
16773 "Scalar bitwidth must be a multiple of vector element bitwidth");
16774 return DAG.getAnyExtOrTrunc(X, DL, ScalarVT);
16779 if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations))
16780 return BO;
16782 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
16783 // We only perform this optimization before the op legalization phase because
16784 // we may introduce new vector instructions which are not backed by TD
16785 // patterns. For example on AVX, extracting elements from a wide vector
16786 // without using extract_subvector. However, if we can find an underlying
16787 // scalar value, then we can always use that.
16788 if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) {
16789 auto *Shuf = cast<ShuffleVectorSDNode>(VecOp);
16790 // Find the new index to extract from.
16791 int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue());
16793 // Extracting an undef index is undef.
16794 if (OrigElt == -1)
16795 return DAG.getUNDEF(ScalarVT);
16797 // Select the right vector half to extract from.
16798 SDValue SVInVec;
16799 if (OrigElt < (int)NumElts) {
16800 SVInVec = VecOp.getOperand(0);
16801 } else {
16802 SVInVec = VecOp.getOperand(1);
16803 OrigElt -= NumElts;
16806 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
16807 SDValue InOp = SVInVec.getOperand(OrigElt);
16808 if (InOp.getValueType() != ScalarVT) {
16809 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
16810 InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
16813 return InOp;
16816 // FIXME: We should handle recursing on other vector shuffles and
16817 // scalar_to_vector here as well.
16819 if (!LegalOperations ||
16820 // FIXME: Should really be just isOperationLegalOrCustom.
16821 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) ||
16822 TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) {
16823 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
16824 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec,
16825 DAG.getConstant(OrigElt, DL, IndexTy));
16829 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can
16830 // simplify it based on the (valid) extraction indices.
16831 if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) {
16832 return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
16833 Use->getOperand(0) == VecOp &&
16834 isa<ConstantSDNode>(Use->getOperand(1));
16835 })) {
16836 APInt DemandedElts = APInt::getNullValue(NumElts);
16837 for (SDNode *Use : VecOp->uses()) {
16838 auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1));
16839 if (CstElt->getAPIntValue().ult(NumElts))
16840 DemandedElts.setBit(CstElt->getZExtValue());
16842 if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) {
16843 // We simplified the vector operand of this extract element. If this
16844 // extract is not dead, visit it again so it is folded properly.
16845 if (N->getOpcode() != ISD::DELETED_NODE)
16846 AddToWorklist(N);
16847 return SDValue(N, 0);
16851 // Everything under here is trying to match an extract of a loaded value.
16852 // If the result of load has to be truncated, then it's not necessarily
16853 // profitable.
16854 bool BCNumEltsChanged = false;
16855 EVT ExtVT = VecVT.getVectorElementType();
16856 EVT LVT = ExtVT;
16857 if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT))
16858 return SDValue();
16860 if (VecOp.getOpcode() == ISD::BITCAST) {
16861 // Don't duplicate a load with other uses.
16862 if (!VecOp.hasOneUse())
16863 return SDValue();
16865 EVT BCVT = VecOp.getOperand(0).getValueType();
16866 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
16867 return SDValue();
16868 if (NumElts != BCVT.getVectorNumElements())
16869 BCNumEltsChanged = true;
16870 VecOp = VecOp.getOperand(0);
16871 ExtVT = BCVT.getVectorElementType();
16874 // extract (vector load $addr), i --> load $addr + i * size
16875 if (!LegalOperations && !IndexC && VecOp.hasOneUse() &&
16876 ISD::isNormalLoad(VecOp.getNode()) &&
16877 !Index->hasPredecessor(VecOp.getNode())) {
16878 auto *VecLoad = dyn_cast<LoadSDNode>(VecOp);
16879 if (VecLoad && !VecLoad->isVolatile())
16880 return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad);
16883 // Perform only after legalization to ensure build_vector / vector_shuffle
16884 // optimizations have already been done.
16885 if (!LegalOperations || !IndexC)
16886 return SDValue();
16888 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
16889 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
16890 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
16891 int Elt = IndexC->getZExtValue();
16892 LoadSDNode *LN0 = nullptr;
16893 if (ISD::isNormalLoad(VecOp.getNode())) {
16894 LN0 = cast<LoadSDNode>(VecOp);
16895 } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
16896 VecOp.getOperand(0).getValueType() == ExtVT &&
16897 ISD::isNormalLoad(VecOp.getOperand(0).getNode())) {
16898 // Don't duplicate a load with other uses.
16899 if (!VecOp.hasOneUse())
16900 return SDValue();
16902 LN0 = cast<LoadSDNode>(VecOp.getOperand(0));
16904 if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) {
16905 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
16906 // =>
16907 // (load $addr+1*size)
16909 // Don't duplicate a load with other uses.
16910 if (!VecOp.hasOneUse())
16911 return SDValue();
16913 // If the bit convert changed the number of elements, it is unsafe
16914 // to examine the mask.
16915 if (BCNumEltsChanged)
16916 return SDValue();
16918 // Select the input vector, guarding against out of range extract vector.
16919 int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt);
16920 VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1);
16922 if (VecOp.getOpcode() == ISD::BITCAST) {
16923 // Don't duplicate a load with other uses.
16924 if (!VecOp.hasOneUse())
16925 return SDValue();
16927 VecOp = VecOp.getOperand(0);
16929 if (ISD::isNormalLoad(VecOp.getNode())) {
16930 LN0 = cast<LoadSDNode>(VecOp);
16931 Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts;
16932 Index = DAG.getConstant(Elt, DL, Index.getValueType());
16936 // Make sure we found a non-volatile load and the extractelement is
16937 // the only use.
16938 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
16939 return SDValue();
16941 // If Idx was -1 above, Elt is going to be -1, so just return undef.
16942 if (Elt == -1)
16943 return DAG.getUNDEF(LVT);
16945 return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0);
16948 // Simplify (build_vec (ext )) to (bitcast (build_vec ))
16949 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
16950 // We perform this optimization post type-legalization because
16951 // the type-legalizer often scalarizes integer-promoted vectors.
16952 // Performing this optimization before may create bit-casts which
16953 // will be type-legalized to complex code sequences.
16954 // We perform this optimization only before the operation legalizer because we
16955 // may introduce illegal operations.
16956 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
16957 return SDValue();
16959 unsigned NumInScalars = N->getNumOperands();
16960 SDLoc DL(N);
16961 EVT VT = N->getValueType(0);
16963 // Check to see if this is a BUILD_VECTOR of a bunch of values
16964 // which come from any_extend or zero_extend nodes. If so, we can create
16965 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
16966 // optimizations. We do not handle sign-extend because we can't fill the sign
16967 // using shuffles.
16968 EVT SourceType = MVT::Other;
16969 bool AllAnyExt = true;
16971 for (unsigned i = 0; i != NumInScalars; ++i) {
16972 SDValue In = N->getOperand(i);
16973 // Ignore undef inputs.
16974 if (In.isUndef()) continue;
16976 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND;
16977 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
16979 // Abort if the element is not an extension.
16980 if (!ZeroExt && !AnyExt) {
16981 SourceType = MVT::Other;
16982 break;
16985 // The input is a ZeroExt or AnyExt. Check the original type.
16986 EVT InTy = In.getOperand(0).getValueType();
16988 // Check that all of the widened source types are the same.
16989 if (SourceType == MVT::Other)
16990 // First time.
16991 SourceType = InTy;
16992 else if (InTy != SourceType) {
16993 // Multiple income types. Abort.
16994 SourceType = MVT::Other;
16995 break;
16998 // Check if all of the extends are ANY_EXTENDs.
16999 AllAnyExt &= AnyExt;
17002 // In order to have valid types, all of the inputs must be extended from the
17003 // same source type and all of the inputs must be any or zero extend.
17004 // Scalar sizes must be a power of two.
17005 EVT OutScalarTy = VT.getScalarType();
17006 bool ValidTypes = SourceType != MVT::Other &&
17007 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
17008 isPowerOf2_32(SourceType.getSizeInBits());
17010 // Create a new simpler BUILD_VECTOR sequence which other optimizations can
17011 // turn into a single shuffle instruction.
17012 if (!ValidTypes)
17013 return SDValue();
17015 bool isLE = DAG.getDataLayout().isLittleEndian();
17016 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
17017 assert(ElemRatio > 1 && "Invalid element size ratio");
17018 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
17019 DAG.getConstant(0, DL, SourceType);
17021 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
17022 SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
17024 // Populate the new build_vector
17025 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
17026 SDValue Cast = N->getOperand(i);
17027 assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
17028 Cast.getOpcode() == ISD::ZERO_EXTEND ||
17029 Cast.isUndef()) && "Invalid cast opcode");
17030 SDValue In;
17031 if (Cast.isUndef())
17032 In = DAG.getUNDEF(SourceType);
17033 else
17034 In = Cast->getOperand(0);
17035 unsigned Index = isLE ? (i * ElemRatio) :
17036 (i * ElemRatio + (ElemRatio - 1));
17038 assert(Index < Ops.size() && "Invalid index");
17039 Ops[Index] = In;
17042 // The type of the new BUILD_VECTOR node.
17043 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
17044 assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
17045 "Invalid vector size");
17046 // Check if the new vector type is legal.
17047 if (!isTypeLegal(VecVT) ||
17048 (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) &&
17049 TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)))
17050 return SDValue();
17052 // Make the new BUILD_VECTOR.
17053 SDValue BV = DAG.getBuildVector(VecVT, DL, Ops);
17055 // The new BUILD_VECTOR node has the potential to be further optimized.
17056 AddToWorklist(BV.getNode());
17057 // Bitcast to the desired type.
17058 return DAG.getBitcast(VT, BV);
17061 SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N,
17062 ArrayRef<int> VectorMask,
17063 SDValue VecIn1, SDValue VecIn2,
17064 unsigned LeftIdx, bool DidSplitVec) {
17065 MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
17066 SDValue ZeroIdx = DAG.getConstant(0, DL, IdxTy);
17068 EVT VT = N->getValueType(0);
17069 EVT InVT1 = VecIn1.getValueType();
17070 EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1;
17072 unsigned NumElems = VT.getVectorNumElements();
17073 unsigned ShuffleNumElems = NumElems;
17075 // If we artificially split a vector in two already, then the offsets in the
17076 // operands will all be based off of VecIn1, even those in VecIn2.
17077 unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements();
17079 // We can't generate a shuffle node with mismatched input and output types.
17080 // Try to make the types match the type of the output.
17081 if (InVT1 != VT || InVT2 != VT) {
17082 if ((VT.getSizeInBits() % InVT1.getSizeInBits() == 0) && InVT1 == InVT2) {
17083 // If the output vector length is a multiple of both input lengths,
17084 // we can concatenate them and pad the rest with undefs.
17085 unsigned NumConcats = VT.getSizeInBits() / InVT1.getSizeInBits();
17086 assert(NumConcats >= 2 && "Concat needs at least two inputs!");
17087 SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1));
17088 ConcatOps[0] = VecIn1;
17089 ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1);
17090 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
17091 VecIn2 = SDValue();
17092 } else if (InVT1.getSizeInBits() == VT.getSizeInBits() * 2) {
17093 if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems))
17094 return SDValue();
17096 if (!VecIn2.getNode()) {
17097 // If we only have one input vector, and it's twice the size of the
17098 // output, split it in two.
17099 VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1,
17100 DAG.getConstant(NumElems, DL, IdxTy));
17101 VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx);
17102 // Since we now have shorter input vectors, adjust the offset of the
17103 // second vector's start.
17104 Vec2Offset = NumElems;
17105 } else if (InVT2.getSizeInBits() <= InVT1.getSizeInBits()) {
17106 // VecIn1 is wider than the output, and we have another, possibly
17107 // smaller input. Pad the smaller input with undefs, shuffle at the
17108 // input vector width, and extract the output.
17109 // The shuffle type is different than VT, so check legality again.
17110 if (LegalOperations &&
17111 !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1))
17112 return SDValue();
17114 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to
17115 // lower it back into a BUILD_VECTOR. So if the inserted type is
17116 // illegal, don't even try.
17117 if (InVT1 != InVT2) {
17118 if (!TLI.isTypeLegal(InVT2))
17119 return SDValue();
17120 VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1,
17121 DAG.getUNDEF(InVT1), VecIn2, ZeroIdx);
17123 ShuffleNumElems = NumElems * 2;
17124 } else {
17125 // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider
17126 // than VecIn1. We can't handle this for now - this case will disappear
17127 // when we start sorting the vectors by type.
17128 return SDValue();
17130 } else if (InVT2.getSizeInBits() * 2 == VT.getSizeInBits() &&
17131 InVT1.getSizeInBits() == VT.getSizeInBits()) {
17132 SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2));
17133 ConcatOps[0] = VecIn2;
17134 VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
17135 } else {
17136 // TODO: Support cases where the length mismatch isn't exactly by a
17137 // factor of 2.
17138 // TODO: Move this check upwards, so that if we have bad type
17139 // mismatches, we don't create any DAG nodes.
17140 return SDValue();
17144 // Initialize mask to undef.
17145 SmallVector<int, 8> Mask(ShuffleNumElems, -1);
17147 // Only need to run up to the number of elements actually used, not the
17148 // total number of elements in the shuffle - if we are shuffling a wider
17149 // vector, the high lanes should be set to undef.
17150 for (unsigned i = 0; i != NumElems; ++i) {
17151 if (VectorMask[i] <= 0)
17152 continue;
17154 unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1);
17155 if (VectorMask[i] == (int)LeftIdx) {
17156 Mask[i] = ExtIndex;
17157 } else if (VectorMask[i] == (int)LeftIdx + 1) {
17158 Mask[i] = Vec2Offset + ExtIndex;
17162 // The type the input vectors may have changed above.
17163 InVT1 = VecIn1.getValueType();
17165 // If we already have a VecIn2, it should have the same type as VecIn1.
17166 // If we don't, get an undef/zero vector of the appropriate type.
17167 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1);
17168 assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type.");
17170 SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask);
17171 if (ShuffleNumElems > NumElems)
17172 Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx);
17174 return Shuffle;
17177 static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) {
17178 assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector");
17180 // First, determine where the build vector is not undef.
17181 // TODO: We could extend this to handle zero elements as well as undefs.
17182 int NumBVOps = BV->getNumOperands();
17183 int ZextElt = -1;
17184 for (int i = 0; i != NumBVOps; ++i) {
17185 SDValue Op = BV->getOperand(i);
17186 if (Op.isUndef())
17187 continue;
17188 if (ZextElt == -1)
17189 ZextElt = i;
17190 else
17191 return SDValue();
17193 // Bail out if there's no non-undef element.
17194 if (ZextElt == -1)
17195 return SDValue();
17197 // The build vector contains some number of undef elements and exactly
17198 // one other element. That other element must be a zero-extended scalar
17199 // extracted from a vector at a constant index to turn this into a shuffle.
17200 // Also, require that the build vector does not implicitly truncate/extend
17201 // its elements.
17202 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND.
17203 EVT VT = BV->getValueType(0);
17204 SDValue Zext = BV->getOperand(ZextElt);
17205 if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() ||
17206 Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
17207 !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) ||
17208 Zext.getValueSizeInBits() != VT.getScalarSizeInBits())
17209 return SDValue();
17211 // The zero-extend must be a multiple of the source size, and we must be
17212 // building a vector of the same size as the source of the extract element.
17213 SDValue Extract = Zext.getOperand(0);
17214 unsigned DestSize = Zext.getValueSizeInBits();
17215 unsigned SrcSize = Extract.getValueSizeInBits();
17216 if (DestSize % SrcSize != 0 ||
17217 Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits())
17218 return SDValue();
17220 // Create a shuffle mask that will combine the extracted element with zeros
17221 // and undefs.
17222 int ZextRatio = DestSize / SrcSize;
17223 int NumMaskElts = NumBVOps * ZextRatio;
17224 SmallVector<int, 32> ShufMask(NumMaskElts, -1);
17225 for (int i = 0; i != NumMaskElts; ++i) {
17226 if (i / ZextRatio == ZextElt) {
17227 // The low bits of the (potentially translated) extracted element map to
17228 // the source vector. The high bits map to zero. We will use a zero vector
17229 // as the 2nd source operand of the shuffle, so use the 1st element of
17230 // that vector (mask value is number-of-elements) for the high bits.
17231 if (i % ZextRatio == 0)
17232 ShufMask[i] = Extract.getConstantOperandVal(1);
17233 else
17234 ShufMask[i] = NumMaskElts;
17237 // Undef elements of the build vector remain undef because we initialize
17238 // the shuffle mask with -1.
17241 // Turn this into a shuffle with zero if that's legal.
17242 EVT VecVT = Extract.getOperand(0).getValueType();
17243 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(ShufMask, VecVT))
17244 return SDValue();
17246 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... -->
17247 // bitcast (shuffle V, ZeroVec, VectorMask)
17248 SDLoc DL(BV);
17249 SDValue ZeroVec = DAG.getConstant(0, DL, VecVT);
17250 SDValue Shuf = DAG.getVectorShuffle(VecVT, DL, Extract.getOperand(0), ZeroVec,
17251 ShufMask);
17252 return DAG.getBitcast(VT, Shuf);
17255 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
17256 // operations. If the types of the vectors we're extracting from allow it,
17257 // turn this into a vector_shuffle node.
