[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / ExecutionEngine / Interpreter / Execution.cpp
blob51f31d3d5d8f6bd407e6b096b88c8978247a8f55
1 //===-- Execution.cpp - Implement code to simulate the program ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the actual instruction interpreter.
11 //===----------------------------------------------------------------------===//
13 #include "Interpreter.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/CodeGen/IntrinsicLowering.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DerivedTypes.h"
19 #include "llvm/IR/GetElementPtrTypeIterator.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 #include <cmath>
28 using namespace llvm;
30 #define DEBUG_TYPE "interpreter"
32 STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
34 static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
35 cl::desc("make the interpreter print every volatile load and store"));
37 //===----------------------------------------------------------------------===//
38 // Various Helper Functions
39 //===----------------------------------------------------------------------===//
41 static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
42 SF.Values[V] = Val;
45 //===----------------------------------------------------------------------===//
46 // Unary Instruction Implementations
47 //===----------------------------------------------------------------------===//
49 static void executeFNegInst(GenericValue &Dest, GenericValue Src, Type *Ty) {
50 switch (Ty->getTypeID()) {
51 case Type::FloatTyID:
52 Dest.FloatVal = -Src.FloatVal;
53 break;
54 case Type::DoubleTyID:
55 Dest.DoubleVal = -Src.DoubleVal;
56 break;
57 default:
58 llvm_unreachable("Unhandled type for FNeg instruction");
62 void Interpreter::visitUnaryOperator(UnaryOperator &I) {
63 ExecutionContext &SF = ECStack.back();
64 Type *Ty = I.getOperand(0)->getType();
65 GenericValue Src = getOperandValue(I.getOperand(0), SF);
66 GenericValue R; // Result
68 // First process vector operation
69 if (Ty->isVectorTy()) {
70 R.AggregateVal.resize(Src.AggregateVal.size());
72 switch(I.getOpcode()) {
73 default:
74 llvm_unreachable("Don't know how to handle this unary operator");
75 break;
76 case Instruction::FNeg:
77 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
78 for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
79 R.AggregateVal[i].FloatVal = -Src.AggregateVal[i].FloatVal;
80 } else if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) {
81 for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
82 R.AggregateVal[i].DoubleVal = -Src.AggregateVal[i].DoubleVal;
83 } else {
84 llvm_unreachable("Unhandled type for FNeg instruction");
86 break;
88 } else {
89 switch (I.getOpcode()) {
90 default:
91 llvm_unreachable("Don't know how to handle this unary operator");
92 break;
93 case Instruction::FNeg: executeFNegInst(R, Src, Ty); break;
96 SetValue(&I, R, SF);
99 //===----------------------------------------------------------------------===//
100 // Binary Instruction Implementations
101 //===----------------------------------------------------------------------===//
103 #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
104 case Type::TY##TyID: \
105 Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
106 break
108 static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
109 GenericValue Src2, Type *Ty) {
110 switch (Ty->getTypeID()) {
111 IMPLEMENT_BINARY_OPERATOR(+, Float);
112 IMPLEMENT_BINARY_OPERATOR(+, Double);
113 default:
114 dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
115 llvm_unreachable(nullptr);
119 static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
120 GenericValue Src2, Type *Ty) {
121 switch (Ty->getTypeID()) {
122 IMPLEMENT_BINARY_OPERATOR(-, Float);
123 IMPLEMENT_BINARY_OPERATOR(-, Double);
124 default:
125 dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
126 llvm_unreachable(nullptr);
130 static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
131 GenericValue Src2, Type *Ty) {
132 switch (Ty->getTypeID()) {
133 IMPLEMENT_BINARY_OPERATOR(*, Float);
134 IMPLEMENT_BINARY_OPERATOR(*, Double);
135 default:
136 dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
137 llvm_unreachable(nullptr);
141 static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
142 GenericValue Src2, Type *Ty) {
143 switch (Ty->getTypeID()) {
144 IMPLEMENT_BINARY_OPERATOR(/, Float);
145 IMPLEMENT_BINARY_OPERATOR(/, Double);
146 default:
147 dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
148 llvm_unreachable(nullptr);
152 static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
153 GenericValue Src2, Type *Ty) {
154 switch (Ty->getTypeID()) {
155 case Type::FloatTyID:
156 Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
157 break;
158 case Type::DoubleTyID:
159 Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
160 break;
161 default:
162 dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
163 llvm_unreachable(nullptr);
167 #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
168 case Type::IntegerTyID: \
169 Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
170 break;
172 #define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \
173 case Type::VectorTyID: { \
174 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
175 Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
176 for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
177 Dest.AggregateVal[_i].IntVal = APInt(1, \
178 Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\
179 } break;
181 // Handle pointers specially because they must be compared with only as much
182 // width as the host has. We _do not_ want to be comparing 64 bit values when
183 // running on a 32-bit target, otherwise the upper 32 bits might mess up
184 // comparisons if they contain garbage.
185 #define IMPLEMENT_POINTER_ICMP(OP) \
186 case Type::PointerTyID: \
187 Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
188 (void*)(intptr_t)Src2.PointerVal); \
189 break;
191 static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
192 Type *Ty) {
193 GenericValue Dest;
194 switch (Ty->getTypeID()) {
195 IMPLEMENT_INTEGER_ICMP(eq,Ty);
196 IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty);
197 IMPLEMENT_POINTER_ICMP(==);
198 default:
199 dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
200 llvm_unreachable(nullptr);
202 return Dest;
205 static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
206 Type *Ty) {
207 GenericValue Dest;
208 switch (Ty->getTypeID()) {
209 IMPLEMENT_INTEGER_ICMP(ne,Ty);
210 IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty);
211 IMPLEMENT_POINTER_ICMP(!=);
212 default:
213 dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
214 llvm_unreachable(nullptr);
216 return Dest;
219 static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
220 Type *Ty) {
221 GenericValue Dest;
222 switch (Ty->getTypeID()) {
223 IMPLEMENT_INTEGER_ICMP(ult,Ty);
224 IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty);
225 IMPLEMENT_POINTER_ICMP(<);
226 default:
227 dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
228 llvm_unreachable(nullptr);
230 return Dest;
233 static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
234 Type *Ty) {
235 GenericValue Dest;
236 switch (Ty->getTypeID()) {
237 IMPLEMENT_INTEGER_ICMP(slt,Ty);
238 IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty);
239 IMPLEMENT_POINTER_ICMP(<);
240 default:
241 dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
242 llvm_unreachable(nullptr);
244 return Dest;
247 static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
248 Type *Ty) {
249 GenericValue Dest;
250 switch (Ty->getTypeID()) {
251 IMPLEMENT_INTEGER_ICMP(ugt,Ty);
252 IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty);
253 IMPLEMENT_POINTER_ICMP(>);
254 default:
255 dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
256 llvm_unreachable(nullptr);
258 return Dest;
261 static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
262 Type *Ty) {
263 GenericValue Dest;
264 switch (Ty->getTypeID()) {
265 IMPLEMENT_INTEGER_ICMP(sgt,Ty);
266 IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty);
267 IMPLEMENT_POINTER_ICMP(>);
268 default:
269 dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
270 llvm_unreachable(nullptr);
272 return Dest;
275 static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
276 Type *Ty) {
277 GenericValue Dest;
278 switch (Ty->getTypeID()) {
279 IMPLEMENT_INTEGER_ICMP(ule,Ty);
280 IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty);
281 IMPLEMENT_POINTER_ICMP(<=);
282 default:
283 dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
284 llvm_unreachable(nullptr);
286 return Dest;
289 static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
290 Type *Ty) {
291 GenericValue Dest;
292 switch (Ty->getTypeID()) {
293 IMPLEMENT_INTEGER_ICMP(sle,Ty);
294 IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty);
295 IMPLEMENT_POINTER_ICMP(<=);
296 default:
297 dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
298 llvm_unreachable(nullptr);
300 return Dest;
303 static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
304 Type *Ty) {
305 GenericValue Dest;
306 switch (Ty->getTypeID()) {
307 IMPLEMENT_INTEGER_ICMP(uge,Ty);
308 IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty);
309 IMPLEMENT_POINTER_ICMP(>=);
310 default:
311 dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
312 llvm_unreachable(nullptr);
314 return Dest;
317 static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
318 Type *Ty) {
319 GenericValue Dest;
320 switch (Ty->getTypeID()) {
321 IMPLEMENT_INTEGER_ICMP(sge,Ty);
322 IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty);
323 IMPLEMENT_POINTER_ICMP(>=);
324 default:
325 dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
326 llvm_unreachable(nullptr);
328 return Dest;
331 void Interpreter::visitICmpInst(ICmpInst &I) {
332 ExecutionContext &SF = ECStack.back();
333 Type *Ty = I.getOperand(0)->getType();
334 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
335 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
336 GenericValue R; // Result
338 switch (I.getPredicate()) {
339 case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
340 case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
341 case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
