1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements the SelectionDAGISel class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/CodeGen/FastISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachinePassRegistry.h"
47 #include "llvm/CodeGen/MachineRegisterInfo.h"
48 #include "llvm/CodeGen/SchedulerRegistry.h"
49 #include "llvm/CodeGen/SelectionDAG.h"
50 #include "llvm/CodeGen/SelectionDAGNodes.h"
51 #include "llvm/CodeGen/StackProtector.h"
52 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Constants.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/DebugInfoMetadata.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DiagnosticInfo.h"
64 #include "llvm/IR/Dominators.h"
65 #include "llvm/IR/Function.h"
66 #include "llvm/IR/InlineAsm.h"
67 #include "llvm/IR/InstIterator.h"
68 #include "llvm/IR/InstrTypes.h"
69 #include "llvm/IR/Instruction.h"
70 #include "llvm/IR/Instructions.h"
71 #include "llvm/IR/IntrinsicInst.h"
72 #include "llvm/IR/Intrinsics.h"
73 #include "llvm/IR/Metadata.h"
74 #include "llvm/IR/Type.h"
75 #include "llvm/IR/User.h"
76 #include "llvm/IR/Value.h"
77 #include "llvm/MC/MCInstrDesc.h"
78 #include "llvm/MC/MCRegisterInfo.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/KnownBits.h"
88 #include "llvm/Support/MachineValueType.h"
89 #include "llvm/Support/Timer.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include "llvm/Target/TargetIntrinsicInfo.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
105 using namespace llvm
;
107 #define DEBUG_TYPE "isel"
109 STATISTIC(NumFastIselFailures
, "Number of instructions fast isel failed on");
110 STATISTIC(NumFastIselSuccess
, "Number of instructions fast isel selected");
111 STATISTIC(NumFastIselBlocks
, "Number of blocks selected entirely by fast isel");
112 STATISTIC(NumDAGBlocks
, "Number of blocks selected using DAG");
113 STATISTIC(NumDAGIselRetries
,"Number of times dag isel has to try another path");
114 STATISTIC(NumEntryBlocks
, "Number of entry blocks encountered");
115 STATISTIC(NumFastIselFailLowerArguments
,
116 "Number of entry blocks where fast isel failed to lower arguments");
118 static cl::opt
<int> EnableFastISelAbort(
119 "fast-isel-abort", cl::Hidden
,
120 cl::desc("Enable abort calls when \"fast\" instruction selection "
121 "fails to lower an instruction: 0 disable the abort, 1 will "
122 "abort but for args, calls and terminators, 2 will also "
123 "abort for argument lowering, and 3 will never fallback "
124 "to SelectionDAG."));
126 static cl::opt
<bool> EnableFastISelFallbackReport(
127 "fast-isel-report-on-fallback", cl::Hidden
,
128 cl::desc("Emit a diagnostic when \"fast\" instruction selection "
129 "falls back to SelectionDAG."));
133 cl::desc("use Machine Branch Probability Info"),
134 cl::init(true), cl::Hidden
);
137 static cl::opt
<std::string
>
138 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden
,
139 cl::desc("Only display the basic block whose name "
140 "matches this for all view-*-dags options"));
142 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden
,
143 cl::desc("Pop up a window to show dags before the first "
144 "dag combine pass"));
146 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden
,
147 cl::desc("Pop up a window to show dags before legalize types"));
149 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden
,
150 cl::desc("Pop up a window to show dags before legalize"));
152 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden
,
153 cl::desc("Pop up a window to show dags before the second "
154 "dag combine pass"));
156 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden
,
157 cl::desc("Pop up a window to show dags before the post legalize types"
158 " dag combine pass"));
160 ViewISelDAGs("view-isel-dags", cl::Hidden
,
161 cl::desc("Pop up a window to show isel dags as they are selected"));
163 ViewSchedDAGs("view-sched-dags", cl::Hidden
,
164 cl::desc("Pop up a window to show sched dags as they are processed"));
166 ViewSUnitDAGs("view-sunit-dags", cl::Hidden
,
167 cl::desc("Pop up a window to show SUnit dags after they are processed"));
169 static const bool ViewDAGCombine1
= false,
170 ViewLegalizeTypesDAGs
= false, ViewLegalizeDAGs
= false,
171 ViewDAGCombine2
= false,
172 ViewDAGCombineLT
= false,
173 ViewISelDAGs
= false, ViewSchedDAGs
= false,
174 ViewSUnitDAGs
= false;
177 //===---------------------------------------------------------------------===//
179 /// RegisterScheduler class - Track the registration of instruction schedulers.
181 //===---------------------------------------------------------------------===//
182 MachinePassRegistry
<RegisterScheduler::FunctionPassCtor
>
183 RegisterScheduler::Registry
;
185 //===---------------------------------------------------------------------===//
187 /// ISHeuristic command line option for instruction schedulers.
189 //===---------------------------------------------------------------------===//
190 static cl::opt
<RegisterScheduler::FunctionPassCtor
, false,
191 RegisterPassParser
<RegisterScheduler
>>
192 ISHeuristic("pre-RA-sched",
193 cl::init(&createDefaultScheduler
), cl::Hidden
,
194 cl::desc("Instruction schedulers available (before register"
197 static RegisterScheduler
198 defaultListDAGScheduler("default", "Best scheduler for the target",
199 createDefaultScheduler
);
203 //===--------------------------------------------------------------------===//
204 /// This class is used by SelectionDAGISel to temporarily override
205 /// the optimization level on a per-function basis.
206 class OptLevelChanger
{
207 SelectionDAGISel
&IS
;
208 CodeGenOpt::Level SavedOptLevel
;
212 OptLevelChanger(SelectionDAGISel
&ISel
,
213 CodeGenOpt::Level NewOptLevel
) : IS(ISel
) {
214 SavedOptLevel
= IS
.OptLevel
;
215 if (NewOptLevel
== SavedOptLevel
)
217 IS
.OptLevel
= NewOptLevel
;
218 IS
.TM
.setOptLevel(NewOptLevel
);
219 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
220 << IS
.MF
->getFunction().getName() << "\n");
221 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
<< " ; After: -O"
222 << NewOptLevel
<< "\n");
223 SavedFastISel
= IS
.TM
.Options
.EnableFastISel
;
224 if (NewOptLevel
== CodeGenOpt::None
) {
225 IS
.TM
.setFastISel(IS
.TM
.getO0WantsFastISel());
227 dbgs() << "\tFastISel is "
228 << (IS
.TM
.Options
.EnableFastISel
? "enabled" : "disabled")
234 if (IS
.OptLevel
== SavedOptLevel
)
236 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
237 << IS
.MF
->getFunction().getName() << "\n");
238 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS
.OptLevel
<< " ; After: -O"
239 << SavedOptLevel
<< "\n");
240 IS
.OptLevel
= SavedOptLevel
;
241 IS
.TM
.setOptLevel(SavedOptLevel
);
242 IS
.TM
.setFastISel(SavedFastISel
);
246 //===--------------------------------------------------------------------===//
247 /// createDefaultScheduler - This creates an instruction scheduler appropriate
249 ScheduleDAGSDNodes
* createDefaultScheduler(SelectionDAGISel
*IS
,
250 CodeGenOpt::Level OptLevel
) {
251 const TargetLowering
*TLI
= IS
->TLI
;
252 const TargetSubtargetInfo
&ST
= IS
->MF
->getSubtarget();
254 // Try first to see if the Target has its own way of selecting a scheduler
255 if (auto *SchedulerCtor
= ST
.getDAGScheduler(OptLevel
)) {
256 return SchedulerCtor(IS
, OptLevel
);
259 if (OptLevel
== CodeGenOpt::None
||
260 (ST
.enableMachineScheduler() && ST
.enableMachineSchedDefaultSched()) ||
261 TLI
->getSchedulingPreference() == Sched::Source
)
262 return createSourceListDAGScheduler(IS
, OptLevel
);
263 if (TLI
->getSchedulingPreference() == Sched::RegPressure
)
264 return createBURRListDAGScheduler(IS
, OptLevel
);
265 if (TLI
->getSchedulingPreference() == Sched::Hybrid
)
266 return createHybridListDAGScheduler(IS
, OptLevel
);
267 if (TLI
->getSchedulingPreference() == Sched::VLIW
)
268 return createVLIWDAGScheduler(IS
, OptLevel
);
269 assert(TLI
->getSchedulingPreference() == Sched::ILP
&&
270 "Unknown sched type!");
271 return createILPListDAGScheduler(IS
, OptLevel
);
274 } // end namespace llvm
276 // EmitInstrWithCustomInserter - This method should be implemented by targets
277 // that mark instructions with the 'usesCustomInserter' flag. These
278 // instructions are special in various ways, which require special support to
279 // insert. The specified MachineInstr is created but not inserted into any
280 // basic blocks, and this method is called to expand it into a sequence of
281 // instructions, potentially also creating new basic blocks and control flow.
282 // When new basic blocks are inserted and the edges from MBB to its successors
283 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
286 TargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
287 MachineBasicBlock
*MBB
) const {
289 dbgs() << "If a target marks an instruction with "
290 "'usesCustomInserter', it must implement "
291 "TargetLowering::EmitInstrWithCustomInserter!";
293 llvm_unreachable(nullptr);
296 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
297 SDNode
*Node
) const {
298 assert(!MI
.hasPostISelHook() &&
299 "If a target marks an instruction with 'hasPostISelHook', "
300 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
303 //===----------------------------------------------------------------------===//
304 // SelectionDAGISel code
305 //===----------------------------------------------------------------------===//
307 SelectionDAGISel::SelectionDAGISel(TargetMachine
&tm
,
308 CodeGenOpt::Level OL
) :
309 MachineFunctionPass(ID
), TM(tm
),
310 FuncInfo(new FunctionLoweringInfo()),
311 SwiftError(new SwiftErrorValueTracking()),
312 CurDAG(new SelectionDAG(tm
, OL
)),
313 SDB(new SelectionDAGBuilder(*CurDAG
, *FuncInfo
, *SwiftError
, OL
)),
317 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
318 initializeBranchProbabilityInfoWrapperPassPass(
319 *PassRegistry::getPassRegistry());
320 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
321 initializeTargetLibraryInfoWrapperPassPass(
322 *PassRegistry::getPassRegistry());
325 SelectionDAGISel::~SelectionDAGISel() {
332 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage
&AU
) const {
333 if (OptLevel
!= CodeGenOpt::None
)
334 AU
.addRequired
<AAResultsWrapperPass
>();
335 AU
.addRequired
<GCModuleInfo
>();
336 AU
.addRequired
<StackProtector
>();
337 AU
.addPreserved
<GCModuleInfo
>();
338 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
339 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
340 if (UseMBPI
&& OptLevel
!= CodeGenOpt::None
)
341 AU
.addRequired
<BranchProbabilityInfoWrapperPass
>();
342 MachineFunctionPass::getAnalysisUsage(AU
);
345 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
346 /// may trap on it. In this case we have to split the edge so that the path
347 /// through the predecessor block that doesn't go to the phi block doesn't
348 /// execute the possibly trapping instruction. If available, we pass domtree
349 /// and loop info to be updated when we split critical edges. This is because
350 /// SelectionDAGISel preserves these analyses.
351 /// This is required for correctness, so it must be done at -O0.
353 static void SplitCriticalSideEffectEdges(Function
&Fn
, DominatorTree
*DT
,
355 // Loop for blocks with phi nodes.
356 for (BasicBlock
&BB
: Fn
) {
357 PHINode
*PN
= dyn_cast
<PHINode
>(BB
.begin());
361 // For each block with a PHI node, check to see if any of the input values
362 // are potentially trapping constant expressions. Constant expressions are
363 // the only potentially trapping value that can occur as the argument to a
365 for (BasicBlock::iterator I
= BB
.begin(); (PN
= dyn_cast
<PHINode
>(I
)); ++I
)
366 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
367 ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(PN
->getIncomingValue(i
));
368 if (!CE
|| !CE
->canTrap()) continue;
370 // The only case we have to worry about is when the edge is critical.
371 // Since this block has a PHI Node, we assume it has multiple input
372 // edges: check to see if the pred has multiple successors.
373 BasicBlock
*Pred
= PN
->getIncomingBlock(i
);
374 if (Pred
->getTerminator()->getNumSuccessors() == 1)
377 // Okay, we have to split this edge.
379 Pred
->getTerminator(), GetSuccessorNumber(Pred
, &BB
),
380 CriticalEdgeSplittingOptions(DT
, LI
).setMergeIdenticalEdges());
386 static void computeUsesMSVCFloatingPoint(const Triple
&TT
, const Function
&F
,
387 MachineModuleInfo
&MMI
) {
388 // Only needed for MSVC
389 if (!TT
.isWindowsMSVCEnvironment())
392 // If it's already set, nothing to do.
393 if (MMI
.usesMSVCFloatingPoint())
396 for (const Instruction
&I
: instructions(F
)) {
397 if (I
.getType()->isFPOrFPVectorTy()) {
398 MMI
.setUsesMSVCFloatingPoint(true);
401 for (const auto &Op
: I
.operands()) {
402 if (Op
->getType()->isFPOrFPVectorTy()) {
403 MMI
.setUsesMSVCFloatingPoint(true);
410 bool SelectionDAGISel::runOnMachineFunction(MachineFunction
&mf
) {
411 // If we already selected that function, we do not need to run SDISel.
412 if (mf
.getProperties().hasProperty(
413 MachineFunctionProperties::Property::Selected
))
415 // Do some sanity-checking on the command-line options.
416 assert((!EnableFastISelAbort
|| TM
.Options
.EnableFastISel
) &&
417 "-fast-isel-abort > 0 requires -fast-isel");
419 const Function
&Fn
= mf
.getFunction();
422 // Reset the target options before resetting the optimization
424 // FIXME: This is a horrible hack and should be processed via
425 // codegen looking at the optimization level explicitly when
426 // it wants to look at it.
427 TM
.resetTargetOptions(Fn
);
428 // Reset OptLevel to None for optnone functions.
429 CodeGenOpt::Level NewOptLevel
= OptLevel
;
430 if (OptLevel
!= CodeGenOpt::None
&& skipFunction(Fn
))
431 NewOptLevel
= CodeGenOpt::None
;
432 OptLevelChanger
OLC(*this, NewOptLevel
);
434 TII
= MF
->getSubtarget().getInstrInfo();
435 TLI
= MF
->getSubtarget().getTargetLowering();
436 RegInfo
= &MF
->getRegInfo();
437 LibInfo
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
438 GFI
= Fn
.hasGC() ? &getAnalysis
<GCModuleInfo
>().getFunctionInfo(Fn
) : nullptr;
439 ORE
= std::make_unique
<OptimizationRemarkEmitter
>(&Fn
);
440 auto *DTWP
= getAnalysisIfAvailable
<DominatorTreeWrapperPass
>();
441 DominatorTree
*DT
= DTWP
? &DTWP
->getDomTree() : nullptr;
442 auto *LIWP
= getAnalysisIfAvailable
<LoopInfoWrapperPass
>();
443 LoopInfo
*LI
= LIWP
? &LIWP
->getLoopInfo() : nullptr;
445 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn
.getName() << "\n");
447 SplitCriticalSideEffectEdges(const_cast<Function
&>(Fn
), DT
, LI
);
449 CurDAG
->init(*MF
, *ORE
, this, LibInfo
,
450 getAnalysisIfAvailable
<LegacyDivergenceAnalysis
>());
451 FuncInfo
->set(Fn
, *MF
, CurDAG
);
452 SwiftError
->setFunction(*MF
);
454 // Now get the optional analyzes if we want to.
455 // This is based on the possibly changed OptLevel (after optnone is taken
456 // into account). That's unfortunate but OK because it just means we won't
457 // ask for passes that have been required anyway.
459 if (UseMBPI
&& OptLevel
!= CodeGenOpt::None
)
460 FuncInfo
->BPI
= &getAnalysis
<BranchProbabilityInfoWrapperPass
>().getBPI();
462 FuncInfo
->BPI
= nullptr;
464 if (OptLevel
!= CodeGenOpt::None
)
465 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
469 SDB
->init(GFI
, AA
, LibInfo
);
471 MF
->setHasInlineAsm(false);
473 FuncInfo
->SplitCSR
= false;
475 // We split CSR if the target supports it for the given function
476 // and the function has only return exits.
477 if (OptLevel
!= CodeGenOpt::None
&& TLI
->supportSplitCSR(MF
)) {
478 FuncInfo
->SplitCSR
= true;
480 // Collect all the return blocks.
481 for (const BasicBlock
&BB
: Fn
) {
482 if (!succ_empty(&BB
))
485 const Instruction
*Term
= BB
.getTerminator();
486 if (isa
<UnreachableInst
>(Term
) || isa
<ReturnInst
>(Term
))
489 // Bail out if the exit block is not Return nor Unreachable.
490 FuncInfo
->SplitCSR
= false;
495 MachineBasicBlock
*EntryMBB
= &MF
->front();
496 if (FuncInfo
->SplitCSR
)
497 // This performs initialization so lowering for SplitCSR will be correct.
498 TLI
->initializeSplitCSR(EntryMBB
);
500 SelectAllBasicBlocks(Fn
);
501 if (FastISelFailed
&& EnableFastISelFallbackReport
) {
502 DiagnosticInfoISelFallback
DiagFallback(Fn
);
503 Fn
.getContext().diagnose(DiagFallback
);
506 // Replace forward-declared registers with the registers containing
507 // the desired value.
508 // Note: it is important that this happens **before** the call to
509 // EmitLiveInCopies, since implementations can skip copies of unused
510 // registers. If we don't apply the reg fixups before, some registers may
511 // appear as unused and will be skipped, resulting in bad MI.
512 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
513 for (DenseMap
<unsigned, unsigned>::iterator I
= FuncInfo
->RegFixups
.begin(),
514 E
= FuncInfo
->RegFixups
.end();
516 unsigned From
= I
->first
;
517 unsigned To
= I
->second
;
518 // If To is also scheduled to be replaced, find what its ultimate
521 DenseMap
<unsigned, unsigned>::iterator J
= FuncInfo
->RegFixups
.find(To
);
526 // Make sure the new register has a sufficiently constrained register class.