17258 SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) {
17259 SDLoc DL(N);
17260 EVT VT = N->getValueType(0);
17262 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
17263 if (!isTypeLegal(VT))
17264 return SDValue();
17266 if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG))
17267 return V;
17269 // May only combine to shuffle after legalize if shuffle is legal.
17270 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
17271 return SDValue();
17273 bool UsesZeroVector = false;
17274 unsigned NumElems = N->getNumOperands();
17276 // Record, for each element of the newly built vector, which input vector
17277 // that element comes from. -1 stands for undef, 0 for the zero vector,
17278 // and positive values for the input vectors.
17279 // VectorMask maps each element to its vector number, and VecIn maps vector
17280 // numbers to their initial SDValues.
17282 SmallVector<int, 8> VectorMask(NumElems, -1);
17283 SmallVector<SDValue, 8> VecIn;
17284 VecIn.push_back(SDValue());
17286 for (unsigned i = 0; i != NumElems; ++i) {
17287 SDValue Op = N->getOperand(i);
17289 if (Op.isUndef())
17290 continue;
17292 // See if we can use a blend with a zero vector.
17293 // TODO: Should we generalize this to a blend with an arbitrary constant
17294 // vector?
17295 if (isNullConstant(Op) || isNullFPConstant(Op)) {
17296 UsesZeroVector = true;
17297 VectorMask[i] = 0;
17298 continue;
17301 // Not an undef or zero. If the input is something other than an
17302 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
17303 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
17304 !isa<ConstantSDNode>(Op.getOperand(1)))
17305 return SDValue();
17306 SDValue ExtractedFromVec = Op.getOperand(0);
17308 const APInt &ExtractIdx = Op.getConstantOperandAPInt(1);
17309 if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements()))
17310 return SDValue();
17312 // All inputs must have the same element type as the output.
17313 if (VT.getVectorElementType() !=
17314 ExtractedFromVec.getValueType().getVectorElementType())
17315 return SDValue();
17317 // Have we seen this input vector before?
17318 // The vectors are expected to be tiny (usually 1 or 2 elements), so using
17319 // a map back from SDValues to numbers isn't worth it.
17320 unsigned Idx = std::distance(
17321 VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec));
17322 if (Idx == VecIn.size())
17323 VecIn.push_back(ExtractedFromVec);
17325 VectorMask[i] = Idx;
17328 // If we didn't find at least one input vector, bail out.
17329 if (VecIn.size() < 2)
17330 return SDValue();
17332 // If all the Operands of BUILD_VECTOR extract from same
17333 // vector, then split the vector efficiently based on the maximum
17334 // vector access index and adjust the VectorMask and
17335 // VecIn accordingly.
17336 bool DidSplitVec = false;
17337 if (VecIn.size() == 2) {
17338 unsigned MaxIndex = 0;
17339 unsigned NearestPow2 = 0;
17340 SDValue Vec = VecIn.back();
17341 EVT InVT = Vec.getValueType();
17342 MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
17343 SmallVector<unsigned, 8> IndexVec(NumElems, 0);
17345 for (unsigned i = 0; i < NumElems; i++) {
17346 if (VectorMask[i] <= 0)
17347 continue;
17348 unsigned Index = N->getOperand(i).getConstantOperandVal(1);
17349 IndexVec[i] = Index;
17350 MaxIndex = std::max(MaxIndex, Index);
17353 NearestPow2 = PowerOf2Ceil(MaxIndex);
17354 if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 &&
17355 NumElems * 2 < NearestPow2) {
17356 unsigned SplitSize = NearestPow2 / 2;
17357 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(),
17358 InVT.getVectorElementType(), SplitSize);
17359 if (TLI.isTypeLegal(SplitVT)) {
17360 SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
17361 DAG.getConstant(SplitSize, DL, IdxTy));
17362 SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
17363 DAG.getConstant(0, DL, IdxTy));
17364 VecIn.pop_back();
17365 VecIn.push_back(VecIn1);
17366 VecIn.push_back(VecIn2);
17367 DidSplitVec = true;
17369 for (unsigned i = 0; i < NumElems; i++) {
17370 if (VectorMask[i] <= 0)
17371 continue;
17372 VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2;
17378 // TODO: We want to sort the vectors by descending length, so that adjacent
17379 // pairs have similar length, and the longer vector is always first in the
17380 // pair.
17382 // TODO: Should this fire if some of the input vectors has illegal type (like
17383 // it does now), or should we let legalization run its course first?
17385 // Shuffle phase:
17386 // Take pairs of vectors, and shuffle them so that the result has elements
17387 // from these vectors in the correct places.
17388 // For example, given:
17389 // t10: i32 = extract_vector_elt t1, Constant:i64<0>
17390 // t11: i32 = extract_vector_elt t2, Constant:i64<0>
17391 // t12: i32 = extract_vector_elt t3, Constant:i64<0>
17392 // t13: i32 = extract_vector_elt t1, Constant:i64<1>
17393 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
17394 // We will generate:
17395 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
17396 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
17397 SmallVector<SDValue, 4> Shuffles;
17398 for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) {
17399 unsigned LeftIdx = 2 * In + 1;
17400 SDValue VecLeft = VecIn[LeftIdx];
17401 SDValue VecRight =
17402 (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue();
17404 if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft,
17405 VecRight, LeftIdx, DidSplitVec))
17406 Shuffles.push_back(Shuffle);
17407 else
17408 return SDValue();
17411 // If we need the zero vector as an "ingredient" in the blend tree, add it
17412 // to the list of shuffles.
17413 if (UsesZeroVector)
17414 Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT)
17415 : DAG.getConstantFP(0.0, DL, VT));
17417 // If we only have one shuffle, we're done.
17418 if (Shuffles.size() == 1)
17419 return Shuffles[0];
17421 // Update the vector mask to point to the post-shuffle vectors.
17422 for (int &Vec : VectorMask)
17423 if (Vec == 0)
17424 Vec = Shuffles.size() - 1;
17425 else
17426 Vec = (Vec - 1) / 2;
17428 // More than one shuffle. Generate a binary tree of blends, e.g. if from
17429 // the previous step we got the set of shuffles t10, t11, t12, t13, we will
17430 // generate:
17431 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
17432 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
17433 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
17434 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
17435 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
17436 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
17437 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
17439 // Make sure the initial size of the shuffle list is even.
17440 if (Shuffles.size() % 2)
17441 Shuffles.push_back(DAG.getUNDEF(VT));
17443 for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) {
17444 if (CurSize % 2) {
17445 Shuffles[CurSize] = DAG.getUNDEF(VT);
17446 CurSize++;
17448 for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) {
17449 int Left = 2 * In;
17450 int Right = 2 * In + 1;
17451 SmallVector<int, 8> Mask(NumElems, -1);
17452 for (unsigned i = 0; i != NumElems; ++i) {
17453 if (VectorMask[i] == Left) {
17454 Mask[i] = i;
17455 VectorMask[i] = In;
17456 } else if (VectorMask[i] == Right) {
17457 Mask[i] = i + NumElems;
17458 VectorMask[i] = In;
17462 Shuffles[In] =
17463 DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask);
17466 return Shuffles[0];
17469 // Try to turn a build vector of zero extends of extract vector elts into a
17470 // a vector zero extend and possibly an extract subvector.
17471 // TODO: Support sign extend?
17472 // TODO: Allow undef elements?
17473 SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) {
17474 if (LegalOperations)
17475 return SDValue();
17477 EVT VT = N->getValueType(0);
17479 bool FoundZeroExtend = false;
17480 SDValue Op0 = N->getOperand(0);
17481 auto checkElem = [&](SDValue Op) -> int64_t {
17482 unsigned Opc = Op.getOpcode();
17483 FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND);
17484 if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) &&
17485 Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
17486 Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0))
17487 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1)))
17488 return C->getZExtValue();
17489 return -1;
17492 // Make sure the first element matches
17493 // (zext (extract_vector_elt X, C))
17494 int64_t Offset = checkElem(Op0);
17495 if (Offset < 0)
17496 return SDValue();
17498 unsigned NumElems = N->getNumOperands();
17499 SDValue In = Op0.getOperand(0).getOperand(0);
17500 EVT InSVT = In.getValueType().getScalarType();
17501 EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems);
17503 // Don't create an illegal input type after type legalization.
17504 if (LegalTypes && !TLI.isTypeLegal(InVT))
17505 return SDValue();
17507 // Ensure all the elements come from the same vector and are adjacent.
17508 for (unsigned i = 1; i != NumElems; ++i) {
17509 if ((Offset + i) != checkElem(N->getOperand(i)))
17510 return SDValue();
17513 SDLoc DL(N);
17514 In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In,
17515 Op0.getOperand(0).getOperand(1));
17516 return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL,
17517 VT, In);
17520 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
17521 EVT VT = N->getValueType(0);
17523 // A vector built entirely of undefs is undef.
17524 if (ISD::allOperandsUndef(N))
17525 return DAG.getUNDEF(VT);
17527 // If this is a splat of a bitcast from another vector, change to a
17528 // concat_vector.
17529 // For example:
17530 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
17531 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
17533 // If X is a build_vector itself, the concat can become a larger build_vector.
17534 // TODO: Maybe this is useful for non-splat too?
17535 if (!LegalOperations) {
17536 if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) {
17537 Splat = peekThroughBitcasts(Splat);
17538 EVT SrcVT = Splat.getValueType();
17539 if (SrcVT.isVector()) {
17540 unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements();
17541 EVT NewVT = EVT::getVectorVT(*DAG.getContext(),
17542 SrcVT.getVectorElementType(), NumElts);
17543 if (!LegalTypes || TLI.isTypeLegal(NewVT)) {
17544 SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat);
17545 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N),
17546 NewVT, Ops);
17547 return DAG.getBitcast(VT, Concat);
17553 // Check if we can express BUILD VECTOR via subvector extract.
17554 if (!LegalTypes && (N->getNumOperands() > 1)) {
17555 SDValue Op0 = N->getOperand(0);
17556 auto checkElem = [&](SDValue Op) -> uint64_t {
17557 if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) &&
17558 (Op0.getOperand(0) == Op.getOperand(0)))
17559 if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
17560 return CNode->getZExtValue();
17561 return -1;
17564 int Offset = checkElem(Op0);
17565 for (unsigned i = 0; i < N->getNumOperands(); ++i) {
17566 if (Offset + i != checkElem(N->getOperand(i))) {
17567 Offset = -1;
17568 break;
17572 if ((Offset == 0) &&
17573 (Op0.getOperand(0).getValueType() == N->getValueType(0)))
17574 return Op0.getOperand(0);
17575 if ((Offset != -1) &&
17576 ((Offset % N->getValueType(0).getVectorNumElements()) ==
17577 0)) // IDX must be multiple of output size.
17578 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0),
17579 Op0.getOperand(0), Op0.getOperand(1));
17582 if (SDValue V = convertBuildVecZextToZext(N))
17583 return V;
17585 if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
17586 return V;
17588 if (SDValue V = reduceBuildVecToShuffle(N))
17589 return V;
17591 return SDValue();
17594 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) {
17595 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17596 EVT OpVT = N->getOperand(0).getValueType();
17598 // If the operands are legal vectors, leave them alone.
17599 if (TLI.isTypeLegal(OpVT))
17600 return SDValue();
17602 SDLoc DL(N);
17603 EVT VT = N->getValueType(0);
17604 SmallVector<SDValue, 8> Ops;
17606 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
17607 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
17609 // Keep track of what we encounter.
17610 bool AnyInteger = false;
17611 bool AnyFP = false;
17612 for (const SDValue &Op : N->ops()) {
17613 if (ISD::BITCAST == Op.getOpcode() &&
17614 !Op.getOperand(0).getValueType().isVector())
17615 Ops.push_back(Op.getOperand(0));
17616 else if (ISD::UNDEF == Op.getOpcode())
17617 Ops.push_back(ScalarUndef);
17618 else
17619 return SDValue();
17621 // Note whether we encounter an integer or floating point scalar.
17622 // If it's neither, bail out, it could be something weird like x86mmx.
17623 EVT LastOpVT = Ops.back().getValueType();
17624 if (LastOpVT.isFloatingPoint())
17625 AnyFP = true;
17626 else if (LastOpVT.isInteger())
17627 AnyInteger = true;
17628 else
17629 return SDValue();
17632 // If any of the operands is a floating point scalar bitcast to a vector,
17633 // use floating point types throughout, and bitcast everything.
17634 // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
17635 if (AnyFP) {
17636 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits());
17637 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
17638 if (AnyInteger) {
17639 for (SDValue &Op : Ops) {
17640 if (Op.getValueType() == SVT)
17641 continue;
17642 if (Op.isUndef())
17643 Op = ScalarUndef;
17644 else
17645 Op = DAG.getBitcast(SVT, Op);
17650 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT,
17651 VT.getSizeInBits() / SVT.getSizeInBits());
17652 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops));
17655 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
17656 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
17657 // most two distinct vectors the same size as the result, attempt to turn this
17658 // into a legal shuffle.
17659 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) {
17660 EVT VT = N->getValueType(0);
17661 EVT OpVT = N->getOperand(0).getValueType();
17662 int NumElts = VT.getVectorNumElements();
17663 int NumOpElts = OpVT.getVectorNumElements();
17665 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT);
17666 SmallVector<int, 8> Mask;
17668 for (SDValue Op : N->ops()) {
17669 Op = peekThroughBitcasts(Op);
17671 // UNDEF nodes convert to UNDEF shuffle mask values.
17672 if (Op.isUndef()) {
17673 Mask.append((unsigned)NumOpElts, -1);
17674 continue;
17677 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
17678 return SDValue();
17680 // What vector are we extracting the subvector from and at what index?
17681 SDValue ExtVec = Op.getOperand(0);
17683 // We want the EVT of the original extraction to correctly scale the
17684 // extraction index.
17685 EVT ExtVT = ExtVec.getValueType();
17686 ExtVec = peekThroughBitcasts(ExtVec);
17688 // UNDEF nodes convert to UNDEF shuffle mask values.
17689 if (ExtVec.isUndef()) {
17690 Mask.append((unsigned)NumOpElts, -1);
17691 continue;
17694 if (!isa<ConstantSDNode>(Op.getOperand(1)))
17695 return SDValue();
17696 int ExtIdx = Op.getConstantOperandVal(1);
17698 // Ensure that we are extracting a subvector from a vector the same
17699 // size as the result.
17700 if (ExtVT.getSizeInBits() != VT.getSizeInBits())
17701 return SDValue();
17703 // Scale the subvector index to account for any bitcast.
17704 int NumExtElts = ExtVT.getVectorNumElements();
17705 if (0 == (NumExtElts % NumElts))
17706 ExtIdx /= (NumExtElts / NumElts);
17707 else if (0 == (NumElts % NumExtElts))
17708 ExtIdx *= (NumElts / NumExtElts);
17709 else
17710 return SDValue();
17712 // At most we can reference 2 inputs in the final shuffle.
17713 if (SV0.isUndef() || SV0 == ExtVec) {
17714 SV0 = ExtVec;
17715 for (int i = 0; i != NumOpElts; ++i)
17716 Mask.push_back(i + ExtIdx);
17717 } else if (SV1.isUndef() || SV1 == ExtVec) {
17718 SV1 = ExtVec;
17719 for (int i = 0; i != NumOpElts; ++i)
17720 Mask.push_back(i + ExtIdx + NumElts);
17721 } else {
17722 return SDValue();
17726 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT))
17727 return SDValue();
17729 return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0),
17730 DAG.getBitcast(VT, SV1), Mask);
17733 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
17734 // If we only have one input vector, we don't need to do any concatenation.
17735 if (N->getNumOperands() == 1)
17736 return N->getOperand(0);
17738 // Check if all of the operands are undefs.
17739 EVT VT = N->getValueType(0);
17740 if (ISD::allOperandsUndef(N))
17741 return DAG.getUNDEF(VT);
17743 // Optimize concat_vectors where all but the first of the vectors are undef.
17744 if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) {
17745 return Op.isUndef();
17746 })) {
17747 SDValue In = N->getOperand(0);
17748 assert(In.getValueType().isVector() && "Must concat vectors");
17750 // If the input is a concat_vectors, just make a larger concat by padding
17751 // with smaller undefs.