342 case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
343 case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
344 case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
345 case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
346 case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
347 case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
348 case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
349 default:
350 dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
351 llvm_unreachable(nullptr);
354 SetValue(&I, R, SF);
357 #define IMPLEMENT_FCMP(OP, TY) \
358 case Type::TY##TyID: \
359 Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
360 break
362 #define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \
363 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
364 Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
365 for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
366 Dest.AggregateVal[_i].IntVal = APInt(1, \
367 Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
368 break;
370 #define IMPLEMENT_VECTOR_FCMP(OP) \
371 case Type::VectorTyID: \
372 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \
373 IMPLEMENT_VECTOR_FCMP_T(OP, Float); \
374 } else { \
375 IMPLEMENT_VECTOR_FCMP_T(OP, Double); \
378 static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
379 Type *Ty) {
380 GenericValue Dest;
381 switch (Ty->getTypeID()) {
382 IMPLEMENT_FCMP(==, Float);
383 IMPLEMENT_FCMP(==, Double);
384 IMPLEMENT_VECTOR_FCMP(==);
385 default:
386 dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
387 llvm_unreachable(nullptr);
389 return Dest;
392 #define IMPLEMENT_SCALAR_NANS(TY, X,Y) \
393 if (TY->isFloatTy()) { \
394 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
395 Dest.IntVal = APInt(1,false); \
396 return Dest; \
398 } else { \
399 if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
400 Dest.IntVal = APInt(1,false); \
401 return Dest; \
405 #define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \
406 assert(X.AggregateVal.size() == Y.AggregateVal.size()); \
407 Dest.AggregateVal.resize( X.AggregateVal.size() ); \
408 for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \
409 if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \
410 Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \
411 Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \
412 else { \
413 Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \
417 #define MASK_VECTOR_NANS(TY, X,Y, FLAG) \
418 if (TY->isVectorTy()) { \
419 if (cast<VectorType>(TY)->getElementType()->isFloatTy()) { \
420 MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \
421 } else { \
422 MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \
428 static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
429 Type *Ty)
431 GenericValue Dest;
432 // if input is scalar value and Src1 or Src2 is NaN return false
433 IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
434 // if vector input detect NaNs and fill mask
435 MASK_VECTOR_NANS(Ty, Src1, Src2, false)
436 GenericValue DestMask = Dest;
437 switch (Ty->getTypeID()) {
438 IMPLEMENT_FCMP(!=, Float);
439 IMPLEMENT_FCMP(!=, Double);
440 IMPLEMENT_VECTOR_FCMP(!=);
441 default:
442 dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
443 llvm_unreachable(nullptr);
445 // in vector case mask out NaN elements
446 if (Ty->isVectorTy())
447 for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
448 if (DestMask.AggregateVal[_i].IntVal == false)
449 Dest.AggregateVal[_i].IntVal = APInt(1,false);
451 return Dest;
454 static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
455 Type *Ty) {
456 GenericValue Dest;
457 switch (Ty->getTypeID()) {
458 IMPLEMENT_FCMP(<=, Float);
459 IMPLEMENT_FCMP(<=, Double);
460 IMPLEMENT_VECTOR_FCMP(<=);
461 default:
462 dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
463 llvm_unreachable(nullptr);
465 return Dest;
468 static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
469 Type *Ty) {
470 GenericValue Dest;
471 switch (Ty->getTypeID()) {
472 IMPLEMENT_FCMP(>=, Float);
473 IMPLEMENT_FCMP(>=, Double);
474 IMPLEMENT_VECTOR_FCMP(>=);
475 default:
476 dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
477 llvm_unreachable(nullptr);
479 return Dest;
482 static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
483 Type *Ty) {
484 GenericValue Dest;
485 switch (Ty->getTypeID()) {
486 IMPLEMENT_FCMP(<, Float);
487 IMPLEMENT_FCMP(<, Double);
488 IMPLEMENT_VECTOR_FCMP(<);
489 default:
490 dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
491 llvm_unreachable(nullptr);
493 return Dest;
496 static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
497 Type *Ty) {
498 GenericValue Dest;
499 switch (Ty->getTypeID()) {
500 IMPLEMENT_FCMP(>, Float);
501 IMPLEMENT_FCMP(>, Double);
502 IMPLEMENT_VECTOR_FCMP(>);
503 default:
504 dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
505 llvm_unreachable(nullptr);
507 return Dest;
510 #define IMPLEMENT_UNORDERED(TY, X,Y) \
511 if (TY->isFloatTy()) { \
512 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
513 Dest.IntVal = APInt(1,true); \
514 return Dest; \
516 } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
517 Dest.IntVal = APInt(1,true); \
518 return Dest; \
521 #define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \
522 if (TY->isVectorTy()) { \
523 GenericValue DestMask = Dest; \
524 Dest = FUNC(Src1, Src2, Ty); \
525 for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \
526 if (DestMask.AggregateVal[_i].IntVal == true) \
527 Dest.AggregateVal[_i].IntVal = APInt(1, true); \
528 return Dest; \
531 static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
532 Type *Ty) {
533 GenericValue Dest;
534 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
535 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
536 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ)
537 return executeFCMP_OEQ(Src1, Src2, Ty);
541 static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
542 Type *Ty) {
543 GenericValue Dest;
544 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
545 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
546 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE)
547 return executeFCMP_ONE(Src1, Src2, Ty);
550 static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
551 Type *Ty) {
552 GenericValue Dest;
553 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
554 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
555 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE)
556 return executeFCMP_OLE(Src1, Src2, Ty);
559 static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
560 Type *Ty) {
561 GenericValue Dest;
562 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
563 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
564 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE)
565 return executeFCMP_OGE(Src1, Src2, Ty);
568 static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
569 Type *Ty) {
570 GenericValue Dest;
571 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
572 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
573 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT)
574 return executeFCMP_OLT(Src1, Src2, Ty);
577 static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
578 Type *Ty) {
579 GenericValue Dest;
580 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
581 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
582 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT)
583 return executeFCMP_OGT(Src1, Src2, Ty);
586 static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
587 Type *Ty) {
588 GenericValue Dest;
589 if(Ty->isVectorTy()) {
590 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
591 Dest.AggregateVal.resize( Src1.AggregateVal.size() );
592 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
593 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
594 Dest.AggregateVal[_i].IntVal = APInt(1,
595 ( (Src1.AggregateVal[_i].FloatVal ==
596 Src1.AggregateVal[_i].FloatVal) &&
597 (Src2.AggregateVal[_i].FloatVal ==
598 Src2.AggregateVal[_i].FloatVal)));
599 } else {
600 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
601 Dest.AggregateVal[_i].IntVal = APInt(1,
602 ( (Src1.AggregateVal[_i].DoubleVal ==
603 Src1.AggregateVal[_i].DoubleVal) &&
604 (Src2.AggregateVal[_i].DoubleVal ==
605 Src2.AggregateVal[_i].DoubleVal)));
607 } else if (Ty->isFloatTy())
608 Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
609 Src2.FloatVal == Src2.FloatVal));
610 else {
611 Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
612 Src2.DoubleVal == Src2.DoubleVal));
614 return Dest;
617 static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
618 Type *Ty) {
619 GenericValue Dest;
620 if(Ty->isVectorTy()) {
621 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
622 Dest.AggregateVal.resize( Src1.AggregateVal.size() );
623 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
624 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
625 Dest.AggregateVal[_i].IntVal = APInt(1,
626 ( (Src1.AggregateVal[_i].FloatVal !=
627 Src1.AggregateVal[_i].FloatVal) ||
628 (Src2.AggregateVal[_i].FloatVal !=
629 Src2.AggregateVal[_i].FloatVal)));
630 } else {
631 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
632 Dest.AggregateVal[_i].IntVal = APInt(1,
633 ( (Src1.AggregateVal[_i].DoubleVal !=
634 Src1.AggregateVal[_i].DoubleVal) ||
635 (Src2.AggregateVal[_i].DoubleVal !=
636 Src2.AggregateVal[_i].DoubleVal)));
638 } else if (Ty->isFloatTy())
639 Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
640 Src2.FloatVal != Src2.FloatVal));
641 else {
642 Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
643 Src2.DoubleVal != Src2.DoubleVal));
645 return Dest;
648 static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2,
649 Type *Ty, const bool val) {
650 GenericValue Dest;
651 if(Ty->isVectorTy()) {
652 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
653 Dest.AggregateVal.resize( Src1.AggregateVal.size() );
654 for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
655 Dest.AggregateVal[_i].IntVal = APInt(1,val);
656 } else {
657 Dest.IntVal = APInt(1, val);
660 return Dest;
663 void Interpreter::visitFCmpInst(FCmpInst &I) {
664 ExecutionContext &SF = ECStack.back();
665 Type *Ty = I.getOperand(0)->getType();
666 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