527 if (Register::isVirtualRegister(From
) && Register::isVirtualRegister(To
))
528 MRI
.constrainRegClass(To
, MRI
.getRegClass(From
));
531 // Replacing one register with another won't touch the kill flags.
532 // We need to conservatively clear the kill flags as a kill on the old
533 // register might dominate existing uses of the new register.
534 if (!MRI
.use_empty(To
))
535 MRI
.clearKillFlags(From
);
536 MRI
.replaceRegWith(From
, To
);
539 // If the first basic block in the function has live ins that need to be
540 // copied into vregs, emit the copies into the top of the block before
541 // emitting the code for the block.
542 const TargetRegisterInfo
&TRI
= *MF
->getSubtarget().getRegisterInfo();
543 RegInfo
->EmitLiveInCopies(EntryMBB
, TRI
, *TII
);
545 // Insert copies in the entry block and the return blocks.
546 if (FuncInfo
->SplitCSR
) {
547 SmallVector
<MachineBasicBlock
*, 4> Returns
;
548 // Collect all the return blocks.
549 for (MachineBasicBlock
&MBB
: mf
) {
550 if (!MBB
.succ_empty())
553 MachineBasicBlock::iterator Term
= MBB
.getFirstTerminator();
554 if (Term
!= MBB
.end() && Term
->isReturn()) {
555 Returns
.push_back(&MBB
);
559 TLI
->insertCopiesSplitCSR(EntryMBB
, Returns
);
562 DenseMap
<unsigned, unsigned> LiveInMap
;
563 if (!FuncInfo
->ArgDbgValues
.empty())
564 for (std::pair
<unsigned, unsigned> LI
: RegInfo
->liveins())
566 LiveInMap
.insert(LI
);
568 // Insert DBG_VALUE instructions for function arguments to the entry block.
569 for (unsigned i
= 0, e
= FuncInfo
->ArgDbgValues
.size(); i
!= e
; ++i
) {
570 MachineInstr
*MI
= FuncInfo
->ArgDbgValues
[e
-i
-1];
571 bool hasFI
= MI
->getOperand(0).isFI();
573 hasFI
? TRI
.getFrameRegister(*MF
) : MI
->getOperand(0).getReg();
574 if (Register::isPhysicalRegister(Reg
))
575 EntryMBB
->insert(EntryMBB
->begin(), MI
);
577 MachineInstr
*Def
= RegInfo
->getVRegDef(Reg
);
579 MachineBasicBlock::iterator InsertPos
= Def
;
580 // FIXME: VR def may not be in entry block.
581 Def
->getParent()->insert(std::next(InsertPos
), MI
);
583 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
584 << Register::virtReg2Index(Reg
) << "\n");
587 // If Reg is live-in then update debug info to track its copy in a vreg.
588 DenseMap
<unsigned, unsigned>::iterator LDI
= LiveInMap
.find(Reg
);
589 if (LDI
!= LiveInMap
.end()) {
590 assert(!hasFI
&& "There's no handling of frame pointer updating here yet "
592 MachineInstr
*Def
= RegInfo
->getVRegDef(LDI
->second
);
593 MachineBasicBlock::iterator InsertPos
= Def
;
594 const MDNode
*Variable
= MI
->getDebugVariable();
595 const MDNode
*Expr
= MI
->getDebugExpression();
596 DebugLoc DL
= MI
->getDebugLoc();
597 bool IsIndirect
= MI
->isIndirectDebugValue();
599 assert(MI
->getOperand(1).getImm() == 0 &&
600 "DBG_VALUE with nonzero offset");
601 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
602 "Expected inlined-at fields to agree");
603 // Def is never a terminator here, so it is ok to increment InsertPos.
604 BuildMI(*EntryMBB
, ++InsertPos
, DL
, TII
->get(TargetOpcode::DBG_VALUE
),
605 IsIndirect
, LDI
->second
, Variable
, Expr
);
607 // If this vreg is directly copied into an exported register then
608 // that COPY instructions also need DBG_VALUE, if it is the only
609 // user of LDI->second.
610 MachineInstr
*CopyUseMI
= nullptr;
611 for (MachineRegisterInfo::use_instr_iterator
612 UI
= RegInfo
->use_instr_begin(LDI
->second
),
613 E
= RegInfo
->use_instr_end(); UI
!= E
; ) {
614 MachineInstr
*UseMI
= &*(UI
++);
615 if (UseMI
->isDebugValue()) continue;
616 if (UseMI
->isCopy() && !CopyUseMI
&& UseMI
->getParent() == EntryMBB
) {
617 CopyUseMI
= UseMI
; continue;
619 // Otherwise this is another use or second copy use.
620 CopyUseMI
= nullptr; break;
623 // Use MI's debug location, which describes where Variable was
624 // declared, rather than whatever is attached to CopyUseMI.
625 MachineInstr
*NewMI
=
626 BuildMI(*MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
), IsIndirect
,
627 CopyUseMI
->getOperand(0).getReg(), Variable
, Expr
);
628 MachineBasicBlock::iterator Pos
= CopyUseMI
;
629 EntryMBB
->insertAfter(Pos
, NewMI
);
634 // Determine if there are any calls in this machine function.
635 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
636 for (const auto &MBB
: *MF
) {
637 if (MFI
.hasCalls() && MF
->hasInlineAsm())
640 for (const auto &MI
: MBB
) {
641 const MCInstrDesc
&MCID
= TII
->get(MI
.getOpcode());
642 if ((MCID
.isCall() && !MCID
.isReturn()) ||
643 MI
.isStackAligningInlineAsm()) {
644 MFI
.setHasCalls(true);
646 if (MI
.isInlineAsm()) {
647 MF
->setHasInlineAsm(true);
652 // Determine if there is a call to setjmp in the machine function.
653 MF
->setExposesReturnsTwice(Fn
.callsFunctionThatReturnsTwice());
655 // Determine if floating point is used for msvc
656 computeUsesMSVCFloatingPoint(TM
.getTargetTriple(), Fn
, MF
->getMMI());
658 // Replace forward-declared registers with the registers containing
659 // the desired value.
660 for (DenseMap
<unsigned, unsigned>::iterator
661 I
= FuncInfo
->RegFixups
.begin(), E
= FuncInfo
->RegFixups
.end();
663 unsigned From
= I
->first
;
664 unsigned To
= I
->second
;
665 // If To is also scheduled to be replaced, find what its ultimate
668 DenseMap
<unsigned, unsigned>::iterator J
= FuncInfo
->RegFixups
.find(To
);
672 // Make sure the new register has a sufficiently constrained register class.
673 if (Register::isVirtualRegister(From
) && Register::isVirtualRegister(To
))
674 MRI
.constrainRegClass(To
, MRI
.getRegClass(From
));
678 // Replacing one register with another won't touch the kill flags.
679 // We need to conservatively clear the kill flags as a kill on the old
680 // register might dominate existing uses of the new register.
681 if (!MRI
.use_empty(To
))
682 MRI
.clearKillFlags(From
);
683 MRI
.replaceRegWith(From
, To
);
686 TLI
->finalizeLowering(*MF
);
688 // Release function-specific state. SDB and CurDAG are already cleared
692 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
693 LLVM_DEBUG(MF
->print(dbgs()));
698 static void reportFastISelFailure(MachineFunction
&MF
,
699 OptimizationRemarkEmitter
&ORE
,
700 OptimizationRemarkMissed
&R
,
702 // Print the function name explicitly if we don't have a debug location (which
703 // makes the diagnostic less useful) or if we're going to emit a raw error.
704 if (!R
.getLocation().isValid() || ShouldAbort
)
705 R
<< (" (in function: " + MF
.getName() + ")").str();
708 report_fatal_error(R
.getMsg());
713 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin
,
714 BasicBlock::const_iterator End
,
716 // Allow creating illegal types during DAG building for the basic block.
717 CurDAG
->NewNodesMustHaveLegalTypes
= false;
719 // Lower the instructions. If a call is emitted as a tail call, cease emitting
720 // nodes for this block.
721 for (BasicBlock::const_iterator I
= Begin
; I
!= End
&& !SDB
->HasTailCall
; ++I
) {
722 if (!ElidedArgCopyInstrs
.count(&*I
))
726 // Make sure the root of the DAG is up-to-date.
727 CurDAG
->setRoot(SDB
->getControlRoot());
728 HadTailCall
= SDB
->HasTailCall
;
729 SDB
->resolveOrClearDbgInfo();
732 // Final step, emit the lowered DAG as machine code.
736 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
737 SmallPtrSet
<SDNode
*, 16> VisitedNodes
;
738 SmallVector
<SDNode
*, 128> Worklist
;
740 Worklist
.push_back(CurDAG
->getRoot().getNode());
745 SDNode
*N
= Worklist
.pop_back_val();
747 // If we've already seen this node, ignore it.
748 if (!VisitedNodes
.insert(N
).second
)
751 // Otherwise, add all chain operands to the worklist.
752 for (const SDValue
&Op
: N
->op_values())
753 if (Op
.getValueType() == MVT::Other
)
754 Worklist
.push_back(Op
.getNode());
756 // If this is a CopyToReg with a vreg dest, process it.
757 if (N
->getOpcode() != ISD::CopyToReg
)
760 unsigned DestReg
= cast
<RegisterSDNode
>(N
->getOperand(1))->getReg();
761 if (!Register::isVirtualRegister(DestReg
))
764 // Ignore non-integer values.
765 SDValue Src
= N
->getOperand(2);
766 EVT SrcVT
= Src
.getValueType();
767 if (!SrcVT
.isInteger())
770 unsigned NumSignBits
= CurDAG
->ComputeNumSignBits(Src
);
771 Known
= CurDAG
->computeKnownBits(Src
);
772 FuncInfo
->AddLiveOutRegInfo(DestReg
, NumSignBits
, Known
);
773 } while (!Worklist
.empty());
776 void SelectionDAGISel::CodeGenAndEmitDAG() {
777 StringRef GroupName
= "sdag";
778 StringRef GroupDescription
= "Instruction Selection and Scheduling";
779 std::string BlockName
;
780 bool MatchFilterBB
= false; (void)MatchFilterBB
;
782 TargetTransformInfo
&TTI
=
783 getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(*FuncInfo
->Fn
);
786 // Pre-type legalization allow creation of any node types.
787 CurDAG
->NewNodesMustHaveLegalTypes
= false;
790 MatchFilterBB
= (FilterDAGBasicBlockName
.empty() ||
791 FilterDAGBasicBlockName
==
792 FuncInfo
->MBB
->getBasicBlock()->getName());
795 if (ViewDAGCombine1
|| ViewLegalizeTypesDAGs
|| ViewLegalizeDAGs
||
796 ViewDAGCombine2
|| ViewDAGCombineLT
|| ViewISelDAGs
|| ViewSchedDAGs
||
801 (MF
->getName() + ":" + FuncInfo
->MBB
->getBasicBlock()->getName()).str();
803 LLVM_DEBUG(dbgs() << "Initial selection DAG: "
804 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
808 if (ViewDAGCombine1
&& MatchFilterBB
)
809 CurDAG
->viewGraph("dag-combine1 input for " + BlockName
);
811 // Run the DAG combiner in pre-legalize mode.
813 NamedRegionTimer
T("combine1", "DAG Combining 1", GroupName
,
814 GroupDescription
, TimePassesIsEnabled
);
815 CurDAG
->Combine(BeforeLegalizeTypes
, AA
, OptLevel
);
819 if (TTI
.hasBranchDivergence())
820 CurDAG
->VerifyDAGDiverence();
823 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
824 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
828 // Second step, hack on the DAG until it only uses operations and types that
829 // the target supports.
830 if (ViewLegalizeTypesDAGs
&& MatchFilterBB
)
831 CurDAG
->viewGraph("legalize-types input for " + BlockName
);
835 NamedRegionTimer
T("legalize_types", "Type Legalization", GroupName
,
836 GroupDescription
, TimePassesIsEnabled
);
837 Changed
= CurDAG
->LegalizeTypes();
841 if (TTI
.hasBranchDivergence())
842 CurDAG
->VerifyDAGDiverence();
845 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
846 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
850 // Only allow creation of legal node types.
851 CurDAG
->NewNodesMustHaveLegalTypes
= true;
854 if (ViewDAGCombineLT
&& MatchFilterBB
)
855 CurDAG
->viewGraph("dag-combine-lt input for " + BlockName
);
857 // Run the DAG combiner in post-type-legalize mode.
859 NamedRegionTimer
T("combine_lt", "DAG Combining after legalize types",
860 GroupName
, GroupDescription
, TimePassesIsEnabled
);
861 CurDAG
->Combine(AfterLegalizeTypes
, AA
, OptLevel
);
865 if (TTI
.hasBranchDivergence())
866 CurDAG
->VerifyDAGDiverence();
869 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
870 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
876 NamedRegionTimer
T("legalize_vec", "Vector Legalization", GroupName
,
877 GroupDescription
, TimePassesIsEnabled
);
878 Changed
= CurDAG
->LegalizeVectors();
882 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
883 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
888 NamedRegionTimer
T("legalize_types2", "Type Legalization 2", GroupName
,
889 GroupDescription
, TimePassesIsEnabled
);
890 CurDAG
->LegalizeTypes();
893 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
894 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
898 if (ViewDAGCombineLT
&& MatchFilterBB
)
899 CurDAG
->viewGraph("dag-combine-lv input for " + BlockName
);
901 // Run the DAG combiner in post-type-legalize mode.
903 NamedRegionTimer
T("combine_lv", "DAG Combining after legalize vectors",
904 GroupName
, GroupDescription
, TimePassesIsEnabled
);
905 CurDAG
->Combine(AfterLegalizeVectorOps
, AA
, OptLevel
);
908 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
909 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
914 if (TTI
.hasBranchDivergence())
915 CurDAG
->VerifyDAGDiverence();
919 if (ViewLegalizeDAGs
&& MatchFilterBB
)
920 CurDAG
->viewGraph("legalize input for " + BlockName
);
923 NamedRegionTimer
T("legalize", "DAG Legalization", GroupName
,
924 GroupDescription
, TimePassesIsEnabled
);
929 if (TTI
.hasBranchDivergence())
930 CurDAG
->VerifyDAGDiverence();
933 LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
934 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
938 if (ViewDAGCombine2
&& MatchFilterBB
)
939 CurDAG
->viewGraph("dag-combine2 input for " + BlockName
);
941 // Run the DAG combiner in post-legalize mode.
943 NamedRegionTimer
T("combine2", "DAG Combining 2", GroupName
,
944 GroupDescription
, TimePassesIsEnabled
);
945 CurDAG
->Combine(AfterLegalizeDAG
, AA
, OptLevel
);
949 if (TTI
.hasBranchDivergence())
950 CurDAG
->VerifyDAGDiverence();
953 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
954 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
958 if (OptLevel
!= CodeGenOpt::None
)
959 ComputeLiveOutVRegInfo();
961 if (ViewISelDAGs
&& MatchFilterBB
)
962 CurDAG
->viewGraph("isel input for " + BlockName
);
964 // Third, instruction select all of the operations to machine code, adding the
965 // code to the MachineBasicBlock.
967 NamedRegionTimer
T("isel", "Instruction Selection", GroupName
,
968 GroupDescription
, TimePassesIsEnabled
);
969 DoInstructionSelection();
972 LLVM_DEBUG(dbgs() << "Selected selection DAG: "
973 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
977 if (ViewSchedDAGs
&& MatchFilterBB
)
978 CurDAG
->viewGraph("scheduler input for " + BlockName
);
980 // Schedule machine code.
981 ScheduleDAGSDNodes
*Scheduler
= CreateScheduler();
983 NamedRegionTimer
T("sched", "Instruction Scheduling", GroupName
,
984 GroupDescription
, TimePassesIsEnabled
);
985 Scheduler
->Run(CurDAG
, FuncInfo
->MBB
);
988 if (ViewSUnitDAGs
&& MatchFilterBB
)
989 Scheduler
->viewGraph();
991 // Emit machine code to BB. This can change 'BB' to the last block being
993 MachineBasicBlock
*FirstMBB
= FuncInfo
->MBB
, *LastMBB
;
995 NamedRegionTimer
T("emit", "Instruction Creation", GroupName
,
996 GroupDescription
, TimePassesIsEnabled
);
998 // FuncInfo->InsertPt is passed by reference and set to the end of the
999 // scheduled instructions.
1000 LastMBB
= FuncInfo
->MBB
= Scheduler
->EmitSchedule(FuncInfo
->InsertPt
);
1003 // If the block was split, make sure we update any references that are used to
1004 // update PHI nodes later on.
1005 if (FirstMBB
!= LastMBB
)
1006 SDB
->UpdateSplitBlock(FirstMBB
, LastMBB
);
1008 // Free the scheduler state.
1010 NamedRegionTimer
T("cleanup", "Instruction Scheduling Cleanup", GroupName
,
1011 GroupDescription
, TimePassesIsEnabled
);
1015 // Free the SelectionDAG state, now that we're finished with it.
1021 /// ISelUpdater - helper class to handle updates of the instruction selection
1023 class ISelUpdater
: public SelectionDAG::DAGUpdateListener
{
1024 SelectionDAG::allnodes_iterator
&ISelPosition
;
1027 ISelUpdater(SelectionDAG
&DAG
, SelectionDAG::allnodes_iterator
&isp
)
1028 : SelectionDAG::DAGUpdateListener(DAG
), ISelPosition(isp
) {}
1030 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1031 /// deleted is the current ISelPosition node, update ISelPosition.