17752 if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) {
17753 unsigned NumOps = N->getNumOperands() * In.getNumOperands();
17754 SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end());
17755 Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType()));
17756 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
17759 SDValue Scalar = peekThroughOneUseBitcasts(In);
17761 // concat_vectors(scalar_to_vector(scalar), undef) ->
17762 // scalar_to_vector(scalar)
17763 if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR &&
17764 Scalar.hasOneUse()) {
17765 EVT SVT = Scalar.getValueType().getVectorElementType();
17766 if (SVT == Scalar.getOperand(0).getValueType())
17767 Scalar = Scalar.getOperand(0);
17770 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
17771 if (!Scalar.getValueType().isVector()) {
17772 // If the bitcast type isn't legal, it might be a trunc of a legal type;
17773 // look through the trunc so we can still do the transform:
17774 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
17775 if (Scalar->getOpcode() == ISD::TRUNCATE &&
17776 !TLI.isTypeLegal(Scalar.getValueType()) &&
17777 TLI.isTypeLegal(Scalar->getOperand(0).getValueType()))
17778 Scalar = Scalar->getOperand(0);
17780 EVT SclTy = Scalar.getValueType();
17782 if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
17783 return SDValue();
17785 // Bail out if the vector size is not a multiple of the scalar size.
17786 if (VT.getSizeInBits() % SclTy.getSizeInBits())
17787 return SDValue();
17789 unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits();
17790 if (VNTNumElms < 2)
17791 return SDValue();
17793 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms);
17794 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
17795 return SDValue();
17797 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar);
17798 return DAG.getBitcast(VT, Res);
17802 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
17803 // We have already tested above for an UNDEF only concatenation.
17804 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
17805 // -> (BUILD_VECTOR A, B, ..., C, D, ...)
17806 auto IsBuildVectorOrUndef = [](const SDValue &Op) {
17807 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode();
17809 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) {
17810 SmallVector<SDValue, 8> Opnds;
17811 EVT SVT = VT.getScalarType();
17813 EVT MinVT = SVT;
17814 if (!SVT.isFloatingPoint()) {
17815 // If BUILD_VECTOR are from built from integer, they may have different
17816 // operand types. Get the smallest type and truncate all operands to it.
17817 bool FoundMinVT = false;
17818 for (const SDValue &Op : N->ops())
17819 if (ISD::BUILD_VECTOR == Op.getOpcode()) {
17820 EVT OpSVT = Op.getOperand(0).getValueType();
17821 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT;
17822 FoundMinVT = true;
17824 assert(FoundMinVT && "Concat vector type mismatch");
17827 for (const SDValue &Op : N->ops()) {
17828 EVT OpVT = Op.getValueType();
17829 unsigned NumElts = OpVT.getVectorNumElements();
17831 if (ISD::UNDEF == Op.getOpcode())
17832 Opnds.append(NumElts, DAG.getUNDEF(MinVT));
17834 if (ISD::BUILD_VECTOR == Op.getOpcode()) {
17835 if (SVT.isFloatingPoint()) {
17836 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch");
17837 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts);
17838 } else {
17839 for (unsigned i = 0; i != NumElts; ++i)
17840 Opnds.push_back(
17841 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i)));
17846 assert(VT.getVectorNumElements() == Opnds.size() &&
17847 "Concat vector type mismatch");
17848 return DAG.getBuildVector(VT, SDLoc(N), Opnds);
17851 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
17852 if (SDValue V = combineConcatVectorOfScalars(N, DAG))
17853 return V;
17855 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
17856 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT))
17857 if (SDValue V = combineConcatVectorOfExtracts(N, DAG))
17858 return V;
17860 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
17861 // nodes often generate nop CONCAT_VECTOR nodes.
17862 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
17863 // place the incoming vectors at the exact same location.
17864 SDValue SingleSource = SDValue();
17865 unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
17867 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
17868 SDValue Op = N->getOperand(i);
17870 if (Op.isUndef())
17871 continue;
17873 // Check if this is the identity extract:
17874 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
17875 return SDValue();
17877 // Find the single incoming vector for the extract_subvector.
17878 if (SingleSource.getNode()) {
17879 if (Op.getOperand(0) != SingleSource)
17880 return SDValue();
17881 } else {
17882 SingleSource = Op.getOperand(0);
17884 // Check the source type is the same as the type of the result.
17885 // If not, this concat may extend the vector, so we can not
17886 // optimize it away.
17887 if (SingleSource.getValueType() != N->getValueType(0))
17888 return SDValue();
17891 auto *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
17892 // The extract index must be constant.
17893 if (!CS)
17894 return SDValue();
17896 // Check that we are reading from the identity index.
17897 unsigned IdentityIndex = i * PartNumElem;
17898 if (CS->getAPIntValue() != IdentityIndex)
17899 return SDValue();
17902 if (SingleSource.getNode())
17903 return SingleSource;
17905 return SDValue();
17908 // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find
17909 // if the subvector can be sourced for free.
17910 static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) {
17911 if (V.getOpcode() == ISD::INSERT_SUBVECTOR &&
17912 V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) {
17913 return V.getOperand(1);
17915 auto *IndexC = dyn_cast<ConstantSDNode>(Index);
17916 if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS &&
17917 V.getOperand(0).getValueType() == SubVT &&
17918 (IndexC->getZExtValue() % SubVT.getVectorNumElements()) == 0) {
17919 uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorNumElements();
17920 return V.getOperand(SubIdx);
17922 return SDValue();
17925 static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract,
17926 SelectionDAG &DAG) {
17927 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17928 SDValue BinOp = Extract->getOperand(0);
17929 unsigned BinOpcode = BinOp.getOpcode();
17930 if (!TLI.isBinOp(BinOpcode) || BinOp.getNode()->getNumValues() != 1)
17931 return SDValue();
17933 EVT VecVT = BinOp.getValueType();
17934 SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1);
17935 if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType())
17936 return SDValue();
17938 SDValue Index = Extract->getOperand(1);
17939 EVT SubVT = Extract->getValueType(0);
17940 if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT))
17941 return SDValue();
17943 SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT);
17944 SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT);
17946 // TODO: We could handle the case where only 1 operand is being inserted by
17947 // creating an extract of the other operand, but that requires checking
17948 // number of uses and/or costs.
17949 if (!Sub0 || !Sub1)
17950 return SDValue();
17952 // We are inserting both operands of the wide binop only to extract back
17953 // to the narrow vector size. Eliminate all of the insert/extract:
17954 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y
17955 return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1,
17956 BinOp->getFlags());
17959 /// If we are extracting a subvector produced by a wide binary operator try
17960 /// to use a narrow binary operator and/or avoid concatenation and extraction.
17961 static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG) {
17962 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
17963 // some of these bailouts with other transforms.
17965 if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG))
17966 return V;
17968 // The extract index must be a constant, so we can map it to a concat operand.
17969 auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
17970 if (!ExtractIndexC)
17971 return SDValue();
17973 // We are looking for an optionally bitcasted wide vector binary operator
17974 // feeding an extract subvector.
17975 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17976 SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0));
17977 unsigned BOpcode = BinOp.getOpcode();
17978 if (!TLI.isBinOp(BOpcode) || BinOp.getNode()->getNumValues() != 1)
17979 return SDValue();
17981 // The binop must be a vector type, so we can extract some fraction of it.
17982 EVT WideBVT = BinOp.getValueType();
17983 if (!WideBVT.isVector())
17984 return SDValue();
17986 EVT VT = Extract->getValueType(0);
17987 unsigned ExtractIndex = ExtractIndexC->getZExtValue();
17988 assert(ExtractIndex % VT.getVectorNumElements() == 0 &&
17989 "Extract index is not a multiple of the vector length.");
17991 // Bail out if this is not a proper multiple width extraction.
17992 unsigned WideWidth = WideBVT.getSizeInBits();
17993 unsigned NarrowWidth = VT.getSizeInBits();
17994 if (WideWidth % NarrowWidth != 0)
17995 return SDValue();
17997 // Bail out if we are extracting a fraction of a single operation. This can
17998 // occur because we potentially looked through a bitcast of the binop.
17999 unsigned NarrowingRatio = WideWidth / NarrowWidth;
18000 unsigned WideNumElts = WideBVT.getVectorNumElements();
18001 if (WideNumElts % NarrowingRatio != 0)
18002 return SDValue();
18004 // Bail out if the target does not support a narrower version of the binop.
18005 EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(),
18006 WideNumElts / NarrowingRatio);
18007 if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT))
18008 return SDValue();
18010 // If extraction is cheap, we don't need to look at the binop operands
18011 // for concat ops. The narrow binop alone makes this transform profitable.
18012 // We can't just reuse the original extract index operand because we may have
18013 // bitcasted.
18014 unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements();
18015 unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements();
18016 EVT ExtBOIdxVT = Extract->getOperand(1).getValueType();
18017 if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) &&
18018 BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) {
18019 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N)
18020 SDLoc DL(Extract);
18021 SDValue NewExtIndex = DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT);
18022 SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
18023 BinOp.getOperand(0), NewExtIndex);
18024 SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
18025 BinOp.getOperand(1), NewExtIndex);
18026 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y,
18027 BinOp.getNode()->getFlags());
18028 return DAG.getBitcast(VT, NarrowBinOp);
18031 // Only handle the case where we are doubling and then halving. A larger ratio
18032 // may require more than two narrow binops to replace the wide binop.
18033 if (NarrowingRatio != 2)
18034 return SDValue();
18036 // TODO: The motivating case for this transform is an x86 AVX1 target. That
18037 // target has temptingly almost legal versions of bitwise logic ops in 256-bit
18038 // flavors, but no other 256-bit integer support. This could be extended to
18039 // handle any binop, but that may require fixing/adding other folds to avoid
18040 // codegen regressions.
18041 if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR)
18042 return SDValue();
18044 // We need at least one concatenation operation of a binop operand to make
18045 // this transform worthwhile. The concat must double the input vector sizes.
18046 auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue {
18047 if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2)
18048 return V.getOperand(ConcatOpNum);
18049 return SDValue();
18051 SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0)));
18052 SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1)));
18054 if (SubVecL || SubVecR) {
18055 // If a binop operand was not the result of a concat, we must extract a
18056 // half-sized operand for our new narrow binop:
18057 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
18058 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC)
18059 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN
18060 SDLoc DL(Extract);
18061 SDValue IndexC = DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT);
18062 SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL)
18063 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
18064 BinOp.getOperand(0), IndexC);
18066 SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR)
18067 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
18068 BinOp.getOperand(1), IndexC);
18070 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y);
18071 return DAG.getBitcast(VT, NarrowBinOp);
18074 return SDValue();
18077 /// If we are extracting a subvector from a wide vector load, convert to a
18078 /// narrow load to eliminate the extraction:
18079 /// (extract_subvector (load wide vector)) --> (load narrow vector)
18080 static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) {
18081 // TODO: Add support for big-endian. The offset calculation must be adjusted.
18082 if (DAG.getDataLayout().isBigEndian())
18083 return SDValue();
18085 auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0));
18086 auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
18087 if (!Ld || Ld->getExtensionType() || Ld->isVolatile() || !ExtIdx)
18088 return SDValue();
18090 // Allow targets to opt-out.
18091 EVT VT = Extract->getValueType(0);
18092 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18093 if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT))
18094 return SDValue();
18096 // The narrow load will be offset from the base address of the old load if
18097 // we are extracting from something besides index 0 (little-endian).
18098 SDLoc DL(Extract);
18099 SDValue BaseAddr = Ld->getOperand(1);
18100 unsigned Offset = ExtIdx->getZExtValue() * VT.getScalarType().getStoreSize();
18102 // TODO: Use "BaseIndexOffset" to make this more effective.
18103 SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL);
18104 MachineFunction &MF = DAG.getMachineFunction();
18105 MachineMemOperand *MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset,
18106 VT.getStoreSize());
18107 SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO);
18108 DAG.makeEquivalentMemoryOrdering(Ld, NewLd);
18109 return NewLd;
18112 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) {
18113 EVT NVT = N->getValueType(0);
18114 SDValue V = N->getOperand(0);
18116 // Extract from UNDEF is UNDEF.
18117 if (V.isUndef())
18118 return DAG.getUNDEF(NVT);
18120 if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT))
18121 if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG))
18122 return NarrowLoad;
18124 // Combine an extract of an extract into a single extract_subvector.
18125 // ext (ext X, C), 0 --> ext X, C
18126 SDValue Index = N->getOperand(1);
18127 if (isNullConstant(Index) && V.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
18128 V.hasOneUse() && isa<ConstantSDNode>(V.getOperand(1))) {
18129 if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(),
18130 V.getConstantOperandVal(1)) &&
18131 TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) {
18132 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0),
18133 V.getOperand(1));
18137 // Try to move vector bitcast after extract_subv by scaling extraction index:
18138 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index')
18139 if (isa<ConstantSDNode>(Index) && V.getOpcode() == ISD::BITCAST &&
18140 V.getOperand(0).getValueType().isVector()) {
18141 SDValue SrcOp = V.getOperand(0);
18142 EVT SrcVT = SrcOp.getValueType();
18143 unsigned SrcNumElts = SrcVT.getVectorNumElements();
18144 unsigned DestNumElts = V.getValueType().getVectorNumElements();
18145 if ((SrcNumElts % DestNumElts) == 0) {
18146 unsigned SrcDestRatio = SrcNumElts / DestNumElts;
18147 unsigned NewExtNumElts = NVT.getVectorNumElements() * SrcDestRatio;
18148 EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
18149 NewExtNumElts);
18150 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) {
18151 unsigned IndexValScaled = N->getConstantOperandVal(1) * SrcDestRatio;
18152 SDLoc DL(N);
18153 SDValue NewIndex = DAG.getIntPtrConstant(IndexValScaled, DL);
18154 SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT,
18155 V.getOperand(0), NewIndex);
18156 return DAG.getBitcast(NVT, NewExtract);
18159 // TODO - handle (DestNumElts % SrcNumElts) == 0
18162 // Combine:
18163 // (extract_subvec (concat V1, V2, ...), i)
18164 // Into:
18165 // Vi if possible
18166 // Only operand 0 is checked as 'concat' assumes all inputs of the same
18167 // type.
18168 if (V.getOpcode() == ISD::CONCAT_VECTORS && isa<ConstantSDNode>(Index) &&
18169 V.getOperand(0).getValueType() == NVT) {
18170 unsigned Idx = N->getConstantOperandVal(1);
18171 unsigned NumElems = NVT.getVectorNumElements();
18172 assert((Idx % NumElems) == 0 &&
18173 "IDX in concat is not a multiple of the result vector length.");
18174 return V->getOperand(Idx / NumElems);
18177 V = peekThroughBitcasts(V);
18179 // If the input is a build vector. Try to make a smaller build vector.
18180 if (V.getOpcode() == ISD::BUILD_VECTOR) {
18181 if (auto *IdxC = dyn_cast<ConstantSDNode>(Index)) {
18182 EVT InVT = V.getValueType();
18183 unsigned ExtractSize = NVT.getSizeInBits();
18184 unsigned EltSize = InVT.getScalarSizeInBits();
18185 // Only do this if we won't split any elements.
18186 if (ExtractSize % EltSize == 0) {
18187 unsigned NumElems = ExtractSize / EltSize;
18188 EVT EltVT = InVT.getVectorElementType();
18189 EVT ExtractVT = NumElems == 1 ? EltVT
18190 : EVT::getVectorVT(*DAG.getContext(),
18191 EltVT, NumElems);
18192 if ((Level < AfterLegalizeDAG ||
18193 (NumElems == 1 ||
18194 TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) &&
18195 (!LegalTypes || TLI.isTypeLegal(ExtractVT))) {
18196 unsigned IdxVal = IdxC->getZExtValue();
18197 IdxVal *= NVT.getScalarSizeInBits();
18198 IdxVal /= EltSize;
18200 if (NumElems == 1) {
18201 SDValue Src = V->getOperand(IdxVal);
18202 if (EltVT != Src.getValueType())
18203 Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src);
18204 return DAG.getBitcast(NVT, Src);
18207 // Extract the pieces from the original build_vector.
18208 SDValue BuildVec = DAG.getBuildVector(
18209 ExtractVT, SDLoc(N), V->ops().slice(IdxVal, NumElems));
18210 return DAG.getBitcast(NVT, BuildVec);
18216 if (V.getOpcode() == ISD::INSERT_SUBVECTOR) {
18217 // Handle only simple case where vector being inserted and vector
18218 // being extracted are of same size.
18219 EVT SmallVT = V.getOperand(1).getValueType();
18220 if (!NVT.bitsEq(SmallVT))
18221 return SDValue();
18223 // Only handle cases where both indexes are constants.
18224 auto *ExtIdx = dyn_cast<ConstantSDNode>(Index);
18225 auto *InsIdx = dyn_cast<ConstantSDNode>(V.getOperand(2));
18226 if (InsIdx && ExtIdx) {
18227 // Combine:
18228 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
18229 // Into:
18230 // indices are equal or bit offsets are equal => V1
18231 // otherwise => (extract_subvec V1, ExtIdx)
18232 if (InsIdx->getZExtValue() * SmallVT.getScalarSizeInBits() ==
18233 ExtIdx->getZExtValue() * NVT.getScalarSizeInBits())
18234 return DAG.getBitcast(NVT, V.getOperand(1));
18235 return DAG.getNode(
18236 ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT,
18237 DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)),
18238 Index);
18242 if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG))
18243 return NarrowBOp;
18245 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
18246 return SDValue(N, 0);
18248 return SDValue();
18251 /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles
18252 /// followed by concatenation. Narrow vector ops may have better performance
18253 /// than wide ops, and this can unlock further narrowing of other vector ops.