667 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
668 GenericValue R; // Result
670 switch (I.getPredicate()) {
671 default:
672 dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
673 llvm_unreachable(nullptr);
674 break;
675 case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
676 break;
677 case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true);
678 break;
679 case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
680 case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
681 case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
682 case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
683 case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
684 case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
685 case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
686 case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
687 case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
688 case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
689 case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
690 case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
691 case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
692 case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
695 SetValue(&I, R, SF);
698 static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
699 GenericValue Src2, Type *Ty) {
700 GenericValue Result;
701 switch (predicate) {
702 case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
703 case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
704 case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
705 case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
706 case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
707 case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
708 case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
709 case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
710 case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
711 case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
712 case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
713 case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
714 case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
715 case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
716 case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
717 case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
718 case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
719 case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
720 case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
721 case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
722 case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
723 case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
724 case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
725 case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
726 case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
727 case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true);
728 default:
729 dbgs() << "Unhandled Cmp predicate\n";
730 llvm_unreachable(nullptr);
734 void Interpreter::visitBinaryOperator(BinaryOperator &I) {
735 ExecutionContext &SF = ECStack.back();
736 Type *Ty = I.getOperand(0)->getType();
737 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
738 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
739 GenericValue R; // Result
741 // First process vector operation
742 if (Ty->isVectorTy()) {
743 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
744 R.AggregateVal.resize(Src1.AggregateVal.size());
746 // Macros to execute binary operation 'OP' over integer vectors
747 #define INTEGER_VECTOR_OPERATION(OP) \
748 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
749 R.AggregateVal[i].IntVal = \
750 Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
752 // Additional macros to execute binary operations udiv/sdiv/urem/srem since
753 // they have different notation.
754 #define INTEGER_VECTOR_FUNCTION(OP) \
755 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
756 R.AggregateVal[i].IntVal = \
757 Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
759 // Macros to execute binary operation 'OP' over floating point type TY
760 // (float or double) vectors
761 #define FLOAT_VECTOR_FUNCTION(OP, TY) \
762 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
763 R.AggregateVal[i].TY = \
764 Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
766 // Macros to choose appropriate TY: float or double and run operation
767 // execution
768 #define FLOAT_VECTOR_OP(OP) { \
769 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) \
770 FLOAT_VECTOR_FUNCTION(OP, FloatVal) \
771 else { \
772 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \
773 FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \
774 else { \
775 dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
776 llvm_unreachable(0); \
781 switch(I.getOpcode()){
782 default:
783 dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
784 llvm_unreachable(nullptr);
785 break;
786 case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break;
787 case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break;
788 case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break;
789 case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break;
790 case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break;
791 case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break;
792 case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break;
793 case Instruction::And: INTEGER_VECTOR_OPERATION(&) break;
794 case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break;
795 case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break;
796 case Instruction::FAdd: FLOAT_VECTOR_OP(+) break;
797 case Instruction::FSub: FLOAT_VECTOR_OP(-) break;
798 case Instruction::FMul: FLOAT_VECTOR_OP(*) break;
799 case Instruction::FDiv: FLOAT_VECTOR_OP(/) break;
800 case Instruction::FRem:
801 if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
802 for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
803 R.AggregateVal[i].FloatVal =
804 fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
805 else {
806 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
807 for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
808 R.AggregateVal[i].DoubleVal =
809 fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
810 else {
811 dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
812 llvm_unreachable(nullptr);
815 break;
817 } else {
818 switch (I.getOpcode()) {
819 default:
820 dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
821 llvm_unreachable(nullptr);
822 break;
823 case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
824 case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
825 case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
826 case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
827 case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
828 case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
829 case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
830 case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
831 case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
832 case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
833 case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
834 case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
835 case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
836 case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
837 case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
840 SetValue(&I, R, SF);
843 static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
844 GenericValue Src3, Type *Ty) {
845 GenericValue Dest;
846 if(Ty->isVectorTy()) {
847 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
848 assert(Src2.AggregateVal.size() == Src3.AggregateVal.size());
849 Dest.AggregateVal.resize( Src1.AggregateVal.size() );
850 for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)
851 Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ?
852 Src3.AggregateVal[i] : Src2.AggregateVal[i];
853 } else {
854 Dest = (Src1.IntVal == 0) ? Src3 : Src2;
856 return Dest;
859 void Interpreter::visitSelectInst(SelectInst &I) {
860 ExecutionContext &SF = ECStack.back();
861 Type * Ty = I.getOperand(0)->getType();
862 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
863 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
864 GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
865 GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty);
866 SetValue(&I, R, SF);
869 //===----------------------------------------------------------------------===//
870 // Terminator Instruction Implementations
871 //===----------------------------------------------------------------------===//
873 void Interpreter::exitCalled(GenericValue GV) {
874 // runAtExitHandlers() assumes there are no stack frames, but
875 // if exit() was called, then it had a stack frame. Blow away
876 // the stack before interpreting atexit handlers.
877 ECStack.clear();
878 runAtExitHandlers();
879 exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
882 /// Pop the last stack frame off of ECStack and then copy the result
883 /// back into the result variable if we are not returning void. The
884 /// result variable may be the ExitValue, or the Value of the calling
885 /// CallInst if there was a previous stack frame. This method may
886 /// invalidate any ECStack iterators you have. This method also takes
887 /// care of switching to the normal destination BB, if we are returning
888 /// from an invoke.
890 void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
891 GenericValue Result) {
892 // Pop the current stack frame.
893 ECStack.pop_back();
895 if (ECStack.empty()) { // Finished main. Put result into exit code...
896 if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type?
897 ExitValue = Result; // Capture the exit value of the program
898 } else {
899 memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
901 } else {
902 // If we have a previous stack frame, and we have a previous call,
903 // fill in the return value...
904 ExecutionContext &CallingSF = ECStack.back();
905 if (Instruction *I = CallingSF.Caller.getInstruction()) {
906 // Save result...