1033 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
1034 if (ISelPosition
== SelectionDAG::allnodes_iterator(N
))
1039 } // end anonymous namespace
1041 // This function is used to enforce the topological node id property
1042 // property leveraged during Instruction selection. Before selection all
1043 // nodes are given a non-negative id such that all nodes have a larger id than
1044 // their operands. As this holds transitively we can prune checks that a node N
1045 // is a predecessor of M another by not recursively checking through M's
1046 // operands if N's ID is larger than M's ID. This is significantly improves
1047 // performance of for various legality checks (e.g. IsLegalToFold /
1050 // However, when we fuse multiple nodes into a single node
1051 // during selection we may induce a predecessor relationship between inputs and
1052 // outputs of distinct nodes being merged violating the topological property.
1053 // Should a fused node have a successor which has yet to be selected, our
1054 // legality checks would be incorrect. To avoid this we mark all unselected
1055 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
1056 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1057 // We use bit-negation to more clearly enforce that node id -1 can only be
1058 // achieved by selected nodes). As the conversion is reversable the original Id,
1059 // topological pruning can still be leveraged when looking for unselected nodes.
1060 // This method is call internally in all ISel replacement calls.
1061 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode
*Node
) {
1062 SmallVector
<SDNode
*, 4> Nodes
;
1063 Nodes
.push_back(Node
);
1065 while (!Nodes
.empty()) {
1066 SDNode
*N
= Nodes
.pop_back_val();
1067 for (auto *U
: N
->uses()) {
1068 auto UId
= U
->getNodeId();
1070 InvalidateNodeId(U
);
1077 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
1078 // NodeId with the equivalent node id which is invalid for topological
1080 void SelectionDAGISel::InvalidateNodeId(SDNode
*N
) {
1081 int InvalidId
= -(N
->getNodeId() + 1);
1082 N
->setNodeId(InvalidId
);
1085 // getUninvalidatedNodeId - get original uninvalidated node id.
1086 int SelectionDAGISel::getUninvalidatedNodeId(SDNode
*N
) {
1087 int Id
= N
->getNodeId();
1093 void SelectionDAGISel::DoInstructionSelection() {
1094 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1095 << printMBBReference(*FuncInfo
->MBB
) << " '"
1096 << FuncInfo
->MBB
->getName() << "'\n");
1098 PreprocessISelDAG();
1100 // Select target instructions for the DAG.
1102 // Number all nodes with a topological order and set DAGSize.
1103 DAGSize
= CurDAG
->AssignTopologicalOrder();
1105 // Create a dummy node (which is not added to allnodes), that adds
1106 // a reference to the root node, preventing it from being deleted,
1107 // and tracking any changes of the root.
1108 HandleSDNode
Dummy(CurDAG
->getRoot());
1109 SelectionDAG::allnodes_iterator
ISelPosition (CurDAG
->getRoot().getNode());
1112 // Make sure that ISelPosition gets properly updated when nodes are deleted
1113 // in calls made from this function.
1114 ISelUpdater
ISU(*CurDAG
, ISelPosition
);
1116 // The AllNodes list is now topological-sorted. Visit the
1117 // nodes by starting at the end of the list (the root of the
1118 // graph) and preceding back toward the beginning (the entry
1120 while (ISelPosition
!= CurDAG
->allnodes_begin()) {
1121 SDNode
*Node
= &*--ISelPosition
;
1122 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1123 // but there are currently some corner cases that it misses. Also, this
1124 // makes it theoretically possible to disable the DAGCombiner.
1125 if (Node
->use_empty())
1129 SmallVector
<SDNode
*, 4> Nodes
;
1130 Nodes
.push_back(Node
);
1132 while (!Nodes
.empty()) {
1133 auto N
= Nodes
.pop_back_val();
1134 if (N
->getOpcode() == ISD::TokenFactor
|| N
->getNodeId() < 0)
1136 for (const SDValue
&Op
: N
->op_values()) {
1137 if (Op
->getOpcode() == ISD::TokenFactor
)
1138 Nodes
.push_back(Op
.getNode());
1140 // We rely on topological ordering of node ids for checking for
1141 // cycles when fusing nodes during selection. All unselected nodes
1142 // successors of an already selected node should have a negative id.
1143 // This assertion will catch such cases. If this assertion triggers
1144 // it is likely you using DAG-level Value/Node replacement functions
1145 // (versus equivalent ISEL replacement) in backend-specific
1146 // selections. See comment in EnforceNodeIdInvariant for more
1148 assert(Op
->getNodeId() != -1 &&
1149 "Node has already selected predecessor node");
1155 // When we are using non-default rounding modes or FP exception behavior
1156 // FP operations are represented by StrictFP pseudo-operations. For
1157 // targets that do not (yet) understand strict FP operations directly,
1158 // we convert them to normal FP opcodes instead at this point. This
1159 // will allow them to be handled by existing target-specific instruction
1161 if (Node
->isStrictFPOpcode() &&
1162 (TLI
->getOperationAction(Node
->getOpcode(), Node
->getValueType(0))
1163 != TargetLowering::Legal
))
1164 Node
= CurDAG
->mutateStrictFPToFP(Node
);
1166 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1167 Node
->dump(CurDAG
));
1172 CurDAG
->setRoot(Dummy
.getValue());
1175 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1177 PostprocessISelDAG();
1180 static bool hasExceptionPointerOrCodeUser(const CatchPadInst
*CPI
) {
1181 for (const User
*U
: CPI
->users()) {
1182 if (const IntrinsicInst
*EHPtrCall
= dyn_cast
<IntrinsicInst
>(U
)) {
1183 Intrinsic::ID IID
= EHPtrCall
->getIntrinsicID();
1184 if (IID
== Intrinsic::eh_exceptionpointer
||
1185 IID
== Intrinsic::eh_exceptioncode
)
1192 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1193 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1194 // and store the mapping in the function.
1195 static void mapWasmLandingPadIndex(MachineBasicBlock
*MBB
,
1196 const CatchPadInst
*CPI
) {
1197 MachineFunction
*MF
= MBB
->getParent();
1198 // In case of single catch (...), we don't emit LSDA, so we don't need
1199 // this information.
1200 bool IsSingleCatchAllClause
=
1201 CPI
->getNumArgOperands() == 1 &&
1202 cast
<Constant
>(CPI
->getArgOperand(0))->isNullValue();
1203 if (!IsSingleCatchAllClause
) {
1204 // Create a mapping from landing pad label to landing pad index.
1205 bool IntrFound
= false;
1206 for (const User
*U
: CPI
->users()) {
1207 if (const auto *Call
= dyn_cast
<IntrinsicInst
>(U
)) {
1208 Intrinsic::ID IID
= Call
->getIntrinsicID();
1209 if (IID
== Intrinsic::wasm_landingpad_index
) {
1210 Value
*IndexArg
= Call
->getArgOperand(1);
1211 int Index
= cast
<ConstantInt
>(IndexArg
)->getZExtValue();
1212 MF
->setWasmLandingPadIndex(MBB
, Index
);
1218 assert(IntrFound
&& "wasm.landingpad.index intrinsic not found!");
1223 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1224 /// do other setup for EH landing-pad blocks.
1225 bool SelectionDAGISel::PrepareEHLandingPad() {
1226 MachineBasicBlock
*MBB
= FuncInfo
->MBB
;
1227 const Constant
*PersonalityFn
= FuncInfo
->Fn
->getPersonalityFn();
1228 const BasicBlock
*LLVMBB
= MBB
->getBasicBlock();
1229 const TargetRegisterClass
*PtrRC
=
1230 TLI
->getRegClassFor(TLI
->getPointerTy(CurDAG
->getDataLayout()));
1232 auto Pers
= classifyEHPersonality(PersonalityFn
);
1234 // Catchpads have one live-in register, which typically holds the exception
1236 if (isFuncletEHPersonality(Pers
)) {
1237 if (const auto *CPI
= dyn_cast
<CatchPadInst
>(LLVMBB
->getFirstNonPHI())) {
1238 if (hasExceptionPointerOrCodeUser(CPI
)) {
1239 // Get or create the virtual register to hold the pointer or code. Mark
1240 // the live in physreg and copy into the vreg.
1241 MCPhysReg EHPhysReg
= TLI
->getExceptionPointerRegister(PersonalityFn
);
1242 assert(EHPhysReg
&& "target lacks exception pointer register");
1243 MBB
->addLiveIn(EHPhysReg
);
1244 unsigned VReg
= FuncInfo
->getCatchPadExceptionPointerVReg(CPI
, PtrRC
);
1245 BuildMI(*MBB
, FuncInfo
->InsertPt
, SDB
->getCurDebugLoc(),
1246 TII
->get(TargetOpcode::COPY
), VReg
)
1247 .addReg(EHPhysReg
, RegState::Kill
);
1253 // Add a label to mark the beginning of the landing pad. Deletion of the
1254 // landing pad can thus be detected via the MachineModuleInfo.
1255 MCSymbol
*Label
= MF
->addLandingPad(MBB
);
1257 const MCInstrDesc
&II
= TII
->get(TargetOpcode::EH_LABEL
);
1258 BuildMI(*MBB
, FuncInfo
->InsertPt
, SDB
->getCurDebugLoc(), II
)
1261 if (Pers
== EHPersonality::Wasm_CXX
) {
1262 if (const auto *CPI
= dyn_cast
<CatchPadInst
>(LLVMBB
->getFirstNonPHI()))
1263 mapWasmLandingPadIndex(MBB
, CPI
);
1265 // Assign the call site to the landing pad's begin label.
1266 MF
->setCallSiteLandingPad(Label
, SDB
->LPadToCallSiteMap
[MBB
]);
1267 // Mark exception register as live in.
1268 if (unsigned Reg
= TLI
->getExceptionPointerRegister(PersonalityFn
))
1269 FuncInfo
->ExceptionPointerVirtReg
= MBB
->addLiveIn(Reg
, PtrRC
);
1270 // Mark exception selector register as live in.
1271 if (unsigned Reg
= TLI
->getExceptionSelectorRegister(PersonalityFn
))
1272 FuncInfo
->ExceptionSelectorVirtReg
= MBB
->addLiveIn(Reg
, PtrRC
);
1278 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1279 /// side-effect free and is either dead or folded into a generated instruction.
1280 /// Return false if it needs to be emitted.
1281 static bool isFoldedOrDeadInstruction(const Instruction
*I
,
1282 FunctionLoweringInfo
*FuncInfo
) {
1283 return !I
->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1284 !I
->isTerminator() && // Terminators aren't folded.
1285 !isa
<DbgInfoIntrinsic
>(I
) && // Debug instructions aren't folded.
1286 !I
->isEHPad() && // EH pad instructions aren't folded.
1287 !FuncInfo
->isExportedInst(I
); // Exported instrs must be computed.
1290 /// Collect llvm.dbg.declare information. This is done after argument lowering
1291 /// in case the declarations refer to arguments.
1292 static void processDbgDeclares(FunctionLoweringInfo
*FuncInfo
) {
1293 MachineFunction
*MF
= FuncInfo
->MF
;
1294 const DataLayout
&DL
= MF
->getDataLayout();
1295 for (const BasicBlock
&BB
: *FuncInfo
->Fn
) {
1296 for (const Instruction
&I
: BB
) {
1297 const DbgDeclareInst
*DI
= dyn_cast
<DbgDeclareInst
>(&I
);
1301 assert(DI
->getVariable() && "Missing variable");
1302 assert(DI
->getDebugLoc() && "Missing location");
1303 const Value
*Address
= DI
->getAddress();
1307 // Look through casts and constant offset GEPs. These mostly come from
1309 APInt
Offset(DL
.getTypeSizeInBits(Address
->getType()), 0);
1310 Address
= Address
->stripAndAccumulateInBoundsConstantOffsets(DL
, Offset
);
1312 // Check if the variable is a static alloca or a byval or inalloca
1313 // argument passed in memory. If it is not, then we will ignore this
1314 // intrinsic and handle this during isel like dbg.value.
1315 int FI
= std::numeric_limits
<int>::max();
1316 if (const auto *AI
= dyn_cast
<AllocaInst
>(Address
)) {
1317 auto SI
= FuncInfo
->StaticAllocaMap
.find(AI
);
1318 if (SI
!= FuncInfo
->StaticAllocaMap
.end())
1320 } else if (const auto *Arg
= dyn_cast
<Argument
>(Address
))
1321 FI
= FuncInfo
->getArgumentFrameIndex(Arg
);
1323 if (FI
== std::numeric_limits
<int>::max())
1326 DIExpression
*Expr
= DI
->getExpression();
1327 if (Offset
.getBoolValue())
1328 Expr
= DIExpression::prepend(Expr
, DIExpression::ApplyOffset
,
1329 Offset
.getZExtValue());
1330 MF
->setVariableDbgInfo(DI
->getVariable(), Expr
, FI
, DI
->getDebugLoc());
1335 void SelectionDAGISel::SelectAllBasicBlocks(const Function
&Fn
) {
1336 FastISelFailed
= false;
1337 // Initialize the Fast-ISel state, if needed.
1338 FastISel
*FastIS
= nullptr;
1339 if (TM
.Options
.EnableFastISel
) {
1340 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1341 FastIS
= TLI
->createFastISel(*FuncInfo
, LibInfo
);
1344 ReversePostOrderTraversal
<const Function
*> RPOT(&Fn
);
1346 // Lower arguments up front. An RPO iteration always visits the entry block
1348 assert(*RPOT
.begin() == &Fn
.getEntryBlock());
1351 // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1352 FuncInfo
->MBB
= FuncInfo
->MBBMap
[&Fn
.getEntryBlock()];
1353 FuncInfo
->InsertPt
= FuncInfo
->MBB
->begin();
1355 CurDAG
->setFunctionLoweringInfo(FuncInfo
);
1360 // See if fast isel can lower the arguments.
1361 FastIS
->startNewBlock();
1362 if (!FastIS
->lowerArguments()) {
1363 FastISelFailed
= true;
1364 // Fast isel failed to lower these arguments
1365 ++NumFastIselFailLowerArguments
;
1367 OptimizationRemarkMissed
R("sdagisel", "FastISelFailure",
1369 &Fn
.getEntryBlock());
1370 R
<< "FastISel didn't lower all arguments: "
1371 << ore::NV("Prototype", Fn
.getType());
1372 reportFastISelFailure(*MF
, *ORE
, R
, EnableFastISelAbort
> 1);
1374 // Use SelectionDAG argument lowering
1376 CurDAG
->setRoot(SDB
->getControlRoot());
1378 CodeGenAndEmitDAG();
1381 // If we inserted any instructions at the beginning, make a note of
1382 // where they are, so we can be sure to emit subsequent instructions
1384 if (FuncInfo
->InsertPt
!= FuncInfo
->MBB
->begin())
1385 FastIS
->setLastLocalValue(&*std::prev(FuncInfo
->InsertPt
));
1387 FastIS
->setLastLocalValue(nullptr);
1390 bool Inserted
= SwiftError
->createEntriesInEntryBlock(SDB
->getCurDebugLoc());
1392 if (FastIS
&& Inserted
)
1393 FastIS
->setLastLocalValue(&*std::prev(FuncInfo
->InsertPt
));
1395 processDbgDeclares(FuncInfo
);
1397 // Iterate over all basic blocks in the function.
1398 StackProtector
&SP
= getAnalysis
<StackProtector
>();
1399 for (const BasicBlock
*LLVMBB
: RPOT
) {
1400 if (OptLevel
!= CodeGenOpt::None
) {
1401 bool AllPredsVisited
= true;
1402 for (const_pred_iterator PI
= pred_begin(LLVMBB
), PE
= pred_end(LLVMBB
);
1404 if (!FuncInfo
->VisitedBBs
.count(*PI
)) {
1405 AllPredsVisited
= false;
1410 if (AllPredsVisited
) {
1411 for (const PHINode
&PN
: LLVMBB
->phis())
1412 FuncInfo
->ComputePHILiveOutRegInfo(&PN
);
1414 for (const PHINode
&PN
: LLVMBB
->phis())
1415 FuncInfo
->InvalidatePHILiveOutRegInfo(&PN
);
1418 FuncInfo
->VisitedBBs
.insert(LLVMBB
);
1421 BasicBlock::const_iterator
const Begin
=
1422 LLVMBB
->getFirstNonPHI()->getIterator();
1423 BasicBlock::const_iterator
const End
= LLVMBB
->end();
1424 BasicBlock::const_iterator BI
= End
;
1426 FuncInfo
->MBB
= FuncInfo
->MBBMap
[LLVMBB
];
1428 continue; // Some blocks like catchpads have no code or MBB.
1430 // Insert new instructions after any phi or argument setup code.
1431 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1433 // Setup an EH landing-pad block.
1434 FuncInfo
->ExceptionPointerVirtReg
= 0;
1435 FuncInfo
->ExceptionSelectorVirtReg
= 0;
1436 if (LLVMBB
->isEHPad())
1437 if (!PrepareEHLandingPad())
1440 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1442 if (LLVMBB
!= &Fn
.getEntryBlock())
1443 FastIS
->startNewBlock();
1445 unsigned NumFastIselRemaining
= std::distance(Begin
, End
);
1447 // Pre-assign swifterror vregs.
1448 SwiftError
->preassignVRegs(FuncInfo
->MBB
, Begin
, End
);
1450 // Do FastISel on as many instructions as possible.
1451 for (; BI
!= Begin
; --BI
) {
1452 const Instruction
*Inst
= &*std::prev(BI
);
1454 // If we no longer require this instruction, skip it.
1455 if (isFoldedOrDeadInstruction(Inst
, FuncInfo
) ||
1456 ElidedArgCopyInstrs
.count(Inst
)) {
1457 --NumFastIselRemaining
;
1461 // Bottom-up: reset the insert pos at the top, after any local-value
1463 FastIS
->recomputeInsertPt();
1465 // Try to select the instruction with FastISel.
1466 if (FastIS
->selectInstruction(Inst
)) {
1467 --NumFastIselRemaining
;
1468 ++NumFastIselSuccess
;
1469 // If fast isel succeeded, skip over all the folded instructions, and
1470 // then see if there is a load right before the selected instructions.
1471 // Try to fold the load if so.