18254 /// Targets can invert this transform later if it is not profitable.
18255 static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf,
18256 SelectionDAG &DAG) {
18257 SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1);
18258 if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 ||
18259 N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 ||
18260 !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef())
18261 return SDValue();
18263 // Split the wide shuffle mask into halves. Any mask element that is accessing
18264 // operand 1 is offset down to account for narrowing of the vectors.
18265 ArrayRef<int> Mask = Shuf->getMask();
18266 EVT VT = Shuf->getValueType(0);
18267 unsigned NumElts = VT.getVectorNumElements();
18268 unsigned HalfNumElts = NumElts / 2;
18269 SmallVector<int, 16> Mask0(HalfNumElts, -1);
18270 SmallVector<int, 16> Mask1(HalfNumElts, -1);
18271 for (unsigned i = 0; i != NumElts; ++i) {
18272 if (Mask[i] == -1)
18273 continue;
18274 int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts;
18275 if (i < HalfNumElts)
18276 Mask0[i] = M;
18277 else
18278 Mask1[i - HalfNumElts] = M;
18281 // Ask the target if this is a valid transform.
18282 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18283 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
18284 HalfNumElts);
18285 if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) ||
18286 !TLI.isShuffleMaskLegal(Mask1, HalfVT))
18287 return SDValue();
18289 // shuffle (concat X, undef), (concat Y, undef), Mask -->
18290 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
18291 SDValue X = N0.getOperand(0), Y = N1.getOperand(0);
18292 SDLoc DL(Shuf);
18293 SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0);
18294 SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1);
18295 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1);
18298 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
18299 // or turn a shuffle of a single concat into simpler shuffle then concat.
18300 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
18301 EVT VT = N->getValueType(0);
18302 unsigned NumElts = VT.getVectorNumElements();
18304 SDValue N0 = N->getOperand(0);
18305 SDValue N1 = N->getOperand(1);
18306 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
18307 ArrayRef<int> Mask = SVN->getMask();
18309 SmallVector<SDValue, 4> Ops;
18310 EVT ConcatVT = N0.getOperand(0).getValueType();
18311 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
18312 unsigned NumConcats = NumElts / NumElemsPerConcat;
18314 auto IsUndefMaskElt = [](int i) { return i == -1; };
18316 // Special case: shuffle(concat(A,B)) can be more efficiently represented
18317 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
18318 // half vector elements.
18319 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() &&
18320 llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat),
18321 IsUndefMaskElt)) {
18322 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0),
18323 N0.getOperand(1),
18324 Mask.slice(0, NumElemsPerConcat));
18325 N1 = DAG.getUNDEF(ConcatVT);
18326 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1);
18329 // Look at every vector that's inserted. We're looking for exact
18330 // subvector-sized copies from a concatenated vector
18331 for (unsigned I = 0; I != NumConcats; ++I) {
18332 unsigned Begin = I * NumElemsPerConcat;
18333 ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat);
18335 // Make sure we're dealing with a copy.
18336 if (llvm::all_of(SubMask, IsUndefMaskElt)) {
18337 Ops.push_back(DAG.getUNDEF(ConcatVT));
18338 continue;
18341 int OpIdx = -1;
18342 for (int i = 0; i != (int)NumElemsPerConcat; ++i) {
18343 if (IsUndefMaskElt(SubMask[i]))
18344 continue;
18345 if ((SubMask[i] % (int)NumElemsPerConcat) != i)
18346 return SDValue();
18347 int EltOpIdx = SubMask[i] / NumElemsPerConcat;
18348 if (0 <= OpIdx && EltOpIdx != OpIdx)
18349 return SDValue();
18350 OpIdx = EltOpIdx;
18352 assert(0 <= OpIdx && "Unknown concat_vectors op");
18354 if (OpIdx < (int)N0.getNumOperands())
18355 Ops.push_back(N0.getOperand(OpIdx));
18356 else
18357 Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands()));
18360 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
18363 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
18364 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
18366 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
18367 // a simplification in some sense, but it isn't appropriate in general: some
18368 // BUILD_VECTORs are substantially cheaper than others. The general case
18369 // of a BUILD_VECTOR requires inserting each element individually (or
18370 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
18371 // all constants is a single constant pool load. A BUILD_VECTOR where each
18372 // element is identical is a splat. A BUILD_VECTOR where most of the operands
18373 // are undef lowers to a small number of element insertions.
18375 // To deal with this, we currently use a bunch of mostly arbitrary heuristics.
18376 // We don't fold shuffles where one side is a non-zero constant, and we don't
18377 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
18378 // non-constant operands. This seems to work out reasonably well in practice.
18379 static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN,
18380 SelectionDAG &DAG,
18381 const TargetLowering &TLI) {
18382 EVT VT = SVN->getValueType(0);
18383 unsigned NumElts = VT.getVectorNumElements();
18384 SDValue N0 = SVN->getOperand(0);
18385 SDValue N1 = SVN->getOperand(1);
18387 if (!N0->hasOneUse())
18388 return SDValue();
18390 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
18391 // discussed above.
18392 if (!N1.isUndef()) {
18393 if (!N1->hasOneUse())
18394 return SDValue();
18396 bool N0AnyConst = isAnyConstantBuildVector(N0);
18397 bool N1AnyConst = isAnyConstantBuildVector(N1);
18398 if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode()))
18399 return SDValue();
18400 if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode()))
18401 return SDValue();
18404 // If both inputs are splats of the same value then we can safely merge this
18405 // to a single BUILD_VECTOR with undef elements based on the shuffle mask.
18406 bool IsSplat = false;
18407 auto *BV0 = dyn_cast<BuildVectorSDNode>(N0);
18408 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
18409 if (BV0 && BV1)
18410 if (SDValue Splat0 = BV0->getSplatValue())
18411 IsSplat = (Splat0 == BV1->getSplatValue());
18413 SmallVector<SDValue, 8> Ops;
18414 SmallSet<SDValue, 16> DuplicateOps;
18415 for (int M : SVN->getMask()) {
18416 SDValue Op = DAG.getUNDEF(VT.getScalarType());
18417 if (M >= 0) {
18418 int Idx = M < (int)NumElts ? M : M - NumElts;
18419 SDValue &S = (M < (int)NumElts ? N0 : N1);
18420 if (S.getOpcode() == ISD::BUILD_VECTOR) {
18421 Op = S.getOperand(Idx);
18422 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) {
18423 SDValue Op0 = S.getOperand(0);
18424 Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType());
18425 } else {
18426 // Operand can't be combined - bail out.
18427 return SDValue();
18431 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're
18432 // generating a splat; semantically, this is fine, but it's likely to
18433 // generate low-quality code if the target can't reconstruct an appropriate
18434 // shuffle.
18435 if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op))
18436 if (!IsSplat && !DuplicateOps.insert(Op).second)
18437 return SDValue();
18439 Ops.push_back(Op);
18442 // BUILD_VECTOR requires all inputs to be of the same type, find the
18443 // maximum type and extend them all.
18444 EVT SVT = VT.getScalarType();
18445 if (SVT.isInteger())
18446 for (SDValue &Op : Ops)
18447 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
18448 if (SVT != VT.getScalarType())
18449 for (SDValue &Op : Ops)
18450 Op = TLI.isZExtFree(Op.getValueType(), SVT)
18451 ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT)
18452 : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT);
18453 return DAG.getBuildVector(VT, SDLoc(SVN), Ops);
18456 // Match shuffles that can be converted to any_vector_extend_in_reg.
18457 // This is often generated during legalization.
18458 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
18459 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case.
18460 static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN,
18461 SelectionDAG &DAG,
18462 const TargetLowering &TLI,
18463 bool LegalOperations) {
18464 EVT VT = SVN->getValueType(0);
18465 bool IsBigEndian = DAG.getDataLayout().isBigEndian();
18467 // TODO Add support for big-endian when we have a test case.
18468 if (!VT.isInteger() || IsBigEndian)
18469 return SDValue();
18471 unsigned NumElts = VT.getVectorNumElements();
18472 unsigned EltSizeInBits = VT.getScalarSizeInBits();
18473 ArrayRef<int> Mask = SVN->getMask();
18474 SDValue N0 = SVN->getOperand(0);
18476 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
18477 auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) {
18478 for (unsigned i = 0; i != NumElts; ++i) {
18479 if (Mask[i] < 0)
18480 continue;
18481 if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale))
18482 continue;
18483 return false;
18485 return true;
18488 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
18489 // power-of-2 extensions as they are the most likely.
18490 for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) {
18491 // Check for non power of 2 vector sizes
18492 if (NumElts % Scale != 0)
18493 continue;
18494 if (!isAnyExtend(Scale))
18495 continue;
18497 EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale);
18498 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale);
18499 // Never create an illegal type. Only create unsupported operations if we
18500 // are pre-legalization.
18501 if (TLI.isTypeLegal(OutVT))
18502 if (!LegalOperations ||
18503 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT))
18504 return DAG.getBitcast(VT,
18505 DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG,
18506 SDLoc(SVN), OutVT, N0));
18509 return SDValue();
18512 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
18513 // each source element of a large type into the lowest elements of a smaller
18514 // destination type. This is often generated during legalization.
18515 // If the source node itself was a '*_extend_vector_inreg' node then we should
18516 // then be able to remove it.
18517 static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN,
18518 SelectionDAG &DAG) {
18519 EVT VT = SVN->getValueType(0);
18520 bool IsBigEndian = DAG.getDataLayout().isBigEndian();
18522 // TODO Add support for big-endian when we have a test case.
18523 if (!VT.isInteger() || IsBigEndian)
18524 return SDValue();
18526 SDValue N0 = peekThroughBitcasts(SVN->getOperand(0));
18528 unsigned Opcode = N0.getOpcode();
18529 if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG &&
18530 Opcode != ISD::SIGN_EXTEND_VECTOR_INREG &&
18531 Opcode != ISD::ZERO_EXTEND_VECTOR_INREG)
18532 return SDValue();
18534 SDValue N00 = N0.getOperand(0);
18535 ArrayRef<int> Mask = SVN->getMask();
18536 unsigned NumElts = VT.getVectorNumElements();
18537 unsigned EltSizeInBits = VT.getScalarSizeInBits();
18538 unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits();
18539 unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits();
18541 if (ExtDstSizeInBits % ExtSrcSizeInBits != 0)
18542 return SDValue();
18543 unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits;
18545 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
18546 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
18547 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
18548 auto isTruncate = [&Mask, &NumElts](unsigned Scale) {
18549 for (unsigned i = 0; i != NumElts; ++i) {
18550 if (Mask[i] < 0)
18551 continue;
18552 if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale))
18553 continue;
18554 return false;
18556 return true;
18559 // At the moment we just handle the case where we've truncated back to the
18560 // same size as before the extension.
18561 // TODO: handle more extension/truncation cases as cases arise.
18562 if (EltSizeInBits != ExtSrcSizeInBits)
18563 return SDValue();
18565 // We can remove *extend_vector_inreg only if the truncation happens at
18566 // the same scale as the extension.
18567 if (isTruncate(ExtScale))
18568 return DAG.getBitcast(VT, N00);
18570 return SDValue();
18573 // Combine shuffles of splat-shuffles of the form:
18574 // shuffle (shuffle V, undef, splat-mask), undef, M
18575 // If splat-mask contains undef elements, we need to be careful about
18576 // introducing undef's in the folded mask which are not the result of composing
18577 // the masks of the shuffles.
18578 static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf,
18579 SelectionDAG &DAG) {
18580 if (!Shuf->getOperand(1).isUndef())
18581 return SDValue();
18582 auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
18583 if (!Splat || !Splat->isSplat())
18584 return SDValue();
18586 ArrayRef<int> ShufMask = Shuf->getMask();
18587 ArrayRef<int> SplatMask = Splat->getMask();
18588 assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch");
18590 // Prefer simplifying to the splat-shuffle, if possible. This is legal if
18591 // every undef mask element in the splat-shuffle has a corresponding undef
18592 // element in the user-shuffle's mask or if the composition of mask elements
18593 // would result in undef.
18594 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
18595 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
18596 // In this case it is not legal to simplify to the splat-shuffle because we
18597 // may be exposing the users of the shuffle an undef element at index 1
18598 // which was not there before the combine.
18599 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
18600 // In this case the composition of masks yields SplatMask, so it's ok to
18601 // simplify to the splat-shuffle.
18602 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
18603 // In this case the composed mask includes all undef elements of SplatMask
18604 // and in addition sets element zero to undef. It is safe to simplify to
18605 // the splat-shuffle.
18606 auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask,
18607 ArrayRef<int> SplatMask) {
18608 for (unsigned i = 0, e = UserMask.size(); i != e; ++i)
18609 if (UserMask[i] != -1 && SplatMask[i] == -1 &&
18610 SplatMask[UserMask[i]] != -1)
18611 return false;
18612 return true;
18614 if (CanSimplifyToExistingSplat(ShufMask, SplatMask))
18615 return Shuf->getOperand(0);
18617 // Create a new shuffle with a mask that is composed of the two shuffles'
18618 // masks.
18619 SmallVector<int, 32> NewMask;
18620 for (int Idx : ShufMask)
18621 NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]);
18623 return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat),
18624 Splat->getOperand(0), Splat->getOperand(1),
18625 NewMask);
18628 /// If the shuffle mask is taking exactly one element from the first vector
18629 /// operand and passing through all other elements from the second vector
18630 /// operand, return the index of the mask element that is choosing an element
18631 /// from the first operand. Otherwise, return -1.
18632 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) {
18633 int MaskSize = Mask.size();
18634 int EltFromOp0 = -1;
18635 // TODO: This does not match if there are undef elements in the shuffle mask.
18636 // Should we ignore undefs in the shuffle mask instead? The trade-off is
18637 // removing an instruction (a shuffle), but losing the knowledge that some
18638 // vector lanes are not needed.
18639 for (int i = 0; i != MaskSize; ++i) {
18640 if (Mask[i] >= 0 && Mask[i] < MaskSize) {
18641 // We're looking for a shuffle of exactly one element from operand 0.
18642 if (EltFromOp0 != -1)
18643 return -1;
18644 EltFromOp0 = i;
18645 } else if (Mask[i] != i + MaskSize) {
18646 // Nothing from operand 1 can change lanes.
18647 return -1;
18650 return EltFromOp0;
18653 /// If a shuffle inserts exactly one element from a source vector operand into
18654 /// another vector operand and we can access the specified element as a scalar,
18655 /// then we can eliminate the shuffle.
18656 static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf,
18657 SelectionDAG &DAG) {
18658 // First, check if we are taking one element of a vector and shuffling that
18659 // element into another vector.
18660 ArrayRef<int> Mask = Shuf->getMask();
18661 SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end());
18662 SDValue Op0 = Shuf->getOperand(0);
18663 SDValue Op1 = Shuf->getOperand(1);
18664 int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask);
18665 if (ShufOp0Index == -1) {
18666 // Commute mask and check again.
18667 ShuffleVectorSDNode::commuteMask(CommutedMask);
18668 ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask);
18669 if (ShufOp0Index == -1)
18670 return SDValue();
18671 // Commute operands to match the commuted shuffle mask.
18672 std::swap(Op0, Op1);
18673 Mask = CommutedMask;
18676 // The shuffle inserts exactly one element from operand 0 into operand 1.
18677 // Now see if we can access that element as a scalar via a real insert element
18678 // instruction.
18679 // TODO: We can try harder to locate the element as a scalar. Examples: it
18680 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant.
18681 assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() &&
18682 "Shuffle mask value must be from operand 0");
18683 if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT)
18684 return SDValue();
18686 auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2));
18687 if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index])
18688 return SDValue();
18690 // There's an existing insertelement with constant insertion index, so we
18691 // don't need to check the legality/profitability of a replacement operation
18692 // that differs at most in the constant value. The target should be able to
18693 // lower any of those in a similar way. If not, legalization will expand this
18694 // to a scalar-to-vector plus shuffle.
18696 // Note that the shuffle may move the scalar from the position that the insert
18697 // element used. Therefore, our new insert element occurs at the shuffle's
18698 // mask index value, not the insert's index value.
18699 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
18700 SDValue NewInsIndex = DAG.getConstant(ShufOp0Index, SDLoc(Shuf),
18701 Op0.getOperand(2).getValueType());
18702 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(),
18703 Op1, Op0.getOperand(1), NewInsIndex);
18706 /// If we have a unary shuffle of a shuffle, see if it can be folded away
18707 /// completely. This has the potential to lose undef knowledge because the first
18708 /// shuffle may not have an undef mask element where the second one does. So
18709 /// only call this after doing simplifications based on demanded elements.
18710 static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) {
18711 // shuf (shuf0 X, Y, Mask0), undef, Mask
18712 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
18713 if (!Shuf0 || !Shuf->getOperand(1).isUndef())
18714 return SDValue();
18716 ArrayRef<int> Mask = Shuf->getMask();
18717 ArrayRef<int> Mask0 = Shuf0->getMask();
18718 for (int i = 0, e = (int)Mask.size(); i != e; ++i) {
18719 // Ignore undef elements.