907 if (!CallingSF.Caller.getType()->isVoidTy())
908 SetValue(I, Result, CallingSF);
909 if (InvokeInst *II = dyn_cast<InvokeInst> (I))
910 SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
911 CallingSF.Caller = CallSite(); // We returned from the call...
916 void Interpreter::visitReturnInst(ReturnInst &I) {
917 ExecutionContext &SF = ECStack.back();
918 Type *RetTy = Type::getVoidTy(I.getContext());
919 GenericValue Result;
921 // Save away the return value... (if we are not 'ret void')
922 if (I.getNumOperands()) {
923 RetTy = I.getReturnValue()->getType();
924 Result = getOperandValue(I.getReturnValue(), SF);
927 popStackAndReturnValueToCaller(RetTy, Result);
930 void Interpreter::visitUnreachableInst(UnreachableInst &I) {
931 report_fatal_error("Program executed an 'unreachable' instruction!");
934 void Interpreter::visitBranchInst(BranchInst &I) {
935 ExecutionContext &SF = ECStack.back();
936 BasicBlock *Dest;
938 Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
939 if (!I.isUnconditional()) {
940 Value *Cond = I.getCondition();
941 if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
942 Dest = I.getSuccessor(1);
944 SwitchToNewBasicBlock(Dest, SF);
947 void Interpreter::visitSwitchInst(SwitchInst &I) {
948 ExecutionContext &SF = ECStack.back();
949 Value* Cond = I.getCondition();
950 Type *ElTy = Cond->getType();
951 GenericValue CondVal = getOperandValue(Cond, SF);
953 // Check to see if any of the cases match...
954 BasicBlock *Dest = nullptr;
955 for (auto Case : I.cases()) {
956 GenericValue CaseVal = getOperandValue(Case.getCaseValue(), SF);
957 if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
958 Dest = cast<BasicBlock>(Case.getCaseSuccessor());
959 break;
962 if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
963 SwitchToNewBasicBlock(Dest, SF);
966 void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
967 ExecutionContext &SF = ECStack.back();
968 void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
969 SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
973 // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
974 // This function handles the actual updating of block and instruction iterators
975 // as well as execution of all of the PHI nodes in the destination block.
977 // This method does this because all of the PHI nodes must be executed
978 // atomically, reading their inputs before any of the results are updated. Not
979 // doing this can cause problems if the PHI nodes depend on other PHI nodes for
980 // their inputs. If the input PHI node is updated before it is read, incorrect
981 // results can happen. Thus we use a two phase approach.
983 void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
984 BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
985 SF.CurBB = Dest; // Update CurBB to branch destination
986 SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
988 if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
990 // Loop over all of the PHI nodes in the current block, reading their inputs.
991 std::vector<GenericValue> ResultValues;
993 for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
994 // Search for the value corresponding to this previous bb...
995 int i = PN->getBasicBlockIndex(PrevBB);
996 assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
997 Value *IncomingValue = PN->getIncomingValue(i);
999 // Save the incoming value for this PHI node...
1000 ResultValues.push_back(getOperandValue(IncomingValue, SF));
1003 // Now loop over all of the PHI nodes setting their values...
1004 SF.CurInst = SF.CurBB->begin();
1005 for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
1006 PHINode *PN = cast<PHINode>(SF.CurInst);
1007 SetValue(PN, ResultValues[i], SF);
1011 //===----------------------------------------------------------------------===//
1012 // Memory Instruction Implementations
1013 //===----------------------------------------------------------------------===//
1015 void Interpreter::visitAllocaInst(AllocaInst &I) {
1016 ExecutionContext &SF = ECStack.back();
1018 Type *Ty = I.getType()->getElementType(); // Type to be allocated
1020 // Get the number of elements being allocated by the array...
1021 unsigned NumElements =
1022 getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
1024 unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty);
1026 // Avoid malloc-ing zero bytes, use max()...
1027 unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
1029 // Allocate enough memory to hold the type...
1030 void *Memory = safe_malloc(MemToAlloc);
1032 LLVM_DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize
1033 << " bytes) x " << NumElements << " (Total: " << MemToAlloc
1034 << ") at " << uintptr_t(Memory) << '\n');
1036 GenericValue Result = PTOGV(Memory);
1037 assert(Result.PointerVal && "Null pointer returned by malloc!");
1038 SetValue(&I, Result, SF);
1040 if (I.getOpcode() == Instruction::Alloca)
1041 ECStack.back().Allocas.add(Memory);
1044 // getElementOffset - The workhorse for getelementptr.
1046 GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
1047 gep_type_iterator E,
1048 ExecutionContext &SF) {
1049 assert(Ptr->getType()->isPointerTy() &&
1050 "Cannot getElementOffset of a nonpointer type!");
1052 uint64_t Total = 0;
1054 for (; I != E; ++I) {
1055 if (StructType *STy = I.getStructTypeOrNull()) {
1056 const StructLayout *SLO = getDataLayout().getStructLayout(STy);
1058 const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
1059 unsigned Index = unsigned(CPU->getZExtValue());
1061 Total += SLO->getElementOffset(Index);
1062 } else {
1063 // Get the index number for the array... which must be long type...
1064 GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
1066 int64_t Idx;
1067 unsigned BitWidth =
1068 cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
1069 if (BitWidth == 32)
1070 Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
1071 else {
1072 assert(BitWidth == 64 && "Invalid index type for getelementptr");
1073 Idx = (int64_t)IdxGV.IntVal.getZExtValue();
1075 Total += getDataLayout().getTypeAllocSize(I.getIndexedType()) * Idx;
1079 GenericValue Result;
1080 Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
1081 LLVM_DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
1082 return Result;
1085 void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
1086 ExecutionContext &SF = ECStack.back();
1087 SetValue(&I, executeGEPOperation(I.getPointerOperand(),
1088 gep_type_begin(I), gep_type_end(I), SF), SF);
1091 void Interpreter::visitLoadInst(LoadInst &I) {
1092 ExecutionContext &SF = ECStack.back();
1093 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1094 GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
1095 GenericValue Result;
1096 LoadValueFromMemory(Result, Ptr, I.getType());
1097 SetValue(&I, Result, SF);
1098 if (I.isVolatile() && PrintVolatile)
1099 dbgs() << "Volatile load " << I;
1102 void Interpreter::visitStoreInst(StoreInst &I) {
1103 ExecutionContext &SF = ECStack.back();
1104 GenericValue Val = getOperandValue(I.getOperand(0), SF);
1105 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1106 StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
1107 I.getOperand(0)->getType());
1108 if (I.isVolatile() && PrintVolatile)
1109 dbgs() << "Volatile store: " << I;
1112 //===----------------------------------------------------------------------===//
1113 // Miscellaneous Instruction Implementations
1114 //===----------------------------------------------------------------------===//
1116 void Interpreter::visitCallSite(CallSite CS) {
1117 ExecutionContext &SF = ECStack.back();
1119 // Check to see if this is an intrinsic function call...
1120 Function *F = CS.getCalledFunction();
1121 if (F && F->isDeclaration())
1122 switch (F->getIntrinsicID()) {
1123 case Intrinsic::not_intrinsic:
1124 break;
1125 case Intrinsic::vastart: { // va_start
1126 GenericValue ArgIndex;
1127 ArgIndex.UIntPairVal.first = ECStack.size() - 1;
1128 ArgIndex.UIntPairVal.second = 0;
1129 SetValue(CS.getInstruction(), ArgIndex, SF);
1130 return;
1132 case Intrinsic::vaend: // va_end is a noop for the interpreter
1133 return;
1134 case Intrinsic::vacopy: // va_copy: dest = src
1135 SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
1136 return;
1137 default:
1138 // If it is an unknown intrinsic function, use the intrinsic lowering
1139 // class to transform it into hopefully tasty LLVM code.
1141 BasicBlock::iterator me(CS.getInstruction());
1142 BasicBlock *Parent = CS.getInstruction()->getParent();
1143 bool atBegin(Parent->begin() == me);
1144 if (!atBegin)
1145 --me;
1146 IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
1148 // Restore the CurInst pointer to the first instruction newly inserted, if
1149 // any.