1472 const Instruction
*BeforeInst
= Inst
;
1473 while (BeforeInst
!= &*Begin
) {
1474 BeforeInst
= &*std::prev(BasicBlock::const_iterator(BeforeInst
));
1475 if (!isFoldedOrDeadInstruction(BeforeInst
, FuncInfo
))
1478 if (BeforeInst
!= Inst
&& isa
<LoadInst
>(BeforeInst
) &&
1479 BeforeInst
->hasOneUse() &&
1480 FastIS
->tryToFoldLoad(cast
<LoadInst
>(BeforeInst
), Inst
)) {
1481 // If we succeeded, don't re-select the load.
1482 BI
= std::next(BasicBlock::const_iterator(BeforeInst
));
1483 --NumFastIselRemaining
;
1484 ++NumFastIselSuccess
;
1489 FastISelFailed
= true;
1491 // Then handle certain instructions as single-LLVM-Instruction blocks.
1492 // We cannot separate out GCrelocates to their own blocks since we need
1493 // to keep track of gc-relocates for a particular gc-statepoint. This is
1494 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1496 if (isa
<CallInst
>(Inst
) && !isStatepoint(Inst
) && !isGCRelocate(Inst
) &&
1497 !isGCResult(Inst
)) {
1498 OptimizationRemarkMissed
R("sdagisel", "FastISelFailure",
1499 Inst
->getDebugLoc(), LLVMBB
);
1501 R
<< "FastISel missed call";
1503 if (R
.isEnabled() || EnableFastISelAbort
) {
1504 std::string InstStrStorage
;
1505 raw_string_ostream
InstStr(InstStrStorage
);
1508 R
<< ": " << InstStr
.str();
1511 reportFastISelFailure(*MF
, *ORE
, R
, EnableFastISelAbort
> 2);
1513 if (!Inst
->getType()->isVoidTy() && !Inst
->getType()->isTokenTy() &&
1514 !Inst
->use_empty()) {
1515 unsigned &R
= FuncInfo
->ValueMap
[Inst
];
1517 R
= FuncInfo
->CreateRegs(Inst
);
1520 bool HadTailCall
= false;
1521 MachineBasicBlock::iterator SavedInsertPt
= FuncInfo
->InsertPt
;
1522 SelectBasicBlock(Inst
->getIterator(), BI
, HadTailCall
);
1524 // If the call was emitted as a tail call, we're done with the block.
1525 // We also need to delete any previously emitted instructions.
1527 FastIS
->removeDeadCode(SavedInsertPt
, FuncInfo
->MBB
->end());
1532 // Recompute NumFastIselRemaining as Selection DAG instruction
1533 // selection may have handled the call, input args, etc.
1534 unsigned RemainingNow
= std::distance(Begin
, BI
);
1535 NumFastIselFailures
+= NumFastIselRemaining
- RemainingNow
;
1536 NumFastIselRemaining
= RemainingNow
;
1540 OptimizationRemarkMissed
R("sdagisel", "FastISelFailure",
1541 Inst
->getDebugLoc(), LLVMBB
);
1543 bool ShouldAbort
= EnableFastISelAbort
;
1544 if (Inst
->isTerminator()) {
1545 // Use a different message for terminator misses.
1546 R
<< "FastISel missed terminator";
1547 // Don't abort for terminator unless the level is really high
1548 ShouldAbort
= (EnableFastISelAbort
> 2);
1550 R
<< "FastISel missed";
1553 if (R
.isEnabled() || EnableFastISelAbort
) {
1554 std::string InstStrStorage
;
1555 raw_string_ostream
InstStr(InstStrStorage
);
1557 R
<< ": " << InstStr
.str();
1560 reportFastISelFailure(*MF
, *ORE
, R
, ShouldAbort
);
1562 NumFastIselFailures
+= NumFastIselRemaining
;
1566 FastIS
->recomputeInsertPt();
1569 if (SP
.shouldEmitSDCheck(*LLVMBB
)) {
1570 bool FunctionBasedInstrumentation
=
1571 TLI
->getSSPStackGuardCheck(*Fn
.getParent());
1572 SDB
->SPDescriptor
.initialize(LLVMBB
, FuncInfo
->MBBMap
[LLVMBB
],
1573 FunctionBasedInstrumentation
);
1579 ++NumFastIselBlocks
;
1582 // Run SelectionDAG instruction selection on the remainder of the block
1583 // not handled by FastISel. If FastISel is not run, this is the entire
1586 SelectBasicBlock(Begin
, BI
, HadTailCall
);
1588 // But if FastISel was run, we already selected some of the block.
1589 // If we emitted a tail-call, we need to delete any previously emitted
1590 // instruction that follows it.
1591 if (HadTailCall
&& FuncInfo
->InsertPt
!= FuncInfo
->MBB
->end())
1592 FastIS
->removeDeadCode(FuncInfo
->InsertPt
, FuncInfo
->MBB
->end());
1596 FastIS
->finishBasicBlock();
1598 FuncInfo
->PHINodesToUpdate
.clear();
1599 ElidedArgCopyInstrs
.clear();
1602 SP
.copyToMachineFrameInfo(MF
->getFrameInfo());
1604 SwiftError
->propagateVRegs();
1607 SDB
->clearDanglingDebugInfo();
1608 SDB
->SPDescriptor
.resetPerFunctionState();
1611 /// Given that the input MI is before a partial terminator sequence TSeq, return
1612 /// true if M + TSeq also a partial terminator sequence.
1614 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1615 /// lowering copy vregs into physical registers, which are then passed into
1616 /// terminator instructors so we can satisfy ABI constraints. A partial
1617 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1618 /// may be the whole terminator sequence).
1619 static bool MIIsInTerminatorSequence(const MachineInstr
&MI
) {
1620 // If we do not have a copy or an implicit def, we return true if and only if
1621 // MI is a debug value.
1622 if (!MI
.isCopy() && !MI
.isImplicitDef())
1623 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1624 // physical registers if there is debug info associated with the terminator
1625 // of our mbb. We want to include said debug info in our terminator
1626 // sequence, so we return true in that case.
1627 return MI
.isDebugValue();
1629 // We have left the terminator sequence if we are not doing one of the
1632 // 1. Copying a vreg into a physical register.
1633 // 2. Copying a vreg into a vreg.
1634 // 3. Defining a register via an implicit def.
1636 // OPI should always be a register definition...
1637 MachineInstr::const_mop_iterator OPI
= MI
.operands_begin();
1638 if (!OPI
->isReg() || !OPI
->isDef())
1641 // Defining any register via an implicit def is always ok.
1642 if (MI
.isImplicitDef())
1645 // Grab the copy source...
1646 MachineInstr::const_mop_iterator OPI2
= OPI
;
1648 assert(OPI2
!= MI
.operands_end()
1649 && "Should have a copy implying we should have 2 arguments.");
1651 // Make sure that the copy dest is not a vreg when the copy source is a
1652 // physical register.
1653 if (!OPI2
->isReg() || (!Register::isPhysicalRegister(OPI
->getReg()) &&
1654 Register::isPhysicalRegister(OPI2
->getReg())))
1660 /// Find the split point at which to splice the end of BB into its success stack
1661 /// protector check machine basic block.
1663 /// On many platforms, due to ABI constraints, terminators, even before register
1664 /// allocation, use physical registers. This creates an issue for us since
1665 /// physical registers at this point can not travel across basic
1666 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1667 /// when they enter functions and moves them through a sequence of copies back
1668 /// into the physical registers right before the terminator creating a
1669 /// ``Terminator Sequence''. This function is searching for the beginning of the
1670 /// terminator sequence so that we can ensure that we splice off not just the
1671 /// terminator, but additionally the copies that move the vregs into the
1672 /// physical registers.
1673 static MachineBasicBlock::iterator
1674 FindSplitPointForStackProtector(MachineBasicBlock
*BB
) {
1675 MachineBasicBlock::iterator SplitPoint
= BB
->getFirstTerminator();
1677 if (SplitPoint
== BB
->begin())
1680 MachineBasicBlock::iterator Start
= BB
->begin();
1681 MachineBasicBlock::iterator Previous
= SplitPoint
;
1684 while (MIIsInTerminatorSequence(*Previous
)) {
1685 SplitPoint
= Previous
;
1686 if (Previous
== Start
)
1695 SelectionDAGISel::FinishBasicBlock() {
1696 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1697 << FuncInfo
->PHINodesToUpdate
.size() << "\n";
1698 for (unsigned i
= 0, e
= FuncInfo
->PHINodesToUpdate
.size(); i
!= e
;
1700 << "Node " << i
<< " : (" << FuncInfo
->PHINodesToUpdate
[i
].first
1701 << ", " << FuncInfo
->PHINodesToUpdate
[i
].second
<< ")\n");
1703 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1704 // PHI nodes in successors.
1705 for (unsigned i
= 0, e
= FuncInfo
->PHINodesToUpdate
.size(); i
!= e
; ++i
) {
1706 MachineInstrBuilder
PHI(*MF
, FuncInfo
->PHINodesToUpdate
[i
].first
);
1707 assert(PHI
->isPHI() &&
1708 "This is not a machine PHI node that we are updating!");
1709 if (!FuncInfo
->MBB
->isSuccessor(PHI
->getParent()))
1711 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[i
].second
).addMBB(FuncInfo
->MBB
);
1714 // Handle stack protector.
1715 if (SDB
->SPDescriptor
.shouldEmitFunctionBasedCheckStackProtector()) {
1716 // The target provides a guard check function. There is no need to
1717 // generate error handling code or to split current basic block.
1718 MachineBasicBlock
*ParentMBB
= SDB
->SPDescriptor
.getParentMBB();
1720 // Add load and check to the basicblock.
1721 FuncInfo
->MBB
= ParentMBB
;
1722 FuncInfo
->InsertPt
=
1723 FindSplitPointForStackProtector(ParentMBB
);
1724 SDB
->visitSPDescriptorParent(SDB
->SPDescriptor
, ParentMBB
);
1725 CurDAG
->setRoot(SDB
->getRoot());
1727 CodeGenAndEmitDAG();
1729 // Clear the Per-BB State.
1730 SDB
->SPDescriptor
.resetPerBBState();
1731 } else if (SDB
->SPDescriptor
.shouldEmitStackProtector()) {
1732 MachineBasicBlock
*ParentMBB
= SDB
->SPDescriptor
.getParentMBB();
1733 MachineBasicBlock
*SuccessMBB
= SDB
->SPDescriptor
.getSuccessMBB();
1735 // Find the split point to split the parent mbb. At the same time copy all
1736 // physical registers used in the tail of parent mbb into virtual registers
1737 // before the split point and back into physical registers after the split
1738 // point. This prevents us needing to deal with Live-ins and many other
1739 // register allocation issues caused by us splitting the parent mbb. The
1740 // register allocator will clean up said virtual copies later on.
1741 MachineBasicBlock::iterator SplitPoint
=
1742 FindSplitPointForStackProtector(ParentMBB
);
1744 // Splice the terminator of ParentMBB into SuccessMBB.
1745 SuccessMBB
->splice(SuccessMBB
->end(), ParentMBB
,
1749 // Add compare/jump on neq/jump to the parent BB.
1750 FuncInfo
->MBB
= ParentMBB
;
1751 FuncInfo
->InsertPt
= ParentMBB
->end();
1752 SDB
->visitSPDescriptorParent(SDB
->SPDescriptor
, ParentMBB
);
1753 CurDAG
->setRoot(SDB
->getRoot());
1755 CodeGenAndEmitDAG();
1757 // CodeGen Failure MBB if we have not codegened it yet.
1758 MachineBasicBlock
*FailureMBB
= SDB
->SPDescriptor
.getFailureMBB();
1759 if (FailureMBB
->empty()) {
1760 FuncInfo
->MBB
= FailureMBB
;
1761 FuncInfo
->InsertPt
= FailureMBB
->end();
1762 SDB
->visitSPDescriptorFailure(SDB
->SPDescriptor
);
1763 CurDAG
->setRoot(SDB
->getRoot());
1765 CodeGenAndEmitDAG();
1768 // Clear the Per-BB State.
1769 SDB
->SPDescriptor
.resetPerBBState();
1772 // Lower each BitTestBlock.
1773 for (auto &BTB
: SDB
->SL
->BitTestCases
) {
1774 // Lower header first, if it wasn't already lowered
1776 // Set the current basic block to the mbb we wish to insert the code into
1777 FuncInfo
->MBB
= BTB
.Parent
;
1778 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1780 SDB
->visitBitTestHeader(BTB
, FuncInfo
->MBB
);
1781 CurDAG
->setRoot(SDB
->getRoot());
1783 CodeGenAndEmitDAG();
1786 BranchProbability UnhandledProb
= BTB
.Prob
;
1787 for (unsigned j
= 0, ej
= BTB
.Cases
.size(); j
!= ej
; ++j
) {
1788 UnhandledProb
-= BTB
.Cases
[j
].ExtraProb
;
1789 // Set the current basic block to the mbb we wish to insert the code into
1790 FuncInfo
->MBB
= BTB
.Cases
[j
].ThisBB
;
1791 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1794 // If all cases cover a contiguous range, it is not necessary to jump to
1795 // the default block after the last bit test fails. This is because the
1796 // range check during bit test header creation has guaranteed that every
1797 // case here doesn't go outside the range. In this case, there is no need
1798 // to perform the last bit test, as it will always be true. Instead, make
1799 // the second-to-last bit-test fall through to the target of the last bit
1800 // test, and delete the last bit test.
1802 MachineBasicBlock
*NextMBB
;
1803 if (BTB
.ContiguousRange
&& j
+ 2 == ej
) {
1804 // Second-to-last bit-test with contiguous range: fall through to the
1805 // target of the final bit test.
1806 NextMBB
= BTB
.Cases
[j
+ 1].TargetBB
;
1807 } else if (j
+ 1 == ej
) {
1808 // For the last bit test, fall through to Default.
1809 NextMBB
= BTB
.Default
;
1811 // Otherwise, fall through to the next bit test.
1812 NextMBB
= BTB
.Cases
[j
+ 1].ThisBB
;
1815 SDB
->visitBitTestCase(BTB
, NextMBB
, UnhandledProb
, BTB
.Reg
, BTB
.Cases
[j
],
1818 CurDAG
->setRoot(SDB
->getRoot());
1820 CodeGenAndEmitDAG();
1822 if (BTB
.ContiguousRange
&& j
+ 2 == ej
) {
1823 // Since we're not going to use the final bit test, remove it.
1824 BTB
.Cases
.pop_back();
1830 for (unsigned pi
= 0, pe
= FuncInfo
->PHINodesToUpdate
.size();
1832 MachineInstrBuilder
PHI(*MF
, FuncInfo
->PHINodesToUpdate
[pi
].first
);
1833 MachineBasicBlock
*PHIBB
= PHI
->getParent();
1834 assert(PHI
->isPHI() &&
1835 "This is not a machine PHI node that we are updating!");
1836 // This is "default" BB. We have two jumps to it. From "header" BB and
1837 // from last "case" BB, unless the latter was skipped.
1838 if (PHIBB
== BTB
.Default
) {
1839 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
).addMBB(BTB
.Parent
);
1840 if (!BTB
.ContiguousRange
) {
1841 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
)
1842 .addMBB(BTB
.Cases
.back().ThisBB
);
1845 // One of "cases" BB.
1846 for (unsigned j
= 0, ej
= BTB
.Cases
.size();
1848 MachineBasicBlock
* cBB
= BTB
.Cases
[j
].ThisBB
;
1849 if (cBB
->isSuccessor(PHIBB
))
1850 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
).addMBB(cBB
);
1854 SDB
->SL
->BitTestCases
.clear();
1856 // If the JumpTable record is filled in, then we need to emit a jump table.
1857 // Updating the PHI nodes is tricky in this case, since we need to determine
1858 // whether the PHI is a successor of the range check MBB or the jump table MBB
1859 for (unsigned i
= 0, e
= SDB
->SL
->JTCases
.size(); i
!= e
; ++i
) {
1860 // Lower header first, if it wasn't already lowered
1861 if (!SDB
->SL
->JTCases
[i
].first
.Emitted
) {
1862 // Set the current basic block to the mbb we wish to insert the code into
1863 FuncInfo
->MBB
= SDB
->SL
->JTCases
[i
].first
.HeaderBB
;
1864 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1866 SDB
->visitJumpTableHeader(SDB
->SL
->JTCases
[i
].second
,
1867 SDB
->SL
->JTCases
[i
].first
, FuncInfo
->MBB
);
1868 CurDAG
->setRoot(SDB
->getRoot());
1870 CodeGenAndEmitDAG();
1873 // Set the current basic block to the mbb we wish to insert the code into
1874 FuncInfo
->MBB
= SDB
->SL
->JTCases
[i
].second
.MBB
;
1875 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1877 SDB
->visitJumpTable(SDB
->SL
->JTCases
[i
].second
);
1878 CurDAG
->setRoot(SDB
->getRoot());
1880 CodeGenAndEmitDAG();
1883 for (unsigned pi
= 0, pe
= FuncInfo
->PHINodesToUpdate
.size();
1885 MachineInstrBuilder
PHI(*MF
, FuncInfo
->PHINodesToUpdate
[pi
].first
);
1886 MachineBasicBlock
*PHIBB
= PHI
->getParent();
1887 assert(PHI
->isPHI() &&
1888 "This is not a machine PHI node that we are updating!");
1889 // "default" BB. We can go there only from header BB.
1890 if (PHIBB
== SDB
->SL
->JTCases
[i
].second
.Default
)
1891 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
)
1892 .addMBB(SDB
->SL
->JTCases
[i
].first
.HeaderBB
);
1893 // JT BB. Just iterate over successors here
1894 if (FuncInfo
->MBB
->isSuccessor(PHIBB
))
1895 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
).addMBB(FuncInfo
->MBB
);
1898 SDB
->SL
->JTCases
.clear();
1900 // If we generated any switch lowering information, build and codegen any
1901 // additional DAGs necessary.