18720 if (Mask[i] == -1)
18721 continue;
18722 assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value");
18724 // Is the element of the shuffle operand chosen by this shuffle the same as
18725 // the element chosen by the shuffle operand itself?
18726 if (Mask0[Mask[i]] != Mask0[i])
18727 return SDValue();
18729 // Every element of this shuffle is identical to the result of the previous
18730 // shuffle, so we can replace this value.
18731 return Shuf->getOperand(0);
18734 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
18735 EVT VT = N->getValueType(0);
18736 unsigned NumElts = VT.getVectorNumElements();
18738 SDValue N0 = N->getOperand(0);
18739 SDValue N1 = N->getOperand(1);
18741 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
18743 // Canonicalize shuffle undef, undef -> undef
18744 if (N0.isUndef() && N1.isUndef())
18745 return DAG.getUNDEF(VT);
18747 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
18749 // Canonicalize shuffle v, v -> v, undef
18750 if (N0 == N1) {
18751 SmallVector<int, 8> NewMask;
18752 for (unsigned i = 0; i != NumElts; ++i) {
18753 int Idx = SVN->getMaskElt(i);
18754 if (Idx >= (int)NumElts) Idx -= NumElts;
18755 NewMask.push_back(Idx);
18757 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask);
18760 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
18761 if (N0.isUndef())
18762 return DAG.getCommutedVectorShuffle(*SVN);
18764 // Remove references to rhs if it is undef
18765 if (N1.isUndef()) {
18766 bool Changed = false;
18767 SmallVector<int, 8> NewMask;
18768 for (unsigned i = 0; i != NumElts; ++i) {
18769 int Idx = SVN->getMaskElt(i);
18770 if (Idx >= (int)NumElts) {
18771 Idx = -1;
18772 Changed = true;
18774 NewMask.push_back(Idx);
18776 if (Changed)
18777 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask);
18780 if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG))
18781 return InsElt;
18783 // A shuffle of a single vector that is a splatted value can always be folded.
18784 if (SDValue V = combineShuffleOfSplatVal(SVN, DAG))
18785 return V;
18787 // If it is a splat, check if the argument vector is another splat or a
18788 // build_vector.
18789 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
18790 int SplatIndex = SVN->getSplatIndex();
18791 if (TLI.isExtractVecEltCheap(VT, SplatIndex) &&
18792 TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) {
18793 // splat (vector_bo L, R), Index -->
18794 // splat (scalar_bo (extelt L, Index), (extelt R, Index))
18795 SDValue L = N0.getOperand(0), R = N0.getOperand(1);
18796 SDLoc DL(N);
18797 EVT EltVT = VT.getScalarType();
18798 SDValue Index = DAG.getIntPtrConstant(SplatIndex, DL);
18799 SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index);
18800 SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index);
18801 SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR,
18802 N0.getNode()->getFlags());
18803 SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO);
18804 SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0);
18805 return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask);
18808 // If this is a bit convert that changes the element type of the vector but
18809 // not the number of vector elements, look through it. Be careful not to
18810 // look though conversions that change things like v4f32 to v2f64.
18811 SDNode *V = N0.getNode();
18812 if (V->getOpcode() == ISD::BITCAST) {
18813 SDValue ConvInput = V->getOperand(0);
18814 if (ConvInput.getValueType().isVector() &&
18815 ConvInput.getValueType().getVectorNumElements() == NumElts)
18816 V = ConvInput.getNode();
18819 if (V->getOpcode() == ISD::BUILD_VECTOR) {
18820 assert(V->getNumOperands() == NumElts &&
18821 "BUILD_VECTOR has wrong number of operands");
18822 SDValue Base;
18823 bool AllSame = true;
18824 for (unsigned i = 0; i != NumElts; ++i) {
18825 if (!V->getOperand(i).isUndef()) {
18826 Base = V->getOperand(i);
18827 break;
18830 // Splat of <u, u, u, u>, return <u, u, u, u>
18831 if (!Base.getNode())
18832 return N0;
18833 for (unsigned i = 0; i != NumElts; ++i) {
18834 if (V->getOperand(i) != Base) {
18835 AllSame = false;
18836 break;
18839 // Splat of <x, x, x, x>, return <x, x, x, x>
18840 if (AllSame)
18841 return N0;
18843 // Canonicalize any other splat as a build_vector.
18844 SDValue Splatted = V->getOperand(SplatIndex);
18845 SmallVector<SDValue, 8> Ops(NumElts, Splatted);
18846 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops);
18848 // We may have jumped through bitcasts, so the type of the
18849 // BUILD_VECTOR may not match the type of the shuffle.
18850 if (V->getValueType(0) != VT)
18851 NewBV = DAG.getBitcast(VT, NewBV);
18852 return NewBV;
18856 // Simplify source operands based on shuffle mask.
18857 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
18858 return SDValue(N, 0);
18860 // This is intentionally placed after demanded elements simplification because
18861 // it could eliminate knowledge of undef elements created by this shuffle.
18862 if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN))
18863 return ShufOp;
18865 // Match shuffles that can be converted to any_vector_extend_in_reg.
18866 if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations))
18867 return V;
18869 // Combine "truncate_vector_in_reg" style shuffles.
18870 if (SDValue V = combineTruncationShuffle(SVN, DAG))
18871 return V;
18873 if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
18874 Level < AfterLegalizeVectorOps &&
18875 (N1.isUndef() ||
18876 (N1.getOpcode() == ISD::CONCAT_VECTORS &&
18877 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
18878 if (SDValue V = partitionShuffleOfConcats(N, DAG))
18879 return V;
18882 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
18883 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
18884 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT))
18885 if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI))
18886 return Res;
18888 // If this shuffle only has a single input that is a bitcasted shuffle,
18889 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
18890 // back to their original types.
18891 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
18892 N1.isUndef() && Level < AfterLegalizeVectorOps &&
18893 TLI.isTypeLegal(VT)) {
18894 auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) {
18895 if (Scale == 1)
18896 return SmallVector<int, 8>(Mask.begin(), Mask.end());
18898 SmallVector<int, 8> NewMask;
18899 for (int M : Mask)
18900 for (int s = 0; s != Scale; ++s)
18901 NewMask.push_back(M < 0 ? -1 : Scale * M + s);
18902 return NewMask;
18905 SDValue BC0 = peekThroughOneUseBitcasts(N0);
18906 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) {
18907 EVT SVT = VT.getScalarType();
18908 EVT InnerVT = BC0->getValueType(0);
18909 EVT InnerSVT = InnerVT.getScalarType();
18911 // Determine which shuffle works with the smaller scalar type.
18912 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT;
18913 EVT ScaleSVT = ScaleVT.getScalarType();
18915 if (TLI.isTypeLegal(ScaleVT) &&
18916 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) &&
18917 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) {
18918 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits();
18919 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits();
18921 // Scale the shuffle masks to the smaller scalar type.
18922 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0);
18923 SmallVector<int, 8> InnerMask =
18924 ScaleShuffleMask(InnerSVN->getMask(), InnerScale);
18925 SmallVector<int, 8> OuterMask =
18926 ScaleShuffleMask(SVN->getMask(), OuterScale);
18928 // Merge the shuffle masks.
18929 SmallVector<int, 8> NewMask;
18930 for (int M : OuterMask)
18931 NewMask.push_back(M < 0 ? -1 : InnerMask[M]);
18933 // Test for shuffle mask legality over both commutations.
18934 SDValue SV0 = BC0->getOperand(0);
18935 SDValue SV1 = BC0->getOperand(1);
18936 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
18937 if (!LegalMask) {
18938 std::swap(SV0, SV1);
18939 ShuffleVectorSDNode::commuteMask(NewMask);
18940 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
18943 if (LegalMask) {
18944 SV0 = DAG.getBitcast(ScaleVT, SV0);
18945 SV1 = DAG.getBitcast(ScaleVT, SV1);
18946 return DAG.getBitcast(
18947 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask));
18953 // Canonicalize shuffles according to rules:
18954 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
18955 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
18956 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
18957 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
18958 N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
18959 TLI.isTypeLegal(VT)) {
18960 // The incoming shuffle must be of the same type as the result of the
18961 // current shuffle.
18962 assert(N1->getOperand(0).getValueType() == VT &&
18963 "Shuffle types don't match");
18965 SDValue SV0 = N1->getOperand(0);
18966 SDValue SV1 = N1->getOperand(1);
18967 bool HasSameOp0 = N0 == SV0;
18968 bool IsSV1Undef = SV1.isUndef();
18969 if (HasSameOp0 || IsSV1Undef || N0 == SV1)
18970 // Commute the operands of this shuffle so that next rule
18971 // will trigger.
18972 return DAG.getCommutedVectorShuffle(*SVN);
18975 // Try to fold according to rules:
18976 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
18977 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
18978 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
18979 // Don't try to fold shuffles with illegal type.
18980 // Only fold if this shuffle is the only user of the other shuffle.
18981 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) &&
18982 Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
18983 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
18985 // Don't try to fold splats; they're likely to simplify somehow, or they
18986 // might be free.
18987 if (OtherSV->isSplat())
18988 return SDValue();
18990 // The incoming shuffle must be of the same type as the result of the
18991 // current shuffle.
18992 assert(OtherSV->getOperand(0).getValueType() == VT &&
18993 "Shuffle types don't match");
18995 SDValue SV0, SV1;
18996 SmallVector<int, 4> Mask;
18997 // Compute the combined shuffle mask for a shuffle with SV0 as the first
18998 // operand, and SV1 as the second operand.
18999 for (unsigned i = 0; i != NumElts; ++i) {
19000 int Idx = SVN->getMaskElt(i);
19001 if (Idx < 0) {
19002 // Propagate Undef.
19003 Mask.push_back(Idx);
19004 continue;
19007 SDValue CurrentVec;
19008 if (Idx < (int)NumElts) {
19009 // This shuffle index refers to the inner shuffle N0. Lookup the inner
19010 // shuffle mask to identify which vector is actually referenced.
19011 Idx = OtherSV->getMaskElt(Idx);
19012 if (Idx < 0) {
19013 // Propagate Undef.
19014 Mask.push_back(Idx);
19015 continue;
19018 CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0)
19019 : OtherSV->getOperand(1);
19020 } else {
19021 // This shuffle index references an element within N1.
19022 CurrentVec = N1;
19025 // Simple case where 'CurrentVec' is UNDEF.
19026 if (CurrentVec.isUndef()) {
19027 Mask.push_back(-1);
19028 continue;
19031 // Canonicalize the shuffle index. We don't know yet if CurrentVec
19032 // will be the first or second operand of the combined shuffle.
19033 Idx = Idx % NumElts;
19034 if (!SV0.getNode() || SV0 == CurrentVec) {
19035 // Ok. CurrentVec is the left hand side.
19036 // Update the mask accordingly.
19037 SV0 = CurrentVec;
19038 Mask.push_back(Idx);
19039 continue;
19042 // Bail out if we cannot convert the shuffle pair into a single shuffle.
19043 if (SV1.getNode() && SV1 != CurrentVec)
19044 return SDValue();
19046 // Ok. CurrentVec is the right hand side.
19047 // Update the mask accordingly.
19048 SV1 = CurrentVec;
19049 Mask.push_back(Idx + NumElts);
19052 // Check if all indices in Mask are Undef. In case, propagate Undef.
19053 bool isUndefMask = true;
19054 for (unsigned i = 0; i != NumElts && isUndefMask; ++i)
19055 isUndefMask &= Mask[i] < 0;
19057 if (isUndefMask)
19058 return DAG.getUNDEF(VT);
19060 if (!SV0.getNode())
19061 SV0 = DAG.getUNDEF(VT);
19062 if (!SV1.getNode())
19063 SV1 = DAG.getUNDEF(VT);
19065 // Avoid introducing shuffles with illegal mask.
19066 if (!TLI.isShuffleMaskLegal(Mask, VT)) {
19067 ShuffleVectorSDNode::commuteMask(Mask);
19069 if (!TLI.isShuffleMaskLegal(Mask, VT))
19070 return SDValue();
19072 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
19073 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
19074 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
19075 std::swap(SV0, SV1);
19078 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
19079 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
19080 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
19081 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask);
19084 if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG))
19085 return V;
19087 return SDValue();
19090 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
19091 SDValue InVal = N->getOperand(0);
19092 EVT VT = N->getValueType(0);
19094 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
19095 // with a VECTOR_SHUFFLE and possible truncate.
19096 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
19097 SDValue InVec = InVal->getOperand(0);
19098 SDValue EltNo = InVal->getOperand(1);
19099 auto InVecT = InVec.getValueType();
19100 if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) {
19101 SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1);
19102 int Elt = C0->getZExtValue();
19103 NewMask[0] = Elt;
19104 SDValue Val;
19105 // If we have an implict truncate do truncate here as long as it's legal.
19106 // if it's not legal, this should
19107 if (VT.getScalarType() != InVal.getValueType() &&
19108 InVal.getValueType().isScalarInteger() &&
19109 isTypeLegal(VT.getScalarType())) {
19110 Val =
19111 DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal);
19112 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val);
19114 if (VT.getScalarType() == InVecT.getScalarType() &&
19115 VT.getVectorNumElements() <= InVecT.getVectorNumElements() &&
19116 TLI.isShuffleMaskLegal(NewMask, VT)) {
19117 Val = DAG.getVectorShuffle(InVecT, SDLoc(N), InVec,
19118 DAG.getUNDEF(InVecT), NewMask);
19119 // If the initial vector is the correct size this shuffle is a
19120 // valid result.
19121 if (VT == InVecT)
19122 return Val;
19123 // If not we must truncate the vector.
19124 if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) {
19125 MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
19126 SDValue ZeroIdx = DAG.getConstant(0, SDLoc(N), IdxTy);
19127 EVT SubVT =
19128 EVT::getVectorVT(*DAG.getContext(), InVecT.getVectorElementType(),
19129 VT.getVectorNumElements());
19130 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, Val,
19131 ZeroIdx);
19132 return Val;
19138 return SDValue();
19141 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
19142 EVT VT = N->getValueType(0);
19143 SDValue N0 = N->getOperand(0);
19144 SDValue N1 = N->getOperand(1);
19145 SDValue N2 = N->getOperand(2);
19147 // If inserting an UNDEF, just return the original vector.
19148 if (N1.isUndef())
19149 return N0;
19151 // If this is an insert of an extracted vector into an undef vector, we can
19152 // just use the input to the extract.
19153 if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
19154 N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT)
19155 return N1.getOperand(0);
19157 // If we are inserting a bitcast value into an undef, with the same
19158 // number of elements, just use the bitcast input of the extract.
19159 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
19160 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
19161 if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST &&
19162 N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR &&
19163 N1.getOperand(0).getOperand(1) == N2 &&
19164 N1.getOperand(0).getOperand(0).getValueType().getVectorNumElements() ==
19165 VT.getVectorNumElements() &&
19166 N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() ==
19167 VT.getSizeInBits()) {
19168 return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0));
19171 // If both N1 and N2 are bitcast values on which insert_subvector
19172 // would makes sense, pull the bitcast through.
19173 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
19174 // BITCAST (INSERT_SUBVECTOR N0 N1 N2)
19175 if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) {
19176 SDValue CN0 = N0.getOperand(0);
19177 SDValue CN1 = N1.getOperand(0);
19178 EVT CN0VT = CN0.getValueType();
19179 EVT CN1VT = CN1.getValueType();
19180 if (CN0VT.isVector() && CN1VT.isVector() &&
19181 CN0VT.getVectorElementType() == CN1VT.getVectorElementType() &&
19182 CN0VT.getVectorNumElements() == VT.getVectorNumElements()) {
19183 SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N),
19184 CN0.getValueType(), CN0, CN1, N2);
19185 return DAG.getBitcast(VT, NewINSERT);
19189 // Combine INSERT_SUBVECTORs where we are inserting to the same index.
19190 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
19191 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
19192 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR &&
19193 N0.getOperand(1).getValueType() == N1.getValueType() &&
19194 N0.getOperand(2) == N2)
19195 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0),
19196 N1, N2);
19198 // Eliminate an intermediate insert into an undef vector:
19199 // insert_subvector undef, (insert_subvector undef, X, 0), N2 -->
19200 // insert_subvector undef, X, N2
19201 if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR &&
19202 N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2)))
19203 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0,
19204 N1.getOperand(1), N2);
19206 if (!isa<ConstantSDNode>(N2))
19207 return SDValue();
19209 uint64_t InsIdx = cast<ConstantSDNode>(N2)->getZExtValue();
19211 // Push subvector bitcasts to the output, adjusting the index as we go.