1150 if (atBegin) {
1151 SF.CurInst = Parent->begin();
1152 } else {
1153 SF.CurInst = me;
1154 ++SF.CurInst;
1156 return;
1160 SF.Caller = CS;
1161 std::vector<GenericValue> ArgVals;
1162 const unsigned NumArgs = SF.Caller.arg_size();
1163 ArgVals.reserve(NumArgs);
1164 uint16_t pNum = 1;
1165 for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
1166 e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
1167 Value *V = *i;
1168 ArgVals.push_back(getOperandValue(V, SF));
1171 // To handle indirect calls, we must get the pointer value from the argument
1172 // and treat it as a function pointer.
1173 GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
1174 callFunction((Function*)GVTOP(SRC), ArgVals);
1177 // auxiliary function for shift operations
1178 static unsigned getShiftAmount(uint64_t orgShiftAmount,
1179 llvm::APInt valueToShift) {
1180 unsigned valueWidth = valueToShift.getBitWidth();
1181 if (orgShiftAmount < (uint64_t)valueWidth)
1182 return orgShiftAmount;
1183 // according to the llvm documentation, if orgShiftAmount > valueWidth,
1184 // the result is undfeined. but we do shift by this rule:
1185 return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
1189 void Interpreter::visitShl(BinaryOperator &I) {
1190 ExecutionContext &SF = ECStack.back();
1191 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1192 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1193 GenericValue Dest;
1194 Type *Ty = I.getType();
1196 if (Ty->isVectorTy()) {
1197 uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1198 assert(src1Size == Src2.AggregateVal.size());
1199 for (unsigned i = 0; i < src1Size; i++) {
1200 GenericValue Result;
1201 uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1202 llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1203 Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1204 Dest.AggregateVal.push_back(Result);
1206 } else {
1207 // scalar
1208 uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1209 llvm::APInt valueToShift = Src1.IntVal;
1210 Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1213 SetValue(&I, Dest, SF);
1216 void Interpreter::visitLShr(BinaryOperator &I) {
1217 ExecutionContext &SF = ECStack.back();
1218 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1219 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1220 GenericValue Dest;
1221 Type *Ty = I.getType();
1223 if (Ty->isVectorTy()) {
1224 uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1225 assert(src1Size == Src2.AggregateVal.size());
1226 for (unsigned i = 0; i < src1Size; i++) {
1227 GenericValue Result;
1228 uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1229 llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1230 Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1231 Dest.AggregateVal.push_back(Result);
1233 } else {
1234 // scalar
1235 uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1236 llvm::APInt valueToShift = Src1.IntVal;
1237 Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1240 SetValue(&I, Dest, SF);
1243 void Interpreter::visitAShr(BinaryOperator &I) {
1244 ExecutionContext &SF = ECStack.back();
1245 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1246 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1247 GenericValue Dest;
1248 Type *Ty = I.getType();
1250 if (Ty->isVectorTy()) {
1251 size_t src1Size = Src1.AggregateVal.size();
1252 assert(src1Size == Src2.AggregateVal.size());
1253 for (unsigned i = 0; i < src1Size; i++) {
1254 GenericValue Result;
1255 uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1256 llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1257 Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1258 Dest.AggregateVal.push_back(Result);
1260 } else {
1261 // scalar
1262 uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1263 llvm::APInt valueToShift = Src1.IntVal;
1264 Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1267 SetValue(&I, Dest, SF);
1270 GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
1271 ExecutionContext &SF) {
1272 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1273 Type *SrcTy = SrcVal->getType();
1274 if (SrcTy->isVectorTy()) {
1275 Type *DstVecTy = DstTy->getScalarType();
1276 unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1277 unsigned NumElts = Src.AggregateVal.size();
1278 // the sizes of src and dst vectors must be equal
1279 Dest.AggregateVal.resize(NumElts);
1280 for (unsigned i = 0; i < NumElts; i++)
1281 Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
1282 } else {
1283 IntegerType *DITy = cast<IntegerType>(DstTy);
1284 unsigned DBitWidth = DITy->getBitWidth();
1285 Dest.IntVal = Src.IntVal.trunc(DBitWidth);
1287 return Dest;
1290 GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
1291 ExecutionContext &SF) {
1292 Type *SrcTy = SrcVal->getType();
1293 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1294 if (SrcTy->isVectorTy()) {
1295 Type *DstVecTy = DstTy->getScalarType();
1296 unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1297 unsigned size = Src.AggregateVal.size();
1298 // the sizes of src and dst vectors must be equal.
1299 Dest.AggregateVal.resize(size);
1300 for (unsigned i = 0; i < size; i++)
1301 Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
1302 } else {
1303 auto *DITy = cast<IntegerType>(DstTy);
1304 unsigned DBitWidth = DITy->getBitWidth();
1305 Dest.IntVal = Src.IntVal.sext(DBitWidth);
1307 return Dest;
1310 GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
1311 ExecutionContext &SF) {
1312 Type *SrcTy = SrcVal->getType();
1313 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1314 if (SrcTy->isVectorTy()) {
1315 Type *DstVecTy = DstTy->getScalarType();
1316 unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1318 unsigned size = Src.AggregateVal.size();
1319 // the sizes of src and dst vectors must be equal.
1320 Dest.AggregateVal.resize(size);
1321 for (unsigned i = 0; i < size; i++)
1322 Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
1323 } else {
1324 auto *DITy = cast<IntegerType>(DstTy);
1325 unsigned DBitWidth = DITy->getBitWidth();
1326 Dest.IntVal = Src.IntVal.zext(DBitWidth);
1328 return Dest;
1331 GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
1332 ExecutionContext &SF) {
1333 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1335 if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1336 assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
1337 DstTy->getScalarType()->isFloatTy() &&
1338 "Invalid FPTrunc instruction");
1340 unsigned size = Src.AggregateVal.size();
1341 // the sizes of src and dst vectors must be equal.
1342 Dest.AggregateVal.resize(size);
1343 for (unsigned i = 0; i < size; i++)
1344 Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
1345 } else {
1346 assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
1347 "Invalid FPTrunc instruction");
1348 Dest.FloatVal = (float)Src.DoubleVal;
1351 return Dest;
1354 GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
1355 ExecutionContext &SF) {
1356 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1358 if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1359 assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
1360 DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
1362 unsigned size = Src.AggregateVal.size();
1363 // the sizes of src and dst vectors must be equal.
1364 Dest.AggregateVal.resize(size);
1365 for (unsigned i = 0; i < size; i++)
1366 Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
1367 } else {
1368 assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
1369 "Invalid FPExt instruction");
1370 Dest.DoubleVal = (double)Src.FloatVal;
1373 return Dest;
1376 GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
1377 ExecutionContext &SF) {
1378 Type *SrcTy = SrcVal->getType();
1379 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1381 if (SrcTy->getTypeID() == Type::VectorTyID) {
1382 Type *DstVecTy = DstTy->getScalarType();
1383 Type *SrcVecTy = SrcTy->getScalarType();
1384 uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1385 unsigned size = Src.AggregateVal.size();
1386 // the sizes of src and dst vectors must be equal.