1902 for (unsigned i
= 0, e
= SDB
->SL
->SwitchCases
.size(); i
!= e
; ++i
) {
1903 // Set the current basic block to the mbb we wish to insert the code into
1904 FuncInfo
->MBB
= SDB
->SL
->SwitchCases
[i
].ThisBB
;
1905 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1907 // Determine the unique successors.
1908 SmallVector
<MachineBasicBlock
*, 2> Succs
;
1909 Succs
.push_back(SDB
->SL
->SwitchCases
[i
].TrueBB
);
1910 if (SDB
->SL
->SwitchCases
[i
].TrueBB
!= SDB
->SL
->SwitchCases
[i
].FalseBB
)
1911 Succs
.push_back(SDB
->SL
->SwitchCases
[i
].FalseBB
);
1913 // Emit the code. Note that this could result in FuncInfo->MBB being split.
1914 SDB
->visitSwitchCase(SDB
->SL
->SwitchCases
[i
], FuncInfo
->MBB
);
1915 CurDAG
->setRoot(SDB
->getRoot());
1917 CodeGenAndEmitDAG();
1919 // Remember the last block, now that any splitting is done, for use in
1920 // populating PHI nodes in successors.
1921 MachineBasicBlock
*ThisBB
= FuncInfo
->MBB
;
1923 // Handle any PHI nodes in successors of this chunk, as if we were coming
1924 // from the original BB before switch expansion. Note that PHI nodes can
1925 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1926 // handle them the right number of times.
1927 for (unsigned i
= 0, e
= Succs
.size(); i
!= e
; ++i
) {
1928 FuncInfo
->MBB
= Succs
[i
];
1929 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1930 // FuncInfo->MBB may have been removed from the CFG if a branch was
1932 if (ThisBB
->isSuccessor(FuncInfo
->MBB
)) {
1933 for (MachineBasicBlock::iterator
1934 MBBI
= FuncInfo
->MBB
->begin(), MBBE
= FuncInfo
->MBB
->end();
1935 MBBI
!= MBBE
&& MBBI
->isPHI(); ++MBBI
) {
1936 MachineInstrBuilder
PHI(*MF
, MBBI
);
1937 // This value for this PHI node is recorded in PHINodesToUpdate.
1938 for (unsigned pn
= 0; ; ++pn
) {
1939 assert(pn
!= FuncInfo
->PHINodesToUpdate
.size() &&
1940 "Didn't find PHI entry!");
1941 if (FuncInfo
->PHINodesToUpdate
[pn
].first
== PHI
) {
1942 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pn
].second
).addMBB(ThisBB
);
1950 SDB
->SL
->SwitchCases
.clear();
1953 /// Create the scheduler. If a specific scheduler was specified
1954 /// via the SchedulerRegistry, use it, otherwise select the
1955 /// one preferred by the target.
1957 ScheduleDAGSDNodes
*SelectionDAGISel::CreateScheduler() {
1958 return ISHeuristic(this, OptLevel
);
1961 //===----------------------------------------------------------------------===//
1962 // Helper functions used by the generated instruction selector.
1963 //===----------------------------------------------------------------------===//
1964 // Calls to these methods are generated by tblgen.
1966 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
1967 /// the dag combiner simplified the 255, we still want to match. RHS is the
1968 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1969 /// specified in the .td file (e.g. 255).
1970 bool SelectionDAGISel::CheckAndMask(SDValue LHS
, ConstantSDNode
*RHS
,
1971 int64_t DesiredMaskS
) const {
1972 const APInt
&ActualMask
= RHS
->getAPIntValue();
1973 const APInt
&DesiredMask
= APInt(LHS
.getValueSizeInBits(), DesiredMaskS
);
1975 // If the actual mask exactly matches, success!
1976 if (ActualMask
== DesiredMask
)
1979 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1980 if (!ActualMask
.isSubsetOf(DesiredMask
))
1983 // Otherwise, the DAG Combiner may have proven that the value coming in is
1984 // either already zero or is not demanded. Check for known zero input bits.
1985 APInt NeededMask
= DesiredMask
& ~ActualMask
;
1986 if (CurDAG
->MaskedValueIsZero(LHS
, NeededMask
))
1989 // TODO: check to see if missing bits are just not demanded.
1991 // Otherwise, this pattern doesn't match.
1995 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
1996 /// the dag combiner simplified the 255, we still want to match. RHS is the
1997 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1998 /// specified in the .td file (e.g. 255).
1999 bool SelectionDAGISel::CheckOrMask(SDValue LHS
, ConstantSDNode
*RHS
,
2000 int64_t DesiredMaskS
) const {
2001 const APInt
&ActualMask
= RHS
->getAPIntValue();
2002 const APInt
&DesiredMask
= APInt(LHS
.getValueSizeInBits(), DesiredMaskS
);
2004 // If the actual mask exactly matches, success!
2005 if (ActualMask
== DesiredMask
)
2008 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2009 if (!ActualMask
.isSubsetOf(DesiredMask
))
2012 // Otherwise, the DAG Combiner may have proven that the value coming in is
2013 // either already zero or is not demanded. Check for known zero input bits.
2014 APInt NeededMask
= DesiredMask
& ~ActualMask
;
2015 KnownBits Known
= CurDAG
->computeKnownBits(LHS
);
2017 // If all the missing bits in the or are already known to be set, match!
2018 if (NeededMask
.isSubsetOf(Known
.One
))
2021 // TODO: check to see if missing bits are just not demanded.
2023 // Otherwise, this pattern doesn't match.
2027 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2028 /// by tblgen. Others should not call it.
2029 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector
<SDValue
> &Ops
,
2031 std::vector
<SDValue
> InOps
;
2032 std::swap(InOps
, Ops
);
2034 Ops
.push_back(InOps
[InlineAsm::Op_InputChain
]); // 0
2035 Ops
.push_back(InOps
[InlineAsm::Op_AsmString
]); // 1
2036 Ops
.push_back(InOps
[InlineAsm::Op_MDNode
]); // 2, !srcloc
2037 Ops
.push_back(InOps
[InlineAsm::Op_ExtraInfo
]); // 3 (SideEffect, AlignStack)
2039 unsigned i
= InlineAsm::Op_FirstOperand
, e
= InOps
.size();
2040 if (InOps
[e
-1].getValueType() == MVT::Glue
)
2041 --e
; // Don't process a glue operand if it is here.
2044 unsigned Flags
= cast
<ConstantSDNode
>(InOps
[i
])->getZExtValue();
2045 if (!InlineAsm::isMemKind(Flags
)) {
2046 // Just skip over this operand, copying the operands verbatim.
2047 Ops
.insert(Ops
.end(), InOps
.begin()+i
,
2048 InOps
.begin()+i
+InlineAsm::getNumOperandRegisters(Flags
) + 1);
2049 i
+= InlineAsm::getNumOperandRegisters(Flags
) + 1;
2051 assert(InlineAsm::getNumOperandRegisters(Flags
) == 1 &&
2052 "Memory operand with multiple values?");
2054 unsigned TiedToOperand
;
2055 if (InlineAsm::isUseOperandTiedToDef(Flags
, TiedToOperand
)) {
2056 // We need the constraint ID from the operand this is tied to.
2057 unsigned CurOp
= InlineAsm::Op_FirstOperand
;
2058 Flags
= cast
<ConstantSDNode
>(InOps
[CurOp
])->getZExtValue();
2059 for (; TiedToOperand
; --TiedToOperand
) {
2060 CurOp
+= InlineAsm::getNumOperandRegisters(Flags
)+1;
2061 Flags
= cast
<ConstantSDNode
>(InOps
[CurOp
])->getZExtValue();
2065 // Otherwise, this is a memory operand. Ask the target to select it.
2066 std::vector
<SDValue
> SelOps
;
2067 unsigned ConstraintID
= InlineAsm::getMemoryConstraintID(Flags
);
2068 if (SelectInlineAsmMemoryOperand(InOps
[i
+1], ConstraintID
, SelOps
))
2069 report_fatal_error("Could not match memory address. Inline asm"
2072 // Add this to the output node.
2074 InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, SelOps
.size());
2075 NewFlags
= InlineAsm::getFlagWordForMem(NewFlags
, ConstraintID
);
2076 Ops
.push_back(CurDAG
->getTargetConstant(NewFlags
, DL
, MVT::i32
));
2077 Ops
.insert(Ops
.end(), SelOps
.begin(), SelOps
.end());
2082 // Add the glue input back if present.
2083 if (e
!= InOps
.size())
2084 Ops
.push_back(InOps
.back());
2087 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2090 static SDNode
*findGlueUse(SDNode
*N
) {
2091 unsigned FlagResNo
= N
->getNumValues()-1;
2092 for (SDNode::use_iterator I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
2093 SDUse
&Use
= I
.getUse();
2094 if (Use
.getResNo() == FlagResNo
)
2095 return Use
.getUser();
2100 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2101 /// beyond "ImmedUse". We may ignore chains as they are checked separately.
2102 static bool findNonImmUse(SDNode
*Root
, SDNode
*Def
, SDNode
*ImmedUse
,
2103 bool IgnoreChains
) {
2104 SmallPtrSet
<const SDNode
*, 16> Visited
;
2105 SmallVector
<const SDNode
*, 16> WorkList
;
2106 // Only check if we have non-immediate uses of Def.
2107 if (ImmedUse
->isOnlyUserOf(Def
))
2110 // We don't care about paths to Def that go through ImmedUse so mark it
2111 // visited and mark non-def operands as used.
2112 Visited
.insert(ImmedUse
);
2113 for (const SDValue
&Op
: ImmedUse
->op_values()) {
2114 SDNode
*N
= Op
.getNode();
2115 // Ignore chain deps (they are validated by
2116 // HandleMergeInputChains) and immediate uses
2117 if ((Op
.getValueType() == MVT::Other
&& IgnoreChains
) || N
== Def
)
2119 if (!Visited
.insert(N
).second
)
2121 WorkList
.push_back(N
);
2124 // Initialize worklist to operands of Root.
2125 if (Root
!= ImmedUse
) {
2126 for (const SDValue
&Op
: Root
->op_values()) {
2127 SDNode
*N
= Op
.getNode();
2128 // Ignore chains (they are validated by HandleMergeInputChains)
2129 if ((Op
.getValueType() == MVT::Other
&& IgnoreChains
) || N
== Def
)
2131 if (!Visited
.insert(N
).second
)
2133 WorkList
.push_back(N
);
2137 return SDNode::hasPredecessorHelper(Def
, Visited
, WorkList
, 0, true);
2140 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2141 /// operand node N of U during instruction selection that starts at Root.
2142 bool SelectionDAGISel::IsProfitableToFold(SDValue N
, SDNode
*U
,
2143 SDNode
*Root
) const {
2144 if (OptLevel
== CodeGenOpt::None
) return false;
2145 return N
.hasOneUse();
2148 /// IsLegalToFold - Returns true if the specific operand node N of
2149 /// U can be folded during instruction selection that starts at Root.
2150 bool SelectionDAGISel::IsLegalToFold(SDValue N
, SDNode
*U
, SDNode
*Root
,
2151 CodeGenOpt::Level OptLevel
,
2152 bool IgnoreChains
) {
2153 if (OptLevel
== CodeGenOpt::None
) return false;
2155 // If Root use can somehow reach N through a path that that doesn't contain
2156 // U then folding N would create a cycle. e.g. In the following
2157 // diagram, Root can reach N through X. If N is folded into Root, then
2158 // X is both a predecessor and a successor of U.
2169 // * indicates nodes to be folded together.
2171 // If Root produces glue, then it gets (even more) interesting. Since it
2172 // will be "glued" together with its glue use in the scheduler, we need to
2173 // check if it might reach N.
2192 // If GU (glue use) indirectly reaches N (the load), and Root folds N
2193 // (call it Fold), then X is a predecessor of GU and a successor of
2194 // Fold. But since Fold and GU are glued together, this will create
2195 // a cycle in the scheduling graph.
2197 // If the node has glue, walk down the graph to the "lowest" node in the
2199 EVT VT
= Root
->getValueType(Root
->getNumValues()-1);
2200 while (VT
== MVT::Glue
) {
2201 SDNode
*GU
= findGlueUse(Root
);
2205 VT
= Root
->getValueType(Root
->getNumValues()-1);
2207 // If our query node has a glue result with a use, we've walked up it. If
2208 // the user (which has already been selected) has a chain or indirectly uses
2209 // the chain, HandleMergeInputChains will not consider it. Because of
2210 // this, we cannot ignore chains in this predicate.
2211 IgnoreChains
= false;
2214 return !findNonImmUse(Root
, N
.getNode(), U
, IgnoreChains
);
2217 void SelectionDAGISel::Select_INLINEASM(SDNode
*N
, bool Branch
) {
2220 std::vector
<SDValue
> Ops(N
->op_begin(), N
->op_end());
2221 SelectInlineAsmMemoryOperands(Ops
, DL
);
2223 const EVT VTs
[] = {MVT::Other
, MVT::Glue
};
2224 SDValue New
= CurDAG
->getNode(Branch
? ISD::INLINEASM_BR
: ISD::INLINEASM
, DL
, VTs
, Ops
);
2226 ReplaceUses(N
, New
.getNode());
2227 CurDAG
->RemoveDeadNode(N
);
2230 void SelectionDAGISel::Select_READ_REGISTER(SDNode
*Op
) {
2232 MDNodeSDNode
*MD
= dyn_cast
<MDNodeSDNode
>(Op
->getOperand(1));
2233 const MDString
*RegStr
= dyn_cast
<MDString
>(MD
->getMD()->getOperand(0));
2235 TLI
->getRegisterByName(RegStr
->getString().data(), Op
->getValueType(0),
2237 SDValue New
= CurDAG
->getCopyFromReg(
2238 Op
->getOperand(0), dl
, Reg
, Op
->getValueType(0));
2240 ReplaceUses(Op
, New
.getNode());
2241 CurDAG
->RemoveDeadNode(Op
);
2244 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode
*Op
) {
2246 MDNodeSDNode
*MD
= dyn_cast
<MDNodeSDNode
>(Op
->getOperand(1));
2247 const MDString
*RegStr
= dyn_cast
<MDString
>(MD
->getMD()->getOperand(0));
2248 unsigned Reg
= TLI
->getRegisterByName(RegStr
->getString().data(),
2249 Op
->getOperand(2).getValueType(),
2251 SDValue New
= CurDAG
->getCopyToReg(
2252 Op
->getOperand(0), dl
, Reg
, Op
->getOperand(2));
2254 ReplaceUses(Op
, New
.getNode());
2255 CurDAG
->RemoveDeadNode(Op
);
2258 void SelectionDAGISel::Select_UNDEF(SDNode
*N
) {
2259 CurDAG
->SelectNodeTo(N
, TargetOpcode::IMPLICIT_DEF
, N
->getValueType(0));
2262 /// GetVBR - decode a vbr encoding whose top bit is set.
2263 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline uint64_t
2264 GetVBR(uint64_t Val
, const unsigned char *MatcherTable
, unsigned &Idx
) {
2265 assert(Val
>= 128 && "Not a VBR");
2266 Val
&= 127; // Remove first vbr bit.
2271 NextBits
= MatcherTable
[Idx
++];
2272 Val
|= (NextBits
&127) << Shift
;
2274 } while (NextBits
& 128);
2279 /// When a match is complete, this method updates uses of interior chain results
2280 /// to use the new results.
2281 void SelectionDAGISel::UpdateChains(
2282 SDNode
*NodeToMatch
, SDValue InputChain
,
2283 SmallVectorImpl
<SDNode
*> &ChainNodesMatched
, bool isMorphNodeTo
) {
2284 SmallVector
<SDNode
*, 4> NowDeadNodes
;
2286 // Now that all the normal results are replaced, we replace the chain and
2287 // glue results if present.
2288 if (!ChainNodesMatched
.empty()) {
2289 assert(InputChain
.getNode() &&
2290 "Matched input chains but didn't produce a chain");
2291 // Loop over all of the nodes we matched that produced a chain result.
2292 // Replace all the chain results with the final chain we ended up with.
2293 for (unsigned i
= 0, e
= ChainNodesMatched
.size(); i
!= e
; ++i
) {
2294 SDNode
*ChainNode
= ChainNodesMatched
[i
];
2295 // If ChainNode is null, it's because we replaced it on a previous
2296 // iteration and we cleared it out of the map. Just skip it.
2300 assert(ChainNode
->getOpcode() != ISD::DELETED_NODE
&&
2301 "Deleted node left in chain");
2303 // Don't replace the results of the root node if we're doing a
2305 if (ChainNode
== NodeToMatch
&& isMorphNodeTo
)
2308 SDValue ChainVal
= SDValue(ChainNode
, ChainNode
->getNumValues()-1);
2309 if (ChainVal
.getValueType() == MVT::Glue
)
2310 ChainVal
= ChainVal
.getValue(ChainVal
->getNumValues()-2);
2311 assert(ChainVal
.getValueType() == MVT::Other
&& "Not a chain?");
2312 SelectionDAG::DAGNodeDeletedListener
NDL(
2313 *CurDAG
, [&](SDNode
*N
, SDNode
*E
) {
2314 std::replace(ChainNodesMatched
.begin(), ChainNodesMatched
.end(), N
,
2315 static_cast<SDNode
*>(nullptr));
2317 if (ChainNode
->getOpcode() != ISD::TokenFactor
)
2318 ReplaceUses(ChainVal
, InputChain
);
2320 // If the node became dead and we haven't already seen it, delete it.
2321 if (ChainNode
!= NodeToMatch
&& ChainNode
->use_empty() &&
2322 !std::count(NowDeadNodes
.begin(), NowDeadNodes
.end(), ChainNode
))
2323 NowDeadNodes
.push_back(ChainNode
);
2327 if (!NowDeadNodes
.empty())
2328 CurDAG
->RemoveDeadNodes(NowDeadNodes
);
2330 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2333 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2334 /// operation for when the pattern matched at least one node with a chains. The
2335 /// input vector contains a list of all of the chained nodes that we match. We
2336 /// must determine if this is a valid thing to cover (i.e. matching it won't
2337 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2338 /// be used as the input node chain for the generated nodes.