19212 // insert_subvector(bitcast(v), bitcast(s), c1)
19213 // -> bitcast(insert_subvector(v, s, c2))
19214 if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) &&
19215 N1.getOpcode() == ISD::BITCAST) {
19216 SDValue N0Src = peekThroughBitcasts(N0);
19217 SDValue N1Src = peekThroughBitcasts(N1);
19218 EVT N0SrcSVT = N0Src.getValueType().getScalarType();
19219 EVT N1SrcSVT = N1Src.getValueType().getScalarType();
19220 if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) &&
19221 N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) {
19222 EVT NewVT;
19223 SDLoc DL(N);
19224 SDValue NewIdx;
19225 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
19226 LLVMContext &Ctx = *DAG.getContext();
19227 unsigned NumElts = VT.getVectorNumElements();
19228 unsigned EltSizeInBits = VT.getScalarSizeInBits();
19229 if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) {
19230 unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits();
19231 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale);
19232 NewIdx = DAG.getConstant(InsIdx * Scale, DL, IdxVT);
19233 } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) {
19234 unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits;
19235 if ((NumElts % Scale) == 0 && (InsIdx % Scale) == 0) {
19236 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts / Scale);
19237 NewIdx = DAG.getConstant(InsIdx / Scale, DL, IdxVT);
19240 if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) {
19241 SDValue Res = DAG.getBitcast(NewVT, N0Src);
19242 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx);
19243 return DAG.getBitcast(VT, Res);
19248 // Canonicalize insert_subvector dag nodes.
19249 // Example:
19250 // (insert_subvector (insert_subvector A, Idx0), Idx1)
19251 // -> (insert_subvector (insert_subvector A, Idx1), Idx0)
19252 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() &&
19253 N1.getValueType() == N0.getOperand(1).getValueType() &&
19254 isa<ConstantSDNode>(N0.getOperand(2))) {
19255 unsigned OtherIdx = N0.getConstantOperandVal(2);
19256 if (InsIdx < OtherIdx) {
19257 // Swap nodes.
19258 SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT,
19259 N0.getOperand(0), N1, N2);
19260 AddToWorklist(NewOp.getNode());
19261 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()),
19262 VT, NewOp, N0.getOperand(1), N0.getOperand(2));
19266 // If the input vector is a concatenation, and the insert replaces
19267 // one of the pieces, we can optimize into a single concat_vectors.
19268 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() &&
19269 N0.getOperand(0).getValueType() == N1.getValueType()) {
19270 unsigned Factor = N1.getValueType().getVectorNumElements();
19272 SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end());
19273 Ops[cast<ConstantSDNode>(N2)->getZExtValue() / Factor] = N1;
19275 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
19278 // Simplify source operands based on insertion.
19279 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
19280 return SDValue(N, 0);
19282 return SDValue();
19285 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) {
19286 SDValue N0 = N->getOperand(0);
19288 // fold (fp_to_fp16 (fp16_to_fp op)) -> op
19289 if (N0->getOpcode() == ISD::FP16_TO_FP)
19290 return N0->getOperand(0);
19292 return SDValue();
19295 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) {
19296 SDValue N0 = N->getOperand(0);
19298 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
19299 if (N0->getOpcode() == ISD::AND) {
19300 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1));
19301 if (AndConst && AndConst->getAPIntValue() == 0xffff) {
19302 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0),
19303 N0.getOperand(0));
19307 return SDValue();
19310 SDValue DAGCombiner::visitVECREDUCE(SDNode *N) {
19311 SDValue N0 = N->getOperand(0);
19312 EVT VT = N0.getValueType();
19313 unsigned Opcode = N->getOpcode();
19315 // VECREDUCE over 1-element vector is just an extract.
19316 if (VT.getVectorNumElements() == 1) {
19317 SDLoc dl(N);
19318 SDValue Res = DAG.getNode(
19319 ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0,
19320 DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
19321 if (Res.getValueType() != N->getValueType(0))
19322 Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res);
19323 return Res;
19326 // On an boolean vector an and/or reduction is the same as a umin/umax
19327 // reduction. Convert them if the latter is legal while the former isn't.
19328 if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) {
19329 unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND
19330 ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX;
19331 if (!TLI.isOperationLegalOrCustom(Opcode, VT) &&
19332 TLI.isOperationLegalOrCustom(NewOpcode, VT) &&
19333 DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits())
19334 return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0);
19337 return SDValue();
19340 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
19341 /// with the destination vector and a zero vector.
19342 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
19343 /// vector_shuffle V, Zero, <0, 4, 2, 4>
19344 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
19345 assert(N->getOpcode() == ISD::AND && "Unexpected opcode!");
19347 EVT VT = N->getValueType(0);
19348 SDValue LHS = N->getOperand(0);
19349 SDValue RHS = peekThroughBitcasts(N->getOperand(1));
19350 SDLoc DL(N);
19352 // Make sure we're not running after operation legalization where it
19353 // may have custom lowered the vector shuffles.
19354 if (LegalOperations)
19355 return SDValue();
19357 if (RHS.getOpcode() != ISD::BUILD_VECTOR)
19358 return SDValue();
19360 EVT RVT = RHS.getValueType();
19361 unsigned NumElts = RHS.getNumOperands();
19363 // Attempt to create a valid clear mask, splitting the mask into
19364 // sub elements and checking to see if each is
19365 // all zeros or all ones - suitable for shuffle masking.
19366 auto BuildClearMask = [&](int Split) {
19367 int NumSubElts = NumElts * Split;
19368 int NumSubBits = RVT.getScalarSizeInBits() / Split;
19370 SmallVector<int, 8> Indices;
19371 for (int i = 0; i != NumSubElts; ++i) {
19372 int EltIdx = i / Split;
19373 int SubIdx = i % Split;
19374 SDValue Elt = RHS.getOperand(EltIdx);
19375 if (Elt.isUndef()) {
19376 Indices.push_back(-1);
19377 continue;
19380 APInt Bits;
19381 if (isa<ConstantSDNode>(Elt))
19382 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue();
19383 else if (isa<ConstantFPSDNode>(Elt))
19384 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt();
19385 else
19386 return SDValue();
19388 // Extract the sub element from the constant bit mask.
19389 if (DAG.getDataLayout().isBigEndian()) {
19390 Bits.lshrInPlace((Split - SubIdx - 1) * NumSubBits);
19391 } else {
19392 Bits.lshrInPlace(SubIdx * NumSubBits);
19395 if (Split > 1)
19396 Bits = Bits.trunc(NumSubBits);
19398 if (Bits.isAllOnesValue())
19399 Indices.push_back(i);
19400 else if (Bits == 0)
19401 Indices.push_back(i + NumSubElts);
19402 else
19403 return SDValue();
19406 // Let's see if the target supports this vector_shuffle.
19407 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits);
19408 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts);
19409 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT))
19410 return SDValue();
19412 SDValue Zero = DAG.getConstant(0, DL, ClearVT);
19413 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL,
19414 DAG.getBitcast(ClearVT, LHS),
19415 Zero, Indices));
19418 // Determine maximum split level (byte level masking).
19419 int MaxSplit = 1;
19420 if (RVT.getScalarSizeInBits() % 8 == 0)
19421 MaxSplit = RVT.getScalarSizeInBits() / 8;
19423 for (int Split = 1; Split <= MaxSplit; ++Split)
19424 if (RVT.getScalarSizeInBits() % Split == 0)
19425 if (SDValue S = BuildClearMask(Split))
19426 return S;
19428 return SDValue();
19431 /// If a vector binop is performed on splat values, it may be profitable to
19432 /// extract, scalarize, and insert/splat.
19433 static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG) {
19434 SDValue N0 = N->getOperand(0);
19435 SDValue N1 = N->getOperand(1);
19436 unsigned Opcode = N->getOpcode();
19437 EVT VT = N->getValueType(0);
19438 EVT EltVT = VT.getVectorElementType();
19439 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19441 // TODO: Remove/replace the extract cost check? If the elements are available
19442 // as scalars, then there may be no extract cost. Should we ask if
19443 // inserting a scalar back into a vector is cheap instead?
19444 int Index0, Index1;
19445 SDValue Src0 = DAG.getSplatSourceVector(N0, Index0);
19446 SDValue Src1 = DAG.getSplatSourceVector(N1, Index1);
19447 if (!Src0 || !Src1 || Index0 != Index1 ||
19448 Src0.getValueType().getVectorElementType() != EltVT ||
19449 Src1.getValueType().getVectorElementType() != EltVT ||
19450 !TLI.isExtractVecEltCheap(VT, Index0) ||
19451 !TLI.isOperationLegalOrCustom(Opcode, EltVT))
19452 return SDValue();
19454 SDLoc DL(N);
19455 SDValue IndexC =
19456 DAG.getConstant(Index0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()));
19457 SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, N0, IndexC);
19458 SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, N1, IndexC);
19459 SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags());
19461 // If all lanes but 1 are undefined, no need to splat the scalar result.
19462 // TODO: Keep track of undefs and use that info in the general case.
19463 if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() &&
19464 count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 &&
19465 count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) {
19466 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) -->
19467 // build_vec ..undef, (bo X, Y), undef...
19468 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT));
19469 Ops[Index0] = ScalarBO;
19470 return DAG.getBuildVector(VT, DL, Ops);
19473 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index
19474 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO);
19475 return DAG.getBuildVector(VT, DL, Ops);
19478 /// Visit a binary vector operation, like ADD.
19479 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
19480 assert(N->getValueType(0).isVector() &&
19481 "SimplifyVBinOp only works on vectors!");
19483 SDValue LHS = N->getOperand(0);
19484 SDValue RHS = N->getOperand(1);
19485 SDValue Ops[] = {LHS, RHS};
19486 EVT VT = N->getValueType(0);
19487 unsigned Opcode = N->getOpcode();
19489 // See if we can constant fold the vector operation.
19490 if (SDValue Fold = DAG.FoldConstantVectorArithmetic(
19491 Opcode, SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags()))
19492 return Fold;
19494 // Move unary shuffles with identical masks after a vector binop:
19495 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask))
19496 // --> shuffle (VBinOp A, B), Undef, Mask
19497 // This does not require type legality checks because we are creating the
19498 // same types of operations that are in the original sequence. We do have to
19499 // restrict ops like integer div that have immediate UB (eg, div-by-zero)
19500 // though. This code is adapted from the identical transform in instcombine.
19501 if (Opcode != ISD::UDIV && Opcode != ISD::SDIV &&
19502 Opcode != ISD::UREM && Opcode != ISD::SREM &&
19503 Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) {
19504 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS);
19505 auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS);
19506 if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) &&
19507 LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() &&
19508 (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) {
19509 SDLoc DL(N);
19510 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0),
19511 RHS.getOperand(0), N->getFlags());
19512 SDValue UndefV = LHS.getOperand(1);
19513 return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask());
19517 // The following pattern is likely to emerge with vector reduction ops. Moving
19518 // the binary operation ahead of insertion may allow using a narrower vector
19519 // instruction that has better performance than the wide version of the op:
19520 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z
19521 if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() &&
19522 RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() &&
19523 LHS.getOperand(2) == RHS.getOperand(2) &&
19524 (LHS.hasOneUse() || RHS.hasOneUse())) {
19525 SDValue X = LHS.getOperand(1);
19526 SDValue Y = RHS.getOperand(1);
19527 SDValue Z = LHS.getOperand(2);
19528 EVT NarrowVT = X.getValueType();
19529 if (NarrowVT == Y.getValueType() &&
19530 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) {
19531 // (binop undef, undef) may not return undef, so compute that result.
19532 SDLoc DL(N);
19533 SDValue VecC =
19534 DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT));
19535 SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y);
19536 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z);
19540 // Make sure all but the first op are undef or constant.
19541 auto ConcatWithConstantOrUndef = [](SDValue Concat) {
19542 return Concat.getOpcode() == ISD::CONCAT_VECTORS &&
19543 std::all_of(std::next(Concat->op_begin()), Concat->op_end(),
19544 [](const SDValue &Op) {
19545 return Op.isUndef() ||
19546 ISD::isBuildVectorOfConstantSDNodes(Op.getNode());
19550 // The following pattern is likely to emerge with vector reduction ops. Moving
19551 // the binary operation ahead of the concat may allow using a narrower vector
19552 // instruction that has better performance than the wide version of the op:
19553 // VBinOp (concat X, undef/constant), (concat Y, undef/constant) -->
19554 // concat (VBinOp X, Y), VecC
19555 if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) &&
19556 (LHS.hasOneUse() || RHS.hasOneUse())) {
19557 EVT NarrowVT = LHS.getOperand(0).getValueType();
19558 if (NarrowVT == RHS.getOperand(0).getValueType() &&
19559 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) {
19560 SDLoc DL(N);
19561 unsigned NumOperands = LHS.getNumOperands();
19562 SmallVector<SDValue, 4> Ops;
19563 for (unsigned i = 0; i != NumOperands; ++i) {
19564 // This constant fold for operands 1 and up.
19565 Ops.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i),
19566 RHS.getOperand(i)));
19569 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Ops);
19573 if (SDValue V = scalarizeBinOpOfSplats(N, DAG))
19574 return V;
19576 return SDValue();
19579 SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1,
19580 SDValue N2) {
19581 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
19583 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
19584 cast<CondCodeSDNode>(N0.getOperand(2))->get());
19586 // If we got a simplified select_cc node back from SimplifySelectCC, then
19587 // break it down into a new SETCC node, and a new SELECT node, and then return
19588 // the SELECT node, since we were called with a SELECT node.
19589 if (SCC.getNode()) {
19590 // Check to see if we got a select_cc back (to turn into setcc/select).
19591 // Otherwise, just return whatever node we got back, like fabs.
19592 if (SCC.getOpcode() == ISD::SELECT_CC) {
19593 const SDNodeFlags Flags = N0.getNode()->getFlags();
19594 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
19595 N0.getValueType(),
19596 SCC.getOperand(0), SCC.getOperand(1),
19597 SCC.getOperand(4), Flags);
19598 AddToWorklist(SETCC.getNode());
19599 SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
19600 SCC.getOperand(2), SCC.getOperand(3));
19601 SelectNode->setFlags(Flags);
19602 return SelectNode;
19605 return SCC;
19607 return SDValue();
19610 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
19611 /// being selected between, see if we can simplify the select. Callers of this
19612 /// should assume that TheSelect is deleted if this returns true. As such, they
19613 /// should return the appropriate thing (e.g. the node) back to the top-level of
19614 /// the DAG combiner loop to avoid it being looked at.
19615 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
19616 SDValue RHS) {
19617 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
19618 // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
19619 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) {
19620 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) {
19621 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
19622 SDValue Sqrt = RHS;
19623 ISD::CondCode CC;
19624 SDValue CmpLHS;
19625 const ConstantFPSDNode *Zero = nullptr;
19627 if (TheSelect->getOpcode() == ISD::SELECT_CC) {
19628 CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get();
19629 CmpLHS = TheSelect->getOperand(0);
19630 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1));
19631 } else {
19632 // SELECT or VSELECT
19633 SDValue Cmp = TheSelect->getOperand(0);
19634 if (Cmp.getOpcode() == ISD::SETCC) {
19635 CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get();
19636 CmpLHS = Cmp.getOperand(0);
19637 Zero = isConstOrConstSplatFP(Cmp.getOperand(1));
19640 if (Zero && Zero->isZero() &&
19641 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT ||
19642 CC == ISD::SETULT || CC == ISD::SETLT)) {
19643 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
19644 CombineTo(TheSelect, Sqrt);
19645 return true;
19649 // Cannot simplify select with vector condition
19650 if (TheSelect->getOperand(0).getValueType().isVector()) return false;
19652 // If this is a select from two identical things, try to pull the operation
19653 // through the select.
19654 if (LHS.getOpcode() != RHS.getOpcode() ||
19655 !LHS.hasOneUse() || !RHS.hasOneUse())
19656 return false;
19658 // If this is a load and the token chain is identical, replace the select
19659 // of two loads with a load through a select of the address to load from.
19660 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
19661 // constants have been dropped into the constant pool.
19662 if (LHS.getOpcode() == ISD::LOAD) {
19663 LoadSDNode *LLD = cast<LoadSDNode>(LHS);
19664 LoadSDNode *RLD = cast<LoadSDNode>(RHS);
19666 // Token chains must be identical.
19667 if (LHS.getOperand(0) != RHS.getOperand(0) ||
19668 // Do not let this transformation reduce the number of volatile loads.
19669 LLD->isVolatile() || RLD->isVolatile() ||
19670 // FIXME: If either is a pre/post inc/dec load,
19671 // we'd need to split out the address adjustment.
19672 LLD->isIndexed() || RLD->isIndexed() ||
19673 // If this is an EXTLOAD, the VT's must match.
19674 LLD->getMemoryVT() != RLD->getMemoryVT() ||
19675 // If this is an EXTLOAD, the kind of extension must match.
19676 (LLD->getExtensionType() != RLD->getExtensionType() &&
19677 // The only exception is if one of the extensions is anyext.
19678 LLD->getExtensionType() != ISD::EXTLOAD &&
19679 RLD->getExtensionType() != ISD::EXTLOAD) ||
19680 // FIXME: this discards src value information. This is
19681 // over-conservative. It would be beneficial to be able to remember
19682 // both potential memory locations. Since we are discarding
19683 // src value info, don't do the transformation if the memory
19684 // locations are not in the default address space.
19685 LLD->getPointerInfo().getAddrSpace() != 0 ||
19686 RLD->getPointerInfo().getAddrSpace() != 0 ||
19687 // We can't produce a CMOV of a TargetFrameIndex since we won't
19688 // generate the address generation required.