1387 Dest.AggregateVal.resize(size);
1389 if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1390 assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1391 for (unsigned i = 0; i < size; i++)
1392 Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1393 Src.AggregateVal[i].FloatVal, DBitWidth);
1394 } else {
1395 for (unsigned i = 0; i < size; i++)
1396 Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1397 Src.AggregateVal[i].DoubleVal, DBitWidth);
1399 } else {
1400 // scalar
1401 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1402 assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1404 if (SrcTy->getTypeID() == Type::FloatTyID)
1405 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1406 else {
1407 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1411 return Dest;
1414 GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
1415 ExecutionContext &SF) {
1416 Type *SrcTy = SrcVal->getType();
1417 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1419 if (SrcTy->getTypeID() == Type::VectorTyID) {
1420 Type *DstVecTy = DstTy->getScalarType();
1421 Type *SrcVecTy = SrcTy->getScalarType();
1422 uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1423 unsigned size = Src.AggregateVal.size();
1424 // the sizes of src and dst vectors must be equal
1425 Dest.AggregateVal.resize(size);
1427 if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1428 assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1429 for (unsigned i = 0; i < size; i++)
1430 Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1431 Src.AggregateVal[i].FloatVal, DBitWidth);
1432 } else {
1433 for (unsigned i = 0; i < size; i++)
1434 Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1435 Src.AggregateVal[i].DoubleVal, DBitWidth);
1437 } else {
1438 // scalar
1439 unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1440 assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1442 if (SrcTy->getTypeID() == Type::FloatTyID)
1443 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1444 else {
1445 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1448 return Dest;
1451 GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
1452 ExecutionContext &SF) {
1453 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1455 if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1456 Type *DstVecTy = DstTy->getScalarType();
1457 unsigned size = Src.AggregateVal.size();
1458 // the sizes of src and dst vectors must be equal
1459 Dest.AggregateVal.resize(size);
1461 if (DstVecTy->getTypeID() == Type::FloatTyID) {
1462 assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1463 for (unsigned i = 0; i < size; i++)
1464 Dest.AggregateVal[i].FloatVal =
1465 APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal);
1466 } else {
1467 for (unsigned i = 0; i < size; i++)
1468 Dest.AggregateVal[i].DoubleVal =
1469 APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal);
1471 } else {
1472 // scalar
1473 assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1474 if (DstTy->getTypeID() == Type::FloatTyID)
1475 Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
1476 else {
1477 Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
1480 return Dest;
1483 GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
1484 ExecutionContext &SF) {
1485 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1487 if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1488 Type *DstVecTy = DstTy->getScalarType();
1489 unsigned size = Src.AggregateVal.size();
1490 // the sizes of src and dst vectors must be equal
1491 Dest.AggregateVal.resize(size);
1493 if (DstVecTy->getTypeID() == Type::FloatTyID) {
1494 assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1495 for (unsigned i = 0; i < size; i++)
1496 Dest.AggregateVal[i].FloatVal =
1497 APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal);
1498 } else {
1499 for (unsigned i = 0; i < size; i++)
1500 Dest.AggregateVal[i].DoubleVal =
1501 APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal);
1503 } else {
1504 // scalar
1505 assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1507 if (DstTy->getTypeID() == Type::FloatTyID)
1508 Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
1509 else {
1510 Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
1514 return Dest;
1517 GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
1518 ExecutionContext &SF) {
1519 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1520 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1521 assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
1523 Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
1524 return Dest;
1527 GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
1528 ExecutionContext &SF) {
1529 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1530 assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
1532 uint32_t PtrSize = getDataLayout().getPointerSizeInBits();
1533 if (PtrSize != Src.IntVal.getBitWidth())
1534 Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
1536 Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
1537 return Dest;
1540 GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
1541 ExecutionContext &SF) {
1543 // This instruction supports bitwise conversion of vectors to integers and
1544 // to vectors of other types (as long as they have the same size)
1545 Type *SrcTy = SrcVal->getType();
1546 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1548 if ((SrcTy->getTypeID() == Type::VectorTyID) ||
1549 (DstTy->getTypeID() == Type::VectorTyID)) {
1550 // vector src bitcast to vector dst or vector src bitcast to scalar dst or
1551 // scalar src bitcast to vector dst
1552 bool isLittleEndian = getDataLayout().isLittleEndian();
1553 GenericValue TempDst, TempSrc, SrcVec;
1554 Type *SrcElemTy;
1555 Type *DstElemTy;
1556 unsigned SrcBitSize;
1557 unsigned DstBitSize;
1558 unsigned SrcNum;
1559 unsigned DstNum;
1561 if (SrcTy->getTypeID() == Type::VectorTyID) {
1562 SrcElemTy = SrcTy->getScalarType();
1563 SrcBitSize = SrcTy->getScalarSizeInBits();
1564 SrcNum = Src.AggregateVal.size();
1565 SrcVec = Src;
1566 } else {
1567 // if src is scalar value, make it vector <1 x type>
1568 SrcElemTy = SrcTy;
1569 SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1570 SrcNum = 1;
1571 SrcVec.AggregateVal.push_back(Src);
1574 if (DstTy->getTypeID() == Type::VectorTyID) {
1575 DstElemTy = DstTy->getScalarType();
1576 DstBitSize = DstTy->getScalarSizeInBits();
1577 DstNum = (SrcNum * SrcBitSize) / DstBitSize;
1578 } else {
1579 DstElemTy = DstTy;
1580 DstBitSize = DstTy->getPrimitiveSizeInBits();
1581 DstNum = 1;
1584 if (SrcNum * SrcBitSize != DstNum * DstBitSize)
1585 llvm_unreachable("Invalid BitCast");
1587 // If src is floating point, cast to integer first.
1588 TempSrc.AggregateVal.resize(SrcNum);
1589 if (SrcElemTy->isFloatTy()) {
1590 for (unsigned i = 0; i < SrcNum; i++)
1591 TempSrc.AggregateVal[i].IntVal =
1592 APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
1594 } else if (SrcElemTy->isDoubleTy()) {
1595 for (unsigned i = 0; i < SrcNum; i++)
1596 TempSrc.AggregateVal[i].IntVal =
1597 APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
1598 } else if (SrcElemTy->isIntegerTy()) {
1599 for (unsigned i = 0; i < SrcNum; i++)
1600 TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
1601 } else {
1602 // Pointers are not allowed as the element type of vector.
1603 llvm_unreachable("Invalid Bitcast");
1606 // now TempSrc is integer type vector
1607 if (DstNum < SrcNum) {
1608 // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
1609 unsigned Ratio = SrcNum / DstNum;
1610 unsigned SrcElt = 0;
1611 for (unsigned i = 0; i < DstNum; i++) {
1612 GenericValue Elt;
1613 Elt.IntVal = 0;
1614 Elt.IntVal = Elt.IntVal.zext(DstBitSize);
1615 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
1616 for (unsigned j = 0; j < Ratio; j++) {
1617 APInt Tmp;
1618 Tmp = Tmp.zext(SrcBitSize);
1619 Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
1620 Tmp = Tmp.zext(DstBitSize);
1621 Tmp <<= ShiftAmt;
1622 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
1623 Elt.IntVal |= Tmp;