2340 HandleMergeInputChains(SmallVectorImpl
<SDNode
*> &ChainNodesMatched
,
2341 SelectionDAG
*CurDAG
) {
2343 SmallPtrSet
<const SDNode
*, 16> Visited
;
2344 SmallVector
<const SDNode
*, 8> Worklist
;
2345 SmallVector
<SDValue
, 3> InputChains
;
2346 unsigned int Max
= 8192;
2348 // Quick exit on trivial merge.
2349 if (ChainNodesMatched
.size() == 1)
2350 return ChainNodesMatched
[0]->getOperand(0);
2352 // Add chains that aren't already added (internal). Peek through
2354 std::function
<void(const SDValue
)> AddChains
= [&](const SDValue V
) {
2355 if (V
.getValueType() != MVT::Other
)
2357 if (V
->getOpcode() == ISD::EntryToken
)
2359 if (!Visited
.insert(V
.getNode()).second
)
2361 if (V
->getOpcode() == ISD::TokenFactor
) {
2362 for (const SDValue
&Op
: V
->op_values())
2365 InputChains
.push_back(V
);
2368 for (auto *N
: ChainNodesMatched
) {
2369 Worklist
.push_back(N
);
2373 while (!Worklist
.empty())
2374 AddChains(Worklist
.pop_back_val()->getOperand(0));
2376 // Skip the search if there are no chain dependencies.
2377 if (InputChains
.size() == 0)
2378 return CurDAG
->getEntryNode();
2380 // If one of these chains is a successor of input, we must have a
2381 // node that is both the predecessor and successor of the
2382 // to-be-merged nodes. Fail.
2384 for (SDValue V
: InputChains
)
2385 Worklist
.push_back(V
.getNode());
2387 for (auto *N
: ChainNodesMatched
)
2388 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
, Max
, true))
2391 // Return merged chain.
2392 if (InputChains
.size() == 1)
2393 return InputChains
[0];
2394 return CurDAG
->getNode(ISD::TokenFactor
, SDLoc(ChainNodesMatched
[0]),
2395 MVT::Other
, InputChains
);
2398 /// MorphNode - Handle morphing a node in place for the selector.
2399 SDNode
*SelectionDAGISel::
2400 MorphNode(SDNode
*Node
, unsigned TargetOpc
, SDVTList VTList
,
2401 ArrayRef
<SDValue
> Ops
, unsigned EmitNodeInfo
) {
2402 // It is possible we're using MorphNodeTo to replace a node with no
2403 // normal results with one that has a normal result (or we could be
2404 // adding a chain) and the input could have glue and chains as well.
2405 // In this case we need to shift the operands down.
2406 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2407 // than the old isel though.
2408 int OldGlueResultNo
= -1, OldChainResultNo
= -1;
2410 unsigned NTMNumResults
= Node
->getNumValues();
2411 if (Node
->getValueType(NTMNumResults
-1) == MVT::Glue
) {
2412 OldGlueResultNo
= NTMNumResults
-1;
2413 if (NTMNumResults
!= 1 &&
2414 Node
->getValueType(NTMNumResults
-2) == MVT::Other
)
2415 OldChainResultNo
= NTMNumResults
-2;
2416 } else if (Node
->getValueType(NTMNumResults
-1) == MVT::Other
)
2417 OldChainResultNo
= NTMNumResults
-1;
2419 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2420 // that this deletes operands of the old node that become dead.
2421 SDNode
*Res
= CurDAG
->MorphNodeTo(Node
, ~TargetOpc
, VTList
, Ops
);
2423 // MorphNodeTo can operate in two ways: if an existing node with the
2424 // specified operands exists, it can just return it. Otherwise, it
2425 // updates the node in place to have the requested operands.
2427 // If we updated the node in place, reset the node ID. To the isel,
2428 // this should be just like a newly allocated machine node.
2432 unsigned ResNumResults
= Res
->getNumValues();
2433 // Move the glue if needed.
2434 if ((EmitNodeInfo
& OPFL_GlueOutput
) && OldGlueResultNo
!= -1 &&
2435 (unsigned)OldGlueResultNo
!= ResNumResults
-1)
2436 ReplaceUses(SDValue(Node
, OldGlueResultNo
),
2437 SDValue(Res
, ResNumResults
- 1));
2439 if ((EmitNodeInfo
& OPFL_GlueOutput
) != 0)
2442 // Move the chain reference if needed.
2443 if ((EmitNodeInfo
& OPFL_Chain
) && OldChainResultNo
!= -1 &&
2444 (unsigned)OldChainResultNo
!= ResNumResults
-1)
2445 ReplaceUses(SDValue(Node
, OldChainResultNo
),
2446 SDValue(Res
, ResNumResults
- 1));
2448 // Otherwise, no replacement happened because the node already exists. Replace
2449 // Uses of the old node with the new one.
2451 ReplaceNode(Node
, Res
);
2453 EnforceNodeIdInvariant(Res
);
2459 /// CheckSame - Implements OP_CheckSame.
2460 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2461 CheckSame(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2463 const SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
) {
2464 // Accept if it is exactly the same as a previously recorded node.
2465 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
2466 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckSame");
2467 return N
== RecordedNodes
[RecNo
].first
;
2470 /// CheckChildSame - Implements OP_CheckChildXSame.
2471 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2472 CheckChildSame(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2474 const SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
,
2476 if (ChildNo
>= N
.getNumOperands())
2477 return false; // Match fails if out of range child #.
2478 return ::CheckSame(MatcherTable
, MatcherIndex
, N
.getOperand(ChildNo
),
2482 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2483 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2484 CheckPatternPredicate(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2485 const SelectionDAGISel
&SDISel
) {
2486 return SDISel
.CheckPatternPredicate(MatcherTable
[MatcherIndex
++]);
2489 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2490 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2491 CheckNodePredicate(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2492 const SelectionDAGISel
&SDISel
, SDNode
*N
) {
2493 return SDISel
.CheckNodePredicate(N
, MatcherTable
[MatcherIndex
++]);
2496 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2497 CheckOpcode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2499 uint16_t Opc
= MatcherTable
[MatcherIndex
++];
2500 Opc
|= (unsigned short)MatcherTable
[MatcherIndex
++] << 8;
2501 return N
->getOpcode() == Opc
;
2504 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2505 CheckType(const unsigned char *MatcherTable
, unsigned &MatcherIndex
, SDValue N
,
2506 const TargetLowering
*TLI
, const DataLayout
&DL
) {
2507 MVT::SimpleValueType VT
= (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
2508 if (N
.getValueType() == VT
) return true;
2510 // Handle the case when VT is iPTR.
2511 return VT
== MVT::iPTR
&& N
.getValueType() == TLI
->getPointerTy(DL
);
2514 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2515 CheckChildType(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2516 SDValue N
, const TargetLowering
*TLI
, const DataLayout
&DL
,
2518 if (ChildNo
>= N
.getNumOperands())
2519 return false; // Match fails if out of range child #.
2520 return ::CheckType(MatcherTable
, MatcherIndex
, N
.getOperand(ChildNo
), TLI
,
2524 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2525 CheckCondCode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2527 return cast
<CondCodeSDNode
>(N
)->get() ==
2528 (ISD::CondCode
)MatcherTable
[MatcherIndex
++];
2531 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2532 CheckChild2CondCode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2534 if (2 >= N
.getNumOperands())
2536 return ::CheckCondCode(MatcherTable
, MatcherIndex
, N
.getOperand(2));
2539 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2540 CheckValueType(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2541 SDValue N
, const TargetLowering
*TLI
, const DataLayout
&DL
) {
2542 MVT::SimpleValueType VT
= (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
2543 if (cast
<VTSDNode
>(N
)->getVT() == VT
)
2546 // Handle the case when VT is iPTR.
2547 return VT
== MVT::iPTR
&& cast
<VTSDNode
>(N
)->getVT() == TLI
->getPointerTy(DL
);
2550 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2551 CheckInteger(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2553 int64_t Val
= MatcherTable
[MatcherIndex
++];
2555 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
2557 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
);
2558 return C
&& C
->getSExtValue() == Val
;
2561 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2562 CheckChildInteger(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2563 SDValue N
, unsigned ChildNo
) {
2564 if (ChildNo
>= N
.getNumOperands())
2565 return false; // Match fails if out of range child #.
2566 return ::CheckInteger(MatcherTable
, MatcherIndex
, N
.getOperand(ChildNo
));
2569 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2570 CheckAndImm(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2571 SDValue N
, const SelectionDAGISel
&SDISel
) {
2572 int64_t Val
= MatcherTable
[MatcherIndex
++];
2574 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
2576 if (N
->getOpcode() != ISD::AND
) return false;
2578 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2579 return C
&& SDISel
.CheckAndMask(N
.getOperand(0), C
, Val
);
2582 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2583 CheckOrImm(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2584 SDValue N
, const SelectionDAGISel
&SDISel
) {
2585 int64_t Val
= MatcherTable
[MatcherIndex
++];
2587 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
2589 if (N
->getOpcode() != ISD::OR
) return false;
2591 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2592 return C
&& SDISel
.CheckOrMask(N
.getOperand(0), C
, Val
);
2595 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2596 /// scope, evaluate the current node. If the current predicate is known to
2597 /// fail, set Result=true and return anything. If the current predicate is
2598 /// known to pass, set Result=false and return the MatcherIndex to continue
2599 /// with. If the current predicate is unknown, set Result=false and return the
2600 /// MatcherIndex to continue with.
2601 static unsigned IsPredicateKnownToFail(const unsigned char *Table
,
2602 unsigned Index
, SDValue N
,
2604 const SelectionDAGISel
&SDISel
,
2605 SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
) {
2606 switch (Table
[Index
++]) {
2609 return Index
-1; // Could not evaluate this predicate.
2610 case SelectionDAGISel::OPC_CheckSame
:
2611 Result
= !::CheckSame(Table
, Index
, N
, RecordedNodes
);
2613 case SelectionDAGISel::OPC_CheckChild0Same
:
2614 case SelectionDAGISel::OPC_CheckChild1Same
:
2615 case SelectionDAGISel::OPC_CheckChild2Same
:
2616 case SelectionDAGISel::OPC_CheckChild3Same
:
2617 Result
= !::CheckChildSame(Table
, Index
, N
, RecordedNodes
,
2618 Table
[Index
-1] - SelectionDAGISel::OPC_CheckChild0Same
);
2620 case SelectionDAGISel::OPC_CheckPatternPredicate
:
2621 Result
= !::CheckPatternPredicate(Table
, Index
, SDISel
);
2623 case SelectionDAGISel::OPC_CheckPredicate
:
2624 Result
= !::CheckNodePredicate(Table
, Index
, SDISel
, N
.getNode());
2626 case SelectionDAGISel::OPC_CheckOpcode
:
2627 Result
= !::CheckOpcode(Table
, Index
, N
.getNode());
2629 case SelectionDAGISel::OPC_CheckType
:
2630 Result
= !::CheckType(Table
, Index
, N
, SDISel
.TLI
,
2631 SDISel
.CurDAG
->getDataLayout());
2633 case SelectionDAGISel::OPC_CheckTypeRes
: {
2634 unsigned Res
= Table
[Index
++];
2635 Result
= !::CheckType(Table
, Index
, N
.getValue(Res
), SDISel
.TLI
,
2636 SDISel
.CurDAG
->getDataLayout());
2639 case SelectionDAGISel::OPC_CheckChild0Type
:
2640 case SelectionDAGISel::OPC_CheckChild1Type
:
2641 case SelectionDAGISel::OPC_CheckChild2Type
:
2642 case SelectionDAGISel::OPC_CheckChild3Type
:
2643 case SelectionDAGISel::OPC_CheckChild4Type
:
2644 case SelectionDAGISel::OPC_CheckChild5Type
:
2645 case SelectionDAGISel::OPC_CheckChild6Type
:
2646 case SelectionDAGISel::OPC_CheckChild7Type
:
2647 Result
= !::CheckChildType(
2648 Table
, Index
, N
, SDISel
.TLI
, SDISel
.CurDAG
->getDataLayout(),
2649 Table
[Index
- 1] - SelectionDAGISel::OPC_CheckChild0Type
);
2651 case SelectionDAGISel::OPC_CheckCondCode
:
2652 Result
= !::CheckCondCode(Table
, Index
, N
);
2654 case SelectionDAGISel::OPC_CheckChild2CondCode
:
2655 Result
= !::CheckChild2CondCode(Table
, Index
, N
);
2657 case SelectionDAGISel::OPC_CheckValueType
:
2658 Result
= !::CheckValueType(Table
, Index
, N
, SDISel
.TLI
,
2659 SDISel
.CurDAG
->getDataLayout());
2661 case SelectionDAGISel::OPC_CheckInteger
:
2662 Result
= !::CheckInteger(Table
, Index
, N
);
2664 case SelectionDAGISel::OPC_CheckChild0Integer
:
2665 case SelectionDAGISel::OPC_CheckChild1Integer
:
2666 case SelectionDAGISel::OPC_CheckChild2Integer
:
2667 case SelectionDAGISel::OPC_CheckChild3Integer
:
2668 case SelectionDAGISel::OPC_CheckChild4Integer
:
2669 Result
= !::CheckChildInteger(Table
, Index
, N
,
2670 Table
[Index
-1] - SelectionDAGISel::OPC_CheckChild0Integer
);
2672 case SelectionDAGISel::OPC_CheckAndImm
:
2673 Result
= !::CheckAndImm(Table
, Index
, N
, SDISel
);
2675 case SelectionDAGISel::OPC_CheckOrImm
:
2676 Result
= !::CheckOrImm(Table
, Index
, N
, SDISel
);
2684 /// FailIndex - If this match fails, this is the index to continue with.
2687 /// NodeStack - The node stack when the scope was formed.
2688 SmallVector
<SDValue
, 4> NodeStack
;
2690 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2691 unsigned NumRecordedNodes
;
2693 /// NumMatchedMemRefs - The number of matched memref entries.
2694 unsigned NumMatchedMemRefs
;
2696 /// InputChain/InputGlue - The current chain/glue
2697 SDValue InputChain
, InputGlue
;
2699 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2700 bool HasChainNodesMatched
;
2703 /// \A DAG update listener to keep the matching state
2704 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2705 /// change the DAG while matching. X86 addressing mode matcher is an example
2707 class MatchStateUpdater
: public SelectionDAG::DAGUpdateListener
2709 SDNode
**NodeToMatch
;
2710 SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
;
2711 SmallVectorImpl
<MatchScope
> &MatchScopes
;
2714 MatchStateUpdater(SelectionDAG
&DAG
, SDNode
**NodeToMatch
,
2715 SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RN
,
2716 SmallVectorImpl
<MatchScope
> &MS
)
2717 : SelectionDAG::DAGUpdateListener(DAG
), NodeToMatch(NodeToMatch
),
2718 RecordedNodes(RN
), MatchScopes(MS
) {}
2720 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
2721 // Some early-returns here to avoid the search if we deleted the node or
2722 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2723 // do, so it's unnecessary to update matching state at that point).
2724 // Neither of these can occur currently because we only install this
2725 // update listener during matching a complex patterns.
2726 if (!E
|| E
->isMachineOpcode())
2728 // Check if NodeToMatch was updated.
2729 if (N
== *NodeToMatch
)
2731 // Performing linear search here does not matter because we almost never
2732 // run this code. You'd have to have a CSE during complex pattern
2734 for (auto &I
: RecordedNodes
)
2735 if (I
.first
.getNode() == N
)
2738 for (auto &I
: MatchScopes
)
2739 for (auto &J
: I
.NodeStack
)
2740 if (J
.getNode() == N
)
2745 } // end anonymous namespace
2747 void SelectionDAGISel::SelectCodeCommon(SDNode
*NodeToMatch
,
2748 const unsigned char *MatcherTable
,
2749 unsigned TableSize
) {
2750 // FIXME: Should these even be selected? Handle these cases in the caller?
2751 switch (NodeToMatch
->getOpcode()) {
2754 case ISD::EntryToken
: // These nodes remain the same.
2755 case ISD::BasicBlock
:
2757 case ISD::RegisterMask
:
2758 case ISD::HANDLENODE
:
2759 case ISD::MDNODE_SDNODE
:
2760 case ISD::TargetConstant
:
2761 case ISD::TargetConstantFP
:
2762 case ISD::TargetConstantPool
:
2763 case ISD::TargetFrameIndex
:
2764 case ISD::TargetExternalSymbol
:
2766 case ISD::TargetBlockAddress
:
2767 case ISD::TargetJumpTable
:
2768 case ISD::TargetGlobalTLSAddress
:
2769 case ISD::TargetGlobalAddress
:
2770 case ISD::TokenFactor
:
2771 case ISD::CopyFromReg
:
2772 case ISD::CopyToReg
:
2774 case ISD::ANNOTATION_LABEL
:
2775 case ISD::LIFETIME_START
:
2776 case ISD::LIFETIME_END
:
2777 NodeToMatch
->setNodeId(-1); // Mark selected.
2779 case ISD::AssertSext
:
2780 case ISD::AssertZext
:
2781 ReplaceUses(SDValue(NodeToMatch
, 0), NodeToMatch
->getOperand(0));
2782 CurDAG
->RemoveDeadNode(NodeToMatch
);
2784 case ISD::INLINEASM
:
2785 case ISD::INLINEASM_BR
:
2786 Select_INLINEASM(NodeToMatch
,
2787 NodeToMatch
->getOpcode() == ISD::INLINEASM_BR
);
2789 case ISD::READ_REGISTER
:
2790 Select_READ_REGISTER(NodeToMatch
);
2792 case ISD::WRITE_REGISTER
:
2793 Select_WRITE_REGISTER(NodeToMatch
);
2796 Select_UNDEF(NodeToMatch
);
2800 assert(!NodeToMatch
->isMachineOpcode() && "Node already selected!");
2802 // Set up the node stack with NodeToMatch as the only node on the stack.