19689 LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex ||
19690 RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex ||
19691 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
19692 LLD->getBasePtr().getValueType()))
19693 return false;
19695 // The loads must not depend on one another.
19696 if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD))
19697 return false;
19699 // Check that the select condition doesn't reach either load. If so,
19700 // folding this will induce a cycle into the DAG. If not, this is safe to
19701 // xform, so create a select of the addresses.
19703 SmallPtrSet<const SDNode *, 32> Visited;
19704 SmallVector<const SDNode *, 16> Worklist;
19706 // Always fail if LLD and RLD are not independent. TheSelect is a
19707 // predecessor to all Nodes in question so we need not search past it.
19709 Visited.insert(TheSelect);
19710 Worklist.push_back(LLD);
19711 Worklist.push_back(RLD);
19713 if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) ||
19714 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))
19715 return false;
19717 SDValue Addr;
19718 if (TheSelect->getOpcode() == ISD::SELECT) {
19719 // We cannot do this optimization if any pair of {RLD, LLD} is a
19720 // predecessor to {RLD, LLD, CondNode}. As we've already compared the
19721 // Loads, we only need to check if CondNode is a successor to one of the
19722 // loads. We can further avoid this if there's no use of their chain
19723 // value.
19724 SDNode *CondNode = TheSelect->getOperand(0).getNode();
19725 Worklist.push_back(CondNode);
19727 if ((LLD->hasAnyUseOfValue(1) &&
19728 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
19729 (RLD->hasAnyUseOfValue(1) &&
19730 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
19731 return false;
19733 Addr = DAG.getSelect(SDLoc(TheSelect),
19734 LLD->getBasePtr().getValueType(),
19735 TheSelect->getOperand(0), LLD->getBasePtr(),
19736 RLD->getBasePtr());
19737 } else { // Otherwise SELECT_CC
19738 // We cannot do this optimization if any pair of {RLD, LLD} is a
19739 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
19740 // the Loads, we only need to check if CondLHS/CondRHS is a successor to
19741 // one of the loads. We can further avoid this if there's no use of their
19742 // chain value.
19744 SDNode *CondLHS = TheSelect->getOperand(0).getNode();
19745 SDNode *CondRHS = TheSelect->getOperand(1).getNode();
19746 Worklist.push_back(CondLHS);
19747 Worklist.push_back(CondRHS);
19749 if ((LLD->hasAnyUseOfValue(1) &&
19750 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
19751 (RLD->hasAnyUseOfValue(1) &&
19752 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
19753 return false;
19755 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
19756 LLD->getBasePtr().getValueType(),
19757 TheSelect->getOperand(0),
19758 TheSelect->getOperand(1),
19759 LLD->getBasePtr(), RLD->getBasePtr(),
19760 TheSelect->getOperand(4));
19763 SDValue Load;
19764 // It is safe to replace the two loads if they have different alignments,
19765 // but the new load must be the minimum (most restrictive) alignment of the
19766 // inputs.
19767 unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment());
19768 MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags();
19769 if (!RLD->isInvariant())
19770 MMOFlags &= ~MachineMemOperand::MOInvariant;
19771 if (!RLD->isDereferenceable())
19772 MMOFlags &= ~MachineMemOperand::MODereferenceable;
19773 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
19774 // FIXME: Discards pointer and AA info.
19775 Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect),
19776 LLD->getChain(), Addr, MachinePointerInfo(), Alignment,
19777 MMOFlags);
19778 } else {
19779 // FIXME: Discards pointer and AA info.
19780 Load = DAG.getExtLoad(
19781 LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType()
19782 : LLD->getExtensionType(),
19783 SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr,
19784 MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags);
19787 // Users of the select now use the result of the load.
19788 CombineTo(TheSelect, Load);
19790 // Users of the old loads now use the new load's chain. We know the
19791 // old-load value is dead now.
19792 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
19793 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
19794 return true;
19797 return false;
19800 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
19801 /// bitwise 'and'.
19802 SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0,
19803 SDValue N1, SDValue N2, SDValue N3,
19804 ISD::CondCode CC) {
19805 // If this is a select where the false operand is zero and the compare is a
19806 // check of the sign bit, see if we can perform the "gzip trick":
19807 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
19808 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
19809 EVT XType = N0.getValueType();
19810 EVT AType = N2.getValueType();
19811 if (!isNullConstant(N3) || !XType.bitsGE(AType))
19812 return SDValue();
19814 // If the comparison is testing for a positive value, we have to invert
19815 // the sign bit mask, so only do that transform if the target has a bitwise
19816 // 'and not' instruction (the invert is free).
19817 if (CC == ISD::SETGT && TLI.hasAndNot(N2)) {
19818 // (X > -1) ? A : 0
19819 // (X > 0) ? X : 0 <-- This is canonical signed max.
19820 if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2)))
19821 return SDValue();
19822 } else if (CC == ISD::SETLT) {
19823 // (X < 0) ? A : 0
19824 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
19825 if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2)))
19826 return SDValue();
19827 } else {
19828 return SDValue();
19831 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
19832 // constant.
19833 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
19834 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
19835 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
19836 unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1;
19837 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy);
19838 SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt);
19839 AddToWorklist(Shift.getNode());
19841 if (XType.bitsGT(AType)) {
19842 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
19843 AddToWorklist(Shift.getNode());
19846 if (CC == ISD::SETGT)
19847 Shift = DAG.getNOT(DL, Shift, AType);
19849 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
19852 SDValue ShiftAmt = DAG.getConstant(XType.getSizeInBits() - 1, DL, ShiftAmtTy);
19853 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt);
19854 AddToWorklist(Shift.getNode());
19856 if (XType.bitsGT(AType)) {
19857 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
19858 AddToWorklist(Shift.getNode());
19861 if (CC == ISD::SETGT)
19862 Shift = DAG.getNOT(DL, Shift, AType);
19864 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
19867 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
19868 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
19869 /// in it. This may be a win when the constant is not otherwise available
19870 /// because it replaces two constant pool loads with one.
19871 SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset(
19872 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
19873 ISD::CondCode CC) {
19874 if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType().isFloatingPoint()))
19875 return SDValue();
19877 // If we are before legalize types, we want the other legalization to happen
19878 // first (for example, to avoid messing with soft float).
19879 auto *TV = dyn_cast<ConstantFPSDNode>(N2);
19880 auto *FV = dyn_cast<ConstantFPSDNode>(N3);
19881 EVT VT = N2.getValueType();
19882 if (!TV || !FV || !TLI.isTypeLegal(VT))
19883 return SDValue();
19885 // If a constant can be materialized without loads, this does not make sense.
19886 if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal ||
19887 TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) ||
19888 TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize))
19889 return SDValue();
19891 // If both constants have multiple uses, then we won't need to do an extra
19892 // load. The values are likely around in registers for other users.
19893 if (!TV->hasOneUse() && !FV->hasOneUse())
19894 return SDValue();
19896 Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()),
19897 const_cast<ConstantFP*>(TV->getConstantFPValue()) };
19898 Type *FPTy = Elts[0]->getType();
19899 const DataLayout &TD = DAG.getDataLayout();
19901 // Create a ConstantArray of the two constants.
19902 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
19903 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()),
19904 TD.getPrefTypeAlignment(FPTy));
19905 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
19907 // Get offsets to the 0 and 1 elements of the array, so we can select between
19908 // them.
19909 SDValue Zero = DAG.getIntPtrConstant(0, DL);
19910 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
19911 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV));
19912 SDValue Cond =
19913 DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC);
19914 AddToWorklist(Cond.getNode());
19915 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero);
19916 AddToWorklist(CstOffset.getNode());
19917 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset);
19918 AddToWorklist(CPIdx.getNode());
19919 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
19920 MachinePointerInfo::getConstantPool(
19921 DAG.getMachineFunction()), Alignment);
19924 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3
19925 /// where 'cond' is the comparison specified by CC.
19926 SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
19927 SDValue N2, SDValue N3, ISD::CondCode CC,
19928 bool NotExtCompare) {
19929 // (x ? y : y) -> y.
19930 if (N2 == N3) return N2;
19932 EVT CmpOpVT = N0.getValueType();
19933 EVT CmpResVT = getSetCCResultType(CmpOpVT);
19934 EVT VT = N2.getValueType();
19935 auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
19936 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
19937 auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
19939 // Determine if the condition we're dealing with is constant.
19940 if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) {
19941 AddToWorklist(SCC.getNode());
19942 if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) {
19943 // fold select_cc true, x, y -> x
19944 // fold select_cc false, x, y -> y
19945 return !(SCCC->isNullValue()) ? N2 : N3;
19949 if (SDValue V =
19950 convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC))
19951 return V;
19953 if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC))
19954 return V;
19956 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
19957 // where y is has a single bit set.
19958 // A plaintext description would be, we can turn the SELECT_CC into an AND
19959 // when the condition can be materialized as an all-ones register. Any
19960 // single bit-test can be materialized as an all-ones register with
19961 // shift-left and shift-right-arith.
19962 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
19963 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) {
19964 SDValue AndLHS = N0->getOperand(0);
19965 auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
19966 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
19967 // Shift the tested bit over the sign bit.
19968 const APInt &AndMask = ConstAndRHS->getAPIntValue();
19969 SDValue ShlAmt =
19970 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS),
19971 getShiftAmountTy(AndLHS.getValueType()));
19972 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
19974 // Now arithmetic right shift it all the way over, so the result is either
19975 // all-ones, or zero.
19976 SDValue ShrAmt =
19977 DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl),
19978 getShiftAmountTy(Shl.getValueType()));
19979 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
19981 return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
19985 // fold select C, 16, 0 -> shl C, 4
19986 bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2();
19987 bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2();
19989 if ((Fold || Swap) &&
19990 TLI.getBooleanContents(CmpOpVT) ==
19991 TargetLowering::ZeroOrOneBooleanContent &&
19992 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) {
19994 if (Swap) {
19995 CC = ISD::getSetCCInverse(CC, CmpOpVT.isInteger());
19996 std::swap(N2C, N3C);
19999 // If the caller doesn't want us to simplify this into a zext of a compare,
20000 // don't do it.
20001 if (NotExtCompare && N2C->isOne())
20002 return SDValue();
20004 SDValue Temp, SCC;
20005 // zext (setcc n0, n1)
20006 if (LegalTypes) {
20007 SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC);
20008 if (VT.bitsLT(SCC.getValueType()))
20009 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT);
20010 else
20011 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
20012 } else {
20013 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
20014 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
20017 AddToWorklist(SCC.getNode());
20018 AddToWorklist(Temp.getNode());
20020 if (N2C->isOne())
20021 return Temp;
20023 // shl setcc result by log2 n2c
20024 return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
20025 DAG.getConstant(N2C->getAPIntValue().logBase2(),
20026 SDLoc(Temp),
20027 getShiftAmountTy(Temp.getValueType())));
20030 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
20031 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
20032 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
20033 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
20034 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
20035 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
20036 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
20037 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
20038 if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
20039 SDValue ValueOnZero = N2;
20040 SDValue Count = N3;
20041 // If the condition is NE instead of E, swap the operands.
20042 if (CC == ISD::SETNE)
20043 std::swap(ValueOnZero, Count);
20044 // Check if the value on zero is a constant equal to the bits in the type.
20045 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) {
20046 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) {
20047 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is
20048 // legal, combine to just cttz.
20049 if ((Count.getOpcode() == ISD::CTTZ ||
20050 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) &&
20051 N0 == Count.getOperand(0) &&
20052 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT)))
20053 return DAG.getNode(ISD::CTTZ, DL, VT, N0);
20054 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
20055 // legal, combine to just ctlz.
20056 if ((Count.getOpcode() == ISD::CTLZ ||
20057 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) &&
20058 N0 == Count.getOperand(0) &&
20059 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT)))
20060 return DAG.getNode(ISD::CTLZ, DL, VT, N0);
20065 return SDValue();
20068 /// This is a stub for TargetLowering::SimplifySetCC.
20069 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
20070 ISD::CondCode Cond, const SDLoc &DL,
20071 bool foldBooleans) {
20072 TargetLowering::DAGCombinerInfo
20073 DagCombineInfo(DAG, Level, false, this);
20074 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
20077 /// Given an ISD::SDIV node expressing a divide by constant, return
20078 /// a DAG expression to select that will generate the same value by multiplying
20079 /// by a magic number.
20080 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
20081 SDValue DAGCombiner::BuildSDIV(SDNode *N) {
20082 // when optimising for minimum size, we don't want to expand a div to a mul
20083 // and a shift.
20084 if (DAG.getMachineFunction().getFunction().hasMinSize())
20085 return SDValue();
20087 SmallVector<SDNode *, 8> Built;
20088 if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) {
20089 for (SDNode *N : Built)
20090 AddToWorklist(N);
20091 return S;
20094 return SDValue();
20097 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
20098 /// DAG expression that will generate the same value by right shifting.
20099 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
20100 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
20101 if (!C)
20102 return SDValue();
20104 // Avoid division by zero.
20105 if (C->isNullValue())
20106 return SDValue();
20108 SmallVector<SDNode *, 8> Built;
20109 if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) {
20110 for (SDNode *N : Built)
20111 AddToWorklist(N);
20112 return S;
20115 return SDValue();
20118 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG
20119 /// expression that will generate the same value by multiplying by a magic
20120 /// number.
20121 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
20122 SDValue DAGCombiner::BuildUDIV(SDNode *N) {
20123 // when optimising for minimum size, we don't want to expand a div to a mul
20124 // and a shift.
20125 if (DAG.getMachineFunction().getFunction().hasMinSize())
20126 return SDValue();
20128 SmallVector<SDNode *, 8> Built;
20129 if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) {
20130 for (SDNode *N : Built)
20131 AddToWorklist(N);
20132 return S;
20135 return SDValue();
20138 /// Determines the LogBase2 value for a non-null input value using the
20139 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
20140 SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) {
20141 EVT VT = V.getValueType();
20142 unsigned EltBits = VT.getScalarSizeInBits();
20143 SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V);
20144 SDValue Base = DAG.getConstant(EltBits - 1, DL, VT);
20145 SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz);
20146 return LogBase2;
20149 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
20150 /// For the reciprocal, we need to find the zero of the function:
20151 /// F(X) = A X - 1 [which has a zero at X = 1/A]
20152 /// =>
20153 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
20154 /// does not require additional intermediate precision]
20155 SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags Flags) {
20156 if (Level >= AfterLegalizeDAG)
20157 return SDValue();
20159 // TODO: Handle half and/or extended types?
20160 EVT VT = Op.getValueType();
20161 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
20162 return SDValue();
20164 // If estimates are explicitly disabled for this function, we're done.
20165 MachineFunction &MF = DAG.getMachineFunction();
20166 int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF);
20167 if (Enabled == TLI.ReciprocalEstimate::Disabled)
20168 return SDValue();
20170 // Estimates may be explicitly enabled for this type with a custom number of
20171 // refinement steps.
20172 int Iterations = TLI.getDivRefinementSteps(VT, MF);
20173 if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) {
20174 AddToWorklist(Est.getNode());
20176 if (Iterations) {
20177 SDLoc DL(Op);
20178 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
20180 // Newton iterations: Est = Est + Est (1 - Arg * Est)
20181 for (int i = 0; i < Iterations; ++i) {
20182 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags);
20183 NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags);
20184 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
20185 Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags);
20188 return Est;
20191 return SDValue();
20194 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
20195 /// For the reciprocal sqrt, we need to find the zero of the function:
20196 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
20197 /// =>
20198 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
20199 /// As a result, we precompute A/2 prior to the iteration loop.
20200 SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est,
20201 unsigned Iterations,
20202 SDNodeFlags Flags, bool Reciprocal) {
20203 EVT VT = Arg.getValueType();
20204 SDLoc DL(Arg);
20205 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT);
20207 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
20208 // this entire sequence requires only one FP constant.
20209 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags);
20210 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags);
20212 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
20213 for (unsigned i = 0; i < Iterations; ++i) {
20214 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
20215 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags);
20216 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags);
20217 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
20220 // If non-reciprocal square root is requested, multiply the result by Arg.
20221 if (!Reciprocal)
20222 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags);
20224 return Est;
20227 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
20228 /// For the reciprocal sqrt, we need to find the zero of the function:
20229 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
20230 /// =>
20231 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
20232 SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est,
20233 unsigned Iterations,
20234 SDNodeFlags Flags, bool Reciprocal) {
20235 EVT VT = Arg.getValueType();
20236 SDLoc DL(Arg);
20237 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT);
20238 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT);
20240 // This routine must enter the loop below to work correctly
20241 // when (Reciprocal == false).
20242 assert(Iterations > 0);
20244 // Newton iterations for reciprocal square root:
20245 // E = (E * -0.5) * ((A * E) * E + -3.0)
20246 for (unsigned i = 0; i < Iterations; ++i) {
20247 SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags);
20248 SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags);
20249 SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags);
20251 // When calculating a square root at the last iteration build:
20252 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
20253 // (notice a common subexpression)
20254 SDValue LHS;
20255 if (Reciprocal || (i + 1) < Iterations) {
20256 // RSQRT: LHS = (E * -0.5)
20257 LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags);
20258 } else {
20259 // SQRT: LHS = (A * E) * -0.5
20260 LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags);
20263 Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags);
20266 return Est;
20269 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
20270 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
20271 /// Op can be zero.