1625 TempDst.AggregateVal.push_back(Elt);
1627 } else {
1628 // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
1629 unsigned Ratio = DstNum / SrcNum;
1630 for (unsigned i = 0; i < SrcNum; i++) {
1631 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
1632 for (unsigned j = 0; j < Ratio; j++) {
1633 GenericValue Elt;
1634 Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
1635 Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
1636 Elt.IntVal.lshrInPlace(ShiftAmt);
1637 // it could be DstBitSize == SrcBitSize, so check it
1638 if (DstBitSize < SrcBitSize)
1639 Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
1640 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
1641 TempDst.AggregateVal.push_back(Elt);
1646 // convert result from integer to specified type
1647 if (DstTy->getTypeID() == Type::VectorTyID) {
1648 if (DstElemTy->isDoubleTy()) {
1649 Dest.AggregateVal.resize(DstNum);
1650 for (unsigned i = 0; i < DstNum; i++)
1651 Dest.AggregateVal[i].DoubleVal =
1652 TempDst.AggregateVal[i].IntVal.bitsToDouble();
1653 } else if (DstElemTy->isFloatTy()) {
1654 Dest.AggregateVal.resize(DstNum);
1655 for (unsigned i = 0; i < DstNum; i++)
1656 Dest.AggregateVal[i].FloatVal =
1657 TempDst.AggregateVal[i].IntVal.bitsToFloat();
1658 } else {
1659 Dest = TempDst;
1661 } else {
1662 if (DstElemTy->isDoubleTy())
1663 Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
1664 else if (DstElemTy->isFloatTy()) {
1665 Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
1666 } else {
1667 Dest.IntVal = TempDst.AggregateVal[0].IntVal;
1670 } else { // if ((SrcTy->getTypeID() == Type::VectorTyID) ||
1671 // (DstTy->getTypeID() == Type::VectorTyID))
1673 // scalar src bitcast to scalar dst
1674 if (DstTy->isPointerTy()) {
1675 assert(SrcTy->isPointerTy() && "Invalid BitCast");
1676 Dest.PointerVal = Src.PointerVal;
1677 } else if (DstTy->isIntegerTy()) {
1678 if (SrcTy->isFloatTy())
1679 Dest.IntVal = APInt::floatToBits(Src.FloatVal);
1680 else if (SrcTy->isDoubleTy()) {
1681 Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
1682 } else if (SrcTy->isIntegerTy()) {
1683 Dest.IntVal = Src.IntVal;
1684 } else {
1685 llvm_unreachable("Invalid BitCast");
1687 } else if (DstTy->isFloatTy()) {
1688 if (SrcTy->isIntegerTy())
1689 Dest.FloatVal = Src.IntVal.bitsToFloat();
1690 else {
1691 Dest.FloatVal = Src.FloatVal;
1693 } else if (DstTy->isDoubleTy()) {
1694 if (SrcTy->isIntegerTy())
1695 Dest.DoubleVal = Src.IntVal.bitsToDouble();
1696 else {
1697 Dest.DoubleVal = Src.DoubleVal;
1699 } else {
1700 llvm_unreachable("Invalid Bitcast");
1704 return Dest;
1707 void Interpreter::visitTruncInst(TruncInst &I) {
1708 ExecutionContext &SF = ECStack.back();
1709 SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
1712 void Interpreter::visitSExtInst(SExtInst &I) {
1713 ExecutionContext &SF = ECStack.back();
1714 SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
1717 void Interpreter::visitZExtInst(ZExtInst &I) {
1718 ExecutionContext &SF = ECStack.back();
1719 SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
1722 void Interpreter::visitFPTruncInst(FPTruncInst &I) {
1723 ExecutionContext &SF = ECStack.back();
1724 SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
1727 void Interpreter::visitFPExtInst(FPExtInst &I) {
1728 ExecutionContext &SF = ECStack.back();
1729 SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
1732 void Interpreter::visitUIToFPInst(UIToFPInst &I) {
1733 ExecutionContext &SF = ECStack.back();
1734 SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1737 void Interpreter::visitSIToFPInst(SIToFPInst &I) {
1738 ExecutionContext &SF = ECStack.back();
1739 SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1742 void Interpreter::visitFPToUIInst(FPToUIInst &I) {
1743 ExecutionContext &SF = ECStack.back();
1744 SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
1747 void Interpreter::visitFPToSIInst(FPToSIInst &I) {
1748 ExecutionContext &SF = ECStack.back();
1749 SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
1752 void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
1753 ExecutionContext &SF = ECStack.back();
1754 SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
1757 void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
1758 ExecutionContext &SF = ECStack.back();
1759 SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
1762 void Interpreter::visitBitCastInst(BitCastInst &I) {
1763 ExecutionContext &SF = ECStack.back();
1764 SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
1767 #define IMPLEMENT_VAARG(TY) \
1768 case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1770 void Interpreter::visitVAArgInst(VAArgInst &I) {
1771 ExecutionContext &SF = ECStack.back();
1773 // Get the incoming valist parameter. LLI treats the valist as a
1774 // (ec-stack-depth var-arg-index) pair.
1775 GenericValue VAList = getOperandValue(I.getOperand(0), SF);
1776 GenericValue Dest;
1777 GenericValue Src = ECStack[VAList.UIntPairVal.first]
1778 .VarArgs[VAList.UIntPairVal.second];
1779 Type *Ty = I.getType();
1780 switch (Ty->getTypeID()) {
1781 case Type::IntegerTyID:
1782 Dest.IntVal = Src.IntVal;
1783 break;
1784 IMPLEMENT_VAARG(Pointer);
1785 IMPLEMENT_VAARG(Float);
1786 IMPLEMENT_VAARG(Double);
1787 default:
1788 dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
1789 llvm_unreachable(nullptr);
1792 // Set the Value of this Instruction.
1793 SetValue(&I, Dest, SF);
1795 // Move the pointer to the next vararg.
1796 ++VAList.UIntPairVal.second;
1799 void Interpreter::visitExtractElementInst(ExtractElementInst &I) {
1800 ExecutionContext &SF = ECStack.back();
1801 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1802 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1803 GenericValue Dest;
1805 Type *Ty = I.getType();
1806 const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
1808 if(Src1.AggregateVal.size() > indx) {
1809 switch (Ty->getTypeID()) {
1810 default:
1811 dbgs() << "Unhandled destination type for extractelement instruction: "
1812 << *Ty << "\n";
1813 llvm_unreachable(nullptr);
1814 break;
1815 case Type::IntegerTyID:
1816 Dest.IntVal = Src1.AggregateVal[indx].IntVal;
1817 break;
1818 case Type::FloatTyID:
1819 Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
1820 break;
1821 case Type::DoubleTyID:
1822 Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
1823 break;
1825 } else {
1826 dbgs() << "Invalid index in extractelement instruction\n";
1829 SetValue(&I, Dest, SF);
1832 void Interpreter::visitInsertElementInst(InsertElementInst &I) {
1833 ExecutionContext &SF = ECStack.back();
1834 VectorType *Ty = cast<VectorType>(I.getType());
1836 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1837 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1838 GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
1839 GenericValue Dest;
1841 Type *TyContained = Ty->getElementType();
1843 const unsigned indx = unsigned(Src3.IntVal.getZExtValue());
1844 Dest.AggregateVal = Src1.AggregateVal;
1846 if(Src1.AggregateVal.size() <= indx)
1847 llvm_unreachable("Invalid index in insertelement instruction");
1848 switch (TyContained->getTypeID()) {
1849 default:
1850 llvm_unreachable("Unhandled dest type for insertelement instruction");
1851 case Type::IntegerTyID:
1852 Dest.AggregateVal[indx].IntVal = Src2.IntVal;
1853 break;
1854 case Type::FloatTyID:
1855 Dest.AggregateVal[indx].FloatVal = Src2.FloatVal;
1856 break;
1857 case Type::DoubleTyID:
1858 Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal;
1859 break;
1861 SetValue(&I, Dest, SF);
1864 void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){
1865 ExecutionContext &SF = ECStack.back();
1867 VectorType *Ty = cast<VectorType>(I.getType());
1869 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1870 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1871 GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
1872 GenericValue Dest;
1874 // There is no need to check types of src1 and src2, because the compiled
1875 // bytecode can't contain different types for src1 and src2 for a
1876 // shufflevector instruction.