2803 SmallVector
<SDValue
, 8> NodeStack
;
2804 SDValue N
= SDValue(NodeToMatch
, 0);
2805 NodeStack
.push_back(N
);
2807 // MatchScopes - Scopes used when matching, if a match failure happens, this
2808 // indicates where to continue checking.
2809 SmallVector
<MatchScope
, 8> MatchScopes
;
2811 // RecordedNodes - This is the set of nodes that have been recorded by the
2812 // state machine. The second value is the parent of the node, or null if the
2813 // root is recorded.
2814 SmallVector
<std::pair
<SDValue
, SDNode
*>, 8> RecordedNodes
;
2816 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2818 SmallVector
<MachineMemOperand
*, 2> MatchedMemRefs
;
2820 // These are the current input chain and glue for use when generating nodes.
2821 // Various Emit operations change these. For example, emitting a copytoreg
2822 // uses and updates these.
2823 SDValue InputChain
, InputGlue
;
2825 // ChainNodesMatched - If a pattern matches nodes that have input/output
2826 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2827 // which ones they are. The result is captured into this list so that we can
2828 // update the chain results when the pattern is complete.
2829 SmallVector
<SDNode
*, 3> ChainNodesMatched
;
2831 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2833 // Determine where to start the interpreter. Normally we start at opcode #0,
2834 // but if the state machine starts with an OPC_SwitchOpcode, then we
2835 // accelerate the first lookup (which is guaranteed to be hot) with the
2836 // OpcodeOffset table.
2837 unsigned MatcherIndex
= 0;
2839 if (!OpcodeOffset
.empty()) {
2840 // Already computed the OpcodeOffset table, just index into it.
2841 if (N
.getOpcode() < OpcodeOffset
.size())
2842 MatcherIndex
= OpcodeOffset
[N
.getOpcode()];
2843 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex
<< "\n");
2845 } else if (MatcherTable
[0] == OPC_SwitchOpcode
) {
2846 // Otherwise, the table isn't computed, but the state machine does start
2847 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2848 // is the first time we're selecting an instruction.
2851 // Get the size of this case.
2852 unsigned CaseSize
= MatcherTable
[Idx
++];
2854 CaseSize
= GetVBR(CaseSize
, MatcherTable
, Idx
);
2855 if (CaseSize
== 0) break;
2857 // Get the opcode, add the index to the table.
2858 uint16_t Opc
= MatcherTable
[Idx
++];
2859 Opc
|= (unsigned short)MatcherTable
[Idx
++] << 8;
2860 if (Opc
>= OpcodeOffset
.size())
2861 OpcodeOffset
.resize((Opc
+1)*2);
2862 OpcodeOffset
[Opc
] = Idx
;
2866 // Okay, do the lookup for the first opcode.
2867 if (N
.getOpcode() < OpcodeOffset
.size())
2868 MatcherIndex
= OpcodeOffset
[N
.getOpcode()];
2872 assert(MatcherIndex
< TableSize
&& "Invalid index");
2874 unsigned CurrentOpcodeIndex
= MatcherIndex
;
2876 BuiltinOpcodes Opcode
= (BuiltinOpcodes
)MatcherTable
[MatcherIndex
++];
2879 // Okay, the semantics of this operation are that we should push a scope
2880 // then evaluate the first child. However, pushing a scope only to have
2881 // the first check fail (which then pops it) is inefficient. If we can
2882 // determine immediately that the first check (or first several) will
2883 // immediately fail, don't even bother pushing a scope for them.
2887 unsigned NumToSkip
= MatcherTable
[MatcherIndex
++];
2888 if (NumToSkip
& 128)
2889 NumToSkip
= GetVBR(NumToSkip
, MatcherTable
, MatcherIndex
);
2890 // Found the end of the scope with no match.
2891 if (NumToSkip
== 0) {
2896 FailIndex
= MatcherIndex
+NumToSkip
;
2898 unsigned MatcherIndexOfPredicate
= MatcherIndex
;
2899 (void)MatcherIndexOfPredicate
; // silence warning.
2901 // If we can't evaluate this predicate without pushing a scope (e.g. if
2902 // it is a 'MoveParent') or if the predicate succeeds on this node, we
2903 // push the scope and evaluate the full predicate chain.
2905 MatcherIndex
= IsPredicateKnownToFail(MatcherTable
, MatcherIndex
, N
,
2906 Result
, *this, RecordedNodes
);
2911 dbgs() << " Skipped scope entry (due to false predicate) at "
2912 << "index " << MatcherIndexOfPredicate
<< ", continuing at "
2913 << FailIndex
<< "\n");
2914 ++NumDAGIselRetries
;
2916 // Otherwise, we know that this case of the Scope is guaranteed to fail,
2917 // move to the next case.
2918 MatcherIndex
= FailIndex
;
2921 // If the whole scope failed to match, bail.
2922 if (FailIndex
== 0) break;
2924 // Push a MatchScope which indicates where to go if the first child fails
2926 MatchScope NewEntry
;
2927 NewEntry
.FailIndex
= FailIndex
;
2928 NewEntry
.NodeStack
.append(NodeStack
.begin(), NodeStack
.end());
2929 NewEntry
.NumRecordedNodes
= RecordedNodes
.size();
2930 NewEntry
.NumMatchedMemRefs
= MatchedMemRefs
.size();
2931 NewEntry
.InputChain
= InputChain
;
2932 NewEntry
.InputGlue
= InputGlue
;
2933 NewEntry
.HasChainNodesMatched
= !ChainNodesMatched
.empty();
2934 MatchScopes
.push_back(NewEntry
);
2937 case OPC_RecordNode
: {
2938 // Remember this node, it may end up being an operand in the pattern.
2939 SDNode
*Parent
= nullptr;
2940 if (NodeStack
.size() > 1)
2941 Parent
= NodeStack
[NodeStack
.size()-2].getNode();
2942 RecordedNodes
.push_back(std::make_pair(N
, Parent
));
2946 case OPC_RecordChild0
: case OPC_RecordChild1
:
2947 case OPC_RecordChild2
: case OPC_RecordChild3
:
2948 case OPC_RecordChild4
: case OPC_RecordChild5
:
2949 case OPC_RecordChild6
: case OPC_RecordChild7
: {
2950 unsigned ChildNo
= Opcode
-OPC_RecordChild0
;
2951 if (ChildNo
>= N
.getNumOperands())
2952 break; // Match fails if out of range child #.
2954 RecordedNodes
.push_back(std::make_pair(N
->getOperand(ChildNo
),
2958 case OPC_RecordMemRef
:
2959 if (auto *MN
= dyn_cast
<MemSDNode
>(N
))
2960 MatchedMemRefs
.push_back(MN
->getMemOperand());
2962 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N
->dump(CurDAG
);
2968 case OPC_CaptureGlueInput
:
2969 // If the current node has an input glue, capture it in InputGlue.
2970 if (N
->getNumOperands() != 0 &&
2971 N
->getOperand(N
->getNumOperands()-1).getValueType() == MVT::Glue
)
2972 InputGlue
= N
->getOperand(N
->getNumOperands()-1);
2975 case OPC_MoveChild
: {
2976 unsigned ChildNo
= MatcherTable
[MatcherIndex
++];
2977 if (ChildNo
>= N
.getNumOperands())
2978 break; // Match fails if out of range child #.
2979 N
= N
.getOperand(ChildNo
);
2980 NodeStack
.push_back(N
);
2984 case OPC_MoveChild0
: case OPC_MoveChild1
:
2985 case OPC_MoveChild2
: case OPC_MoveChild3
:
2986 case OPC_MoveChild4
: case OPC_MoveChild5
:
2987 case OPC_MoveChild6
: case OPC_MoveChild7
: {
2988 unsigned ChildNo
= Opcode
-OPC_MoveChild0
;
2989 if (ChildNo
>= N
.getNumOperands())
2990 break; // Match fails if out of range child #.
2991 N
= N
.getOperand(ChildNo
);
2992 NodeStack
.push_back(N
);
2996 case OPC_MoveParent
:
2997 // Pop the current node off the NodeStack.
2998 NodeStack
.pop_back();
2999 assert(!NodeStack
.empty() && "Node stack imbalance!");
3000 N
= NodeStack
.back();
3004 if (!::CheckSame(MatcherTable
, MatcherIndex
, N
, RecordedNodes
)) break;
3007 case OPC_CheckChild0Same
: case OPC_CheckChild1Same
:
3008 case OPC_CheckChild2Same
: case OPC_CheckChild3Same
:
3009 if (!::CheckChildSame(MatcherTable
, MatcherIndex
, N
, RecordedNodes
,
3010 Opcode
-OPC_CheckChild0Same
))
3014 case OPC_CheckPatternPredicate
:
3015 if (!::CheckPatternPredicate(MatcherTable
, MatcherIndex
, *this)) break;
3017 case OPC_CheckPredicate
:
3018 if (!::CheckNodePredicate(MatcherTable
, MatcherIndex
, *this,
3022 case OPC_CheckPredicateWithOperands
: {
3023 unsigned OpNum
= MatcherTable
[MatcherIndex
++];
3024 SmallVector
<SDValue
, 8> Operands
;
3026 for (unsigned i
= 0; i
< OpNum
; ++i
)
3027 Operands
.push_back(RecordedNodes
[MatcherTable
[MatcherIndex
++]].first
);
3029 unsigned PredNo
= MatcherTable
[MatcherIndex
++];
3030 if (!CheckNodePredicateWithOperands(N
.getNode(), PredNo
, Operands
))
3034 case OPC_CheckComplexPat
: {
3035 unsigned CPNum
= MatcherTable
[MatcherIndex
++];
3036 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3037 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckComplexPat");
3039 // If target can modify DAG during matching, keep the matching state
3041 std::unique_ptr
<MatchStateUpdater
> MSU
;
3042 if (ComplexPatternFuncMutatesDAG())
3043 MSU
.reset(new MatchStateUpdater(*CurDAG
, &NodeToMatch
, RecordedNodes
,
3046 if (!CheckComplexPattern(NodeToMatch
, RecordedNodes
[RecNo
].second
,
3047 RecordedNodes
[RecNo
].first
, CPNum
,
3052 case OPC_CheckOpcode
:
3053 if (!::CheckOpcode(MatcherTable
, MatcherIndex
, N
.getNode())) break;
3057 if (!::CheckType(MatcherTable
, MatcherIndex
, N
, TLI
,
3058 CurDAG
->getDataLayout()))
3062 case OPC_CheckTypeRes
: {
3063 unsigned Res
= MatcherTable
[MatcherIndex
++];
3064 if (!::CheckType(MatcherTable
, MatcherIndex
, N
.getValue(Res
), TLI
,
3065 CurDAG
->getDataLayout()))
3070 case OPC_SwitchOpcode
: {
3071 unsigned CurNodeOpcode
= N
.getOpcode();
3072 unsigned SwitchStart
= MatcherIndex
-1; (void)SwitchStart
;
3075 // Get the size of this case.
3076 CaseSize
= MatcherTable
[MatcherIndex
++];
3078 CaseSize
= GetVBR(CaseSize
, MatcherTable
, MatcherIndex
);
3079 if (CaseSize
== 0) break;
3081 uint16_t Opc
= MatcherTable
[MatcherIndex
++];
3082 Opc
|= (unsigned short)MatcherTable
[MatcherIndex
++] << 8;
3084 // If the opcode matches, then we will execute this case.
3085 if (CurNodeOpcode
== Opc
)
3088 // Otherwise, skip over this case.
3089 MatcherIndex
+= CaseSize
;
3092 // If no cases matched, bail out.
3093 if (CaseSize
== 0) break;
3095 // Otherwise, execute the case we found.
3096 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart
<< " to "
3097 << MatcherIndex
<< "\n");
3101 case OPC_SwitchType
: {
3102 MVT CurNodeVT
= N
.getSimpleValueType();
3103 unsigned SwitchStart
= MatcherIndex
-1; (void)SwitchStart
;
3106 // Get the size of this case.
3107 CaseSize
= MatcherTable
[MatcherIndex
++];
3109 CaseSize
= GetVBR(CaseSize
, MatcherTable
, MatcherIndex
);
3110 if (CaseSize
== 0) break;
3112 MVT CaseVT
= (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3113 if (CaseVT
== MVT::iPTR
)
3114 CaseVT
= TLI
->getPointerTy(CurDAG
->getDataLayout());
3116 // If the VT matches, then we will execute this case.
3117 if (CurNodeVT
== CaseVT
)
3120 // Otherwise, skip over this case.
3121 MatcherIndex
+= CaseSize
;
3124 // If no cases matched, bail out.
3125 if (CaseSize
== 0) break;
3127 // Otherwise, execute the case we found.
3128 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT
).getEVTString()
3129 << "] from " << SwitchStart
<< " to " << MatcherIndex
3133 case OPC_CheckChild0Type
: case OPC_CheckChild1Type
:
3134 case OPC_CheckChild2Type
: case OPC_CheckChild3Type
:
3135 case OPC_CheckChild4Type
: case OPC_CheckChild5Type
:
3136 case OPC_CheckChild6Type
: case OPC_CheckChild7Type
:
3137 if (!::CheckChildType(MatcherTable
, MatcherIndex
, N
, TLI
,
3138 CurDAG
->getDataLayout(),
3139 Opcode
- OPC_CheckChild0Type
))
3142 case OPC_CheckCondCode
:
3143 if (!::CheckCondCode(MatcherTable
, MatcherIndex
, N
)) break;
3145 case OPC_CheckChild2CondCode
:
3146 if (!::CheckChild2CondCode(MatcherTable
, MatcherIndex
, N
)) break;
3148 case OPC_CheckValueType
:
3149 if (!::CheckValueType(MatcherTable
, MatcherIndex
, N
, TLI
,
3150 CurDAG
->getDataLayout()))
3153 case OPC_CheckInteger
:
3154 if (!::CheckInteger(MatcherTable
, MatcherIndex
, N
)) break;
3156 case OPC_CheckChild0Integer
: case OPC_CheckChild1Integer
:
3157 case OPC_CheckChild2Integer
: case OPC_CheckChild3Integer
:
3158 case OPC_CheckChild4Integer
:
3159 if (!::CheckChildInteger(MatcherTable
, MatcherIndex
, N
,
3160 Opcode
-OPC_CheckChild0Integer
)) break;
3162 case OPC_CheckAndImm
:
3163 if (!::CheckAndImm(MatcherTable
, MatcherIndex
, N
, *this)) break;
3165 case OPC_CheckOrImm
:
3166 if (!::CheckOrImm(MatcherTable
, MatcherIndex
, N
, *this)) break;
3168 case OPC_CheckImmAllOnesV
:
3169 if (!ISD::isBuildVectorAllOnes(N
.getNode())) break;
3171 case OPC_CheckImmAllZerosV
:
3172 if (!ISD::isBuildVectorAllZeros(N
.getNode())) break;
3175 case OPC_CheckFoldableChainNode
: {
3176 assert(NodeStack
.size() != 1 && "No parent node");
3177 // Verify that all intermediate nodes between the root and this one have
3179 bool HasMultipleUses
= false;
3180 for (unsigned i
= 1, e
= NodeStack
.size()-1; i
!= e
; ++i
)
3181 if (!NodeStack
[i
].getNode()->hasOneUse()) {
3182 HasMultipleUses
= true;
3185 if (HasMultipleUses
) break;
3187 // Check to see that the target thinks this is profitable to fold and that
3188 // we can fold it without inducing cycles in the graph.
3189 if (!IsProfitableToFold(N
, NodeStack
[NodeStack
.size()-2].getNode(),
3191 !IsLegalToFold(N
, NodeStack
[NodeStack
.size()-2].getNode(),
3192 NodeToMatch
, OptLevel
,
3193 true/*We validate our own chains*/))
3198 case OPC_EmitInteger
: {
3199 MVT::SimpleValueType VT
=
3200 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3201 int64_t Val
= MatcherTable
[MatcherIndex
++];
3203 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
3204 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
3205 CurDAG
->getTargetConstant(Val
, SDLoc(NodeToMatch
),
3209 case OPC_EmitRegister
: {
3210 MVT::SimpleValueType VT
=
3211 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3212 unsigned RegNo
= MatcherTable
[MatcherIndex
++];
3213 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
3214 CurDAG
->getRegister(RegNo
, VT
), nullptr));
3217 case OPC_EmitRegister2
: {
3218 // For targets w/ more than 256 register names, the register enum
3219 // values are stored in two bytes in the matcher table (just like
3221 MVT::SimpleValueType VT
=
3222 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3223 unsigned RegNo
= MatcherTable
[MatcherIndex
++];
3224 RegNo
|= MatcherTable
[MatcherIndex
++] << 8;
3225 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
3226 CurDAG
->getRegister(RegNo
, VT
), nullptr));
3230 case OPC_EmitConvertToTarget
: {
3231 // Convert from IMM/FPIMM to target version.
3232 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3233 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitConvertToTarget");
3234 SDValue Imm
= RecordedNodes
[RecNo
].first
;
3236 if (Imm
->getOpcode() == ISD::Constant
) {
3237 const ConstantInt
*Val
=cast
<ConstantSDNode
>(Imm
)->getConstantIntValue();
3238 Imm
= CurDAG
->getTargetConstant(*Val
, SDLoc(NodeToMatch
),
3239 Imm
.getValueType());
3240 } else if (Imm
->getOpcode() == ISD::ConstantFP
) {
3241 const ConstantFP
*Val
=cast
<ConstantFPSDNode
>(Imm
)->getConstantFPValue();
3242 Imm
= CurDAG
->getTargetConstantFP(*Val
, SDLoc(NodeToMatch
),
3243 Imm
.getValueType());
3246 RecordedNodes
.push_back(std::make_pair(Imm
, RecordedNodes
[RecNo
].second
));
3250 case OPC_EmitMergeInputChains1_0
: // OPC_EmitMergeInputChains, 1, 0
3251 case OPC_EmitMergeInputChains1_1
: // OPC_EmitMergeInputChains, 1, 1
3252 case OPC_EmitMergeInputChains1_2
: { // OPC_EmitMergeInputChains, 1, 2
3253 // These are space-optimized forms of OPC_EmitMergeInputChains.