20272 SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags,
20273 bool Reciprocal) {
20274 if (Level >= AfterLegalizeDAG)
20275 return SDValue();
20277 // TODO: Handle half and/or extended types?
20278 EVT VT = Op.getValueType();
20279 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
20280 return SDValue();
20282 // If estimates are explicitly disabled for this function, we're done.
20283 MachineFunction &MF = DAG.getMachineFunction();
20284 int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF);
20285 if (Enabled == TLI.ReciprocalEstimate::Disabled)
20286 return SDValue();
20288 // Estimates may be explicitly enabled for this type with a custom number of
20289 // refinement steps.
20290 int Iterations = TLI.getSqrtRefinementSteps(VT, MF);
20292 bool UseOneConstNR = false;
20293 if (SDValue Est =
20294 TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR,
20295 Reciprocal)) {
20296 AddToWorklist(Est.getNode());
20298 if (Iterations) {
20299 Est = UseOneConstNR
20300 ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal)
20301 : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal);
20303 if (!Reciprocal) {
20304 // The estimate is now completely wrong if the input was exactly 0.0 or
20305 // possibly a denormal. Force the answer to 0.0 for those cases.
20306 SDLoc DL(Op);
20307 EVT CCVT = getSetCCResultType(VT);
20308 ISD::NodeType SelOpcode = VT.isVector() ? ISD::VSELECT : ISD::SELECT;
20309 const Function &F = DAG.getMachineFunction().getFunction();
20310 Attribute Denorms = F.getFnAttribute("denormal-fp-math");
20311 if (Denorms.getValueAsString().equals("ieee")) {
20312 // fabs(X) < SmallestNormal ? 0.0 : Est
20313 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
20314 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
20315 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
20316 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
20317 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
20318 SDValue IsDenorm = DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
20319 Est = DAG.getNode(SelOpcode, DL, VT, IsDenorm, FPZero, Est);
20320 } else {
20321 // X == 0.0 ? 0.0 : Est
20322 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
20323 SDValue IsZero = DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
20324 Est = DAG.getNode(SelOpcode, DL, VT, IsZero, FPZero, Est);
20328 return Est;
20331 return SDValue();
20334 SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) {
20335 return buildSqrtEstimateImpl(Op, Flags, true);
20338 SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) {
20339 return buildSqrtEstimateImpl(Op, Flags, false);
20342 /// Return true if there is any possibility that the two addresses overlap.
20343 bool DAGCombiner::isAlias(SDNode *Op0, SDNode *Op1) const {
20345 struct MemUseCharacteristics {
20346 bool IsVolatile;
20347 SDValue BasePtr;
20348 int64_t Offset;
20349 Optional<int64_t> NumBytes;
20350 MachineMemOperand *MMO;
20353 auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics {
20354 if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) {
20355 int64_t Offset = 0;
20356 if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset()))
20357 Offset = (LSN->getAddressingMode() == ISD::PRE_INC)
20358 ? C->getSExtValue()
20359 : (LSN->getAddressingMode() == ISD::PRE_DEC)
20360 ? -1 * C->getSExtValue()
20361 : 0;
20362 return {LSN->isVolatile(), LSN->getBasePtr(), Offset /*base offset*/,
20363 Optional<int64_t>(LSN->getMemoryVT().getStoreSize()),
20364 LSN->getMemOperand()};
20366 if (const auto *LN = cast<LifetimeSDNode>(N))
20367 return {false /*isVolatile*/, LN->getOperand(1),
20368 (LN->hasOffset()) ? LN->getOffset() : 0,
20369 (LN->hasOffset()) ? Optional<int64_t>(LN->getSize())
20370 : Optional<int64_t>(),
20371 (MachineMemOperand *)nullptr};
20372 // Default.
20373 return {false /*isvolatile*/, SDValue(), (int64_t)0 /*offset*/,
20374 Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr};
20377 MemUseCharacteristics MUC0 = getCharacteristics(Op0),
20378 MUC1 = getCharacteristics(Op1);
20380 // If they are to the same address, then they must be aliases.
20381 if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr &&
20382 MUC0.Offset == MUC1.Offset)
20383 return true;
20385 // If they are both volatile then they cannot be reordered.
20386 if (MUC0.IsVolatile && MUC1.IsVolatile)
20387 return true;
20389 if (MUC0.MMO && MUC1.MMO) {
20390 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
20391 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
20392 return false;
20395 // Try to prove that there is aliasing, or that there is no aliasing. Either
20396 // way, we can return now. If nothing can be proved, proceed with more tests.
20397 bool IsAlias;
20398 if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes,
20399 DAG, IsAlias))
20400 return IsAlias;
20402 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if
20403 // either are not known.
20404 if (!MUC0.MMO || !MUC1.MMO)
20405 return true;
20407 // If one operation reads from invariant memory, and the other may store, they
20408 // cannot alias. These should really be checking the equivalent of mayWrite,
20409 // but it only matters for memory nodes other than load /store.
20410 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
20411 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
20412 return false;
20414 // If we know required SrcValue1 and SrcValue2 have relatively large
20415 // alignment compared to the size and offset of the access, we may be able
20416 // to prove they do not alias. This check is conservative for now to catch
20417 // cases created by splitting vector types.
20418 int64_t SrcValOffset0 = MUC0.MMO->getOffset();
20419 int64_t SrcValOffset1 = MUC1.MMO->getOffset();
20420 unsigned OrigAlignment0 = MUC0.MMO->getBaseAlignment();
20421 unsigned OrigAlignment1 = MUC1.MMO->getBaseAlignment();
20422 if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 &&
20423 MUC0.NumBytes.hasValue() && MUC1.NumBytes.hasValue() &&
20424 *MUC0.NumBytes == *MUC1.NumBytes && OrigAlignment0 > *MUC0.NumBytes) {
20425 int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0;
20426 int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1;
20428 // There is no overlap between these relatively aligned accesses of
20429 // similar size. Return no alias.
20430 if ((OffAlign0 + *MUC0.NumBytes) <= OffAlign1 ||
20431 (OffAlign1 + *MUC1.NumBytes) <= OffAlign0)
20432 return false;
20435 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0
20436 ? CombinerGlobalAA
20437 : DAG.getSubtarget().useAA();
20438 #ifndef NDEBUG
20439 if (CombinerAAOnlyFunc.getNumOccurrences() &&
20440 CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
20441 UseAA = false;
20442 #endif
20444 if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue()) {
20445 // Use alias analysis information.
20446 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
20447 int64_t Overlap0 = *MUC0.NumBytes + SrcValOffset0 - MinOffset;
20448 int64_t Overlap1 = *MUC1.NumBytes + SrcValOffset1 - MinOffset;
20449 AliasResult AAResult = AA->alias(
20450 MemoryLocation(MUC0.MMO->getValue(), Overlap0,
20451 UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()),
20452 MemoryLocation(MUC1.MMO->getValue(), Overlap1,
20453 UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes()));
20454 if (AAResult == NoAlias)
20455 return false;
20458 // Otherwise we have to assume they alias.
20459 return true;
20462 /// Walk up chain skipping non-aliasing memory nodes,
20463 /// looking for aliasing nodes and adding them to the Aliases vector.
20464 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
20465 SmallVectorImpl<SDValue> &Aliases) {
20466 SmallVector<SDValue, 8> Chains; // List of chains to visit.
20467 SmallPtrSet<SDNode *, 16> Visited; // Visited node set.
20469 // Get alias information for node.
20470 const bool IsLoad = isa<LoadSDNode>(N) && !cast<LoadSDNode>(N)->isVolatile();
20472 // Starting off.
20473 Chains.push_back(OriginalChain);
20474 unsigned Depth = 0;
20476 // Attempt to improve chain by a single step
20477 std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool {
20478 switch (C.getOpcode()) {
20479 case ISD::EntryToken:
20480 // No need to mark EntryToken.
20481 C = SDValue();
20482 return true;
20483 case ISD::LOAD:
20484 case ISD::STORE: {
20485 // Get alias information for C.
20486 bool IsOpLoad = isa<LoadSDNode>(C.getNode()) &&
20487 !cast<LSBaseSDNode>(C.getNode())->isVolatile();
20488 if ((IsLoad && IsOpLoad) || !isAlias(N, C.getNode())) {
20489 // Look further up the chain.
20490 C = C.getOperand(0);
20491 return true;
20493 // Alias, so stop here.
20494 return false;
20497 case ISD::CopyFromReg:
20498 // Always forward past past CopyFromReg.
20499 C = C.getOperand(0);
20500 return true;
20502 case ISD::LIFETIME_START:
20503 case ISD::LIFETIME_END: {
20504 // We can forward past any lifetime start/end that can be proven not to
20505 // alias the memory access.
20506 if (!isAlias(N, C.getNode())) {
20507 // Look further up the chain.
20508 C = C.getOperand(0);
20509 return true;
20511 return false;
20513 default:
20514 return false;
20518 // Look at each chain and determine if it is an alias. If so, add it to the
20519 // aliases list. If not, then continue up the chain looking for the next
20520 // candidate.
20521 while (!Chains.empty()) {
20522 SDValue Chain = Chains.pop_back_val();
20524 // Don't bother if we've seen Chain before.
20525 if (!Visited.insert(Chain.getNode()).second)
20526 continue;
20528 // For TokenFactor nodes, look at each operand and only continue up the
20529 // chain until we reach the depth limit.
20531 // FIXME: The depth check could be made to return the last non-aliasing
20532 // chain we found before we hit a tokenfactor rather than the original
20533 // chain.
20534 if (Depth > TLI.getGatherAllAliasesMaxDepth()) {
20535 Aliases.clear();
20536 Aliases.push_back(OriginalChain);
20537 return;
20540 if (Chain.getOpcode() == ISD::TokenFactor) {
20541 // We have to check each of the operands of the token factor for "small"
20542 // token factors, so we queue them up. Adding the operands to the queue
20543 // (stack) in reverse order maintains the original order and increases the
20544 // likelihood that getNode will find a matching token factor (CSE.)
20545 if (Chain.getNumOperands() > 16) {
20546 Aliases.push_back(Chain);
20547 continue;
20549 for (unsigned n = Chain.getNumOperands(); n;)
20550 Chains.push_back(Chain.getOperand(--n));
20551 ++Depth;
20552 continue;
20554 // Everything else
20555 if (ImproveChain(Chain)) {
20556 // Updated Chain Found, Consider new chain if one exists.
20557 if (Chain.getNode())
20558 Chains.push_back(Chain);
20559 ++Depth;
20560 continue;
20562 // No Improved Chain Possible, treat as Alias.
20563 Aliases.push_back(Chain);
20567 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
20568 /// (aliasing node.)
20569 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
20570 if (OptLevel == CodeGenOpt::None)
20571 return OldChain;
20573 // Ops for replacing token factor.
20574 SmallVector<SDValue, 8> Aliases;
20576 // Accumulate all the aliases to this node.
20577 GatherAllAliases(N, OldChain, Aliases);
20579 // If no operands then chain to entry token.
20580 if (Aliases.size() == 0)
20581 return DAG.getEntryNode();
20583 // If a single operand then chain to it. We don't need to revisit it.
20584 if (Aliases.size() == 1)
20585 return Aliases[0];
20587 // Construct a custom tailored token factor.
20588 return DAG.getTokenFactor(SDLoc(N), Aliases);
20591 namespace {
20592 // TODO: Replace with with std::monostate when we move to C++17.
20593 struct UnitT { } Unit;
20594 bool operator==(const UnitT &, const UnitT &) { return true; }
20595 bool operator!=(const UnitT &, const UnitT &) { return false; }
20596 } // namespace
20598 // This function tries to collect a bunch of potentially interesting
20599 // nodes to improve the chains of, all at once. This might seem
20600 // redundant, as this function gets called when visiting every store
20601 // node, so why not let the work be done on each store as it's visited?
20603 // I believe this is mainly important because MergeConsecutiveStores
20604 // is unable to deal with merging stores of different sizes, so unless
20605 // we improve the chains of all the potential candidates up-front
20606 // before running MergeConsecutiveStores, it might only see some of
20607 // the nodes that will eventually be candidates, and then not be able
20608 // to go from a partially-merged state to the desired final
20609 // fully-merged state.
20611 bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) {
20612 SmallVector<StoreSDNode *, 8> ChainedStores;
20613 StoreSDNode *STChain = St;
20614 // Intervals records which offsets from BaseIndex have been covered. In
20615 // the common case, every store writes to the immediately previous address
20616 // space and thus merged with the previous interval at insertion time.
20618 using IMap =
20619 llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>;
20620 IMap::Allocator A;
20621 IMap Intervals(A);
20623 // This holds the base pointer, index, and the offset in bytes from the base
20624 // pointer.
20625 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
20627 // We must have a base and an offset.
20628 if (!BasePtr.getBase().getNode())
20629 return false;
20631 // Do not handle stores to undef base pointers.
20632 if (BasePtr.getBase().isUndef())
20633 return false;
20635 // Add ST's interval.
20636 Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit);
20638 while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) {
20639 // If the chain has more than one use, then we can't reorder the mem ops.
20640 if (!SDValue(Chain, 0)->hasOneUse())
20641 break;
20642 if (Chain->isVolatile() || Chain->isIndexed())
20643 break;
20645 // Find the base pointer and offset for this memory node.
20646 const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG);
20647 // Check that the base pointer is the same as the original one.
20648 int64_t Offset;
20649 if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset))
20650 break;
20651 int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8;
20652 // Make sure we don't overlap with other intervals by checking the ones to
20653 // the left or right before inserting.
20654 auto I = Intervals.find(Offset);
20655 // If there's a next interval, we should end before it.
20656 if (I != Intervals.end() && I.start() < (Offset + Length))
20657 break;
20658 // If there's a previous interval, we should start after it.
20659 if (I != Intervals.begin() && (--I).stop() <= Offset)
20660 break;
20661 Intervals.insert(Offset, Offset + Length, Unit);
20663 ChainedStores.push_back(Chain);
20664 STChain = Chain;
20667 // If we didn't find a chained store, exit.
20668 if (ChainedStores.size() == 0)
20669 return false;
20671 // Improve all chained stores (St and ChainedStores members) starting from
20672 // where the store chain ended and return single TokenFactor.
20673 SDValue NewChain = STChain->getChain();
20674 SmallVector<SDValue, 8> TFOps;
20675 for (unsigned I = ChainedStores.size(); I;) {
20676 StoreSDNode *S = ChainedStores[--I];
20677 SDValue BetterChain = FindBetterChain(S, NewChain);
20678 S = cast<StoreSDNode>(DAG.UpdateNodeOperands(
20679 S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3)));
20680 TFOps.push_back(SDValue(S, 0));
20681 ChainedStores[I] = S;
20684 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo.
20685 SDValue BetterChain = FindBetterChain(St, NewChain);
20686 SDValue NewST;
20687 if (St->isTruncatingStore())
20688 NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(),
20689 St->getBasePtr(), St->getMemoryVT(),
20690 St->getMemOperand());
20691 else
20692 NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(),
20693 St->getBasePtr(), St->getMemOperand());
20695 TFOps.push_back(NewST);
20697 // If we improved every element of TFOps, then we've lost the dependence on
20698 // NewChain to successors of St and we need to add it back to TFOps. Do so at
20699 // the beginning to keep relative order consistent with FindBetterChains.
20700 auto hasImprovedChain = [&](SDValue ST) -> bool {
20701 return ST->getOperand(0) != NewChain;
20703 bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain);
20704 if (AddNewChain)
20705 TFOps.insert(TFOps.begin(), NewChain);
20707 SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps);
20708 CombineTo(St, TF);
20710 AddToWorklist(STChain);
20711 // Add TF operands worklist in reverse order.
20712 for (auto I = TF->getNumOperands(); I;)
20713 AddToWorklist(TF->getOperand(--I).getNode());
20714 AddToWorklist(TF.getNode());
20715 return true;
20718 bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) {
20719 if (OptLevel == CodeGenOpt::None)
20720 return false;
20722 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
20724 // We must have a base and an offset.
20725 if (!BasePtr.getBase().getNode())
20726 return false;
20728 // Do not handle stores to undef base pointers.
20729 if (BasePtr.getBase().isUndef())
20730 return false;
20732 // Directly improve a chain of disjoint stores starting at St.
20733 if (parallelizeChainedStores(St))
20734 return true;
20736 // Improve St's Chain..
20737 SDValue BetterChain = FindBetterChain(St, St->getChain());
20738 if (St->getChain() != BetterChain) {
20739 replaceStoreChain(St, BetterChain);
20740 return true;
20742 return false;
20745 /// This is the entry point for the file.
20746 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA,
20747 CodeGenOpt::Level OptLevel) {
20748 /// This is the main entry point to this class.
20749 DAGCombiner(*this, AA, OptLevel).Run(Level);