1878 Type *TyContained = Ty->getElementType();
1879 unsigned src1Size = (unsigned)Src1.AggregateVal.size();
1880 unsigned src2Size = (unsigned)Src2.AggregateVal.size();
1881 unsigned src3Size = (unsigned)Src3.AggregateVal.size();
1883 Dest.AggregateVal.resize(src3Size);
1885 switch (TyContained->getTypeID()) {
1886 default:
1887 llvm_unreachable("Unhandled dest type for insertelement instruction");
1888 break;
1889 case Type::IntegerTyID:
1890 for( unsigned i=0; i<src3Size; i++) {
1891 unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
1892 if(j < src1Size)
1893 Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal;
1894 else if(j < src1Size + src2Size)
1895 Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal;
1896 else
1897 // The selector may not be greater than sum of lengths of first and
1898 // second operands and llasm should not allow situation like
1899 // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
1900 // <2 x i32> < i32 0, i32 5 >,
1901 // where i32 5 is invalid, but let it be additional check here:
1902 llvm_unreachable("Invalid mask in shufflevector instruction");
1904 break;
1905 case Type::FloatTyID:
1906 for( unsigned i=0; i<src3Size; i++) {
1907 unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
1908 if(j < src1Size)
1909 Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal;
1910 else if(j < src1Size + src2Size)
1911 Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal;
1912 else
1913 llvm_unreachable("Invalid mask in shufflevector instruction");
1915 break;
1916 case Type::DoubleTyID:
1917 for( unsigned i=0; i<src3Size; i++) {
1918 unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
1919 if(j < src1Size)
1920 Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal;
1921 else if(j < src1Size + src2Size)
1922 Dest.AggregateVal[i].DoubleVal =
1923 Src2.AggregateVal[j-src1Size].DoubleVal;
1924 else
1925 llvm_unreachable("Invalid mask in shufflevector instruction");
1927 break;
1929 SetValue(&I, Dest, SF);
1932 void Interpreter::visitExtractValueInst(ExtractValueInst &I) {
1933 ExecutionContext &SF = ECStack.back();
1934 Value *Agg = I.getAggregateOperand();
1935 GenericValue Dest;
1936 GenericValue Src = getOperandValue(Agg, SF);
1938 ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
1939 unsigned Num = I.getNumIndices();
1940 GenericValue *pSrc = &Src;
1942 for (unsigned i = 0 ; i < Num; ++i) {
1943 pSrc = &pSrc->AggregateVal[*IdxBegin];
1944 ++IdxBegin;
1947 Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1948 switch (IndexedType->getTypeID()) {
1949 default:
1950 llvm_unreachable("Unhandled dest type for extractelement instruction");
1951 break;
1952 case Type::IntegerTyID:
1953 Dest.IntVal = pSrc->IntVal;
1954 break;
1955 case Type::FloatTyID:
1956 Dest.FloatVal = pSrc->FloatVal;
1957 break;
1958 case Type::DoubleTyID:
1959 Dest.DoubleVal = pSrc->DoubleVal;
1960 break;
1961 case Type::ArrayTyID:
1962 case Type::StructTyID:
1963 case Type::VectorTyID:
1964 Dest.AggregateVal = pSrc->AggregateVal;
1965 break;
1966 case Type::PointerTyID:
1967 Dest.PointerVal = pSrc->PointerVal;
1968 break;
1971 SetValue(&I, Dest, SF);
1974 void Interpreter::visitInsertValueInst(InsertValueInst &I) {
1976 ExecutionContext &SF = ECStack.back();
1977 Value *Agg = I.getAggregateOperand();
1979 GenericValue Src1 = getOperandValue(Agg, SF);
1980 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1981 GenericValue Dest = Src1; // Dest is a slightly changed Src1
1983 ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
1984 unsigned Num = I.getNumIndices();
1986 GenericValue *pDest = &Dest;
1987 for (unsigned i = 0 ; i < Num; ++i) {
1988 pDest = &pDest->AggregateVal[*IdxBegin];
1989 ++IdxBegin;
1991 // pDest points to the target value in the Dest now
1993 Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1995 switch (IndexedType->getTypeID()) {
1996 default:
1997 llvm_unreachable("Unhandled dest type for insertelement instruction");
1998 break;
1999 case Type::IntegerTyID:
2000 pDest->IntVal = Src2.IntVal;
2001 break;
2002 case Type::FloatTyID:
2003 pDest->FloatVal = Src2.FloatVal;
2004 break;
2005 case Type::DoubleTyID:
2006 pDest->DoubleVal = Src2.DoubleVal;
2007 break;
2008 case Type::ArrayTyID:
2009 case Type::StructTyID:
2010 case Type::VectorTyID:
2011 pDest->AggregateVal = Src2.AggregateVal;
2012 break;
2013 case Type::PointerTyID:
2014 pDest->PointerVal = Src2.PointerVal;
2015 break;
2018 SetValue(&I, Dest, SF);
2021 GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
2022 ExecutionContext &SF) {
2023 switch (CE->getOpcode()) {
2024 case Instruction::Trunc:
2025 return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
2026 case Instruction::ZExt:
2027 return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
2028 case Instruction::SExt:
2029 return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
2030 case Instruction::FPTrunc:
2031 return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
2032 case Instruction::FPExt:
2033 return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
2034 case Instruction::UIToFP:
2035 return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
2036 case Instruction::SIToFP:
2037 return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
2038 case Instruction::FPToUI:
2039 return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
2040 case Instruction::FPToSI:
2041 return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
2042 case Instruction::PtrToInt:
2043 return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
2044 case Instruction::IntToPtr:
2045 return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
2046 case Instruction::BitCast:
2047 return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
2048 case Instruction::GetElementPtr:
2049 return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
2050 gep_type_end(CE), SF);
2051 case Instruction::FCmp:
2052 case Instruction::ICmp:
2053 return executeCmpInst(CE->getPredicate(),
2054 getOperandValue(CE->getOperand(0), SF),
2055 getOperandValue(CE->getOperand(1), SF),
2056 CE->getOperand(0)->getType());
2057 case Instruction::Select:
2058 return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
2059 getOperandValue(CE->getOperand(1), SF),
2060 getOperandValue(CE->getOperand(2), SF),
2061 CE->getOperand(0)->getType());
2062 default :
2063 break;
2066 // The cases below here require a GenericValue parameter for the result
2067 // so we initialize one, compute it and then return it.
2068 GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
2069 GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
2070 GenericValue Dest;
2071 Type * Ty = CE->getOperand(0)->getType();
2072 switch (CE->getOpcode()) {
2073 case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
2074 case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
2075 case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
2076 case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
2077 case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
2078 case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
2079 case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
2080 case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
2081 case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
2082 case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
2083 case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
2084 case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
2085 case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
2086 case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
2087 case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
2088 case Instruction::Shl:
2089 Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
2090 break;
2091 case Instruction::LShr:
2092 Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
2093 break;
2094 case Instruction::AShr:
2095 Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
2096 break;
2097 default:
2098 dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
2099 llvm_unreachable("Unhandled ConstantExpr");
2101 return Dest;
2104 GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
2105 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
2106 return getConstantExprValue(CE, SF);
2107 } else if (Constant *CPV = dyn_cast<Constant>(V)) {
2108 return getConstantValue(CPV);
2109 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2110 return PTOGV(getPointerToGlobal(GV));
2111 } else {
2112 return SF.Values[V];
2116 //===----------------------------------------------------------------------===//
2117 // Dispatch and Execution Code
2118 //===----------------------------------------------------------------------===//
2120 //===----------------------------------------------------------------------===//
2121 // callFunction - Execute the specified function...
2123 void Interpreter::callFunction(Function *F, ArrayRef<GenericValue> ArgVals) {
2124 assert((ECStack.empty() || !ECStack.back().Caller.getInstruction() ||
2125 ECStack.back().Caller.arg_size() == ArgVals.size()) &&
2126 "Incorrect number of arguments passed into function call!");
2127 // Make a new stack frame... and fill it in.
2128 ECStack.emplace_back();
2129 ExecutionContext &StackFrame = ECStack.back();
2130 StackFrame.CurFunction = F;
2132 // Special handling for external functions.
2133 if (F->isDeclaration()) {
2134 GenericValue Result = callExternalFunction (F, ArgVals);
2135 // Simulate a 'ret' instruction of the appropriate type.
2136 popStackAndReturnValueToCaller (F->getReturnType (), Result);
2137 return;
2140 // Get pointers to first LLVM BB & Instruction in function.
2141 StackFrame.CurBB = &F->front();
2142 StackFrame.CurInst = StackFrame.CurBB->begin();
2144 // Run through the function arguments and initialize their values...
2145 assert((ArgVals.size() == F->arg_size() ||
2146 (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
2147 "Invalid number of values passed to function invocation!");
2149 // Handle non-varargs arguments...
2150 unsigned i = 0;
2151 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
2152 AI != E; ++AI, ++i)
2153 SetValue(&*AI, ArgVals[i], StackFrame);
2155 // Handle varargs arguments...
2156 StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
2160 void Interpreter::run() {
2161 while (!ECStack.empty()) {
2162 // Interpret a single instruction & increment the "PC".
2163 ExecutionContext &SF = ECStack.back(); // Current stack frame
2164 Instruction &I = *SF.CurInst++; // Increment before execute
2166 // Track the number of dynamic instructions executed.
2167 ++NumDynamicInsts;
2169 LLVM_DEBUG(dbgs() << "About to interpret: " << I << "\n");
2170 visit(I); // Dispatch to one of the visit* methods...