3254 assert(!InputChain
.getNode() &&
3255 "EmitMergeInputChains should be the first chain producing node");
3256 assert(ChainNodesMatched
.empty() &&
3257 "Should only have one EmitMergeInputChains per match");
3259 // Read all of the chained nodes.
3260 unsigned RecNo
= Opcode
- OPC_EmitMergeInputChains1_0
;
3261 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitMergeInputChains");
3262 ChainNodesMatched
.push_back(RecordedNodes
[RecNo
].first
.getNode());
3264 // FIXME: What if other value results of the node have uses not matched
3266 if (ChainNodesMatched
.back() != NodeToMatch
&&
3267 !RecordedNodes
[RecNo
].first
.hasOneUse()) {
3268 ChainNodesMatched
.clear();
3272 // Merge the input chains if they are not intra-pattern references.
3273 InputChain
= HandleMergeInputChains(ChainNodesMatched
, CurDAG
);
3275 if (!InputChain
.getNode())
3276 break; // Failed to merge.
3280 case OPC_EmitMergeInputChains
: {
3281 assert(!InputChain
.getNode() &&
3282 "EmitMergeInputChains should be the first chain producing node");
3283 // This node gets a list of nodes we matched in the input that have
3284 // chains. We want to token factor all of the input chains to these nodes
3285 // together. However, if any of the input chains is actually one of the
3286 // nodes matched in this pattern, then we have an intra-match reference.
3287 // Ignore these because the newly token factored chain should not refer to
3289 unsigned NumChains
= MatcherTable
[MatcherIndex
++];
3290 assert(NumChains
!= 0 && "Can't TF zero chains");
3292 assert(ChainNodesMatched
.empty() &&
3293 "Should only have one EmitMergeInputChains per match");
3295 // Read all of the chained nodes.
3296 for (unsigned i
= 0; i
!= NumChains
; ++i
) {
3297 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3298 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitMergeInputChains");
3299 ChainNodesMatched
.push_back(RecordedNodes
[RecNo
].first
.getNode());
3301 // FIXME: What if other value results of the node have uses not matched
3303 if (ChainNodesMatched
.back() != NodeToMatch
&&
3304 !RecordedNodes
[RecNo
].first
.hasOneUse()) {
3305 ChainNodesMatched
.clear();
3310 // If the inner loop broke out, the match fails.
3311 if (ChainNodesMatched
.empty())
3314 // Merge the input chains if they are not intra-pattern references.
3315 InputChain
= HandleMergeInputChains(ChainNodesMatched
, CurDAG
);
3317 if (!InputChain
.getNode())
3318 break; // Failed to merge.
3323 case OPC_EmitCopyToReg
:
3324 case OPC_EmitCopyToReg2
: {
3325 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3326 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitCopyToReg");
3327 unsigned DestPhysReg
= MatcherTable
[MatcherIndex
++];
3328 if (Opcode
== OPC_EmitCopyToReg2
)
3329 DestPhysReg
|= MatcherTable
[MatcherIndex
++] << 8;
3331 if (!InputChain
.getNode())
3332 InputChain
= CurDAG
->getEntryNode();
3334 InputChain
= CurDAG
->getCopyToReg(InputChain
, SDLoc(NodeToMatch
),
3335 DestPhysReg
, RecordedNodes
[RecNo
].first
,
3338 InputGlue
= InputChain
.getValue(1);
3342 case OPC_EmitNodeXForm
: {
3343 unsigned XFormNo
= MatcherTable
[MatcherIndex
++];
3344 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3345 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitNodeXForm");
3346 SDValue Res
= RunSDNodeXForm(RecordedNodes
[RecNo
].first
, XFormNo
);
3347 RecordedNodes
.push_back(std::pair
<SDValue
,SDNode
*>(Res
, nullptr));
3350 case OPC_Coverage
: {
3351 // This is emitted right before MorphNode/EmitNode.
3352 // So it should be safe to assume that this node has been selected
3353 unsigned index
= MatcherTable
[MatcherIndex
++];
3354 index
|= (MatcherTable
[MatcherIndex
++] << 8);
3355 dbgs() << "COVERED: " << getPatternForIndex(index
) << "\n";
3356 dbgs() << "INCLUDED: " << getIncludePathForIndex(index
) << "\n";
3360 case OPC_EmitNode
: case OPC_MorphNodeTo
:
3361 case OPC_EmitNode0
: case OPC_EmitNode1
: case OPC_EmitNode2
:
3362 case OPC_MorphNodeTo0
: case OPC_MorphNodeTo1
: case OPC_MorphNodeTo2
: {
3363 uint16_t TargetOpc
= MatcherTable
[MatcherIndex
++];
3364 TargetOpc
|= (unsigned short)MatcherTable
[MatcherIndex
++] << 8;
3365 unsigned EmitNodeInfo
= MatcherTable
[MatcherIndex
++];
3366 // Get the result VT list.
3368 // If this is one of the compressed forms, get the number of VTs based
3369 // on the Opcode. Otherwise read the next byte from the table.
3370 if (Opcode
>= OPC_MorphNodeTo0
&& Opcode
<= OPC_MorphNodeTo2
)
3371 NumVTs
= Opcode
- OPC_MorphNodeTo0
;
3372 else if (Opcode
>= OPC_EmitNode0
&& Opcode
<= OPC_EmitNode2
)
3373 NumVTs
= Opcode
- OPC_EmitNode0
;
3375 NumVTs
= MatcherTable
[MatcherIndex
++];
3376 SmallVector
<EVT
, 4> VTs
;
3377 for (unsigned i
= 0; i
!= NumVTs
; ++i
) {
3378 MVT::SimpleValueType VT
=
3379 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3380 if (VT
== MVT::iPTR
)
3381 VT
= TLI
->getPointerTy(CurDAG
->getDataLayout()).SimpleTy
;
3385 if (EmitNodeInfo
& OPFL_Chain
)
3386 VTs
.push_back(MVT::Other
);
3387 if (EmitNodeInfo
& OPFL_GlueOutput
)
3388 VTs
.push_back(MVT::Glue
);
3390 // This is hot code, so optimize the two most common cases of 1 and 2
3393 if (VTs
.size() == 1)
3394 VTList
= CurDAG
->getVTList(VTs
[0]);
3395 else if (VTs
.size() == 2)
3396 VTList
= CurDAG
->getVTList(VTs
[0], VTs
[1]);
3398 VTList
= CurDAG
->getVTList(VTs
);
3400 // Get the operand list.
3401 unsigned NumOps
= MatcherTable
[MatcherIndex
++];
3402 SmallVector
<SDValue
, 8> Ops
;
3403 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
3404 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3406 RecNo
= GetVBR(RecNo
, MatcherTable
, MatcherIndex
);
3408 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitNode");
3409 Ops
.push_back(RecordedNodes
[RecNo
].first
);
3412 // If there are variadic operands to add, handle them now.
3413 if (EmitNodeInfo
& OPFL_VariadicInfo
) {
3414 // Determine the start index to copy from.
3415 unsigned FirstOpToCopy
= getNumFixedFromVariadicInfo(EmitNodeInfo
);
3416 FirstOpToCopy
+= (EmitNodeInfo
& OPFL_Chain
) ? 1 : 0;
3417 assert(NodeToMatch
->getNumOperands() >= FirstOpToCopy
&&
3418 "Invalid variadic node");
3419 // Copy all of the variadic operands, not including a potential glue
3421 for (unsigned i
= FirstOpToCopy
, e
= NodeToMatch
->getNumOperands();
3423 SDValue V
= NodeToMatch
->getOperand(i
);
3424 if (V
.getValueType() == MVT::Glue
) break;
3429 // If this has chain/glue inputs, add them.
3430 if (EmitNodeInfo
& OPFL_Chain
)
3431 Ops
.push_back(InputChain
);
3432 if ((EmitNodeInfo
& OPFL_GlueInput
) && InputGlue
.getNode() != nullptr)
3433 Ops
.push_back(InputGlue
);
3436 MachineSDNode
*Res
= nullptr;
3437 bool IsMorphNodeTo
= Opcode
== OPC_MorphNodeTo
||
3438 (Opcode
>= OPC_MorphNodeTo0
&& Opcode
<= OPC_MorphNodeTo2
);
3439 if (!IsMorphNodeTo
) {
3440 // If this is a normal EmitNode command, just create the new node and
3441 // add the results to the RecordedNodes list.
3442 Res
= CurDAG
->getMachineNode(TargetOpc
, SDLoc(NodeToMatch
),
3445 // Add all the non-glue/non-chain results to the RecordedNodes list.
3446 for (unsigned i
= 0, e
= VTs
.size(); i
!= e
; ++i
) {
3447 if (VTs
[i
] == MVT::Other
|| VTs
[i
] == MVT::Glue
) break;
3448 RecordedNodes
.push_back(std::pair
<SDValue
,SDNode
*>(SDValue(Res
, i
),
3452 assert(NodeToMatch
->getOpcode() != ISD::DELETED_NODE
&&
3453 "NodeToMatch was removed partway through selection");
3454 SelectionDAG::DAGNodeDeletedListener
NDL(*CurDAG
, [&](SDNode
*N
,
3456 CurDAG
->salvageDebugInfo(*N
);
3457 auto &Chain
= ChainNodesMatched
;
3458 assert((!E
|| !is_contained(Chain
, N
)) &&
3459 "Chain node replaced during MorphNode");
3460 Chain
.erase(std::remove(Chain
.begin(), Chain
.end(), N
), Chain
.end());
3462 Res
= cast
<MachineSDNode
>(MorphNode(NodeToMatch
, TargetOpc
, VTList
,
3463 Ops
, EmitNodeInfo
));
3466 // If the node had chain/glue results, update our notion of the current
3468 if (EmitNodeInfo
& OPFL_GlueOutput
) {
3469 InputGlue
= SDValue(Res
, VTs
.size()-1);
3470 if (EmitNodeInfo
& OPFL_Chain
)
3471 InputChain
= SDValue(Res
, VTs
.size()-2);
3472 } else if (EmitNodeInfo
& OPFL_Chain
)
3473 InputChain
= SDValue(Res
, VTs
.size()-1);
3475 // If the OPFL_MemRefs glue is set on this node, slap all of the
3476 // accumulated memrefs onto it.
3478 // FIXME: This is vastly incorrect for patterns with multiple outputs
3479 // instructions that access memory and for ComplexPatterns that match
3481 if (EmitNodeInfo
& OPFL_MemRefs
) {
3482 // Only attach load or store memory operands if the generated
3483 // instruction may load or store.
3484 const MCInstrDesc
&MCID
= TII
->get(TargetOpc
);
3485 bool mayLoad
= MCID
.mayLoad();
3486 bool mayStore
= MCID
.mayStore();
3488 // We expect to have relatively few of these so just filter them into a
3489 // temporary buffer so that we can easily add them to the instruction.
3490 SmallVector
<MachineMemOperand
*, 4> FilteredMemRefs
;
3491 for (MachineMemOperand
*MMO
: MatchedMemRefs
) {
3492 if (MMO
->isLoad()) {
3494 FilteredMemRefs
.push_back(MMO
);
3495 } else if (MMO
->isStore()) {
3497 FilteredMemRefs
.push_back(MMO
);
3499 FilteredMemRefs
.push_back(MMO
);
3503 CurDAG
->setNodeMemRefs(Res
, FilteredMemRefs
);
3506 LLVM_DEBUG(if (!MatchedMemRefs
.empty() && Res
->memoperands_empty()) dbgs()
3507 << " Dropping mem operands\n";
3508 dbgs() << " " << (IsMorphNodeTo
? "Morphed" : "Created")
3510 Res
->dump(CurDAG
););
3512 // If this was a MorphNodeTo then we're completely done!
3513 if (IsMorphNodeTo
) {
3514 // Update chain uses.
3515 UpdateChains(Res
, InputChain
, ChainNodesMatched
, true);
3521 case OPC_CompleteMatch
: {
3522 // The match has been completed, and any new nodes (if any) have been
3523 // created. Patch up references to the matched dag to use the newly
3525 unsigned NumResults
= MatcherTable
[MatcherIndex
++];
3527 for (unsigned i
= 0; i
!= NumResults
; ++i
) {
3528 unsigned ResSlot
= MatcherTable
[MatcherIndex
++];
3530 ResSlot
= GetVBR(ResSlot
, MatcherTable
, MatcherIndex
);
3532 assert(ResSlot
< RecordedNodes
.size() && "Invalid CompleteMatch");
3533 SDValue Res
= RecordedNodes
[ResSlot
].first
;
3535 assert(i
< NodeToMatch
->getNumValues() &&
3536 NodeToMatch
->getValueType(i
) != MVT::Other
&&
3537 NodeToMatch
->getValueType(i
) != MVT::Glue
&&
3538 "Invalid number of results to complete!");
3539 assert((NodeToMatch
->getValueType(i
) == Res
.getValueType() ||
3540 NodeToMatch
->getValueType(i
) == MVT::iPTR
||
3541 Res
.getValueType() == MVT::iPTR
||
3542 NodeToMatch
->getValueType(i
).getSizeInBits() ==
3543 Res
.getValueSizeInBits()) &&
3544 "invalid replacement");
3545 ReplaceUses(SDValue(NodeToMatch
, i
), Res
);
3548 // Update chain uses.
3549 UpdateChains(NodeToMatch
, InputChain
, ChainNodesMatched
, false);
3551 // If the root node defines glue, we need to update it to the glue result.
3552 // TODO: This never happens in our tests and I think it can be removed /
3553 // replaced with an assert, but if we do it this the way the change is
3555 if (NodeToMatch
->getValueType(NodeToMatch
->getNumValues() - 1) ==
3557 InputGlue
.getNode())
3558 ReplaceUses(SDValue(NodeToMatch
, NodeToMatch
->getNumValues() - 1),
3561 assert(NodeToMatch
->use_empty() &&
3562 "Didn't replace all uses of the node?");
3563 CurDAG
->RemoveDeadNode(NodeToMatch
);
3569 // If the code reached this point, then the match failed. See if there is
3570 // another child to try in the current 'Scope', otherwise pop it until we
3571 // find a case to check.
3572 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
3574 ++NumDAGIselRetries
;
3576 if (MatchScopes
.empty()) {
3577 CannotYetSelect(NodeToMatch
);
3581 // Restore the interpreter state back to the point where the scope was
3583 MatchScope
&LastScope
= MatchScopes
.back();
3584 RecordedNodes
.resize(LastScope
.NumRecordedNodes
);
3586 NodeStack
.append(LastScope
.NodeStack
.begin(), LastScope
.NodeStack
.end());
3587 N
= NodeStack
.back();
3589 if (LastScope
.NumMatchedMemRefs
!= MatchedMemRefs
.size())
3590 MatchedMemRefs
.resize(LastScope
.NumMatchedMemRefs
);
3591 MatcherIndex
= LastScope
.FailIndex
;
3593 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex
<< "\n");
3595 InputChain
= LastScope
.InputChain
;
3596 InputGlue
= LastScope
.InputGlue
;
3597 if (!LastScope
.HasChainNodesMatched
)
3598 ChainNodesMatched
.clear();
3600 // Check to see what the offset is at the new MatcherIndex. If it is zero
3601 // we have reached the end of this scope, otherwise we have another child
3602 // in the current scope to try.
3603 unsigned NumToSkip
= MatcherTable
[MatcherIndex
++];
3604 if (NumToSkip
& 128)
3605 NumToSkip
= GetVBR(NumToSkip
, MatcherTable
, MatcherIndex
);
3607 // If we have another child in this scope to match, update FailIndex and
3609 if (NumToSkip
!= 0) {
3610 LastScope
.FailIndex
= MatcherIndex
+NumToSkip
;
3614 // End of this scope, pop it and try the next child in the containing
3616 MatchScopes
.pop_back();
3621 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode
*N
) const {
3622 assert(N
->getOpcode() == ISD::OR
&& "Unexpected opcode");
3623 auto *C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3627 // Detect when "or" is used to add an offset to a stack object.
3628 if (auto *FN
= dyn_cast
<FrameIndexSDNode
>(N
->getOperand(0))) {
3629 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
3630 unsigned A
= MFI
.getObjectAlignment(FN
->getIndex());
3631 assert(isPowerOf2_32(A
) && "Unexpected alignment");
3632 int32_t Off
= C
->getSExtValue();
3633 // If the alleged offset fits in the zero bits guaranteed by
3634 // the alignment, then this or is really an add.
3635 return (Off
>= 0) && (((A
- 1) & Off
) == unsigned(Off
));
3640 void SelectionDAGISel::CannotYetSelect(SDNode
*N
) {
3642 raw_string_ostream
Msg(msg
);
3643 Msg
<< "Cannot select: ";
3645 if (N
->getOpcode() != ISD::INTRINSIC_W_CHAIN
&&
3646 N
->getOpcode() != ISD::INTRINSIC_WO_CHAIN
&&
3647 N
->getOpcode() != ISD::INTRINSIC_VOID
) {
3648 N
->printrFull(Msg
, CurDAG
);
3649 Msg
<< "\nIn function: " << MF
->getName();
3651 bool HasInputChain
= N
->getOperand(0).getValueType() == MVT::Other
;
3653 cast
<ConstantSDNode
>(N
->getOperand(HasInputChain
))->getZExtValue();
3654 if (iid
< Intrinsic::num_intrinsics
)
3655 Msg
<< "intrinsic %" << Intrinsic::getName((Intrinsic::ID
)iid
, None
);
3656 else if (const TargetIntrinsicInfo
*TII
= TM
.getIntrinsicInfo())
3657 Msg
<< "target intrinsic %" << TII
->getName(iid
);
3659 Msg
<< "unknown intrinsic #" << iid
;
3661 report_fatal_error(Msg
.str());
3664 char SelectionDAGISel::ID
= 0;